xref: /freebsd/crypto/openssh/moduli.c (revision 52ec752989b2e6d4e9a59a8ff25d8ff596d85e62)
1 /* $OpenBSD: moduli.c,v 1.1 2003/07/28 09:49:56 djm Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include "includes.h"
41 #include "moduli.h"
42 #include "xmalloc.h"
43 #include "log.h"
44 
45 #include <openssl/bn.h>
46 
47 
48 /*
49  * Debugging defines
50  */
51 
52 /* define DEBUG_LARGE 1 */
53 /* define DEBUG_SMALL 1 */
54 /* define DEBUG_TEST  1 */
55 
56 /*
57  * File output defines
58  */
59 
60 /* need line long enough for largest moduli plus headers */
61 #define QLINESIZE               (100+8192)
62 
63 /* Type: decimal.
64  * Specifies the internal structure of the prime modulus.
65  */
66 #define QTYPE_UNKNOWN           (0)
67 #define QTYPE_UNSTRUCTURED      (1)
68 #define QTYPE_SAFE              (2)
69 #define QTYPE_SCHNOOR           (3)
70 #define QTYPE_SOPHIE_GERMAINE   (4)
71 #define QTYPE_STRONG            (5)
72 
73 /* Tests: decimal (bit field).
74  * Specifies the methods used in checking for primality.
75  * Usually, more than one test is used.
76  */
77 #define QTEST_UNTESTED          (0x00)
78 #define QTEST_COMPOSITE         (0x01)
79 #define QTEST_SIEVE             (0x02)
80 #define QTEST_MILLER_RABIN      (0x04)
81 #define QTEST_JACOBI            (0x08)
82 #define QTEST_ELLIPTIC          (0x10)
83 
84 /* Size: decimal.
85  * Specifies the number of the most significant bit (0 to M).
86  ** WARNING: internally, usually 1 to N.
87  */
88 #define QSIZE_MINIMUM           (511)
89 
90 /*
91  * Prime sieving defines
92  */
93 
94 /* Constant: assuming 8 bit bytes and 32 bit words */
95 #define SHIFT_BIT       (3)
96 #define SHIFT_BYTE      (2)
97 #define SHIFT_WORD      (SHIFT_BIT+SHIFT_BYTE)
98 #define SHIFT_MEGABYTE  (20)
99 #define SHIFT_MEGAWORD  (SHIFT_MEGABYTE-SHIFT_BYTE)
100 
101 /*
102  * Constant: when used with 32-bit integers, the largest sieve prime
103  * has to be less than 2**32.
104  */
105 #define SMALL_MAXIMUM   (0xffffffffUL)
106 
107 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
108 #define TINY_NUMBER     (1UL<<16)
109 
110 /* Ensure enough bit space for testing 2*q. */
111 #define TEST_MAXIMUM    (1UL<<16)
112 #define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
113 /* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
114 #define TEST_POWER      (3)	/* 2**n, n < SHIFT_WORD */
115 
116 /* bit operations on 32-bit words */
117 #define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
118 #define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
119 #define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
120 
121 /*
122  * Prime testing defines
123  */
124 
125 /*
126  * Sieving data (XXX - move to struct)
127  */
128 
129 /* sieve 2**16 */
130 static u_int32_t *TinySieve, tinybits;
131 
132 /* sieve 2**30 in 2**16 parts */
133 static u_int32_t *SmallSieve, smallbits, smallbase;
134 
135 /* sieve relative to the initial value */
136 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
137 static u_int32_t largebits, largememory;	/* megabytes */
138 static BIGNUM *largebase;
139 
140 
141 /*
142  * print moduli out in consistent form,
143  */
144 static int
145 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
146     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
147 {
148 	struct tm *gtm;
149 	time_t time_now;
150 	int res;
151 
152 	time(&time_now);
153 	gtm = gmtime(&time_now);
154 
155 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
156 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
157 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
158 	    otype, otests, otries, osize, ogenerator);
159 
160 	if (res < 0)
161 		return (-1);
162 
163 	if (BN_print_fp(ofile, omodulus) < 1)
164 		return (-1);
165 
166 	res = fprintf(ofile, "\n");
167 	fflush(ofile);
168 
169 	return (res > 0 ? 0 : -1);
170 }
171 
172 
173 /*
174  ** Sieve p's and q's with small factors
175  */
176 static void
177 sieve_large(u_int32_t s)
178 {
179 	u_int32_t r, u;
180 
181 	debug2("sieve_large %u", s);
182 	largetries++;
183 	/* r = largebase mod s */
184 	r = BN_mod_word(largebase, s);
185 	if (r == 0)
186 		u = 0; /* s divides into largebase exactly */
187 	else
188 		u = s - r; /* largebase+u is first entry divisible by s */
189 
190 	if (u < largebits * 2) {
191 		/*
192 		 * The sieve omits p's and q's divisible by 2, so ensure that
193 		 * largebase+u is odd. Then, step through the sieve in
194 		 * increments of 2*s
195 		 */
196 		if (u & 0x1)
197 			u += s; /* Make largebase+u odd, and u even */
198 
199 		/* Mark all multiples of 2*s */
200 		for (u /= 2; u < largebits; u += s)
201 			BIT_SET(LargeSieve, u);
202 	}
203 
204 	/* r = p mod s */
205 	r = (2 * r + 1) % s;
206 	if (r == 0)
207 		u = 0; /* s divides p exactly */
208 	else
209 		u = s - r; /* p+u is first entry divisible by s */
210 
211 	if (u < largebits * 4) {
212 		/*
213 		 * The sieve omits p's divisible by 4, so ensure that
214 		 * largebase+u is not. Then, step through the sieve in
215 		 * increments of 4*s
216 		 */
217 		while (u & 0x3) {
218 			if (SMALL_MAXIMUM - u < s)
219 				return;
220 			u += s;
221 		}
222 
223 		/* Mark all multiples of 4*s */
224 		for (u /= 4; u < largebits; u += s)
225 			BIT_SET(LargeSieve, u);
226 	}
227 }
228 
229 /*
230  * list candidates for Sophie-Germaine primes (where q = (p-1)/2)
231  * to standard output.
232  * The list is checked against small known primes (less than 2**30).
233  */
234 int
235 gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
236 {
237 	BIGNUM *q;
238 	u_int32_t j, r, s, t;
239 	u_int32_t smallwords = TINY_NUMBER >> 6;
240 	u_int32_t tinywords = TINY_NUMBER >> 6;
241 	time_t time_start, time_stop;
242 	int i, ret = 0;
243 
244 	largememory = memory;
245 
246 	/*
247          * Set power to the length in bits of the prime to be generated.
248          * This is changed to 1 less than the desired safe prime moduli p.
249          */
250 	if (power > TEST_MAXIMUM) {
251 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
252 		return (-1);
253 	} else if (power < TEST_MINIMUM) {
254 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
255 		return (-1);
256 	}
257 	power--; /* decrement before squaring */
258 
259 	/*
260          * The density of ordinary primes is on the order of 1/bits, so the
261          * density of safe primes should be about (1/bits)**2. Set test range
262          * to something well above bits**2 to be reasonably sure (but not
263          * guaranteed) of catching at least one safe prime.
264 	 */
265 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
266 
267 	/*
268          * Need idea of how much memory is available. We don't have to use all
269          * of it.
270 	 */
271 	if (largememory > LARGE_MAXIMUM) {
272 		logit("Limited memory: %u MB; limit %lu MB",
273 		    largememory, LARGE_MAXIMUM);
274 		largememory = LARGE_MAXIMUM;
275 	}
276 
277 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
278 		logit("Increased memory: %u MB; need %u bytes",
279 		    largememory, (largewords << SHIFT_BYTE));
280 		largewords = (largememory << SHIFT_MEGAWORD);
281 	} else if (largememory > 0) {
282 		logit("Decreased memory: %u MB; want %u bytes",
283 		    largememory, (largewords << SHIFT_BYTE));
284 		largewords = (largememory << SHIFT_MEGAWORD);
285 	}
286 
287 	TinySieve = calloc(tinywords, sizeof(u_int32_t));
288 	if (TinySieve == NULL) {
289 		error("Insufficient memory for tiny sieve: need %u bytes",
290 		    tinywords << SHIFT_BYTE);
291 		exit(1);
292 	}
293 	tinybits = tinywords << SHIFT_WORD;
294 
295 	SmallSieve = calloc(smallwords, sizeof(u_int32_t));
296 	if (SmallSieve == NULL) {
297 		error("Insufficient memory for small sieve: need %u bytes",
298 		    smallwords << SHIFT_BYTE);
299 		xfree(TinySieve);
300 		exit(1);
301 	}
302 	smallbits = smallwords << SHIFT_WORD;
303 
304 	/*
305 	 * dynamically determine available memory
306 	 */
307 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
308 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
309 
310 	largebits = largewords << SHIFT_WORD;
311 	largenumbers = largebits * 2;	/* even numbers excluded */
312 
313 	/* validation check: count the number of primes tried */
314 	largetries = 0;
315 	q = BN_new();
316 
317 	/*
318          * Generate random starting point for subprime search, or use
319          * specified parameter.
320 	 */
321 	largebase = BN_new();
322 	if (start == NULL)
323 		BN_rand(largebase, power, 1, 1);
324 	else
325 		BN_copy(largebase, start);
326 
327 	/* ensure odd */
328 	BN_set_bit(largebase, 0);
329 
330 	time(&time_start);
331 
332 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
333 	    largenumbers, power);
334 	debug2("start point: 0x%s", BN_bn2hex(largebase));
335 
336 	/*
337          * TinySieve
338          */
339 	for (i = 0; i < tinybits; i++) {
340 		if (BIT_TEST(TinySieve, i))
341 			continue; /* 2*i+3 is composite */
342 
343 		/* The next tiny prime */
344 		t = 2 * i + 3;
345 
346 		/* Mark all multiples of t */
347 		for (j = i + t; j < tinybits; j += t)
348 			BIT_SET(TinySieve, j);
349 
350 		sieve_large(t);
351 	}
352 
353 	/*
354          * Start the small block search at the next possible prime. To avoid
355          * fencepost errors, the last pass is skipped.
356          */
357 	for (smallbase = TINY_NUMBER + 3;
358 	     smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
359 	     smallbase += TINY_NUMBER) {
360 		for (i = 0; i < tinybits; i++) {
361 			if (BIT_TEST(TinySieve, i))
362 				continue; /* 2*i+3 is composite */
363 
364 			/* The next tiny prime */
365 			t = 2 * i + 3;
366 			r = smallbase % t;
367 
368 			if (r == 0) {
369 				s = 0; /* t divides into smallbase exactly */
370 			} else {
371 				/* smallbase+s is first entry divisible by t */
372 				s = t - r;
373 			}
374 
375 			/*
376 			 * The sieve omits even numbers, so ensure that
377 			 * smallbase+s is odd. Then, step through the sieve
378 			 * in increments of 2*t
379 			 */
380 			if (s & 1)
381 				s += t; /* Make smallbase+s odd, and s even */
382 
383 			/* Mark all multiples of 2*t */
384 			for (s /= 2; s < smallbits; s += t)
385 				BIT_SET(SmallSieve, s);
386 		}
387 
388 		/*
389                  * SmallSieve
390                  */
391 		for (i = 0; i < smallbits; i++) {
392 			if (BIT_TEST(SmallSieve, i))
393 				continue; /* 2*i+smallbase is composite */
394 
395 			/* The next small prime */
396 			sieve_large((2 * i) + smallbase);
397 		}
398 
399 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
400 	}
401 
402 	time(&time_stop);
403 
404 	logit("%.24s Sieved with %u small primes in %ld seconds",
405 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
406 
407 	for (j = r = 0; j < largebits; j++) {
408 		if (BIT_TEST(LargeSieve, j))
409 			continue; /* Definitely composite, skip */
410 
411 		debug2("test q = largebase+%u", 2 * j);
412 		BN_set_word(q, 2 * j);
413 		BN_add(q, q, largebase);
414 		if (qfileout(out, QTYPE_SOPHIE_GERMAINE, QTEST_SIEVE,
415 		    largetries, (power - 1) /* MSB */, (0), q) == -1) {
416 			ret = -1;
417 			break;
418 		}
419 
420 		r++; /* count q */
421 	}
422 
423 	time(&time_stop);
424 
425 	xfree(LargeSieve);
426 	xfree(SmallSieve);
427 	xfree(TinySieve);
428 
429 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
430 
431 	return (ret);
432 }
433 
434 /*
435  * perform a Miller-Rabin primality test
436  * on the list of candidates
437  * (checking both q and p)
438  * The result is a list of so-call "safe" primes
439  */
440 int
441 prime_test(FILE *in, FILE *out, u_int32_t trials,
442     u_int32_t generator_wanted)
443 {
444 	BIGNUM *q, *p, *a;
445 	BN_CTX *ctx;
446 	char *cp, *lp;
447 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
448 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
449 	time_t time_start, time_stop;
450 	int res;
451 
452 	time(&time_start);
453 
454 	p = BN_new();
455 	q = BN_new();
456 	ctx = BN_CTX_new();
457 
458 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
459 	    ctime(&time_start), trials, generator_wanted);
460 
461 	res = 0;
462 	lp = xmalloc(QLINESIZE + 1);
463 	while (fgets(lp, QLINESIZE, in) != NULL) {
464 		int ll = strlen(lp);
465 
466 		count_in++;
467 		if (ll < 14 || *lp == '!' || *lp == '#') {
468 			debug2("%10u: comment or short line", count_in);
469 			continue;
470 		}
471 
472 		/* XXX - fragile parser */
473 		/* time */
474 		cp = &lp[14];	/* (skip) */
475 
476 		/* type */
477 		in_type = strtoul(cp, &cp, 10);
478 
479 		/* tests */
480 		in_tests = strtoul(cp, &cp, 10);
481 
482 		if (in_tests & QTEST_COMPOSITE) {
483 			debug2("%10u: known composite", count_in);
484 			continue;
485 		}
486 		/* tries */
487 		in_tries = strtoul(cp, &cp, 10);
488 
489 		/* size (most significant bit) */
490 		in_size = strtoul(cp, &cp, 10);
491 
492 		/* generator (hex) */
493 		generator_known = strtoul(cp, &cp, 16);
494 
495 		/* Skip white space */
496 		cp += strspn(cp, " ");
497 
498 		/* modulus (hex) */
499 		switch (in_type) {
500 		case QTYPE_SOPHIE_GERMAINE:
501 			debug2("%10u: (%u) Sophie-Germaine", count_in, in_type);
502 			a = q;
503 			BN_hex2bn(&a, cp);
504 			/* p = 2*q + 1 */
505 			BN_lshift(p, q, 1);
506 			BN_add_word(p, 1);
507 			in_size += 1;
508 			generator_known = 0;
509 			break;
510 		default:
511 			debug2("%10u: (%u)", count_in, in_type);
512 			a = p;
513 			BN_hex2bn(&a, cp);
514 			/* q = (p-1) / 2 */
515 			BN_rshift(q, p, 1);
516 			break;
517 		}
518 
519 		/*
520 		 * due to earlier inconsistencies in interpretation, check
521 		 * the proposed bit size.
522 		 */
523 		if (BN_num_bits(p) != (in_size + 1)) {
524 			debug2("%10u: bit size %u mismatch", count_in, in_size);
525 			continue;
526 		}
527 		if (in_size < QSIZE_MINIMUM) {
528 			debug2("%10u: bit size %u too short", count_in, in_size);
529 			continue;
530 		}
531 
532 		if (in_tests & QTEST_MILLER_RABIN)
533 			in_tries += trials;
534 		else
535 			in_tries = trials;
536 		/*
537 		 * guess unknown generator
538 		 */
539 		if (generator_known == 0) {
540 			if (BN_mod_word(p, 24) == 11)
541 				generator_known = 2;
542 			else if (BN_mod_word(p, 12) == 5)
543 				generator_known = 3;
544 			else {
545 				u_int32_t r = BN_mod_word(p, 10);
546 
547 				if (r == 3 || r == 7) {
548 					generator_known = 5;
549 				}
550 			}
551 		}
552 		/*
553 		 * skip tests when desired generator doesn't match
554 		 */
555 		if (generator_wanted > 0 &&
556 		    generator_wanted != generator_known) {
557 			debug2("%10u: generator %d != %d",
558 			    count_in, generator_known, generator_wanted);
559 			continue;
560 		}
561 
562 		count_possible++;
563 
564 		/*
565 		 * The (1/4)^N performance bound on Miller-Rabin is
566 		 * extremely pessimistic, so don't spend a lot of time
567 		 * really verifying that q is prime until after we know
568 		 * that p is also prime. A single pass will weed out the
569 		 * vast majority of composite q's.
570 		 */
571 		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
572 			debug2("%10u: q failed first possible prime test",
573 			    count_in);
574 			continue;
575 		}
576 
577 		/*
578 		 * q is possibly prime, so go ahead and really make sure
579 		 * that p is prime. If it is, then we can go back and do
580 		 * the same for q. If p is composite, chances are that
581 		 * will show up on the first Rabin-Miller iteration so it
582 		 * doesn't hurt to specify a high iteration count.
583 		 */
584 		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
585 			debug2("%10u: p is not prime", count_in);
586 			continue;
587 		}
588 		debug("%10u: p is almost certainly prime", count_in);
589 
590 		/* recheck q more rigorously */
591 		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
592 			debug("%10u: q is not prime", count_in);
593 			continue;
594 		}
595 		debug("%10u: q is almost certainly prime", count_in);
596 
597 		if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
598 		    in_tries, in_size, generator_known, p)) {
599 			res = -1;
600 			break;
601 		}
602 
603 		count_out++;
604 	}
605 
606 	time(&time_stop);
607 	xfree(lp);
608 	BN_free(p);
609 	BN_free(q);
610 	BN_CTX_free(ctx);
611 
612 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
613 	    ctime(&time_stop), count_out, count_possible,
614 	    (long) (time_stop - time_start));
615 
616 	return (res);
617 }
618