1 /* 2 * validator/val_utils.c - validator utility functions. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains helper functions for the validator module. 40 */ 41 #include "config.h" 42 #include "validator/val_utils.h" 43 #include "validator/validator.h" 44 #include "validator/val_kentry.h" 45 #include "validator/val_sigcrypt.h" 46 #include "validator/val_anchor.h" 47 #include "validator/val_nsec.h" 48 #include "validator/val_neg.h" 49 #include "services/cache/rrset.h" 50 #include "services/cache/dns.h" 51 #include "util/data/msgreply.h" 52 #include "util/data/packed_rrset.h" 53 #include "util/data/dname.h" 54 #include "util/net_help.h" 55 #include "util/module.h" 56 #include "util/regional.h" 57 #include "util/config_file.h" 58 #include "sldns/wire2str.h" 59 #include "sldns/parseutil.h" 60 61 /** Maximum allowed digest match failures per DS, for DNSKEYs with the same 62 * properties */ 63 #define MAX_DS_MATCH_FAILURES 4 64 65 enum val_classification 66 val_classify_response(uint16_t query_flags, struct query_info* origqinf, 67 struct query_info* qinf, struct reply_info* rep, size_t skip) 68 { 69 int rcode = (int)FLAGS_GET_RCODE(rep->flags); 70 size_t i; 71 72 /* Normal Name Error's are easy to detect -- but don't mistake a CNAME 73 * chain ending in NXDOMAIN. */ 74 if(rcode == LDNS_RCODE_NXDOMAIN && rep->an_numrrsets == 0) 75 return VAL_CLASS_NAMEERROR; 76 77 /* check for referral: nonRD query and it looks like a nodata */ 78 if(!(query_flags&BIT_RD) && rep->an_numrrsets == 0 && 79 rcode == LDNS_RCODE_NOERROR) { 80 /* SOA record in auth indicates it is NODATA instead. 81 * All validation requiring NODATA messages have SOA in 82 * authority section. */ 83 /* uses fact that answer section is empty */ 84 int saw_ns = 0; 85 for(i=0; i<rep->ns_numrrsets; i++) { 86 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_SOA) 87 return VAL_CLASS_NODATA; 88 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_DS) 89 return VAL_CLASS_REFERRAL; 90 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NS) 91 saw_ns = 1; 92 } 93 return saw_ns?VAL_CLASS_REFERRAL:VAL_CLASS_NODATA; 94 } 95 /* root referral where NS set is in the answer section */ 96 if(!(query_flags&BIT_RD) && rep->ns_numrrsets == 0 && 97 rep->an_numrrsets == 1 && rcode == LDNS_RCODE_NOERROR && 98 ntohs(rep->rrsets[0]->rk.type) == LDNS_RR_TYPE_NS && 99 query_dname_compare(rep->rrsets[0]->rk.dname, 100 origqinf->qname) != 0) 101 return VAL_CLASS_REFERRAL; 102 103 /* dump bad messages */ 104 if(rcode != LDNS_RCODE_NOERROR && rcode != LDNS_RCODE_NXDOMAIN) 105 return VAL_CLASS_UNKNOWN; 106 /* next check if the skip into the answer section shows no answer */ 107 if(skip>0 && rep->an_numrrsets <= skip) 108 return VAL_CLASS_CNAMENOANSWER; 109 110 /* Next is NODATA */ 111 if(rcode == LDNS_RCODE_NOERROR && rep->an_numrrsets == 0) 112 return VAL_CLASS_NODATA; 113 114 /* We distinguish between CNAME response and other positive/negative 115 * responses because CNAME answers require extra processing. */ 116 117 /* We distinguish between ANY and CNAME or POSITIVE because 118 * ANY responses are validated differently. */ 119 if(rcode == LDNS_RCODE_NOERROR && qinf->qtype == LDNS_RR_TYPE_ANY) 120 return VAL_CLASS_ANY; 121 122 /* For the query type DNAME, the name matters. Equal name is the 123 * answer looked for, but a subdomain redirects the query. */ 124 if(qinf->qtype == LDNS_RR_TYPE_DNAME) { 125 for(i=skip; i<rep->an_numrrsets; i++) { 126 if(rcode == LDNS_RCODE_NOERROR && 127 ntohs(rep->rrsets[i]->rk.type) 128 == LDNS_RR_TYPE_DNAME && 129 query_dname_compare(qinf->qname, 130 rep->rrsets[i]->rk.dname) == 0) { 131 /* type is DNAME and name is equal, it is 132 * the answer. For the query name a subdomain 133 * of the rrset.dname it would redirect. */ 134 return VAL_CLASS_POSITIVE; 135 } 136 if(ntohs(rep->rrsets[i]->rk.type) 137 == LDNS_RR_TYPE_CNAME) 138 return VAL_CLASS_CNAME; 139 } 140 log_dns_msg("validator: error. failed to classify response message: ", 141 qinf, rep); 142 return VAL_CLASS_UNKNOWN; 143 } 144 145 /* Note that DNAMEs will be ignored here, unless qtype=DNAME. Unless 146 * qtype=CNAME, this will yield a CNAME response. */ 147 for(i=skip; i<rep->an_numrrsets; i++) { 148 if(rcode == LDNS_RCODE_NOERROR && 149 ntohs(rep->rrsets[i]->rk.type) == qinf->qtype) 150 return VAL_CLASS_POSITIVE; 151 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_CNAME) 152 return VAL_CLASS_CNAME; 153 } 154 log_dns_msg("validator: error. failed to classify response message: ", 155 qinf, rep); 156 return VAL_CLASS_UNKNOWN; 157 } 158 159 /** Get signer name from RRSIG */ 160 static void 161 rrsig_get_signer(uint8_t* data, size_t len, uint8_t** sname, size_t* slen) 162 { 163 /* RRSIG rdata is not allowed to be compressed, it is stored 164 * uncompressed in memory as well, so return a ptr to the name */ 165 if(len < 21) { 166 /* too short RRSig: 167 * short, byte, byte, long, long, long, short, "." is 168 * 2 1 1 4 4 4 2 1 = 19 169 * and a skip of 18 bytes to the name. 170 * +2 for the rdatalen is 21 bytes len for root label */ 171 *sname = NULL; 172 *slen = 0; 173 return; 174 } 175 data += 20; /* skip the fixed size bits */ 176 len -= 20; 177 *slen = dname_valid(data, len); 178 if(!*slen) { 179 /* bad dname in this rrsig. */ 180 *sname = NULL; 181 return; 182 } 183 *sname = data; 184 } 185 186 void 187 val_find_rrset_signer(struct ub_packed_rrset_key* rrset, uint8_t** sname, 188 size_t* slen) 189 { 190 struct packed_rrset_data* d = (struct packed_rrset_data*) 191 rrset->entry.data; 192 /* return signer for first signature, or NULL */ 193 if(d->rrsig_count == 0) { 194 *sname = NULL; 195 *slen = 0; 196 return; 197 } 198 /* get rrsig signer name out of the signature */ 199 rrsig_get_signer(d->rr_data[d->count], d->rr_len[d->count], 200 sname, slen); 201 } 202 203 /** 204 * Find best signer name in this set of rrsigs. 205 * @param rrset: which rrsigs to look through. 206 * @param qinf: the query name that needs validation. 207 * @param signer_name: the best signer_name. Updated if a better one is found. 208 * @param signer_len: length of signer name. 209 * @param matchcount: count of current best name (starts at 0 for no match). 210 * Updated if match is improved. 211 */ 212 static void 213 val_find_best_signer(struct ub_packed_rrset_key* rrset, 214 struct query_info* qinf, uint8_t** signer_name, size_t* signer_len, 215 int* matchcount) 216 { 217 struct packed_rrset_data* d = (struct packed_rrset_data*) 218 rrset->entry.data; 219 uint8_t* sign; 220 size_t i; 221 int m; 222 for(i=d->count; i<d->count+d->rrsig_count; i++) { 223 sign = d->rr_data[i]+2+18; 224 /* look at signatures that are valid (long enough), 225 * and have a signer name that is a superdomain of qname, 226 * and then check the number of labels in the shared topdomain 227 * improve the match if possible */ 228 if(d->rr_len[i] > 2+19 && /* rdata, sig + root label*/ 229 dname_subdomain_c(qinf->qname, sign)) { 230 (void)dname_lab_cmp(qinf->qname, 231 dname_count_labels(qinf->qname), 232 sign, dname_count_labels(sign), &m); 233 if(m > *matchcount) { 234 *matchcount = m; 235 *signer_name = sign; 236 (void)dname_count_size_labels(*signer_name, 237 signer_len); 238 } 239 } 240 } 241 } 242 243 void 244 val_find_signer(enum val_classification subtype, struct query_info* qinf, 245 struct reply_info* rep, size_t skip, uint8_t** signer_name, 246 size_t* signer_len) 247 { 248 size_t i; 249 250 if(subtype == VAL_CLASS_POSITIVE) { 251 /* check for the answer rrset */ 252 for(i=skip; i<rep->an_numrrsets; i++) { 253 if(query_dname_compare(qinf->qname, 254 rep->rrsets[i]->rk.dname) == 0) { 255 val_find_rrset_signer(rep->rrsets[i], 256 signer_name, signer_len); 257 /* If there was no signer, and the query 258 * was for type CNAME, and this is a CNAME, 259 * and the previous is a DNAME, then this 260 * is the synthesized CNAME, use the signer 261 * of the DNAME record. */ 262 if(*signer_name == NULL && 263 qinf->qtype == LDNS_RR_TYPE_CNAME && 264 ntohs(rep->rrsets[i]->rk.type) == 265 LDNS_RR_TYPE_CNAME && i > skip && 266 ntohs(rep->rrsets[i-1]->rk.type) == 267 LDNS_RR_TYPE_DNAME && 268 dname_strict_subdomain_c(rep->rrsets[i]->rk.dname, rep->rrsets[i-1]->rk.dname)) { 269 val_find_rrset_signer(rep->rrsets[i-1], 270 signer_name, signer_len); 271 } 272 return; 273 } 274 } 275 *signer_name = NULL; 276 *signer_len = 0; 277 } else if(subtype == VAL_CLASS_CNAME) { 278 /* check for the first signed cname/dname rrset */ 279 for(i=skip; i<rep->an_numrrsets; i++) { 280 val_find_rrset_signer(rep->rrsets[i], 281 signer_name, signer_len); 282 if(*signer_name) 283 return; 284 if(ntohs(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_DNAME) 285 break; /* only check CNAME after a DNAME */ 286 } 287 *signer_name = NULL; 288 *signer_len = 0; 289 } else if(subtype == VAL_CLASS_NAMEERROR 290 || subtype == VAL_CLASS_NODATA) { 291 /*Check to see if the AUTH section NSEC record(s) have rrsigs*/ 292 for(i=rep->an_numrrsets; i< 293 rep->an_numrrsets+rep->ns_numrrsets; i++) { 294 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC 295 || ntohs(rep->rrsets[i]->rk.type) == 296 LDNS_RR_TYPE_NSEC3) { 297 val_find_rrset_signer(rep->rrsets[i], 298 signer_name, signer_len); 299 return; 300 } 301 } 302 } else if(subtype == VAL_CLASS_CNAMENOANSWER) { 303 /* find closest superdomain signer name in authority section 304 * NSEC and NSEC3s */ 305 int matchcount = 0; 306 *signer_name = NULL; 307 *signer_len = 0; 308 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep-> 309 ns_numrrsets; i++) { 310 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_NSEC 311 || ntohs(rep->rrsets[i]->rk.type) == 312 LDNS_RR_TYPE_NSEC3) { 313 val_find_best_signer(rep->rrsets[i], qinf, 314 signer_name, signer_len, &matchcount); 315 } 316 } 317 } else if(subtype == VAL_CLASS_ANY) { 318 /* check for one of the answer rrset that has signatures, 319 * or potentially a DNAME is in use with a different qname */ 320 for(i=skip; i<rep->an_numrrsets; i++) { 321 if(query_dname_compare(qinf->qname, 322 rep->rrsets[i]->rk.dname) == 0) { 323 val_find_rrset_signer(rep->rrsets[i], 324 signer_name, signer_len); 325 if(*signer_name) 326 return; 327 } 328 } 329 /* no answer RRSIGs with qname, try a DNAME */ 330 if(skip < rep->an_numrrsets && 331 ntohs(rep->rrsets[skip]->rk.type) == 332 LDNS_RR_TYPE_DNAME) { 333 val_find_rrset_signer(rep->rrsets[skip], 334 signer_name, signer_len); 335 if(*signer_name) 336 return; 337 } 338 *signer_name = NULL; 339 *signer_len = 0; 340 } else if(subtype == VAL_CLASS_REFERRAL) { 341 /* find keys for the item at skip */ 342 if(skip < rep->rrset_count) { 343 val_find_rrset_signer(rep->rrsets[skip], 344 signer_name, signer_len); 345 return; 346 } 347 *signer_name = NULL; 348 *signer_len = 0; 349 } else { 350 verbose(VERB_QUERY, "find_signer: could not find signer name" 351 " for unknown type response"); 352 *signer_name = NULL; 353 *signer_len = 0; 354 } 355 } 356 357 /** return number of rrs in an rrset */ 358 static size_t 359 rrset_get_count(struct ub_packed_rrset_key* rrset) 360 { 361 struct packed_rrset_data* d = (struct packed_rrset_data*) 362 rrset->entry.data; 363 if(!d) return 0; 364 return d->count; 365 } 366 367 /** return TTL of rrset */ 368 static uint32_t 369 rrset_get_ttl(struct ub_packed_rrset_key* rrset) 370 { 371 struct packed_rrset_data* d = (struct packed_rrset_data*) 372 rrset->entry.data; 373 if(!d) return 0; 374 return d->ttl; 375 } 376 377 static enum sec_status 378 val_verify_rrset(struct module_env* env, struct val_env* ve, 379 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* keys, 380 uint8_t* sigalg, char** reason, sldns_ede_code *reason_bogus, 381 sldns_pkt_section section, struct module_qstate* qstate, 382 int *verified) 383 { 384 enum sec_status sec; 385 struct packed_rrset_data* d = (struct packed_rrset_data*)rrset-> 386 entry.data; 387 if(d->security == sec_status_secure) { 388 /* re-verify all other statuses, because keyset may change*/ 389 log_nametypeclass(VERB_ALGO, "verify rrset cached", 390 rrset->rk.dname, ntohs(rrset->rk.type), 391 ntohs(rrset->rk.rrset_class)); 392 *verified = 0; 393 return d->security; 394 } 395 /* check in the cache if verification has already been done */ 396 rrset_check_sec_status(env->rrset_cache, rrset, *env->now); 397 if(d->security == sec_status_secure) { 398 log_nametypeclass(VERB_ALGO, "verify rrset from cache", 399 rrset->rk.dname, ntohs(rrset->rk.type), 400 ntohs(rrset->rk.rrset_class)); 401 *verified = 0; 402 return d->security; 403 } 404 log_nametypeclass(VERB_ALGO, "verify rrset", rrset->rk.dname, 405 ntohs(rrset->rk.type), ntohs(rrset->rk.rrset_class)); 406 sec = dnskeyset_verify_rrset(env, ve, rrset, keys, sigalg, reason, 407 reason_bogus, section, qstate, verified); 408 verbose(VERB_ALGO, "verify result: %s", sec_status_to_string(sec)); 409 regional_free_all(env->scratch); 410 411 /* update rrset security status 412 * only improves security status 413 * and bogus is set only once, even if we rechecked the status */ 414 if(sec > d->security) { 415 d->security = sec; 416 if(sec == sec_status_secure) 417 d->trust = rrset_trust_validated; 418 else if(sec == sec_status_bogus) { 419 size_t i; 420 /* update ttl for rrset to fixed value. */ 421 d->ttl = ve->bogus_ttl; 422 for(i=0; i<d->count+d->rrsig_count; i++) 423 d->rr_ttl[i] = ve->bogus_ttl; 424 /* leave RR specific TTL: not used for determine 425 * if RRset timed out and clients see proper value. */ 426 lock_basic_lock(&ve->bogus_lock); 427 ve->num_rrset_bogus++; 428 lock_basic_unlock(&ve->bogus_lock); 429 } 430 /* if status updated - store in cache for reuse */ 431 rrset_update_sec_status(env->rrset_cache, rrset, *env->now); 432 } 433 434 return sec; 435 } 436 437 enum sec_status 438 val_verify_rrset_entry(struct module_env* env, struct val_env* ve, 439 struct ub_packed_rrset_key* rrset, struct key_entry_key* kkey, 440 char** reason, sldns_ede_code *reason_bogus, 441 sldns_pkt_section section, struct module_qstate* qstate, 442 int* verified) 443 { 444 /* temporary dnskey rrset-key */ 445 struct ub_packed_rrset_key dnskey; 446 struct key_entry_data* kd = (struct key_entry_data*)kkey->entry.data; 447 enum sec_status sec; 448 dnskey.rk.type = htons(kd->rrset_type); 449 dnskey.rk.rrset_class = htons(kkey->key_class); 450 dnskey.rk.flags = 0; 451 dnskey.rk.dname = kkey->name; 452 dnskey.rk.dname_len = kkey->namelen; 453 dnskey.entry.key = &dnskey; 454 dnskey.entry.data = kd->rrset_data; 455 sec = val_verify_rrset(env, ve, rrset, &dnskey, kd->algo, reason, 456 reason_bogus, section, qstate, verified); 457 return sec; 458 } 459 460 /** verify that a DS RR hashes to a key and that key signs the set */ 461 static enum sec_status 462 verify_dnskeys_with_ds_rr(struct module_env* env, struct val_env* ve, 463 struct ub_packed_rrset_key* dnskey_rrset, 464 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx, char** reason, 465 sldns_ede_code *reason_bogus, struct module_qstate* qstate, 466 int *nonechecked) 467 { 468 enum sec_status sec = sec_status_bogus; 469 size_t i, num, numchecked = 0, numhashok = 0, numsizesupp = 0; 470 num = rrset_get_count(dnskey_rrset); 471 *nonechecked = 0; 472 for(i=0; i<num; i++) { 473 /* Skip DNSKEYs that don't match the basic criteria. */ 474 if(ds_get_key_algo(ds_rrset, ds_idx) 475 != dnskey_get_algo(dnskey_rrset, i) 476 || dnskey_calc_keytag(dnskey_rrset, i) 477 != ds_get_keytag(ds_rrset, ds_idx)) { 478 continue; 479 } 480 numchecked++; 481 verbose(VERB_ALGO, "attempt DS match algo %d keytag %d", 482 ds_get_key_algo(ds_rrset, ds_idx), 483 ds_get_keytag(ds_rrset, ds_idx)); 484 485 /* Convert the candidate DNSKEY into a hash using the 486 * same DS hash algorithm. */ 487 if(!ds_digest_match_dnskey(env, dnskey_rrset, i, ds_rrset, 488 ds_idx)) { 489 verbose(VERB_ALGO, "DS match attempt failed"); 490 if(numchecked > numhashok + MAX_DS_MATCH_FAILURES) { 491 verbose(VERB_ALGO, "DS match attempt reached " 492 "MAX_DS_MATCH_FAILURES (%d); bogus", 493 MAX_DS_MATCH_FAILURES); 494 return sec_status_bogus; 495 } 496 continue; 497 } 498 numhashok++; 499 if(!dnskey_size_is_supported(dnskey_rrset, i)) { 500 verbose(VERB_ALGO, "DS okay but that DNSKEY size is not supported"); 501 numsizesupp++; 502 continue; 503 } 504 verbose(VERB_ALGO, "DS match digest ok, trying signature"); 505 506 /* Otherwise, we have a match! Make sure that the DNSKEY 507 * verifies *with this key* */ 508 sec = dnskey_verify_rrset(env, ve, dnskey_rrset, dnskey_rrset, 509 i, reason, reason_bogus, LDNS_SECTION_ANSWER, qstate); 510 if(sec == sec_status_secure) { 511 return sec; 512 } 513 /* If it didn't validate with the DNSKEY, try the next one! */ 514 } 515 if(numsizesupp != 0 || sec == sec_status_indeterminate) { 516 /* there is a working DS, but that DNSKEY is not supported */ 517 return sec_status_insecure; 518 } 519 if(numchecked == 0) { 520 algo_needs_reason(env, ds_get_key_algo(ds_rrset, ds_idx), 521 reason, "no keys have a DS"); 522 *nonechecked = 1; 523 } else if(numhashok == 0) { 524 *reason = "DS hash mismatches key"; 525 } else if(!*reason) { 526 *reason = "keyset not secured by DNSKEY that matches DS"; 527 } 528 return sec_status_bogus; 529 } 530 531 int val_favorite_ds_algo(struct ub_packed_rrset_key* ds_rrset) 532 { 533 size_t i, num = rrset_get_count(ds_rrset); 534 int d, digest_algo = 0; /* DS digest algo 0 is not used. */ 535 /* find favorite algo, for now, highest number supported */ 536 for(i=0; i<num; i++) { 537 if(!ds_digest_algo_is_supported(ds_rrset, i) || 538 !ds_key_algo_is_supported(ds_rrset, i)) { 539 continue; 540 } 541 d = ds_get_digest_algo(ds_rrset, i); 542 if(d > digest_algo) 543 digest_algo = d; 544 } 545 return digest_algo; 546 } 547 548 enum sec_status 549 val_verify_DNSKEY_with_DS(struct module_env* env, struct val_env* ve, 550 struct ub_packed_rrset_key* dnskey_rrset, 551 struct ub_packed_rrset_key* ds_rrset, uint8_t* sigalg, char** reason, 552 sldns_ede_code *reason_bogus, struct module_qstate* qstate) 553 { 554 /* as long as this is false, we can consider this DS rrset to be 555 * equivalent to no DS rrset. */ 556 int has_useful_ds = 0, digest_algo, alg, has_algo_refusal = 0, 557 nonechecked, has_checked_ds = 0; 558 struct algo_needs needs; 559 size_t i, num; 560 enum sec_status sec; 561 562 if(dnskey_rrset->rk.dname_len != ds_rrset->rk.dname_len || 563 query_dname_compare(dnskey_rrset->rk.dname, ds_rrset->rk.dname) 564 != 0) { 565 verbose(VERB_QUERY, "DNSKEY RRset did not match DS RRset " 566 "by name"); 567 *reason = "DNSKEY RRset did not match DS RRset by name"; 568 return sec_status_bogus; 569 } 570 571 if(sigalg) { 572 /* harden against algo downgrade is enabled */ 573 digest_algo = val_favorite_ds_algo(ds_rrset); 574 algo_needs_init_ds(&needs, ds_rrset, digest_algo, sigalg); 575 } else { 576 /* accept any key algo, any digest algo */ 577 digest_algo = -1; 578 } 579 num = rrset_get_count(ds_rrset); 580 for(i=0; i<num; i++) { 581 /* Check to see if we can understand this DS. 582 * And check it is the strongest digest */ 583 if(!ds_digest_algo_is_supported(ds_rrset, i) || 584 !ds_key_algo_is_supported(ds_rrset, i) || 585 (sigalg && (ds_get_digest_algo(ds_rrset, i) != digest_algo))) { 586 continue; 587 } 588 589 sec = verify_dnskeys_with_ds_rr(env, ve, dnskey_rrset, 590 ds_rrset, i, reason, reason_bogus, qstate, 591 &nonechecked); 592 if(sec == sec_status_insecure) { 593 /* DNSKEY too large unsupported or algo refused by 594 * crypto lib. */ 595 has_algo_refusal = 1; 596 continue; 597 } 598 if(!nonechecked) 599 has_checked_ds = 1; 600 601 /* Once we see a single DS with a known digestID and 602 * algorithm, we cannot return INSECURE (with a 603 * "null" KeyEntry). */ 604 has_useful_ds = 1; 605 606 if(sec == sec_status_secure) { 607 if(!sigalg || algo_needs_set_secure(&needs, 608 (uint8_t)ds_get_key_algo(ds_rrset, i))) { 609 verbose(VERB_ALGO, "DS matched DNSKEY."); 610 if(!dnskeyset_size_is_supported(dnskey_rrset)) { 611 verbose(VERB_ALGO, "DS works, but dnskeyset contain keys that are unsupported, treat as insecure"); 612 return sec_status_insecure; 613 } 614 return sec_status_secure; 615 } 616 } else if(sigalg && sec == sec_status_bogus) { 617 algo_needs_set_bogus(&needs, 618 (uint8_t)ds_get_key_algo(ds_rrset, i)); 619 } 620 } 621 622 /* None of the DS's worked out. */ 623 624 /* If none of the DSes have been checked, eg. that means no matches 625 * for keytags, and the other dses are all algo_refusal, it is an 626 * insecure delegation point, since the only matched DS records 627 * have an algo refusal, or are unsupported. */ 628 if(has_algo_refusal && !has_checked_ds) { 629 verbose(VERB_ALGO, "No supported DS records were found -- " 630 "treating as insecure."); 631 return sec_status_insecure; 632 } 633 /* If no DSs were understandable, then this is OK. */ 634 if(!has_useful_ds) { 635 verbose(VERB_ALGO, "No usable DS records were found -- " 636 "treating as insecure."); 637 return sec_status_insecure; 638 } 639 /* If any were understandable, then it is bad. */ 640 verbose(VERB_QUERY, "Failed to match any usable DS to a DNSKEY."); 641 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) { 642 algo_needs_reason(env, alg, reason, "missing verification of " 643 "DNSKEY signature"); 644 } 645 return sec_status_bogus; 646 } 647 648 struct key_entry_key* 649 val_verify_new_DNSKEYs(struct regional* region, struct module_env* env, 650 struct val_env* ve, struct ub_packed_rrset_key* dnskey_rrset, 651 struct ub_packed_rrset_key* ds_rrset, int downprot, char** reason, 652 sldns_ede_code *reason_bogus, struct module_qstate* qstate) 653 { 654 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 655 enum sec_status sec = val_verify_DNSKEY_with_DS(env, ve, 656 dnskey_rrset, ds_rrset, downprot?sigalg:NULL, reason, 657 reason_bogus, qstate); 658 659 if(sec == sec_status_secure) { 660 return key_entry_create_rrset(region, 661 ds_rrset->rk.dname, ds_rrset->rk.dname_len, 662 ntohs(ds_rrset->rk.rrset_class), dnskey_rrset, 663 downprot?sigalg:NULL, LDNS_EDE_NONE, NULL, 664 *env->now); 665 } else if(sec == sec_status_insecure) { 666 return key_entry_create_null(region, ds_rrset->rk.dname, 667 ds_rrset->rk.dname_len, 668 ntohs(ds_rrset->rk.rrset_class), 669 rrset_get_ttl(ds_rrset), *reason_bogus, *reason, 670 *env->now); 671 } 672 return key_entry_create_bad(region, ds_rrset->rk.dname, 673 ds_rrset->rk.dname_len, ntohs(ds_rrset->rk.rrset_class), 674 BOGUS_KEY_TTL, *reason_bogus, *reason, *env->now); 675 } 676 677 enum sec_status 678 val_verify_DNSKEY_with_TA(struct module_env* env, struct val_env* ve, 679 struct ub_packed_rrset_key* dnskey_rrset, 680 struct ub_packed_rrset_key* ta_ds, 681 struct ub_packed_rrset_key* ta_dnskey, uint8_t* sigalg, char** reason, 682 sldns_ede_code *reason_bogus, struct module_qstate* qstate) 683 { 684 /* as long as this is false, we can consider this anchor to be 685 * equivalent to no anchor. */ 686 int has_useful_ta = 0, digest_algo = 0, alg, has_algo_refusal = 0, 687 nonechecked, has_checked_ds = 0; 688 struct algo_needs needs; 689 size_t i, num; 690 enum sec_status sec; 691 692 if(ta_ds && (dnskey_rrset->rk.dname_len != ta_ds->rk.dname_len || 693 query_dname_compare(dnskey_rrset->rk.dname, ta_ds->rk.dname) 694 != 0)) { 695 verbose(VERB_QUERY, "DNSKEY RRset did not match DS RRset " 696 "by name"); 697 *reason = "DNSKEY RRset did not match DS RRset by name"; 698 if(reason_bogus) 699 *reason_bogus = LDNS_EDE_DNSKEY_MISSING; 700 return sec_status_bogus; 701 } 702 if(ta_dnskey && (dnskey_rrset->rk.dname_len != ta_dnskey->rk.dname_len 703 || query_dname_compare(dnskey_rrset->rk.dname, ta_dnskey->rk.dname) 704 != 0)) { 705 verbose(VERB_QUERY, "DNSKEY RRset did not match anchor RRset " 706 "by name"); 707 *reason = "DNSKEY RRset did not match anchor RRset by name"; 708 if(reason_bogus) 709 *reason_bogus = LDNS_EDE_DNSKEY_MISSING; 710 return sec_status_bogus; 711 } 712 713 if(ta_ds) 714 digest_algo = val_favorite_ds_algo(ta_ds); 715 if(sigalg) { 716 if(ta_ds) 717 algo_needs_init_ds(&needs, ta_ds, digest_algo, sigalg); 718 else memset(&needs, 0, sizeof(needs)); 719 if(ta_dnskey) 720 algo_needs_init_dnskey_add(&needs, ta_dnskey, sigalg); 721 } 722 if(ta_ds) { 723 num = rrset_get_count(ta_ds); 724 for(i=0; i<num; i++) { 725 /* Check to see if we can understand this DS. 726 * And check it is the strongest digest */ 727 if(!ds_digest_algo_is_supported(ta_ds, i) || 728 !ds_key_algo_is_supported(ta_ds, i) || 729 ds_get_digest_algo(ta_ds, i) != digest_algo) 730 continue; 731 732 sec = verify_dnskeys_with_ds_rr(env, ve, dnskey_rrset, 733 ta_ds, i, reason, reason_bogus, qstate, &nonechecked); 734 if(sec == sec_status_insecure) { 735 has_algo_refusal = 1; 736 continue; 737 } 738 if(!nonechecked) 739 has_checked_ds = 1; 740 741 /* Once we see a single DS with a known digestID and 742 * algorithm, we cannot return INSECURE (with a 743 * "null" KeyEntry). */ 744 has_useful_ta = 1; 745 746 if(sec == sec_status_secure) { 747 if(!sigalg || algo_needs_set_secure(&needs, 748 (uint8_t)ds_get_key_algo(ta_ds, i))) { 749 verbose(VERB_ALGO, "DS matched DNSKEY."); 750 if(!dnskeyset_size_is_supported(dnskey_rrset)) { 751 verbose(VERB_ALGO, "trustanchor works, but dnskeyset contain keys that are unsupported, treat as insecure"); 752 return sec_status_insecure; 753 } 754 return sec_status_secure; 755 } 756 } else if(sigalg && sec == sec_status_bogus) { 757 algo_needs_set_bogus(&needs, 758 (uint8_t)ds_get_key_algo(ta_ds, i)); 759 } 760 } 761 } 762 763 /* None of the DS's worked out: check the DNSKEYs. */ 764 if(ta_dnskey) { 765 num = rrset_get_count(ta_dnskey); 766 for(i=0; i<num; i++) { 767 /* Check to see if we can understand this DNSKEY */ 768 if(!dnskey_algo_is_supported(ta_dnskey, i)) 769 continue; 770 if(!dnskey_size_is_supported(ta_dnskey, i)) 771 continue; 772 773 /* we saw a useful TA */ 774 has_useful_ta = 1; 775 776 sec = dnskey_verify_rrset(env, ve, dnskey_rrset, 777 ta_dnskey, i, reason, reason_bogus, LDNS_SECTION_ANSWER, qstate); 778 if(sec == sec_status_secure) { 779 if(!sigalg || algo_needs_set_secure(&needs, 780 (uint8_t)dnskey_get_algo(ta_dnskey, i))) { 781 verbose(VERB_ALGO, "anchor matched DNSKEY."); 782 if(!dnskeyset_size_is_supported(dnskey_rrset)) { 783 verbose(VERB_ALGO, "trustanchor works, but dnskeyset contain keys that are unsupported, treat as insecure"); 784 return sec_status_insecure; 785 } 786 return sec_status_secure; 787 } 788 } else if(sigalg && sec == sec_status_bogus) { 789 algo_needs_set_bogus(&needs, 790 (uint8_t)dnskey_get_algo(ta_dnskey, i)); 791 } 792 } 793 } 794 795 /* If none of the DSes have been checked, eg. that means no matches 796 * for keytags, and the other dses are all algo_refusal, it is an 797 * insecure delegation point, since the only matched DS records 798 * have an algo refusal, or are unsupported. */ 799 if(has_algo_refusal && !has_checked_ds) { 800 verbose(VERB_ALGO, "No supported trust anchors were found -- " 801 "treating as insecure."); 802 return sec_status_insecure; 803 } 804 /* If no DSs were understandable, then this is OK. */ 805 if(!has_useful_ta) { 806 verbose(VERB_ALGO, "No usable trust anchors were found -- " 807 "treating as insecure."); 808 return sec_status_insecure; 809 } 810 /* If any were understandable, then it is bad. */ 811 verbose(VERB_QUERY, "Failed to match any usable anchor to a DNSKEY."); 812 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) { 813 algo_needs_reason(env, alg, reason, "missing verification of " 814 "DNSKEY signature"); 815 } 816 return sec_status_bogus; 817 } 818 819 struct key_entry_key* 820 val_verify_new_DNSKEYs_with_ta(struct regional* region, struct module_env* env, 821 struct val_env* ve, struct ub_packed_rrset_key* dnskey_rrset, 822 struct ub_packed_rrset_key* ta_ds_rrset, 823 struct ub_packed_rrset_key* ta_dnskey_rrset, int downprot, 824 char** reason, sldns_ede_code *reason_bogus, struct module_qstate* qstate) 825 { 826 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 827 enum sec_status sec = val_verify_DNSKEY_with_TA(env, ve, 828 dnskey_rrset, ta_ds_rrset, ta_dnskey_rrset, 829 downprot?sigalg:NULL, reason, reason_bogus, qstate); 830 831 if(sec == sec_status_secure) { 832 return key_entry_create_rrset(region, 833 dnskey_rrset->rk.dname, dnskey_rrset->rk.dname_len, 834 ntohs(dnskey_rrset->rk.rrset_class), dnskey_rrset, 835 downprot?sigalg:NULL, LDNS_EDE_NONE, NULL, *env->now); 836 } else if(sec == sec_status_insecure) { 837 return key_entry_create_null(region, dnskey_rrset->rk.dname, 838 dnskey_rrset->rk.dname_len, 839 ntohs(dnskey_rrset->rk.rrset_class), 840 rrset_get_ttl(dnskey_rrset), *reason_bogus, *reason, 841 *env->now); 842 } 843 return key_entry_create_bad(region, dnskey_rrset->rk.dname, 844 dnskey_rrset->rk.dname_len, ntohs(dnskey_rrset->rk.rrset_class), 845 BOGUS_KEY_TTL, *reason_bogus, *reason, *env->now); 846 } 847 848 int 849 val_dsset_isusable(struct ub_packed_rrset_key* ds_rrset) 850 { 851 size_t i; 852 for(i=0; i<rrset_get_count(ds_rrset); i++) { 853 if(ds_digest_algo_is_supported(ds_rrset, i) && 854 ds_key_algo_is_supported(ds_rrset, i)) 855 return 1; 856 } 857 if(verbosity < VERB_ALGO) 858 return 0; 859 if(rrset_get_count(ds_rrset) == 0) 860 verbose(VERB_ALGO, "DS is not usable"); 861 else { 862 /* report usability for the first DS RR */ 863 sldns_lookup_table *lt; 864 char herr[64], aerr[64]; 865 lt = sldns_lookup_by_id(sldns_hashes, 866 (int)ds_get_digest_algo(ds_rrset, 0)); 867 if(lt) snprintf(herr, sizeof(herr), "%s", lt->name); 868 else snprintf(herr, sizeof(herr), "%d", 869 (int)ds_get_digest_algo(ds_rrset, 0)); 870 lt = sldns_lookup_by_id(sldns_algorithms, 871 (int)ds_get_key_algo(ds_rrset, 0)); 872 if(lt) snprintf(aerr, sizeof(aerr), "%s", lt->name); 873 else snprintf(aerr, sizeof(aerr), "%d", 874 (int)ds_get_key_algo(ds_rrset, 0)); 875 876 verbose(VERB_ALGO, "DS unsupported, hash %s %s, " 877 "key algorithm %s %s", herr, 878 (ds_digest_algo_is_supported(ds_rrset, 0)? 879 "(supported)":"(unsupported)"), aerr, 880 (ds_key_algo_is_supported(ds_rrset, 0)? 881 "(supported)":"(unsupported)")); 882 } 883 return 0; 884 } 885 886 /** get label count for a signature */ 887 static uint8_t 888 rrsig_get_labcount(struct packed_rrset_data* d, size_t sig) 889 { 890 if(d->rr_len[sig] < 2+4) 891 return 0; /* bad sig length */ 892 return d->rr_data[sig][2+3]; 893 } 894 895 int 896 val_rrset_wildcard(struct ub_packed_rrset_key* rrset, uint8_t** wc, 897 size_t* wc_len) 898 { 899 struct packed_rrset_data* d = (struct packed_rrset_data*)rrset-> 900 entry.data; 901 uint8_t labcount; 902 int labdiff; 903 uint8_t* wn; 904 size_t i, wl; 905 if(d->rrsig_count == 0) { 906 return 1; 907 } 908 labcount = rrsig_get_labcount(d, d->count + 0); 909 /* check rest of signatures identical */ 910 for(i=1; i<d->rrsig_count; i++) { 911 if(labcount != rrsig_get_labcount(d, d->count + i)) { 912 return 0; 913 } 914 } 915 /* OK the rrsigs check out */ 916 /* if the RRSIG label count is shorter than the number of actual 917 * labels, then this rrset was synthesized from a wildcard. 918 * Note that the RRSIG label count doesn't count the root label. */ 919 wn = rrset->rk.dname; 920 wl = rrset->rk.dname_len; 921 /* skip a leading wildcard label in the dname (RFC4035 2.2) */ 922 if(dname_is_wild(wn)) { 923 wn += 2; 924 wl -= 2; 925 } 926 labdiff = (dname_count_labels(wn) - 1) - (int)labcount; 927 if(labdiff > 0) { 928 *wc = wn; 929 dname_remove_labels(wc, &wl, labdiff); 930 *wc_len = wl; 931 return 1; 932 } 933 return 1; 934 } 935 936 int 937 val_chase_cname(struct query_info* qchase, struct reply_info* rep, 938 size_t* cname_skip) { 939 size_t i; 940 /* skip any DNAMEs, go to the CNAME for next part */ 941 for(i = *cname_skip; i < rep->an_numrrsets; i++) { 942 if(ntohs(rep->rrsets[i]->rk.type) == LDNS_RR_TYPE_CNAME && 943 query_dname_compare(qchase->qname, rep->rrsets[i]-> 944 rk.dname) == 0) { 945 qchase->qname = NULL; 946 get_cname_target(rep->rrsets[i], &qchase->qname, 947 &qchase->qname_len); 948 if(!qchase->qname) 949 return 0; /* bad CNAME rdata */ 950 (*cname_skip) = i+1; 951 return 1; 952 } 953 } 954 return 0; /* CNAME classified but no matching CNAME ?! */ 955 } 956 957 /** see if rrset has signer name as one of the rrsig signers */ 958 static int 959 rrset_has_signer(struct ub_packed_rrset_key* rrset, uint8_t* name, size_t len) 960 { 961 struct packed_rrset_data* d = (struct packed_rrset_data*)rrset-> 962 entry.data; 963 size_t i; 964 for(i = d->count; i< d->count+d->rrsig_count; i++) { 965 if(d->rr_len[i] > 2+18+len) { 966 /* at least rdatalen + signature + signame (+1 sig)*/ 967 if(!dname_valid(d->rr_data[i]+2+18, d->rr_len[i]-2-18)) 968 continue; 969 if(query_dname_compare(name, d->rr_data[i]+2+18) == 0) 970 { 971 return 1; 972 } 973 } 974 } 975 return 0; 976 } 977 978 void 979 val_fill_reply(struct reply_info* chase, struct reply_info* orig, 980 size_t skip, uint8_t* name, size_t len, uint8_t* signer) 981 { 982 size_t i; 983 int seen_dname = 0; 984 chase->rrset_count = 0; 985 chase->an_numrrsets = 0; 986 chase->ns_numrrsets = 0; 987 chase->ar_numrrsets = 0; 988 /* ANSWER section */ 989 for(i=skip; i<orig->an_numrrsets; i++) { 990 if(!signer) { 991 if(query_dname_compare(name, 992 orig->rrsets[i]->rk.dname) == 0) 993 chase->rrsets[chase->an_numrrsets++] = 994 orig->rrsets[i]; 995 } else if(seen_dname && ntohs(orig->rrsets[i]->rk.type) == 996 LDNS_RR_TYPE_CNAME) { 997 chase->rrsets[chase->an_numrrsets++] = orig->rrsets[i]; 998 seen_dname = 0; 999 } else if(rrset_has_signer(orig->rrsets[i], name, len)) { 1000 chase->rrsets[chase->an_numrrsets++] = orig->rrsets[i]; 1001 if(ntohs(orig->rrsets[i]->rk.type) == 1002 LDNS_RR_TYPE_DNAME) { 1003 seen_dname = 1; 1004 } 1005 } 1006 } 1007 /* AUTHORITY section */ 1008 for(i = (skip > orig->an_numrrsets)?skip:orig->an_numrrsets; 1009 i<orig->an_numrrsets+orig->ns_numrrsets; 1010 i++) { 1011 if(!signer) { 1012 if(query_dname_compare(name, 1013 orig->rrsets[i]->rk.dname) == 0) 1014 chase->rrsets[chase->an_numrrsets+ 1015 chase->ns_numrrsets++] = orig->rrsets[i]; 1016 } else if(rrset_has_signer(orig->rrsets[i], name, len)) { 1017 chase->rrsets[chase->an_numrrsets+ 1018 chase->ns_numrrsets++] = orig->rrsets[i]; 1019 } 1020 } 1021 /* ADDITIONAL section */ 1022 for(i= (skip>orig->an_numrrsets+orig->ns_numrrsets)? 1023 skip:orig->an_numrrsets+orig->ns_numrrsets; 1024 i<orig->rrset_count; i++) { 1025 if(!signer) { 1026 if(query_dname_compare(name, 1027 orig->rrsets[i]->rk.dname) == 0) 1028 chase->rrsets[chase->an_numrrsets 1029 +orig->ns_numrrsets+chase->ar_numrrsets++] 1030 = orig->rrsets[i]; 1031 } else if(rrset_has_signer(orig->rrsets[i], name, len)) { 1032 chase->rrsets[chase->an_numrrsets+orig->ns_numrrsets+ 1033 chase->ar_numrrsets++] = orig->rrsets[i]; 1034 } 1035 } 1036 chase->rrset_count = chase->an_numrrsets + chase->ns_numrrsets + 1037 chase->ar_numrrsets; 1038 } 1039 1040 void val_reply_remove_auth(struct reply_info* rep, size_t index) 1041 { 1042 log_assert(index < rep->rrset_count); 1043 log_assert(index >= rep->an_numrrsets); 1044 log_assert(index < rep->an_numrrsets+rep->ns_numrrsets); 1045 memmove(rep->rrsets+index, rep->rrsets+index+1, 1046 sizeof(struct ub_packed_rrset_key*)* 1047 (rep->rrset_count - index - 1)); 1048 rep->ns_numrrsets--; 1049 rep->rrset_count--; 1050 } 1051 1052 void 1053 val_check_nonsecure(struct module_env* env, struct reply_info* rep) 1054 { 1055 size_t i; 1056 /* authority */ 1057 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 1058 if(((struct packed_rrset_data*)rep->rrsets[i]->entry.data) 1059 ->security != sec_status_secure) { 1060 /* because we want to return the authentic original 1061 * message when presented with CD-flagged queries, 1062 * we need to preserve AUTHORITY section data. 1063 * However, this rrset is not signed or signed 1064 * with the wrong keys. Validation has tried to 1065 * verify this rrset with the keysets of import. 1066 * But this rrset did not verify. 1067 * Therefore the message is bogus. 1068 */ 1069 1070 /* check if authority has an NS record 1071 * which is bad, and there is an answer section with 1072 * data. In that case, delete NS and additional to 1073 * be lenient and make a minimal response */ 1074 if(rep->an_numrrsets != 0 && 1075 ntohs(rep->rrsets[i]->rk.type) 1076 == LDNS_RR_TYPE_NS) { 1077 verbose(VERB_ALGO, "truncate to minimal"); 1078 rep->ar_numrrsets = 0; 1079 rep->rrset_count = rep->an_numrrsets + 1080 rep->ns_numrrsets; 1081 /* remove this unneeded authority rrset */ 1082 memmove(rep->rrsets+i, rep->rrsets+i+1, 1083 sizeof(struct ub_packed_rrset_key*)* 1084 (rep->rrset_count - i - 1)); 1085 rep->ns_numrrsets--; 1086 rep->rrset_count--; 1087 i--; 1088 return; 1089 } 1090 1091 log_nametypeclass(VERB_QUERY, "message is bogus, " 1092 "non secure rrset", 1093 rep->rrsets[i]->rk.dname, 1094 ntohs(rep->rrsets[i]->rk.type), 1095 ntohs(rep->rrsets[i]->rk.rrset_class)); 1096 rep->security = sec_status_bogus; 1097 return; 1098 } 1099 } 1100 /* additional */ 1101 if(!env->cfg->val_clean_additional) 1102 return; 1103 for(i=rep->an_numrrsets+rep->ns_numrrsets; i<rep->rrset_count; i++) { 1104 if(((struct packed_rrset_data*)rep->rrsets[i]->entry.data) 1105 ->security != sec_status_secure) { 1106 /* This does not cause message invalidation. It was 1107 * simply unsigned data in the additional. The 1108 * RRSIG must have been truncated off the message. 1109 * 1110 * However, we do not want to return possible bogus 1111 * data to clients that rely on this service for 1112 * their authentication. 1113 */ 1114 /* remove this unneeded additional rrset */ 1115 memmove(rep->rrsets+i, rep->rrsets+i+1, 1116 sizeof(struct ub_packed_rrset_key*)* 1117 (rep->rrset_count - i - 1)); 1118 rep->ar_numrrsets--; 1119 rep->rrset_count--; 1120 i--; 1121 } 1122 } 1123 } 1124 1125 /** check no anchor and unlock */ 1126 static int 1127 check_no_anchor(struct val_anchors* anchors, uint8_t* nm, size_t l, uint16_t c) 1128 { 1129 struct trust_anchor* ta; 1130 if((ta=anchors_lookup(anchors, nm, l, c))) { 1131 lock_basic_unlock(&ta->lock); 1132 } 1133 return !ta; 1134 } 1135 1136 void 1137 val_mark_indeterminate(struct reply_info* rep, struct val_anchors* anchors, 1138 struct rrset_cache* r, struct module_env* env) 1139 { 1140 size_t i; 1141 struct packed_rrset_data* d; 1142 for(i=0; i<rep->rrset_count; i++) { 1143 d = (struct packed_rrset_data*)rep->rrsets[i]->entry.data; 1144 if(d->security == sec_status_unchecked && 1145 check_no_anchor(anchors, rep->rrsets[i]->rk.dname, 1146 rep->rrsets[i]->rk.dname_len, 1147 ntohs(rep->rrsets[i]->rk.rrset_class))) 1148 { 1149 /* mark as indeterminate */ 1150 d->security = sec_status_indeterminate; 1151 rrset_update_sec_status(r, rep->rrsets[i], *env->now); 1152 } 1153 } 1154 } 1155 1156 void 1157 val_mark_insecure(struct reply_info* rep, uint8_t* kname, 1158 struct rrset_cache* r, struct module_env* env) 1159 { 1160 size_t i; 1161 struct packed_rrset_data* d; 1162 for(i=0; i<rep->rrset_count; i++) { 1163 d = (struct packed_rrset_data*)rep->rrsets[i]->entry.data; 1164 if(d->security == sec_status_unchecked && 1165 dname_subdomain_c(rep->rrsets[i]->rk.dname, kname)) { 1166 /* mark as insecure */ 1167 d->security = sec_status_insecure; 1168 rrset_update_sec_status(r, rep->rrsets[i], *env->now); 1169 } 1170 } 1171 } 1172 1173 size_t 1174 val_next_unchecked(struct reply_info* rep, size_t skip) 1175 { 1176 size_t i; 1177 struct packed_rrset_data* d; 1178 for(i=skip+1; i<rep->rrset_count; i++) { 1179 d = (struct packed_rrset_data*)rep->rrsets[i]->entry.data; 1180 if(d->security == sec_status_unchecked) { 1181 return i; 1182 } 1183 } 1184 return rep->rrset_count; 1185 } 1186 1187 const char* 1188 val_classification_to_string(enum val_classification subtype) 1189 { 1190 switch(subtype) { 1191 case VAL_CLASS_UNTYPED: return "untyped"; 1192 case VAL_CLASS_UNKNOWN: return "unknown"; 1193 case VAL_CLASS_POSITIVE: return "positive"; 1194 case VAL_CLASS_CNAME: return "cname"; 1195 case VAL_CLASS_NODATA: return "nodata"; 1196 case VAL_CLASS_NAMEERROR: return "nameerror"; 1197 case VAL_CLASS_CNAMENOANSWER: return "cnamenoanswer"; 1198 case VAL_CLASS_REFERRAL: return "referral"; 1199 case VAL_CLASS_ANY: return "qtype_any"; 1200 default: 1201 return "bad_val_classification"; 1202 } 1203 } 1204 1205 /** log a sock_list entry */ 1206 static void 1207 sock_list_logentry(enum verbosity_value v, const char* s, struct sock_list* p) 1208 { 1209 if(p->len) 1210 log_addr(v, s, &p->addr, p->len); 1211 else verbose(v, "%s cache", s); 1212 } 1213 1214 void val_blacklist(struct sock_list** blacklist, struct regional* region, 1215 struct sock_list* origin, int cross) 1216 { 1217 /* debug printout */ 1218 if(verbosity >= VERB_ALGO) { 1219 struct sock_list* p; 1220 for(p=*blacklist; p; p=p->next) 1221 sock_list_logentry(VERB_ALGO, "blacklist", p); 1222 if(!origin) 1223 verbose(VERB_ALGO, "blacklist add: cache"); 1224 for(p=origin; p; p=p->next) 1225 sock_list_logentry(VERB_ALGO, "blacklist add", p); 1226 } 1227 /* blacklist the IPs or the cache */ 1228 if(!origin) { 1229 /* only add if nothing there. anything else also stops cache*/ 1230 if(!*blacklist) 1231 sock_list_insert(blacklist, NULL, 0, region); 1232 } else if(!cross) 1233 sock_list_prepend(blacklist, origin); 1234 else sock_list_merge(blacklist, region, origin); 1235 } 1236 1237 int val_has_signed_nsecs(struct reply_info* rep, char** reason) 1238 { 1239 size_t i, num_nsec = 0, num_nsec3 = 0; 1240 struct packed_rrset_data* d; 1241 for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) { 1242 if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NSEC)) 1243 num_nsec++; 1244 else if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NSEC3)) 1245 num_nsec3++; 1246 else continue; 1247 d = (struct packed_rrset_data*)rep->rrsets[i]->entry.data; 1248 if(d && d->rrsig_count != 0) { 1249 return 1; 1250 } 1251 } 1252 if(num_nsec == 0 && num_nsec3 == 0) 1253 *reason = "no DNSSEC records"; 1254 else if(num_nsec != 0) 1255 *reason = "no signatures over NSECs"; 1256 else *reason = "no signatures over NSEC3s"; 1257 return 0; 1258 } 1259 1260 struct dns_msg* 1261 val_find_DS(struct module_env* env, uint8_t* nm, size_t nmlen, uint16_t c, 1262 struct regional* region, uint8_t* topname) 1263 { 1264 struct dns_msg* msg; 1265 struct query_info qinfo; 1266 struct ub_packed_rrset_key *rrset = rrset_cache_lookup( 1267 env->rrset_cache, nm, nmlen, LDNS_RR_TYPE_DS, c, 0, 1268 *env->now, 0); 1269 if(rrset) { 1270 /* DS rrset exists. Return it to the validator immediately*/ 1271 struct ub_packed_rrset_key* copy = packed_rrset_copy_region( 1272 rrset, region, *env->now); 1273 lock_rw_unlock(&rrset->entry.lock); 1274 if(!copy) 1275 return NULL; 1276 msg = dns_msg_create(nm, nmlen, LDNS_RR_TYPE_DS, c, region, 1); 1277 if(!msg) 1278 return NULL; 1279 msg->rep->rrsets[0] = copy; 1280 msg->rep->rrset_count++; 1281 msg->rep->an_numrrsets++; 1282 return msg; 1283 } 1284 /* lookup in rrset and negative cache for NSEC/NSEC3 */ 1285 qinfo.qname = nm; 1286 qinfo.qname_len = nmlen; 1287 qinfo.qtype = LDNS_RR_TYPE_DS; 1288 qinfo.qclass = c; 1289 qinfo.local_alias = NULL; 1290 /* do not add SOA to reply message, it is going to be used internal */ 1291 msg = val_neg_getmsg(env->neg_cache, &qinfo, region, env->rrset_cache, 1292 env->scratch_buffer, *env->now, 0, topname, env->cfg); 1293 return msg; 1294 } 1295