1 /* 2 * services/authzone.c - authoritative zone that is locally hosted. 3 * 4 * Copyright (c) 2017, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains the functions for an authority zone. This zone 40 * is queried by the iterator, just like a stub or forward zone, but then 41 * the data is locally held. 42 */ 43 44 #include "config.h" 45 #include "services/authzone.h" 46 #include "util/data/dname.h" 47 #include "util/data/msgparse.h" 48 #include "util/data/msgreply.h" 49 #include "util/data/msgencode.h" 50 #include "util/data/packed_rrset.h" 51 #include "util/regional.h" 52 #include "util/net_help.h" 53 #include "util/netevent.h" 54 #include "util/config_file.h" 55 #include "util/log.h" 56 #include "util/module.h" 57 #include "util/random.h" 58 #include "services/cache/dns.h" 59 #include "services/outside_network.h" 60 #include "services/listen_dnsport.h" 61 #include "services/mesh.h" 62 #include "sldns/rrdef.h" 63 #include "sldns/pkthdr.h" 64 #include "sldns/sbuffer.h" 65 #include "sldns/str2wire.h" 66 #include "sldns/wire2str.h" 67 #include "sldns/parseutil.h" 68 #include "sldns/keyraw.h" 69 #include "validator/val_nsec3.h" 70 #include "validator/val_nsec.h" 71 #include "validator/val_secalgo.h" 72 #include "validator/val_sigcrypt.h" 73 #include "validator/val_anchor.h" 74 #include "validator/val_utils.h" 75 #include <ctype.h> 76 77 /** bytes to use for NSEC3 hash buffer. 20 for sha1 */ 78 #define N3HASHBUFLEN 32 79 /** max number of CNAMEs we are willing to follow (in one answer) */ 80 #define MAX_CNAME_CHAIN 8 81 /** timeout for probe packets for SOA */ 82 #define AUTH_PROBE_TIMEOUT 100 /* msec */ 83 /** when to stop with SOA probes (when exponential timeouts exceed this) */ 84 #define AUTH_PROBE_TIMEOUT_STOP 1000 /* msec */ 85 /* auth transfer timeout for TCP connections, in msec */ 86 #define AUTH_TRANSFER_TIMEOUT 10000 /* msec */ 87 /* auth transfer max backoff for failed transfers and probes */ 88 #define AUTH_TRANSFER_MAX_BACKOFF 86400 /* sec */ 89 /* auth http port number */ 90 #define AUTH_HTTP_PORT 80 91 /* auth https port number */ 92 #define AUTH_HTTPS_PORT 443 93 /* max depth for nested $INCLUDEs */ 94 #define MAX_INCLUDE_DEPTH 10 95 /** number of timeouts before we fallback from IXFR to AXFR, 96 * because some versions of servers (eg. dnsmasq) drop IXFR packets. */ 97 #define NUM_TIMEOUTS_FALLBACK_IXFR 3 98 99 /** pick up nextprobe task to start waiting to perform transfer actions */ 100 static void xfr_set_timeout(struct auth_xfer* xfr, struct module_env* env, 101 int failure, int lookup_only); 102 /** move to sending the probe packets, next if fails. task_probe */ 103 static void xfr_probe_send_or_end(struct auth_xfer* xfr, 104 struct module_env* env); 105 /** pick up probe task with specified(or NULL) destination first, 106 * or transfer task if nothing to probe, or false if already in progress */ 107 static int xfr_start_probe(struct auth_xfer* xfr, struct module_env* env, 108 struct auth_master* spec); 109 /** delete xfer structure (not its tree entry) */ 110 static void auth_xfer_delete(struct auth_xfer* xfr); 111 112 /** create new dns_msg */ 113 static struct dns_msg* 114 msg_create(struct regional* region, struct query_info* qinfo) 115 { 116 struct dns_msg* msg = (struct dns_msg*)regional_alloc(region, 117 sizeof(struct dns_msg)); 118 if(!msg) 119 return NULL; 120 msg->qinfo.qname = regional_alloc_init(region, qinfo->qname, 121 qinfo->qname_len); 122 if(!msg->qinfo.qname) 123 return NULL; 124 msg->qinfo.qname_len = qinfo->qname_len; 125 msg->qinfo.qtype = qinfo->qtype; 126 msg->qinfo.qclass = qinfo->qclass; 127 msg->qinfo.local_alias = NULL; 128 /* non-packed reply_info, because it needs to grow the array */ 129 msg->rep = (struct reply_info*)regional_alloc_zero(region, 130 sizeof(struct reply_info)-sizeof(struct rrset_ref)); 131 if(!msg->rep) 132 return NULL; 133 msg->rep->flags = (uint16_t)(BIT_QR | BIT_AA); 134 msg->rep->authoritative = 1; 135 msg->rep->reason_bogus = LDNS_EDE_NONE; 136 msg->rep->qdcount = 1; 137 /* rrsets is NULL, no rrsets yet */ 138 return msg; 139 } 140 141 /** grow rrset array by one in msg */ 142 static int 143 msg_grow_array(struct regional* region, struct dns_msg* msg) 144 { 145 if(msg->rep->rrsets == NULL) { 146 msg->rep->rrsets = regional_alloc_zero(region, 147 sizeof(struct ub_packed_rrset_key*)*(msg->rep->rrset_count+1)); 148 if(!msg->rep->rrsets) 149 return 0; 150 } else { 151 struct ub_packed_rrset_key** rrsets_old = msg->rep->rrsets; 152 msg->rep->rrsets = regional_alloc_zero(region, 153 sizeof(struct ub_packed_rrset_key*)*(msg->rep->rrset_count+1)); 154 if(!msg->rep->rrsets) 155 return 0; 156 memmove(msg->rep->rrsets, rrsets_old, 157 sizeof(struct ub_packed_rrset_key*)*msg->rep->rrset_count); 158 } 159 return 1; 160 } 161 162 /** get ttl of rrset */ 163 static time_t 164 get_rrset_ttl(struct ub_packed_rrset_key* k) 165 { 166 struct packed_rrset_data* d = (struct packed_rrset_data*) 167 k->entry.data; 168 return d->ttl; 169 } 170 171 /** Copy rrset into region from domain-datanode and packet rrset */ 172 static struct ub_packed_rrset_key* 173 auth_packed_rrset_copy_region(struct auth_zone* z, struct auth_data* node, 174 struct auth_rrset* rrset, struct regional* region, time_t adjust) 175 { 176 struct ub_packed_rrset_key key; 177 memset(&key, 0, sizeof(key)); 178 key.entry.key = &key; 179 key.entry.data = rrset->data; 180 key.rk.dname = node->name; 181 key.rk.dname_len = node->namelen; 182 key.rk.type = htons(rrset->type); 183 key.rk.rrset_class = htons(z->dclass); 184 key.entry.hash = rrset_key_hash(&key.rk); 185 return packed_rrset_copy_region(&key, region, adjust); 186 } 187 188 /** fix up msg->rep TTL and prefetch ttl */ 189 static void 190 msg_ttl(struct dns_msg* msg) 191 { 192 if(msg->rep->rrset_count == 0) return; 193 if(msg->rep->rrset_count == 1) { 194 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[0]); 195 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 196 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 197 } else if(get_rrset_ttl(msg->rep->rrsets[msg->rep->rrset_count-1]) < 198 msg->rep->ttl) { 199 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[ 200 msg->rep->rrset_count-1]); 201 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 202 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 203 } 204 } 205 206 /** see if rrset is a duplicate in the answer message */ 207 static int 208 msg_rrset_duplicate(struct dns_msg* msg, uint8_t* nm, size_t nmlen, 209 uint16_t type, uint16_t dclass) 210 { 211 size_t i; 212 for(i=0; i<msg->rep->rrset_count; i++) { 213 struct ub_packed_rrset_key* k = msg->rep->rrsets[i]; 214 if(ntohs(k->rk.type) == type && k->rk.dname_len == nmlen && 215 ntohs(k->rk.rrset_class) == dclass && 216 query_dname_compare(k->rk.dname, nm) == 0) 217 return 1; 218 } 219 return 0; 220 } 221 222 /** add rrset to answer section (no auth, add rrsets yet) */ 223 static int 224 msg_add_rrset_an(struct auth_zone* z, struct regional* region, 225 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 226 { 227 log_assert(msg->rep->ns_numrrsets == 0); 228 log_assert(msg->rep->ar_numrrsets == 0); 229 if(!rrset || !node) 230 return 1; 231 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 232 z->dclass)) 233 return 1; 234 /* grow array */ 235 if(!msg_grow_array(region, msg)) 236 return 0; 237 /* copy it */ 238 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 239 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 240 return 0; 241 msg->rep->rrset_count++; 242 msg->rep->an_numrrsets++; 243 msg_ttl(msg); 244 return 1; 245 } 246 247 /** add rrset to authority section (no additional section rrsets yet) */ 248 static int 249 msg_add_rrset_ns(struct auth_zone* z, struct regional* region, 250 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 251 { 252 log_assert(msg->rep->ar_numrrsets == 0); 253 if(!rrset || !node) 254 return 1; 255 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 256 z->dclass)) 257 return 1; 258 /* grow array */ 259 if(!msg_grow_array(region, msg)) 260 return 0; 261 /* copy it */ 262 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 263 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 264 return 0; 265 msg->rep->rrset_count++; 266 msg->rep->ns_numrrsets++; 267 msg_ttl(msg); 268 return 1; 269 } 270 271 /** add rrset to additional section */ 272 static int 273 msg_add_rrset_ar(struct auth_zone* z, struct regional* region, 274 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 275 { 276 if(!rrset || !node) 277 return 1; 278 if(msg_rrset_duplicate(msg, node->name, node->namelen, rrset->type, 279 z->dclass)) 280 return 1; 281 /* grow array */ 282 if(!msg_grow_array(region, msg)) 283 return 0; 284 /* copy it */ 285 if(!(msg->rep->rrsets[msg->rep->rrset_count] = 286 auth_packed_rrset_copy_region(z, node, rrset, region, 0))) 287 return 0; 288 msg->rep->rrset_count++; 289 msg->rep->ar_numrrsets++; 290 msg_ttl(msg); 291 return 1; 292 } 293 294 struct auth_zones* auth_zones_create(void) 295 { 296 struct auth_zones* az = (struct auth_zones*)calloc(1, sizeof(*az)); 297 if(!az) { 298 log_err("out of memory"); 299 return NULL; 300 } 301 rbtree_init(&az->ztree, &auth_zone_cmp); 302 rbtree_init(&az->xtree, &auth_xfer_cmp); 303 lock_rw_init(&az->lock); 304 lock_protect(&az->lock, &az->ztree, sizeof(az->ztree)); 305 lock_protect(&az->lock, &az->xtree, sizeof(az->xtree)); 306 /* also lock protects the rbnode's in struct auth_zone, auth_xfer */ 307 lock_rw_init(&az->rpz_lock); 308 lock_protect(&az->rpz_lock, &az->rpz_first, sizeof(az->rpz_first)); 309 return az; 310 } 311 312 int auth_zone_cmp(const void* z1, const void* z2) 313 { 314 /* first sort on class, so that hierarchy can be maintained within 315 * a class */ 316 struct auth_zone* a = (struct auth_zone*)z1; 317 struct auth_zone* b = (struct auth_zone*)z2; 318 int m; 319 if(a->dclass != b->dclass) { 320 if(a->dclass < b->dclass) 321 return -1; 322 return 1; 323 } 324 /* sorted such that higher zones sort before lower zones (their 325 * contents) */ 326 return dname_lab_cmp(a->name, a->namelabs, b->name, b->namelabs, &m); 327 } 328 329 int auth_data_cmp(const void* z1, const void* z2) 330 { 331 struct auth_data* a = (struct auth_data*)z1; 332 struct auth_data* b = (struct auth_data*)z2; 333 int m; 334 /* canonical sort, because DNSSEC needs that */ 335 return dname_canon_lab_cmp(a->name, a->namelabs, b->name, 336 b->namelabs, &m); 337 } 338 339 int auth_xfer_cmp(const void* z1, const void* z2) 340 { 341 /* first sort on class, so that hierarchy can be maintained within 342 * a class */ 343 struct auth_xfer* a = (struct auth_xfer*)z1; 344 struct auth_xfer* b = (struct auth_xfer*)z2; 345 int m; 346 if(a->dclass != b->dclass) { 347 if(a->dclass < b->dclass) 348 return -1; 349 return 1; 350 } 351 /* sorted such that higher zones sort before lower zones (their 352 * contents) */ 353 return dname_lab_cmp(a->name, a->namelabs, b->name, b->namelabs, &m); 354 } 355 356 /** delete auth rrset node */ 357 static void 358 auth_rrset_delete(struct auth_rrset* rrset) 359 { 360 if(!rrset) return; 361 free(rrset->data); 362 free(rrset); 363 } 364 365 /** delete auth data domain node */ 366 static void 367 auth_data_delete(struct auth_data* n) 368 { 369 struct auth_rrset* p, *np; 370 if(!n) return; 371 p = n->rrsets; 372 while(p) { 373 np = p->next; 374 auth_rrset_delete(p); 375 p = np; 376 } 377 free(n->name); 378 free(n); 379 } 380 381 /** helper traverse to delete zones */ 382 static void 383 auth_data_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 384 { 385 struct auth_data* z = (struct auth_data*)n->key; 386 auth_data_delete(z); 387 } 388 389 /** delete an auth zone structure (tree remove must be done elsewhere) */ 390 static void 391 auth_zone_delete(struct auth_zone* z, struct auth_zones* az) 392 { 393 if(!z) return; 394 lock_rw_destroy(&z->lock); 395 traverse_postorder(&z->data, auth_data_del, NULL); 396 397 if(az && z->rpz) { 398 /* keep RPZ linked list intact */ 399 lock_rw_wrlock(&az->rpz_lock); 400 if(z->rpz_az_prev) 401 z->rpz_az_prev->rpz_az_next = z->rpz_az_next; 402 else 403 az->rpz_first = z->rpz_az_next; 404 if(z->rpz_az_next) 405 z->rpz_az_next->rpz_az_prev = z->rpz_az_prev; 406 lock_rw_unlock(&az->rpz_lock); 407 } 408 if(z->rpz) 409 rpz_delete(z->rpz); 410 free(z->name); 411 free(z->zonefile); 412 free(z); 413 } 414 415 struct auth_zone* 416 auth_zone_create(struct auth_zones* az, uint8_t* nm, size_t nmlen, 417 uint16_t dclass) 418 { 419 struct auth_zone* z = (struct auth_zone*)calloc(1, sizeof(*z)); 420 if(!z) { 421 return NULL; 422 } 423 z->node.key = z; 424 z->dclass = dclass; 425 z->namelen = nmlen; 426 z->namelabs = dname_count_labels(nm); 427 z->name = memdup(nm, nmlen); 428 if(!z->name) { 429 free(z); 430 return NULL; 431 } 432 rbtree_init(&z->data, &auth_data_cmp); 433 lock_rw_init(&z->lock); 434 lock_protect(&z->lock, &z->name, sizeof(*z)-sizeof(rbnode_type)- 435 sizeof(&z->rpz_az_next)-sizeof(&z->rpz_az_prev)); 436 lock_rw_wrlock(&z->lock); 437 /* z lock protects all, except rbtree itself and the rpz linked list 438 * pointers, which are protected using az->lock */ 439 if(!rbtree_insert(&az->ztree, &z->node)) { 440 lock_rw_unlock(&z->lock); 441 auth_zone_delete(z, NULL); 442 log_warn("duplicate auth zone"); 443 return NULL; 444 } 445 return z; 446 } 447 448 struct auth_zone* 449 auth_zone_find(struct auth_zones* az, uint8_t* nm, size_t nmlen, 450 uint16_t dclass) 451 { 452 struct auth_zone key; 453 key.node.key = &key; 454 key.dclass = dclass; 455 key.name = nm; 456 key.namelen = nmlen; 457 key.namelabs = dname_count_labels(nm); 458 return (struct auth_zone*)rbtree_search(&az->ztree, &key); 459 } 460 461 struct auth_xfer* 462 auth_xfer_find(struct auth_zones* az, uint8_t* nm, size_t nmlen, 463 uint16_t dclass) 464 { 465 struct auth_xfer key; 466 key.node.key = &key; 467 key.dclass = dclass; 468 key.name = nm; 469 key.namelen = nmlen; 470 key.namelabs = dname_count_labels(nm); 471 return (struct auth_xfer*)rbtree_search(&az->xtree, &key); 472 } 473 474 /** find an auth zone or sorted less-or-equal, return true if exact */ 475 static int 476 auth_zone_find_less_equal(struct auth_zones* az, uint8_t* nm, size_t nmlen, 477 uint16_t dclass, struct auth_zone** z) 478 { 479 struct auth_zone key; 480 key.node.key = &key; 481 key.dclass = dclass; 482 key.name = nm; 483 key.namelen = nmlen; 484 key.namelabs = dname_count_labels(nm); 485 return rbtree_find_less_equal(&az->ztree, &key, (rbnode_type**)z); 486 } 487 488 489 /** find the auth zone that is above the given name */ 490 struct auth_zone* 491 auth_zones_find_zone(struct auth_zones* az, uint8_t* name, size_t name_len, 492 uint16_t dclass) 493 { 494 uint8_t* nm = name; 495 size_t nmlen = name_len; 496 struct auth_zone* z; 497 if(auth_zone_find_less_equal(az, nm, nmlen, dclass, &z)) { 498 /* exact match */ 499 return z; 500 } else { 501 /* less-or-nothing */ 502 if(!z) return NULL; /* nothing smaller, nothing above it */ 503 /* we found smaller name; smaller may be above the name, 504 * but not below it. */ 505 nm = dname_get_shared_topdomain(z->name, name); 506 dname_count_size_labels(nm, &nmlen); 507 z = NULL; 508 } 509 510 /* search up */ 511 while(!z) { 512 z = auth_zone_find(az, nm, nmlen, dclass); 513 if(z) return z; 514 if(dname_is_root(nm)) break; 515 dname_remove_label(&nm, &nmlen); 516 } 517 return NULL; 518 } 519 520 /** find or create zone with name str. caller must have lock on az. 521 * returns a wrlocked zone */ 522 static struct auth_zone* 523 auth_zones_find_or_add_zone(struct auth_zones* az, char* name) 524 { 525 uint8_t nm[LDNS_MAX_DOMAINLEN+1]; 526 size_t nmlen = sizeof(nm); 527 struct auth_zone* z; 528 529 if(sldns_str2wire_dname_buf(name, nm, &nmlen) != 0) { 530 log_err("cannot parse auth zone name: %s", name); 531 return 0; 532 } 533 z = auth_zone_find(az, nm, nmlen, LDNS_RR_CLASS_IN); 534 if(!z) { 535 /* not found, create the zone */ 536 z = auth_zone_create(az, nm, nmlen, LDNS_RR_CLASS_IN); 537 } else { 538 lock_rw_wrlock(&z->lock); 539 } 540 return z; 541 } 542 543 /** find or create xfer zone with name str. caller must have lock on az. 544 * returns a locked xfer */ 545 static struct auth_xfer* 546 auth_zones_find_or_add_xfer(struct auth_zones* az, struct auth_zone* z) 547 { 548 struct auth_xfer* x; 549 x = auth_xfer_find(az, z->name, z->namelen, z->dclass); 550 if(!x) { 551 /* not found, create the zone */ 552 x = auth_xfer_create(az, z); 553 } else { 554 lock_basic_lock(&x->lock); 555 } 556 return x; 557 } 558 559 int 560 auth_zone_set_zonefile(struct auth_zone* z, char* zonefile) 561 { 562 if(z->zonefile) free(z->zonefile); 563 if(zonefile == NULL) { 564 z->zonefile = NULL; 565 } else { 566 z->zonefile = strdup(zonefile); 567 if(!z->zonefile) { 568 log_err("malloc failure"); 569 return 0; 570 } 571 } 572 return 1; 573 } 574 575 /** set auth zone fallback. caller must have lock on zone */ 576 int 577 auth_zone_set_fallback(struct auth_zone* z, char* fallbackstr) 578 { 579 if(strcmp(fallbackstr, "yes") != 0 && strcmp(fallbackstr, "no") != 0){ 580 log_err("auth zone fallback, expected yes or no, got %s", 581 fallbackstr); 582 return 0; 583 } 584 z->fallback_enabled = (strcmp(fallbackstr, "yes")==0); 585 return 1; 586 } 587 588 /** create domain with the given name */ 589 static struct auth_data* 590 az_domain_create(struct auth_zone* z, uint8_t* nm, size_t nmlen) 591 { 592 struct auth_data* n = (struct auth_data*)malloc(sizeof(*n)); 593 if(!n) return NULL; 594 memset(n, 0, sizeof(*n)); 595 n->node.key = n; 596 n->name = memdup(nm, nmlen); 597 if(!n->name) { 598 free(n); 599 return NULL; 600 } 601 n->namelen = nmlen; 602 n->namelabs = dname_count_labels(nm); 603 if(!rbtree_insert(&z->data, &n->node)) { 604 log_warn("duplicate auth domain name"); 605 free(n->name); 606 free(n); 607 return NULL; 608 } 609 return n; 610 } 611 612 /** find domain with exactly the given name */ 613 static struct auth_data* 614 az_find_name(struct auth_zone* z, uint8_t* nm, size_t nmlen) 615 { 616 struct auth_zone key; 617 key.node.key = &key; 618 key.name = nm; 619 key.namelen = nmlen; 620 key.namelabs = dname_count_labels(nm); 621 return (struct auth_data*)rbtree_search(&z->data, &key); 622 } 623 624 /** Find domain name (or closest match) */ 625 static void 626 az_find_domain(struct auth_zone* z, struct query_info* qinfo, int* node_exact, 627 struct auth_data** node) 628 { 629 struct auth_zone key; 630 key.node.key = &key; 631 key.name = qinfo->qname; 632 key.namelen = qinfo->qname_len; 633 key.namelabs = dname_count_labels(key.name); 634 *node_exact = rbtree_find_less_equal(&z->data, &key, 635 (rbnode_type**)node); 636 } 637 638 /** find or create domain with name in zone */ 639 static struct auth_data* 640 az_domain_find_or_create(struct auth_zone* z, uint8_t* dname, 641 size_t dname_len) 642 { 643 struct auth_data* n = az_find_name(z, dname, dname_len); 644 if(!n) { 645 n = az_domain_create(z, dname, dname_len); 646 } 647 return n; 648 } 649 650 /** find rrset of given type in the domain */ 651 static struct auth_rrset* 652 az_domain_rrset(struct auth_data* n, uint16_t t) 653 { 654 struct auth_rrset* rrset; 655 if(!n) return NULL; 656 rrset = n->rrsets; 657 while(rrset) { 658 if(rrset->type == t) 659 return rrset; 660 rrset = rrset->next; 661 } 662 return NULL; 663 } 664 665 /** remove rrset of this type from domain */ 666 static void 667 domain_remove_rrset(struct auth_data* node, uint16_t rr_type) 668 { 669 struct auth_rrset* rrset, *prev; 670 if(!node) return; 671 prev = NULL; 672 rrset = node->rrsets; 673 while(rrset) { 674 if(rrset->type == rr_type) { 675 /* found it, now delete it */ 676 if(prev) prev->next = rrset->next; 677 else node->rrsets = rrset->next; 678 auth_rrset_delete(rrset); 679 return; 680 } 681 prev = rrset; 682 rrset = rrset->next; 683 } 684 } 685 686 /** find an rrsig index in the rrset. returns true if found */ 687 static int 688 az_rrset_find_rrsig(struct packed_rrset_data* d, uint8_t* rdata, size_t len, 689 size_t* index) 690 { 691 size_t i; 692 for(i=d->count; i<d->count + d->rrsig_count; i++) { 693 if(d->rr_len[i] != len) 694 continue; 695 if(memcmp(d->rr_data[i], rdata, len) == 0) { 696 *index = i; 697 return 1; 698 } 699 } 700 return 0; 701 } 702 703 /** see if rdata is duplicate */ 704 static int 705 rdata_duplicate(struct packed_rrset_data* d, uint8_t* rdata, size_t len) 706 { 707 size_t i; 708 for(i=0; i<d->count + d->rrsig_count; i++) { 709 if(d->rr_len[i] != len) 710 continue; 711 if(memcmp(d->rr_data[i], rdata, len) == 0) 712 return 1; 713 } 714 return 0; 715 } 716 717 /** get rrsig type covered from rdata. 718 * @param rdata: rdata in wireformat, starting with 16bit rdlength. 719 * @param rdatalen: length of rdata buffer. 720 * @return type covered (or 0). 721 */ 722 static uint16_t 723 rrsig_rdata_get_type_covered(uint8_t* rdata, size_t rdatalen) 724 { 725 if(rdatalen < 4) 726 return 0; 727 return sldns_read_uint16(rdata+2); 728 } 729 730 /** remove RR from existing RRset. Also sig, if it is a signature. 731 * reallocates the packed rrset for a new one, false on alloc failure */ 732 static int 733 rrset_remove_rr(struct auth_rrset* rrset, size_t index) 734 { 735 struct packed_rrset_data* d, *old = rrset->data; 736 size_t i; 737 if(index >= old->count + old->rrsig_count) 738 return 0; /* index out of bounds */ 739 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) - ( 740 sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t) + 741 old->rr_len[index])); 742 if(!d) { 743 log_err("malloc failure"); 744 return 0; 745 } 746 d->ttl = old->ttl; 747 d->count = old->count; 748 d->rrsig_count = old->rrsig_count; 749 if(index < d->count) d->count--; 750 else d->rrsig_count--; 751 d->trust = old->trust; 752 d->security = old->security; 753 754 /* set rr_len, needed for ptr_fixup */ 755 d->rr_len = (size_t*)((uint8_t*)d + 756 sizeof(struct packed_rrset_data)); 757 if(index > 0) 758 memmove(d->rr_len, old->rr_len, (index)*sizeof(size_t)); 759 if(index+1 < old->count+old->rrsig_count) 760 memmove(&d->rr_len[index], &old->rr_len[index+1], 761 (old->count+old->rrsig_count - (index+1))*sizeof(size_t)); 762 packed_rrset_ptr_fixup(d); 763 764 /* move over ttls */ 765 if(index > 0) 766 memmove(d->rr_ttl, old->rr_ttl, (index)*sizeof(time_t)); 767 if(index+1 < old->count+old->rrsig_count) 768 memmove(&d->rr_ttl[index], &old->rr_ttl[index+1], 769 (old->count+old->rrsig_count - (index+1))*sizeof(time_t)); 770 771 /* move over rr_data */ 772 for(i=0; i<d->count+d->rrsig_count; i++) { 773 size_t oldi; 774 if(i < index) oldi = i; 775 else oldi = i+1; 776 memmove(d->rr_data[i], old->rr_data[oldi], d->rr_len[i]); 777 } 778 779 /* recalc ttl (lowest of remaining RR ttls) */ 780 if(d->count + d->rrsig_count > 0) 781 d->ttl = d->rr_ttl[0]; 782 for(i=0; i<d->count+d->rrsig_count; i++) { 783 if(d->rr_ttl[i] < d->ttl) 784 d->ttl = d->rr_ttl[i]; 785 } 786 787 free(rrset->data); 788 rrset->data = d; 789 return 1; 790 } 791 792 /** add RR to existing RRset. If insert_sig is true, add to rrsigs. 793 * This reallocates the packed rrset for a new one */ 794 static int 795 rrset_add_rr(struct auth_rrset* rrset, uint32_t rr_ttl, uint8_t* rdata, 796 size_t rdatalen, int insert_sig) 797 { 798 struct packed_rrset_data* d, *old = rrset->data; 799 size_t total, old_total; 800 801 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) 802 + sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t) 803 + rdatalen); 804 if(!d) { 805 log_err("out of memory"); 806 return 0; 807 } 808 /* copy base values */ 809 memcpy(d, old, sizeof(struct packed_rrset_data)); 810 if(!insert_sig) { 811 d->count++; 812 } else { 813 d->rrsig_count++; 814 } 815 old_total = old->count + old->rrsig_count; 816 total = d->count + d->rrsig_count; 817 /* set rr_len, needed for ptr_fixup */ 818 d->rr_len = (size_t*)((uint8_t*)d + 819 sizeof(struct packed_rrset_data)); 820 if(old->count != 0) 821 memmove(d->rr_len, old->rr_len, old->count*sizeof(size_t)); 822 if(old->rrsig_count != 0) 823 memmove(d->rr_len+d->count, old->rr_len+old->count, 824 old->rrsig_count*sizeof(size_t)); 825 if(!insert_sig) 826 d->rr_len[d->count-1] = rdatalen; 827 else d->rr_len[total-1] = rdatalen; 828 packed_rrset_ptr_fixup(d); 829 if((time_t)rr_ttl < d->ttl) 830 d->ttl = rr_ttl; 831 832 /* copy old values into new array */ 833 if(old->count != 0) { 834 memmove(d->rr_ttl, old->rr_ttl, old->count*sizeof(time_t)); 835 /* all the old rr pieces are allocated sequential, so we 836 * can copy them in one go */ 837 memmove(d->rr_data[0], old->rr_data[0], 838 (old->rr_data[old->count-1] - old->rr_data[0]) + 839 old->rr_len[old->count-1]); 840 } 841 if(old->rrsig_count != 0) { 842 memmove(d->rr_ttl+d->count, old->rr_ttl+old->count, 843 old->rrsig_count*sizeof(time_t)); 844 memmove(d->rr_data[d->count], old->rr_data[old->count], 845 (old->rr_data[old_total-1] - old->rr_data[old->count]) + 846 old->rr_len[old_total-1]); 847 } 848 849 /* insert new value */ 850 if(!insert_sig) { 851 d->rr_ttl[d->count-1] = rr_ttl; 852 memmove(d->rr_data[d->count-1], rdata, rdatalen); 853 } else { 854 d->rr_ttl[total-1] = rr_ttl; 855 memmove(d->rr_data[total-1], rdata, rdatalen); 856 } 857 858 rrset->data = d; 859 free(old); 860 return 1; 861 } 862 863 /** Create new rrset for node with packed rrset with one RR element */ 864 static struct auth_rrset* 865 rrset_create(struct auth_data* node, uint16_t rr_type, uint32_t rr_ttl, 866 uint8_t* rdata, size_t rdatalen) 867 { 868 struct auth_rrset* rrset = (struct auth_rrset*)calloc(1, 869 sizeof(*rrset)); 870 struct auth_rrset* p, *prev; 871 struct packed_rrset_data* d; 872 if(!rrset) { 873 log_err("out of memory"); 874 return NULL; 875 } 876 rrset->type = rr_type; 877 878 /* the rrset data structure, with one RR */ 879 d = (struct packed_rrset_data*)calloc(1, 880 sizeof(struct packed_rrset_data) + sizeof(size_t) + 881 sizeof(uint8_t*) + sizeof(time_t) + rdatalen); 882 if(!d) { 883 free(rrset); 884 log_err("out of memory"); 885 return NULL; 886 } 887 rrset->data = d; 888 d->ttl = rr_ttl; 889 d->trust = rrset_trust_prim_noglue; 890 d->rr_len = (size_t*)((uint8_t*)d + sizeof(struct packed_rrset_data)); 891 d->rr_data = (uint8_t**)&(d->rr_len[1]); 892 d->rr_ttl = (time_t*)&(d->rr_data[1]); 893 d->rr_data[0] = (uint8_t*)&(d->rr_ttl[1]); 894 895 /* insert the RR */ 896 d->rr_len[0] = rdatalen; 897 d->rr_ttl[0] = rr_ttl; 898 memmove(d->rr_data[0], rdata, rdatalen); 899 d->count++; 900 901 /* insert rrset into linked list for domain */ 902 /* find sorted place to link the rrset into the list */ 903 prev = NULL; 904 p = node->rrsets; 905 while(p && p->type<=rr_type) { 906 prev = p; 907 p = p->next; 908 } 909 /* so, prev is smaller, and p is larger than rr_type */ 910 rrset->next = p; 911 if(prev) prev->next = rrset; 912 else node->rrsets = rrset; 913 return rrset; 914 } 915 916 /** count number (and size) of rrsigs that cover a type */ 917 static size_t 918 rrsig_num_that_cover(struct auth_rrset* rrsig, uint16_t rr_type, size_t* sigsz) 919 { 920 struct packed_rrset_data* d = rrsig->data; 921 size_t i, num = 0; 922 *sigsz = 0; 923 log_assert(d && rrsig->type == LDNS_RR_TYPE_RRSIG); 924 for(i=0; i<d->count+d->rrsig_count; i++) { 925 if(rrsig_rdata_get_type_covered(d->rr_data[i], 926 d->rr_len[i]) == rr_type) { 927 num++; 928 (*sigsz) += d->rr_len[i]; 929 } 930 } 931 return num; 932 } 933 934 /** See if rrsig set has covered sigs for rrset and move them over */ 935 static int 936 rrset_moveover_rrsigs(struct auth_data* node, uint16_t rr_type, 937 struct auth_rrset* rrset, struct auth_rrset* rrsig) 938 { 939 size_t sigs, sigsz, i, j, total; 940 struct packed_rrset_data* sigold = rrsig->data; 941 struct packed_rrset_data* old = rrset->data; 942 struct packed_rrset_data* d, *sigd; 943 944 log_assert(rrset->type == rr_type); 945 log_assert(rrsig->type == LDNS_RR_TYPE_RRSIG); 946 sigs = rrsig_num_that_cover(rrsig, rr_type, &sigsz); 947 if(sigs == 0) { 948 /* 0 rrsigs to move over, done */ 949 return 1; 950 } 951 952 /* allocate rrset sigsz larger for extra sigs elements, and 953 * allocate rrsig sigsz smaller for less sigs elements. */ 954 d = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(old) 955 + sigs*(sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)) 956 + sigsz); 957 if(!d) { 958 log_err("out of memory"); 959 return 0; 960 } 961 /* copy base values */ 962 total = old->count + old->rrsig_count; 963 memcpy(d, old, sizeof(struct packed_rrset_data)); 964 d->rrsig_count += sigs; 965 /* setup rr_len */ 966 d->rr_len = (size_t*)((uint8_t*)d + 967 sizeof(struct packed_rrset_data)); 968 if(total != 0) 969 memmove(d->rr_len, old->rr_len, total*sizeof(size_t)); 970 j = d->count+d->rrsig_count-sigs; 971 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 972 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 973 sigold->rr_len[i]) == rr_type) { 974 d->rr_len[j] = sigold->rr_len[i]; 975 j++; 976 } 977 } 978 packed_rrset_ptr_fixup(d); 979 980 /* copy old values into new array */ 981 if(total != 0) { 982 memmove(d->rr_ttl, old->rr_ttl, total*sizeof(time_t)); 983 /* all the old rr pieces are allocated sequential, so we 984 * can copy them in one go */ 985 memmove(d->rr_data[0], old->rr_data[0], 986 (old->rr_data[total-1] - old->rr_data[0]) + 987 old->rr_len[total-1]); 988 } 989 990 /* move over the rrsigs to the larger rrset*/ 991 j = d->count+d->rrsig_count-sigs; 992 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 993 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 994 sigold->rr_len[i]) == rr_type) { 995 /* move this one over to location j */ 996 d->rr_ttl[j] = sigold->rr_ttl[i]; 997 memmove(d->rr_data[j], sigold->rr_data[i], 998 sigold->rr_len[i]); 999 if(d->rr_ttl[j] < d->ttl) 1000 d->ttl = d->rr_ttl[j]; 1001 j++; 1002 } 1003 } 1004 1005 /* put it in and deallocate the old rrset */ 1006 rrset->data = d; 1007 free(old); 1008 1009 /* now make rrsig set smaller */ 1010 if(sigold->count+sigold->rrsig_count == sigs) { 1011 /* remove all sigs from rrsig, remove it entirely */ 1012 domain_remove_rrset(node, LDNS_RR_TYPE_RRSIG); 1013 return 1; 1014 } 1015 log_assert(packed_rrset_sizeof(sigold) > sigs*(sizeof(size_t) + 1016 sizeof(uint8_t*) + sizeof(time_t)) + sigsz); 1017 sigd = (struct packed_rrset_data*)calloc(1, packed_rrset_sizeof(sigold) 1018 - sigs*(sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)) 1019 - sigsz); 1020 if(!sigd) { 1021 /* no need to free up d, it has already been placed in the 1022 * node->rrset structure */ 1023 log_err("out of memory"); 1024 return 0; 1025 } 1026 /* copy base values */ 1027 memcpy(sigd, sigold, sizeof(struct packed_rrset_data)); 1028 /* in sigd the RRSIGs are stored in the base of the RR, in count */ 1029 sigd->count -= sigs; 1030 /* setup rr_len */ 1031 sigd->rr_len = (size_t*)((uint8_t*)sigd + 1032 sizeof(struct packed_rrset_data)); 1033 j = 0; 1034 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 1035 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 1036 sigold->rr_len[i]) != rr_type) { 1037 sigd->rr_len[j] = sigold->rr_len[i]; 1038 j++; 1039 } 1040 } 1041 packed_rrset_ptr_fixup(sigd); 1042 1043 /* copy old values into new rrsig array */ 1044 j = 0; 1045 for(i=0; i<sigold->count+sigold->rrsig_count; i++) { 1046 if(rrsig_rdata_get_type_covered(sigold->rr_data[i], 1047 sigold->rr_len[i]) != rr_type) { 1048 /* move this one over to location j */ 1049 sigd->rr_ttl[j] = sigold->rr_ttl[i]; 1050 memmove(sigd->rr_data[j], sigold->rr_data[i], 1051 sigold->rr_len[i]); 1052 if(j==0) sigd->ttl = sigd->rr_ttl[j]; 1053 else { 1054 if(sigd->rr_ttl[j] < sigd->ttl) 1055 sigd->ttl = sigd->rr_ttl[j]; 1056 } 1057 j++; 1058 } 1059 } 1060 1061 /* put it in and deallocate the old rrset */ 1062 rrsig->data = sigd; 1063 free(sigold); 1064 1065 return 1; 1066 } 1067 1068 /** copy the rrsigs from the rrset to the rrsig rrset, because the rrset 1069 * is going to be deleted. reallocates the RRSIG rrset data. */ 1070 static int 1071 rrsigs_copy_from_rrset_to_rrsigset(struct auth_rrset* rrset, 1072 struct auth_rrset* rrsigset) 1073 { 1074 size_t i; 1075 if(rrset->data->rrsig_count == 0) 1076 return 1; 1077 1078 /* move them over one by one, because there might be duplicates, 1079 * duplicates are ignored */ 1080 for(i=rrset->data->count; 1081 i<rrset->data->count+rrset->data->rrsig_count; i++) { 1082 uint8_t* rdata = rrset->data->rr_data[i]; 1083 size_t rdatalen = rrset->data->rr_len[i]; 1084 time_t rr_ttl = rrset->data->rr_ttl[i]; 1085 1086 if(rdata_duplicate(rrsigset->data, rdata, rdatalen)) { 1087 continue; 1088 } 1089 if(!rrset_add_rr(rrsigset, rr_ttl, rdata, rdatalen, 0)) 1090 return 0; 1091 } 1092 return 1; 1093 } 1094 1095 /** Add rr to node, ignores duplicate RRs, 1096 * rdata points to buffer with rdatalen octets, starts with 2bytelength. */ 1097 static int 1098 az_domain_add_rr(struct auth_data* node, uint16_t rr_type, uint32_t rr_ttl, 1099 uint8_t* rdata, size_t rdatalen, int* duplicate) 1100 { 1101 struct auth_rrset* rrset; 1102 /* packed rrsets have their rrsigs along with them, sort them out */ 1103 if(rr_type == LDNS_RR_TYPE_RRSIG) { 1104 uint16_t ctype = rrsig_rdata_get_type_covered(rdata, rdatalen); 1105 if((rrset=az_domain_rrset(node, ctype))!= NULL) { 1106 /* a node of the correct type exists, add the RRSIG 1107 * to the rrset of the covered data type */ 1108 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1109 if(duplicate) *duplicate = 1; 1110 return 1; 1111 } 1112 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 1)) 1113 return 0; 1114 } else if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1115 /* add RRSIG to rrset of type RRSIG */ 1116 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1117 if(duplicate) *duplicate = 1; 1118 return 1; 1119 } 1120 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 0)) 1121 return 0; 1122 } else { 1123 /* create rrset of type RRSIG */ 1124 if(!rrset_create(node, rr_type, rr_ttl, rdata, 1125 rdatalen)) 1126 return 0; 1127 } 1128 } else { 1129 /* normal RR type */ 1130 if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1131 /* add data to existing node with data type */ 1132 if(rdata_duplicate(rrset->data, rdata, rdatalen)) { 1133 if(duplicate) *duplicate = 1; 1134 return 1; 1135 } 1136 if(!rrset_add_rr(rrset, rr_ttl, rdata, rdatalen, 0)) 1137 return 0; 1138 } else { 1139 struct auth_rrset* rrsig; 1140 /* create new node with data type */ 1141 if(!(rrset=rrset_create(node, rr_type, rr_ttl, rdata, 1142 rdatalen))) 1143 return 0; 1144 1145 /* see if node of type RRSIG has signatures that 1146 * cover the data type, and move them over */ 1147 /* and then make the RRSIG type smaller */ 1148 if((rrsig=az_domain_rrset(node, LDNS_RR_TYPE_RRSIG)) 1149 != NULL) { 1150 if(!rrset_moveover_rrsigs(node, rr_type, 1151 rrset, rrsig)) 1152 return 0; 1153 } 1154 } 1155 } 1156 return 1; 1157 } 1158 1159 /** insert RR into zone, ignore duplicates */ 1160 static int 1161 az_insert_rr(struct auth_zone* z, uint8_t* rr, size_t rr_len, 1162 size_t dname_len, int* duplicate) 1163 { 1164 struct auth_data* node; 1165 uint8_t* dname = rr; 1166 uint16_t rr_type = sldns_wirerr_get_type(rr, rr_len, dname_len); 1167 uint16_t rr_class = sldns_wirerr_get_class(rr, rr_len, dname_len); 1168 uint32_t rr_ttl = sldns_wirerr_get_ttl(rr, rr_len, dname_len); 1169 size_t rdatalen = ((size_t)sldns_wirerr_get_rdatalen(rr, rr_len, 1170 dname_len))+2; 1171 /* rdata points to rdata prefixed with uint16 rdatalength */ 1172 uint8_t* rdata = sldns_wirerr_get_rdatawl(rr, rr_len, dname_len); 1173 1174 if(rr_class != z->dclass) { 1175 log_err("wrong class for RR"); 1176 return 0; 1177 } 1178 if(!(node=az_domain_find_or_create(z, dname, dname_len))) { 1179 log_err("cannot create domain"); 1180 return 0; 1181 } 1182 if(!az_domain_add_rr(node, rr_type, rr_ttl, rdata, rdatalen, 1183 duplicate)) { 1184 log_err("cannot add RR to domain"); 1185 return 0; 1186 } 1187 if(z->rpz) { 1188 if(!(rpz_insert_rr(z->rpz, z->name, z->namelen, dname, 1189 dname_len, rr_type, rr_class, rr_ttl, rdata, rdatalen, 1190 rr, rr_len))) 1191 return 0; 1192 } 1193 return 1; 1194 } 1195 1196 /** Remove rr from node, ignores nonexisting RRs, 1197 * rdata points to buffer with rdatalen octets, starts with 2bytelength. */ 1198 static int 1199 az_domain_remove_rr(struct auth_data* node, uint16_t rr_type, 1200 uint8_t* rdata, size_t rdatalen, int* nonexist) 1201 { 1202 struct auth_rrset* rrset; 1203 size_t index = 0; 1204 1205 /* find the plain RR of the given type */ 1206 if((rrset=az_domain_rrset(node, rr_type))!= NULL) { 1207 if(packed_rrset_find_rr(rrset->data, rdata, rdatalen, &index)) { 1208 if(rrset->data->count == 1 && 1209 rrset->data->rrsig_count == 0) { 1210 /* last RR, delete the rrset */ 1211 domain_remove_rrset(node, rr_type); 1212 } else if(rrset->data->count == 1 && 1213 rrset->data->rrsig_count != 0) { 1214 /* move RRSIGs to the RRSIG rrset, or 1215 * this one becomes that RRset */ 1216 struct auth_rrset* rrsigset = az_domain_rrset( 1217 node, LDNS_RR_TYPE_RRSIG); 1218 if(rrsigset) { 1219 /* move left over rrsigs to the 1220 * existing rrset of type RRSIG */ 1221 rrsigs_copy_from_rrset_to_rrsigset( 1222 rrset, rrsigset); 1223 /* and then delete the rrset */ 1224 domain_remove_rrset(node, rr_type); 1225 } else { 1226 /* no rrset of type RRSIG, this 1227 * set is now of that type, 1228 * just remove the rr */ 1229 if(!rrset_remove_rr(rrset, index)) 1230 return 0; 1231 rrset->type = LDNS_RR_TYPE_RRSIG; 1232 rrset->data->count = rrset->data->rrsig_count; 1233 rrset->data->rrsig_count = 0; 1234 } 1235 } else { 1236 /* remove the RR from the rrset */ 1237 if(!rrset_remove_rr(rrset, index)) 1238 return 0; 1239 } 1240 return 1; 1241 } 1242 /* rr not found in rrset */ 1243 } 1244 1245 /* is it a type RRSIG, look under the covered type */ 1246 if(rr_type == LDNS_RR_TYPE_RRSIG) { 1247 uint16_t ctype = rrsig_rdata_get_type_covered(rdata, rdatalen); 1248 if((rrset=az_domain_rrset(node, ctype))!= NULL) { 1249 if(az_rrset_find_rrsig(rrset->data, rdata, rdatalen, 1250 &index)) { 1251 /* rrsig should have d->count > 0, be 1252 * over some rr of that type */ 1253 /* remove the rrsig from the rrsigs list of the 1254 * rrset */ 1255 if(!rrset_remove_rr(rrset, index)) 1256 return 0; 1257 return 1; 1258 } 1259 } 1260 /* also RRSIG not found */ 1261 } 1262 1263 /* nothing found to delete */ 1264 if(nonexist) *nonexist = 1; 1265 return 1; 1266 } 1267 1268 /** remove RR from zone, ignore if it does not exist, false on alloc failure*/ 1269 static int 1270 az_remove_rr(struct auth_zone* z, uint8_t* rr, size_t rr_len, 1271 size_t dname_len, int* nonexist) 1272 { 1273 struct auth_data* node; 1274 uint8_t* dname = rr; 1275 uint16_t rr_type = sldns_wirerr_get_type(rr, rr_len, dname_len); 1276 uint16_t rr_class = sldns_wirerr_get_class(rr, rr_len, dname_len); 1277 size_t rdatalen = ((size_t)sldns_wirerr_get_rdatalen(rr, rr_len, 1278 dname_len))+2; 1279 /* rdata points to rdata prefixed with uint16 rdatalength */ 1280 uint8_t* rdata = sldns_wirerr_get_rdatawl(rr, rr_len, dname_len); 1281 1282 if(rr_class != z->dclass) { 1283 log_err("wrong class for RR"); 1284 /* really also a nonexisting entry, because no records 1285 * of that class in the zone, but return an error because 1286 * getting records of the wrong class is a failure of the 1287 * zone transfer */ 1288 return 0; 1289 } 1290 node = az_find_name(z, dname, dname_len); 1291 if(!node) { 1292 /* node with that name does not exist */ 1293 /* nonexisting entry, because no such name */ 1294 *nonexist = 1; 1295 return 1; 1296 } 1297 if(!az_domain_remove_rr(node, rr_type, rdata, rdatalen, nonexist)) { 1298 /* alloc failure or so */ 1299 return 0; 1300 } 1301 /* remove the node, if necessary */ 1302 /* an rrsets==NULL entry is not kept around for empty nonterminals, 1303 * and also parent nodes are not kept around, so we just delete it */ 1304 if(node->rrsets == NULL) { 1305 (void)rbtree_delete(&z->data, node); 1306 auth_data_delete(node); 1307 } 1308 if(z->rpz) { 1309 rpz_remove_rr(z->rpz, z->namelen, dname, dname_len, rr_type, 1310 rr_class, rdata, rdatalen); 1311 } 1312 return 1; 1313 } 1314 1315 /** decompress an RR into the buffer where it'll be an uncompressed RR 1316 * with uncompressed dname and uncompressed rdata (dnames) */ 1317 static int 1318 decompress_rr_into_buffer(struct sldns_buffer* buf, uint8_t* pkt, 1319 size_t pktlen, uint8_t* dname, uint16_t rr_type, uint16_t rr_class, 1320 uint32_t rr_ttl, uint8_t* rr_data, uint16_t rr_rdlen) 1321 { 1322 sldns_buffer pktbuf; 1323 size_t dname_len = 0; 1324 size_t rdlenpos; 1325 size_t rdlen; 1326 uint8_t* rd; 1327 const sldns_rr_descriptor* desc; 1328 sldns_buffer_init_frm_data(&pktbuf, pkt, pktlen); 1329 sldns_buffer_clear(buf); 1330 1331 /* decompress dname */ 1332 sldns_buffer_set_position(&pktbuf, 1333 (size_t)(dname - sldns_buffer_current(&pktbuf))); 1334 dname_len = pkt_dname_len(&pktbuf); 1335 if(dname_len == 0) return 0; /* parse fail on dname */ 1336 if(!sldns_buffer_available(buf, dname_len)) return 0; 1337 dname_pkt_copy(&pktbuf, sldns_buffer_current(buf), dname); 1338 sldns_buffer_skip(buf, (ssize_t)dname_len); 1339 1340 /* type, class, ttl and rdatalength fields */ 1341 if(!sldns_buffer_available(buf, 10)) return 0; 1342 sldns_buffer_write_u16(buf, rr_type); 1343 sldns_buffer_write_u16(buf, rr_class); 1344 sldns_buffer_write_u32(buf, rr_ttl); 1345 rdlenpos = sldns_buffer_position(buf); 1346 sldns_buffer_write_u16(buf, 0); /* rd length position */ 1347 1348 /* decompress rdata */ 1349 desc = sldns_rr_descript(rr_type); 1350 rd = rr_data; 1351 rdlen = rr_rdlen; 1352 if(rdlen > 0 && desc && desc->_dname_count > 0) { 1353 int count = (int)desc->_dname_count; 1354 int rdf = 0; 1355 size_t len; /* how much rdata to plain copy */ 1356 size_t uncompressed_len, compressed_len; 1357 size_t oldpos; 1358 /* decompress dnames. */ 1359 while(rdlen > 0 && count) { 1360 switch(desc->_wireformat[rdf]) { 1361 case LDNS_RDF_TYPE_DNAME: 1362 sldns_buffer_set_position(&pktbuf, 1363 (size_t)(rd - 1364 sldns_buffer_begin(&pktbuf))); 1365 oldpos = sldns_buffer_position(&pktbuf); 1366 /* moves pktbuf to right after the 1367 * compressed dname, and returns uncompressed 1368 * dname length */ 1369 uncompressed_len = pkt_dname_len(&pktbuf); 1370 if(!uncompressed_len) 1371 return 0; /* parse error in dname */ 1372 if(!sldns_buffer_available(buf, 1373 uncompressed_len)) 1374 /* dname too long for buffer */ 1375 return 0; 1376 dname_pkt_copy(&pktbuf, 1377 sldns_buffer_current(buf), rd); 1378 sldns_buffer_skip(buf, (ssize_t)uncompressed_len); 1379 compressed_len = sldns_buffer_position( 1380 &pktbuf) - oldpos; 1381 rd += compressed_len; 1382 rdlen -= compressed_len; 1383 count--; 1384 len = 0; 1385 break; 1386 case LDNS_RDF_TYPE_STR: 1387 len = rd[0] + 1; 1388 break; 1389 default: 1390 len = get_rdf_size(desc->_wireformat[rdf]); 1391 break; 1392 } 1393 if(len) { 1394 if(!sldns_buffer_available(buf, len)) 1395 return 0; /* too long for buffer */ 1396 sldns_buffer_write(buf, rd, len); 1397 rd += len; 1398 rdlen -= len; 1399 } 1400 rdf++; 1401 } 1402 } 1403 /* copy remaining data */ 1404 if(rdlen > 0) { 1405 if(!sldns_buffer_available(buf, rdlen)) return 0; 1406 sldns_buffer_write(buf, rd, rdlen); 1407 } 1408 /* fixup rdlength */ 1409 sldns_buffer_write_u16_at(buf, rdlenpos, 1410 sldns_buffer_position(buf)-rdlenpos-2); 1411 sldns_buffer_flip(buf); 1412 return 1; 1413 } 1414 1415 /** insert RR into zone, from packet, decompress RR, 1416 * if duplicate is nonNULL set the flag but otherwise ignore duplicates */ 1417 static int 1418 az_insert_rr_decompress(struct auth_zone* z, uint8_t* pkt, size_t pktlen, 1419 struct sldns_buffer* scratch_buffer, uint8_t* dname, uint16_t rr_type, 1420 uint16_t rr_class, uint32_t rr_ttl, uint8_t* rr_data, 1421 uint16_t rr_rdlen, int* duplicate) 1422 { 1423 uint8_t* rr; 1424 size_t rr_len; 1425 size_t dname_len; 1426 if(!decompress_rr_into_buffer(scratch_buffer, pkt, pktlen, dname, 1427 rr_type, rr_class, rr_ttl, rr_data, rr_rdlen)) { 1428 log_err("could not decompress RR"); 1429 return 0; 1430 } 1431 rr = sldns_buffer_begin(scratch_buffer); 1432 rr_len = sldns_buffer_limit(scratch_buffer); 1433 dname_len = dname_valid(rr, rr_len); 1434 return az_insert_rr(z, rr, rr_len, dname_len, duplicate); 1435 } 1436 1437 /** remove RR from zone, from packet, decompress RR, 1438 * if nonexist is nonNULL set the flag but otherwise ignore nonexisting entries*/ 1439 static int 1440 az_remove_rr_decompress(struct auth_zone* z, uint8_t* pkt, size_t pktlen, 1441 struct sldns_buffer* scratch_buffer, uint8_t* dname, uint16_t rr_type, 1442 uint16_t rr_class, uint32_t rr_ttl, uint8_t* rr_data, 1443 uint16_t rr_rdlen, int* nonexist) 1444 { 1445 uint8_t* rr; 1446 size_t rr_len; 1447 size_t dname_len; 1448 if(!decompress_rr_into_buffer(scratch_buffer, pkt, pktlen, dname, 1449 rr_type, rr_class, rr_ttl, rr_data, rr_rdlen)) { 1450 log_err("could not decompress RR"); 1451 return 0; 1452 } 1453 rr = sldns_buffer_begin(scratch_buffer); 1454 rr_len = sldns_buffer_limit(scratch_buffer); 1455 dname_len = dname_valid(rr, rr_len); 1456 return az_remove_rr(z, rr, rr_len, dname_len, nonexist); 1457 } 1458 1459 /** 1460 * Parse zonefile 1461 * @param z: zone to read in. 1462 * @param in: file to read from (just opened). 1463 * @param rr: buffer to use for RRs, 64k. 1464 * passed so that recursive includes can use the same buffer and do 1465 * not grow the stack too much. 1466 * @param rrbuflen: sizeof rr buffer. 1467 * @param state: parse state with $ORIGIN, $TTL and 'prev-dname' and so on, 1468 * that is kept between includes. 1469 * The lineno is set at 1 and then increased by the function. 1470 * @param fname: file name. 1471 * @param depth: recursion depth for includes 1472 * @param cfg: config for chroot. 1473 * returns false on failure, has printed an error message 1474 */ 1475 static int 1476 az_parse_file(struct auth_zone* z, FILE* in, uint8_t* rr, size_t rrbuflen, 1477 struct sldns_file_parse_state* state, char* fname, int depth, 1478 struct config_file* cfg) 1479 { 1480 size_t rr_len, dname_len; 1481 int status; 1482 state->lineno = 1; 1483 1484 while(!feof(in)) { 1485 rr_len = rrbuflen; 1486 dname_len = 0; 1487 status = sldns_fp2wire_rr_buf(in, rr, &rr_len, &dname_len, 1488 state); 1489 if(status == LDNS_WIREPARSE_ERR_INCLUDE && rr_len == 0) { 1490 /* we have $INCLUDE or $something */ 1491 if(strncmp((char*)rr, "$INCLUDE ", 9) == 0 || 1492 strncmp((char*)rr, "$INCLUDE\t", 9) == 0) { 1493 FILE* inc; 1494 int lineno_orig = state->lineno; 1495 char* incfile = (char*)rr + 8; 1496 if(depth > MAX_INCLUDE_DEPTH) { 1497 log_err("%s:%d max include depth" 1498 "exceeded", fname, state->lineno); 1499 return 0; 1500 } 1501 /* skip spaces */ 1502 while(*incfile == ' ' || *incfile == '\t') 1503 incfile++; 1504 /* adjust for chroot on include file */ 1505 if(cfg->chrootdir && cfg->chrootdir[0] && 1506 strncmp(incfile, cfg->chrootdir, 1507 strlen(cfg->chrootdir)) == 0) 1508 incfile += strlen(cfg->chrootdir); 1509 incfile = strdup(incfile); 1510 if(!incfile) { 1511 log_err("malloc failure"); 1512 return 0; 1513 } 1514 verbose(VERB_ALGO, "opening $INCLUDE %s", 1515 incfile); 1516 inc = fopen(incfile, "r"); 1517 if(!inc) { 1518 log_err("%s:%d cannot open include " 1519 "file %s: %s", fname, 1520 lineno_orig, incfile, 1521 strerror(errno)); 1522 free(incfile); 1523 return 0; 1524 } 1525 /* recurse read that file now */ 1526 if(!az_parse_file(z, inc, rr, rrbuflen, 1527 state, incfile, depth+1, cfg)) { 1528 log_err("%s:%d cannot parse include " 1529 "file %s", fname, 1530 lineno_orig, incfile); 1531 fclose(inc); 1532 free(incfile); 1533 return 0; 1534 } 1535 fclose(inc); 1536 verbose(VERB_ALGO, "done with $INCLUDE %s", 1537 incfile); 1538 free(incfile); 1539 state->lineno = lineno_orig; 1540 } 1541 continue; 1542 } 1543 if(status != 0) { 1544 log_err("parse error %s %d:%d: %s", fname, 1545 state->lineno, LDNS_WIREPARSE_OFFSET(status), 1546 sldns_get_errorstr_parse(status)); 1547 return 0; 1548 } 1549 if(rr_len == 0) { 1550 /* EMPTY line, TTL or ORIGIN */ 1551 continue; 1552 } 1553 /* insert wirerr in rrbuf */ 1554 if(!az_insert_rr(z, rr, rr_len, dname_len, NULL)) { 1555 char buf[17]; 1556 sldns_wire2str_type_buf(sldns_wirerr_get_type(rr, 1557 rr_len, dname_len), buf, sizeof(buf)); 1558 log_err("%s:%d cannot insert RR of type %s", 1559 fname, state->lineno, buf); 1560 return 0; 1561 } 1562 } 1563 return 1; 1564 } 1565 1566 int 1567 auth_zone_read_zonefile(struct auth_zone* z, struct config_file* cfg) 1568 { 1569 uint8_t rr[LDNS_RR_BUF_SIZE]; 1570 struct sldns_file_parse_state state; 1571 char* zfilename; 1572 FILE* in; 1573 if(!z || !z->zonefile || z->zonefile[0]==0) 1574 return 1; /* no file, or "", nothing to read */ 1575 1576 zfilename = z->zonefile; 1577 if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(zfilename, 1578 cfg->chrootdir, strlen(cfg->chrootdir)) == 0) 1579 zfilename += strlen(cfg->chrootdir); 1580 if(verbosity >= VERB_ALGO) { 1581 char nm[255+1]; 1582 dname_str(z->name, nm); 1583 verbose(VERB_ALGO, "read zonefile %s for %s", zfilename, nm); 1584 } 1585 in = fopen(zfilename, "r"); 1586 if(!in) { 1587 char* n = sldns_wire2str_dname(z->name, z->namelen); 1588 if(z->zone_is_slave && errno == ENOENT) { 1589 /* we fetch the zone contents later, no file yet */ 1590 verbose(VERB_ALGO, "no zonefile %s for %s", 1591 zfilename, n?n:"error"); 1592 free(n); 1593 return 1; 1594 } 1595 log_err("cannot open zonefile %s for %s: %s", 1596 zfilename, n?n:"error", strerror(errno)); 1597 free(n); 1598 return 0; 1599 } 1600 1601 /* clear the data tree */ 1602 traverse_postorder(&z->data, auth_data_del, NULL); 1603 rbtree_init(&z->data, &auth_data_cmp); 1604 /* clear the RPZ policies */ 1605 if(z->rpz) 1606 rpz_clear(z->rpz); 1607 1608 memset(&state, 0, sizeof(state)); 1609 /* default TTL to 3600 */ 1610 state.default_ttl = 3600; 1611 /* set $ORIGIN to the zone name */ 1612 if(z->namelen <= sizeof(state.origin)) { 1613 memcpy(state.origin, z->name, z->namelen); 1614 state.origin_len = z->namelen; 1615 } 1616 /* parse the (toplevel) file */ 1617 if(!az_parse_file(z, in, rr, sizeof(rr), &state, zfilename, 0, cfg)) { 1618 char* n = sldns_wire2str_dname(z->name, z->namelen); 1619 log_err("error parsing zonefile %s for %s", 1620 zfilename, n?n:"error"); 1621 free(n); 1622 fclose(in); 1623 return 0; 1624 } 1625 fclose(in); 1626 1627 if(z->rpz) 1628 rpz_finish_config(z->rpz); 1629 return 1; 1630 } 1631 1632 /** write buffer to file and check return codes */ 1633 static int 1634 write_out(FILE* out, const char* str, size_t len) 1635 { 1636 size_t r; 1637 if(len == 0) 1638 return 1; 1639 r = fwrite(str, 1, len, out); 1640 if(r == 0) { 1641 log_err("write failed: %s", strerror(errno)); 1642 return 0; 1643 } else if(r < len) { 1644 log_err("write failed: too short (disk full?)"); 1645 return 0; 1646 } 1647 return 1; 1648 } 1649 1650 /** convert auth rr to string */ 1651 static int 1652 auth_rr_to_string(uint8_t* nm, size_t nmlen, uint16_t tp, uint16_t cl, 1653 struct packed_rrset_data* data, size_t i, char* s, size_t buflen) 1654 { 1655 int w = 0; 1656 size_t slen = buflen, datlen; 1657 uint8_t* dat; 1658 if(i >= data->count) tp = LDNS_RR_TYPE_RRSIG; 1659 dat = nm; 1660 datlen = nmlen; 1661 w += sldns_wire2str_dname_scan(&dat, &datlen, &s, &slen, NULL, 0, NULL); 1662 w += sldns_str_print(&s, &slen, "\t"); 1663 w += sldns_str_print(&s, &slen, "%lu\t", (unsigned long)data->rr_ttl[i]); 1664 w += sldns_wire2str_class_print(&s, &slen, cl); 1665 w += sldns_str_print(&s, &slen, "\t"); 1666 w += sldns_wire2str_type_print(&s, &slen, tp); 1667 w += sldns_str_print(&s, &slen, "\t"); 1668 datlen = data->rr_len[i]-2; 1669 dat = data->rr_data[i]+2; 1670 w += sldns_wire2str_rdata_scan(&dat, &datlen, &s, &slen, tp, NULL, 0, NULL); 1671 1672 if(tp == LDNS_RR_TYPE_DNSKEY) { 1673 w += sldns_str_print(&s, &slen, " ;{id = %u}", 1674 sldns_calc_keytag_raw(data->rr_data[i]+2, 1675 data->rr_len[i]-2)); 1676 } 1677 w += sldns_str_print(&s, &slen, "\n"); 1678 1679 if(w >= (int)buflen) { 1680 log_nametypeclass(NO_VERBOSE, "RR too long to print", nm, tp, cl); 1681 return 0; 1682 } 1683 return 1; 1684 } 1685 1686 /** write rrset to file */ 1687 static int 1688 auth_zone_write_rrset(struct auth_zone* z, struct auth_data* node, 1689 struct auth_rrset* r, FILE* out) 1690 { 1691 size_t i, count = r->data->count + r->data->rrsig_count; 1692 char buf[LDNS_RR_BUF_SIZE]; 1693 for(i=0; i<count; i++) { 1694 if(!auth_rr_to_string(node->name, node->namelen, r->type, 1695 z->dclass, r->data, i, buf, sizeof(buf))) { 1696 verbose(VERB_ALGO, "failed to rr2str rr %d", (int)i); 1697 continue; 1698 } 1699 if(!write_out(out, buf, strlen(buf))) 1700 return 0; 1701 } 1702 return 1; 1703 } 1704 1705 /** write domain to file */ 1706 static int 1707 auth_zone_write_domain(struct auth_zone* z, struct auth_data* n, FILE* out) 1708 { 1709 struct auth_rrset* r; 1710 /* if this is zone apex, write SOA first */ 1711 if(z->namelen == n->namelen) { 1712 struct auth_rrset* soa = az_domain_rrset(n, LDNS_RR_TYPE_SOA); 1713 if(soa) { 1714 if(!auth_zone_write_rrset(z, n, soa, out)) 1715 return 0; 1716 } 1717 } 1718 /* write all the RRsets for this domain */ 1719 for(r = n->rrsets; r; r = r->next) { 1720 if(z->namelen == n->namelen && 1721 r->type == LDNS_RR_TYPE_SOA) 1722 continue; /* skip SOA here */ 1723 if(!auth_zone_write_rrset(z, n, r, out)) 1724 return 0; 1725 } 1726 return 1; 1727 } 1728 1729 int auth_zone_write_file(struct auth_zone* z, const char* fname) 1730 { 1731 FILE* out; 1732 struct auth_data* n; 1733 out = fopen(fname, "w"); 1734 if(!out) { 1735 log_err("could not open %s: %s", fname, strerror(errno)); 1736 return 0; 1737 } 1738 RBTREE_FOR(n, struct auth_data*, &z->data) { 1739 if(!auth_zone_write_domain(z, n, out)) { 1740 log_err("could not write domain to %s", fname); 1741 fclose(out); 1742 return 0; 1743 } 1744 } 1745 fclose(out); 1746 return 1; 1747 } 1748 1749 /** offline verify for zonemd, while reading a zone file to immediately 1750 * spot bad hashes in zonefile as they are read. 1751 * Creates temp buffers, but uses anchors and validation environment 1752 * from the module_env. */ 1753 static void 1754 zonemd_offline_verify(struct auth_zone* z, struct module_env* env_for_val, 1755 struct module_stack* mods) 1756 { 1757 struct module_env env; 1758 time_t now = 0; 1759 if(!z->zonemd_check) 1760 return; 1761 env = *env_for_val; 1762 env.scratch_buffer = sldns_buffer_new(env.cfg->msg_buffer_size); 1763 if(!env.scratch_buffer) { 1764 log_err("out of memory"); 1765 goto clean_exit; 1766 } 1767 env.scratch = regional_create(); 1768 if(!env.now) { 1769 env.now = &now; 1770 now = time(NULL); 1771 } 1772 if(!env.scratch) { 1773 log_err("out of memory"); 1774 goto clean_exit; 1775 } 1776 auth_zone_verify_zonemd(z, &env, mods, NULL, 1, 0); 1777 1778 clean_exit: 1779 /* clean up and exit */ 1780 sldns_buffer_free(env.scratch_buffer); 1781 regional_destroy(env.scratch); 1782 } 1783 1784 /** read all auth zones from file (if they have) */ 1785 static int 1786 auth_zones_read_zones(struct auth_zones* az, struct config_file* cfg, 1787 struct module_env* env, struct module_stack* mods) 1788 { 1789 struct auth_zone* z; 1790 lock_rw_wrlock(&az->lock); 1791 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 1792 lock_rw_wrlock(&z->lock); 1793 if(!auth_zone_read_zonefile(z, cfg)) { 1794 lock_rw_unlock(&z->lock); 1795 lock_rw_unlock(&az->lock); 1796 return 0; 1797 } 1798 if(z->zonefile && z->zonefile[0]!=0 && env) 1799 zonemd_offline_verify(z, env, mods); 1800 lock_rw_unlock(&z->lock); 1801 } 1802 lock_rw_unlock(&az->lock); 1803 return 1; 1804 } 1805 1806 /** fetch the content of a ZONEMD RR from the rdata */ 1807 static int zonemd_fetch_parameters(struct auth_rrset* zonemd_rrset, size_t i, 1808 uint32_t* serial, int* scheme, int* hashalgo, uint8_t** hash, 1809 size_t* hashlen) 1810 { 1811 size_t rr_len; 1812 uint8_t* rdata; 1813 if(i >= zonemd_rrset->data->count) 1814 return 0; 1815 rr_len = zonemd_rrset->data->rr_len[i]; 1816 if(rr_len < 2+4+1+1) 1817 return 0; /* too short, for rdlen+serial+scheme+algo */ 1818 rdata = zonemd_rrset->data->rr_data[i]; 1819 *serial = sldns_read_uint32(rdata+2); 1820 *scheme = rdata[6]; 1821 *hashalgo = rdata[7]; 1822 *hashlen = rr_len - 8; 1823 if(*hashlen == 0) 1824 *hash = NULL; 1825 else *hash = rdata+8; 1826 return 1; 1827 } 1828 1829 /** 1830 * See if the ZONEMD scheme, hash occurs more than once. 1831 * @param zonemd_rrset: the zonemd rrset to check with the RRs in it. 1832 * @param index: index of the original, this is allowed to have that 1833 * scheme and hashalgo, but other RRs should not have it. 1834 * @param scheme: the scheme to check for. 1835 * @param hashalgo: the hash algorithm to check for. 1836 * @return true if it occurs more than once. 1837 */ 1838 static int zonemd_is_duplicate_scheme_hash(struct auth_rrset* zonemd_rrset, 1839 size_t index, int scheme, int hashalgo) 1840 { 1841 size_t j; 1842 for(j=0; j<zonemd_rrset->data->count; j++) { 1843 uint32_t serial2 = 0; 1844 int scheme2 = 0, hashalgo2 = 0; 1845 uint8_t* hash2 = NULL; 1846 size_t hashlen2 = 0; 1847 if(index == j) { 1848 /* this is the original */ 1849 continue; 1850 } 1851 if(!zonemd_fetch_parameters(zonemd_rrset, j, &serial2, 1852 &scheme2, &hashalgo2, &hash2, &hashlen2)) { 1853 /* malformed, skip it */ 1854 continue; 1855 } 1856 if(scheme == scheme2 && hashalgo == hashalgo2) { 1857 /* duplicate scheme, hash */ 1858 verbose(VERB_ALGO, "zonemd duplicate for scheme %d " 1859 "and hash %d", scheme, hashalgo); 1860 return 1; 1861 } 1862 } 1863 return 0; 1864 } 1865 1866 /** 1867 * Check ZONEMDs if present for the auth zone. Depending on config 1868 * it can warn or fail on that. Checks the hash of the ZONEMD. 1869 * @param z: auth zone to check for. 1870 * caller must hold lock on zone. 1871 * @param env: module env for temp buffers. 1872 * @param reason: returned on failure. 1873 * @return false on failure, true if hash checks out. 1874 */ 1875 static int auth_zone_zonemd_check_hash(struct auth_zone* z, 1876 struct module_env* env, char** reason) 1877 { 1878 /* loop over ZONEMDs and see which one is valid. if not print 1879 * failure (depending on config) */ 1880 struct auth_data* apex; 1881 struct auth_rrset* zonemd_rrset; 1882 size_t i; 1883 struct regional* region = NULL; 1884 struct sldns_buffer* buf = NULL; 1885 uint32_t soa_serial = 0; 1886 char* unsupported_reason = NULL; 1887 int only_unsupported = 1; 1888 region = env->scratch; 1889 regional_free_all(region); 1890 buf = env->scratch_buffer; 1891 if(!auth_zone_get_serial(z, &soa_serial)) { 1892 *reason = "zone has no SOA serial"; 1893 return 0; 1894 } 1895 1896 apex = az_find_name(z, z->name, z->namelen); 1897 if(!apex) { 1898 *reason = "zone has no apex"; 1899 return 0; 1900 } 1901 zonemd_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_ZONEMD); 1902 if(!zonemd_rrset || zonemd_rrset->data->count==0) { 1903 *reason = "zone has no ZONEMD"; 1904 return 0; /* no RRset or no RRs in rrset */ 1905 } 1906 1907 /* we have a ZONEMD, check if it is correct */ 1908 for(i=0; i<zonemd_rrset->data->count; i++) { 1909 uint32_t serial = 0; 1910 int scheme = 0, hashalgo = 0; 1911 uint8_t* hash = NULL; 1912 size_t hashlen = 0; 1913 if(!zonemd_fetch_parameters(zonemd_rrset, i, &serial, &scheme, 1914 &hashalgo, &hash, &hashlen)) { 1915 /* malformed RR */ 1916 *reason = "ZONEMD rdata malformed"; 1917 only_unsupported = 0; 1918 continue; 1919 } 1920 /* check for duplicates */ 1921 if(zonemd_is_duplicate_scheme_hash(zonemd_rrset, i, scheme, 1922 hashalgo)) { 1923 /* duplicate hash of the same scheme,hash 1924 * is not allowed. */ 1925 *reason = "ZONEMD RRSet contains more than one RR " 1926 "with the same scheme and hash algorithm"; 1927 only_unsupported = 0; 1928 continue; 1929 } 1930 regional_free_all(region); 1931 if(serial != soa_serial) { 1932 *reason = "ZONEMD serial is wrong"; 1933 only_unsupported = 0; 1934 continue; 1935 } 1936 *reason = NULL; 1937 if(auth_zone_generate_zonemd_check(z, scheme, hashalgo, 1938 hash, hashlen, region, buf, reason)) { 1939 /* success */ 1940 if(*reason) { 1941 if(!unsupported_reason) 1942 unsupported_reason = *reason; 1943 /* continue to check for valid ZONEMD */ 1944 if(verbosity >= VERB_ALGO) { 1945 char zstr[255+1]; 1946 dname_str(z->name, zstr); 1947 verbose(VERB_ALGO, "auth-zone %s ZONEMD %d %d is unsupported: %s", zstr, (int)scheme, (int)hashalgo, *reason); 1948 } 1949 *reason = NULL; 1950 continue; 1951 } 1952 if(verbosity >= VERB_ALGO) { 1953 char zstr[255+1]; 1954 dname_str(z->name, zstr); 1955 if(!*reason) 1956 verbose(VERB_ALGO, "auth-zone %s ZONEMD hash is correct", zstr); 1957 } 1958 return 1; 1959 } 1960 only_unsupported = 0; 1961 /* try next one */ 1962 } 1963 /* have we seen no failures but only unsupported algo, 1964 * and one unsupported algorithm, or more. */ 1965 if(only_unsupported && unsupported_reason) { 1966 /* only unsupported algorithms, with valid serial, not 1967 * malformed. Did not see supported algorithms, failed or 1968 * successful ones. */ 1969 *reason = unsupported_reason; 1970 return 1; 1971 } 1972 /* fail, we may have reason */ 1973 if(!*reason) 1974 *reason = "no ZONEMD records found"; 1975 if(verbosity >= VERB_ALGO) { 1976 char zstr[255+1]; 1977 dname_str(z->name, zstr); 1978 verbose(VERB_ALGO, "auth-zone %s ZONEMD failed: %s", zstr, *reason); 1979 } 1980 return 0; 1981 } 1982 1983 /** find the apex SOA RRset, if it exists */ 1984 struct auth_rrset* auth_zone_get_soa_rrset(struct auth_zone* z) 1985 { 1986 struct auth_data* apex; 1987 struct auth_rrset* soa; 1988 apex = az_find_name(z, z->name, z->namelen); 1989 if(!apex) return NULL; 1990 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 1991 return soa; 1992 } 1993 1994 /** find serial number of zone or false if none */ 1995 int 1996 auth_zone_get_serial(struct auth_zone* z, uint32_t* serial) 1997 { 1998 struct auth_data* apex; 1999 struct auth_rrset* soa; 2000 struct packed_rrset_data* d; 2001 apex = az_find_name(z, z->name, z->namelen); 2002 if(!apex) return 0; 2003 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2004 if(!soa || soa->data->count==0) 2005 return 0; /* no RRset or no RRs in rrset */ 2006 if(soa->data->rr_len[0] < 2+4*5) return 0; /* SOA too short */ 2007 d = soa->data; 2008 *serial = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-20)); 2009 return 1; 2010 } 2011 2012 /** Find auth_zone SOA and populate the values in xfr(soa values). */ 2013 int 2014 xfr_find_soa(struct auth_zone* z, struct auth_xfer* xfr) 2015 { 2016 struct auth_data* apex; 2017 struct auth_rrset* soa; 2018 struct packed_rrset_data* d; 2019 apex = az_find_name(z, z->name, z->namelen); 2020 if(!apex) return 0; 2021 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2022 if(!soa || soa->data->count==0) 2023 return 0; /* no RRset or no RRs in rrset */ 2024 if(soa->data->rr_len[0] < 2+4*5) return 0; /* SOA too short */ 2025 /* SOA record ends with serial, refresh, retry, expiry, minimum, 2026 * as 4 byte fields */ 2027 d = soa->data; 2028 xfr->have_zone = 1; 2029 xfr->serial = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-20)); 2030 xfr->refresh = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-16)); 2031 xfr->retry = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-12)); 2032 xfr->expiry = sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-8)); 2033 /* soa minimum at d->rr_len[0]-4 */ 2034 return 1; 2035 } 2036 2037 /** 2038 * Setup auth_xfer zone 2039 * This populates the have_zone, soa values, and so on times. 2040 * Doesn't do network traffic yet, can set option flags. 2041 * @param z: locked by caller, and modified for setup 2042 * @param x: locked by caller, and modified. 2043 * @return false on failure. 2044 */ 2045 static int 2046 auth_xfer_setup(struct auth_zone* z, struct auth_xfer* x) 2047 { 2048 /* for a zone without zone transfers, x==NULL, so skip them, 2049 * i.e. the zone config is fixed with no masters or urls */ 2050 if(!z || !x) return 1; 2051 if(!xfr_find_soa(z, x)) { 2052 return 1; 2053 } 2054 /* nothing for probe, nextprobe and transfer tasks */ 2055 return 1; 2056 } 2057 2058 /** 2059 * Setup all zones 2060 * @param az: auth zones structure 2061 * @return false on failure. 2062 */ 2063 static int 2064 auth_zones_setup_zones(struct auth_zones* az) 2065 { 2066 struct auth_zone* z; 2067 struct auth_xfer* x; 2068 lock_rw_wrlock(&az->lock); 2069 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2070 lock_rw_wrlock(&z->lock); 2071 x = auth_xfer_find(az, z->name, z->namelen, z->dclass); 2072 if(x) { 2073 lock_basic_lock(&x->lock); 2074 } 2075 if(!auth_xfer_setup(z, x)) { 2076 if(x) { 2077 lock_basic_unlock(&x->lock); 2078 } 2079 lock_rw_unlock(&z->lock); 2080 lock_rw_unlock(&az->lock); 2081 return 0; 2082 } 2083 if(x) { 2084 lock_basic_unlock(&x->lock); 2085 } 2086 lock_rw_unlock(&z->lock); 2087 } 2088 lock_rw_unlock(&az->lock); 2089 return 1; 2090 } 2091 2092 /** set config items and create zones */ 2093 static int 2094 auth_zones_cfg(struct auth_zones* az, struct config_auth* c) 2095 { 2096 struct auth_zone* z; 2097 struct auth_xfer* x = NULL; 2098 2099 /* create zone */ 2100 if(c->isrpz) { 2101 /* if the rpz lock is needed, grab it before the other 2102 * locks to avoid a lock dependency cycle */ 2103 lock_rw_wrlock(&az->rpz_lock); 2104 } 2105 lock_rw_wrlock(&az->lock); 2106 if(!(z=auth_zones_find_or_add_zone(az, c->name))) { 2107 lock_rw_unlock(&az->lock); 2108 if(c->isrpz) { 2109 lock_rw_unlock(&az->rpz_lock); 2110 } 2111 return 0; 2112 } 2113 if(c->masters || c->urls) { 2114 if(!(x=auth_zones_find_or_add_xfer(az, z))) { 2115 lock_rw_unlock(&az->lock); 2116 lock_rw_unlock(&z->lock); 2117 if(c->isrpz) { 2118 lock_rw_unlock(&az->rpz_lock); 2119 } 2120 return 0; 2121 } 2122 } 2123 if(c->for_downstream) 2124 az->have_downstream = 1; 2125 lock_rw_unlock(&az->lock); 2126 2127 /* set options */ 2128 z->zone_deleted = 0; 2129 if(!auth_zone_set_zonefile(z, c->zonefile)) { 2130 if(x) { 2131 lock_basic_unlock(&x->lock); 2132 } 2133 lock_rw_unlock(&z->lock); 2134 if(c->isrpz) { 2135 lock_rw_unlock(&az->rpz_lock); 2136 } 2137 return 0; 2138 } 2139 z->for_downstream = c->for_downstream; 2140 z->for_upstream = c->for_upstream; 2141 z->fallback_enabled = c->fallback_enabled; 2142 z->zonemd_check = c->zonemd_check; 2143 z->zonemd_reject_absence = c->zonemd_reject_absence; 2144 if(c->isrpz && !z->rpz){ 2145 if(!(z->rpz = rpz_create(c))){ 2146 fatal_exit("Could not setup RPZ zones"); 2147 return 0; 2148 } 2149 lock_protect(&z->lock, &z->rpz->local_zones, sizeof(*z->rpz)); 2150 /* the az->rpz_lock is locked above */ 2151 z->rpz_az_next = az->rpz_first; 2152 if(az->rpz_first) 2153 az->rpz_first->rpz_az_prev = z; 2154 az->rpz_first = z; 2155 } 2156 if(c->isrpz) { 2157 lock_rw_unlock(&az->rpz_lock); 2158 } 2159 2160 /* xfer zone */ 2161 if(x) { 2162 z->zone_is_slave = 1; 2163 /* set options on xfer zone */ 2164 if(!xfer_set_masters(&x->task_probe->masters, c, 0)) { 2165 lock_basic_unlock(&x->lock); 2166 lock_rw_unlock(&z->lock); 2167 return 0; 2168 } 2169 if(!xfer_set_masters(&x->task_transfer->masters, c, 1)) { 2170 lock_basic_unlock(&x->lock); 2171 lock_rw_unlock(&z->lock); 2172 return 0; 2173 } 2174 lock_basic_unlock(&x->lock); 2175 } 2176 2177 lock_rw_unlock(&z->lock); 2178 return 1; 2179 } 2180 2181 /** set all auth zones deleted, then in auth_zones_cfg, it marks them 2182 * as nondeleted (if they are still in the config), and then later 2183 * we can find deleted zones */ 2184 static void 2185 az_setall_deleted(struct auth_zones* az) 2186 { 2187 struct auth_zone* z; 2188 lock_rw_wrlock(&az->lock); 2189 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2190 lock_rw_wrlock(&z->lock); 2191 z->zone_deleted = 1; 2192 lock_rw_unlock(&z->lock); 2193 } 2194 lock_rw_unlock(&az->lock); 2195 } 2196 2197 /** find zones that are marked deleted and delete them. 2198 * This is called from apply_cfg, and there are no threads and no 2199 * workers, so the xfr can just be deleted. */ 2200 static void 2201 az_delete_deleted_zones(struct auth_zones* az) 2202 { 2203 struct auth_zone* z; 2204 struct auth_zone* delete_list = NULL, *next; 2205 struct auth_xfer* xfr; 2206 lock_rw_wrlock(&az->lock); 2207 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 2208 lock_rw_wrlock(&z->lock); 2209 if(z->zone_deleted) { 2210 /* we cannot alter the rbtree right now, but 2211 * we can put it on a linked list and then 2212 * delete it */ 2213 z->delete_next = delete_list; 2214 delete_list = z; 2215 } 2216 lock_rw_unlock(&z->lock); 2217 } 2218 /* now we are out of the tree loop and we can loop and delete 2219 * the zones */ 2220 z = delete_list; 2221 while(z) { 2222 next = z->delete_next; 2223 xfr = auth_xfer_find(az, z->name, z->namelen, z->dclass); 2224 if(xfr) { 2225 (void)rbtree_delete(&az->xtree, &xfr->node); 2226 auth_xfer_delete(xfr); 2227 } 2228 (void)rbtree_delete(&az->ztree, &z->node); 2229 auth_zone_delete(z, az); 2230 z = next; 2231 } 2232 lock_rw_unlock(&az->lock); 2233 } 2234 2235 int auth_zones_apply_cfg(struct auth_zones* az, struct config_file* cfg, 2236 int setup, int* is_rpz, struct module_env* env, 2237 struct module_stack* mods) 2238 { 2239 struct config_auth* p; 2240 az_setall_deleted(az); 2241 for(p = cfg->auths; p; p = p->next) { 2242 if(!p->name || p->name[0] == 0) { 2243 log_warn("auth-zone without a name, skipped"); 2244 continue; 2245 } 2246 *is_rpz = (*is_rpz || p->isrpz); 2247 if(!auth_zones_cfg(az, p)) { 2248 log_err("cannot config auth zone %s", p->name); 2249 return 0; 2250 } 2251 } 2252 az_delete_deleted_zones(az); 2253 if(!auth_zones_read_zones(az, cfg, env, mods)) 2254 return 0; 2255 if(setup) { 2256 if(!auth_zones_setup_zones(az)) 2257 return 0; 2258 } 2259 return 1; 2260 } 2261 2262 /** delete chunks 2263 * @param at: transfer structure with chunks list. The chunks and their 2264 * data are freed. 2265 */ 2266 static void 2267 auth_chunks_delete(struct auth_transfer* at) 2268 { 2269 if(at->chunks_first) { 2270 struct auth_chunk* c, *cn; 2271 c = at->chunks_first; 2272 while(c) { 2273 cn = c->next; 2274 free(c->data); 2275 free(c); 2276 c = cn; 2277 } 2278 } 2279 at->chunks_first = NULL; 2280 at->chunks_last = NULL; 2281 } 2282 2283 /** free master addr list */ 2284 static void 2285 auth_free_master_addrs(struct auth_addr* list) 2286 { 2287 struct auth_addr *n; 2288 while(list) { 2289 n = list->next; 2290 free(list); 2291 list = n; 2292 } 2293 } 2294 2295 /** free the masters list */ 2296 static void 2297 auth_free_masters(struct auth_master* list) 2298 { 2299 struct auth_master* n; 2300 while(list) { 2301 n = list->next; 2302 auth_free_master_addrs(list->list); 2303 free(list->host); 2304 free(list->file); 2305 free(list); 2306 list = n; 2307 } 2308 } 2309 2310 /** delete auth xfer structure 2311 * @param xfr: delete this xfer and its tasks. 2312 */ 2313 static void 2314 auth_xfer_delete(struct auth_xfer* xfr) 2315 { 2316 if(!xfr) return; 2317 lock_basic_destroy(&xfr->lock); 2318 free(xfr->name); 2319 if(xfr->task_nextprobe) { 2320 comm_timer_delete(xfr->task_nextprobe->timer); 2321 free(xfr->task_nextprobe); 2322 } 2323 if(xfr->task_probe) { 2324 auth_free_masters(xfr->task_probe->masters); 2325 comm_point_delete(xfr->task_probe->cp); 2326 comm_timer_delete(xfr->task_probe->timer); 2327 free(xfr->task_probe); 2328 } 2329 if(xfr->task_transfer) { 2330 auth_free_masters(xfr->task_transfer->masters); 2331 comm_point_delete(xfr->task_transfer->cp); 2332 comm_timer_delete(xfr->task_transfer->timer); 2333 if(xfr->task_transfer->chunks_first) { 2334 auth_chunks_delete(xfr->task_transfer); 2335 } 2336 free(xfr->task_transfer); 2337 } 2338 auth_free_masters(xfr->allow_notify_list); 2339 free(xfr); 2340 } 2341 2342 /** helper traverse to delete zones */ 2343 static void 2344 auth_zone_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 2345 { 2346 struct auth_zone* z = (struct auth_zone*)n->key; 2347 auth_zone_delete(z, NULL); 2348 } 2349 2350 /** helper traverse to delete xfer zones */ 2351 static void 2352 auth_xfer_del(rbnode_type* n, void* ATTR_UNUSED(arg)) 2353 { 2354 struct auth_xfer* z = (struct auth_xfer*)n->key; 2355 auth_xfer_delete(z); 2356 } 2357 2358 void auth_zones_delete(struct auth_zones* az) 2359 { 2360 if(!az) return; 2361 lock_rw_destroy(&az->lock); 2362 lock_rw_destroy(&az->rpz_lock); 2363 traverse_postorder(&az->ztree, auth_zone_del, NULL); 2364 traverse_postorder(&az->xtree, auth_xfer_del, NULL); 2365 free(az); 2366 } 2367 2368 /** true if domain has only nsec3 */ 2369 static int 2370 domain_has_only_nsec3(struct auth_data* n) 2371 { 2372 struct auth_rrset* rrset = n->rrsets; 2373 int nsec3_seen = 0; 2374 while(rrset) { 2375 if(rrset->type == LDNS_RR_TYPE_NSEC3) { 2376 nsec3_seen = 1; 2377 } else if(rrset->type != LDNS_RR_TYPE_RRSIG) { 2378 return 0; 2379 } 2380 rrset = rrset->next; 2381 } 2382 return nsec3_seen; 2383 } 2384 2385 /** see if the domain has a wildcard child '*.domain' */ 2386 static struct auth_data* 2387 az_find_wildcard_domain(struct auth_zone* z, uint8_t* nm, size_t nmlen) 2388 { 2389 uint8_t wc[LDNS_MAX_DOMAINLEN]; 2390 if(nmlen+2 > sizeof(wc)) 2391 return NULL; /* result would be too long */ 2392 wc[0] = 1; /* length of wildcard label */ 2393 wc[1] = (uint8_t)'*'; /* wildcard label */ 2394 memmove(wc+2, nm, nmlen); 2395 return az_find_name(z, wc, nmlen+2); 2396 } 2397 2398 /** find wildcard between qname and cename */ 2399 static struct auth_data* 2400 az_find_wildcard(struct auth_zone* z, struct query_info* qinfo, 2401 struct auth_data* ce) 2402 { 2403 uint8_t* nm = qinfo->qname; 2404 size_t nmlen = qinfo->qname_len; 2405 struct auth_data* node; 2406 if(!dname_subdomain_c(nm, z->name)) 2407 return NULL; /* out of zone */ 2408 while((node=az_find_wildcard_domain(z, nm, nmlen))==NULL) { 2409 /* see if we can go up to find the wildcard */ 2410 if(nmlen == z->namelen) 2411 return NULL; /* top of zone reached */ 2412 if(ce && nmlen == ce->namelen) 2413 return NULL; /* ce reached */ 2414 if(dname_is_root(nm)) 2415 return NULL; /* cannot go up */ 2416 dname_remove_label(&nm, &nmlen); 2417 } 2418 return node; 2419 } 2420 2421 /** domain is not exact, find first candidate ce (name that matches 2422 * a part of qname) in tree */ 2423 static struct auth_data* 2424 az_find_candidate_ce(struct auth_zone* z, struct query_info* qinfo, 2425 struct auth_data* n) 2426 { 2427 uint8_t* nm; 2428 size_t nmlen; 2429 if(n) { 2430 nm = dname_get_shared_topdomain(qinfo->qname, n->name); 2431 } else { 2432 nm = qinfo->qname; 2433 } 2434 dname_count_size_labels(nm, &nmlen); 2435 n = az_find_name(z, nm, nmlen); 2436 /* delete labels and go up on name */ 2437 while(!n) { 2438 if(dname_is_root(nm)) 2439 return NULL; /* cannot go up */ 2440 dname_remove_label(&nm, &nmlen); 2441 n = az_find_name(z, nm, nmlen); 2442 } 2443 return n; 2444 } 2445 2446 /** go up the auth tree to next existing name. */ 2447 static struct auth_data* 2448 az_domain_go_up(struct auth_zone* z, struct auth_data* n) 2449 { 2450 uint8_t* nm = n->name; 2451 size_t nmlen = n->namelen; 2452 while(!dname_is_root(nm)) { 2453 dname_remove_label(&nm, &nmlen); 2454 if((n=az_find_name(z, nm, nmlen)) != NULL) 2455 return n; 2456 } 2457 return NULL; 2458 } 2459 2460 /** Find the closest encloser, an name that exists and is above the 2461 * qname. 2462 * return true if the node (param node) is existing, nonobscured and 2463 * can be used to generate answers from. It is then also node_exact. 2464 * returns false if the node is not good enough (or it wasn't node_exact) 2465 * in this case the ce can be filled. 2466 * if ce is NULL, no ce exists, and likely the zone is completely empty, 2467 * not even with a zone apex. 2468 * if ce is nonNULL it is the closest enclosing upper name (that exists 2469 * itself for answer purposes). That name may have DNAME, NS or wildcard 2470 * rrset is the closest DNAME or NS rrset that was found. 2471 */ 2472 static int 2473 az_find_ce(struct auth_zone* z, struct query_info* qinfo, 2474 struct auth_data* node, int node_exact, struct auth_data** ce, 2475 struct auth_rrset** rrset) 2476 { 2477 struct auth_data* n = node; 2478 *ce = NULL; 2479 *rrset = NULL; 2480 if(!node_exact) { 2481 /* if not exact, lookup closest exact match */ 2482 n = az_find_candidate_ce(z, qinfo, n); 2483 } else { 2484 /* if exact, the node itself is the first candidate ce */ 2485 *ce = n; 2486 } 2487 2488 /* no direct answer from nsec3-only domains */ 2489 if(n && domain_has_only_nsec3(n)) { 2490 node_exact = 0; 2491 *ce = NULL; 2492 } 2493 2494 /* with exact matches, walk up the labels until we find the 2495 * delegation, or DNAME or zone end */ 2496 while(n) { 2497 /* see if the current candidate has issues */ 2498 /* not zone apex and has type NS */ 2499 if(n->namelen != z->namelen && 2500 (*rrset=az_domain_rrset(n, LDNS_RR_TYPE_NS)) && 2501 /* delegate here, but DS at exact the dp has notype */ 2502 (qinfo->qtype != LDNS_RR_TYPE_DS || 2503 n->namelen != qinfo->qname_len)) { 2504 /* referral */ 2505 /* this is ce and the lowernode is nonexisting */ 2506 *ce = n; 2507 return 0; 2508 } 2509 /* not equal to qname and has type DNAME */ 2510 if(n->namelen != qinfo->qname_len && 2511 (*rrset=az_domain_rrset(n, LDNS_RR_TYPE_DNAME))) { 2512 /* this is ce and the lowernode is nonexisting */ 2513 *ce = n; 2514 return 0; 2515 } 2516 2517 if(*ce == NULL && !domain_has_only_nsec3(n)) { 2518 /* if not found yet, this exact name must be 2519 * our lowest match (but not nsec3onlydomain) */ 2520 *ce = n; 2521 } 2522 2523 /* walk up the tree by removing labels from name and lookup */ 2524 n = az_domain_go_up(z, n); 2525 } 2526 /* found no problems, if it was an exact node, it is fine to use */ 2527 return node_exact; 2528 } 2529 2530 /** add additional A/AAAA from domain names in rrset rdata (+offset) 2531 * offset is number of bytes in rdata where the dname is located. */ 2532 static int 2533 az_add_additionals_from(struct auth_zone* z, struct regional* region, 2534 struct dns_msg* msg, struct auth_rrset* rrset, size_t offset) 2535 { 2536 struct packed_rrset_data* d = rrset->data; 2537 size_t i; 2538 if(!d) return 0; 2539 for(i=0; i<d->count; i++) { 2540 size_t dlen; 2541 struct auth_data* domain; 2542 struct auth_rrset* ref; 2543 if(d->rr_len[i] < 2+offset) 2544 continue; /* too short */ 2545 if(!(dlen = dname_valid(d->rr_data[i]+2+offset, 2546 d->rr_len[i]-2-offset))) 2547 continue; /* malformed */ 2548 domain = az_find_name(z, d->rr_data[i]+2+offset, dlen); 2549 if(!domain) 2550 continue; 2551 if((ref=az_domain_rrset(domain, LDNS_RR_TYPE_A)) != NULL) { 2552 if(!msg_add_rrset_ar(z, region, msg, domain, ref)) 2553 return 0; 2554 } 2555 if((ref=az_domain_rrset(domain, LDNS_RR_TYPE_AAAA)) != NULL) { 2556 if(!msg_add_rrset_ar(z, region, msg, domain, ref)) 2557 return 0; 2558 } 2559 } 2560 return 1; 2561 } 2562 2563 /** add negative SOA record (with negative TTL) */ 2564 static int 2565 az_add_negative_soa(struct auth_zone* z, struct regional* region, 2566 struct dns_msg* msg) 2567 { 2568 time_t minimum; 2569 size_t i; 2570 struct packed_rrset_data* d; 2571 struct auth_rrset* soa; 2572 struct auth_data* apex = az_find_name(z, z->name, z->namelen); 2573 if(!apex) return 0; 2574 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 2575 if(!soa) return 0; 2576 /* must be first to put in message; we want to fix the TTL with 2577 * one RRset here, otherwise we'd need to loop over the RRs to get 2578 * the resulting lower TTL */ 2579 log_assert(msg->rep->rrset_count == 0); 2580 if(!msg_add_rrset_ns(z, region, msg, apex, soa)) return 0; 2581 /* fixup TTL */ 2582 d = (struct packed_rrset_data*)msg->rep->rrsets[msg->rep->rrset_count-1]->entry.data; 2583 /* last 4 bytes are minimum ttl in network format */ 2584 if(d->count == 0) return 0; 2585 if(d->rr_len[0] < 2+4) return 0; 2586 minimum = (time_t)sldns_read_uint32(d->rr_data[0]+(d->rr_len[0]-4)); 2587 minimum = d->ttl<minimum?d->ttl:minimum; 2588 d->ttl = minimum; 2589 for(i=0; i < d->count + d->rrsig_count; i++) 2590 d->rr_ttl[i] = minimum; 2591 msg->rep->ttl = get_rrset_ttl(msg->rep->rrsets[0]); 2592 msg->rep->prefetch_ttl = PREFETCH_TTL_CALC(msg->rep->ttl); 2593 msg->rep->serve_expired_ttl = msg->rep->ttl + SERVE_EXPIRED_TTL; 2594 return 1; 2595 } 2596 2597 /** See if the query goes to empty nonterminal (that has no auth_data, 2598 * but there are nodes underneath. We already checked that there are 2599 * not NS, or DNAME above, so that we only need to check if some node 2600 * exists below (with nonempty rr list), return true if emptynonterminal */ 2601 static int 2602 az_empty_nonterminal(struct auth_zone* z, struct query_info* qinfo, 2603 struct auth_data* node) 2604 { 2605 struct auth_data* next; 2606 if(!node) { 2607 /* no smaller was found, use first (smallest) node as the 2608 * next one */ 2609 next = (struct auth_data*)rbtree_first(&z->data); 2610 } else { 2611 next = (struct auth_data*)rbtree_next(&node->node); 2612 } 2613 while(next && (rbnode_type*)next != RBTREE_NULL && next->rrsets == NULL) { 2614 /* the next name has empty rrsets, is an empty nonterminal 2615 * itself, see if there exists something below it */ 2616 next = (struct auth_data*)rbtree_next(&node->node); 2617 } 2618 if((rbnode_type*)next == RBTREE_NULL || !next) { 2619 /* there is no next node, so something below it cannot 2620 * exist */ 2621 return 0; 2622 } 2623 /* a next node exists, if there was something below the query, 2624 * this node has to be it. See if it is below the query name */ 2625 if(dname_strict_subdomain_c(next->name, qinfo->qname)) 2626 return 1; 2627 return 0; 2628 } 2629 2630 /** create synth cname target name in buffer, or fail if too long */ 2631 static size_t 2632 synth_cname_buf(uint8_t* qname, size_t qname_len, size_t dname_len, 2633 uint8_t* dtarg, size_t dtarglen, uint8_t* buf, size_t buflen) 2634 { 2635 size_t newlen = qname_len + dtarglen - dname_len; 2636 if(newlen > buflen) { 2637 /* YXDOMAIN error */ 2638 return 0; 2639 } 2640 /* new name is concatenation of qname front (without DNAME owner) 2641 * and DNAME target name */ 2642 memcpy(buf, qname, qname_len-dname_len); 2643 memmove(buf+(qname_len-dname_len), dtarg, dtarglen); 2644 return newlen; 2645 } 2646 2647 /** create synthetic CNAME rrset for in a DNAME answer in region, 2648 * false on alloc failure, cname==NULL when name too long. */ 2649 static int 2650 create_synth_cname(uint8_t* qname, size_t qname_len, struct regional* region, 2651 struct auth_data* node, struct auth_rrset* dname, uint16_t dclass, 2652 struct ub_packed_rrset_key** cname) 2653 { 2654 uint8_t buf[LDNS_MAX_DOMAINLEN]; 2655 uint8_t* dtarg; 2656 size_t dtarglen, newlen; 2657 struct packed_rrset_data* d; 2658 2659 /* get DNAME target name */ 2660 if(dname->data->count < 1) return 0; 2661 if(dname->data->rr_len[0] < 3) return 0; /* at least rdatalen +1 */ 2662 dtarg = dname->data->rr_data[0]+2; 2663 dtarglen = dname->data->rr_len[0]-2; 2664 if(sldns_read_uint16(dname->data->rr_data[0]) != dtarglen) 2665 return 0; /* rdatalen in DNAME rdata is malformed */ 2666 if(dname_valid(dtarg, dtarglen) != dtarglen) 2667 return 0; /* DNAME RR has malformed rdata */ 2668 if(qname_len == 0) 2669 return 0; /* too short */ 2670 if(qname_len <= node->namelen) 2671 return 0; /* qname too short for dname removal */ 2672 2673 /* synthesize a CNAME */ 2674 newlen = synth_cname_buf(qname, qname_len, node->namelen, 2675 dtarg, dtarglen, buf, sizeof(buf)); 2676 if(newlen == 0) { 2677 /* YXDOMAIN error */ 2678 *cname = NULL; 2679 return 1; 2680 } 2681 *cname = (struct ub_packed_rrset_key*)regional_alloc(region, 2682 sizeof(struct ub_packed_rrset_key)); 2683 if(!*cname) 2684 return 0; /* out of memory */ 2685 memset(&(*cname)->entry, 0, sizeof((*cname)->entry)); 2686 (*cname)->entry.key = (*cname); 2687 (*cname)->rk.type = htons(LDNS_RR_TYPE_CNAME); 2688 (*cname)->rk.rrset_class = htons(dclass); 2689 (*cname)->rk.flags = 0; 2690 (*cname)->rk.dname = regional_alloc_init(region, qname, qname_len); 2691 if(!(*cname)->rk.dname) 2692 return 0; /* out of memory */ 2693 (*cname)->rk.dname_len = qname_len; 2694 (*cname)->entry.hash = rrset_key_hash(&(*cname)->rk); 2695 d = (struct packed_rrset_data*)regional_alloc_zero(region, 2696 sizeof(struct packed_rrset_data) + sizeof(size_t) + 2697 sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t) 2698 + newlen); 2699 if(!d) 2700 return 0; /* out of memory */ 2701 (*cname)->entry.data = d; 2702 d->ttl = 0; /* 0 for synthesized CNAME TTL */ 2703 d->count = 1; 2704 d->rrsig_count = 0; 2705 d->trust = rrset_trust_ans_noAA; 2706 d->rr_len = (size_t*)((uint8_t*)d + 2707 sizeof(struct packed_rrset_data)); 2708 d->rr_len[0] = newlen + sizeof(uint16_t); 2709 packed_rrset_ptr_fixup(d); 2710 d->rr_ttl[0] = d->ttl; 2711 sldns_write_uint16(d->rr_data[0], newlen); 2712 memmove(d->rr_data[0] + sizeof(uint16_t), buf, newlen); 2713 return 1; 2714 } 2715 2716 /** add a synthesized CNAME to the answer section */ 2717 static int 2718 add_synth_cname(struct auth_zone* z, uint8_t* qname, size_t qname_len, 2719 struct regional* region, struct dns_msg* msg, struct auth_data* dname, 2720 struct auth_rrset* rrset) 2721 { 2722 struct ub_packed_rrset_key* cname; 2723 /* synthesize a CNAME */ 2724 if(!create_synth_cname(qname, qname_len, region, dname, rrset, 2725 z->dclass, &cname)) { 2726 /* out of memory */ 2727 return 0; 2728 } 2729 if(!cname) { 2730 /* cname cannot be create because of YXDOMAIN */ 2731 msg->rep->flags |= LDNS_RCODE_YXDOMAIN; 2732 return 1; 2733 } 2734 /* add cname to message */ 2735 if(!msg_grow_array(region, msg)) 2736 return 0; 2737 msg->rep->rrsets[msg->rep->rrset_count] = cname; 2738 msg->rep->rrset_count++; 2739 msg->rep->an_numrrsets++; 2740 msg_ttl(msg); 2741 return 1; 2742 } 2743 2744 /** Change a dname to a different one, for wildcard namechange */ 2745 static void 2746 az_change_dnames(struct dns_msg* msg, uint8_t* oldname, uint8_t* newname, 2747 size_t newlen, int an_only) 2748 { 2749 size_t i; 2750 size_t start = 0, end = msg->rep->rrset_count; 2751 if(!an_only) start = msg->rep->an_numrrsets; 2752 if(an_only) end = msg->rep->an_numrrsets; 2753 for(i=start; i<end; i++) { 2754 /* allocated in region so we can change the ptrs */ 2755 if(query_dname_compare(msg->rep->rrsets[i]->rk.dname, oldname) 2756 == 0) { 2757 msg->rep->rrsets[i]->rk.dname = newname; 2758 msg->rep->rrsets[i]->rk.dname_len = newlen; 2759 msg->rep->rrsets[i]->entry.hash = rrset_key_hash(&msg->rep->rrsets[i]->rk); 2760 } 2761 } 2762 } 2763 2764 /** find NSEC record covering the query */ 2765 static struct auth_rrset* 2766 az_find_nsec_cover(struct auth_zone* z, struct auth_data** node) 2767 { 2768 uint8_t* nm = (*node)->name; 2769 size_t nmlen = (*node)->namelen; 2770 struct auth_rrset* rrset; 2771 /* find the NSEC for the smallest-or-equal node */ 2772 /* if node == NULL, we did not find a smaller name. But the zone 2773 * name is the smallest name and should have an NSEC. So there is 2774 * no NSEC to return (for a properly signed zone) */ 2775 /* for empty nonterminals, the auth-data node should not exist, 2776 * and thus we don't need to go rbtree_previous here to find 2777 * a domain with an NSEC record */ 2778 /* but there could be glue, and if this is node, then it has no NSEC. 2779 * Go up to find nonglue (previous) NSEC-holding nodes */ 2780 while((rrset=az_domain_rrset(*node, LDNS_RR_TYPE_NSEC)) == NULL) { 2781 if(dname_is_root(nm)) return NULL; 2782 if(nmlen == z->namelen) return NULL; 2783 dname_remove_label(&nm, &nmlen); 2784 /* adjust *node for the nsec rrset to find in */ 2785 *node = az_find_name(z, nm, nmlen); 2786 } 2787 return rrset; 2788 } 2789 2790 /** Find NSEC and add for wildcard denial */ 2791 static int 2792 az_nsec_wildcard_denial(struct auth_zone* z, struct regional* region, 2793 struct dns_msg* msg, uint8_t* cenm, size_t cenmlen) 2794 { 2795 struct query_info qinfo; 2796 int node_exact; 2797 struct auth_data* node; 2798 struct auth_rrset* nsec; 2799 uint8_t wc[LDNS_MAX_DOMAINLEN]; 2800 if(cenmlen+2 > sizeof(wc)) 2801 return 0; /* result would be too long */ 2802 wc[0] = 1; /* length of wildcard label */ 2803 wc[1] = (uint8_t)'*'; /* wildcard label */ 2804 memmove(wc+2, cenm, cenmlen); 2805 2806 /* we have '*.ce' in wc wildcard name buffer */ 2807 /* get nsec cover for that */ 2808 qinfo.qname = wc; 2809 qinfo.qname_len = cenmlen+2; 2810 qinfo.qtype = 0; 2811 qinfo.qclass = 0; 2812 az_find_domain(z, &qinfo, &node_exact, &node); 2813 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 2814 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 2815 } 2816 return 1; 2817 } 2818 2819 /** Find the NSEC3PARAM rrset (if any) and if true you have the parameters */ 2820 static int 2821 az_nsec3_param(struct auth_zone* z, int* algo, size_t* iter, uint8_t** salt, 2822 size_t* saltlen) 2823 { 2824 struct auth_data* apex; 2825 struct auth_rrset* param; 2826 size_t i; 2827 apex = az_find_name(z, z->name, z->namelen); 2828 if(!apex) return 0; 2829 param = az_domain_rrset(apex, LDNS_RR_TYPE_NSEC3PARAM); 2830 if(!param || param->data->count==0) 2831 return 0; /* no RRset or no RRs in rrset */ 2832 /* find out which NSEC3PARAM RR has supported parameters */ 2833 /* skip unknown flags (dynamic signer is recalculating nsec3 chain) */ 2834 for(i=0; i<param->data->count; i++) { 2835 uint8_t* rdata = param->data->rr_data[i]+2; 2836 size_t rdatalen = param->data->rr_len[i]; 2837 if(rdatalen < 2+5) 2838 continue; /* too short */ 2839 if(!nsec3_hash_algo_size_supported((int)(rdata[0]))) 2840 continue; /* unsupported algo */ 2841 if(rdatalen < (size_t)(2+5+(size_t)rdata[4])) 2842 continue; /* salt missing */ 2843 if((rdata[1]&NSEC3_UNKNOWN_FLAGS)!=0) 2844 continue; /* unknown flags */ 2845 *algo = (int)(rdata[0]); 2846 *iter = sldns_read_uint16(rdata+2); 2847 *saltlen = rdata[4]; 2848 if(*saltlen == 0) 2849 *salt = NULL; 2850 else *salt = rdata+5; 2851 return 1; 2852 } 2853 /* no supported params */ 2854 return 0; 2855 } 2856 2857 /** Hash a name with nsec3param into buffer, it has zone name appended. 2858 * return length of hash */ 2859 static size_t 2860 az_nsec3_hash(uint8_t* buf, size_t buflen, uint8_t* nm, size_t nmlen, 2861 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2862 { 2863 size_t hlen = nsec3_hash_algo_size_supported(algo); 2864 /* buffer has domain name, nsec3hash, and 256 is for max saltlen 2865 * (salt has 0-255 length) */ 2866 unsigned char p[LDNS_MAX_DOMAINLEN+1+N3HASHBUFLEN+256]; 2867 size_t i; 2868 if(nmlen+saltlen > sizeof(p) || hlen+saltlen > sizeof(p)) 2869 return 0; 2870 if(hlen > buflen) 2871 return 0; /* somehow too large for destination buffer */ 2872 /* hashfunc(name, salt) */ 2873 memmove(p, nm, nmlen); 2874 query_dname_tolower(p); 2875 if(salt && saltlen > 0) 2876 memmove(p+nmlen, salt, saltlen); 2877 (void)secalgo_nsec3_hash(algo, p, nmlen+saltlen, (unsigned char*)buf); 2878 for(i=0; i<iter; i++) { 2879 /* hashfunc(hash, salt) */ 2880 memmove(p, buf, hlen); 2881 if(salt && saltlen > 0) 2882 memmove(p+hlen, salt, saltlen); 2883 (void)secalgo_nsec3_hash(algo, p, hlen+saltlen, 2884 (unsigned char*)buf); 2885 } 2886 return hlen; 2887 } 2888 2889 /** Hash name and return b32encoded hashname for lookup, zone name appended */ 2890 static int 2891 az_nsec3_hashname(struct auth_zone* z, uint8_t* hashname, size_t* hashnmlen, 2892 uint8_t* nm, size_t nmlen, int algo, size_t iter, uint8_t* salt, 2893 size_t saltlen) 2894 { 2895 uint8_t hash[N3HASHBUFLEN]; 2896 size_t hlen; 2897 int ret; 2898 hlen = az_nsec3_hash(hash, sizeof(hash), nm, nmlen, algo, iter, 2899 salt, saltlen); 2900 if(!hlen) return 0; 2901 /* b32 encode */ 2902 if(*hashnmlen < hlen*2+1+z->namelen) /* approx b32 as hexb16 */ 2903 return 0; 2904 ret = sldns_b32_ntop_extended_hex(hash, hlen, (char*)(hashname+1), 2905 (*hashnmlen)-1); 2906 if(ret<1) 2907 return 0; 2908 hashname[0] = (uint8_t)ret; 2909 ret++; 2910 if((*hashnmlen) - ret < z->namelen) 2911 return 0; 2912 memmove(hashname+ret, z->name, z->namelen); 2913 *hashnmlen = z->namelen+(size_t)ret; 2914 return 1; 2915 } 2916 2917 /** Find the datanode that covers the nsec3hash-name */ 2918 static struct auth_data* 2919 az_nsec3_findnode(struct auth_zone* z, uint8_t* hashnm, size_t hashnmlen) 2920 { 2921 struct query_info qinfo; 2922 struct auth_data* node; 2923 int node_exact; 2924 qinfo.qclass = 0; 2925 qinfo.qtype = 0; 2926 qinfo.qname = hashnm; 2927 qinfo.qname_len = hashnmlen; 2928 /* because canonical ordering and b32 nsec3 ordering are the same. 2929 * this is a good lookup to find the nsec3 name. */ 2930 az_find_domain(z, &qinfo, &node_exact, &node); 2931 /* but we may have to skip non-nsec3 nodes */ 2932 /* this may be a lot, the way to speed that up is to have a 2933 * separate nsec3 tree with nsec3 nodes */ 2934 while(node && (rbnode_type*)node != RBTREE_NULL && 2935 !az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) { 2936 node = (struct auth_data*)rbtree_previous(&node->node); 2937 } 2938 if((rbnode_type*)node == RBTREE_NULL) 2939 node = NULL; 2940 return node; 2941 } 2942 2943 /** Find cover for hashed(nm, nmlen) (or NULL) */ 2944 static struct auth_data* 2945 az_nsec3_find_cover(struct auth_zone* z, uint8_t* nm, size_t nmlen, 2946 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2947 { 2948 struct auth_data* node; 2949 uint8_t hname[LDNS_MAX_DOMAINLEN]; 2950 size_t hlen = sizeof(hname); 2951 if(!az_nsec3_hashname(z, hname, &hlen, nm, nmlen, algo, iter, 2952 salt, saltlen)) 2953 return NULL; 2954 node = az_nsec3_findnode(z, hname, hlen); 2955 if(node) 2956 return node; 2957 /* we did not find any, perhaps because the NSEC3 hash is before 2958 * the first hash, we have to find the 'last hash' in the zone */ 2959 node = (struct auth_data*)rbtree_last(&z->data); 2960 while(node && (rbnode_type*)node != RBTREE_NULL && 2961 !az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) { 2962 node = (struct auth_data*)rbtree_previous(&node->node); 2963 } 2964 if((rbnode_type*)node == RBTREE_NULL) 2965 node = NULL; 2966 return node; 2967 } 2968 2969 /** Find exact match for hashed(nm, nmlen) NSEC3 record or NULL */ 2970 static struct auth_data* 2971 az_nsec3_find_exact(struct auth_zone* z, uint8_t* nm, size_t nmlen, 2972 int algo, size_t iter, uint8_t* salt, size_t saltlen) 2973 { 2974 struct auth_data* node; 2975 uint8_t hname[LDNS_MAX_DOMAINLEN]; 2976 size_t hlen = sizeof(hname); 2977 if(!az_nsec3_hashname(z, hname, &hlen, nm, nmlen, algo, iter, 2978 salt, saltlen)) 2979 return NULL; 2980 node = az_find_name(z, hname, hlen); 2981 if(az_domain_rrset(node, LDNS_RR_TYPE_NSEC3)) 2982 return node; 2983 return NULL; 2984 } 2985 2986 /** Return nextcloser name (as a ref into the qname). This is one label 2987 * more than the cenm (cename must be a suffix of qname) */ 2988 static void 2989 az_nsec3_get_nextcloser(uint8_t* cenm, uint8_t* qname, size_t qname_len, 2990 uint8_t** nx, size_t* nxlen) 2991 { 2992 int celabs = dname_count_labels(cenm); 2993 int qlabs = dname_count_labels(qname); 2994 int strip = qlabs - celabs -1; 2995 log_assert(dname_strict_subdomain(qname, qlabs, cenm, celabs)); 2996 *nx = qname; 2997 *nxlen = qname_len; 2998 if(strip>0) 2999 dname_remove_labels(nx, nxlen, strip); 3000 } 3001 3002 /** Find the closest encloser that has exact NSEC3. 3003 * updated cenm to the new name. If it went up no-exact-ce is true. */ 3004 static struct auth_data* 3005 az_nsec3_find_ce(struct auth_zone* z, uint8_t** cenm, size_t* cenmlen, 3006 int* no_exact_ce, int algo, size_t iter, uint8_t* salt, size_t saltlen) 3007 { 3008 struct auth_data* node; 3009 while((node = az_nsec3_find_exact(z, *cenm, *cenmlen, 3010 algo, iter, salt, saltlen)) == NULL) { 3011 if(*cenmlen == z->namelen) { 3012 /* next step up would take us out of the zone. fail */ 3013 return NULL; 3014 } 3015 *no_exact_ce = 1; 3016 dname_remove_label(cenm, cenmlen); 3017 } 3018 return node; 3019 } 3020 3021 /* Insert NSEC3 record in authority section, if NULL does nothing */ 3022 static int 3023 az_nsec3_insert(struct auth_zone* z, struct regional* region, 3024 struct dns_msg* msg, struct auth_data* node) 3025 { 3026 struct auth_rrset* nsec3; 3027 if(!node) return 1; /* no node, skip this */ 3028 nsec3 = az_domain_rrset(node, LDNS_RR_TYPE_NSEC3); 3029 if(!nsec3) return 1; /* if no nsec3 RR, skip it */ 3030 if(!msg_add_rrset_ns(z, region, msg, node, nsec3)) return 0; 3031 return 1; 3032 } 3033 3034 /** add NSEC3 records to the zone for the nsec3 proof. 3035 * Specify with the flags with parts of the proof are required. 3036 * the ce is the exact matching name (for notype) but also delegation points. 3037 * qname is the one where the nextcloser name can be derived from. 3038 * If NSEC3 is not properly there (in the zone) nothing is added. 3039 * always enabled: include nsec3 proving about the Closest Encloser. 3040 * that is an exact match that should exist for it. 3041 * If that does not exist, a higher exact match + nxproof is enabled 3042 * (for some sort of opt-out empty nonterminal cases). 3043 * nodataproof: search for exact match and include that instead. 3044 * ceproof: include ce proof NSEC3 (omitted for wildcard replies). 3045 * nxproof: include denial of the qname. 3046 * wcproof: include denial of wildcard (wildcard.ce). 3047 */ 3048 static int 3049 az_add_nsec3_proof(struct auth_zone* z, struct regional* region, 3050 struct dns_msg* msg, uint8_t* cenm, size_t cenmlen, uint8_t* qname, 3051 size_t qname_len, int nodataproof, int ceproof, int nxproof, 3052 int wcproof) 3053 { 3054 int algo; 3055 size_t iter, saltlen; 3056 uint8_t* salt; 3057 int no_exact_ce = 0; 3058 struct auth_data* node; 3059 3060 /* find parameters of nsec3 proof */ 3061 if(!az_nsec3_param(z, &algo, &iter, &salt, &saltlen)) 3062 return 1; /* no nsec3 */ 3063 if(nodataproof) { 3064 /* see if the node has a hash of itself for the nodata 3065 * proof nsec3, this has to be an exact match nsec3. */ 3066 struct auth_data* match; 3067 match = az_nsec3_find_exact(z, qname, qname_len, algo, 3068 iter, salt, saltlen); 3069 if(match) { 3070 if(!az_nsec3_insert(z, region, msg, match)) 3071 return 0; 3072 /* only nodata NSEC3 needed, no CE or others. */ 3073 return 1; 3074 } 3075 } 3076 /* find ce that has an NSEC3 */ 3077 if(ceproof) { 3078 node = az_nsec3_find_ce(z, &cenm, &cenmlen, &no_exact_ce, 3079 algo, iter, salt, saltlen); 3080 if(no_exact_ce) nxproof = 1; 3081 if(!az_nsec3_insert(z, region, msg, node)) 3082 return 0; 3083 } 3084 3085 if(nxproof) { 3086 uint8_t* nx; 3087 size_t nxlen; 3088 /* create nextcloser domain name */ 3089 az_nsec3_get_nextcloser(cenm, qname, qname_len, &nx, &nxlen); 3090 /* find nsec3 that matches or covers it */ 3091 node = az_nsec3_find_cover(z, nx, nxlen, algo, iter, salt, 3092 saltlen); 3093 if(!az_nsec3_insert(z, region, msg, node)) 3094 return 0; 3095 } 3096 if(wcproof) { 3097 /* create wildcard name *.ce */ 3098 uint8_t wc[LDNS_MAX_DOMAINLEN]; 3099 size_t wclen; 3100 if(cenmlen+2 > sizeof(wc)) 3101 return 0; /* result would be too long */ 3102 wc[0] = 1; /* length of wildcard label */ 3103 wc[1] = (uint8_t)'*'; /* wildcard label */ 3104 memmove(wc+2, cenm, cenmlen); 3105 wclen = cenmlen+2; 3106 /* find nsec3 that matches or covers it */ 3107 node = az_nsec3_find_cover(z, wc, wclen, algo, iter, salt, 3108 saltlen); 3109 if(!az_nsec3_insert(z, region, msg, node)) 3110 return 0; 3111 } 3112 return 1; 3113 } 3114 3115 /** generate answer for positive answer */ 3116 static int 3117 az_generate_positive_answer(struct auth_zone* z, struct regional* region, 3118 struct dns_msg* msg, struct auth_data* node, struct auth_rrset* rrset) 3119 { 3120 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3121 /* see if we want additional rrs */ 3122 if(rrset->type == LDNS_RR_TYPE_MX) { 3123 if(!az_add_additionals_from(z, region, msg, rrset, 2)) 3124 return 0; 3125 } else if(rrset->type == LDNS_RR_TYPE_SRV) { 3126 if(!az_add_additionals_from(z, region, msg, rrset, 6)) 3127 return 0; 3128 } else if(rrset->type == LDNS_RR_TYPE_NS) { 3129 if(!az_add_additionals_from(z, region, msg, rrset, 0)) 3130 return 0; 3131 } 3132 return 1; 3133 } 3134 3135 /** generate answer for type ANY answer */ 3136 static int 3137 az_generate_any_answer(struct auth_zone* z, struct regional* region, 3138 struct dns_msg* msg, struct auth_data* node) 3139 { 3140 struct auth_rrset* rrset; 3141 int added = 0; 3142 /* add a couple (at least one) RRs */ 3143 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_SOA)) != NULL) { 3144 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3145 added++; 3146 } 3147 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_MX)) != NULL) { 3148 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3149 added++; 3150 } 3151 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_A)) != NULL) { 3152 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3153 added++; 3154 } 3155 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_AAAA)) != NULL) { 3156 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3157 added++; 3158 } 3159 if(added == 0 && node && node->rrsets) { 3160 if(!msg_add_rrset_an(z, region, msg, node, 3161 node->rrsets)) return 0; 3162 } 3163 return 1; 3164 } 3165 3166 /** follow cname chain and add more data to the answer section */ 3167 static int 3168 follow_cname_chain(struct auth_zone* z, uint16_t qtype, 3169 struct regional* region, struct dns_msg* msg, 3170 struct packed_rrset_data* d) 3171 { 3172 int maxchain = 0; 3173 /* see if we can add the target of the CNAME into the answer */ 3174 while(maxchain++ < MAX_CNAME_CHAIN) { 3175 struct auth_data* node; 3176 struct auth_rrset* rrset; 3177 size_t clen; 3178 /* d has cname rdata */ 3179 if(d->count == 0) break; /* no CNAME */ 3180 if(d->rr_len[0] < 2+1) break; /* too small */ 3181 if((clen=dname_valid(d->rr_data[0]+2, d->rr_len[0]-2))==0) 3182 break; /* malformed */ 3183 if(!dname_subdomain_c(d->rr_data[0]+2, z->name)) 3184 break; /* target out of zone */ 3185 if((node = az_find_name(z, d->rr_data[0]+2, clen))==NULL) 3186 break; /* no such target name */ 3187 if((rrset=az_domain_rrset(node, qtype))!=NULL) { 3188 /* done we found the target */ 3189 if(!msg_add_rrset_an(z, region, msg, node, rrset)) 3190 return 0; 3191 break; 3192 } 3193 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_CNAME))==NULL) 3194 break; /* no further CNAME chain, notype */ 3195 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3196 d = rrset->data; 3197 } 3198 return 1; 3199 } 3200 3201 /** generate answer for cname answer */ 3202 static int 3203 az_generate_cname_answer(struct auth_zone* z, struct query_info* qinfo, 3204 struct regional* region, struct dns_msg* msg, 3205 struct auth_data* node, struct auth_rrset* rrset) 3206 { 3207 if(!msg_add_rrset_an(z, region, msg, node, rrset)) return 0; 3208 if(!rrset) return 1; 3209 if(!follow_cname_chain(z, qinfo->qtype, region, msg, rrset->data)) 3210 return 0; 3211 return 1; 3212 } 3213 3214 /** generate answer for notype answer */ 3215 static int 3216 az_generate_notype_answer(struct auth_zone* z, struct regional* region, 3217 struct dns_msg* msg, struct auth_data* node) 3218 { 3219 struct auth_rrset* rrset; 3220 if(!az_add_negative_soa(z, region, msg)) return 0; 3221 /* DNSSEC denial NSEC */ 3222 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_NSEC))!=NULL) { 3223 if(!msg_add_rrset_ns(z, region, msg, node, rrset)) return 0; 3224 } else if(node) { 3225 /* DNSSEC denial NSEC3 */ 3226 if(!az_add_nsec3_proof(z, region, msg, node->name, 3227 node->namelen, msg->qinfo.qname, 3228 msg->qinfo.qname_len, 1, 1, 0, 0)) 3229 return 0; 3230 } 3231 return 1; 3232 } 3233 3234 /** generate answer for referral answer */ 3235 static int 3236 az_generate_referral_answer(struct auth_zone* z, struct regional* region, 3237 struct dns_msg* msg, struct auth_data* ce, struct auth_rrset* rrset) 3238 { 3239 struct auth_rrset* ds, *nsec; 3240 /* turn off AA flag, referral is nonAA because it leaves the zone */ 3241 log_assert(ce); 3242 msg->rep->flags &= ~BIT_AA; 3243 if(!msg_add_rrset_ns(z, region, msg, ce, rrset)) return 0; 3244 /* add DS or deny it */ 3245 if((ds=az_domain_rrset(ce, LDNS_RR_TYPE_DS))!=NULL) { 3246 if(!msg_add_rrset_ns(z, region, msg, ce, ds)) return 0; 3247 } else { 3248 /* deny the DS */ 3249 if((nsec=az_domain_rrset(ce, LDNS_RR_TYPE_NSEC))!=NULL) { 3250 if(!msg_add_rrset_ns(z, region, msg, ce, nsec)) 3251 return 0; 3252 } else { 3253 if(!az_add_nsec3_proof(z, region, msg, ce->name, 3254 ce->namelen, msg->qinfo.qname, 3255 msg->qinfo.qname_len, 1, 1, 0, 0)) 3256 return 0; 3257 } 3258 } 3259 /* add additional rrs for type NS */ 3260 if(!az_add_additionals_from(z, region, msg, rrset, 0)) return 0; 3261 return 1; 3262 } 3263 3264 /** generate answer for DNAME answer */ 3265 static int 3266 az_generate_dname_answer(struct auth_zone* z, struct query_info* qinfo, 3267 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3268 struct auth_rrset* rrset) 3269 { 3270 log_assert(ce); 3271 /* add the DNAME and then a CNAME */ 3272 if(!msg_add_rrset_an(z, region, msg, ce, rrset)) return 0; 3273 if(!add_synth_cname(z, qinfo->qname, qinfo->qname_len, region, 3274 msg, ce, rrset)) return 0; 3275 if(FLAGS_GET_RCODE(msg->rep->flags) == LDNS_RCODE_YXDOMAIN) 3276 return 1; 3277 if(msg->rep->rrset_count == 0 || 3278 !msg->rep->rrsets[msg->rep->rrset_count-1]) 3279 return 0; 3280 if(!follow_cname_chain(z, qinfo->qtype, region, msg, 3281 (struct packed_rrset_data*)msg->rep->rrsets[ 3282 msg->rep->rrset_count-1]->entry.data)) 3283 return 0; 3284 return 1; 3285 } 3286 3287 /** generate answer for wildcard answer */ 3288 static int 3289 az_generate_wildcard_answer(struct auth_zone* z, struct query_info* qinfo, 3290 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3291 struct auth_data* wildcard, struct auth_data* node) 3292 { 3293 struct auth_rrset* rrset, *nsec; 3294 int insert_ce = 0; 3295 if((rrset=az_domain_rrset(wildcard, qinfo->qtype)) != NULL) { 3296 /* wildcard has type, add it */ 3297 if(!msg_add_rrset_an(z, region, msg, wildcard, rrset)) 3298 return 0; 3299 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3300 msg->qinfo.qname_len, 1); 3301 } else if((rrset=az_domain_rrset(wildcard, LDNS_RR_TYPE_CNAME))!=NULL) { 3302 /* wildcard has cname instead, do that */ 3303 if(!msg_add_rrset_an(z, region, msg, wildcard, rrset)) 3304 return 0; 3305 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3306 msg->qinfo.qname_len, 1); 3307 if(!follow_cname_chain(z, qinfo->qtype, region, msg, 3308 rrset->data)) 3309 return 0; 3310 } else if(qinfo->qtype == LDNS_RR_TYPE_ANY && wildcard->rrsets) { 3311 /* add ANY rrsets from wildcard node */ 3312 if(!az_generate_any_answer(z, region, msg, wildcard)) 3313 return 0; 3314 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3315 msg->qinfo.qname_len, 1); 3316 } else { 3317 /* wildcard has nodata, notype answer */ 3318 /* call other notype routine for dnssec notype denials */ 3319 if(!az_generate_notype_answer(z, region, msg, wildcard)) 3320 return 0; 3321 /* because the notype, there is no positive data with an 3322 * RRSIG that indicates the wildcard position. Thus the 3323 * wildcard qname denial needs to have a CE nsec3. */ 3324 insert_ce = 1; 3325 } 3326 3327 /* ce and node for dnssec denial of wildcard original name */ 3328 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 3329 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 3330 } else if(ce) { 3331 uint8_t* wildup = wildcard->name; 3332 size_t wilduplen= wildcard->namelen; 3333 dname_remove_label(&wildup, &wilduplen); 3334 if(!az_add_nsec3_proof(z, region, msg, wildup, 3335 wilduplen, msg->qinfo.qname, 3336 msg->qinfo.qname_len, 0, insert_ce, 1, 0)) 3337 return 0; 3338 } 3339 3340 /* fixup name of wildcard from *.zone to qname, use already allocated 3341 * pointer to msg qname */ 3342 az_change_dnames(msg, wildcard->name, msg->qinfo.qname, 3343 msg->qinfo.qname_len, 0); 3344 return 1; 3345 } 3346 3347 /** generate answer for nxdomain answer */ 3348 static int 3349 az_generate_nxdomain_answer(struct auth_zone* z, struct regional* region, 3350 struct dns_msg* msg, struct auth_data* ce, struct auth_data* node) 3351 { 3352 struct auth_rrset* nsec; 3353 msg->rep->flags |= LDNS_RCODE_NXDOMAIN; 3354 if(!az_add_negative_soa(z, region, msg)) return 0; 3355 if((nsec=az_find_nsec_cover(z, &node)) != NULL) { 3356 if(!msg_add_rrset_ns(z, region, msg, node, nsec)) return 0; 3357 if(ce && !az_nsec_wildcard_denial(z, region, msg, ce->name, 3358 ce->namelen)) return 0; 3359 } else if(ce) { 3360 if(!az_add_nsec3_proof(z, region, msg, ce->name, 3361 ce->namelen, msg->qinfo.qname, 3362 msg->qinfo.qname_len, 0, 1, 1, 1)) 3363 return 0; 3364 } 3365 return 1; 3366 } 3367 3368 /** Create answers when an exact match exists for the domain name */ 3369 static int 3370 az_generate_answer_with_node(struct auth_zone* z, struct query_info* qinfo, 3371 struct regional* region, struct dns_msg* msg, struct auth_data* node) 3372 { 3373 struct auth_rrset* rrset; 3374 /* positive answer, rrset we are looking for exists */ 3375 if((rrset=az_domain_rrset(node, qinfo->qtype)) != NULL) { 3376 return az_generate_positive_answer(z, region, msg, node, rrset); 3377 } 3378 /* CNAME? */ 3379 if((rrset=az_domain_rrset(node, LDNS_RR_TYPE_CNAME)) != NULL) { 3380 return az_generate_cname_answer(z, qinfo, region, msg, 3381 node, rrset); 3382 } 3383 /* type ANY ? */ 3384 if(qinfo->qtype == LDNS_RR_TYPE_ANY) { 3385 return az_generate_any_answer(z, region, msg, node); 3386 } 3387 /* NOERROR/NODATA (no such type at domain name) */ 3388 return az_generate_notype_answer(z, region, msg, node); 3389 } 3390 3391 /** Generate answer without an existing-node that we can use. 3392 * So it'll be a referral, DNAME or nxdomain */ 3393 static int 3394 az_generate_answer_nonexistnode(struct auth_zone* z, struct query_info* qinfo, 3395 struct regional* region, struct dns_msg* msg, struct auth_data* ce, 3396 struct auth_rrset* rrset, struct auth_data* node) 3397 { 3398 struct auth_data* wildcard; 3399 3400 /* we do not have an exact matching name (that exists) */ 3401 /* see if we have a NS or DNAME in the ce */ 3402 if(ce && rrset && rrset->type == LDNS_RR_TYPE_NS) { 3403 return az_generate_referral_answer(z, region, msg, ce, rrset); 3404 } 3405 if(ce && rrset && rrset->type == LDNS_RR_TYPE_DNAME) { 3406 return az_generate_dname_answer(z, qinfo, region, msg, ce, 3407 rrset); 3408 } 3409 /* if there is an empty nonterminal, wildcard and nxdomain don't 3410 * happen, it is a notype answer */ 3411 if(az_empty_nonterminal(z, qinfo, node)) { 3412 return az_generate_notype_answer(z, region, msg, node); 3413 } 3414 /* see if we have a wildcard under the ce */ 3415 if((wildcard=az_find_wildcard(z, qinfo, ce)) != NULL) { 3416 return az_generate_wildcard_answer(z, qinfo, region, msg, 3417 ce, wildcard, node); 3418 } 3419 /* generate nxdomain answer */ 3420 return az_generate_nxdomain_answer(z, region, msg, ce, node); 3421 } 3422 3423 /** Lookup answer in a zone. */ 3424 static int 3425 auth_zone_generate_answer(struct auth_zone* z, struct query_info* qinfo, 3426 struct regional* region, struct dns_msg** msg, int* fallback) 3427 { 3428 struct auth_data* node, *ce; 3429 struct auth_rrset* rrset; 3430 int node_exact, node_exists; 3431 /* does the zone want fallback in case of failure? */ 3432 *fallback = z->fallback_enabled; 3433 if(!(*msg=msg_create(region, qinfo))) return 0; 3434 3435 /* lookup if there is a matching domain name for the query */ 3436 az_find_domain(z, qinfo, &node_exact, &node); 3437 3438 /* see if node exists for generating answers from (i.e. not glue and 3439 * obscured by NS or DNAME or NSEC3-only), and also return the 3440 * closest-encloser from that, closest node that should be used 3441 * to generate answers from that is above the query */ 3442 node_exists = az_find_ce(z, qinfo, node, node_exact, &ce, &rrset); 3443 3444 if(verbosity >= VERB_ALGO) { 3445 char zname[256], qname[256], nname[256], cename[256], 3446 tpstr[32], rrstr[32]; 3447 sldns_wire2str_dname_buf(qinfo->qname, qinfo->qname_len, qname, 3448 sizeof(qname)); 3449 sldns_wire2str_type_buf(qinfo->qtype, tpstr, sizeof(tpstr)); 3450 sldns_wire2str_dname_buf(z->name, z->namelen, zname, 3451 sizeof(zname)); 3452 if(node) 3453 sldns_wire2str_dname_buf(node->name, node->namelen, 3454 nname, sizeof(nname)); 3455 else snprintf(nname, sizeof(nname), "NULL"); 3456 if(ce) 3457 sldns_wire2str_dname_buf(ce->name, ce->namelen, 3458 cename, sizeof(cename)); 3459 else snprintf(cename, sizeof(cename), "NULL"); 3460 if(rrset) sldns_wire2str_type_buf(rrset->type, rrstr, 3461 sizeof(rrstr)); 3462 else snprintf(rrstr, sizeof(rrstr), "NULL"); 3463 log_info("auth_zone %s query %s %s, domain %s %s %s, " 3464 "ce %s, rrset %s", zname, qname, tpstr, nname, 3465 (node_exact?"exact":"notexact"), 3466 (node_exists?"exist":"notexist"), cename, rrstr); 3467 } 3468 3469 if(node_exists) { 3470 /* the node is fine, generate answer from node */ 3471 return az_generate_answer_with_node(z, qinfo, region, *msg, 3472 node); 3473 } 3474 return az_generate_answer_nonexistnode(z, qinfo, region, *msg, 3475 ce, rrset, node); 3476 } 3477 3478 int auth_zones_lookup(struct auth_zones* az, struct query_info* qinfo, 3479 struct regional* region, struct dns_msg** msg, int* fallback, 3480 uint8_t* dp_nm, size_t dp_nmlen) 3481 { 3482 int r; 3483 struct auth_zone* z; 3484 /* find the zone that should contain the answer. */ 3485 lock_rw_rdlock(&az->lock); 3486 z = auth_zone_find(az, dp_nm, dp_nmlen, qinfo->qclass); 3487 if(!z) { 3488 lock_rw_unlock(&az->lock); 3489 /* no auth zone, fallback to internet */ 3490 *fallback = 1; 3491 return 0; 3492 } 3493 lock_rw_rdlock(&z->lock); 3494 lock_rw_unlock(&az->lock); 3495 3496 /* if not for upstream queries, fallback */ 3497 if(!z->for_upstream) { 3498 lock_rw_unlock(&z->lock); 3499 *fallback = 1; 3500 return 0; 3501 } 3502 if(z->zone_expired) { 3503 *fallback = z->fallback_enabled; 3504 lock_rw_unlock(&z->lock); 3505 return 0; 3506 } 3507 /* see what answer that zone would generate */ 3508 r = auth_zone_generate_answer(z, qinfo, region, msg, fallback); 3509 lock_rw_unlock(&z->lock); 3510 return r; 3511 } 3512 3513 /** encode auth answer */ 3514 static void 3515 auth_answer_encode(struct query_info* qinfo, struct module_env* env, 3516 struct edns_data* edns, struct comm_reply* repinfo, sldns_buffer* buf, 3517 struct regional* temp, struct dns_msg* msg) 3518 { 3519 uint16_t udpsize; 3520 udpsize = edns->udp_size; 3521 edns->edns_version = EDNS_ADVERTISED_VERSION; 3522 edns->udp_size = EDNS_ADVERTISED_SIZE; 3523 edns->ext_rcode = 0; 3524 edns->bits &= EDNS_DO; 3525 3526 if(!inplace_cb_reply_local_call(env, qinfo, NULL, msg->rep, 3527 (int)FLAGS_GET_RCODE(msg->rep->flags), edns, repinfo, temp, env->now_tv) 3528 || !reply_info_answer_encode(qinfo, msg->rep, 3529 *(uint16_t*)sldns_buffer_begin(buf), 3530 sldns_buffer_read_u16_at(buf, 2), 3531 buf, 0, 0, temp, udpsize, edns, 3532 (int)(edns->bits&EDNS_DO), 0)) { 3533 error_encode(buf, (LDNS_RCODE_SERVFAIL|BIT_AA), qinfo, 3534 *(uint16_t*)sldns_buffer_begin(buf), 3535 sldns_buffer_read_u16_at(buf, 2), edns); 3536 } 3537 } 3538 3539 /** encode auth error answer */ 3540 static void 3541 auth_error_encode(struct query_info* qinfo, struct module_env* env, 3542 struct edns_data* edns, struct comm_reply* repinfo, sldns_buffer* buf, 3543 struct regional* temp, int rcode) 3544 { 3545 edns->edns_version = EDNS_ADVERTISED_VERSION; 3546 edns->udp_size = EDNS_ADVERTISED_SIZE; 3547 edns->ext_rcode = 0; 3548 edns->bits &= EDNS_DO; 3549 3550 if(!inplace_cb_reply_local_call(env, qinfo, NULL, NULL, 3551 rcode, edns, repinfo, temp, env->now_tv)) 3552 edns->opt_list_inplace_cb_out = NULL; 3553 error_encode(buf, rcode|BIT_AA, qinfo, 3554 *(uint16_t*)sldns_buffer_begin(buf), 3555 sldns_buffer_read_u16_at(buf, 2), edns); 3556 } 3557 3558 int auth_zones_answer(struct auth_zones* az, struct module_env* env, 3559 struct query_info* qinfo, struct edns_data* edns, 3560 struct comm_reply* repinfo, struct sldns_buffer* buf, struct regional* temp) 3561 { 3562 struct dns_msg* msg = NULL; 3563 struct auth_zone* z; 3564 int r; 3565 int fallback = 0; 3566 3567 lock_rw_rdlock(&az->lock); 3568 if(!az->have_downstream) { 3569 /* no downstream auth zones */ 3570 lock_rw_unlock(&az->lock); 3571 return 0; 3572 } 3573 if(qinfo->qtype == LDNS_RR_TYPE_DS) { 3574 uint8_t* delname = qinfo->qname; 3575 size_t delnamelen = qinfo->qname_len; 3576 dname_remove_label(&delname, &delnamelen); 3577 z = auth_zones_find_zone(az, delname, delnamelen, 3578 qinfo->qclass); 3579 } else { 3580 z = auth_zones_find_zone(az, qinfo->qname, qinfo->qname_len, 3581 qinfo->qclass); 3582 } 3583 if(!z) { 3584 /* no zone above it */ 3585 lock_rw_unlock(&az->lock); 3586 return 0; 3587 } 3588 lock_rw_rdlock(&z->lock); 3589 lock_rw_unlock(&az->lock); 3590 if(!z->for_downstream) { 3591 lock_rw_unlock(&z->lock); 3592 return 0; 3593 } 3594 if(z->zone_expired) { 3595 if(z->fallback_enabled) { 3596 lock_rw_unlock(&z->lock); 3597 return 0; 3598 } 3599 lock_rw_unlock(&z->lock); 3600 lock_rw_wrlock(&az->lock); 3601 az->num_query_down++; 3602 lock_rw_unlock(&az->lock); 3603 auth_error_encode(qinfo, env, edns, repinfo, buf, temp, 3604 LDNS_RCODE_SERVFAIL); 3605 return 1; 3606 } 3607 3608 /* answer it from zone z */ 3609 r = auth_zone_generate_answer(z, qinfo, temp, &msg, &fallback); 3610 lock_rw_unlock(&z->lock); 3611 if(!r && fallback) { 3612 /* fallback to regular answering (recursive) */ 3613 return 0; 3614 } 3615 lock_rw_wrlock(&az->lock); 3616 az->num_query_down++; 3617 lock_rw_unlock(&az->lock); 3618 3619 /* encode answer */ 3620 if(!r) 3621 auth_error_encode(qinfo, env, edns, repinfo, buf, temp, 3622 LDNS_RCODE_SERVFAIL); 3623 else auth_answer_encode(qinfo, env, edns, repinfo, buf, temp, msg); 3624 3625 return 1; 3626 } 3627 3628 int auth_zones_can_fallback(struct auth_zones* az, uint8_t* nm, size_t nmlen, 3629 uint16_t dclass) 3630 { 3631 int r; 3632 struct auth_zone* z; 3633 lock_rw_rdlock(&az->lock); 3634 z = auth_zone_find(az, nm, nmlen, dclass); 3635 if(!z) { 3636 lock_rw_unlock(&az->lock); 3637 /* no such auth zone, fallback */ 3638 return 1; 3639 } 3640 lock_rw_rdlock(&z->lock); 3641 lock_rw_unlock(&az->lock); 3642 r = z->fallback_enabled || (!z->for_upstream); 3643 lock_rw_unlock(&z->lock); 3644 return r; 3645 } 3646 3647 int 3648 auth_zone_parse_notify_serial(sldns_buffer* pkt, uint32_t *serial) 3649 { 3650 struct query_info q; 3651 uint16_t rdlen; 3652 memset(&q, 0, sizeof(q)); 3653 sldns_buffer_set_position(pkt, 0); 3654 if(!query_info_parse(&q, pkt)) return 0; 3655 if(LDNS_ANCOUNT(sldns_buffer_begin(pkt)) == 0) return 0; 3656 /* skip name of RR in answer section */ 3657 if(sldns_buffer_remaining(pkt) < 1) return 0; 3658 if(pkt_dname_len(pkt) == 0) return 0; 3659 /* check type */ 3660 if(sldns_buffer_remaining(pkt) < 10 /* type,class,ttl,rdatalen*/) 3661 return 0; 3662 if(sldns_buffer_read_u16(pkt) != LDNS_RR_TYPE_SOA) return 0; 3663 sldns_buffer_skip(pkt, 2); /* class */ 3664 sldns_buffer_skip(pkt, 4); /* ttl */ 3665 rdlen = sldns_buffer_read_u16(pkt); /* rdatalen */ 3666 if(sldns_buffer_remaining(pkt) < rdlen) return 0; 3667 if(rdlen < 22) return 0; /* bad soa length */ 3668 sldns_buffer_skip(pkt, (ssize_t)(rdlen-20)); 3669 *serial = sldns_buffer_read_u32(pkt); 3670 /* return true when has serial in answer section */ 3671 return 1; 3672 } 3673 3674 /** see if addr appears in the list */ 3675 static int 3676 addr_in_list(struct auth_addr* list, struct sockaddr_storage* addr, 3677 socklen_t addrlen) 3678 { 3679 struct auth_addr* p; 3680 for(p=list; p; p=p->next) { 3681 if(sockaddr_cmp_addr(addr, addrlen, &p->addr, p->addrlen)==0) 3682 return 1; 3683 } 3684 return 0; 3685 } 3686 3687 /** check if an address matches a master specification (or one of its 3688 * addresses in the addr list) */ 3689 static int 3690 addr_matches_master(struct auth_master* master, struct sockaddr_storage* addr, 3691 socklen_t addrlen, struct auth_master** fromhost) 3692 { 3693 struct sockaddr_storage a; 3694 socklen_t alen = 0; 3695 int net = 0; 3696 if(addr_in_list(master->list, addr, addrlen)) { 3697 *fromhost = master; 3698 return 1; 3699 } 3700 /* compare address (but not port number, that is the destination 3701 * port of the master, the port number of the received notify is 3702 * allowed to by any port on that master) */ 3703 if(extstrtoaddr(master->host, &a, &alen, UNBOUND_DNS_PORT) && 3704 sockaddr_cmp_addr(addr, addrlen, &a, alen)==0) { 3705 *fromhost = master; 3706 return 1; 3707 } 3708 /* prefixes, addr/len, like 10.0.0.0/8 */ 3709 /* not http and has a / and there is one / */ 3710 if(master->allow_notify && !master->http && 3711 strchr(master->host, '/') != NULL && 3712 strchr(master->host, '/') == strrchr(master->host, '/') && 3713 netblockstrtoaddr(master->host, UNBOUND_DNS_PORT, &a, &alen, 3714 &net) && alen == addrlen) { 3715 if(addr_in_common(addr, (addr_is_ip6(addr, addrlen)?128:32), 3716 &a, net, alen) >= net) { 3717 *fromhost = NULL; /* prefix does not have destination 3718 to send the probe or transfer with */ 3719 return 1; /* matches the netblock */ 3720 } 3721 } 3722 return 0; 3723 } 3724 3725 /** check access list for notifies */ 3726 static int 3727 az_xfr_allowed_notify(struct auth_xfer* xfr, struct sockaddr_storage* addr, 3728 socklen_t addrlen, struct auth_master** fromhost) 3729 { 3730 struct auth_master* p; 3731 for(p=xfr->allow_notify_list; p; p=p->next) { 3732 if(addr_matches_master(p, addr, addrlen, fromhost)) { 3733 return 1; 3734 } 3735 } 3736 return 0; 3737 } 3738 3739 /** see if the serial means the zone has to be updated, i.e. the serial 3740 * is newer than the zone serial, or we have no zone */ 3741 static int 3742 xfr_serial_means_update(struct auth_xfer* xfr, uint32_t serial) 3743 { 3744 if(!xfr->have_zone) 3745 return 1; /* no zone, anything is better */ 3746 if(xfr->zone_expired) 3747 return 1; /* expired, the sent serial is better than expired 3748 data */ 3749 if(compare_serial(xfr->serial, serial) < 0) 3750 return 1; /* our serial is smaller than the sent serial, 3751 the data is newer, fetch it */ 3752 return 0; 3753 } 3754 3755 /** note notify serial, updates the notify information in the xfr struct */ 3756 static void 3757 xfr_note_notify_serial(struct auth_xfer* xfr, int has_serial, uint32_t serial) 3758 { 3759 if(xfr->notify_received && xfr->notify_has_serial && has_serial) { 3760 /* see if this serial is newer */ 3761 if(compare_serial(xfr->notify_serial, serial) < 0) 3762 xfr->notify_serial = serial; 3763 } else if(xfr->notify_received && xfr->notify_has_serial && 3764 !has_serial) { 3765 /* remove serial, we have notify without serial */ 3766 xfr->notify_has_serial = 0; 3767 xfr->notify_serial = 0; 3768 } else if(xfr->notify_received && !xfr->notify_has_serial) { 3769 /* we already have notify without serial, keep it 3770 * that way; no serial check when current operation 3771 * is done */ 3772 } else { 3773 xfr->notify_received = 1; 3774 xfr->notify_has_serial = has_serial; 3775 xfr->notify_serial = serial; 3776 } 3777 } 3778 3779 /** process a notify serial, start new probe or note serial. xfr is locked */ 3780 static void 3781 xfr_process_notify(struct auth_xfer* xfr, struct module_env* env, 3782 int has_serial, uint32_t serial, struct auth_master* fromhost) 3783 { 3784 /* if the serial of notify is older than we have, don't fetch 3785 * a zone, we already have it */ 3786 if(has_serial && !xfr_serial_means_update(xfr, serial)) { 3787 lock_basic_unlock(&xfr->lock); 3788 return; 3789 } 3790 /* start new probe with this addr src, or note serial */ 3791 if(!xfr_start_probe(xfr, env, fromhost)) { 3792 /* not started because already in progress, note the serial */ 3793 xfr_note_notify_serial(xfr, has_serial, serial); 3794 lock_basic_unlock(&xfr->lock); 3795 } 3796 /* successful end of start_probe unlocked xfr->lock */ 3797 } 3798 3799 int auth_zones_notify(struct auth_zones* az, struct module_env* env, 3800 uint8_t* nm, size_t nmlen, uint16_t dclass, 3801 struct sockaddr_storage* addr, socklen_t addrlen, int has_serial, 3802 uint32_t serial, int* refused) 3803 { 3804 struct auth_xfer* xfr; 3805 struct auth_master* fromhost = NULL; 3806 /* see which zone this is */ 3807 lock_rw_rdlock(&az->lock); 3808 xfr = auth_xfer_find(az, nm, nmlen, dclass); 3809 if(!xfr) { 3810 lock_rw_unlock(&az->lock); 3811 /* no such zone, refuse the notify */ 3812 *refused = 1; 3813 return 0; 3814 } 3815 lock_basic_lock(&xfr->lock); 3816 lock_rw_unlock(&az->lock); 3817 3818 /* check access list for notifies */ 3819 if(!az_xfr_allowed_notify(xfr, addr, addrlen, &fromhost)) { 3820 lock_basic_unlock(&xfr->lock); 3821 /* notify not allowed, refuse the notify */ 3822 *refused = 1; 3823 return 0; 3824 } 3825 3826 /* process the notify */ 3827 xfr_process_notify(xfr, env, has_serial, serial, fromhost); 3828 return 1; 3829 } 3830 3831 int auth_zones_startprobesequence(struct auth_zones* az, 3832 struct module_env* env, uint8_t* nm, size_t nmlen, uint16_t dclass) 3833 { 3834 struct auth_xfer* xfr; 3835 lock_rw_rdlock(&az->lock); 3836 xfr = auth_xfer_find(az, nm, nmlen, dclass); 3837 if(!xfr) { 3838 lock_rw_unlock(&az->lock); 3839 return 0; 3840 } 3841 lock_basic_lock(&xfr->lock); 3842 lock_rw_unlock(&az->lock); 3843 3844 xfr_process_notify(xfr, env, 0, 0, NULL); 3845 return 1; 3846 } 3847 3848 /** set a zone expired */ 3849 static void 3850 auth_xfer_set_expired(struct auth_xfer* xfr, struct module_env* env, 3851 int expired) 3852 { 3853 struct auth_zone* z; 3854 3855 /* expire xfr */ 3856 lock_basic_lock(&xfr->lock); 3857 xfr->zone_expired = expired; 3858 lock_basic_unlock(&xfr->lock); 3859 3860 /* find auth_zone */ 3861 lock_rw_rdlock(&env->auth_zones->lock); 3862 z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 3863 xfr->dclass); 3864 if(!z) { 3865 lock_rw_unlock(&env->auth_zones->lock); 3866 return; 3867 } 3868 lock_rw_wrlock(&z->lock); 3869 lock_rw_unlock(&env->auth_zones->lock); 3870 3871 /* expire auth_zone */ 3872 z->zone_expired = expired; 3873 lock_rw_unlock(&z->lock); 3874 } 3875 3876 /** find master (from notify or probe) in list of masters */ 3877 static struct auth_master* 3878 find_master_by_host(struct auth_master* list, char* host) 3879 { 3880 struct auth_master* p; 3881 for(p=list; p; p=p->next) { 3882 if(strcmp(p->host, host) == 0) 3883 return p; 3884 } 3885 return NULL; 3886 } 3887 3888 /** delete the looked up auth_addrs for all the masters in the list */ 3889 static void 3890 xfr_masterlist_free_addrs(struct auth_master* list) 3891 { 3892 struct auth_master* m; 3893 for(m=list; m; m=m->next) { 3894 if(m->list) { 3895 auth_free_master_addrs(m->list); 3896 m->list = NULL; 3897 } 3898 } 3899 } 3900 3901 /** copy a list of auth_addrs */ 3902 static struct auth_addr* 3903 auth_addr_list_copy(struct auth_addr* source) 3904 { 3905 struct auth_addr* list = NULL, *last = NULL; 3906 struct auth_addr* p; 3907 for(p=source; p; p=p->next) { 3908 struct auth_addr* a = (struct auth_addr*)memdup(p, sizeof(*p)); 3909 if(!a) { 3910 log_err("malloc failure"); 3911 auth_free_master_addrs(list); 3912 return NULL; 3913 } 3914 a->next = NULL; 3915 if(last) last->next = a; 3916 if(!list) list = a; 3917 last = a; 3918 } 3919 return list; 3920 } 3921 3922 /** copy a master to a new structure, NULL on alloc failure */ 3923 static struct auth_master* 3924 auth_master_copy(struct auth_master* o) 3925 { 3926 struct auth_master* m; 3927 if(!o) return NULL; 3928 m = (struct auth_master*)memdup(o, sizeof(*o)); 3929 if(!m) { 3930 log_err("malloc failure"); 3931 return NULL; 3932 } 3933 m->next = NULL; 3934 if(m->host) { 3935 m->host = strdup(m->host); 3936 if(!m->host) { 3937 free(m); 3938 log_err("malloc failure"); 3939 return NULL; 3940 } 3941 } 3942 if(m->file) { 3943 m->file = strdup(m->file); 3944 if(!m->file) { 3945 free(m->host); 3946 free(m); 3947 log_err("malloc failure"); 3948 return NULL; 3949 } 3950 } 3951 if(m->list) { 3952 m->list = auth_addr_list_copy(m->list); 3953 if(!m->list) { 3954 free(m->file); 3955 free(m->host); 3956 free(m); 3957 return NULL; 3958 } 3959 } 3960 return m; 3961 } 3962 3963 /** copy the master addresses from the task_probe lookups to the allow_notify 3964 * list of masters */ 3965 static void 3966 probe_copy_masters_for_allow_notify(struct auth_xfer* xfr) 3967 { 3968 struct auth_master* list = NULL, *last = NULL; 3969 struct auth_master* p; 3970 /* build up new list with copies */ 3971 for(p = xfr->task_transfer->masters; p; p=p->next) { 3972 struct auth_master* m = auth_master_copy(p); 3973 if(!m) { 3974 auth_free_masters(list); 3975 /* failed because of malloc failure, use old list */ 3976 return; 3977 } 3978 m->next = NULL; 3979 if(last) last->next = m; 3980 if(!list) list = m; 3981 last = m; 3982 } 3983 /* success, replace list */ 3984 auth_free_masters(xfr->allow_notify_list); 3985 xfr->allow_notify_list = list; 3986 } 3987 3988 /** start the lookups for task_transfer */ 3989 static void 3990 xfr_transfer_start_lookups(struct auth_xfer* xfr) 3991 { 3992 /* delete all the looked up addresses in the list */ 3993 xfr->task_transfer->scan_addr = NULL; 3994 xfr_masterlist_free_addrs(xfr->task_transfer->masters); 3995 3996 /* start lookup at the first master */ 3997 xfr->task_transfer->lookup_target = xfr->task_transfer->masters; 3998 xfr->task_transfer->lookup_aaaa = 0; 3999 } 4000 4001 /** move to the next lookup of hostname for task_transfer */ 4002 static void 4003 xfr_transfer_move_to_next_lookup(struct auth_xfer* xfr, struct module_env* env) 4004 { 4005 if(!xfr->task_transfer->lookup_target) 4006 return; /* already at end of list */ 4007 if(!xfr->task_transfer->lookup_aaaa && env->cfg->do_ip6) { 4008 /* move to lookup AAAA */ 4009 xfr->task_transfer->lookup_aaaa = 1; 4010 return; 4011 } 4012 xfr->task_transfer->lookup_target = 4013 xfr->task_transfer->lookup_target->next; 4014 xfr->task_transfer->lookup_aaaa = 0; 4015 if(!env->cfg->do_ip4 && xfr->task_transfer->lookup_target!=NULL) 4016 xfr->task_transfer->lookup_aaaa = 1; 4017 } 4018 4019 /** start the lookups for task_probe */ 4020 static void 4021 xfr_probe_start_lookups(struct auth_xfer* xfr) 4022 { 4023 /* delete all the looked up addresses in the list */ 4024 xfr->task_probe->scan_addr = NULL; 4025 xfr_masterlist_free_addrs(xfr->task_probe->masters); 4026 4027 /* start lookup at the first master */ 4028 xfr->task_probe->lookup_target = xfr->task_probe->masters; 4029 xfr->task_probe->lookup_aaaa = 0; 4030 } 4031 4032 /** move to the next lookup of hostname for task_probe */ 4033 static void 4034 xfr_probe_move_to_next_lookup(struct auth_xfer* xfr, struct module_env* env) 4035 { 4036 if(!xfr->task_probe->lookup_target) 4037 return; /* already at end of list */ 4038 if(!xfr->task_probe->lookup_aaaa && env->cfg->do_ip6) { 4039 /* move to lookup AAAA */ 4040 xfr->task_probe->lookup_aaaa = 1; 4041 return; 4042 } 4043 xfr->task_probe->lookup_target = xfr->task_probe->lookup_target->next; 4044 xfr->task_probe->lookup_aaaa = 0; 4045 if(!env->cfg->do_ip4 && xfr->task_probe->lookup_target!=NULL) 4046 xfr->task_probe->lookup_aaaa = 1; 4047 } 4048 4049 /** start the iteration of the task_transfer list of masters */ 4050 static void 4051 xfr_transfer_start_list(struct auth_xfer* xfr, struct auth_master* spec) 4052 { 4053 if(spec) { 4054 xfr->task_transfer->scan_specific = find_master_by_host( 4055 xfr->task_transfer->masters, spec->host); 4056 if(xfr->task_transfer->scan_specific) { 4057 xfr->task_transfer->scan_target = NULL; 4058 xfr->task_transfer->scan_addr = NULL; 4059 if(xfr->task_transfer->scan_specific->list) 4060 xfr->task_transfer->scan_addr = 4061 xfr->task_transfer->scan_specific->list; 4062 return; 4063 } 4064 } 4065 /* no specific (notified) host to scan */ 4066 xfr->task_transfer->scan_specific = NULL; 4067 xfr->task_transfer->scan_addr = NULL; 4068 /* pick up first scan target */ 4069 xfr->task_transfer->scan_target = xfr->task_transfer->masters; 4070 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4071 scan_target->list) 4072 xfr->task_transfer->scan_addr = 4073 xfr->task_transfer->scan_target->list; 4074 } 4075 4076 /** start the iteration of the task_probe list of masters */ 4077 static void 4078 xfr_probe_start_list(struct auth_xfer* xfr, struct auth_master* spec) 4079 { 4080 if(spec) { 4081 xfr->task_probe->scan_specific = find_master_by_host( 4082 xfr->task_probe->masters, spec->host); 4083 if(xfr->task_probe->scan_specific) { 4084 xfr->task_probe->scan_target = NULL; 4085 xfr->task_probe->scan_addr = NULL; 4086 if(xfr->task_probe->scan_specific->list) 4087 xfr->task_probe->scan_addr = 4088 xfr->task_probe->scan_specific->list; 4089 return; 4090 } 4091 } 4092 /* no specific (notified) host to scan */ 4093 xfr->task_probe->scan_specific = NULL; 4094 xfr->task_probe->scan_addr = NULL; 4095 /* pick up first scan target */ 4096 xfr->task_probe->scan_target = xfr->task_probe->masters; 4097 if(xfr->task_probe->scan_target && xfr->task_probe->scan_target->list) 4098 xfr->task_probe->scan_addr = 4099 xfr->task_probe->scan_target->list; 4100 } 4101 4102 /** pick up the master that is being scanned right now, task_transfer */ 4103 static struct auth_master* 4104 xfr_transfer_current_master(struct auth_xfer* xfr) 4105 { 4106 if(xfr->task_transfer->scan_specific) 4107 return xfr->task_transfer->scan_specific; 4108 return xfr->task_transfer->scan_target; 4109 } 4110 4111 /** pick up the master that is being scanned right now, task_probe */ 4112 static struct auth_master* 4113 xfr_probe_current_master(struct auth_xfer* xfr) 4114 { 4115 if(xfr->task_probe->scan_specific) 4116 return xfr->task_probe->scan_specific; 4117 return xfr->task_probe->scan_target; 4118 } 4119 4120 /** true if at end of list, task_transfer */ 4121 static int 4122 xfr_transfer_end_of_list(struct auth_xfer* xfr) 4123 { 4124 return !xfr->task_transfer->scan_specific && 4125 !xfr->task_transfer->scan_target; 4126 } 4127 4128 /** true if at end of list, task_probe */ 4129 static int 4130 xfr_probe_end_of_list(struct auth_xfer* xfr) 4131 { 4132 return !xfr->task_probe->scan_specific && !xfr->task_probe->scan_target; 4133 } 4134 4135 /** move to next master in list, task_transfer */ 4136 static void 4137 xfr_transfer_nextmaster(struct auth_xfer* xfr) 4138 { 4139 if(!xfr->task_transfer->scan_specific && 4140 !xfr->task_transfer->scan_target) 4141 return; 4142 if(xfr->task_transfer->scan_addr) { 4143 xfr->task_transfer->scan_addr = 4144 xfr->task_transfer->scan_addr->next; 4145 if(xfr->task_transfer->scan_addr) 4146 return; 4147 } 4148 if(xfr->task_transfer->scan_specific) { 4149 xfr->task_transfer->scan_specific = NULL; 4150 xfr->task_transfer->scan_target = xfr->task_transfer->masters; 4151 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4152 scan_target->list) 4153 xfr->task_transfer->scan_addr = 4154 xfr->task_transfer->scan_target->list; 4155 return; 4156 } 4157 if(!xfr->task_transfer->scan_target) 4158 return; 4159 xfr->task_transfer->scan_target = xfr->task_transfer->scan_target->next; 4160 if(xfr->task_transfer->scan_target && xfr->task_transfer-> 4161 scan_target->list) 4162 xfr->task_transfer->scan_addr = 4163 xfr->task_transfer->scan_target->list; 4164 return; 4165 } 4166 4167 /** move to next master in list, task_probe */ 4168 static void 4169 xfr_probe_nextmaster(struct auth_xfer* xfr) 4170 { 4171 if(!xfr->task_probe->scan_specific && !xfr->task_probe->scan_target) 4172 return; 4173 if(xfr->task_probe->scan_addr) { 4174 xfr->task_probe->scan_addr = xfr->task_probe->scan_addr->next; 4175 if(xfr->task_probe->scan_addr) 4176 return; 4177 } 4178 if(xfr->task_probe->scan_specific) { 4179 xfr->task_probe->scan_specific = NULL; 4180 xfr->task_probe->scan_target = xfr->task_probe->masters; 4181 if(xfr->task_probe->scan_target && xfr->task_probe-> 4182 scan_target->list) 4183 xfr->task_probe->scan_addr = 4184 xfr->task_probe->scan_target->list; 4185 return; 4186 } 4187 if(!xfr->task_probe->scan_target) 4188 return; 4189 xfr->task_probe->scan_target = xfr->task_probe->scan_target->next; 4190 if(xfr->task_probe->scan_target && xfr->task_probe-> 4191 scan_target->list) 4192 xfr->task_probe->scan_addr = 4193 xfr->task_probe->scan_target->list; 4194 return; 4195 } 4196 4197 /** create SOA probe packet for xfr */ 4198 static void 4199 xfr_create_soa_probe_packet(struct auth_xfer* xfr, sldns_buffer* buf, 4200 uint16_t id) 4201 { 4202 struct query_info qinfo; 4203 4204 memset(&qinfo, 0, sizeof(qinfo)); 4205 qinfo.qname = xfr->name; 4206 qinfo.qname_len = xfr->namelen; 4207 qinfo.qtype = LDNS_RR_TYPE_SOA; 4208 qinfo.qclass = xfr->dclass; 4209 qinfo_query_encode(buf, &qinfo); 4210 sldns_buffer_write_u16_at(buf, 0, id); 4211 } 4212 4213 /** create IXFR/AXFR packet for xfr */ 4214 static void 4215 xfr_create_ixfr_packet(struct auth_xfer* xfr, sldns_buffer* buf, uint16_t id, 4216 struct auth_master* master) 4217 { 4218 struct query_info qinfo; 4219 uint32_t serial; 4220 int have_zone; 4221 have_zone = xfr->have_zone; 4222 serial = xfr->serial; 4223 4224 memset(&qinfo, 0, sizeof(qinfo)); 4225 qinfo.qname = xfr->name; 4226 qinfo.qname_len = xfr->namelen; 4227 xfr->task_transfer->got_xfr_serial = 0; 4228 xfr->task_transfer->rr_scan_num = 0; 4229 xfr->task_transfer->incoming_xfr_serial = 0; 4230 xfr->task_transfer->on_ixfr_is_axfr = 0; 4231 xfr->task_transfer->on_ixfr = 1; 4232 qinfo.qtype = LDNS_RR_TYPE_IXFR; 4233 if(!have_zone || xfr->task_transfer->ixfr_fail || !master->ixfr) { 4234 qinfo.qtype = LDNS_RR_TYPE_AXFR; 4235 xfr->task_transfer->ixfr_fail = 0; 4236 xfr->task_transfer->on_ixfr = 0; 4237 } 4238 4239 qinfo.qclass = xfr->dclass; 4240 qinfo_query_encode(buf, &qinfo); 4241 sldns_buffer_write_u16_at(buf, 0, id); 4242 4243 /* append serial for IXFR */ 4244 if(qinfo.qtype == LDNS_RR_TYPE_IXFR) { 4245 size_t end = sldns_buffer_limit(buf); 4246 sldns_buffer_clear(buf); 4247 sldns_buffer_set_position(buf, end); 4248 /* auth section count 1 */ 4249 sldns_buffer_write_u16_at(buf, LDNS_NSCOUNT_OFF, 1); 4250 /* write SOA */ 4251 sldns_buffer_write_u8(buf, 0xC0); /* compressed ptr to qname */ 4252 sldns_buffer_write_u8(buf, 0x0C); 4253 sldns_buffer_write_u16(buf, LDNS_RR_TYPE_SOA); 4254 sldns_buffer_write_u16(buf, qinfo.qclass); 4255 sldns_buffer_write_u32(buf, 0); /* ttl */ 4256 sldns_buffer_write_u16(buf, 22); /* rdata length */ 4257 sldns_buffer_write_u8(buf, 0); /* . */ 4258 sldns_buffer_write_u8(buf, 0); /* . */ 4259 sldns_buffer_write_u32(buf, serial); /* serial */ 4260 sldns_buffer_write_u32(buf, 0); /* refresh */ 4261 sldns_buffer_write_u32(buf, 0); /* retry */ 4262 sldns_buffer_write_u32(buf, 0); /* expire */ 4263 sldns_buffer_write_u32(buf, 0); /* minimum */ 4264 sldns_buffer_flip(buf); 4265 } 4266 } 4267 4268 /** check if returned packet is OK */ 4269 static int 4270 check_packet_ok(sldns_buffer* pkt, uint16_t qtype, struct auth_xfer* xfr, 4271 uint32_t* serial) 4272 { 4273 /* parse to see if packet worked, valid reply */ 4274 4275 /* check serial number of SOA */ 4276 if(sldns_buffer_limit(pkt) < LDNS_HEADER_SIZE) 4277 return 0; 4278 4279 /* check ID */ 4280 if(LDNS_ID_WIRE(sldns_buffer_begin(pkt)) != xfr->task_probe->id) 4281 return 0; 4282 4283 /* check flag bits and rcode */ 4284 if(!LDNS_QR_WIRE(sldns_buffer_begin(pkt))) 4285 return 0; 4286 if(LDNS_OPCODE_WIRE(sldns_buffer_begin(pkt)) != LDNS_PACKET_QUERY) 4287 return 0; 4288 if(LDNS_RCODE_WIRE(sldns_buffer_begin(pkt)) != LDNS_RCODE_NOERROR) 4289 return 0; 4290 4291 /* check qname */ 4292 if(LDNS_QDCOUNT(sldns_buffer_begin(pkt)) != 1) 4293 return 0; 4294 sldns_buffer_skip(pkt, LDNS_HEADER_SIZE); 4295 if(sldns_buffer_remaining(pkt) < xfr->namelen) 4296 return 0; 4297 if(query_dname_compare(sldns_buffer_current(pkt), xfr->name) != 0) 4298 return 0; 4299 sldns_buffer_skip(pkt, (ssize_t)xfr->namelen); 4300 4301 /* check qtype, qclass */ 4302 if(sldns_buffer_remaining(pkt) < 4) 4303 return 0; 4304 if(sldns_buffer_read_u16(pkt) != qtype) 4305 return 0; 4306 if(sldns_buffer_read_u16(pkt) != xfr->dclass) 4307 return 0; 4308 4309 if(serial) { 4310 uint16_t rdlen; 4311 /* read serial number, from answer section SOA */ 4312 if(LDNS_ANCOUNT(sldns_buffer_begin(pkt)) == 0) 4313 return 0; 4314 /* read from first record SOA record */ 4315 if(sldns_buffer_remaining(pkt) < 1) 4316 return 0; 4317 if(dname_pkt_compare(pkt, sldns_buffer_current(pkt), 4318 xfr->name) != 0) 4319 return 0; 4320 if(!pkt_dname_len(pkt)) 4321 return 0; 4322 /* type, class, ttl, rdatalen */ 4323 if(sldns_buffer_remaining(pkt) < 4+4+2) 4324 return 0; 4325 if(sldns_buffer_read_u16(pkt) != qtype) 4326 return 0; 4327 if(sldns_buffer_read_u16(pkt) != xfr->dclass) 4328 return 0; 4329 sldns_buffer_skip(pkt, 4); /* ttl */ 4330 rdlen = sldns_buffer_read_u16(pkt); 4331 if(sldns_buffer_remaining(pkt) < rdlen) 4332 return 0; 4333 if(sldns_buffer_remaining(pkt) < 1) 4334 return 0; 4335 if(!pkt_dname_len(pkt)) /* soa name */ 4336 return 0; 4337 if(sldns_buffer_remaining(pkt) < 1) 4338 return 0; 4339 if(!pkt_dname_len(pkt)) /* soa name */ 4340 return 0; 4341 if(sldns_buffer_remaining(pkt) < 20) 4342 return 0; 4343 *serial = sldns_buffer_read_u32(pkt); 4344 } 4345 return 1; 4346 } 4347 4348 /** read one line from chunks into buffer at current position */ 4349 static int 4350 chunkline_get_line(struct auth_chunk** chunk, size_t* chunk_pos, 4351 sldns_buffer* buf) 4352 { 4353 int readsome = 0; 4354 while(*chunk) { 4355 /* more text in this chunk? */ 4356 if(*chunk_pos < (*chunk)->len) { 4357 readsome = 1; 4358 while(*chunk_pos < (*chunk)->len) { 4359 char c = (char)((*chunk)->data[*chunk_pos]); 4360 (*chunk_pos)++; 4361 if(sldns_buffer_remaining(buf) < 2) { 4362 /* buffer too short */ 4363 verbose(VERB_ALGO, "http chunkline, " 4364 "line too long"); 4365 return 0; 4366 } 4367 sldns_buffer_write_u8(buf, (uint8_t)c); 4368 if(c == '\n') { 4369 /* we are done */ 4370 return 1; 4371 } 4372 } 4373 } 4374 /* move to next chunk */ 4375 *chunk = (*chunk)->next; 4376 *chunk_pos = 0; 4377 } 4378 /* no more text */ 4379 if(readsome) return 1; 4380 return 0; 4381 } 4382 4383 /** count number of open and closed parenthesis in a chunkline */ 4384 static int 4385 chunkline_count_parens(sldns_buffer* buf, size_t start) 4386 { 4387 size_t end = sldns_buffer_position(buf); 4388 size_t i; 4389 int count = 0; 4390 int squote = 0, dquote = 0; 4391 for(i=start; i<end; i++) { 4392 char c = (char)sldns_buffer_read_u8_at(buf, i); 4393 if(squote && c != '\'') continue; 4394 if(dquote && c != '"') continue; 4395 if(c == '"') 4396 dquote = !dquote; /* skip quoted part */ 4397 else if(c == '\'') 4398 squote = !squote; /* skip quoted part */ 4399 else if(c == '(') 4400 count ++; 4401 else if(c == ')') 4402 count --; 4403 else if(c == ';') { 4404 /* rest is a comment */ 4405 return count; 4406 } 4407 } 4408 return count; 4409 } 4410 4411 /** remove trailing ;... comment from a line in the chunkline buffer */ 4412 static void 4413 chunkline_remove_trailcomment(sldns_buffer* buf, size_t start) 4414 { 4415 size_t end = sldns_buffer_position(buf); 4416 size_t i; 4417 int squote = 0, dquote = 0; 4418 for(i=start; i<end; i++) { 4419 char c = (char)sldns_buffer_read_u8_at(buf, i); 4420 if(squote && c != '\'') continue; 4421 if(dquote && c != '"') continue; 4422 if(c == '"') 4423 dquote = !dquote; /* skip quoted part */ 4424 else if(c == '\'') 4425 squote = !squote; /* skip quoted part */ 4426 else if(c == ';') { 4427 /* rest is a comment */ 4428 sldns_buffer_set_position(buf, i); 4429 return; 4430 } 4431 } 4432 /* nothing to remove */ 4433 } 4434 4435 /** see if a chunkline is a comment line (or empty line) */ 4436 static int 4437 chunkline_is_comment_line_or_empty(sldns_buffer* buf) 4438 { 4439 size_t i, end = sldns_buffer_limit(buf); 4440 for(i=0; i<end; i++) { 4441 char c = (char)sldns_buffer_read_u8_at(buf, i); 4442 if(c == ';') 4443 return 1; /* comment */ 4444 else if(c != ' ' && c != '\t' && c != '\r' && c != '\n') 4445 return 0; /* not a comment */ 4446 } 4447 return 1; /* empty */ 4448 } 4449 4450 /** find a line with ( ) collated */ 4451 static int 4452 chunkline_get_line_collated(struct auth_chunk** chunk, size_t* chunk_pos, 4453 sldns_buffer* buf) 4454 { 4455 size_t pos; 4456 int parens = 0; 4457 sldns_buffer_clear(buf); 4458 pos = sldns_buffer_position(buf); 4459 if(!chunkline_get_line(chunk, chunk_pos, buf)) { 4460 if(sldns_buffer_position(buf) < sldns_buffer_limit(buf)) 4461 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4462 else sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf)-1, 0); 4463 sldns_buffer_flip(buf); 4464 return 0; 4465 } 4466 parens += chunkline_count_parens(buf, pos); 4467 while(parens > 0) { 4468 chunkline_remove_trailcomment(buf, pos); 4469 pos = sldns_buffer_position(buf); 4470 if(!chunkline_get_line(chunk, chunk_pos, buf)) { 4471 if(sldns_buffer_position(buf) < sldns_buffer_limit(buf)) 4472 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4473 else sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf)-1, 0); 4474 sldns_buffer_flip(buf); 4475 return 0; 4476 } 4477 parens += chunkline_count_parens(buf, pos); 4478 } 4479 4480 if(sldns_buffer_remaining(buf) < 1) { 4481 verbose(VERB_ALGO, "http chunkline: " 4482 "line too long"); 4483 return 0; 4484 } 4485 sldns_buffer_write_u8_at(buf, sldns_buffer_position(buf), 0); 4486 sldns_buffer_flip(buf); 4487 return 1; 4488 } 4489 4490 /** process $ORIGIN for http, 0 nothing, 1 done, 2 error */ 4491 static int 4492 http_parse_origin(sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4493 { 4494 char* line = (char*)sldns_buffer_begin(buf); 4495 if(strncmp(line, "$ORIGIN", 7) == 0 && 4496 isspace((unsigned char)line[7])) { 4497 int s; 4498 pstate->origin_len = sizeof(pstate->origin); 4499 s = sldns_str2wire_dname_buf(sldns_strip_ws(line+8), 4500 pstate->origin, &pstate->origin_len); 4501 if(s) { 4502 pstate->origin_len = 0; 4503 return 2; 4504 } 4505 return 1; 4506 } 4507 return 0; 4508 } 4509 4510 /** process $TTL for http, 0 nothing, 1 done, 2 error */ 4511 static int 4512 http_parse_ttl(sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4513 { 4514 char* line = (char*)sldns_buffer_begin(buf); 4515 if(strncmp(line, "$TTL", 4) == 0 && 4516 isspace((unsigned char)line[4])) { 4517 const char* end = NULL; 4518 int overflow = 0; 4519 pstate->default_ttl = sldns_str2period( 4520 sldns_strip_ws(line+5), &end, &overflow); 4521 if(overflow) { 4522 return 2; 4523 } 4524 return 1; 4525 } 4526 return 0; 4527 } 4528 4529 /** find noncomment RR line in chunks, collates lines if ( ) format */ 4530 static int 4531 chunkline_non_comment_RR(struct auth_chunk** chunk, size_t* chunk_pos, 4532 sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4533 { 4534 int ret; 4535 while(chunkline_get_line_collated(chunk, chunk_pos, buf)) { 4536 if(chunkline_is_comment_line_or_empty(buf)) { 4537 /* a comment, go to next line */ 4538 continue; 4539 } 4540 if((ret=http_parse_origin(buf, pstate))!=0) { 4541 if(ret == 2) 4542 return 0; 4543 continue; /* $ORIGIN has been handled */ 4544 } 4545 if((ret=http_parse_ttl(buf, pstate))!=0) { 4546 if(ret == 2) 4547 return 0; 4548 continue; /* $TTL has been handled */ 4549 } 4550 return 1; 4551 } 4552 /* no noncomments, fail */ 4553 return 0; 4554 } 4555 4556 /** check syntax of chunklist zonefile, parse first RR, return false on 4557 * failure and return a string in the scratch buffer (first RR string) 4558 * on failure. */ 4559 static int 4560 http_zonefile_syntax_check(struct auth_xfer* xfr, sldns_buffer* buf) 4561 { 4562 uint8_t rr[LDNS_RR_BUF_SIZE]; 4563 size_t rr_len, dname_len = 0; 4564 struct sldns_file_parse_state pstate; 4565 struct auth_chunk* chunk; 4566 size_t chunk_pos; 4567 int e; 4568 memset(&pstate, 0, sizeof(pstate)); 4569 pstate.default_ttl = 3600; 4570 if(xfr->namelen < sizeof(pstate.origin)) { 4571 pstate.origin_len = xfr->namelen; 4572 memmove(pstate.origin, xfr->name, xfr->namelen); 4573 } 4574 chunk = xfr->task_transfer->chunks_first; 4575 chunk_pos = 0; 4576 if(!chunkline_non_comment_RR(&chunk, &chunk_pos, buf, &pstate)) { 4577 return 0; 4578 } 4579 rr_len = sizeof(rr); 4580 e=sldns_str2wire_rr_buf((char*)sldns_buffer_begin(buf), rr, &rr_len, 4581 &dname_len, pstate.default_ttl, 4582 pstate.origin_len?pstate.origin:NULL, pstate.origin_len, 4583 pstate.prev_rr_len?pstate.prev_rr:NULL, pstate.prev_rr_len); 4584 if(e != 0) { 4585 log_err("parse failure on first RR[%d]: %s", 4586 LDNS_WIREPARSE_OFFSET(e), 4587 sldns_get_errorstr_parse(LDNS_WIREPARSE_ERROR(e))); 4588 return 0; 4589 } 4590 /* check that class is correct */ 4591 if(sldns_wirerr_get_class(rr, rr_len, dname_len) != xfr->dclass) { 4592 log_err("parse failure: first record in downloaded zonefile " 4593 "from wrong RR class"); 4594 return 0; 4595 } 4596 return 1; 4597 } 4598 4599 /** sum sizes of chunklist */ 4600 static size_t 4601 chunklist_sum(struct auth_chunk* list) 4602 { 4603 struct auth_chunk* p; 4604 size_t s = 0; 4605 for(p=list; p; p=p->next) { 4606 s += p->len; 4607 } 4608 return s; 4609 } 4610 4611 /** remove newlines from collated line */ 4612 static void 4613 chunkline_newline_removal(sldns_buffer* buf) 4614 { 4615 size_t i, end=sldns_buffer_limit(buf); 4616 for(i=0; i<end; i++) { 4617 char c = (char)sldns_buffer_read_u8_at(buf, i); 4618 if(c == '\n' && i==end-1) { 4619 sldns_buffer_write_u8_at(buf, i, 0); 4620 sldns_buffer_set_limit(buf, end-1); 4621 return; 4622 } 4623 if(c == '\n') 4624 sldns_buffer_write_u8_at(buf, i, (uint8_t)' '); 4625 } 4626 } 4627 4628 /** for http download, parse and add RR to zone */ 4629 static int 4630 http_parse_add_rr(struct auth_xfer* xfr, struct auth_zone* z, 4631 sldns_buffer* buf, struct sldns_file_parse_state* pstate) 4632 { 4633 uint8_t rr[LDNS_RR_BUF_SIZE]; 4634 size_t rr_len, dname_len = 0; 4635 int e; 4636 char* line = (char*)sldns_buffer_begin(buf); 4637 rr_len = sizeof(rr); 4638 e = sldns_str2wire_rr_buf(line, rr, &rr_len, &dname_len, 4639 pstate->default_ttl, 4640 pstate->origin_len?pstate->origin:NULL, pstate->origin_len, 4641 pstate->prev_rr_len?pstate->prev_rr:NULL, pstate->prev_rr_len); 4642 if(e != 0) { 4643 log_err("%s/%s parse failure RR[%d]: %s in '%s'", 4644 xfr->task_transfer->master->host, 4645 xfr->task_transfer->master->file, 4646 LDNS_WIREPARSE_OFFSET(e), 4647 sldns_get_errorstr_parse(LDNS_WIREPARSE_ERROR(e)), 4648 line); 4649 return 0; 4650 } 4651 if(rr_len == 0) 4652 return 1; /* empty line or so */ 4653 4654 /* set prev */ 4655 if(dname_len < sizeof(pstate->prev_rr)) { 4656 memmove(pstate->prev_rr, rr, dname_len); 4657 pstate->prev_rr_len = dname_len; 4658 } 4659 4660 return az_insert_rr(z, rr, rr_len, dname_len, NULL); 4661 } 4662 4663 /** RR list iterator, returns RRs from answer section one by one from the 4664 * dns packets in the chunklist */ 4665 static void 4666 chunk_rrlist_start(struct auth_xfer* xfr, struct auth_chunk** rr_chunk, 4667 int* rr_num, size_t* rr_pos) 4668 { 4669 *rr_chunk = xfr->task_transfer->chunks_first; 4670 *rr_num = 0; 4671 *rr_pos = 0; 4672 } 4673 4674 /** RR list iterator, see if we are at the end of the list */ 4675 static int 4676 chunk_rrlist_end(struct auth_chunk* rr_chunk, int rr_num) 4677 { 4678 while(rr_chunk) { 4679 if(rr_chunk->len < LDNS_HEADER_SIZE) 4680 return 1; 4681 if(rr_num < (int)LDNS_ANCOUNT(rr_chunk->data)) 4682 return 0; 4683 /* no more RRs in this chunk */ 4684 /* continue with next chunk, see if it has RRs */ 4685 rr_chunk = rr_chunk->next; 4686 rr_num = 0; 4687 } 4688 return 1; 4689 } 4690 4691 /** RR list iterator, move to next RR */ 4692 static void 4693 chunk_rrlist_gonext(struct auth_chunk** rr_chunk, int* rr_num, 4694 size_t* rr_pos, size_t rr_nextpos) 4695 { 4696 /* already at end of chunks? */ 4697 if(!*rr_chunk) 4698 return; 4699 /* move within this chunk */ 4700 if((*rr_chunk)->len >= LDNS_HEADER_SIZE && 4701 (*rr_num)+1 < (int)LDNS_ANCOUNT((*rr_chunk)->data)) { 4702 (*rr_num) += 1; 4703 *rr_pos = rr_nextpos; 4704 return; 4705 } 4706 /* no more RRs in this chunk */ 4707 /* continue with next chunk, see if it has RRs */ 4708 if(*rr_chunk) 4709 *rr_chunk = (*rr_chunk)->next; 4710 while(*rr_chunk) { 4711 *rr_num = 0; 4712 *rr_pos = 0; 4713 if((*rr_chunk)->len >= LDNS_HEADER_SIZE && 4714 LDNS_ANCOUNT((*rr_chunk)->data) > 0) { 4715 return; 4716 } 4717 *rr_chunk = (*rr_chunk)->next; 4718 } 4719 } 4720 4721 /** RR iterator, get current RR information, false on parse error */ 4722 static int 4723 chunk_rrlist_get_current(struct auth_chunk* rr_chunk, int rr_num, 4724 size_t rr_pos, uint8_t** rr_dname, uint16_t* rr_type, 4725 uint16_t* rr_class, uint32_t* rr_ttl, uint16_t* rr_rdlen, 4726 uint8_t** rr_rdata, size_t* rr_nextpos) 4727 { 4728 sldns_buffer pkt; 4729 /* integrity checks on position */ 4730 if(!rr_chunk) return 0; 4731 if(rr_chunk->len < LDNS_HEADER_SIZE) return 0; 4732 if(rr_num >= (int)LDNS_ANCOUNT(rr_chunk->data)) return 0; 4733 if(rr_pos >= rr_chunk->len) return 0; 4734 4735 /* fetch rr information */ 4736 sldns_buffer_init_frm_data(&pkt, rr_chunk->data, rr_chunk->len); 4737 if(rr_pos == 0) { 4738 size_t i; 4739 /* skip question section */ 4740 sldns_buffer_set_position(&pkt, LDNS_HEADER_SIZE); 4741 for(i=0; i<LDNS_QDCOUNT(rr_chunk->data); i++) { 4742 if(pkt_dname_len(&pkt) == 0) return 0; 4743 if(sldns_buffer_remaining(&pkt) < 4) return 0; 4744 sldns_buffer_skip(&pkt, 4); /* type and class */ 4745 } 4746 } else { 4747 sldns_buffer_set_position(&pkt, rr_pos); 4748 } 4749 *rr_dname = sldns_buffer_current(&pkt); 4750 if(pkt_dname_len(&pkt) == 0) return 0; 4751 if(sldns_buffer_remaining(&pkt) < 10) return 0; 4752 *rr_type = sldns_buffer_read_u16(&pkt); 4753 *rr_class = sldns_buffer_read_u16(&pkt); 4754 *rr_ttl = sldns_buffer_read_u32(&pkt); 4755 *rr_rdlen = sldns_buffer_read_u16(&pkt); 4756 if(sldns_buffer_remaining(&pkt) < (*rr_rdlen)) return 0; 4757 *rr_rdata = sldns_buffer_current(&pkt); 4758 sldns_buffer_skip(&pkt, (ssize_t)(*rr_rdlen)); 4759 *rr_nextpos = sldns_buffer_position(&pkt); 4760 return 1; 4761 } 4762 4763 /** print log message where we are in parsing the zone transfer */ 4764 static void 4765 log_rrlist_position(const char* label, struct auth_chunk* rr_chunk, 4766 uint8_t* rr_dname, uint16_t rr_type, size_t rr_counter) 4767 { 4768 sldns_buffer pkt; 4769 size_t dlen; 4770 uint8_t buf[256]; 4771 char str[256]; 4772 char typestr[32]; 4773 sldns_buffer_init_frm_data(&pkt, rr_chunk->data, rr_chunk->len); 4774 sldns_buffer_set_position(&pkt, (size_t)(rr_dname - 4775 sldns_buffer_begin(&pkt))); 4776 if((dlen=pkt_dname_len(&pkt)) == 0) return; 4777 if(dlen >= sizeof(buf)) return; 4778 dname_pkt_copy(&pkt, buf, rr_dname); 4779 dname_str(buf, str); 4780 (void)sldns_wire2str_type_buf(rr_type, typestr, sizeof(typestr)); 4781 verbose(VERB_ALGO, "%s at[%d] %s %s", label, (int)rr_counter, 4782 str, typestr); 4783 } 4784 4785 /** check that start serial is OK for ixfr. we are at rr_counter == 0, 4786 * and we are going to check rr_counter == 1 (has to be type SOA) serial */ 4787 static int 4788 ixfr_start_serial(struct auth_chunk* rr_chunk, int rr_num, size_t rr_pos, 4789 uint8_t* rr_dname, uint16_t rr_type, uint16_t rr_class, 4790 uint32_t rr_ttl, uint16_t rr_rdlen, uint8_t* rr_rdata, 4791 size_t rr_nextpos, uint32_t transfer_serial, uint32_t xfr_serial) 4792 { 4793 uint32_t startserial; 4794 /* move forward on RR */ 4795 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 4796 if(chunk_rrlist_end(rr_chunk, rr_num)) { 4797 /* no second SOA */ 4798 verbose(VERB_OPS, "IXFR has no second SOA record"); 4799 return 0; 4800 } 4801 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 4802 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 4803 &rr_rdata, &rr_nextpos)) { 4804 verbose(VERB_OPS, "IXFR cannot parse second SOA record"); 4805 /* failed to parse RR */ 4806 return 0; 4807 } 4808 if(rr_type != LDNS_RR_TYPE_SOA) { 4809 verbose(VERB_OPS, "IXFR second record is not type SOA"); 4810 return 0; 4811 } 4812 if(rr_rdlen < 22) { 4813 verbose(VERB_OPS, "IXFR, second SOA has short rdlength"); 4814 return 0; /* bad SOA rdlen */ 4815 } 4816 startserial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 4817 if(startserial == transfer_serial) { 4818 /* empty AXFR, not an IXFR */ 4819 verbose(VERB_OPS, "IXFR second serial same as first"); 4820 return 0; 4821 } 4822 if(startserial != xfr_serial) { 4823 /* wrong start serial, it does not match the serial in 4824 * memory */ 4825 verbose(VERB_OPS, "IXFR is from serial %u to %u but %u " 4826 "in memory, rejecting the zone transfer", 4827 (unsigned)startserial, (unsigned)transfer_serial, 4828 (unsigned)xfr_serial); 4829 return 0; 4830 } 4831 /* everything OK in second SOA serial */ 4832 return 1; 4833 } 4834 4835 /** apply IXFR to zone in memory. z is locked. false on failure(mallocfail) */ 4836 static int 4837 apply_ixfr(struct auth_xfer* xfr, struct auth_zone* z, 4838 struct sldns_buffer* scratch_buffer) 4839 { 4840 struct auth_chunk* rr_chunk; 4841 int rr_num; 4842 size_t rr_pos; 4843 uint8_t* rr_dname, *rr_rdata; 4844 uint16_t rr_type, rr_class, rr_rdlen; 4845 uint32_t rr_ttl; 4846 size_t rr_nextpos; 4847 int have_transfer_serial = 0; 4848 uint32_t transfer_serial = 0; 4849 size_t rr_counter = 0; 4850 int delmode = 0; 4851 int softfail = 0; 4852 4853 /* start RR iterator over chunklist of packets */ 4854 chunk_rrlist_start(xfr, &rr_chunk, &rr_num, &rr_pos); 4855 while(!chunk_rrlist_end(rr_chunk, rr_num)) { 4856 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 4857 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 4858 &rr_rdata, &rr_nextpos)) { 4859 /* failed to parse RR */ 4860 return 0; 4861 } 4862 if(verbosity>=7) log_rrlist_position("apply ixfr", 4863 rr_chunk, rr_dname, rr_type, rr_counter); 4864 /* twiddle add/del mode and check for start and end */ 4865 if(rr_counter == 0 && rr_type != LDNS_RR_TYPE_SOA) 4866 return 0; 4867 if(rr_counter == 1 && rr_type != LDNS_RR_TYPE_SOA) { 4868 /* this is an AXFR returned from the IXFR master */ 4869 /* but that should already have been detected, by 4870 * on_ixfr_is_axfr */ 4871 return 0; 4872 } 4873 if(rr_type == LDNS_RR_TYPE_SOA) { 4874 uint32_t serial; 4875 if(rr_rdlen < 22) return 0; /* bad SOA rdlen */ 4876 serial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 4877 if(have_transfer_serial == 0) { 4878 have_transfer_serial = 1; 4879 transfer_serial = serial; 4880 delmode = 1; /* gets negated below */ 4881 /* check second RR before going any further */ 4882 if(!ixfr_start_serial(rr_chunk, rr_num, rr_pos, 4883 rr_dname, rr_type, rr_class, rr_ttl, 4884 rr_rdlen, rr_rdata, rr_nextpos, 4885 transfer_serial, xfr->serial)) { 4886 return 0; 4887 } 4888 } else if(transfer_serial == serial) { 4889 have_transfer_serial++; 4890 if(rr_counter == 1) { 4891 /* empty AXFR, with SOA; SOA; */ 4892 /* should have been detected by 4893 * on_ixfr_is_axfr */ 4894 return 0; 4895 } 4896 if(have_transfer_serial == 3) { 4897 /* see serial three times for end */ 4898 /* eg. IXFR: 4899 * SOA 3 start 4900 * SOA 1 second RR, followed by del 4901 * SOA 2 followed by add 4902 * SOA 2 followed by del 4903 * SOA 3 followed by add 4904 * SOA 3 end */ 4905 /* ended by SOA record */ 4906 xfr->serial = transfer_serial; 4907 break; 4908 } 4909 } 4910 /* twiddle add/del mode */ 4911 /* switch from delete part to add part and back again 4912 * just before the soa, it gets deleted and added too 4913 * this means we switch to delete mode for the final 4914 * SOA(so skip that one) */ 4915 delmode = !delmode; 4916 } 4917 /* process this RR */ 4918 /* if the RR is deleted twice or added twice, then we 4919 * softfail, and continue with the rest of the IXFR, so 4920 * that we serve something fairly nice during the refetch */ 4921 if(verbosity>=7) log_rrlist_position((delmode?"del":"add"), 4922 rr_chunk, rr_dname, rr_type, rr_counter); 4923 if(delmode) { 4924 /* delete this RR */ 4925 int nonexist = 0; 4926 if(!az_remove_rr_decompress(z, rr_chunk->data, 4927 rr_chunk->len, scratch_buffer, rr_dname, 4928 rr_type, rr_class, rr_ttl, rr_rdata, rr_rdlen, 4929 &nonexist)) { 4930 /* failed, malloc error or so */ 4931 return 0; 4932 } 4933 if(nonexist) { 4934 /* it was removal of a nonexisting RR */ 4935 if(verbosity>=4) log_rrlist_position( 4936 "IXFR error nonexistent RR", 4937 rr_chunk, rr_dname, rr_type, rr_counter); 4938 softfail = 1; 4939 } 4940 } else if(rr_counter != 0) { 4941 /* skip first SOA RR for addition, it is added in 4942 * the addition part near the end of the ixfr, when 4943 * that serial is seen the second time. */ 4944 int duplicate = 0; 4945 /* add this RR */ 4946 if(!az_insert_rr_decompress(z, rr_chunk->data, 4947 rr_chunk->len, scratch_buffer, rr_dname, 4948 rr_type, rr_class, rr_ttl, rr_rdata, rr_rdlen, 4949 &duplicate)) { 4950 /* failed, malloc error or so */ 4951 return 0; 4952 } 4953 if(duplicate) { 4954 /* it was a duplicate */ 4955 if(verbosity>=4) log_rrlist_position( 4956 "IXFR error duplicate RR", 4957 rr_chunk, rr_dname, rr_type, rr_counter); 4958 softfail = 1; 4959 } 4960 } 4961 4962 rr_counter++; 4963 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 4964 } 4965 if(softfail) { 4966 verbose(VERB_ALGO, "IXFR did not apply cleanly, fetching full zone"); 4967 return 0; 4968 } 4969 return 1; 4970 } 4971 4972 /** apply AXFR to zone in memory. z is locked. false on failure(mallocfail) */ 4973 static int 4974 apply_axfr(struct auth_xfer* xfr, struct auth_zone* z, 4975 struct sldns_buffer* scratch_buffer) 4976 { 4977 struct auth_chunk* rr_chunk; 4978 int rr_num; 4979 size_t rr_pos; 4980 uint8_t* rr_dname, *rr_rdata; 4981 uint16_t rr_type, rr_class, rr_rdlen; 4982 uint32_t rr_ttl; 4983 uint32_t serial = 0; 4984 size_t rr_nextpos; 4985 size_t rr_counter = 0; 4986 int have_end_soa = 0; 4987 4988 /* clear the data tree */ 4989 traverse_postorder(&z->data, auth_data_del, NULL); 4990 rbtree_init(&z->data, &auth_data_cmp); 4991 /* clear the RPZ policies */ 4992 if(z->rpz) 4993 rpz_clear(z->rpz); 4994 4995 xfr->have_zone = 0; 4996 xfr->serial = 0; 4997 4998 /* insert all RRs in to the zone */ 4999 /* insert the SOA only once, skip the last one */ 5000 /* start RR iterator over chunklist of packets */ 5001 chunk_rrlist_start(xfr, &rr_chunk, &rr_num, &rr_pos); 5002 while(!chunk_rrlist_end(rr_chunk, rr_num)) { 5003 if(!chunk_rrlist_get_current(rr_chunk, rr_num, rr_pos, 5004 &rr_dname, &rr_type, &rr_class, &rr_ttl, &rr_rdlen, 5005 &rr_rdata, &rr_nextpos)) { 5006 /* failed to parse RR */ 5007 return 0; 5008 } 5009 if(verbosity>=7) log_rrlist_position("apply_axfr", 5010 rr_chunk, rr_dname, rr_type, rr_counter); 5011 if(rr_type == LDNS_RR_TYPE_SOA) { 5012 if(rr_counter != 0) { 5013 /* end of the axfr */ 5014 have_end_soa = 1; 5015 break; 5016 } 5017 if(rr_rdlen < 22) return 0; /* bad SOA rdlen */ 5018 serial = sldns_read_uint32(rr_rdata+rr_rdlen-20); 5019 } 5020 5021 /* add this RR */ 5022 if(!az_insert_rr_decompress(z, rr_chunk->data, rr_chunk->len, 5023 scratch_buffer, rr_dname, rr_type, rr_class, rr_ttl, 5024 rr_rdata, rr_rdlen, NULL)) { 5025 /* failed, malloc error or so */ 5026 return 0; 5027 } 5028 5029 rr_counter++; 5030 chunk_rrlist_gonext(&rr_chunk, &rr_num, &rr_pos, rr_nextpos); 5031 } 5032 if(!have_end_soa) { 5033 log_err("no end SOA record for AXFR"); 5034 return 0; 5035 } 5036 5037 xfr->serial = serial; 5038 xfr->have_zone = 1; 5039 return 1; 5040 } 5041 5042 /** apply HTTP to zone in memory. z is locked. false on failure(mallocfail) */ 5043 static int 5044 apply_http(struct auth_xfer* xfr, struct auth_zone* z, 5045 struct sldns_buffer* scratch_buffer) 5046 { 5047 /* parse data in chunks */ 5048 /* parse RR's and read into memory. ignore $INCLUDE from the 5049 * downloaded file*/ 5050 struct sldns_file_parse_state pstate; 5051 struct auth_chunk* chunk; 5052 size_t chunk_pos; 5053 int ret; 5054 memset(&pstate, 0, sizeof(pstate)); 5055 pstate.default_ttl = 3600; 5056 if(xfr->namelen < sizeof(pstate.origin)) { 5057 pstate.origin_len = xfr->namelen; 5058 memmove(pstate.origin, xfr->name, xfr->namelen); 5059 } 5060 5061 if(verbosity >= VERB_ALGO) 5062 verbose(VERB_ALGO, "http download %s of size %d", 5063 xfr->task_transfer->master->file, 5064 (int)chunklist_sum(xfr->task_transfer->chunks_first)); 5065 if(xfr->task_transfer->chunks_first && verbosity >= VERB_ALGO) { 5066 char preview[1024]; 5067 if(xfr->task_transfer->chunks_first->len+1 > sizeof(preview)) { 5068 memmove(preview, xfr->task_transfer->chunks_first->data, 5069 sizeof(preview)-1); 5070 preview[sizeof(preview)-1]=0; 5071 } else { 5072 memmove(preview, xfr->task_transfer->chunks_first->data, 5073 xfr->task_transfer->chunks_first->len); 5074 preview[xfr->task_transfer->chunks_first->len]=0; 5075 } 5076 log_info("auth zone http downloaded content preview: %s", 5077 preview); 5078 } 5079 5080 /* perhaps a little syntax check before we try to apply the data? */ 5081 if(!http_zonefile_syntax_check(xfr, scratch_buffer)) { 5082 log_err("http download %s/%s does not contain a zonefile, " 5083 "but got '%s'", xfr->task_transfer->master->host, 5084 xfr->task_transfer->master->file, 5085 sldns_buffer_begin(scratch_buffer)); 5086 return 0; 5087 } 5088 5089 /* clear the data tree */ 5090 traverse_postorder(&z->data, auth_data_del, NULL); 5091 rbtree_init(&z->data, &auth_data_cmp); 5092 /* clear the RPZ policies */ 5093 if(z->rpz) 5094 rpz_clear(z->rpz); 5095 5096 xfr->have_zone = 0; 5097 xfr->serial = 0; 5098 5099 chunk = xfr->task_transfer->chunks_first; 5100 chunk_pos = 0; 5101 pstate.lineno = 0; 5102 while(chunkline_get_line_collated(&chunk, &chunk_pos, scratch_buffer)) { 5103 /* process this line */ 5104 pstate.lineno++; 5105 chunkline_newline_removal(scratch_buffer); 5106 if(chunkline_is_comment_line_or_empty(scratch_buffer)) { 5107 continue; 5108 } 5109 /* parse line and add RR */ 5110 if((ret=http_parse_origin(scratch_buffer, &pstate))!=0) { 5111 if(ret == 2) { 5112 verbose(VERB_ALGO, "error parsing ORIGIN on line [%s:%d] %s", 5113 xfr->task_transfer->master->file, 5114 pstate.lineno, 5115 sldns_buffer_begin(scratch_buffer)); 5116 return 0; 5117 } 5118 continue; /* $ORIGIN has been handled */ 5119 } 5120 if((ret=http_parse_ttl(scratch_buffer, &pstate))!=0) { 5121 if(ret == 2) { 5122 verbose(VERB_ALGO, "error parsing TTL on line [%s:%d] %s", 5123 xfr->task_transfer->master->file, 5124 pstate.lineno, 5125 sldns_buffer_begin(scratch_buffer)); 5126 return 0; 5127 } 5128 continue; /* $TTL has been handled */ 5129 } 5130 if(!http_parse_add_rr(xfr, z, scratch_buffer, &pstate)) { 5131 verbose(VERB_ALGO, "error parsing line [%s:%d] %s", 5132 xfr->task_transfer->master->file, 5133 pstate.lineno, 5134 sldns_buffer_begin(scratch_buffer)); 5135 return 0; 5136 } 5137 } 5138 return 1; 5139 } 5140 5141 /** write http chunks to zonefile to create downloaded file */ 5142 static int 5143 auth_zone_write_chunks(struct auth_xfer* xfr, const char* fname) 5144 { 5145 FILE* out; 5146 struct auth_chunk* p; 5147 out = fopen(fname, "w"); 5148 if(!out) { 5149 log_err("could not open %s: %s", fname, strerror(errno)); 5150 return 0; 5151 } 5152 for(p = xfr->task_transfer->chunks_first; p ; p = p->next) { 5153 if(!write_out(out, (char*)p->data, p->len)) { 5154 log_err("could not write http download to %s", fname); 5155 fclose(out); 5156 return 0; 5157 } 5158 } 5159 fclose(out); 5160 return 1; 5161 } 5162 5163 /** write to zonefile after zone has been updated */ 5164 static void 5165 xfr_write_after_update(struct auth_xfer* xfr, struct module_env* env) 5166 { 5167 struct config_file* cfg = env->cfg; 5168 struct auth_zone* z; 5169 char tmpfile[1024]; 5170 char* zfilename; 5171 lock_basic_unlock(&xfr->lock); 5172 5173 /* get lock again, so it is a readlock and concurrently queries 5174 * can be answered */ 5175 lock_rw_rdlock(&env->auth_zones->lock); 5176 z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 5177 xfr->dclass); 5178 if(!z) { 5179 lock_rw_unlock(&env->auth_zones->lock); 5180 /* the zone is gone, ignore xfr results */ 5181 lock_basic_lock(&xfr->lock); 5182 return; 5183 } 5184 lock_rw_rdlock(&z->lock); 5185 lock_basic_lock(&xfr->lock); 5186 lock_rw_unlock(&env->auth_zones->lock); 5187 5188 if(z->zonefile == NULL || z->zonefile[0] == 0) { 5189 lock_rw_unlock(&z->lock); 5190 /* no write needed, no zonefile set */ 5191 return; 5192 } 5193 zfilename = z->zonefile; 5194 if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(zfilename, 5195 cfg->chrootdir, strlen(cfg->chrootdir)) == 0) 5196 zfilename += strlen(cfg->chrootdir); 5197 if(verbosity >= VERB_ALGO) { 5198 char nm[255+1]; 5199 dname_str(z->name, nm); 5200 verbose(VERB_ALGO, "write zonefile %s for %s", zfilename, nm); 5201 } 5202 5203 /* write to tempfile first */ 5204 if((size_t)strlen(zfilename) + 16 > sizeof(tmpfile)) { 5205 verbose(VERB_ALGO, "tmpfilename too long, cannot update " 5206 " zonefile %s", zfilename); 5207 lock_rw_unlock(&z->lock); 5208 return; 5209 } 5210 snprintf(tmpfile, sizeof(tmpfile), "%s.tmp%u", zfilename, 5211 (unsigned)getpid()); 5212 if(xfr->task_transfer->master->http) { 5213 /* use the stored chunk list to write them */ 5214 if(!auth_zone_write_chunks(xfr, tmpfile)) { 5215 unlink(tmpfile); 5216 lock_rw_unlock(&z->lock); 5217 return; 5218 } 5219 } else if(!auth_zone_write_file(z, tmpfile)) { 5220 unlink(tmpfile); 5221 lock_rw_unlock(&z->lock); 5222 return; 5223 } 5224 #ifdef UB_ON_WINDOWS 5225 (void)unlink(zfilename); /* windows does not replace file with rename() */ 5226 #endif 5227 if(rename(tmpfile, zfilename) < 0) { 5228 log_err("could not rename(%s, %s): %s", tmpfile, zfilename, 5229 strerror(errno)); 5230 unlink(tmpfile); 5231 lock_rw_unlock(&z->lock); 5232 return; 5233 } 5234 lock_rw_unlock(&z->lock); 5235 } 5236 5237 /** reacquire locks and structures. Starts with no locks, ends 5238 * with xfr and z locks, if fail, no z lock */ 5239 static int xfr_process_reacquire_locks(struct auth_xfer* xfr, 5240 struct module_env* env, struct auth_zone** z) 5241 { 5242 /* release xfr lock, then, while holding az->lock grab both 5243 * z->lock and xfr->lock */ 5244 lock_rw_rdlock(&env->auth_zones->lock); 5245 *z = auth_zone_find(env->auth_zones, xfr->name, xfr->namelen, 5246 xfr->dclass); 5247 if(!*z) { 5248 lock_rw_unlock(&env->auth_zones->lock); 5249 lock_basic_lock(&xfr->lock); 5250 *z = NULL; 5251 return 0; 5252 } 5253 lock_rw_wrlock(&(*z)->lock); 5254 lock_basic_lock(&xfr->lock); 5255 lock_rw_unlock(&env->auth_zones->lock); 5256 return 1; 5257 } 5258 5259 /** process chunk list and update zone in memory, 5260 * return false if it did not work */ 5261 static int 5262 xfr_process_chunk_list(struct auth_xfer* xfr, struct module_env* env, 5263 int* ixfr_fail) 5264 { 5265 struct auth_zone* z; 5266 5267 /* obtain locks and structures */ 5268 lock_basic_unlock(&xfr->lock); 5269 if(!xfr_process_reacquire_locks(xfr, env, &z)) { 5270 /* the zone is gone, ignore xfr results */ 5271 return 0; 5272 } 5273 /* holding xfr and z locks */ 5274 5275 /* apply data */ 5276 if(xfr->task_transfer->master->http) { 5277 if(!apply_http(xfr, z, env->scratch_buffer)) { 5278 lock_rw_unlock(&z->lock); 5279 verbose(VERB_ALGO, "http from %s: could not store data", 5280 xfr->task_transfer->master->host); 5281 return 0; 5282 } 5283 } else if(xfr->task_transfer->on_ixfr && 5284 !xfr->task_transfer->on_ixfr_is_axfr) { 5285 if(!apply_ixfr(xfr, z, env->scratch_buffer)) { 5286 lock_rw_unlock(&z->lock); 5287 verbose(VERB_ALGO, "xfr from %s: could not store IXFR" 5288 " data", xfr->task_transfer->master->host); 5289 *ixfr_fail = 1; 5290 return 0; 5291 } 5292 } else { 5293 if(!apply_axfr(xfr, z, env->scratch_buffer)) { 5294 lock_rw_unlock(&z->lock); 5295 verbose(VERB_ALGO, "xfr from %s: could not store AXFR" 5296 " data", xfr->task_transfer->master->host); 5297 return 0; 5298 } 5299 } 5300 xfr->zone_expired = 0; 5301 z->zone_expired = 0; 5302 if(!xfr_find_soa(z, xfr)) { 5303 lock_rw_unlock(&z->lock); 5304 verbose(VERB_ALGO, "xfr from %s: no SOA in zone after update" 5305 " (or malformed RR)", xfr->task_transfer->master->host); 5306 return 0; 5307 } 5308 5309 /* release xfr lock while verifying zonemd because it may have 5310 * to spawn lookups in the state machines */ 5311 lock_basic_unlock(&xfr->lock); 5312 /* holding z lock */ 5313 auth_zone_verify_zonemd(z, env, &env->mesh->mods, NULL, 0, 0); 5314 if(z->zone_expired) { 5315 char zname[256]; 5316 /* ZONEMD must have failed */ 5317 /* reacquire locks, so we hold xfr lock on exit of routine, 5318 * and both xfr and z again after releasing xfr for potential 5319 * state machine mesh callbacks */ 5320 lock_rw_unlock(&z->lock); 5321 if(!xfr_process_reacquire_locks(xfr, env, &z)) 5322 return 0; 5323 dname_str(xfr->name, zname); 5324 verbose(VERB_ALGO, "xfr from %s: ZONEMD failed for %s, transfer is failed", xfr->task_transfer->master->host, zname); 5325 xfr->zone_expired = 1; 5326 lock_rw_unlock(&z->lock); 5327 return 0; 5328 } 5329 /* reacquire locks, so we hold xfr lock on exit of routine, 5330 * and both xfr and z again after releasing xfr for potential 5331 * state machine mesh callbacks */ 5332 lock_rw_unlock(&z->lock); 5333 if(!xfr_process_reacquire_locks(xfr, env, &z)) 5334 return 0; 5335 /* holding xfr and z locks */ 5336 5337 if(xfr->have_zone) 5338 xfr->lease_time = *env->now; 5339 5340 if(z->rpz) 5341 rpz_finish_config(z->rpz); 5342 5343 /* unlock */ 5344 lock_rw_unlock(&z->lock); 5345 5346 if(verbosity >= VERB_QUERY && xfr->have_zone) { 5347 char zname[256]; 5348 dname_str(xfr->name, zname); 5349 verbose(VERB_QUERY, "auth zone %s updated to serial %u", zname, 5350 (unsigned)xfr->serial); 5351 } 5352 /* see if we need to write to a zonefile */ 5353 xfr_write_after_update(xfr, env); 5354 return 1; 5355 } 5356 5357 /** disown task_transfer. caller must hold xfr.lock */ 5358 static void 5359 xfr_transfer_disown(struct auth_xfer* xfr) 5360 { 5361 /* remove timer (from this worker's event base) */ 5362 comm_timer_delete(xfr->task_transfer->timer); 5363 xfr->task_transfer->timer = NULL; 5364 /* remove the commpoint */ 5365 comm_point_delete(xfr->task_transfer->cp); 5366 xfr->task_transfer->cp = NULL; 5367 /* we don't own this item anymore */ 5368 xfr->task_transfer->worker = NULL; 5369 xfr->task_transfer->env = NULL; 5370 } 5371 5372 /** lookup a host name for its addresses, if needed */ 5373 static int 5374 xfr_transfer_lookup_host(struct auth_xfer* xfr, struct module_env* env) 5375 { 5376 struct sockaddr_storage addr; 5377 socklen_t addrlen = 0; 5378 struct auth_master* master = xfr->task_transfer->lookup_target; 5379 struct query_info qinfo; 5380 uint16_t qflags = BIT_RD; 5381 uint8_t dname[LDNS_MAX_DOMAINLEN+1]; 5382 struct edns_data edns; 5383 sldns_buffer* buf = env->scratch_buffer; 5384 if(!master) return 0; 5385 if(extstrtoaddr(master->host, &addr, &addrlen, UNBOUND_DNS_PORT)) { 5386 /* not needed, host is in IP addr format */ 5387 return 0; 5388 } 5389 if(master->allow_notify) 5390 return 0; /* allow-notifies are not transferred from, no 5391 lookup is needed */ 5392 5393 /* use mesh_new_callback to probe for non-addr hosts, 5394 * and then wait for them to be looked up (in cache, or query) */ 5395 qinfo.qname_len = sizeof(dname); 5396 if(sldns_str2wire_dname_buf(master->host, dname, &qinfo.qname_len) 5397 != 0) { 5398 log_err("cannot parse host name of master %s", master->host); 5399 return 0; 5400 } 5401 qinfo.qname = dname; 5402 qinfo.qclass = xfr->dclass; 5403 qinfo.qtype = LDNS_RR_TYPE_A; 5404 if(xfr->task_transfer->lookup_aaaa) 5405 qinfo.qtype = LDNS_RR_TYPE_AAAA; 5406 qinfo.local_alias = NULL; 5407 if(verbosity >= VERB_ALGO) { 5408 char buf1[512]; 5409 char buf2[LDNS_MAX_DOMAINLEN+1]; 5410 dname_str(xfr->name, buf2); 5411 snprintf(buf1, sizeof(buf1), "auth zone %s: master lookup" 5412 " for task_transfer", buf2); 5413 log_query_info(VERB_ALGO, buf1, &qinfo); 5414 } 5415 edns.edns_present = 1; 5416 edns.ext_rcode = 0; 5417 edns.edns_version = 0; 5418 edns.bits = EDNS_DO; 5419 edns.opt_list_in = NULL; 5420 edns.opt_list_out = NULL; 5421 edns.opt_list_inplace_cb_out = NULL; 5422 edns.padding_block_size = 0; 5423 if(sldns_buffer_capacity(buf) < 65535) 5424 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 5425 else edns.udp_size = 65535; 5426 5427 /* unlock xfr during mesh_new_callback() because the callback can be 5428 * called straight away */ 5429 lock_basic_unlock(&xfr->lock); 5430 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 5431 &auth_xfer_transfer_lookup_callback, xfr, 0)) { 5432 lock_basic_lock(&xfr->lock); 5433 log_err("out of memory lookup up master %s", master->host); 5434 return 0; 5435 } 5436 lock_basic_lock(&xfr->lock); 5437 return 1; 5438 } 5439 5440 /** initiate TCP to the target and fetch zone. 5441 * returns true if that was successfully started, and timeout setup. */ 5442 static int 5443 xfr_transfer_init_fetch(struct auth_xfer* xfr, struct module_env* env) 5444 { 5445 struct sockaddr_storage addr; 5446 socklen_t addrlen = 0; 5447 struct auth_master* master = xfr->task_transfer->master; 5448 char *auth_name = NULL; 5449 struct timeval t; 5450 int timeout; 5451 if(!master) return 0; 5452 if(master->allow_notify) return 0; /* only for notify */ 5453 5454 /* get master addr */ 5455 if(xfr->task_transfer->scan_addr) { 5456 addrlen = xfr->task_transfer->scan_addr->addrlen; 5457 memmove(&addr, &xfr->task_transfer->scan_addr->addr, addrlen); 5458 } else { 5459 if(!authextstrtoaddr(master->host, &addr, &addrlen, &auth_name)) { 5460 /* the ones that are not in addr format are supposed 5461 * to be looked up. The lookup has failed however, 5462 * so skip them */ 5463 char zname[255+1]; 5464 dname_str(xfr->name, zname); 5465 log_err("%s: failed lookup, cannot transfer from master %s", 5466 zname, master->host); 5467 return 0; 5468 } 5469 } 5470 5471 /* remove previous TCP connection (if any) */ 5472 if(xfr->task_transfer->cp) { 5473 comm_point_delete(xfr->task_transfer->cp); 5474 xfr->task_transfer->cp = NULL; 5475 } 5476 if(!xfr->task_transfer->timer) { 5477 xfr->task_transfer->timer = comm_timer_create(env->worker_base, 5478 auth_xfer_transfer_timer_callback, xfr); 5479 if(!xfr->task_transfer->timer) { 5480 log_err("malloc failure"); 5481 return 0; 5482 } 5483 } 5484 timeout = AUTH_TRANSFER_TIMEOUT; 5485 #ifndef S_SPLINT_S 5486 t.tv_sec = timeout/1000; 5487 t.tv_usec = (timeout%1000)*1000; 5488 #endif 5489 5490 if(master->http) { 5491 /* perform http fetch */ 5492 /* store http port number into sockaddr, 5493 * unless someone used unbound's host@port notation */ 5494 xfr->task_transfer->on_ixfr = 0; 5495 if(strchr(master->host, '@') == NULL) 5496 sockaddr_store_port(&addr, addrlen, master->port); 5497 xfr->task_transfer->cp = outnet_comm_point_for_http( 5498 env->outnet, auth_xfer_transfer_http_callback, xfr, 5499 &addr, addrlen, -1, master->ssl, master->host, 5500 master->file, env->cfg); 5501 if(!xfr->task_transfer->cp) { 5502 char zname[255+1], as[256]; 5503 dname_str(xfr->name, zname); 5504 addr_to_str(&addr, addrlen, as, sizeof(as)); 5505 verbose(VERB_ALGO, "cannot create http cp " 5506 "connection for %s to %s", zname, as); 5507 return 0; 5508 } 5509 comm_timer_set(xfr->task_transfer->timer, &t); 5510 if(verbosity >= VERB_ALGO) { 5511 char zname[255+1], as[256]; 5512 dname_str(xfr->name, zname); 5513 addr_to_str(&addr, addrlen, as, sizeof(as)); 5514 verbose(VERB_ALGO, "auth zone %s transfer next HTTP fetch from %s started", zname, as); 5515 } 5516 /* Create or refresh the list of allow_notify addrs */ 5517 probe_copy_masters_for_allow_notify(xfr); 5518 return 1; 5519 } 5520 5521 /* perform AXFR/IXFR */ 5522 /* set the packet to be written */ 5523 /* create new ID */ 5524 xfr->task_transfer->id = GET_RANDOM_ID(env->rnd); 5525 xfr_create_ixfr_packet(xfr, env->scratch_buffer, 5526 xfr->task_transfer->id, master); 5527 5528 /* connect on fd */ 5529 xfr->task_transfer->cp = outnet_comm_point_for_tcp(env->outnet, 5530 auth_xfer_transfer_tcp_callback, xfr, &addr, addrlen, 5531 env->scratch_buffer, -1, 5532 auth_name != NULL, auth_name); 5533 if(!xfr->task_transfer->cp) { 5534 char zname[255+1], as[256]; 5535 dname_str(xfr->name, zname); 5536 addr_to_str(&addr, addrlen, as, sizeof(as)); 5537 verbose(VERB_ALGO, "cannot create tcp cp connection for " 5538 "xfr %s to %s", zname, as); 5539 return 0; 5540 } 5541 comm_timer_set(xfr->task_transfer->timer, &t); 5542 if(verbosity >= VERB_ALGO) { 5543 char zname[255+1], as[256]; 5544 dname_str(xfr->name, zname); 5545 addr_to_str(&addr, addrlen, as, sizeof(as)); 5546 verbose(VERB_ALGO, "auth zone %s transfer next %s fetch from %s started", zname, 5547 (xfr->task_transfer->on_ixfr?"IXFR":"AXFR"), as); 5548 } 5549 return 1; 5550 } 5551 5552 /** perform next lookup, next transfer TCP, or end and resume wait time task */ 5553 static void 5554 xfr_transfer_nexttarget_or_end(struct auth_xfer* xfr, struct module_env* env) 5555 { 5556 log_assert(xfr->task_transfer->worker == env->worker); 5557 5558 /* are we performing lookups? */ 5559 while(xfr->task_transfer->lookup_target) { 5560 if(xfr_transfer_lookup_host(xfr, env)) { 5561 /* wait for lookup to finish, 5562 * note that the hostname may be in unbound's cache 5563 * and we may then get an instant cache response, 5564 * and that calls the callback just like a full 5565 * lookup and lookup failures also call callback */ 5566 if(verbosity >= VERB_ALGO) { 5567 char zname[255+1]; 5568 dname_str(xfr->name, zname); 5569 verbose(VERB_ALGO, "auth zone %s transfer next target lookup", zname); 5570 } 5571 lock_basic_unlock(&xfr->lock); 5572 return; 5573 } 5574 xfr_transfer_move_to_next_lookup(xfr, env); 5575 } 5576 5577 /* initiate TCP and fetch the zone from the master */ 5578 /* and set timeout on it */ 5579 while(!xfr_transfer_end_of_list(xfr)) { 5580 xfr->task_transfer->master = xfr_transfer_current_master(xfr); 5581 if(xfr_transfer_init_fetch(xfr, env)) { 5582 /* successfully started, wait for callback */ 5583 lock_basic_unlock(&xfr->lock); 5584 return; 5585 } 5586 /* failed to fetch, next master */ 5587 xfr_transfer_nextmaster(xfr); 5588 } 5589 if(verbosity >= VERB_ALGO) { 5590 char zname[255+1]; 5591 dname_str(xfr->name, zname); 5592 verbose(VERB_ALGO, "auth zone %s transfer failed, wait", zname); 5593 } 5594 5595 /* we failed to fetch the zone, move to wait task 5596 * use the shorter retry timeout */ 5597 xfr_transfer_disown(xfr); 5598 5599 /* pick up the nextprobe task and wait */ 5600 if(xfr->task_nextprobe->worker == NULL) 5601 xfr_set_timeout(xfr, env, 1, 0); 5602 lock_basic_unlock(&xfr->lock); 5603 } 5604 5605 /** add addrs from A or AAAA rrset to the master */ 5606 static void 5607 xfr_master_add_addrs(struct auth_master* m, struct ub_packed_rrset_key* rrset, 5608 uint16_t rrtype) 5609 { 5610 size_t i; 5611 struct packed_rrset_data* data; 5612 if(!m || !rrset) return; 5613 if(rrtype != LDNS_RR_TYPE_A && rrtype != LDNS_RR_TYPE_AAAA) 5614 return; 5615 data = (struct packed_rrset_data*)rrset->entry.data; 5616 for(i=0; i<data->count; i++) { 5617 struct auth_addr* a; 5618 size_t len = data->rr_len[i] - 2; 5619 uint8_t* rdata = data->rr_data[i]+2; 5620 if(rrtype == LDNS_RR_TYPE_A && len != INET_SIZE) 5621 continue; /* wrong length for A */ 5622 if(rrtype == LDNS_RR_TYPE_AAAA && len != INET6_SIZE) 5623 continue; /* wrong length for AAAA */ 5624 5625 /* add and alloc it */ 5626 a = (struct auth_addr*)calloc(1, sizeof(*a)); 5627 if(!a) { 5628 log_err("out of memory"); 5629 return; 5630 } 5631 if(rrtype == LDNS_RR_TYPE_A) { 5632 struct sockaddr_in* sa; 5633 a->addrlen = (socklen_t)sizeof(*sa); 5634 sa = (struct sockaddr_in*)&a->addr; 5635 sa->sin_family = AF_INET; 5636 sa->sin_port = (in_port_t)htons(UNBOUND_DNS_PORT); 5637 memmove(&sa->sin_addr, rdata, INET_SIZE); 5638 } else { 5639 struct sockaddr_in6* sa; 5640 a->addrlen = (socklen_t)sizeof(*sa); 5641 sa = (struct sockaddr_in6*)&a->addr; 5642 sa->sin6_family = AF_INET6; 5643 sa->sin6_port = (in_port_t)htons(UNBOUND_DNS_PORT); 5644 memmove(&sa->sin6_addr, rdata, INET6_SIZE); 5645 } 5646 if(verbosity >= VERB_ALGO) { 5647 char s[64]; 5648 addr_to_str(&a->addr, a->addrlen, s, sizeof(s)); 5649 verbose(VERB_ALGO, "auth host %s lookup %s", 5650 m->host, s); 5651 } 5652 /* append to list */ 5653 a->next = m->list; 5654 m->list = a; 5655 } 5656 } 5657 5658 /** callback for task_transfer lookup of host name, of A or AAAA */ 5659 void auth_xfer_transfer_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 5660 enum sec_status ATTR_UNUSED(sec), char* ATTR_UNUSED(why_bogus), 5661 int ATTR_UNUSED(was_ratelimited)) 5662 { 5663 struct auth_xfer* xfr = (struct auth_xfer*)arg; 5664 struct module_env* env; 5665 log_assert(xfr->task_transfer); 5666 lock_basic_lock(&xfr->lock); 5667 env = xfr->task_transfer->env; 5668 if(!env || env->outnet->want_to_quit) { 5669 lock_basic_unlock(&xfr->lock); 5670 return; /* stop on quit */ 5671 } 5672 5673 /* process result */ 5674 if(rcode == LDNS_RCODE_NOERROR) { 5675 uint16_t wanted_qtype = LDNS_RR_TYPE_A; 5676 struct regional* temp = env->scratch; 5677 struct query_info rq; 5678 struct reply_info* rep; 5679 if(xfr->task_transfer->lookup_aaaa) 5680 wanted_qtype = LDNS_RR_TYPE_AAAA; 5681 memset(&rq, 0, sizeof(rq)); 5682 rep = parse_reply_in_temp_region(buf, temp, &rq); 5683 if(rep && rq.qtype == wanted_qtype && 5684 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 5685 /* parsed successfully */ 5686 struct ub_packed_rrset_key* answer = 5687 reply_find_answer_rrset(&rq, rep); 5688 if(answer) { 5689 xfr_master_add_addrs(xfr->task_transfer-> 5690 lookup_target, answer, wanted_qtype); 5691 } else { 5692 if(verbosity >= VERB_ALGO) { 5693 char zname[255+1]; 5694 dname_str(xfr->name, zname); 5695 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup has nodata", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5696 } 5697 } 5698 } else { 5699 if(verbosity >= VERB_ALGO) { 5700 char zname[255+1]; 5701 dname_str(xfr->name, zname); 5702 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup has no answer", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5703 } 5704 } 5705 regional_free_all(temp); 5706 } else { 5707 if(verbosity >= VERB_ALGO) { 5708 char zname[255+1]; 5709 dname_str(xfr->name, zname); 5710 verbose(VERB_ALGO, "auth zone %s host %s type %s transfer lookup failed", zname, xfr->task_transfer->lookup_target->host, (xfr->task_transfer->lookup_aaaa?"AAAA":"A")); 5711 } 5712 } 5713 if(xfr->task_transfer->lookup_target->list && 5714 xfr->task_transfer->lookup_target == xfr_transfer_current_master(xfr)) 5715 xfr->task_transfer->scan_addr = xfr->task_transfer->lookup_target->list; 5716 5717 /* move to lookup AAAA after A lookup, move to next hostname lookup, 5718 * or move to fetch the zone, or, if nothing to do, end task_transfer */ 5719 xfr_transfer_move_to_next_lookup(xfr, env); 5720 xfr_transfer_nexttarget_or_end(xfr, env); 5721 } 5722 5723 /** check if xfer (AXFR or IXFR) packet is OK. 5724 * return false if we lost connection (SERVFAIL, or unreadable). 5725 * return false if we need to move from IXFR to AXFR, with gonextonfail 5726 * set to false, so the same master is tried again, but with AXFR. 5727 * return true if fine to link into data. 5728 * return true with transferdone=true when the transfer has ended. 5729 */ 5730 static int 5731 check_xfer_packet(sldns_buffer* pkt, struct auth_xfer* xfr, 5732 int* gonextonfail, int* transferdone) 5733 { 5734 uint8_t* wire = sldns_buffer_begin(pkt); 5735 int i; 5736 if(sldns_buffer_limit(pkt) < LDNS_HEADER_SIZE) { 5737 verbose(VERB_ALGO, "xfr to %s failed, packet too small", 5738 xfr->task_transfer->master->host); 5739 return 0; 5740 } 5741 if(!LDNS_QR_WIRE(wire)) { 5742 verbose(VERB_ALGO, "xfr to %s failed, packet has no QR flag", 5743 xfr->task_transfer->master->host); 5744 return 0; 5745 } 5746 if(LDNS_TC_WIRE(wire)) { 5747 verbose(VERB_ALGO, "xfr to %s failed, packet has TC flag", 5748 xfr->task_transfer->master->host); 5749 return 0; 5750 } 5751 /* check ID */ 5752 if(LDNS_ID_WIRE(wire) != xfr->task_transfer->id) { 5753 verbose(VERB_ALGO, "xfr to %s failed, packet wrong ID", 5754 xfr->task_transfer->master->host); 5755 return 0; 5756 } 5757 if(LDNS_RCODE_WIRE(wire) != LDNS_RCODE_NOERROR) { 5758 char rcode[32]; 5759 sldns_wire2str_rcode_buf((int)LDNS_RCODE_WIRE(wire), rcode, 5760 sizeof(rcode)); 5761 /* if we are doing IXFR, check for fallback */ 5762 if(xfr->task_transfer->on_ixfr) { 5763 if(LDNS_RCODE_WIRE(wire) == LDNS_RCODE_NOTIMPL || 5764 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_SERVFAIL || 5765 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_REFUSED || 5766 LDNS_RCODE_WIRE(wire) == LDNS_RCODE_FORMERR) { 5767 verbose(VERB_ALGO, "xfr to %s, fallback " 5768 "from IXFR to AXFR (with rcode %s)", 5769 xfr->task_transfer->master->host, 5770 rcode); 5771 xfr->task_transfer->ixfr_fail = 1; 5772 *gonextonfail = 0; 5773 return 0; 5774 } 5775 } 5776 verbose(VERB_ALGO, "xfr to %s failed, packet with rcode %s", 5777 xfr->task_transfer->master->host, rcode); 5778 return 0; 5779 } 5780 if(LDNS_OPCODE_WIRE(wire) != LDNS_PACKET_QUERY) { 5781 verbose(VERB_ALGO, "xfr to %s failed, packet with bad opcode", 5782 xfr->task_transfer->master->host); 5783 return 0; 5784 } 5785 if(LDNS_QDCOUNT(wire) > 1) { 5786 verbose(VERB_ALGO, "xfr to %s failed, packet has qdcount %d", 5787 xfr->task_transfer->master->host, 5788 (int)LDNS_QDCOUNT(wire)); 5789 return 0; 5790 } 5791 5792 /* check qname */ 5793 sldns_buffer_set_position(pkt, LDNS_HEADER_SIZE); 5794 for(i=0; i<(int)LDNS_QDCOUNT(wire); i++) { 5795 size_t pos = sldns_buffer_position(pkt); 5796 uint16_t qtype, qclass; 5797 if(pkt_dname_len(pkt) == 0) { 5798 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5799 "malformed dname", 5800 xfr->task_transfer->master->host); 5801 return 0; 5802 } 5803 if(dname_pkt_compare(pkt, sldns_buffer_at(pkt, pos), 5804 xfr->name) != 0) { 5805 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5806 "wrong qname", 5807 xfr->task_transfer->master->host); 5808 return 0; 5809 } 5810 if(sldns_buffer_remaining(pkt) < 4) { 5811 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5812 "truncated query RR", 5813 xfr->task_transfer->master->host); 5814 return 0; 5815 } 5816 qtype = sldns_buffer_read_u16(pkt); 5817 qclass = sldns_buffer_read_u16(pkt); 5818 if(qclass != xfr->dclass) { 5819 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5820 "wrong qclass", 5821 xfr->task_transfer->master->host); 5822 return 0; 5823 } 5824 if(xfr->task_transfer->on_ixfr) { 5825 if(qtype != LDNS_RR_TYPE_IXFR) { 5826 verbose(VERB_ALGO, "xfr to %s failed, packet " 5827 "with wrong qtype, expected IXFR", 5828 xfr->task_transfer->master->host); 5829 return 0; 5830 } 5831 } else { 5832 if(qtype != LDNS_RR_TYPE_AXFR) { 5833 verbose(VERB_ALGO, "xfr to %s failed, packet " 5834 "with wrong qtype, expected AXFR", 5835 xfr->task_transfer->master->host); 5836 return 0; 5837 } 5838 } 5839 } 5840 5841 /* check parse of RRs in packet, store first SOA serial 5842 * to be able to detect last SOA (with that serial) to see if done */ 5843 /* also check for IXFR 'zone up to date' reply */ 5844 for(i=0; i<(int)LDNS_ANCOUNT(wire); i++) { 5845 size_t pos = sldns_buffer_position(pkt); 5846 uint16_t tp, rdlen; 5847 if(pkt_dname_len(pkt) == 0) { 5848 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5849 "malformed dname in answer section", 5850 xfr->task_transfer->master->host); 5851 return 0; 5852 } 5853 if(sldns_buffer_remaining(pkt) < 10) { 5854 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5855 "truncated RR", 5856 xfr->task_transfer->master->host); 5857 return 0; 5858 } 5859 tp = sldns_buffer_read_u16(pkt); 5860 (void)sldns_buffer_read_u16(pkt); /* class */ 5861 (void)sldns_buffer_read_u32(pkt); /* ttl */ 5862 rdlen = sldns_buffer_read_u16(pkt); 5863 if(sldns_buffer_remaining(pkt) < rdlen) { 5864 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5865 "truncated RR rdata", 5866 xfr->task_transfer->master->host); 5867 return 0; 5868 } 5869 5870 /* RR parses (haven't checked rdata itself), now look at 5871 * SOA records to see serial number */ 5872 if(xfr->task_transfer->rr_scan_num == 0 && 5873 tp != LDNS_RR_TYPE_SOA) { 5874 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5875 "malformed zone transfer, no start SOA", 5876 xfr->task_transfer->master->host); 5877 return 0; 5878 } 5879 if(xfr->task_transfer->rr_scan_num == 1 && 5880 tp != LDNS_RR_TYPE_SOA) { 5881 /* second RR is not a SOA record, this is not an IXFR 5882 * the master is replying with an AXFR */ 5883 xfr->task_transfer->on_ixfr_is_axfr = 1; 5884 } 5885 if(tp == LDNS_RR_TYPE_SOA) { 5886 uint32_t serial; 5887 if(rdlen < 22) { 5888 verbose(VERB_ALGO, "xfr to %s failed, packet " 5889 "with SOA with malformed rdata", 5890 xfr->task_transfer->master->host); 5891 return 0; 5892 } 5893 if(dname_pkt_compare(pkt, sldns_buffer_at(pkt, pos), 5894 xfr->name) != 0) { 5895 verbose(VERB_ALGO, "xfr to %s failed, packet " 5896 "with SOA with wrong dname", 5897 xfr->task_transfer->master->host); 5898 return 0; 5899 } 5900 5901 /* read serial number of SOA */ 5902 serial = sldns_buffer_read_u32_at(pkt, 5903 sldns_buffer_position(pkt)+rdlen-20); 5904 5905 /* check for IXFR 'zone has SOA x' reply */ 5906 if(xfr->task_transfer->on_ixfr && 5907 xfr->task_transfer->rr_scan_num == 0 && 5908 LDNS_ANCOUNT(wire)==1) { 5909 verbose(VERB_ALGO, "xfr to %s ended, " 5910 "IXFR reply that zone has serial %u," 5911 " fallback from IXFR to AXFR", 5912 xfr->task_transfer->master->host, 5913 (unsigned)serial); 5914 xfr->task_transfer->ixfr_fail = 1; 5915 *gonextonfail = 0; 5916 return 0; 5917 } 5918 5919 /* if first SOA, store serial number */ 5920 if(xfr->task_transfer->got_xfr_serial == 0) { 5921 xfr->task_transfer->got_xfr_serial = 1; 5922 xfr->task_transfer->incoming_xfr_serial = 5923 serial; 5924 verbose(VERB_ALGO, "xfr %s: contains " 5925 "SOA serial %u", 5926 xfr->task_transfer->master->host, 5927 (unsigned)serial); 5928 /* see if end of AXFR */ 5929 } else if(!xfr->task_transfer->on_ixfr || 5930 xfr->task_transfer->on_ixfr_is_axfr) { 5931 /* second SOA with serial is the end 5932 * for AXFR */ 5933 *transferdone = 1; 5934 verbose(VERB_ALGO, "xfr %s: last AXFR packet", 5935 xfr->task_transfer->master->host); 5936 /* for IXFR, count SOA records with that serial */ 5937 } else if(xfr->task_transfer->incoming_xfr_serial == 5938 serial && xfr->task_transfer->got_xfr_serial 5939 == 1) { 5940 xfr->task_transfer->got_xfr_serial++; 5941 /* if not first soa, if serial==firstserial, the 5942 * third time we are at the end, for IXFR */ 5943 } else if(xfr->task_transfer->incoming_xfr_serial == 5944 serial && xfr->task_transfer->got_xfr_serial 5945 == 2) { 5946 verbose(VERB_ALGO, "xfr %s: last IXFR packet", 5947 xfr->task_transfer->master->host); 5948 *transferdone = 1; 5949 /* continue parse check, if that succeeds, 5950 * transfer is done */ 5951 } 5952 } 5953 xfr->task_transfer->rr_scan_num++; 5954 5955 /* skip over RR rdata to go to the next RR */ 5956 sldns_buffer_skip(pkt, (ssize_t)rdlen); 5957 } 5958 5959 /* check authority section */ 5960 /* we skip over the RRs checking packet format */ 5961 for(i=0; i<(int)LDNS_NSCOUNT(wire); i++) { 5962 uint16_t rdlen; 5963 if(pkt_dname_len(pkt) == 0) { 5964 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5965 "malformed dname in authority section", 5966 xfr->task_transfer->master->host); 5967 return 0; 5968 } 5969 if(sldns_buffer_remaining(pkt) < 10) { 5970 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5971 "truncated RR", 5972 xfr->task_transfer->master->host); 5973 return 0; 5974 } 5975 (void)sldns_buffer_read_u16(pkt); /* type */ 5976 (void)sldns_buffer_read_u16(pkt); /* class */ 5977 (void)sldns_buffer_read_u32(pkt); /* ttl */ 5978 rdlen = sldns_buffer_read_u16(pkt); 5979 if(sldns_buffer_remaining(pkt) < rdlen) { 5980 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5981 "truncated RR rdata", 5982 xfr->task_transfer->master->host); 5983 return 0; 5984 } 5985 /* skip over RR rdata to go to the next RR */ 5986 sldns_buffer_skip(pkt, (ssize_t)rdlen); 5987 } 5988 5989 /* check additional section */ 5990 for(i=0; i<(int)LDNS_ARCOUNT(wire); i++) { 5991 uint16_t rdlen; 5992 if(pkt_dname_len(pkt) == 0) { 5993 verbose(VERB_ALGO, "xfr to %s failed, packet with " 5994 "malformed dname in additional section", 5995 xfr->task_transfer->master->host); 5996 return 0; 5997 } 5998 if(sldns_buffer_remaining(pkt) < 10) { 5999 verbose(VERB_ALGO, "xfr to %s failed, packet with " 6000 "truncated RR", 6001 xfr->task_transfer->master->host); 6002 return 0; 6003 } 6004 (void)sldns_buffer_read_u16(pkt); /* type */ 6005 (void)sldns_buffer_read_u16(pkt); /* class */ 6006 (void)sldns_buffer_read_u32(pkt); /* ttl */ 6007 rdlen = sldns_buffer_read_u16(pkt); 6008 if(sldns_buffer_remaining(pkt) < rdlen) { 6009 verbose(VERB_ALGO, "xfr to %s failed, packet with " 6010 "truncated RR rdata", 6011 xfr->task_transfer->master->host); 6012 return 0; 6013 } 6014 /* skip over RR rdata to go to the next RR */ 6015 sldns_buffer_skip(pkt, (ssize_t)rdlen); 6016 } 6017 6018 return 1; 6019 } 6020 6021 /** Link the data from this packet into the worklist of transferred data */ 6022 static int 6023 xfer_link_data(sldns_buffer* pkt, struct auth_xfer* xfr) 6024 { 6025 /* alloc it */ 6026 struct auth_chunk* e; 6027 e = (struct auth_chunk*)calloc(1, sizeof(*e)); 6028 if(!e) return 0; 6029 e->next = NULL; 6030 e->len = sldns_buffer_limit(pkt); 6031 e->data = memdup(sldns_buffer_begin(pkt), e->len); 6032 if(!e->data) { 6033 free(e); 6034 return 0; 6035 } 6036 6037 /* alloc succeeded, link into list */ 6038 if(!xfr->task_transfer->chunks_first) 6039 xfr->task_transfer->chunks_first = e; 6040 if(xfr->task_transfer->chunks_last) 6041 xfr->task_transfer->chunks_last->next = e; 6042 xfr->task_transfer->chunks_last = e; 6043 return 1; 6044 } 6045 6046 /** task transfer. the list of data is complete. process it and if failed 6047 * move to next master, if succeeded, end the task transfer */ 6048 static void 6049 process_list_end_transfer(struct auth_xfer* xfr, struct module_env* env) 6050 { 6051 int ixfr_fail = 0; 6052 if(xfr_process_chunk_list(xfr, env, &ixfr_fail)) { 6053 /* it worked! */ 6054 auth_chunks_delete(xfr->task_transfer); 6055 6056 /* we fetched the zone, move to wait task */ 6057 xfr_transfer_disown(xfr); 6058 6059 if(xfr->notify_received && (!xfr->notify_has_serial || 6060 (xfr->notify_has_serial && 6061 xfr_serial_means_update(xfr, xfr->notify_serial)))) { 6062 uint32_t sr = xfr->notify_serial; 6063 int has_sr = xfr->notify_has_serial; 6064 /* we received a notify while probe/transfer was 6065 * in progress. start a new probe and transfer */ 6066 xfr->notify_received = 0; 6067 xfr->notify_has_serial = 0; 6068 xfr->notify_serial = 0; 6069 if(!xfr_start_probe(xfr, env, NULL)) { 6070 /* if we couldn't start it, already in 6071 * progress; restore notify serial, 6072 * while xfr still locked */ 6073 xfr->notify_received = 1; 6074 xfr->notify_has_serial = has_sr; 6075 xfr->notify_serial = sr; 6076 lock_basic_unlock(&xfr->lock); 6077 } 6078 return; 6079 } else { 6080 /* pick up the nextprobe task and wait (normail wait time) */ 6081 if(xfr->task_nextprobe->worker == NULL) 6082 xfr_set_timeout(xfr, env, 0, 0); 6083 } 6084 lock_basic_unlock(&xfr->lock); 6085 return; 6086 } 6087 /* processing failed */ 6088 /* when done, delete data from list */ 6089 auth_chunks_delete(xfr->task_transfer); 6090 if(ixfr_fail) { 6091 xfr->task_transfer->ixfr_fail = 1; 6092 } else { 6093 xfr_transfer_nextmaster(xfr); 6094 } 6095 xfr_transfer_nexttarget_or_end(xfr, env); 6096 } 6097 6098 /** callback for the task_transfer timer */ 6099 void 6100 auth_xfer_transfer_timer_callback(void* arg) 6101 { 6102 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6103 struct module_env* env; 6104 int gonextonfail = 1; 6105 log_assert(xfr->task_transfer); 6106 lock_basic_lock(&xfr->lock); 6107 env = xfr->task_transfer->env; 6108 if(!env || env->outnet->want_to_quit) { 6109 lock_basic_unlock(&xfr->lock); 6110 return; /* stop on quit */ 6111 } 6112 6113 verbose(VERB_ALGO, "xfr stopped, connection timeout to %s", 6114 xfr->task_transfer->master->host); 6115 6116 /* see if IXFR caused the failure, if so, try AXFR */ 6117 if(xfr->task_transfer->on_ixfr) { 6118 xfr->task_transfer->ixfr_possible_timeout_count++; 6119 if(xfr->task_transfer->ixfr_possible_timeout_count >= 6120 NUM_TIMEOUTS_FALLBACK_IXFR) { 6121 verbose(VERB_ALGO, "xfr to %s, fallback " 6122 "from IXFR to AXFR (because of timeouts)", 6123 xfr->task_transfer->master->host); 6124 xfr->task_transfer->ixfr_fail = 1; 6125 gonextonfail = 0; 6126 } 6127 } 6128 6129 /* delete transferred data from list */ 6130 auth_chunks_delete(xfr->task_transfer); 6131 comm_point_delete(xfr->task_transfer->cp); 6132 xfr->task_transfer->cp = NULL; 6133 if(gonextonfail) 6134 xfr_transfer_nextmaster(xfr); 6135 xfr_transfer_nexttarget_or_end(xfr, env); 6136 } 6137 6138 /** callback for task_transfer tcp connections */ 6139 int 6140 auth_xfer_transfer_tcp_callback(struct comm_point* c, void* arg, int err, 6141 struct comm_reply* ATTR_UNUSED(repinfo)) 6142 { 6143 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6144 struct module_env* env; 6145 int gonextonfail = 1; 6146 int transferdone = 0; 6147 log_assert(xfr->task_transfer); 6148 lock_basic_lock(&xfr->lock); 6149 env = xfr->task_transfer->env; 6150 if(!env || env->outnet->want_to_quit) { 6151 lock_basic_unlock(&xfr->lock); 6152 return 0; /* stop on quit */ 6153 } 6154 /* stop the timer */ 6155 comm_timer_disable(xfr->task_transfer->timer); 6156 6157 if(err != NETEVENT_NOERROR) { 6158 /* connection failed, closed, or timeout */ 6159 /* stop this transfer, cleanup 6160 * and continue task_transfer*/ 6161 verbose(VERB_ALGO, "xfr stopped, connection lost to %s", 6162 xfr->task_transfer->master->host); 6163 6164 /* see if IXFR caused the failure, if so, try AXFR */ 6165 if(xfr->task_transfer->on_ixfr) { 6166 xfr->task_transfer->ixfr_possible_timeout_count++; 6167 if(xfr->task_transfer->ixfr_possible_timeout_count >= 6168 NUM_TIMEOUTS_FALLBACK_IXFR) { 6169 verbose(VERB_ALGO, "xfr to %s, fallback " 6170 "from IXFR to AXFR (because of timeouts)", 6171 xfr->task_transfer->master->host); 6172 xfr->task_transfer->ixfr_fail = 1; 6173 gonextonfail = 0; 6174 } 6175 } 6176 6177 failed: 6178 /* delete transferred data from list */ 6179 auth_chunks_delete(xfr->task_transfer); 6180 comm_point_delete(xfr->task_transfer->cp); 6181 xfr->task_transfer->cp = NULL; 6182 if(gonextonfail) 6183 xfr_transfer_nextmaster(xfr); 6184 xfr_transfer_nexttarget_or_end(xfr, env); 6185 return 0; 6186 } 6187 /* note that IXFR worked without timeout */ 6188 if(xfr->task_transfer->on_ixfr) 6189 xfr->task_transfer->ixfr_possible_timeout_count = 0; 6190 6191 /* handle returned packet */ 6192 /* if it fails, cleanup and end this transfer */ 6193 /* if it needs to fallback from IXFR to AXFR, do that */ 6194 if(!check_xfer_packet(c->buffer, xfr, &gonextonfail, &transferdone)) { 6195 goto failed; 6196 } 6197 /* if it is good, link it into the list of data */ 6198 /* if the link into list of data fails (malloc fail) cleanup and end */ 6199 if(!xfer_link_data(c->buffer, xfr)) { 6200 verbose(VERB_ALGO, "xfr stopped to %s, malloc failed", 6201 xfr->task_transfer->master->host); 6202 goto failed; 6203 } 6204 /* if the transfer is done now, disconnect and process the list */ 6205 if(transferdone) { 6206 comm_point_delete(xfr->task_transfer->cp); 6207 xfr->task_transfer->cp = NULL; 6208 process_list_end_transfer(xfr, env); 6209 return 0; 6210 } 6211 6212 /* if we want to read more messages, setup the commpoint to read 6213 * a DNS packet, and the timeout */ 6214 lock_basic_unlock(&xfr->lock); 6215 c->tcp_is_reading = 1; 6216 sldns_buffer_clear(c->buffer); 6217 comm_point_start_listening(c, -1, AUTH_TRANSFER_TIMEOUT); 6218 return 0; 6219 } 6220 6221 /** callback for task_transfer http connections */ 6222 int 6223 auth_xfer_transfer_http_callback(struct comm_point* c, void* arg, int err, 6224 struct comm_reply* repinfo) 6225 { 6226 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6227 struct module_env* env; 6228 log_assert(xfr->task_transfer); 6229 lock_basic_lock(&xfr->lock); 6230 env = xfr->task_transfer->env; 6231 if(!env || env->outnet->want_to_quit) { 6232 lock_basic_unlock(&xfr->lock); 6233 return 0; /* stop on quit */ 6234 } 6235 verbose(VERB_ALGO, "auth zone transfer http callback"); 6236 /* stop the timer */ 6237 comm_timer_disable(xfr->task_transfer->timer); 6238 6239 if(err != NETEVENT_NOERROR && err != NETEVENT_DONE) { 6240 /* connection failed, closed, or timeout */ 6241 /* stop this transfer, cleanup 6242 * and continue task_transfer*/ 6243 verbose(VERB_ALGO, "http stopped, connection lost to %s", 6244 xfr->task_transfer->master->host); 6245 failed: 6246 /* delete transferred data from list */ 6247 auth_chunks_delete(xfr->task_transfer); 6248 if(repinfo) repinfo->c = NULL; /* signal cp deleted to 6249 the routine calling this callback */ 6250 comm_point_delete(xfr->task_transfer->cp); 6251 xfr->task_transfer->cp = NULL; 6252 xfr_transfer_nextmaster(xfr); 6253 xfr_transfer_nexttarget_or_end(xfr, env); 6254 return 0; 6255 } 6256 6257 /* if it is good, link it into the list of data */ 6258 /* if the link into list of data fails (malloc fail) cleanup and end */ 6259 if(sldns_buffer_limit(c->buffer) > 0) { 6260 verbose(VERB_ALGO, "auth zone http queued up %d bytes", 6261 (int)sldns_buffer_limit(c->buffer)); 6262 if(!xfer_link_data(c->buffer, xfr)) { 6263 verbose(VERB_ALGO, "http stopped to %s, malloc failed", 6264 xfr->task_transfer->master->host); 6265 goto failed; 6266 } 6267 } 6268 /* if the transfer is done now, disconnect and process the list */ 6269 if(err == NETEVENT_DONE) { 6270 if(repinfo) repinfo->c = NULL; /* signal cp deleted to 6271 the routine calling this callback */ 6272 comm_point_delete(xfr->task_transfer->cp); 6273 xfr->task_transfer->cp = NULL; 6274 process_list_end_transfer(xfr, env); 6275 return 0; 6276 } 6277 6278 /* if we want to read more messages, setup the commpoint to read 6279 * a DNS packet, and the timeout */ 6280 lock_basic_unlock(&xfr->lock); 6281 c->tcp_is_reading = 1; 6282 sldns_buffer_clear(c->buffer); 6283 comm_point_start_listening(c, -1, AUTH_TRANSFER_TIMEOUT); 6284 return 0; 6285 } 6286 6287 6288 /** start transfer task by this worker , xfr is locked. */ 6289 static void 6290 xfr_start_transfer(struct auth_xfer* xfr, struct module_env* env, 6291 struct auth_master* master) 6292 { 6293 log_assert(xfr->task_transfer != NULL); 6294 log_assert(xfr->task_transfer->worker == NULL); 6295 log_assert(xfr->task_transfer->chunks_first == NULL); 6296 log_assert(xfr->task_transfer->chunks_last == NULL); 6297 xfr->task_transfer->worker = env->worker; 6298 xfr->task_transfer->env = env; 6299 6300 /* init transfer process */ 6301 /* find that master in the transfer's list of masters? */ 6302 xfr_transfer_start_list(xfr, master); 6303 /* start lookup for hostnames in transfer master list */ 6304 xfr_transfer_start_lookups(xfr); 6305 6306 /* initiate TCP, and set timeout on it */ 6307 xfr_transfer_nexttarget_or_end(xfr, env); 6308 } 6309 6310 /** disown task_probe. caller must hold xfr.lock */ 6311 static void 6312 xfr_probe_disown(struct auth_xfer* xfr) 6313 { 6314 /* remove timer (from this worker's event base) */ 6315 comm_timer_delete(xfr->task_probe->timer); 6316 xfr->task_probe->timer = NULL; 6317 /* remove the commpoint */ 6318 comm_point_delete(xfr->task_probe->cp); 6319 xfr->task_probe->cp = NULL; 6320 /* we don't own this item anymore */ 6321 xfr->task_probe->worker = NULL; 6322 xfr->task_probe->env = NULL; 6323 } 6324 6325 /** send the UDP probe to the master, this is part of task_probe */ 6326 static int 6327 xfr_probe_send_probe(struct auth_xfer* xfr, struct module_env* env, 6328 int timeout) 6329 { 6330 struct sockaddr_storage addr; 6331 socklen_t addrlen = 0; 6332 struct timeval t; 6333 /* pick master */ 6334 struct auth_master* master = xfr_probe_current_master(xfr); 6335 char *auth_name = NULL; 6336 if(!master) return 0; 6337 if(master->allow_notify) return 0; /* only for notify */ 6338 if(master->http) return 0; /* only masters get SOA UDP probe, 6339 not urls, if those are in this list */ 6340 6341 /* get master addr */ 6342 if(xfr->task_probe->scan_addr) { 6343 addrlen = xfr->task_probe->scan_addr->addrlen; 6344 memmove(&addr, &xfr->task_probe->scan_addr->addr, addrlen); 6345 } else { 6346 if(!authextstrtoaddr(master->host, &addr, &addrlen, &auth_name)) { 6347 /* the ones that are not in addr format are supposed 6348 * to be looked up. The lookup has failed however, 6349 * so skip them */ 6350 char zname[255+1]; 6351 dname_str(xfr->name, zname); 6352 log_err("%s: failed lookup, cannot probe to master %s", 6353 zname, master->host); 6354 return 0; 6355 } 6356 if (auth_name != NULL) { 6357 if (addr.ss_family == AF_INET 6358 && (int)ntohs(((struct sockaddr_in *)&addr)->sin_port) 6359 == env->cfg->ssl_port) 6360 ((struct sockaddr_in *)&addr)->sin_port 6361 = htons((uint16_t)env->cfg->port); 6362 else if (addr.ss_family == AF_INET6 6363 && (int)ntohs(((struct sockaddr_in6 *)&addr)->sin6_port) 6364 == env->cfg->ssl_port) 6365 ((struct sockaddr_in6 *)&addr)->sin6_port 6366 = htons((uint16_t)env->cfg->port); 6367 } 6368 } 6369 6370 /* create packet */ 6371 /* create new ID for new probes, but not on timeout retries, 6372 * this means we'll accept replies to previous retries to same ip */ 6373 if(timeout == AUTH_PROBE_TIMEOUT) 6374 xfr->task_probe->id = GET_RANDOM_ID(env->rnd); 6375 xfr_create_soa_probe_packet(xfr, env->scratch_buffer, 6376 xfr->task_probe->id); 6377 /* we need to remove the cp if we have a different ip4/ip6 type now */ 6378 if(xfr->task_probe->cp && 6379 ((xfr->task_probe->cp_is_ip6 && !addr_is_ip6(&addr, addrlen)) || 6380 (!xfr->task_probe->cp_is_ip6 && addr_is_ip6(&addr, addrlen))) 6381 ) { 6382 comm_point_delete(xfr->task_probe->cp); 6383 xfr->task_probe->cp = NULL; 6384 } 6385 if(!xfr->task_probe->cp) { 6386 if(addr_is_ip6(&addr, addrlen)) 6387 xfr->task_probe->cp_is_ip6 = 1; 6388 else xfr->task_probe->cp_is_ip6 = 0; 6389 xfr->task_probe->cp = outnet_comm_point_for_udp(env->outnet, 6390 auth_xfer_probe_udp_callback, xfr, &addr, addrlen); 6391 if(!xfr->task_probe->cp) { 6392 char zname[255+1], as[256]; 6393 dname_str(xfr->name, zname); 6394 addr_to_str(&addr, addrlen, as, sizeof(as)); 6395 verbose(VERB_ALGO, "cannot create udp cp for " 6396 "probe %s to %s", zname, as); 6397 return 0; 6398 } 6399 } 6400 if(!xfr->task_probe->timer) { 6401 xfr->task_probe->timer = comm_timer_create(env->worker_base, 6402 auth_xfer_probe_timer_callback, xfr); 6403 if(!xfr->task_probe->timer) { 6404 log_err("malloc failure"); 6405 return 0; 6406 } 6407 } 6408 6409 /* send udp packet */ 6410 if(!comm_point_send_udp_msg(xfr->task_probe->cp, env->scratch_buffer, 6411 (struct sockaddr*)&addr, addrlen, 0)) { 6412 char zname[255+1], as[256]; 6413 dname_str(xfr->name, zname); 6414 addr_to_str(&addr, addrlen, as, sizeof(as)); 6415 verbose(VERB_ALGO, "failed to send soa probe for %s to %s", 6416 zname, as); 6417 return 0; 6418 } 6419 if(verbosity >= VERB_ALGO) { 6420 char zname[255+1], as[256]; 6421 dname_str(xfr->name, zname); 6422 addr_to_str(&addr, addrlen, as, sizeof(as)); 6423 verbose(VERB_ALGO, "auth zone %s soa probe sent to %s", zname, 6424 as); 6425 } 6426 xfr->task_probe->timeout = timeout; 6427 #ifndef S_SPLINT_S 6428 t.tv_sec = timeout/1000; 6429 t.tv_usec = (timeout%1000)*1000; 6430 #endif 6431 comm_timer_set(xfr->task_probe->timer, &t); 6432 6433 return 1; 6434 } 6435 6436 /** callback for task_probe timer */ 6437 void 6438 auth_xfer_probe_timer_callback(void* arg) 6439 { 6440 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6441 struct module_env* env; 6442 log_assert(xfr->task_probe); 6443 lock_basic_lock(&xfr->lock); 6444 env = xfr->task_probe->env; 6445 if(!env || env->outnet->want_to_quit) { 6446 lock_basic_unlock(&xfr->lock); 6447 return; /* stop on quit */ 6448 } 6449 6450 if(verbosity >= VERB_ALGO) { 6451 char zname[255+1]; 6452 dname_str(xfr->name, zname); 6453 verbose(VERB_ALGO, "auth zone %s soa probe timeout", zname); 6454 } 6455 if(xfr->task_probe->timeout <= AUTH_PROBE_TIMEOUT_STOP) { 6456 /* try again with bigger timeout */ 6457 if(xfr_probe_send_probe(xfr, env, xfr->task_probe->timeout*2)) { 6458 lock_basic_unlock(&xfr->lock); 6459 return; 6460 } 6461 } 6462 /* delete commpoint so a new one is created, with a fresh port nr */ 6463 comm_point_delete(xfr->task_probe->cp); 6464 xfr->task_probe->cp = NULL; 6465 6466 /* too many timeouts (or fail to send), move to next or end */ 6467 xfr_probe_nextmaster(xfr); 6468 xfr_probe_send_or_end(xfr, env); 6469 } 6470 6471 /** callback for task_probe udp packets */ 6472 int 6473 auth_xfer_probe_udp_callback(struct comm_point* c, void* arg, int err, 6474 struct comm_reply* repinfo) 6475 { 6476 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6477 struct module_env* env; 6478 log_assert(xfr->task_probe); 6479 lock_basic_lock(&xfr->lock); 6480 env = xfr->task_probe->env; 6481 if(!env || env->outnet->want_to_quit) { 6482 lock_basic_unlock(&xfr->lock); 6483 return 0; /* stop on quit */ 6484 } 6485 6486 /* the comm_point_udp_callback is in a for loop for NUM_UDP_PER_SELECT 6487 * and we set rep.c=NULL to stop if from looking inside the commpoint*/ 6488 repinfo->c = NULL; 6489 /* stop the timer */ 6490 comm_timer_disable(xfr->task_probe->timer); 6491 6492 /* see if we got a packet and what that means */ 6493 if(err == NETEVENT_NOERROR) { 6494 uint32_t serial = 0; 6495 if(check_packet_ok(c->buffer, LDNS_RR_TYPE_SOA, xfr, 6496 &serial)) { 6497 /* successful lookup */ 6498 if(verbosity >= VERB_ALGO) { 6499 char buf[256]; 6500 dname_str(xfr->name, buf); 6501 verbose(VERB_ALGO, "auth zone %s: soa probe " 6502 "serial is %u", buf, (unsigned)serial); 6503 } 6504 /* see if this serial indicates that the zone has 6505 * to be updated */ 6506 if(xfr_serial_means_update(xfr, serial)) { 6507 /* if updated, start the transfer task, if needed */ 6508 verbose(VERB_ALGO, "auth_zone updated, start transfer"); 6509 if(xfr->task_transfer->worker == NULL) { 6510 struct auth_master* master = 6511 xfr_probe_current_master(xfr); 6512 /* if we have download URLs use them 6513 * in preference to this master we 6514 * just probed the SOA from */ 6515 if(xfr->task_transfer->masters && 6516 xfr->task_transfer->masters->http) 6517 master = NULL; 6518 xfr_probe_disown(xfr); 6519 xfr_start_transfer(xfr, env, master); 6520 return 0; 6521 6522 } 6523 /* other tasks are running, we don't do this anymore */ 6524 xfr_probe_disown(xfr); 6525 lock_basic_unlock(&xfr->lock); 6526 /* return, we don't sent a reply to this udp packet, 6527 * and we setup the tasks to do next */ 6528 return 0; 6529 } else { 6530 verbose(VERB_ALGO, "auth_zone master reports unchanged soa serial"); 6531 /* we if cannot find updates amongst the 6532 * masters, this means we then have a new lease 6533 * on the zone */ 6534 xfr->task_probe->have_new_lease = 1; 6535 } 6536 } else { 6537 if(verbosity >= VERB_ALGO) { 6538 char buf[256]; 6539 dname_str(xfr->name, buf); 6540 verbose(VERB_ALGO, "auth zone %s: bad reply to soa probe", buf); 6541 } 6542 } 6543 } else { 6544 if(verbosity >= VERB_ALGO) { 6545 char buf[256]; 6546 dname_str(xfr->name, buf); 6547 verbose(VERB_ALGO, "auth zone %s: soa probe failed", buf); 6548 } 6549 } 6550 6551 /* failed lookup or not an update */ 6552 /* delete commpoint so a new one is created, with a fresh port nr */ 6553 comm_point_delete(xfr->task_probe->cp); 6554 xfr->task_probe->cp = NULL; 6555 6556 /* if the result was not a successful probe, we need 6557 * to send the next one */ 6558 xfr_probe_nextmaster(xfr); 6559 xfr_probe_send_or_end(xfr, env); 6560 return 0; 6561 } 6562 6563 /** lookup a host name for its addresses, if needed */ 6564 static int 6565 xfr_probe_lookup_host(struct auth_xfer* xfr, struct module_env* env) 6566 { 6567 struct sockaddr_storage addr; 6568 socklen_t addrlen = 0; 6569 struct auth_master* master = xfr->task_probe->lookup_target; 6570 struct query_info qinfo; 6571 uint16_t qflags = BIT_RD; 6572 uint8_t dname[LDNS_MAX_DOMAINLEN+1]; 6573 struct edns_data edns; 6574 sldns_buffer* buf = env->scratch_buffer; 6575 if(!master) return 0; 6576 if(extstrtoaddr(master->host, &addr, &addrlen, UNBOUND_DNS_PORT)) { 6577 /* not needed, host is in IP addr format */ 6578 return 0; 6579 } 6580 if(master->allow_notify && !master->http && 6581 strchr(master->host, '/') != NULL && 6582 strchr(master->host, '/') == strrchr(master->host, '/')) { 6583 return 0; /* is IP/prefix format, not something to look up */ 6584 } 6585 6586 /* use mesh_new_callback to probe for non-addr hosts, 6587 * and then wait for them to be looked up (in cache, or query) */ 6588 qinfo.qname_len = sizeof(dname); 6589 if(sldns_str2wire_dname_buf(master->host, dname, &qinfo.qname_len) 6590 != 0) { 6591 log_err("cannot parse host name of master %s", master->host); 6592 return 0; 6593 } 6594 qinfo.qname = dname; 6595 qinfo.qclass = xfr->dclass; 6596 qinfo.qtype = LDNS_RR_TYPE_A; 6597 if(xfr->task_probe->lookup_aaaa) 6598 qinfo.qtype = LDNS_RR_TYPE_AAAA; 6599 qinfo.local_alias = NULL; 6600 if(verbosity >= VERB_ALGO) { 6601 char buf1[512]; 6602 char buf2[LDNS_MAX_DOMAINLEN+1]; 6603 dname_str(xfr->name, buf2); 6604 snprintf(buf1, sizeof(buf1), "auth zone %s: master lookup" 6605 " for task_probe", buf2); 6606 log_query_info(VERB_ALGO, buf1, &qinfo); 6607 } 6608 edns.edns_present = 1; 6609 edns.ext_rcode = 0; 6610 edns.edns_version = 0; 6611 edns.bits = EDNS_DO; 6612 edns.opt_list_in = NULL; 6613 edns.opt_list_out = NULL; 6614 edns.opt_list_inplace_cb_out = NULL; 6615 edns.padding_block_size = 0; 6616 if(sldns_buffer_capacity(buf) < 65535) 6617 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 6618 else edns.udp_size = 65535; 6619 6620 /* unlock xfr during mesh_new_callback() because the callback can be 6621 * called straight away */ 6622 lock_basic_unlock(&xfr->lock); 6623 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 6624 &auth_xfer_probe_lookup_callback, xfr, 0)) { 6625 lock_basic_lock(&xfr->lock); 6626 log_err("out of memory lookup up master %s", master->host); 6627 return 0; 6628 } 6629 lock_basic_lock(&xfr->lock); 6630 return 1; 6631 } 6632 6633 /** move to sending the probe packets, next if fails. task_probe */ 6634 static void 6635 xfr_probe_send_or_end(struct auth_xfer* xfr, struct module_env* env) 6636 { 6637 /* are we doing hostname lookups? */ 6638 while(xfr->task_probe->lookup_target) { 6639 if(xfr_probe_lookup_host(xfr, env)) { 6640 /* wait for lookup to finish, 6641 * note that the hostname may be in unbound's cache 6642 * and we may then get an instant cache response, 6643 * and that calls the callback just like a full 6644 * lookup and lookup failures also call callback */ 6645 if(verbosity >= VERB_ALGO) { 6646 char zname[255+1]; 6647 dname_str(xfr->name, zname); 6648 verbose(VERB_ALGO, "auth zone %s probe next target lookup", zname); 6649 } 6650 lock_basic_unlock(&xfr->lock); 6651 return; 6652 } 6653 xfr_probe_move_to_next_lookup(xfr, env); 6654 } 6655 /* probe of list has ended. Create or refresh the list of of 6656 * allow_notify addrs */ 6657 probe_copy_masters_for_allow_notify(xfr); 6658 if(verbosity >= VERB_ALGO) { 6659 char zname[255+1]; 6660 dname_str(xfr->name, zname); 6661 verbose(VERB_ALGO, "auth zone %s probe: notify addrs updated", zname); 6662 } 6663 if(xfr->task_probe->only_lookup) { 6664 /* only wanted lookups for copy, stop probe and start wait */ 6665 xfr->task_probe->only_lookup = 0; 6666 if(verbosity >= VERB_ALGO) { 6667 char zname[255+1]; 6668 dname_str(xfr->name, zname); 6669 verbose(VERB_ALGO, "auth zone %s probe: finished only_lookup", zname); 6670 } 6671 xfr_probe_disown(xfr); 6672 if(xfr->task_nextprobe->worker == NULL) 6673 xfr_set_timeout(xfr, env, 0, 0); 6674 lock_basic_unlock(&xfr->lock); 6675 return; 6676 } 6677 6678 /* send probe packets */ 6679 while(!xfr_probe_end_of_list(xfr)) { 6680 if(xfr_probe_send_probe(xfr, env, AUTH_PROBE_TIMEOUT)) { 6681 /* successfully sent probe, wait for callback */ 6682 lock_basic_unlock(&xfr->lock); 6683 return; 6684 } 6685 /* failed to send probe, next master */ 6686 xfr_probe_nextmaster(xfr); 6687 } 6688 6689 /* done with probe sequence, wait */ 6690 if(xfr->task_probe->have_new_lease) { 6691 /* if zone not updated, start the wait timer again */ 6692 if(verbosity >= VERB_ALGO) { 6693 char zname[255+1]; 6694 dname_str(xfr->name, zname); 6695 verbose(VERB_ALGO, "auth_zone %s unchanged, new lease, wait", zname); 6696 } 6697 xfr_probe_disown(xfr); 6698 if(xfr->have_zone) 6699 xfr->lease_time = *env->now; 6700 if(xfr->task_nextprobe->worker == NULL) 6701 xfr_set_timeout(xfr, env, 0, 0); 6702 } else { 6703 if(verbosity >= VERB_ALGO) { 6704 char zname[255+1]; 6705 dname_str(xfr->name, zname); 6706 verbose(VERB_ALGO, "auth zone %s soa probe failed, wait to retry", zname); 6707 } 6708 /* we failed to send this as well, move to the wait task, 6709 * use the shorter retry timeout */ 6710 xfr_probe_disown(xfr); 6711 /* pick up the nextprobe task and wait */ 6712 if(xfr->task_nextprobe->worker == NULL) 6713 xfr_set_timeout(xfr, env, 1, 0); 6714 } 6715 6716 lock_basic_unlock(&xfr->lock); 6717 } 6718 6719 /** callback for task_probe lookup of host name, of A or AAAA */ 6720 void auth_xfer_probe_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 6721 enum sec_status ATTR_UNUSED(sec), char* ATTR_UNUSED(why_bogus), 6722 int ATTR_UNUSED(was_ratelimited)) 6723 { 6724 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6725 struct module_env* env; 6726 log_assert(xfr->task_probe); 6727 lock_basic_lock(&xfr->lock); 6728 env = xfr->task_probe->env; 6729 if(!env || env->outnet->want_to_quit) { 6730 lock_basic_unlock(&xfr->lock); 6731 return; /* stop on quit */ 6732 } 6733 6734 /* process result */ 6735 if(rcode == LDNS_RCODE_NOERROR) { 6736 uint16_t wanted_qtype = LDNS_RR_TYPE_A; 6737 struct regional* temp = env->scratch; 6738 struct query_info rq; 6739 struct reply_info* rep; 6740 if(xfr->task_probe->lookup_aaaa) 6741 wanted_qtype = LDNS_RR_TYPE_AAAA; 6742 memset(&rq, 0, sizeof(rq)); 6743 rep = parse_reply_in_temp_region(buf, temp, &rq); 6744 if(rep && rq.qtype == wanted_qtype && 6745 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 6746 /* parsed successfully */ 6747 struct ub_packed_rrset_key* answer = 6748 reply_find_answer_rrset(&rq, rep); 6749 if(answer) { 6750 xfr_master_add_addrs(xfr->task_probe-> 6751 lookup_target, answer, wanted_qtype); 6752 } else { 6753 if(verbosity >= VERB_ALGO) { 6754 char zname[255+1]; 6755 dname_str(xfr->name, zname); 6756 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup has nodata", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6757 } 6758 } 6759 } else { 6760 if(verbosity >= VERB_ALGO) { 6761 char zname[255+1]; 6762 dname_str(xfr->name, zname); 6763 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup has no address", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6764 } 6765 } 6766 regional_free_all(temp); 6767 } else { 6768 if(verbosity >= VERB_ALGO) { 6769 char zname[255+1]; 6770 dname_str(xfr->name, zname); 6771 verbose(VERB_ALGO, "auth zone %s host %s type %s probe lookup failed", zname, xfr->task_probe->lookup_target->host, (xfr->task_probe->lookup_aaaa?"AAAA":"A")); 6772 } 6773 } 6774 if(xfr->task_probe->lookup_target->list && 6775 xfr->task_probe->lookup_target == xfr_probe_current_master(xfr)) 6776 xfr->task_probe->scan_addr = xfr->task_probe->lookup_target->list; 6777 6778 /* move to lookup AAAA after A lookup, move to next hostname lookup, 6779 * or move to send the probes, or, if nothing to do, end task_probe */ 6780 xfr_probe_move_to_next_lookup(xfr, env); 6781 xfr_probe_send_or_end(xfr, env); 6782 } 6783 6784 /** disown task_nextprobe. caller must hold xfr.lock */ 6785 static void 6786 xfr_nextprobe_disown(struct auth_xfer* xfr) 6787 { 6788 /* delete the timer, because the next worker to pick this up may 6789 * not have the same event base */ 6790 comm_timer_delete(xfr->task_nextprobe->timer); 6791 xfr->task_nextprobe->timer = NULL; 6792 xfr->task_nextprobe->next_probe = 0; 6793 /* we don't own this item anymore */ 6794 xfr->task_nextprobe->worker = NULL; 6795 xfr->task_nextprobe->env = NULL; 6796 } 6797 6798 /** xfer nextprobe timeout callback, this is part of task_nextprobe */ 6799 void 6800 auth_xfer_timer(void* arg) 6801 { 6802 struct auth_xfer* xfr = (struct auth_xfer*)arg; 6803 struct module_env* env; 6804 log_assert(xfr->task_nextprobe); 6805 lock_basic_lock(&xfr->lock); 6806 env = xfr->task_nextprobe->env; 6807 if(!env || env->outnet->want_to_quit) { 6808 lock_basic_unlock(&xfr->lock); 6809 return; /* stop on quit */ 6810 } 6811 6812 /* see if zone has expired, and if so, also set auth_zone expired */ 6813 if(xfr->have_zone && !xfr->zone_expired && 6814 *env->now >= xfr->lease_time + xfr->expiry) { 6815 lock_basic_unlock(&xfr->lock); 6816 auth_xfer_set_expired(xfr, env, 1); 6817 lock_basic_lock(&xfr->lock); 6818 } 6819 6820 xfr_nextprobe_disown(xfr); 6821 6822 if(!xfr_start_probe(xfr, env, NULL)) { 6823 /* not started because already in progress */ 6824 lock_basic_unlock(&xfr->lock); 6825 } 6826 } 6827 6828 /** return true if there are probe (SOA UDP query) targets in the master list*/ 6829 static int 6830 have_probe_targets(struct auth_master* list) 6831 { 6832 struct auth_master* p; 6833 for(p=list; p; p = p->next) { 6834 if(!p->allow_notify && p->host) 6835 return 1; 6836 } 6837 return 0; 6838 } 6839 6840 /** start task_probe if possible, if no masters for probe start task_transfer 6841 * returns true if task has been started, and false if the task is already 6842 * in progress. */ 6843 static int 6844 xfr_start_probe(struct auth_xfer* xfr, struct module_env* env, 6845 struct auth_master* spec) 6846 { 6847 /* see if we need to start a probe (or maybe it is already in 6848 * progress (due to notify)) */ 6849 if(xfr->task_probe->worker == NULL) { 6850 if(!have_probe_targets(xfr->task_probe->masters) && 6851 !(xfr->task_probe->only_lookup && 6852 xfr->task_probe->masters != NULL)) { 6853 /* useless to pick up task_probe, no masters to 6854 * probe. Instead attempt to pick up task transfer */ 6855 if(xfr->task_transfer->worker == NULL) { 6856 xfr_start_transfer(xfr, env, spec); 6857 return 1; 6858 } 6859 /* task transfer already in progress */ 6860 return 0; 6861 } 6862 6863 /* pick up the probe task ourselves */ 6864 xfr->task_probe->worker = env->worker; 6865 xfr->task_probe->env = env; 6866 xfr->task_probe->cp = NULL; 6867 6868 /* start the task */ 6869 /* have not seen a new lease yet, this scan */ 6870 xfr->task_probe->have_new_lease = 0; 6871 /* if this was a timeout, no specific first master to scan */ 6872 /* otherwise, spec is nonNULL the notified master, scan 6873 * first and also transfer first from it */ 6874 xfr_probe_start_list(xfr, spec); 6875 /* setup to start the lookup of hostnames of masters afresh */ 6876 xfr_probe_start_lookups(xfr); 6877 /* send the probe packet or next send, or end task */ 6878 xfr_probe_send_or_end(xfr, env); 6879 return 1; 6880 } 6881 return 0; 6882 } 6883 6884 /** for task_nextprobe. 6885 * determine next timeout for auth_xfer. Also (re)sets timer. 6886 * @param xfr: task structure 6887 * @param env: module environment, with worker and time. 6888 * @param failure: set true if timer should be set for failure retry. 6889 * @param lookup_only: only perform lookups when timer done, 0 sec timeout 6890 */ 6891 static void 6892 xfr_set_timeout(struct auth_xfer* xfr, struct module_env* env, 6893 int failure, int lookup_only) 6894 { 6895 struct timeval tv; 6896 log_assert(xfr->task_nextprobe != NULL); 6897 log_assert(xfr->task_nextprobe->worker == NULL || 6898 xfr->task_nextprobe->worker == env->worker); 6899 /* normally, nextprobe = startoflease + refresh, 6900 * but if expiry is sooner, use that one. 6901 * after a failure, use the retry timer instead. */ 6902 xfr->task_nextprobe->next_probe = *env->now; 6903 if(xfr->lease_time && !failure) 6904 xfr->task_nextprobe->next_probe = xfr->lease_time; 6905 6906 if(!failure) { 6907 xfr->task_nextprobe->backoff = 0; 6908 } else { 6909 if(xfr->task_nextprobe->backoff == 0) 6910 xfr->task_nextprobe->backoff = 3; 6911 else xfr->task_nextprobe->backoff *= 2; 6912 if(xfr->task_nextprobe->backoff > AUTH_TRANSFER_MAX_BACKOFF) 6913 xfr->task_nextprobe->backoff = 6914 AUTH_TRANSFER_MAX_BACKOFF; 6915 } 6916 6917 if(xfr->have_zone) { 6918 time_t wait = xfr->refresh; 6919 if(failure) wait = xfr->retry; 6920 if(xfr->expiry < wait) 6921 xfr->task_nextprobe->next_probe += xfr->expiry; 6922 else xfr->task_nextprobe->next_probe += wait; 6923 if(failure) 6924 xfr->task_nextprobe->next_probe += 6925 xfr->task_nextprobe->backoff; 6926 /* put the timer exactly on expiry, if possible */ 6927 if(xfr->lease_time && xfr->lease_time+xfr->expiry < 6928 xfr->task_nextprobe->next_probe && 6929 xfr->lease_time+xfr->expiry > *env->now) 6930 xfr->task_nextprobe->next_probe = 6931 xfr->lease_time+xfr->expiry; 6932 } else { 6933 xfr->task_nextprobe->next_probe += 6934 xfr->task_nextprobe->backoff; 6935 } 6936 6937 if(!xfr->task_nextprobe->timer) { 6938 xfr->task_nextprobe->timer = comm_timer_create( 6939 env->worker_base, auth_xfer_timer, xfr); 6940 if(!xfr->task_nextprobe->timer) { 6941 /* failed to malloc memory. likely zone transfer 6942 * also fails for that. skip the timeout */ 6943 char zname[255+1]; 6944 dname_str(xfr->name, zname); 6945 log_err("cannot allocate timer, no refresh for %s", 6946 zname); 6947 return; 6948 } 6949 } 6950 xfr->task_nextprobe->worker = env->worker; 6951 xfr->task_nextprobe->env = env; 6952 if(*(xfr->task_nextprobe->env->now) <= xfr->task_nextprobe->next_probe) 6953 tv.tv_sec = xfr->task_nextprobe->next_probe - 6954 *(xfr->task_nextprobe->env->now); 6955 else tv.tv_sec = 0; 6956 if(tv.tv_sec != 0 && lookup_only && xfr->task_probe->masters) { 6957 /* don't lookup_only, if lookup timeout is 0 anyway, 6958 * or if we don't have masters to lookup */ 6959 tv.tv_sec = 0; 6960 if(xfr->task_probe->worker == NULL) 6961 xfr->task_probe->only_lookup = 1; 6962 } 6963 if(verbosity >= VERB_ALGO) { 6964 char zname[255+1]; 6965 dname_str(xfr->name, zname); 6966 verbose(VERB_ALGO, "auth zone %s timeout in %d seconds", 6967 zname, (int)tv.tv_sec); 6968 } 6969 tv.tv_usec = 0; 6970 comm_timer_set(xfr->task_nextprobe->timer, &tv); 6971 } 6972 6973 /** initial pick up of worker timeouts, ties events to worker event loop */ 6974 void 6975 auth_xfer_pickup_initial(struct auth_zones* az, struct module_env* env) 6976 { 6977 struct auth_xfer* x; 6978 lock_rw_wrlock(&az->lock); 6979 RBTREE_FOR(x, struct auth_xfer*, &az->xtree) { 6980 lock_basic_lock(&x->lock); 6981 /* set lease_time, because we now have timestamp in env, 6982 * (not earlier during startup and apply_cfg), and this 6983 * notes the start time when the data was acquired */ 6984 if(x->have_zone) 6985 x->lease_time = *env->now; 6986 if(x->task_nextprobe && x->task_nextprobe->worker == NULL) { 6987 xfr_set_timeout(x, env, 0, 1); 6988 } 6989 lock_basic_unlock(&x->lock); 6990 } 6991 lock_rw_unlock(&az->lock); 6992 } 6993 6994 void auth_zones_cleanup(struct auth_zones* az) 6995 { 6996 struct auth_xfer* x; 6997 lock_rw_wrlock(&az->lock); 6998 RBTREE_FOR(x, struct auth_xfer*, &az->xtree) { 6999 lock_basic_lock(&x->lock); 7000 if(x->task_nextprobe && x->task_nextprobe->worker != NULL) { 7001 xfr_nextprobe_disown(x); 7002 } 7003 if(x->task_probe && x->task_probe->worker != NULL) { 7004 xfr_probe_disown(x); 7005 } 7006 if(x->task_transfer && x->task_transfer->worker != NULL) { 7007 auth_chunks_delete(x->task_transfer); 7008 xfr_transfer_disown(x); 7009 } 7010 lock_basic_unlock(&x->lock); 7011 } 7012 lock_rw_unlock(&az->lock); 7013 } 7014 7015 /** 7016 * malloc the xfer and tasks 7017 * @param z: auth_zone with name of zone. 7018 */ 7019 static struct auth_xfer* 7020 auth_xfer_new(struct auth_zone* z) 7021 { 7022 struct auth_xfer* xfr; 7023 xfr = (struct auth_xfer*)calloc(1, sizeof(*xfr)); 7024 if(!xfr) return NULL; 7025 xfr->name = memdup(z->name, z->namelen); 7026 if(!xfr->name) { 7027 free(xfr); 7028 return NULL; 7029 } 7030 xfr->node.key = xfr; 7031 xfr->namelen = z->namelen; 7032 xfr->namelabs = z->namelabs; 7033 xfr->dclass = z->dclass; 7034 7035 xfr->task_nextprobe = (struct auth_nextprobe*)calloc(1, 7036 sizeof(struct auth_nextprobe)); 7037 if(!xfr->task_nextprobe) { 7038 free(xfr->name); 7039 free(xfr); 7040 return NULL; 7041 } 7042 xfr->task_probe = (struct auth_probe*)calloc(1, 7043 sizeof(struct auth_probe)); 7044 if(!xfr->task_probe) { 7045 free(xfr->task_nextprobe); 7046 free(xfr->name); 7047 free(xfr); 7048 return NULL; 7049 } 7050 xfr->task_transfer = (struct auth_transfer*)calloc(1, 7051 sizeof(struct auth_transfer)); 7052 if(!xfr->task_transfer) { 7053 free(xfr->task_probe); 7054 free(xfr->task_nextprobe); 7055 free(xfr->name); 7056 free(xfr); 7057 return NULL; 7058 } 7059 7060 lock_basic_init(&xfr->lock); 7061 lock_protect(&xfr->lock, &xfr->name, sizeof(xfr->name)); 7062 lock_protect(&xfr->lock, &xfr->namelen, sizeof(xfr->namelen)); 7063 lock_protect(&xfr->lock, xfr->name, xfr->namelen); 7064 lock_protect(&xfr->lock, &xfr->namelabs, sizeof(xfr->namelabs)); 7065 lock_protect(&xfr->lock, &xfr->dclass, sizeof(xfr->dclass)); 7066 lock_protect(&xfr->lock, &xfr->notify_received, sizeof(xfr->notify_received)); 7067 lock_protect(&xfr->lock, &xfr->notify_serial, sizeof(xfr->notify_serial)); 7068 lock_protect(&xfr->lock, &xfr->zone_expired, sizeof(xfr->zone_expired)); 7069 lock_protect(&xfr->lock, &xfr->have_zone, sizeof(xfr->have_zone)); 7070 lock_protect(&xfr->lock, &xfr->serial, sizeof(xfr->serial)); 7071 lock_protect(&xfr->lock, &xfr->retry, sizeof(xfr->retry)); 7072 lock_protect(&xfr->lock, &xfr->refresh, sizeof(xfr->refresh)); 7073 lock_protect(&xfr->lock, &xfr->expiry, sizeof(xfr->expiry)); 7074 lock_protect(&xfr->lock, &xfr->lease_time, sizeof(xfr->lease_time)); 7075 lock_protect(&xfr->lock, &xfr->task_nextprobe->worker, 7076 sizeof(xfr->task_nextprobe->worker)); 7077 lock_protect(&xfr->lock, &xfr->task_probe->worker, 7078 sizeof(xfr->task_probe->worker)); 7079 lock_protect(&xfr->lock, &xfr->task_transfer->worker, 7080 sizeof(xfr->task_transfer->worker)); 7081 lock_basic_lock(&xfr->lock); 7082 return xfr; 7083 } 7084 7085 /** Create auth_xfer structure. 7086 * This populates the have_zone, soa values, and so on times. 7087 * and sets the timeout, if a zone transfer is needed a short timeout is set. 7088 * For that the auth_zone itself must exist (and read in zonefile) 7089 * returns false on alloc failure. */ 7090 struct auth_xfer* 7091 auth_xfer_create(struct auth_zones* az, struct auth_zone* z) 7092 { 7093 struct auth_xfer* xfr; 7094 7095 /* malloc it */ 7096 xfr = auth_xfer_new(z); 7097 if(!xfr) { 7098 log_err("malloc failure"); 7099 return NULL; 7100 } 7101 /* insert in tree */ 7102 (void)rbtree_insert(&az->xtree, &xfr->node); 7103 return xfr; 7104 } 7105 7106 /** create new auth_master structure */ 7107 static struct auth_master* 7108 auth_master_new(struct auth_master*** list) 7109 { 7110 struct auth_master *m; 7111 m = (struct auth_master*)calloc(1, sizeof(*m)); 7112 if(!m) { 7113 log_err("malloc failure"); 7114 return NULL; 7115 } 7116 /* set first pointer to m, or next pointer of previous element to m */ 7117 (**list) = m; 7118 /* store m's next pointer as future point to store at */ 7119 (*list) = &(m->next); 7120 return m; 7121 } 7122 7123 /** dup_prefix : create string from initial part of other string, malloced */ 7124 static char* 7125 dup_prefix(char* str, size_t num) 7126 { 7127 char* result; 7128 size_t len = strlen(str); 7129 if(len < num) num = len; /* not more than strlen */ 7130 result = (char*)malloc(num+1); 7131 if(!result) { 7132 log_err("malloc failure"); 7133 return result; 7134 } 7135 memmove(result, str, num); 7136 result[num] = 0; 7137 return result; 7138 } 7139 7140 /** dup string and print error on error */ 7141 static char* 7142 dup_all(char* str) 7143 { 7144 char* result = strdup(str); 7145 if(!result) { 7146 log_err("malloc failure"); 7147 return NULL; 7148 } 7149 return result; 7150 } 7151 7152 /** find first of two characters */ 7153 static char* 7154 str_find_first_of_chars(char* s, char a, char b) 7155 { 7156 char* ra = strchr(s, a); 7157 char* rb = strchr(s, b); 7158 if(!ra) return rb; 7159 if(!rb) return ra; 7160 if(ra < rb) return ra; 7161 return rb; 7162 } 7163 7164 /** parse URL into host and file parts, false on malloc or parse error */ 7165 static int 7166 parse_url(char* url, char** host, char** file, int* port, int* ssl) 7167 { 7168 char* p = url; 7169 /* parse http://www.example.com/file.htm 7170 * or http://127.0.0.1 (index.html) 7171 * or https://[::1@1234]/a/b/c/d */ 7172 *ssl = 1; 7173 *port = AUTH_HTTPS_PORT; 7174 7175 /* parse http:// or https:// */ 7176 if(strncmp(p, "http://", 7) == 0) { 7177 p += 7; 7178 *ssl = 0; 7179 *port = AUTH_HTTP_PORT; 7180 } else if(strncmp(p, "https://", 8) == 0) { 7181 p += 8; 7182 } else if(strstr(p, "://") && strchr(p, '/') > strstr(p, "://") && 7183 strchr(p, ':') >= strstr(p, "://")) { 7184 char* uri = dup_prefix(p, (size_t)(strstr(p, "://")-p)); 7185 log_err("protocol %s:// not supported (for url %s)", 7186 uri?uri:"", p); 7187 free(uri); 7188 return 0; 7189 } 7190 7191 /* parse hostname part */ 7192 if(p[0] == '[') { 7193 char* end = strchr(p, ']'); 7194 p++; /* skip over [ */ 7195 if(end) { 7196 *host = dup_prefix(p, (size_t)(end-p)); 7197 if(!*host) return 0; 7198 p = end+1; /* skip over ] */ 7199 } else { 7200 *host = dup_all(p); 7201 if(!*host) return 0; 7202 p = end; 7203 } 7204 } else { 7205 char* end = str_find_first_of_chars(p, ':', '/'); 7206 if(end) { 7207 *host = dup_prefix(p, (size_t)(end-p)); 7208 if(!*host) return 0; 7209 } else { 7210 *host = dup_all(p); 7211 if(!*host) return 0; 7212 } 7213 p = end; /* at next : or / or NULL */ 7214 } 7215 7216 /* parse port number */ 7217 if(p && p[0] == ':') { 7218 char* end = NULL; 7219 *port = strtol(p+1, &end, 10); 7220 p = end; 7221 } 7222 7223 /* parse filename part */ 7224 while(p && *p == '/') 7225 p++; 7226 if(!p || p[0] == 0) 7227 *file = strdup("/"); 7228 else *file = strdup(p); 7229 if(!*file) { 7230 log_err("malloc failure"); 7231 return 0; 7232 } 7233 return 1; 7234 } 7235 7236 int 7237 xfer_set_masters(struct auth_master** list, struct config_auth* c, 7238 int with_http) 7239 { 7240 struct auth_master* m; 7241 struct config_strlist* p; 7242 /* list points to the first, or next pointer for the new element */ 7243 while(*list) { 7244 list = &( (*list)->next ); 7245 } 7246 if(with_http) 7247 for(p = c->urls; p; p = p->next) { 7248 m = auth_master_new(&list); 7249 if(!m) return 0; 7250 m->http = 1; 7251 if(!parse_url(p->str, &m->host, &m->file, &m->port, &m->ssl)) 7252 return 0; 7253 } 7254 for(p = c->masters; p; p = p->next) { 7255 m = auth_master_new(&list); 7256 if(!m) return 0; 7257 m->ixfr = 1; /* this flag is not configurable */ 7258 m->host = strdup(p->str); 7259 if(!m->host) { 7260 log_err("malloc failure"); 7261 return 0; 7262 } 7263 } 7264 for(p = c->allow_notify; p; p = p->next) { 7265 m = auth_master_new(&list); 7266 if(!m) return 0; 7267 m->allow_notify = 1; 7268 m->host = strdup(p->str); 7269 if(!m->host) { 7270 log_err("malloc failure"); 7271 return 0; 7272 } 7273 } 7274 return 1; 7275 } 7276 7277 #define SERIAL_BITS 32 7278 int 7279 compare_serial(uint32_t a, uint32_t b) 7280 { 7281 const uint32_t cutoff = ((uint32_t) 1 << (SERIAL_BITS - 1)); 7282 7283 if (a == b) { 7284 return 0; 7285 } else if ((a < b && b - a < cutoff) || (a > b && a - b > cutoff)) { 7286 return -1; 7287 } else { 7288 return 1; 7289 } 7290 } 7291 7292 int zonemd_hashalgo_supported(int hashalgo) 7293 { 7294 if(hashalgo == ZONEMD_ALGO_SHA384) return 1; 7295 if(hashalgo == ZONEMD_ALGO_SHA512) return 1; 7296 return 0; 7297 } 7298 7299 int zonemd_scheme_supported(int scheme) 7300 { 7301 if(scheme == ZONEMD_SCHEME_SIMPLE) return 1; 7302 return 0; 7303 } 7304 7305 /** initialize hash for hashing with zonemd hash algo */ 7306 static struct secalgo_hash* zonemd_digest_init(int hashalgo, char** reason) 7307 { 7308 struct secalgo_hash *h; 7309 if(hashalgo == ZONEMD_ALGO_SHA384) { 7310 /* sha384 */ 7311 h = secalgo_hash_create_sha384(); 7312 if(!h) 7313 *reason = "digest sha384 could not be created"; 7314 return h; 7315 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7316 /* sha512 */ 7317 h = secalgo_hash_create_sha512(); 7318 if(!h) 7319 *reason = "digest sha512 could not be created"; 7320 return h; 7321 } 7322 /* unknown hash algo */ 7323 *reason = "unsupported algorithm"; 7324 return NULL; 7325 } 7326 7327 /** update the hash for zonemd */ 7328 static int zonemd_digest_update(int hashalgo, struct secalgo_hash* h, 7329 uint8_t* data, size_t len, char** reason) 7330 { 7331 if(hashalgo == ZONEMD_ALGO_SHA384) { 7332 if(!secalgo_hash_update(h, data, len)) { 7333 *reason = "digest sha384 failed"; 7334 return 0; 7335 } 7336 return 1; 7337 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7338 if(!secalgo_hash_update(h, data, len)) { 7339 *reason = "digest sha512 failed"; 7340 return 0; 7341 } 7342 return 1; 7343 } 7344 /* unknown hash algo */ 7345 *reason = "unsupported algorithm"; 7346 return 0; 7347 } 7348 7349 /** finish the hash for zonemd */ 7350 static int zonemd_digest_finish(int hashalgo, struct secalgo_hash* h, 7351 uint8_t* result, size_t hashlen, size_t* resultlen, char** reason) 7352 { 7353 if(hashalgo == ZONEMD_ALGO_SHA384) { 7354 if(hashlen < 384/8) { 7355 *reason = "digest buffer too small for sha384"; 7356 return 0; 7357 } 7358 if(!secalgo_hash_final(h, result, hashlen, resultlen)) { 7359 *reason = "digest sha384 finish failed"; 7360 return 0; 7361 } 7362 return 1; 7363 } else if(hashalgo == ZONEMD_ALGO_SHA512) { 7364 if(hashlen < 512/8) { 7365 *reason = "digest buffer too small for sha512"; 7366 return 0; 7367 } 7368 if(!secalgo_hash_final(h, result, hashlen, resultlen)) { 7369 *reason = "digest sha512 finish failed"; 7370 return 0; 7371 } 7372 return 1; 7373 } 7374 /* unknown algo */ 7375 *reason = "unsupported algorithm"; 7376 return 0; 7377 } 7378 7379 /** add rrsets from node to the list */ 7380 static size_t authdata_rrsets_to_list(struct auth_rrset** array, 7381 size_t arraysize, struct auth_rrset* first) 7382 { 7383 struct auth_rrset* rrset = first; 7384 size_t num = 0; 7385 while(rrset) { 7386 if(num >= arraysize) 7387 return num; 7388 array[num] = rrset; 7389 num++; 7390 rrset = rrset->next; 7391 } 7392 return num; 7393 } 7394 7395 /** compare rr list entries */ 7396 static int rrlist_compare(const void* arg1, const void* arg2) 7397 { 7398 struct auth_rrset* r1 = *(struct auth_rrset**)arg1; 7399 struct auth_rrset* r2 = *(struct auth_rrset**)arg2; 7400 uint16_t t1, t2; 7401 if(r1 == NULL) t1 = LDNS_RR_TYPE_RRSIG; 7402 else t1 = r1->type; 7403 if(r2 == NULL) t2 = LDNS_RR_TYPE_RRSIG; 7404 else t2 = r2->type; 7405 if(t1 < t2) 7406 return -1; 7407 if(t1 > t2) 7408 return 1; 7409 return 0; 7410 } 7411 7412 /** add type RRSIG to rr list if not one there already, 7413 * this is to perform RRSIG collate processing at that point. */ 7414 static void addrrsigtype_if_needed(struct auth_rrset** array, 7415 size_t arraysize, size_t* rrnum, struct auth_data* node) 7416 { 7417 if(az_domain_rrset(node, LDNS_RR_TYPE_RRSIG)) 7418 return; /* already one there */ 7419 if((*rrnum) >= arraysize) 7420 return; /* array too small? */ 7421 array[*rrnum] = NULL; /* nothing there, but need entry in list */ 7422 (*rrnum)++; 7423 } 7424 7425 /** collate the RRs in an RRset using the simple scheme */ 7426 static int zonemd_simple_rrset(struct auth_zone* z, int hashalgo, 7427 struct secalgo_hash* h, struct auth_data* node, 7428 struct auth_rrset* rrset, struct regional* region, 7429 struct sldns_buffer* buf, char** reason) 7430 { 7431 /* canonicalize */ 7432 struct ub_packed_rrset_key key; 7433 memset(&key, 0, sizeof(key)); 7434 key.entry.key = &key; 7435 key.entry.data = rrset->data; 7436 key.rk.dname = node->name; 7437 key.rk.dname_len = node->namelen; 7438 key.rk.type = htons(rrset->type); 7439 key.rk.rrset_class = htons(z->dclass); 7440 if(!rrset_canonicalize_to_buffer(region, buf, &key)) { 7441 *reason = "out of memory"; 7442 return 0; 7443 } 7444 regional_free_all(region); 7445 7446 /* hash */ 7447 if(!zonemd_digest_update(hashalgo, h, sldns_buffer_begin(buf), 7448 sldns_buffer_limit(buf), reason)) { 7449 return 0; 7450 } 7451 return 1; 7452 } 7453 7454 /** count number of RRSIGs in a domain name rrset list */ 7455 static size_t zonemd_simple_count_rrsig(struct auth_rrset* rrset, 7456 struct auth_rrset** rrlist, size_t rrnum, 7457 struct auth_zone* z, struct auth_data* node) 7458 { 7459 size_t i, count = 0; 7460 if(rrset) { 7461 size_t j; 7462 for(j = 0; j<rrset->data->count; j++) { 7463 if(rrsig_rdata_get_type_covered(rrset->data-> 7464 rr_data[j], rrset->data->rr_len[j]) == 7465 LDNS_RR_TYPE_ZONEMD && 7466 query_dname_compare(z->name, node->name)==0) { 7467 /* omit RRSIGs over type ZONEMD at apex */ 7468 continue; 7469 } 7470 count++; 7471 } 7472 } 7473 for(i=0; i<rrnum; i++) { 7474 if(rrlist[i] && rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7475 query_dname_compare(z->name, node->name)==0) { 7476 /* omit RRSIGs over type ZONEMD at apex */ 7477 continue; 7478 } 7479 count += (rrlist[i]?rrlist[i]->data->rrsig_count:0); 7480 } 7481 return count; 7482 } 7483 7484 /** allocate sparse rrset data for the number of entries in tepm region */ 7485 static int zonemd_simple_rrsig_allocs(struct regional* region, 7486 struct packed_rrset_data* data, size_t count) 7487 { 7488 data->rr_len = regional_alloc(region, sizeof(*data->rr_len) * count); 7489 if(!data->rr_len) { 7490 return 0; 7491 } 7492 data->rr_ttl = regional_alloc(region, sizeof(*data->rr_ttl) * count); 7493 if(!data->rr_ttl) { 7494 return 0; 7495 } 7496 data->rr_data = regional_alloc(region, sizeof(*data->rr_data) * count); 7497 if(!data->rr_data) { 7498 return 0; 7499 } 7500 return 1; 7501 } 7502 7503 /** add the RRSIGs from the rrs in the domain into the data */ 7504 static void add_rrlist_rrsigs_into_data(struct packed_rrset_data* data, 7505 size_t* done, struct auth_rrset** rrlist, size_t rrnum, 7506 struct auth_zone* z, struct auth_data* node) 7507 { 7508 size_t i; 7509 for(i=0; i<rrnum; i++) { 7510 size_t j; 7511 if(!rrlist[i]) 7512 continue; 7513 if(rrlist[i] && rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7514 query_dname_compare(z->name, node->name)==0) { 7515 /* omit RRSIGs over type ZONEMD at apex */ 7516 continue; 7517 } 7518 for(j = 0; j<rrlist[i]->data->rrsig_count; j++) { 7519 data->rr_len[*done] = rrlist[i]->data->rr_len[rrlist[i]->data->count + j]; 7520 data->rr_ttl[*done] = rrlist[i]->data->rr_ttl[rrlist[i]->data->count + j]; 7521 /* reference the rdata in the rrset, no need to 7522 * copy it, it is no longer needed at the end of 7523 * the routine */ 7524 data->rr_data[*done] = rrlist[i]->data->rr_data[rrlist[i]->data->count + j]; 7525 (*done)++; 7526 } 7527 } 7528 } 7529 7530 static void add_rrset_into_data(struct packed_rrset_data* data, 7531 size_t* done, struct auth_rrset* rrset, 7532 struct auth_zone* z, struct auth_data* node) 7533 { 7534 if(rrset) { 7535 size_t j; 7536 for(j = 0; j<rrset->data->count; j++) { 7537 if(rrsig_rdata_get_type_covered(rrset->data-> 7538 rr_data[j], rrset->data->rr_len[j]) == 7539 LDNS_RR_TYPE_ZONEMD && 7540 query_dname_compare(z->name, node->name)==0) { 7541 /* omit RRSIGs over type ZONEMD at apex */ 7542 continue; 7543 } 7544 data->rr_len[*done] = rrset->data->rr_len[j]; 7545 data->rr_ttl[*done] = rrset->data->rr_ttl[j]; 7546 /* reference the rdata in the rrset, no need to 7547 * copy it, it is no longer need at the end of 7548 * the routine */ 7549 data->rr_data[*done] = rrset->data->rr_data[j]; 7550 (*done)++; 7551 } 7552 } 7553 } 7554 7555 /** collate the RRSIGs using the simple scheme */ 7556 static int zonemd_simple_rrsig(struct auth_zone* z, int hashalgo, 7557 struct secalgo_hash* h, struct auth_data* node, 7558 struct auth_rrset* rrset, struct auth_rrset** rrlist, size_t rrnum, 7559 struct regional* region, struct sldns_buffer* buf, char** reason) 7560 { 7561 /* the rrset pointer can be NULL, this means it is type RRSIG and 7562 * there is no ordinary type RRSIG there. The RRSIGs are stored 7563 * with the RRsets in their data. 7564 * 7565 * The RRset pointer can be nonNULL. This happens if there is 7566 * no RR that is covered by the RRSIG for the domain. Then this 7567 * RRSIG RR is stored in an rrset of type RRSIG. The other RRSIGs 7568 * are stored in the rrset entries for the RRs in the rr list for 7569 * the domain node. We need to collate the rrset's data, if any, and 7570 * the rrlist's rrsigs */ 7571 /* if this is the apex, omit RRSIGs that cover type ZONEMD */ 7572 /* build rrsig rrset */ 7573 size_t done = 0; 7574 struct ub_packed_rrset_key key; 7575 struct packed_rrset_data data; 7576 memset(&key, 0, sizeof(key)); 7577 memset(&data, 0, sizeof(data)); 7578 key.entry.key = &key; 7579 key.entry.data = &data; 7580 key.rk.dname = node->name; 7581 key.rk.dname_len = node->namelen; 7582 key.rk.type = htons(LDNS_RR_TYPE_RRSIG); 7583 key.rk.rrset_class = htons(z->dclass); 7584 data.count = zonemd_simple_count_rrsig(rrset, rrlist, rrnum, z, node); 7585 if(!zonemd_simple_rrsig_allocs(region, &data, data.count)) { 7586 *reason = "out of memory"; 7587 regional_free_all(region); 7588 return 0; 7589 } 7590 /* all the RRSIGs stored in the other rrsets for this domain node */ 7591 add_rrlist_rrsigs_into_data(&data, &done, rrlist, rrnum, z, node); 7592 /* plus the RRSIGs stored in an rrset of type RRSIG for this node */ 7593 add_rrset_into_data(&data, &done, rrset, z, node); 7594 7595 /* canonicalize */ 7596 if(!rrset_canonicalize_to_buffer(region, buf, &key)) { 7597 *reason = "out of memory"; 7598 regional_free_all(region); 7599 return 0; 7600 } 7601 regional_free_all(region); 7602 7603 /* hash */ 7604 if(!zonemd_digest_update(hashalgo, h, sldns_buffer_begin(buf), 7605 sldns_buffer_limit(buf), reason)) { 7606 return 0; 7607 } 7608 return 1; 7609 } 7610 7611 /** collate a domain's rrsets using the simple scheme */ 7612 static int zonemd_simple_domain(struct auth_zone* z, int hashalgo, 7613 struct secalgo_hash* h, struct auth_data* node, 7614 struct regional* region, struct sldns_buffer* buf, char** reason) 7615 { 7616 const size_t rrlistsize = 65536; 7617 struct auth_rrset* rrlist[rrlistsize]; 7618 size_t i, rrnum = 0; 7619 /* see if the domain is out of scope, the zone origin, 7620 * that would be omitted */ 7621 if(!dname_subdomain_c(node->name, z->name)) 7622 return 1; /* continue */ 7623 /* loop over the rrsets in ascending order. */ 7624 rrnum = authdata_rrsets_to_list(rrlist, rrlistsize, node->rrsets); 7625 addrrsigtype_if_needed(rrlist, rrlistsize, &rrnum, node); 7626 qsort(rrlist, rrnum, sizeof(*rrlist), rrlist_compare); 7627 for(i=0; i<rrnum; i++) { 7628 if(rrlist[i] && rrlist[i]->type == LDNS_RR_TYPE_ZONEMD && 7629 query_dname_compare(z->name, node->name) == 0) { 7630 /* omit type ZONEMD at apex */ 7631 continue; 7632 } 7633 if(rrlist[i] == NULL || rrlist[i]->type == 7634 LDNS_RR_TYPE_RRSIG) { 7635 if(!zonemd_simple_rrsig(z, hashalgo, h, node, 7636 rrlist[i], rrlist, rrnum, region, buf, reason)) 7637 return 0; 7638 } else if(!zonemd_simple_rrset(z, hashalgo, h, node, 7639 rrlist[i], region, buf, reason)) { 7640 return 0; 7641 } 7642 } 7643 return 1; 7644 } 7645 7646 /** collate the zone using the simple scheme */ 7647 static int zonemd_simple_collate(struct auth_zone* z, int hashalgo, 7648 struct secalgo_hash* h, struct regional* region, 7649 struct sldns_buffer* buf, char** reason) 7650 { 7651 /* our tree is sorted in canonical order, so we can just loop over 7652 * the tree */ 7653 struct auth_data* n; 7654 RBTREE_FOR(n, struct auth_data*, &z->data) { 7655 if(!zonemd_simple_domain(z, hashalgo, h, n, region, buf, 7656 reason)) 7657 return 0; 7658 } 7659 return 1; 7660 } 7661 7662 int auth_zone_generate_zonemd_hash(struct auth_zone* z, int scheme, 7663 int hashalgo, uint8_t* hash, size_t hashlen, size_t* resultlen, 7664 struct regional* region, struct sldns_buffer* buf, char** reason) 7665 { 7666 struct secalgo_hash* h = zonemd_digest_init(hashalgo, reason); 7667 if(!h) { 7668 if(!*reason) 7669 *reason = "digest init fail"; 7670 return 0; 7671 } 7672 if(scheme == ZONEMD_SCHEME_SIMPLE) { 7673 if(!zonemd_simple_collate(z, hashalgo, h, region, buf, reason)) { 7674 if(!*reason) *reason = "scheme simple collate fail"; 7675 secalgo_hash_delete(h); 7676 return 0; 7677 } 7678 } 7679 if(!zonemd_digest_finish(hashalgo, h, hash, hashlen, resultlen, 7680 reason)) { 7681 secalgo_hash_delete(h); 7682 *reason = "digest finish fail"; 7683 return 0; 7684 } 7685 secalgo_hash_delete(h); 7686 return 1; 7687 } 7688 7689 int auth_zone_generate_zonemd_check(struct auth_zone* z, int scheme, 7690 int hashalgo, uint8_t* hash, size_t hashlen, struct regional* region, 7691 struct sldns_buffer* buf, char** reason) 7692 { 7693 uint8_t gen[512]; 7694 size_t genlen = 0; 7695 *reason = NULL; 7696 if(!zonemd_hashalgo_supported(hashalgo)) { 7697 /* allow it */ 7698 *reason = "unsupported algorithm"; 7699 return 1; 7700 } 7701 if(!zonemd_scheme_supported(scheme)) { 7702 /* allow it */ 7703 *reason = "unsupported scheme"; 7704 return 1; 7705 } 7706 if(hashlen < 12) { 7707 /* the ZONEMD draft requires digests to fail if too small */ 7708 *reason = "digest length too small, less than 12"; 7709 return 0; 7710 } 7711 /* generate digest */ 7712 if(!auth_zone_generate_zonemd_hash(z, scheme, hashalgo, gen, 7713 sizeof(gen), &genlen, region, buf, reason)) { 7714 /* reason filled in by zonemd hash routine */ 7715 return 0; 7716 } 7717 /* check digest length */ 7718 if(hashlen != genlen) { 7719 *reason = "incorrect digest length"; 7720 if(verbosity >= VERB_ALGO) { 7721 verbose(VERB_ALGO, "zonemd scheme=%d hashalgo=%d", 7722 scheme, hashalgo); 7723 log_hex("ZONEMD should be ", gen, genlen); 7724 log_hex("ZONEMD to check is", hash, hashlen); 7725 } 7726 return 0; 7727 } 7728 /* check digest */ 7729 if(memcmp(hash, gen, genlen) != 0) { 7730 *reason = "incorrect digest"; 7731 if(verbosity >= VERB_ALGO) { 7732 verbose(VERB_ALGO, "zonemd scheme=%d hashalgo=%d", 7733 scheme, hashalgo); 7734 log_hex("ZONEMD should be ", gen, genlen); 7735 log_hex("ZONEMD to check is", hash, hashlen); 7736 } 7737 return 0; 7738 } 7739 return 1; 7740 } 7741 7742 /** log auth zone message with zone name in front. */ 7743 static void auth_zone_log(uint8_t* name, enum verbosity_value level, 7744 const char* format, ...) ATTR_FORMAT(printf, 3, 4); 7745 static void auth_zone_log(uint8_t* name, enum verbosity_value level, 7746 const char* format, ...) 7747 { 7748 va_list args; 7749 va_start(args, format); 7750 if(verbosity >= level) { 7751 char str[255+1]; 7752 char msg[MAXSYSLOGMSGLEN]; 7753 dname_str(name, str); 7754 vsnprintf(msg, sizeof(msg), format, args); 7755 verbose(level, "auth zone %s %s", str, msg); 7756 } 7757 va_end(args); 7758 } 7759 7760 /** ZONEMD, dnssec verify the rrset with the dnskey */ 7761 static int zonemd_dnssec_verify_rrset(struct auth_zone* z, 7762 struct module_env* env, struct module_stack* mods, 7763 struct ub_packed_rrset_key* dnskey, struct auth_data* node, 7764 struct auth_rrset* rrset, char** why_bogus, uint8_t* sigalg) 7765 { 7766 struct ub_packed_rrset_key pk; 7767 enum sec_status sec; 7768 struct val_env* ve; 7769 int m; 7770 m = modstack_find(mods, "validator"); 7771 if(m == -1) { 7772 auth_zone_log(z->name, VERB_ALGO, "zonemd dnssec verify: have " 7773 "DNSKEY chain of trust, but no validator module"); 7774 return 0; 7775 } 7776 ve = (struct val_env*)env->modinfo[m]; 7777 7778 memset(&pk, 0, sizeof(pk)); 7779 pk.entry.key = &pk; 7780 pk.entry.data = rrset->data; 7781 pk.rk.dname = node->name; 7782 pk.rk.dname_len = node->namelen; 7783 pk.rk.type = htons(rrset->type); 7784 pk.rk.rrset_class = htons(z->dclass); 7785 if(verbosity >= VERB_ALGO) { 7786 char typestr[32]; 7787 typestr[0]=0; 7788 sldns_wire2str_type_buf(rrset->type, typestr, sizeof(typestr)); 7789 auth_zone_log(z->name, VERB_ALGO, 7790 "zonemd: verify %s RRset with DNSKEY", typestr); 7791 } 7792 sec = dnskeyset_verify_rrset(env, ve, &pk, dnskey, sigalg, why_bogus, NULL, 7793 LDNS_SECTION_ANSWER, NULL); 7794 if(sec == sec_status_secure) { 7795 return 1; 7796 } 7797 if(why_bogus) 7798 auth_zone_log(z->name, VERB_ALGO, "DNSSEC verify was bogus: %s", *why_bogus); 7799 return 0; 7800 } 7801 7802 /** check for nsec3, the RR with params equal, if bitmap has the type */ 7803 static int nsec3_of_param_has_type(struct auth_rrset* nsec3, int algo, 7804 size_t iter, uint8_t* salt, size_t saltlen, uint16_t rrtype) 7805 { 7806 int i, count = (int)nsec3->data->count; 7807 struct ub_packed_rrset_key pk; 7808 memset(&pk, 0, sizeof(pk)); 7809 pk.entry.data = nsec3->data; 7810 for(i=0; i<count; i++) { 7811 int rralgo; 7812 size_t rriter, rrsaltlen; 7813 uint8_t* rrsalt; 7814 if(!nsec3_get_params(&pk, i, &rralgo, &rriter, &rrsalt, 7815 &rrsaltlen)) 7816 continue; /* no parameters, malformed */ 7817 if(rralgo != algo || rriter != iter || rrsaltlen != saltlen) 7818 continue; /* different parameters */ 7819 if(saltlen != 0) { 7820 if(rrsalt == NULL || salt == NULL) 7821 continue; 7822 if(memcmp(rrsalt, salt, saltlen) != 0) 7823 continue; /* different salt parameters */ 7824 } 7825 if(nsec3_has_type(&pk, i, rrtype)) 7826 return 1; 7827 } 7828 return 0; 7829 } 7830 7831 /** Verify the absence of ZONEMD with DNSSEC by checking NSEC, NSEC3 type flag. 7832 * return false on failure, reason contains description of failure. */ 7833 static int zonemd_check_dnssec_absence(struct auth_zone* z, 7834 struct module_env* env, struct module_stack* mods, 7835 struct ub_packed_rrset_key* dnskey, struct auth_data* apex, 7836 char** reason, char** why_bogus, uint8_t* sigalg) 7837 { 7838 struct auth_rrset* nsec = NULL; 7839 if(!apex) { 7840 *reason = "zone has no apex domain but ZONEMD missing"; 7841 return 0; 7842 } 7843 nsec = az_domain_rrset(apex, LDNS_RR_TYPE_NSEC); 7844 if(nsec) { 7845 struct ub_packed_rrset_key pk; 7846 /* dnssec verify the NSEC */ 7847 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, 7848 nsec, why_bogus, sigalg)) { 7849 *reason = "DNSSEC verify failed for NSEC RRset"; 7850 return 0; 7851 } 7852 /* check type bitmap */ 7853 memset(&pk, 0, sizeof(pk)); 7854 pk.entry.data = nsec->data; 7855 if(nsec_has_type(&pk, LDNS_RR_TYPE_ZONEMD)) { 7856 *reason = "DNSSEC NSEC bitmap says type ZONEMD exists"; 7857 return 0; 7858 } 7859 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC NSEC verification of absence of ZONEMD secure"); 7860 } else { 7861 /* NSEC3 perhaps ? */ 7862 int algo; 7863 size_t iter, saltlen; 7864 uint8_t* salt; 7865 struct auth_rrset* nsec3param = az_domain_rrset(apex, 7866 LDNS_RR_TYPE_NSEC3PARAM); 7867 struct auth_data* match; 7868 struct auth_rrset* nsec3; 7869 if(!nsec3param) { 7870 *reason = "zone has no NSEC information but ZONEMD missing"; 7871 return 0; 7872 } 7873 if(!az_nsec3_param(z, &algo, &iter, &salt, &saltlen)) { 7874 *reason = "zone has no NSEC information but ZONEMD missing"; 7875 return 0; 7876 } 7877 /* find the NSEC3 record */ 7878 match = az_nsec3_find_exact(z, z->name, z->namelen, algo, 7879 iter, salt, saltlen); 7880 if(!match) { 7881 *reason = "zone has no NSEC3 domain for the apex but ZONEMD missing"; 7882 return 0; 7883 } 7884 nsec3 = az_domain_rrset(match, LDNS_RR_TYPE_NSEC3); 7885 if(!nsec3) { 7886 *reason = "zone has no NSEC3 RRset for the apex but ZONEMD missing"; 7887 return 0; 7888 } 7889 /* dnssec verify the NSEC3 */ 7890 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, match, 7891 nsec3, why_bogus, sigalg)) { 7892 *reason = "DNSSEC verify failed for NSEC3 RRset"; 7893 return 0; 7894 } 7895 /* check type bitmap */ 7896 if(nsec3_of_param_has_type(nsec3, algo, iter, salt, saltlen, 7897 LDNS_RR_TYPE_ZONEMD)) { 7898 *reason = "DNSSEC NSEC3 bitmap says type ZONEMD exists"; 7899 return 0; 7900 } 7901 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC NSEC3 verification of absence of ZONEMD secure"); 7902 } 7903 7904 return 1; 7905 } 7906 7907 /** Verify the SOA and ZONEMD DNSSEC signatures. 7908 * return false on failure, reason contains description of failure. */ 7909 static int zonemd_check_dnssec_soazonemd(struct auth_zone* z, 7910 struct module_env* env, struct module_stack* mods, 7911 struct ub_packed_rrset_key* dnskey, struct auth_data* apex, 7912 struct auth_rrset* zonemd_rrset, char** reason, char** why_bogus, 7913 uint8_t* sigalg) 7914 { 7915 struct auth_rrset* soa; 7916 if(!apex) { 7917 *reason = "zone has no apex domain"; 7918 return 0; 7919 } 7920 soa = az_domain_rrset(apex, LDNS_RR_TYPE_SOA); 7921 if(!soa) { 7922 *reason = "zone has no SOA RRset"; 7923 return 0; 7924 } 7925 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, soa, 7926 why_bogus, sigalg)) { 7927 *reason = "DNSSEC verify failed for SOA RRset"; 7928 return 0; 7929 } 7930 if(!zonemd_dnssec_verify_rrset(z, env, mods, dnskey, apex, 7931 zonemd_rrset, why_bogus, sigalg)) { 7932 *reason = "DNSSEC verify failed for ZONEMD RRset"; 7933 return 0; 7934 } 7935 auth_zone_log(z->name, VERB_ALGO, "zonemd DNSSEC verification of SOA and ZONEMD RRsets secure"); 7936 return 1; 7937 } 7938 7939 /** 7940 * Fail the ZONEMD verification. 7941 * @param z: auth zone that fails. 7942 * @param env: environment with config, to ignore failure or not. 7943 * @param reason: failure string description. 7944 * @param why_bogus: failure string for DNSSEC verification failure. 7945 * @param result: strdup result in here if not NULL. 7946 */ 7947 static void auth_zone_zonemd_fail(struct auth_zone* z, struct module_env* env, 7948 char* reason, char* why_bogus, char** result) 7949 { 7950 char zstr[255+1]; 7951 /* if fail: log reason, and depending on config also take action 7952 * and drop the zone, eg. it is gone from memory, set zone_expired */ 7953 dname_str(z->name, zstr); 7954 if(!reason) reason = "verification failed"; 7955 if(result) { 7956 if(why_bogus) { 7957 char res[1024]; 7958 snprintf(res, sizeof(res), "%s: %s", reason, 7959 why_bogus); 7960 *result = strdup(res); 7961 } else { 7962 *result = strdup(reason); 7963 } 7964 if(!*result) log_err("out of memory"); 7965 } else { 7966 log_warn("auth zone %s: ZONEMD verification failed: %s", zstr, reason); 7967 } 7968 7969 if(env->cfg->zonemd_permissive_mode) { 7970 verbose(VERB_ALGO, "zonemd-permissive-mode enabled, " 7971 "not blocking zone %s", zstr); 7972 return; 7973 } 7974 7975 /* expired means the zone gives servfail and is not used by 7976 * lookup if fallback_enabled*/ 7977 z->zone_expired = 1; 7978 } 7979 7980 /** 7981 * Verify the zonemd with DNSSEC and hash check, with given key. 7982 * @param z: auth zone. 7983 * @param env: environment with config and temp buffers. 7984 * @param mods: module stack with validator env for verification. 7985 * @param dnskey: dnskey that we can use, or NULL. If nonnull, the key 7986 * has been verified and is the start of the chain of trust. 7987 * @param is_insecure: if true, the dnskey is not used, the zone is insecure. 7988 * And dnssec is not used. It is DNSSEC secure insecure or not under 7989 * a trust anchor. 7990 * @param sigalg: if nonNULL provide algorithm downgrade protection. 7991 * Otherwise one algorithm is enough. Must have space of ALGO_NEEDS_MAX+1. 7992 * @param result: if not NULL result reason copied here. 7993 */ 7994 static void 7995 auth_zone_verify_zonemd_with_key(struct auth_zone* z, struct module_env* env, 7996 struct module_stack* mods, struct ub_packed_rrset_key* dnskey, 7997 int is_insecure, char** result, uint8_t* sigalg) 7998 { 7999 char* reason = NULL, *why_bogus = NULL; 8000 struct auth_data* apex = NULL; 8001 struct auth_rrset* zonemd_rrset = NULL; 8002 int zonemd_absent = 0, zonemd_absence_dnssecok = 0; 8003 8004 /* see if ZONEMD is present or absent. */ 8005 apex = az_find_name(z, z->name, z->namelen); 8006 if(!apex) { 8007 zonemd_absent = 1; 8008 } else { 8009 zonemd_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_ZONEMD); 8010 if(!zonemd_rrset || zonemd_rrset->data->count==0) { 8011 zonemd_absent = 1; 8012 zonemd_rrset = NULL; 8013 } 8014 } 8015 8016 /* if no DNSSEC, done. */ 8017 /* if no ZONEMD, and DNSSEC, use DNSKEY to verify NSEC or NSEC3 for 8018 * zone apex. Check ZONEMD bit is turned off or else fail */ 8019 /* if ZONEMD, and DNSSEC, check DNSSEC signature on SOA and ZONEMD, 8020 * or else fail */ 8021 if(!dnskey && !is_insecure) { 8022 auth_zone_zonemd_fail(z, env, "DNSKEY missing", NULL, result); 8023 return; 8024 } else if(!zonemd_rrset && dnskey && !is_insecure) { 8025 /* fetch, DNSSEC verify, and check NSEC/NSEC3 */ 8026 if(!zonemd_check_dnssec_absence(z, env, mods, dnskey, apex, 8027 &reason, &why_bogus, sigalg)) { 8028 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8029 return; 8030 } 8031 zonemd_absence_dnssecok = 1; 8032 } else if(zonemd_rrset && dnskey && !is_insecure) { 8033 /* check DNSSEC verify of SOA and ZONEMD */ 8034 if(!zonemd_check_dnssec_soazonemd(z, env, mods, dnskey, apex, 8035 zonemd_rrset, &reason, &why_bogus, sigalg)) { 8036 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8037 return; 8038 } 8039 } 8040 8041 if(zonemd_absent && z->zonemd_reject_absence) { 8042 auth_zone_zonemd_fail(z, env, "ZONEMD absent and that is not allowed by config", NULL, result); 8043 return; 8044 } 8045 if(zonemd_absent && zonemd_absence_dnssecok) { 8046 auth_zone_log(z->name, VERB_ALGO, "DNSSEC verified nonexistence of ZONEMD"); 8047 if(result) { 8048 *result = strdup("DNSSEC verified nonexistence of ZONEMD"); 8049 if(!*result) log_err("out of memory"); 8050 } 8051 return; 8052 } 8053 if(zonemd_absent) { 8054 auth_zone_log(z->name, VERB_ALGO, "no ZONEMD present"); 8055 if(result) { 8056 *result = strdup("no ZONEMD present"); 8057 if(!*result) log_err("out of memory"); 8058 } 8059 return; 8060 } 8061 8062 /* check ZONEMD checksum and report or else fail. */ 8063 if(!auth_zone_zonemd_check_hash(z, env, &reason)) { 8064 auth_zone_zonemd_fail(z, env, reason, NULL, result); 8065 return; 8066 } 8067 8068 /* success! log the success */ 8069 if(reason) 8070 auth_zone_log(z->name, VERB_ALGO, "ZONEMD %s", reason); 8071 else auth_zone_log(z->name, VERB_ALGO, "ZONEMD verification successful"); 8072 if(result) { 8073 if(reason) 8074 *result = strdup(reason); 8075 else *result = strdup("ZONEMD verification successful"); 8076 if(!*result) log_err("out of memory"); 8077 } 8078 } 8079 8080 /** 8081 * verify the zone DNSKEY rrset from the trust anchor 8082 * This is possible because the anchor is for the zone itself, and can 8083 * thus apply straight to the zone DNSKEY set. 8084 * @param z: the auth zone. 8085 * @param env: environment with time and temp buffers. 8086 * @param mods: module stack for validator environment for dnssec validation. 8087 * @param anchor: trust anchor to use 8088 * @param is_insecure: returned, true if the zone is securely insecure. 8089 * @param why_bogus: if the routine fails, returns the failure reason. 8090 * @param keystorage: where to store the ub_packed_rrset_key that is created 8091 * on success. A pointer to it is returned on success. 8092 * @return the dnskey RRset, reference to zone data and keystorage, or 8093 * NULL on failure. 8094 */ 8095 static struct ub_packed_rrset_key* 8096 zonemd_get_dnskey_from_anchor(struct auth_zone* z, struct module_env* env, 8097 struct module_stack* mods, struct trust_anchor* anchor, 8098 int* is_insecure, char** why_bogus, 8099 struct ub_packed_rrset_key* keystorage) 8100 { 8101 struct auth_data* apex; 8102 struct auth_rrset* dnskey_rrset; 8103 enum sec_status sec; 8104 struct val_env* ve; 8105 int m; 8106 8107 apex = az_find_name(z, z->name, z->namelen); 8108 if(!apex) { 8109 *why_bogus = "have trust anchor, but zone has no apex domain for DNSKEY"; 8110 return 0; 8111 } 8112 dnskey_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_DNSKEY); 8113 if(!dnskey_rrset || dnskey_rrset->data->count==0) { 8114 *why_bogus = "have trust anchor, but zone has no DNSKEY"; 8115 return 0; 8116 } 8117 8118 m = modstack_find(mods, "validator"); 8119 if(m == -1) { 8120 *why_bogus = "have trust anchor, but no validator module"; 8121 return 0; 8122 } 8123 ve = (struct val_env*)env->modinfo[m]; 8124 8125 memset(keystorage, 0, sizeof(*keystorage)); 8126 keystorage->entry.key = keystorage; 8127 keystorage->entry.data = dnskey_rrset->data; 8128 keystorage->rk.dname = apex->name; 8129 keystorage->rk.dname_len = apex->namelen; 8130 keystorage->rk.type = htons(LDNS_RR_TYPE_DNSKEY); 8131 keystorage->rk.rrset_class = htons(z->dclass); 8132 auth_zone_log(z->name, VERB_QUERY, 8133 "zonemd: verify DNSKEY RRset with trust anchor"); 8134 sec = val_verify_DNSKEY_with_TA(env, ve, keystorage, anchor->ds_rrset, 8135 anchor->dnskey_rrset, NULL, why_bogus, NULL, NULL); 8136 regional_free_all(env->scratch); 8137 if(sec == sec_status_secure) { 8138 /* success */ 8139 *is_insecure = 0; 8140 return keystorage; 8141 } else if(sec == sec_status_insecure) { 8142 /* insecure */ 8143 *is_insecure = 1; 8144 } else { 8145 /* bogus */ 8146 *is_insecure = 0; 8147 auth_zone_log(z->name, VERB_ALGO, 8148 "zonemd: verify DNSKEY RRset with trust anchor failed: %s", *why_bogus); 8149 } 8150 return NULL; 8151 } 8152 8153 /** verify the DNSKEY from the zone with looked up DS record */ 8154 static struct ub_packed_rrset_key* 8155 auth_zone_verify_zonemd_key_with_ds(struct auth_zone* z, 8156 struct module_env* env, struct module_stack* mods, 8157 struct ub_packed_rrset_key* ds, int* is_insecure, char** why_bogus, 8158 struct ub_packed_rrset_key* keystorage, uint8_t* sigalg) 8159 { 8160 struct auth_data* apex; 8161 struct auth_rrset* dnskey_rrset; 8162 enum sec_status sec; 8163 struct val_env* ve; 8164 int m; 8165 8166 /* fetch DNSKEY from zone data */ 8167 apex = az_find_name(z, z->name, z->namelen); 8168 if(!apex) { 8169 *why_bogus = "in verifywithDS, zone has no apex"; 8170 return NULL; 8171 } 8172 dnskey_rrset = az_domain_rrset(apex, LDNS_RR_TYPE_DNSKEY); 8173 if(!dnskey_rrset || dnskey_rrset->data->count==0) { 8174 *why_bogus = "in verifywithDS, zone has no DNSKEY"; 8175 return NULL; 8176 } 8177 8178 m = modstack_find(mods, "validator"); 8179 if(m == -1) { 8180 *why_bogus = "in verifywithDS, have no validator module"; 8181 return NULL; 8182 } 8183 ve = (struct val_env*)env->modinfo[m]; 8184 8185 memset(keystorage, 0, sizeof(*keystorage)); 8186 keystorage->entry.key = keystorage; 8187 keystorage->entry.data = dnskey_rrset->data; 8188 keystorage->rk.dname = apex->name; 8189 keystorage->rk.dname_len = apex->namelen; 8190 keystorage->rk.type = htons(LDNS_RR_TYPE_DNSKEY); 8191 keystorage->rk.rrset_class = htons(z->dclass); 8192 auth_zone_log(z->name, VERB_QUERY, "zonemd: verify zone DNSKEY with DS"); 8193 sec = val_verify_DNSKEY_with_DS(env, ve, keystorage, ds, sigalg, 8194 why_bogus, NULL, NULL); 8195 regional_free_all(env->scratch); 8196 if(sec == sec_status_secure) { 8197 /* success */ 8198 return keystorage; 8199 } else if(sec == sec_status_insecure) { 8200 /* insecure */ 8201 *is_insecure = 1; 8202 } else { 8203 /* bogus */ 8204 *is_insecure = 0; 8205 if(*why_bogus == NULL) 8206 *why_bogus = "verify failed"; 8207 auth_zone_log(z->name, VERB_ALGO, 8208 "zonemd: verify DNSKEY RRset with DS failed: %s", 8209 *why_bogus); 8210 } 8211 return NULL; 8212 } 8213 8214 /** callback for ZONEMD lookup of DNSKEY */ 8215 void auth_zonemd_dnskey_lookup_callback(void* arg, int rcode, sldns_buffer* buf, 8216 enum sec_status sec, char* why_bogus, int ATTR_UNUSED(was_ratelimited)) 8217 { 8218 struct auth_zone* z = (struct auth_zone*)arg; 8219 struct module_env* env; 8220 char* reason = NULL, *ds_bogus = NULL, *typestr="DNSKEY"; 8221 struct ub_packed_rrset_key* dnskey = NULL, *ds = NULL; 8222 int is_insecure = 0, downprot; 8223 struct ub_packed_rrset_key keystorage; 8224 uint8_t sigalg[ALGO_NEEDS_MAX+1]; 8225 8226 lock_rw_wrlock(&z->lock); 8227 env = z->zonemd_callback_env; 8228 /* release the env variable so another worker can pick up the 8229 * ZONEMD verification task if it wants to */ 8230 z->zonemd_callback_env = NULL; 8231 if(!env || env->outnet->want_to_quit || z->zone_deleted) { 8232 lock_rw_unlock(&z->lock); 8233 return; /* stop on quit */ 8234 } 8235 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DS) 8236 typestr = "DS"; 8237 downprot = env->cfg->harden_algo_downgrade; 8238 8239 /* process result */ 8240 if(sec == sec_status_bogus) { 8241 reason = why_bogus; 8242 if(!reason) { 8243 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8244 reason = "lookup of DNSKEY was bogus"; 8245 else reason = "lookup of DS was bogus"; 8246 } 8247 auth_zone_log(z->name, VERB_ALGO, 8248 "zonemd lookup of %s was bogus: %s", typestr, reason); 8249 } else if(rcode == LDNS_RCODE_NOERROR) { 8250 uint16_t wanted_qtype = z->zonemd_callback_qtype; 8251 struct regional* temp = env->scratch; 8252 struct query_info rq; 8253 struct reply_info* rep; 8254 memset(&rq, 0, sizeof(rq)); 8255 rep = parse_reply_in_temp_region(buf, temp, &rq); 8256 if(rep && rq.qtype == wanted_qtype && 8257 query_dname_compare(z->name, rq.qname) == 0 && 8258 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { 8259 /* parsed successfully */ 8260 struct ub_packed_rrset_key* answer = 8261 reply_find_answer_rrset(&rq, rep); 8262 if(answer && sec == sec_status_secure) { 8263 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8264 dnskey = answer; 8265 else ds = answer; 8266 auth_zone_log(z->name, VERB_ALGO, 8267 "zonemd lookup of %s was secure", typestr); 8268 } else if(sec == sec_status_secure && !answer) { 8269 is_insecure = 1; 8270 auth_zone_log(z->name, VERB_ALGO, 8271 "zonemd lookup of %s has no content, but is secure, treat as insecure", typestr); 8272 } else if(sec == sec_status_insecure) { 8273 is_insecure = 1; 8274 auth_zone_log(z->name, VERB_ALGO, 8275 "zonemd lookup of %s was insecure", typestr); 8276 } else if(sec == sec_status_indeterminate) { 8277 is_insecure = 1; 8278 auth_zone_log(z->name, VERB_ALGO, 8279 "zonemd lookup of %s was indeterminate, treat as insecure", typestr); 8280 } else { 8281 auth_zone_log(z->name, VERB_ALGO, 8282 "zonemd lookup of %s has nodata", typestr); 8283 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8284 reason = "lookup of DNSKEY has nodata"; 8285 else reason = "lookup of DS has nodata"; 8286 } 8287 } else if(rep && rq.qtype == wanted_qtype && 8288 query_dname_compare(z->name, rq.qname) == 0 && 8289 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8290 sec == sec_status_secure) { 8291 /* secure nxdomain, so the zone is like some RPZ zone 8292 * that does not exist in the wider internet, with 8293 * a secure nxdomain answer outside of it. So we 8294 * treat the zonemd zone without a dnssec chain of 8295 * trust, as insecure. */ 8296 is_insecure = 1; 8297 auth_zone_log(z->name, VERB_ALGO, 8298 "zonemd lookup of %s was secure NXDOMAIN, treat as insecure", typestr); 8299 } else if(rep && rq.qtype == wanted_qtype && 8300 query_dname_compare(z->name, rq.qname) == 0 && 8301 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8302 sec == sec_status_insecure) { 8303 is_insecure = 1; 8304 auth_zone_log(z->name, VERB_ALGO, 8305 "zonemd lookup of %s was insecure NXDOMAIN, treat as insecure", typestr); 8306 } else if(rep && rq.qtype == wanted_qtype && 8307 query_dname_compare(z->name, rq.qname) == 0 && 8308 FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN && 8309 sec == sec_status_indeterminate) { 8310 is_insecure = 1; 8311 auth_zone_log(z->name, VERB_ALGO, 8312 "zonemd lookup of %s was indeterminate NXDOMAIN, treat as insecure", typestr); 8313 } else { 8314 auth_zone_log(z->name, VERB_ALGO, 8315 "zonemd lookup of %s has no answer", typestr); 8316 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8317 reason = "lookup of DNSKEY has no answer"; 8318 else reason = "lookup of DS has no answer"; 8319 } 8320 } else { 8321 auth_zone_log(z->name, VERB_ALGO, 8322 "zonemd lookup of %s failed", typestr); 8323 if(z->zonemd_callback_qtype == LDNS_RR_TYPE_DNSKEY) 8324 reason = "lookup of DNSKEY failed"; 8325 else reason = "lookup of DS failed"; 8326 } 8327 8328 if(!reason && !is_insecure && !dnskey && ds) { 8329 dnskey = auth_zone_verify_zonemd_key_with_ds(z, env, 8330 &env->mesh->mods, ds, &is_insecure, &ds_bogus, 8331 &keystorage, downprot?sigalg:NULL); 8332 if(!dnskey && !is_insecure && !reason) 8333 reason = "DNSKEY verify with DS failed"; 8334 } 8335 8336 if(reason) { 8337 auth_zone_zonemd_fail(z, env, reason, ds_bogus, NULL); 8338 lock_rw_unlock(&z->lock); 8339 return; 8340 } 8341 8342 auth_zone_verify_zonemd_with_key(z, env, &env->mesh->mods, dnskey, 8343 is_insecure, NULL, downprot?sigalg:NULL); 8344 regional_free_all(env->scratch); 8345 lock_rw_unlock(&z->lock); 8346 } 8347 8348 /** lookup DNSKEY for ZONEMD verification */ 8349 static int 8350 zonemd_lookup_dnskey(struct auth_zone* z, struct module_env* env) 8351 { 8352 struct query_info qinfo; 8353 uint16_t qflags = BIT_RD; 8354 struct edns_data edns; 8355 sldns_buffer* buf = env->scratch_buffer; 8356 int fetch_ds = 0; 8357 8358 if(!z->fallback_enabled) { 8359 /* we cannot actually get the DNSKEY, because it is in the 8360 * zone we have ourselves, and it is not served yet 8361 * (possibly), so fetch type DS */ 8362 fetch_ds = 1; 8363 } 8364 if(z->zonemd_callback_env) { 8365 /* another worker is already working on the callback 8366 * for the DNSKEY lookup for ZONEMD verification. 8367 * We do not also have to do ZONEMD verification, let that 8368 * worker do it */ 8369 auth_zone_log(z->name, VERB_ALGO, 8370 "zonemd needs lookup of %s and that already is worked on by another worker", (fetch_ds?"DS":"DNSKEY")); 8371 return 1; 8372 } 8373 8374 /* use mesh_new_callback to lookup the DNSKEY, 8375 * and then wait for them to be looked up (in cache, or query) */ 8376 qinfo.qname_len = z->namelen; 8377 qinfo.qname = z->name; 8378 qinfo.qclass = z->dclass; 8379 if(fetch_ds) 8380 qinfo.qtype = LDNS_RR_TYPE_DS; 8381 else qinfo.qtype = LDNS_RR_TYPE_DNSKEY; 8382 qinfo.local_alias = NULL; 8383 if(verbosity >= VERB_ALGO) { 8384 char buf1[512]; 8385 char buf2[LDNS_MAX_DOMAINLEN+1]; 8386 dname_str(z->name, buf2); 8387 snprintf(buf1, sizeof(buf1), "auth zone %s: lookup %s " 8388 "for zonemd verification", buf2, 8389 (fetch_ds?"DS":"DNSKEY")); 8390 log_query_info(VERB_ALGO, buf1, &qinfo); 8391 } 8392 edns.edns_present = 1; 8393 edns.ext_rcode = 0; 8394 edns.edns_version = 0; 8395 edns.bits = EDNS_DO; 8396 edns.opt_list_in = NULL; 8397 edns.opt_list_out = NULL; 8398 edns.opt_list_inplace_cb_out = NULL; 8399 if(sldns_buffer_capacity(buf) < 65535) 8400 edns.udp_size = (uint16_t)sldns_buffer_capacity(buf); 8401 else edns.udp_size = 65535; 8402 8403 /* store the worker-specific module env for the callback. 8404 * We can then reference this when the callback executes */ 8405 z->zonemd_callback_env = env; 8406 z->zonemd_callback_qtype = qinfo.qtype; 8407 /* the callback can be called straight away */ 8408 lock_rw_unlock(&z->lock); 8409 if(!mesh_new_callback(env->mesh, &qinfo, qflags, &edns, buf, 0, 8410 &auth_zonemd_dnskey_lookup_callback, z, 0)) { 8411 lock_rw_wrlock(&z->lock); 8412 log_err("out of memory lookup of %s for zonemd", 8413 (fetch_ds?"DS":"DNSKEY")); 8414 return 0; 8415 } 8416 lock_rw_wrlock(&z->lock); 8417 return 1; 8418 } 8419 8420 void auth_zone_verify_zonemd(struct auth_zone* z, struct module_env* env, 8421 struct module_stack* mods, char** result, int offline, int only_online) 8422 { 8423 char* reason = NULL, *why_bogus = NULL; 8424 struct trust_anchor* anchor = NULL; 8425 struct ub_packed_rrset_key* dnskey = NULL; 8426 struct ub_packed_rrset_key keystorage; 8427 int is_insecure = 0; 8428 /* verify the ZONEMD if present. 8429 * If not present check if absence is allowed by DNSSEC */ 8430 if(!z->zonemd_check) 8431 return; 8432 if(z->data.count == 0) 8433 return; /* no data */ 8434 8435 /* if zone is under a trustanchor */ 8436 /* is it equal to trustanchor - get dnskey's verified */ 8437 /* else, find chain of trust by fetching DNSKEYs lookup for zone */ 8438 /* result if that, if insecure, means no DNSSEC for the ZONEMD, 8439 * otherwise we have the zone DNSKEY for the DNSSEC verification. */ 8440 if(env->anchors) 8441 anchor = anchors_lookup(env->anchors, z->name, z->namelen, 8442 z->dclass); 8443 if(anchor && anchor->numDS == 0 && anchor->numDNSKEY == 0) { 8444 /* domain-insecure trust anchor for unsigned zones */ 8445 lock_basic_unlock(&anchor->lock); 8446 if(only_online) 8447 return; 8448 dnskey = NULL; 8449 is_insecure = 1; 8450 } else if(anchor && query_dname_compare(z->name, anchor->name) == 0) { 8451 if(only_online) { 8452 lock_basic_unlock(&anchor->lock); 8453 return; 8454 } 8455 /* equal to trustanchor, no need for online lookups */ 8456 dnskey = zonemd_get_dnskey_from_anchor(z, env, mods, anchor, 8457 &is_insecure, &why_bogus, &keystorage); 8458 lock_basic_unlock(&anchor->lock); 8459 if(!dnskey && !reason && !is_insecure) { 8460 reason = "verify DNSKEY RRset with trust anchor failed"; 8461 } 8462 } else if(anchor) { 8463 lock_basic_unlock(&anchor->lock); 8464 /* perform online lookups */ 8465 if(offline) 8466 return; 8467 /* setup online lookups, and wait for them */ 8468 if(zonemd_lookup_dnskey(z, env)) { 8469 /* wait for the lookup */ 8470 return; 8471 } 8472 reason = "could not lookup DNSKEY for chain of trust"; 8473 } else { 8474 /* the zone is not under a trust anchor */ 8475 if(only_online) 8476 return; 8477 dnskey = NULL; 8478 is_insecure = 1; 8479 } 8480 8481 if(reason) { 8482 auth_zone_zonemd_fail(z, env, reason, why_bogus, result); 8483 return; 8484 } 8485 8486 auth_zone_verify_zonemd_with_key(z, env, mods, dnskey, is_insecure, 8487 result, NULL); 8488 regional_free_all(env->scratch); 8489 } 8490 8491 void auth_zones_pickup_zonemd_verify(struct auth_zones* az, 8492 struct module_env* env) 8493 { 8494 struct auth_zone key; 8495 uint8_t savezname[255+1]; 8496 size_t savezname_len; 8497 struct auth_zone* z; 8498 key.node.key = &key; 8499 lock_rw_rdlock(&az->lock); 8500 RBTREE_FOR(z, struct auth_zone*, &az->ztree) { 8501 lock_rw_wrlock(&z->lock); 8502 if(!z->zonemd_check) { 8503 lock_rw_unlock(&z->lock); 8504 continue; 8505 } 8506 key.dclass = z->dclass; 8507 key.namelabs = z->namelabs; 8508 if(z->namelen > sizeof(savezname)) { 8509 lock_rw_unlock(&z->lock); 8510 log_err("auth_zones_pickup_zonemd_verify: zone name too long"); 8511 continue; 8512 } 8513 savezname_len = z->namelen; 8514 memmove(savezname, z->name, z->namelen); 8515 lock_rw_unlock(&az->lock); 8516 auth_zone_verify_zonemd(z, env, &env->mesh->mods, NULL, 0, 1); 8517 lock_rw_unlock(&z->lock); 8518 lock_rw_rdlock(&az->lock); 8519 /* find the zone we had before, it is not deleted, 8520 * because we have a flag for that that is processed at 8521 * apply_cfg time */ 8522 key.namelen = savezname_len; 8523 key.name = savezname; 8524 z = (struct auth_zone*)rbtree_search(&az->ztree, &key); 8525 if(!z) 8526 break; 8527 } 8528 lock_rw_unlock(&az->lock); 8529 } 8530