1 /* 2 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 3 * 4 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A 5 * 6 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line) 7 * 8 * Features: 9 * DCF77 decoding 10 * simple NTP loopfilter logic for local clock 11 * interactive display for debugging 12 * 13 * Lacks: 14 * Leap second handling (at that level you should switch to NTP Version 4 - really!) 15 * 16 * Copyright (c) 1995-2015 by Frank Kardel <kardel <AT> ntp.org> 17 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universitaet Erlangen-Nuernberg, Germany 18 * 19 * Redistribution and use in source and binary forms, with or without 20 * modification, are permitted provided that the following conditions 21 * are met: 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 3. Neither the name of the author nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 */ 44 45 #ifdef HAVE_CONFIG_H 46 # include <config.h> 47 #endif 48 49 #include <sys/ioctl.h> 50 #include <unistd.h> 51 #include <stdio.h> 52 #include <fcntl.h> 53 #include <sys/types.h> 54 #include <sys/time.h> 55 #include <signal.h> 56 #include <syslog.h> 57 #include <time.h> 58 59 /* 60 * NTP compilation environment 61 */ 62 #include "ntp_stdlib.h" 63 #include "ntpd.h" /* indirectly include ntp.h to get YEAR_PIVOT Y2KFixes */ 64 65 /* 66 * select which terminal handling to use (currently only SysV variants) 67 */ 68 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 69 #include <termios.h> 70 #define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_)) 71 #define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_)) 72 #else /* not HAVE_TERMIOS_H || STREAM */ 73 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 74 # include <termio.h> 75 # define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_)) 76 # define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_)) 77 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 78 #endif /* not HAVE_TERMIOS_H || STREAM */ 79 80 81 #ifndef TTY_GETATTR 82 #include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'" 83 #endif 84 85 #ifndef days_per_year 86 #define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366)) 87 #endif 88 89 #define timernormalize(_a_) \ 90 if ((_a_)->tv_usec >= 1000000) \ 91 { \ 92 (_a_)->tv_sec += (_a_)->tv_usec / 1000000; \ 93 (_a_)->tv_usec = (_a_)->tv_usec % 1000000; \ 94 } \ 95 if ((_a_)->tv_usec < 0) \ 96 { \ 97 (_a_)->tv_sec -= 1 + (-(_a_)->tv_usec / 1000000); \ 98 (_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \ 99 } 100 101 #ifdef timeradd 102 #undef timeradd 103 #endif 104 #define timeradd(_a_, _b_) \ 105 (_a_)->tv_sec += (_b_)->tv_sec; \ 106 (_a_)->tv_usec += (_b_)->tv_usec; \ 107 timernormalize((_a_)) 108 109 #ifdef timersub 110 #undef timersub 111 #endif 112 #define timersub(_a_, _b_) \ 113 (_a_)->tv_sec -= (_b_)->tv_sec; \ 114 (_a_)->tv_usec -= (_b_)->tv_usec; \ 115 timernormalize((_a_)) 116 117 /* 118 * debug macros 119 */ 120 #define PRINTF if (interactive) printf 121 #define LPRINTF if (interactive && loop_filter_debug) printf 122 123 #ifdef DEBUG 124 #define DPRINTF(_x_) LPRINTF _x_ 125 #else 126 #define DPRINTF(_x_) 127 #endif 128 129 #ifdef DECL_ERRNO 130 extern int errno; 131 #endif 132 133 static char *revision = "4.18"; 134 135 /* 136 * display received data (avoids also detaching from tty) 137 */ 138 static int interactive = 0; 139 140 /* 141 * display loopfilter (clock control) variables 142 */ 143 static int loop_filter_debug = 0; 144 145 /* 146 * do not set/adjust system time 147 */ 148 static int no_set = 0; 149 150 /* 151 * time that passes between start of DCF impulse and time stamping (fine 152 * adjustment) in microseconds (receiver/OS dependent) 153 */ 154 #define DEFAULT_DELAY 230000 /* rough estimate */ 155 156 /* 157 * The two states we can be in - eithe we receive nothing 158 * usable or we have the correct time 159 */ 160 #define NO_SYNC 0x01 161 #define SYNC 0x02 162 163 static int sync_state = NO_SYNC; 164 static time_t last_sync; 165 166 static unsigned long ticks = 0; 167 168 static char pat[] = "-\\|/"; 169 170 #define LINES (24-2) /* error lines after which the two headlines are repeated */ 171 172 #define MAX_UNSYNC (10*60) /* allow synchronisation loss for 10 minutes */ 173 #define NOTICE_INTERVAL (20*60) /* mention missing synchronisation every 20 minutes */ 174 175 /* 176 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details 177 */ 178 179 #define USECSCALE 10 180 #define TIMECONSTANT 2 181 #define ADJINTERVAL 0 182 #define FREQ_WEIGHT 18 183 #define PHASE_WEIGHT 7 184 #define MAX_DRIFT 0x3FFFFFFF 185 186 #define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_))) 187 188 static long max_adj_offset_usec = 128000; 189 190 static long clock_adjust = 0; /* current adjustment value (usec * 2^USECSCALE) */ 191 static long accum_drift = 0; /* accumulated drift value (usec / ADJINTERVAL) */ 192 static long adjustments = 0; 193 static char skip_adjust = 1; /* discard first adjustment (bad samples) */ 194 195 /* 196 * DCF77 state flags 197 */ 198 #define DCFB_ANNOUNCE 0x0001 /* switch time zone warning (DST switch) */ 199 #define DCFB_DST 0x0002 /* DST in effect */ 200 #define DCFB_LEAP 0x0004 /* LEAP warning (1 hour prior to occurrence) */ 201 #define DCFB_CALLBIT 0x0008 /* "call bit" used to signalize irregularities in the control facilities */ 202 203 struct clocktime /* clock time broken up from time code */ 204 { 205 long wday; /* Day of week: 1: Monday - 7: Sunday */ 206 long day; 207 long month; 208 long year; 209 long hour; 210 long minute; 211 long second; 212 long usecond; 213 long utcoffset; /* in minutes */ 214 long flags; /* current clock status (DCF77 state flags) */ 215 }; 216 217 typedef struct clocktime clocktime_t; 218 219 /* 220 * (usually) quick constant multiplications 221 */ 222 #ifndef TIMES10 223 #define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1)) /* *8 + *2 */ 224 #endif 225 #ifndef TIMES24 226 #define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3)) /* *16 + *8 */ 227 #endif 228 #ifndef TIMES60 229 #define TIMES60(_X_) ((((_X_) << 4) - (_X_)) << 2) /* *(16 - 1) *4 */ 230 #endif 231 232 /* 233 * generic l_abs() function 234 */ 235 #define l_abs(_x_) (((_x_) < 0) ? -(_x_) : (_x_)) 236 237 /* 238 * conversion related return/error codes 239 */ 240 #define CVT_MASK 0x0000000F /* conversion exit code */ 241 #define CVT_NONE 0x00000001 /* format not applicable */ 242 #define CVT_FAIL 0x00000002 /* conversion failed - error code returned */ 243 #define CVT_OK 0x00000004 /* conversion succeeded */ 244 #define CVT_BADFMT 0x00000010 /* general format error - (unparsable) */ 245 #define CVT_BADDATE 0x00000020 /* invalid date */ 246 #define CVT_BADTIME 0x00000040 /* invalid time */ 247 248 /* 249 * DCF77 raw time code 250 * 251 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 252 * und Berlin, Maerz 1989 253 * 254 * Timecode transmission: 255 * AM: 256 * time marks are send every second except for the second before the 257 * next minute mark 258 * time marks consist of a reduction of transmitter power to 25% 259 * of the nominal level 260 * the falling edge is the time indication (on time) 261 * time marks of a 100ms duration constitute a logical 0 262 * time marks of a 200ms duration constitute a logical 1 263 * FM: 264 * see the spec. (basically a (non-)inverted psuedo random phase shift) 265 * 266 * Encoding: 267 * Second Contents 268 * 0 - 10 AM: free, FM: 0 269 * 11 - 14 free 270 * 15 R - "call bit" used to signalize irregularities in the control facilities 271 * (until 2003 indicated transmission via alternate antenna) 272 * 16 A1 - expect zone change (1 hour before) 273 * 17 - 18 Z1,Z2 - time zone 274 * 0 0 illegal 275 * 0 1 MEZ (MET) 276 * 1 0 MESZ (MED, MET DST) 277 * 1 1 illegal 278 * 19 A2 - expect leap insertion/deletion (1 hour before) 279 * 20 S - start of time code (1) 280 * 21 - 24 M1 - BCD (lsb first) Minutes 281 * 25 - 27 M10 - BCD (lsb first) 10 Minutes 282 * 28 P1 - Minute Parity (even) 283 * 29 - 32 H1 - BCD (lsb first) Hours 284 * 33 - 34 H10 - BCD (lsb first) 10 Hours 285 * 35 P2 - Hour Parity (even) 286 * 36 - 39 D1 - BCD (lsb first) Days 287 * 40 - 41 D10 - BCD (lsb first) 10 Days 288 * 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 289 * 45 - 49 MO - BCD (lsb first) Month 290 * 50 MO0 - 10 Months 291 * 51 - 53 Y1 - BCD (lsb first) Years 292 * 54 - 57 Y10 - BCD (lsb first) 10 Years 293 * 58 P3 - Date Parity (even) 294 * 59 - usually missing (minute indication), except for leap insertion 295 */ 296 297 /*----------------------------------------------------------------------- 298 * conversion table to map DCF77 bit stream into data fields. 299 * Encoding: 300 * Each field of the DCF77 code is described with two adjacent entries in 301 * this table. The first entry specifies the offset into the DCF77 data stream 302 * while the length is given as the difference between the start index and 303 * the start index of the following field. 304 */ 305 static struct rawdcfcode 306 { 307 char offset; /* start bit */ 308 } rawdcfcode[] = 309 { 310 { 0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 }, 311 { 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 } 312 }; 313 314 /*----------------------------------------------------------------------- 315 * symbolic names for the fields of DCF77 describes in "rawdcfcode". 316 * see comment above for the structure of the DCF77 data 317 */ 318 #define DCF_M 0 319 #define DCF_R 1 320 #define DCF_A1 2 321 #define DCF_Z 3 322 #define DCF_A2 4 323 #define DCF_S 5 324 #define DCF_M1 6 325 #define DCF_M10 7 326 #define DCF_P1 8 327 #define DCF_H1 9 328 #define DCF_H10 10 329 #define DCF_P2 11 330 #define DCF_D1 12 331 #define DCF_D10 13 332 #define DCF_DW 14 333 #define DCF_MO 15 334 #define DCF_MO0 16 335 #define DCF_Y1 17 336 #define DCF_Y10 18 337 #define DCF_P3 19 338 339 /*----------------------------------------------------------------------- 340 * parity field table (same encoding as rawdcfcode) 341 * This table describes the sections of the DCF77 code that are 342 * parity protected 343 */ 344 static struct partab 345 { 346 char offset; /* start bit of parity field */ 347 } partab[] = 348 { 349 { 21 }, { 29 }, { 36 }, { 59 } 350 }; 351 352 /*----------------------------------------------------------------------- 353 * offsets for parity field descriptions 354 */ 355 #define DCF_P_P1 0 356 #define DCF_P_P2 1 357 #define DCF_P_P3 2 358 359 /*----------------------------------------------------------------------- 360 * legal values for time zone information 361 */ 362 #define DCF_Z_MET 0x2 363 #define DCF_Z_MED 0x1 364 365 /*----------------------------------------------------------------------- 366 * symbolic representation if the DCF77 data stream 367 */ 368 static struct dcfparam 369 { 370 unsigned char onebits[60]; 371 unsigned char zerobits[60]; 372 } dcfparam = 373 { 374 "###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */ 375 "--------------------s-------p------p----------------------p" /* 'ZERO' representation */ 376 }; 377 378 /*----------------------------------------------------------------------- 379 * extract a bitfield from DCF77 datastream 380 * All numeric fields are LSB first. 381 * buf holds a pointer to a DCF77 data buffer in symbolic 382 * representation 383 * idx holds the index to the field description in rawdcfcode 384 */ 385 static unsigned long 386 ext_bf( 387 register unsigned char *buf, 388 register int idx 389 ) 390 { 391 register unsigned long sum = 0; 392 register int i, first; 393 394 first = rawdcfcode[idx].offset; 395 396 for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--) 397 { 398 sum <<= 1; 399 sum |= (buf[i] != dcfparam.zerobits[i]); 400 } 401 return sum; 402 } 403 404 /*----------------------------------------------------------------------- 405 * check even parity integrity for a bitfield 406 * 407 * buf holds a pointer to a DCF77 data buffer in symbolic 408 * representation 409 * idx holds the index to the field description in partab 410 */ 411 static unsigned 412 pcheck( 413 register unsigned char *buf, 414 register int idx 415 ) 416 { 417 register int i,last; 418 register unsigned psum = 1; 419 420 last = partab[idx+1].offset; 421 422 for (i = partab[idx].offset; i < last; i++) 423 psum ^= (buf[i] != dcfparam.zerobits[i]); 424 425 return psum; 426 } 427 428 /*----------------------------------------------------------------------- 429 * convert a DCF77 data buffer into wall clock time + flags 430 * 431 * buffer holds a pointer to a DCF77 data buffer in symbolic 432 * representation 433 * size describes the length of DCF77 information in bits (represented 434 * as chars in symbolic notation 435 * clock points to a wall clock time description of the DCF77 data (result) 436 */ 437 static unsigned long 438 convert_rawdcf( 439 unsigned char *buffer, 440 int size, 441 clocktime_t *clock_time 442 ) 443 { 444 if (size < 57) 445 { 446 PRINTF("%-30s", "*** INCOMPLETE"); 447 return CVT_NONE; 448 } 449 450 /* 451 * check Start and Parity bits 452 */ 453 if ((ext_bf(buffer, DCF_S) == 1) && 454 pcheck(buffer, DCF_P_P1) && 455 pcheck(buffer, DCF_P_P2) && 456 pcheck(buffer, DCF_P_P3)) 457 { 458 /* 459 * buffer OK - extract all fields and build wall clock time from them 460 */ 461 462 clock_time->flags = 0; 463 clock_time->usecond= 0; 464 clock_time->second = 0; 465 clock_time->minute = ext_bf(buffer, DCF_M10); 466 clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1); 467 clock_time->hour = ext_bf(buffer, DCF_H10); 468 clock_time->hour = TIMES10(clock_time->hour) + ext_bf(buffer, DCF_H1); 469 clock_time->day = ext_bf(buffer, DCF_D10); 470 clock_time->day = TIMES10(clock_time->day) + ext_bf(buffer, DCF_D1); 471 clock_time->month = ext_bf(buffer, DCF_MO0); 472 clock_time->month = TIMES10(clock_time->month) + ext_bf(buffer, DCF_MO); 473 clock_time->year = ext_bf(buffer, DCF_Y10); 474 clock_time->year = TIMES10(clock_time->year) + ext_bf(buffer, DCF_Y1); 475 clock_time->wday = ext_bf(buffer, DCF_DW); 476 477 /* 478 * determine offset to UTC by examining the time zone 479 */ 480 switch (ext_bf(buffer, DCF_Z)) 481 { 482 case DCF_Z_MET: 483 clock_time->utcoffset = -60; 484 break; 485 486 case DCF_Z_MED: 487 clock_time->flags |= DCFB_DST; 488 clock_time->utcoffset = -120; 489 break; 490 491 default: 492 PRINTF("%-30s", "*** BAD TIME ZONE"); 493 return CVT_FAIL|CVT_BADFMT; 494 } 495 496 /* 497 * extract various warnings from DCF77 498 */ 499 if (ext_bf(buffer, DCF_A1)) 500 clock_time->flags |= DCFB_ANNOUNCE; 501 502 if (ext_bf(buffer, DCF_A2)) 503 clock_time->flags |= DCFB_LEAP; 504 505 if (ext_bf(buffer, DCF_R)) 506 clock_time->flags |= DCFB_CALLBIT; 507 508 return CVT_OK; 509 } 510 else 511 { 512 /* 513 * bad format - not for us 514 */ 515 PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)"); 516 return CVT_FAIL|CVT_BADFMT; 517 } 518 } 519 520 /*----------------------------------------------------------------------- 521 * raw dcf input routine - fix up 50 baud 522 * characters for 1/0 decision 523 */ 524 static unsigned long 525 cvt_rawdcf( 526 unsigned char *buffer, 527 int size, 528 clocktime_t *clock_time 529 ) 530 { 531 register unsigned char *s = buffer; 532 register unsigned char *e = buffer + size; 533 register unsigned char *b = dcfparam.onebits; 534 register unsigned char *c = dcfparam.zerobits; 535 register unsigned rtc = CVT_NONE; 536 register unsigned int i, lowmax, highmax, cutoff, span; 537 #define BITS 9 538 unsigned char histbuf[BITS]; 539 /* 540 * the input buffer contains characters with runs of consecutive 541 * bits set. These set bits are an indication of the DCF77 pulse 542 * length. We assume that we receive the pulse at 50 Baud. Thus 543 * a 100ms pulse would generate a 4 bit train (20ms per bit and 544 * start bit) 545 * a 200ms pulse would create all zeroes (and probably a frame error) 546 * 547 * The basic idea is that on corret reception we must have two 548 * maxima in the pulse length distribution histogram. (one for 549 * the zero representing pulses and one for the one representing 550 * pulses) 551 * There will always be ones in the datastream, thus we have to see 552 * two maxima. 553 * The best point to cut for a 1/0 decision is the minimum between those 554 * between the maxima. The following code tries to find this cutoff point. 555 */ 556 557 /* 558 * clear histogram buffer 559 */ 560 for (i = 0; i < BITS; i++) 561 { 562 histbuf[i] = 0; 563 } 564 565 cutoff = 0; 566 lowmax = 0; 567 568 /* 569 * convert sequences of set bits into bits counts updating 570 * the histogram alongway 571 */ 572 while (s < e) 573 { 574 register unsigned int ch = *s ^ 0xFF; 575 /* 576 * check integrity and update histogramm 577 */ 578 if (!((ch+1) & ch) || !*s) 579 { 580 /* 581 * character ok 582 */ 583 for (i = 0; ch; i++) 584 { 585 ch >>= 1; 586 } 587 588 *s = i; 589 histbuf[i]++; 590 cutoff += i; 591 lowmax++; 592 } 593 else 594 { 595 /* 596 * invalid character (no consecutive bit sequence) 597 */ 598 DPRINTF(("parse: cvt_rawdcf: character check for 0x%x@%ld FAILED\n", 599 (u_int)*s, (long)(s - buffer))); 600 *s = (unsigned char)~0; 601 rtc = CVT_FAIL|CVT_BADFMT; 602 } 603 s++; 604 } 605 606 /* 607 * first cutoff estimate (average bit count - must be between both 608 * maxima) 609 */ 610 if (lowmax) 611 { 612 cutoff /= lowmax; 613 } 614 else 615 { 616 cutoff = 4; /* doesn't really matter - it'll fail anyway, but gives error output */ 617 } 618 619 DPRINTF(("parse: cvt_rawdcf: average bit count: %d\n", cutoff)); 620 621 lowmax = 0; /* weighted sum */ 622 highmax = 0; /* bitcount */ 623 624 /* 625 * collect weighted sum of lower bits (left of initial guess) 626 */ 627 DPRINTF(("parse: cvt_rawdcf: histogram:")); 628 for (i = 0; i <= cutoff; i++) 629 { 630 lowmax += histbuf[i] * i; 631 highmax += histbuf[i]; 632 DPRINTF((" %d", histbuf[i])); 633 } 634 DPRINTF((" <M>")); 635 636 /* 637 * round up 638 */ 639 lowmax += highmax / 2; 640 641 /* 642 * calculate lower bit maximum (weighted sum / bit count) 643 * 644 * avoid divide by zero 645 */ 646 if (highmax) 647 { 648 lowmax /= highmax; 649 } 650 else 651 { 652 lowmax = 0; 653 } 654 655 highmax = 0; /* weighted sum of upper bits counts */ 656 cutoff = 0; /* bitcount */ 657 658 /* 659 * collect weighted sum of lower bits (right of initial guess) 660 */ 661 for (; i < BITS; i++) 662 { 663 highmax+=histbuf[i] * i; 664 cutoff +=histbuf[i]; 665 DPRINTF((" %d", histbuf[i])); 666 } 667 DPRINTF(("\n")); 668 669 /* 670 * determine upper maximum (weighted sum / bit count) 671 */ 672 if (cutoff) 673 { 674 highmax /= cutoff; 675 } 676 else 677 { 678 highmax = BITS-1; 679 } 680 681 /* 682 * following now holds: 683 * lowmax <= cutoff(initial guess) <= highmax 684 * best cutoff is the minimum nearest to higher bits 685 */ 686 687 /* 688 * find the minimum between lowmax and highmax (detecting 689 * possibly a minimum span) 690 */ 691 span = cutoff = lowmax; 692 for (i = lowmax; i <= highmax; i++) 693 { 694 if (histbuf[cutoff] > histbuf[i]) 695 { 696 /* 697 * got a new minimum move beginning of minimum (cutoff) and 698 * end of minimum (span) there 699 */ 700 cutoff = span = i; 701 } 702 else 703 if (histbuf[cutoff] == histbuf[i]) 704 { 705 /* 706 * minimum not better yet - but it spans more than 707 * one bit value - follow it 708 */ 709 span = i; 710 } 711 } 712 713 /* 714 * cutoff point for 1/0 decision is the middle of the minimum section 715 * in the histogram 716 */ 717 cutoff = (cutoff + span) / 2; 718 719 DPRINTF(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff)); 720 721 /* 722 * convert the bit counts to symbolic 1/0 information for data conversion 723 */ 724 s = buffer; 725 while ((s < e) && *c && *b) 726 { 727 if (*s == (unsigned char)~0) 728 { 729 /* 730 * invalid character 731 */ 732 *s = '?'; 733 } 734 else 735 { 736 /* 737 * symbolic 1/0 representation 738 */ 739 *s = (*s >= cutoff) ? *b : *c; 740 } 741 s++; 742 b++; 743 c++; 744 } 745 746 /* 747 * if everything went well so far return the result of the symbolic 748 * conversion routine else just the accumulated errors 749 */ 750 if (rtc != CVT_NONE) 751 { 752 PRINTF("%-30s", "*** BAD DATA"); 753 } 754 755 return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc; 756 } 757 758 /*----------------------------------------------------------------------- 759 * convert a wall clock time description of DCF77 to a Unix time (seconds 760 * since 1.1. 1970 UTC) 761 */ 762 static time_t 763 dcf_to_unixtime( 764 clocktime_t *clock_time, 765 unsigned *cvtrtc 766 ) 767 { 768 #define SETRTC(_X_) { if (cvtrtc) *cvtrtc = (_X_); } 769 static int days_of_month[] = 770 { 771 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 772 }; 773 register int i; 774 time_t t; 775 776 /* 777 * map 2 digit years to 19xx (DCF77 is a 20th century item) 778 */ 779 if ( clock_time->year < YEAR_PIVOT ) /* in case of Y2KFixes [ */ 780 clock_time->year += 100; /* *year%100, make tm_year */ 781 /* *(do we need this?) */ 782 if ( clock_time->year < YEAR_BREAK ) /* (failsafe if) */ 783 clock_time->year += 1900; /* Y2KFixes ] */ 784 785 /* 786 * must have been a really bad year code - drop it 787 */ 788 if (clock_time->year < (YEAR_PIVOT + 1900) ) /* Y2KFixes */ 789 { 790 SETRTC(CVT_FAIL|CVT_BADDATE); 791 return -1; 792 } 793 /* 794 * sorry, slow section here - but it's not time critical anyway 795 */ 796 797 /* 798 * calculate days since 1970 (watching leap years) 799 */ 800 t = julian0( clock_time->year ) - julian0( 1970 ); 801 802 /* month */ 803 if (clock_time->month <= 0 || clock_time->month > 12) 804 { 805 SETRTC(CVT_FAIL|CVT_BADDATE); 806 return -1; /* bad month */ 807 } 808 /* adjust current leap year */ 809 #if 0 810 if (clock_time->month < 3 && days_per_year(clock_time->year) == 366) 811 t--; 812 #endif 813 814 /* 815 * collect days from months excluding the current one 816 */ 817 for (i = 1; i < clock_time->month; i++) 818 { 819 t += days_of_month[i]; 820 } 821 /* day */ 822 if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ? 823 clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month])) 824 { 825 SETRTC(CVT_FAIL|CVT_BADDATE); 826 return -1; /* bad day */ 827 } 828 829 /* 830 * collect days from date excluding the current one 831 */ 832 t += clock_time->day - 1; 833 834 /* hour */ 835 if (clock_time->hour < 0 || clock_time->hour >= 24) 836 { 837 SETRTC(CVT_FAIL|CVT_BADTIME); 838 return -1; /* bad hour */ 839 } 840 841 /* 842 * calculate hours from 1. 1. 1970 843 */ 844 t = TIMES24(t) + clock_time->hour; 845 846 /* min */ 847 if (clock_time->minute < 0 || clock_time->minute > 59) 848 { 849 SETRTC(CVT_FAIL|CVT_BADTIME); 850 return -1; /* bad min */ 851 } 852 853 /* 854 * calculate minutes from 1. 1. 1970 855 */ 856 t = TIMES60(t) + clock_time->minute; 857 /* sec */ 858 859 /* 860 * calculate UTC in minutes 861 */ 862 t += clock_time->utcoffset; 863 864 if (clock_time->second < 0 || clock_time->second > 60) /* allow for LEAPs */ 865 { 866 SETRTC(CVT_FAIL|CVT_BADTIME); 867 return -1; /* bad sec */ 868 } 869 870 /* 871 * calculate UTC in seconds - phew ! 872 */ 873 t = TIMES60(t) + clock_time->second; 874 /* done */ 875 return t; 876 } 877 878 /*----------------------------------------------------------------------- 879 * cheap half baked 1/0 decision - for interactive operation only 880 */ 881 static char 882 type( 883 unsigned int c 884 ) 885 { 886 c ^= 0xFF; 887 return (c > 0xF); 888 } 889 890 /*----------------------------------------------------------------------- 891 * week day representation 892 */ 893 static const char *wday[8] = 894 { 895 "??", 896 "Mo", 897 "Tu", 898 "We", 899 "Th", 900 "Fr", 901 "Sa", 902 "Su" 903 }; 904 905 /*----------------------------------------------------------------------- 906 * generate a string representation for a timeval 907 */ 908 static char * 909 pr_timeval( 910 struct timeval *val 911 ) 912 { 913 static char buf[20]; 914 915 if (val->tv_sec == 0) 916 snprintf(buf, sizeof(buf), "%c0.%06ld", 917 (val->tv_usec < 0) ? '-' : '+', 918 (long int)l_abs(val->tv_usec)); 919 else 920 snprintf(buf, sizeof(buf), "%ld.%06ld", 921 (long int)val->tv_sec, 922 (long int)l_abs(val->tv_usec)); 923 return buf; 924 } 925 926 /*----------------------------------------------------------------------- 927 * correct the current time by an offset by setting the time rigorously 928 */ 929 static void 930 set_time( 931 struct timeval *offset 932 ) 933 { 934 struct timeval the_time; 935 936 if (no_set) 937 return; 938 939 LPRINTF("set_time: %s ", pr_timeval(offset)); 940 syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset)); 941 942 if (gettimeofday(&the_time, 0L) == -1) 943 { 944 perror("gettimeofday()"); 945 } 946 else 947 { 948 timeradd(&the_time, offset); 949 if (settimeofday(&the_time, 0L) == -1) 950 { 951 perror("settimeofday()"); 952 } 953 } 954 } 955 956 /*----------------------------------------------------------------------- 957 * slew the time by a given offset 958 */ 959 static void 960 adj_time( 961 long offset 962 ) 963 { 964 struct timeval time_offset; 965 966 if (no_set) 967 return; 968 969 time_offset.tv_sec = offset / 1000000; 970 time_offset.tv_usec = offset % 1000000; 971 972 LPRINTF("adj_time: %ld us ", (long int)offset); 973 if (adjtime(&time_offset, 0L) == -1) 974 perror("adjtime()"); 975 } 976 977 /*----------------------------------------------------------------------- 978 * read in a possibly previously written drift value 979 */ 980 static void 981 read_drift( 982 const char *drift_file 983 ) 984 { 985 FILE *df; 986 987 df = fopen(drift_file, "r"); 988 if (df != NULL) 989 { 990 int idrift = 0, fdrift = 0; 991 992 if (2 != fscanf(df, "%4d.%03d", &idrift, &fdrift)) 993 LPRINTF("read_drift: trouble reading drift file"); 994 fclose(df); 995 LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift); 996 997 accum_drift = idrift << USECSCALE; 998 fdrift = (fdrift << USECSCALE) / 1000; 999 accum_drift += fdrift & (1<<USECSCALE); 1000 LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift); 1001 } 1002 } 1003 1004 /*----------------------------------------------------------------------- 1005 * write out the current drift value 1006 */ 1007 static void 1008 update_drift( 1009 const char *drift_file, 1010 long offset, 1011 time_t reftime 1012 ) 1013 { 1014 FILE *df; 1015 1016 df = fopen(drift_file, "w"); 1017 if (df != NULL) 1018 { 1019 int idrift = R_SHIFT(accum_drift, USECSCALE); 1020 int fdrift = accum_drift & ((1<<USECSCALE)-1); 1021 1022 LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift); 1023 fdrift = (fdrift * 1000) / (1<<USECSCALE); 1024 fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift, 1025 (offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000), 1026 (long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime))); 1027 fclose(df); 1028 LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift); 1029 } 1030 } 1031 1032 /*----------------------------------------------------------------------- 1033 * process adjustments derived from the DCF77 observation 1034 * (controls clock PLL) 1035 */ 1036 static void 1037 adjust_clock( 1038 struct timeval *offset, 1039 const char *drift_file, 1040 time_t reftime 1041 ) 1042 { 1043 struct timeval toffset; 1044 register long usecoffset; 1045 int tmp; 1046 1047 if (no_set) 1048 return; 1049 1050 if (skip_adjust) 1051 { 1052 skip_adjust = 0; 1053 return; 1054 } 1055 1056 toffset = *offset; 1057 toffset.tv_sec = l_abs(toffset.tv_sec); 1058 toffset.tv_usec = l_abs(toffset.tv_usec); 1059 if (toffset.tv_sec || 1060 (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec)) 1061 { 1062 /* 1063 * hopeless - set the clock - and clear the timing 1064 */ 1065 set_time(offset); 1066 clock_adjust = 0; 1067 skip_adjust = 1; 1068 return; 1069 } 1070 1071 usecoffset = offset->tv_sec * 1000000 + offset->tv_usec; 1072 1073 clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT); /* adjustment to make for next period */ 1074 1075 tmp = 0; 1076 while (adjustments > (1 << tmp)) 1077 tmp++; 1078 adjustments = 0; 1079 if (tmp > FREQ_WEIGHT) 1080 tmp = FREQ_WEIGHT; 1081 1082 accum_drift += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp); 1083 1084 if (accum_drift > MAX_DRIFT) /* clamp into interval */ 1085 accum_drift = MAX_DRIFT; 1086 else 1087 if (accum_drift < -MAX_DRIFT) 1088 accum_drift = -MAX_DRIFT; 1089 1090 update_drift(drift_file, usecoffset, reftime); 1091 LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ", 1092 pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE), 1093 (long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift); 1094 } 1095 1096 /*----------------------------------------------------------------------- 1097 * adjust the clock by a small mount to simulate frequency correction 1098 */ 1099 static void 1100 periodic_adjust( 1101 void 1102 ) 1103 { 1104 register long adjustment; 1105 1106 adjustments++; 1107 1108 adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT); 1109 1110 clock_adjust -= adjustment; 1111 1112 adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL); 1113 1114 adj_time(adjustment); 1115 } 1116 1117 /*----------------------------------------------------------------------- 1118 * control synchronisation status (warnings) and do periodic adjusts 1119 * (frequency control simulation) 1120 */ 1121 static void 1122 tick( 1123 int signum 1124 ) 1125 { 1126 static unsigned long last_notice = 0; 1127 1128 #if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC) 1129 (void)signal(SIGALRM, tick); 1130 #endif 1131 1132 periodic_adjust(); 1133 1134 ticks += 1<<ADJINTERVAL; 1135 1136 if ((ticks - last_sync) > MAX_UNSYNC) 1137 { 1138 /* 1139 * not getting time for a while 1140 */ 1141 if (sync_state == SYNC) 1142 { 1143 /* 1144 * completely lost information 1145 */ 1146 sync_state = NO_SYNC; 1147 syslog(LOG_INFO, "DCF77 reception lost (timeout)"); 1148 last_notice = ticks; 1149 } 1150 else 1151 /* 1152 * in NO_SYNC state - look whether its time to speak up again 1153 */ 1154 if ((ticks - last_notice) > NOTICE_INTERVAL) 1155 { 1156 syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal"); 1157 last_notice = ticks; 1158 } 1159 } 1160 1161 #ifndef ITIMER_REAL 1162 (void) alarm(1<<ADJINTERVAL); 1163 #endif 1164 } 1165 1166 /*----------------------------------------------------------------------- 1167 * break association from terminal to avoid catching terminal 1168 * or process group related signals (-> daemon operation) 1169 */ 1170 static void 1171 detach( 1172 void 1173 ) 1174 { 1175 # ifdef HAVE_DAEMON 1176 if (daemon(0, 0)) { 1177 fprintf(stderr, "'daemon()' fails: %d(%s)\n", 1178 errno, strerror(errno)); 1179 } 1180 # else /* not HAVE_DAEMON */ 1181 if (fork()) 1182 exit(0); 1183 1184 { 1185 u_long s; 1186 int max_fd; 1187 1188 #if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX) 1189 max_fd = sysconf(_SC_OPEN_MAX); 1190 #else /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1191 max_fd = getdtablesize(); 1192 #endif /* HAVE_SYSCONF && _SC_OPEN_MAX */ 1193 for (s = 0; s < max_fd; s++) 1194 (void) close((int)s); 1195 (void) open("/", 0); 1196 (void) dup2(0, 1); 1197 (void) dup2(0, 2); 1198 #ifdef SYS_DOMAINOS 1199 { 1200 uid_$t puid; 1201 status_$t st; 1202 1203 proc2_$who_am_i(&puid); 1204 proc2_$make_server(&puid, &st); 1205 } 1206 #endif /* SYS_DOMAINOS */ 1207 #if defined(HAVE_SETPGID) || defined(HAVE_SETSID) 1208 # ifdef HAVE_SETSID 1209 if (setsid() == (pid_t)-1) 1210 syslog(LOG_ERR, "dcfd: setsid(): %m"); 1211 # else 1212 if (setpgid(0, 0) == -1) 1213 syslog(LOG_ERR, "dcfd: setpgid(): %m"); 1214 # endif 1215 #else /* HAVE_SETPGID || HAVE_SETSID */ 1216 { 1217 int fid; 1218 1219 fid = open("/dev/tty", 2); 1220 if (fid >= 0) 1221 { 1222 (void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0); 1223 (void) close(fid); 1224 } 1225 # ifdef HAVE_SETPGRP_0 1226 (void) setpgrp(); 1227 # else /* HAVE_SETPGRP_0 */ 1228 (void) setpgrp(0, getpid()); 1229 # endif /* HAVE_SETPGRP_0 */ 1230 } 1231 #endif /* HAVE_SETPGID || HAVE_SETSID */ 1232 } 1233 #endif /* not HAVE_DAEMON */ 1234 } 1235 1236 /*----------------------------------------------------------------------- 1237 * list possible arguments and options 1238 */ 1239 static void 1240 usage( 1241 char *program 1242 ) 1243 { 1244 fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program); 1245 fprintf(stderr, "\t-n do not change time\n"); 1246 fprintf(stderr, "\t-i interactive\n"); 1247 fprintf(stderr, "\t-t trace (print all datagrams)\n"); 1248 fprintf(stderr, "\t-f print all databits (includes PTB private data)\n"); 1249 fprintf(stderr, "\t-l print loop filter debug information\n"); 1250 fprintf(stderr, "\t-o print offet average for current minute\n"); 1251 fprintf(stderr, "\t-Y make internal Y2K checks then exit\n"); /* Y2KFixes */ 1252 fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n"); 1253 fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n"); 1254 } 1255 1256 /*----------------------------------------------------------------------- 1257 * check_y2k() - internal check of Y2K logic 1258 * (a lot of this logic lifted from ../ntpd/check_y2k.c) 1259 */ 1260 static int 1261 check_y2k( void ) 1262 { 1263 int year; /* current working year */ 1264 int year0 = 1900; /* sarting year for NTP time */ 1265 int yearend; /* ending year we test for NTP time. 1266 * 32-bit systems: through 2036, the 1267 **year in which NTP time overflows. 1268 * 64-bit systems: a reasonable upper 1269 **limit (well, maybe somewhat beyond 1270 **reasonable, but well before the 1271 **max time, by which time the earth 1272 **will be dead.) */ 1273 time_t Time; 1274 struct tm LocalTime; 1275 1276 int Fatals, Warnings; 1277 #define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \ 1278 Warnings++; else Fatals++ 1279 1280 Fatals = Warnings = 0; 1281 1282 Time = time( (time_t *)NULL ); 1283 LocalTime = *localtime( &Time ); 1284 1285 year = ( sizeof( u_long ) > 4 ) /* save max span using year as temp */ 1286 ? ( 400 * 3 ) /* three greater gregorian cycles */ 1287 : ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/ 1288 /* NOTE: will automacially expand test years on 1289 * 64 bit machines.... this may cause some of the 1290 * existing ntp logic to fail for years beyond 1291 * 2036 (the current 32-bit limit). If all checks 1292 * fail ONLY beyond year 2036 you may ignore such 1293 * errors, at least for a decade or so. */ 1294 yearend = year0 + year; 1295 1296 year = 1900+YEAR_PIVOT; 1297 printf( " starting year %04d\n", (int) year ); 1298 printf( " ending year %04d\n", (int) yearend ); 1299 1300 for ( ; year < yearend; year++ ) 1301 { 1302 clocktime_t ct; 1303 time_t Observed; 1304 time_t Expected; 1305 unsigned Flag; 1306 unsigned long t; 1307 1308 ct.day = 1; 1309 ct.month = 1; 1310 ct.year = year; 1311 ct.hour = ct.minute = ct.second = ct.usecond = 0; 1312 ct.utcoffset = 0; 1313 ct.flags = 0; 1314 1315 Flag = 0; 1316 Observed = dcf_to_unixtime( &ct, &Flag ); 1317 /* seems to be a clone of parse_to_unixtime() with 1318 * *a minor difference to arg2 type */ 1319 if ( ct.year != year ) 1320 { 1321 fprintf( stdout, 1322 "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n", 1323 (int)year, (int)Flag, (int)ct.year ); 1324 Error(year); 1325 break; 1326 } 1327 t = julian0(year) - julian0(1970); /* Julian day from 1970 */ 1328 Expected = t * 24 * 60 * 60; 1329 if ( Observed != Expected || Flag ) 1330 { /* time difference */ 1331 fprintf( stdout, 1332 "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu (%ld)\n", 1333 year, (int)Flag, 1334 (unsigned long)Observed, (unsigned long)Expected, 1335 ((long)Observed - (long)Expected) ); 1336 Error(year); 1337 break; 1338 } 1339 1340 } 1341 1342 return ( Fatals ); 1343 } 1344 1345 /*-------------------------------------------------- 1346 * rawdcf_init - set up modem lines for RAWDCF receivers 1347 */ 1348 #if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR)) 1349 static void 1350 rawdcf_init( 1351 int fd 1352 ) 1353 { 1354 /* 1355 * You can use the RS232 to supply the power for a DCF77 receiver. 1356 * Here a voltage between the DTR and the RTS line is used. Unfortunately 1357 * the name has changed from CIOCM_DTR to TIOCM_DTR recently. 1358 */ 1359 1360 #ifdef TIOCM_DTR 1361 int sl232 = TIOCM_DTR; /* turn on DTR for power supply */ 1362 #else 1363 int sl232 = CIOCM_DTR; /* turn on DTR for power supply */ 1364 #endif 1365 1366 if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1) 1367 { 1368 syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m"); 1369 } 1370 } 1371 #else 1372 static void 1373 rawdcf_init( 1374 int fd 1375 ) 1376 { 1377 syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules"); 1378 } 1379 #endif /* DTR initialisation type */ 1380 1381 /*----------------------------------------------------------------------- 1382 * main loop - argument interpreter / setup / main loop 1383 */ 1384 int 1385 main( 1386 int argc, 1387 char **argv 1388 ) 1389 { 1390 unsigned char c; 1391 char **a = argv; 1392 int ac = argc; 1393 char *file = NULL; 1394 const char *drift_file = "/etc/dcfd.drift"; 1395 int fd; 1396 int offset = 15; 1397 int offsets = 0; 1398 int delay = DEFAULT_DELAY; /* average delay from input edge to time stamping */ 1399 int trace = 0; 1400 int errs = 0; 1401 1402 /* 1403 * process arguments 1404 */ 1405 while (--ac) 1406 { 1407 char *arg = *++a; 1408 if (*arg == '-') 1409 while ((c = *++arg)) 1410 switch (c) 1411 { 1412 case 't': 1413 trace = 1; 1414 interactive = 1; 1415 break; 1416 1417 case 'f': 1418 offset = 0; 1419 interactive = 1; 1420 break; 1421 1422 case 'l': 1423 loop_filter_debug = 1; 1424 offsets = 1; 1425 interactive = 1; 1426 break; 1427 1428 case 'n': 1429 no_set = 1; 1430 break; 1431 1432 case 'o': 1433 offsets = 1; 1434 interactive = 1; 1435 break; 1436 1437 case 'i': 1438 interactive = 1; 1439 break; 1440 1441 case 'D': 1442 if (ac > 1) 1443 { 1444 delay = atoi(*++a); 1445 ac--; 1446 } 1447 else 1448 { 1449 fprintf(stderr, "%s: -D requires integer argument\n", argv[0]); 1450 errs=1; 1451 } 1452 break; 1453 1454 case 'd': 1455 if (ac > 1) 1456 { 1457 drift_file = *++a; 1458 ac--; 1459 } 1460 else 1461 { 1462 fprintf(stderr, "%s: -d requires file name argument\n", argv[0]); 1463 errs=1; 1464 } 1465 break; 1466 1467 case 'Y': 1468 errs=check_y2k(); 1469 exit( errs ? 1 : 0 ); 1470 1471 default: 1472 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c); 1473 errs=1; 1474 break; 1475 } 1476 else 1477 if (file == NULL) 1478 file = arg; 1479 else 1480 { 1481 fprintf(stderr, "%s: device specified twice\n", argv[0]); 1482 errs=1; 1483 } 1484 } 1485 1486 if (errs) 1487 { 1488 usage(argv[0]); 1489 exit(1); 1490 } 1491 else 1492 if (file == NULL) 1493 { 1494 fprintf(stderr, "%s: device not specified\n", argv[0]); 1495 usage(argv[0]); 1496 exit(1); 1497 } 1498 1499 errs = LINES+1; 1500 1501 /* 1502 * get access to DCF77 tty port 1503 */ 1504 fd = open(file, O_RDONLY); 1505 if (fd == -1) 1506 { 1507 perror(file); 1508 exit(1); 1509 } 1510 else 1511 { 1512 int i, rrc; 1513 struct timeval t, tt, tlast; 1514 struct timeval timeout; 1515 struct timeval phase; 1516 struct timeval time_offset; 1517 char pbuf[61]; /* printable version */ 1518 char buf[61]; /* raw data */ 1519 clocktime_t clock_time; /* wall clock time */ 1520 time_t utc_time = 0; 1521 time_t last_utc_time = 0; 1522 long usecerror = 0; 1523 long lasterror = 0; 1524 #if defined(HAVE_TERMIOS_H) || defined(STREAM) 1525 struct termios term; 1526 #else /* not HAVE_TERMIOS_H || STREAM */ 1527 # if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS) 1528 struct termio term; 1529 # endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */ 1530 #endif /* not HAVE_TERMIOS_H || STREAM */ 1531 unsigned int rtc = CVT_NONE; 1532 1533 rawdcf_init(fd); 1534 1535 timeout.tv_sec = 1; 1536 timeout.tv_usec = 500000; 1537 1538 phase.tv_sec = 0; 1539 phase.tv_usec = delay; 1540 1541 /* 1542 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO) 1543 */ 1544 if (TTY_GETATTR(fd, &term) == -1) 1545 { 1546 perror("tcgetattr"); 1547 exit(1); 1548 } 1549 1550 memset(term.c_cc, 0, sizeof(term.c_cc)); 1551 term.c_cc[VMIN] = 1; 1552 #ifdef NO_PARENB_IGNPAR 1553 term.c_cflag = CS8|CREAD|CLOCAL; 1554 #else 1555 term.c_cflag = CS8|CREAD|CLOCAL|PARENB; 1556 #endif 1557 term.c_iflag = IGNPAR; 1558 term.c_oflag = 0; 1559 term.c_lflag = 0; 1560 1561 cfsetispeed(&term, B50); 1562 cfsetospeed(&term, B50); 1563 1564 if (TTY_SETATTR(fd, &term) == -1) 1565 { 1566 perror("tcsetattr"); 1567 exit(1); 1568 } 1569 1570 /* 1571 * lose terminal if in daemon operation 1572 */ 1573 if (!interactive) 1574 detach(); 1575 1576 /* 1577 * get syslog() initialized 1578 */ 1579 #ifdef LOG_DAEMON 1580 openlog("dcfd", LOG_PID, LOG_DAEMON); 1581 #else 1582 openlog("dcfd", LOG_PID); 1583 #endif 1584 1585 /* 1586 * setup periodic operations (state control / frequency control) 1587 */ 1588 #ifdef HAVE_SIGACTION 1589 { 1590 struct sigaction act; 1591 1592 # ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION 1593 act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0; 1594 # endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */ 1595 act.sa_handler = tick; 1596 sigemptyset(&act.sa_mask); 1597 act.sa_flags = 0; 1598 1599 if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1) 1600 { 1601 syslog(LOG_ERR, "sigaction(SIGALRM): %m"); 1602 exit(1); 1603 } 1604 } 1605 #else 1606 #ifdef HAVE_SIGVEC 1607 { 1608 struct sigvec vec; 1609 1610 vec.sv_handler = tick; 1611 vec.sv_mask = 0; 1612 vec.sv_flags = 0; 1613 1614 if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1) 1615 { 1616 syslog(LOG_ERR, "sigvec(SIGALRM): %m"); 1617 exit(1); 1618 } 1619 } 1620 #else 1621 (void) signal(SIGALRM, tick); 1622 #endif 1623 #endif 1624 1625 #ifdef ITIMER_REAL 1626 { 1627 struct itimerval it; 1628 1629 it.it_interval.tv_sec = 1<<ADJINTERVAL; 1630 it.it_interval.tv_usec = 0; 1631 it.it_value.tv_sec = 1<<ADJINTERVAL; 1632 it.it_value.tv_usec = 0; 1633 1634 if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1) 1635 { 1636 syslog(LOG_ERR, "setitimer: %m"); 1637 exit(1); 1638 } 1639 } 1640 #else 1641 (void) alarm(1<<ADJINTERVAL); 1642 #endif 1643 1644 PRINTF(" DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision); 1645 1646 pbuf[60] = '\0'; 1647 for ( i = 0; i < 60; i++) 1648 pbuf[i] = '.'; 1649 1650 read_drift(drift_file); 1651 1652 /* 1653 * what time is it now (for interval measurement) 1654 */ 1655 gettimeofday(&tlast, 0L); 1656 i = 0; 1657 /* 1658 * loop until input trouble ... 1659 */ 1660 do 1661 { 1662 /* 1663 * get an impulse 1664 */ 1665 while ((rrc = read(fd, &c, 1)) == 1) 1666 { 1667 gettimeofday(&t, 0L); 1668 tt = t; 1669 timersub(&t, &tlast); 1670 1671 if (errs > LINES) 1672 { 1673 PRINTF(" %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]); 1674 PRINTF(" %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]); 1675 errs = 0; 1676 } 1677 1678 /* 1679 * timeout -> possible minute mark -> interpretation 1680 */ 1681 if (timercmp(&t, &timeout, >)) 1682 { 1683 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1684 1685 if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK) 1686 { 1687 /* 1688 * this data was bad - well - forget synchronisation for now 1689 */ 1690 PRINTF("\n"); 1691 if (sync_state == SYNC) 1692 { 1693 sync_state = NO_SYNC; 1694 syslog(LOG_INFO, "DCF77 reception lost (bad data)"); 1695 } 1696 errs++; 1697 } 1698 else 1699 if (trace) 1700 { 1701 PRINTF("\r %.*s ", 59 - offset, &buf[offset]); 1702 } 1703 1704 1705 buf[0] = c; 1706 1707 /* 1708 * collect first character 1709 */ 1710 if (((c^0xFF)+1) & (c^0xFF)) 1711 pbuf[0] = '?'; 1712 else 1713 pbuf[0] = type(c) ? '#' : '-'; 1714 1715 for ( i = 1; i < 60; i++) 1716 pbuf[i] = '.'; 1717 1718 i = 0; 1719 } 1720 else 1721 { 1722 /* 1723 * collect character 1724 */ 1725 buf[i] = c; 1726 1727 /* 1728 * initial guess (usually correct) 1729 */ 1730 if (((c^0xFF)+1) & (c^0xFF)) 1731 pbuf[i] = '?'; 1732 else 1733 pbuf[i] = type(c) ? '#' : '-'; 1734 1735 PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]); 1736 } 1737 1738 if (i == 0 && rtc == CVT_OK) 1739 { 1740 /* 1741 * we got a good time code here - try to convert it to 1742 * UTC 1743 */ 1744 if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1) 1745 { 1746 PRINTF("*** BAD CONVERSION\n"); 1747 } 1748 1749 if (utc_time != (last_utc_time + 60)) 1750 { 1751 /* 1752 * well, two successive sucessful telegrams are not 60 seconds 1753 * apart 1754 */ 1755 PRINTF("*** NO MINUTE INC\n"); 1756 if (sync_state == SYNC) 1757 { 1758 sync_state = NO_SYNC; 1759 syslog(LOG_INFO, "DCF77 reception lost (data mismatch)"); 1760 } 1761 errs++; 1762 rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE; 1763 } 1764 else 1765 usecerror = 0; 1766 1767 last_utc_time = utc_time; 1768 } 1769 1770 if (rtc == CVT_OK) 1771 { 1772 if (i == 0) 1773 { 1774 /* 1775 * valid time code - determine offset and 1776 * note regained reception 1777 */ 1778 last_sync = ticks; 1779 if (sync_state == NO_SYNC) 1780 { 1781 syslog(LOG_INFO, "receiving DCF77"); 1782 } 1783 else 1784 { 1785 /* 1786 * we had at least one minute SYNC - thus 1787 * last error is valid 1788 */ 1789 time_offset.tv_sec = lasterror / 1000000; 1790 time_offset.tv_usec = lasterror % 1000000; 1791 adjust_clock(&time_offset, drift_file, utc_time); 1792 } 1793 sync_state = SYNC; 1794 } 1795 1796 time_offset.tv_sec = utc_time + i; 1797 time_offset.tv_usec = 0; 1798 1799 timeradd(&time_offset, &phase); 1800 1801 usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec 1802 -tt.tv_usec; 1803 1804 /* 1805 * output interpreted DCF77 data 1806 */ 1807 PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" : 1808 "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>", 1809 wday[clock_time.wday], 1810 clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month, 1811 clock_time.year, 1812 (clock_time.flags & DCFB_CALLBIT) ? "R" : "_", 1813 (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_", 1814 (clock_time.flags & DCFB_DST) ? "D" : "_", 1815 (clock_time.flags & DCFB_LEAP) ? "L" : "_", 1816 (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000 1817 ); 1818 1819 if (trace && (i == 0)) 1820 { 1821 PRINTF("\n"); 1822 errs++; 1823 } 1824 lasterror = usecerror / (i+1); 1825 } 1826 else 1827 { 1828 lasterror = 0; /* we cannot calculate phase errors on bad reception */ 1829 } 1830 1831 PRINTF("\r"); 1832 1833 if (i < 60) 1834 { 1835 i++; 1836 } 1837 1838 tlast = tt; 1839 1840 if (interactive) 1841 fflush(stdout); 1842 } 1843 } while ((rrc == -1) && (errno == EINTR)); 1844 1845 /* 1846 * lost IO - sorry guys 1847 */ 1848 syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file); 1849 1850 (void)close(fd); 1851 } 1852 1853 closelog(); 1854 1855 return 0; 1856 } 1857 1858 /* 1859 * History: 1860 * 1861 * dcfd.c,v 1862 * Revision 4.18 2005/10/07 22:08:18 kardel 1863 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix) 1864 * 1865 * Revision 4.17.2.1 2005/10/03 19:15:16 kardel 1866 * work around configure not detecting a missing sigvec compatibility 1867 * interface on NetBSD 3.99.9 and above 1868 * 1869 * Revision 4.17 2005/08/10 10:09:44 kardel 1870 * output revision information 1871 * 1872 * Revision 4.16 2005/08/10 06:33:25 kardel 1873 * cleanup warnings 1874 * 1875 * Revision 4.15 2005/08/10 06:28:45 kardel 1876 * fix setting of baud rate 1877 * 1878 * Revision 4.14 2005/04/16 17:32:10 kardel 1879 * update copyright 1880 * 1881 * Revision 4.13 2004/11/14 15:29:41 kardel 1882 * support PPSAPI, upgrade Copyright to Berkeley style 1883 * 1884 */ 1885