1 /* 2 * ntp_proto.c - NTP version 4 protocol machinery 3 * 4 * ATTENTION: Get approval from Harlan on all changes to this file! 5 * (Harlan will be discussing these changes with Dave Mills.) 6 * 7 */ 8 #ifdef HAVE_CONFIG_H 9 #include <config.h> 10 #endif 11 12 #include "ntpd.h" 13 #include "ntp_stdlib.h" 14 #include "ntp_unixtime.h" 15 #include "ntp_control.h" 16 #include "ntp_string.h" 17 #include "ntp_leapsec.h" 18 #include "ntp_psl.h" 19 #include "refidsmear.h" 20 #include "lib_strbuf.h" 21 22 #include <stdio.h> 23 #ifdef HAVE_LIBSCF_H 24 #include <libscf.h> 25 #endif 26 #ifdef HAVE_UNISTD_H 27 #include <unistd.h> 28 #endif 29 30 /* [Bug 3031] define automatic broadcastdelay cutoff preset */ 31 #ifndef BDELAY_DEFAULT 32 # define BDELAY_DEFAULT (-0.050) 33 #endif 34 35 #define SRVFUZ_SHIFT 6 /* 64 seconds */ 36 #define SRVRSP_FUZZ(x) \ 37 do { \ 38 x.l_uf &= 0; \ 39 x.l_ui &= ~((1 << SRVFUZ_SHIFT) - 1U); \ 40 } while(0) 41 42 /* 43 * This macro defines the authentication state. If x is 1 authentication 44 * is required; otherwise it is optional. 45 */ 46 #define AUTH(x, y) ((x) ? (y) == AUTH_OK \ 47 : (y) == AUTH_OK || (y) == AUTH_NONE) 48 49 typedef enum 50 auth_state { 51 AUTH_UNKNOWN = -1, /* Unknown */ 52 AUTH_NONE, /* authentication not required */ 53 AUTH_OK, /* authentication OK */ 54 AUTH_ERROR, /* authentication error */ 55 AUTH_CRYPTO /* crypto_NAK */ 56 } auth_code; 57 58 /* 59 * Set up Kiss Code values 60 */ 61 62 typedef enum 63 kiss_codes { 64 NOKISS, /* No Kiss Code */ 65 RATEKISS, /* Rate limit Kiss Code */ 66 DENYKISS, /* Deny Kiss */ 67 RSTRKISS, /* Restricted Kiss */ 68 XKISS /* Experimental Kiss */ 69 } kiss_code; 70 71 typedef enum 72 nak_error_codes { 73 NONAK, /* No NAK seen */ 74 INVALIDNAK, /* NAK cannot be used */ 75 VALIDNAK /* NAK is valid */ 76 } nak_code; 77 78 /* 79 * traffic shaping parameters 80 */ 81 #define NTP_IBURST 6 /* packets in iburst */ 82 #define RESP_DELAY 1 /* refclock burst delay (s) */ 83 84 /* 85 * pool soliciting restriction duration (s) 86 */ 87 #define POOL_SOLICIT_WINDOW 8 88 89 /* 90 * flag bits propagated from pool to individual peers 91 */ 92 #define POOL_FLAG_PMASK (FLAG_IBURST | FLAG_NOSELECT) 93 94 /* 95 * peer_select groups statistics for a peer used by clock_select() and 96 * clock_cluster(). 97 */ 98 typedef struct peer_select_tag { 99 struct peer * peer; 100 double synch; /* sync distance */ 101 double error; /* jitter */ 102 double seljit; /* selection jitter */ 103 } peer_select; 104 105 /* 106 * System variables are declared here. Unless specified otherwise, all 107 * times are in seconds. 108 */ 109 u_char sys_leap; /* system leap indicator, use set_sys_leap() to change this */ 110 u_char xmt_leap; /* leap indicator sent in client requests, set up by set_sys_leap() */ 111 u_char sys_stratum; /* system stratum */ 112 s_char sys_precision; /* local clock precision (log2 s) */ 113 double sys_rootdelay; /* roundtrip delay to root (primary source) */ 114 double sys_rootdisp; /* dispersion to root (primary source) */ 115 double prev_rootdisp; /* previous root dispersion */ 116 double p2_rootdisp; /* previous previous root dispersion */ 117 u_int32 sys_refid; /* reference id (network byte order) */ 118 l_fp sys_reftime; /* last update time */ 119 l_fp prev_reftime; /* previous sys_reftime */ 120 l_fp p2_reftime; /* previous previous sys_reftime */ 121 u_long prev_time; /* "current_time" when saved prev_time */ 122 u_long p2_time; /* previous prev_time */ 123 struct peer *sys_peer; /* current peer */ 124 125 #ifdef LEAP_SMEAR 126 struct leap_smear_info leap_smear; 127 #endif 128 int leap_sec_in_progress; 129 130 /* 131 * Rate controls. Leaky buckets are used to throttle the packet 132 * transmission rates in order to protect busy servers such as at NIST 133 * and USNO. There is a counter for each association and another for KoD 134 * packets. The association counter decrements each second, but not 135 * below zero. Each time a packet is sent the counter is incremented by 136 * a configurable value representing the average interval between 137 * packets. A packet is delayed as long as the counter is greater than 138 * zero. Note this does not affect the time value computations. 139 */ 140 /* 141 * Nonspecified system state variables 142 */ 143 int sys_bclient; /* broadcast client enable */ 144 double sys_bdelay; /* broadcast client default delay */ 145 int sys_authenticate; /* requre authentication for config */ 146 l_fp sys_authdelay; /* authentication delay */ 147 double sys_offset; /* current local clock offset */ 148 double sys_mindisp = MINDISPERSE; /* minimum distance (s) */ 149 double sys_maxdist = MAXDISTANCE; /* selection threshold */ 150 double sys_jitter; /* system jitter */ 151 u_long sys_epoch; /* last clock update time */ 152 static double sys_clockhop; /* clockhop threshold */ 153 static int leap_vote_ins; /* leap consensus for insert */ 154 static int leap_vote_del; /* leap consensus for delete */ 155 keyid_t sys_private; /* private value for session seed */ 156 int sys_manycastserver; /* respond to manycast client pkts */ 157 int ntp_mode7; /* respond to ntpdc (mode7) */ 158 int peer_ntpdate; /* active peers in ntpdate mode */ 159 int sys_survivors; /* truest of the truechimers */ 160 char *sys_ident = NULL; /* identity scheme */ 161 162 /* 163 * TOS and multicast mapping stuff 164 */ 165 int sys_floor = 0; /* cluster stratum floor */ 166 u_char sys_bcpollbstep = 0; /* Broadcast Poll backstep gate */ 167 int sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */ 168 int sys_minsane = 1; /* minimum candidates */ 169 int sys_minclock = NTP_MINCLOCK; /* minimum candidates */ 170 int sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */ 171 int sys_cohort = 0; /* cohort switch */ 172 int sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */ 173 int sys_orphwait = NTP_ORPHWAIT; /* orphan wait */ 174 int sys_beacon = BEACON; /* manycast beacon interval */ 175 u_int sys_ttlmax; /* max ttl mapping vector index */ 176 u_char sys_ttl[MAX_TTL]; /* ttl mapping vector */ 177 178 /* 179 * Statistics counters - first the good, then the bad 180 */ 181 u_long sys_stattime; /* elapsed time */ 182 u_long sys_received; /* packets received */ 183 u_long sys_processed; /* packets for this host */ 184 u_long sys_newversion; /* current version */ 185 u_long sys_oldversion; /* old version */ 186 u_long sys_restricted; /* access denied */ 187 u_long sys_badlength; /* bad length or format */ 188 u_long sys_badauth; /* bad authentication */ 189 u_long sys_declined; /* declined */ 190 u_long sys_limitrejected; /* rate exceeded */ 191 u_long sys_kodsent; /* KoD sent */ 192 193 /* 194 * Mechanism knobs: how soon do we peer_clear() or unpeer()? 195 * 196 * The default way is "on-receipt". If this was a packet from a 197 * well-behaved source, on-receipt will offer the fastest recovery. 198 * If this was from a DoS attack, the default way makes it easier 199 * for a bad-guy to DoS us. So look and see what bites you harder 200 * and choose according to your environment. 201 */ 202 int peer_clear_digest_early = 1; /* bad digest (TEST5) and Autokey */ 203 int unpeer_crypto_early = 1; /* bad crypto (TEST9) */ 204 int unpeer_crypto_nak_early = 1; /* crypto_NAK (TEST5) */ 205 int unpeer_digest_early = 1; /* bad digest (TEST5) */ 206 207 int dynamic_interleave = DYNAMIC_INTERLEAVE; /* Bug 2978 mitigation */ 208 209 int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid); 210 nak_code valid_NAK (struct peer *peer, struct recvbuf *rbufp, u_char hismode); 211 static double root_distance (struct peer *); 212 static void clock_combine (peer_select *, int, int); 213 static void peer_xmit (struct peer *); 214 static void fast_xmit (struct recvbuf *, int, keyid_t, int); 215 static void pool_xmit (struct peer *); 216 static void clock_update (struct peer *); 217 static void measure_precision(void); 218 static double measure_tick_fuzz(void); 219 static int local_refid (struct peer *); 220 static int peer_unfit (struct peer *); 221 #ifdef AUTOKEY 222 static int group_test (char *, char *); 223 #endif /* AUTOKEY */ 224 #ifdef WORKER 225 void pool_name_resolved (int, int, void *, const char *, 226 const char *, const struct addrinfo *, 227 const struct addrinfo *); 228 #endif /* WORKER */ 229 230 const char * amtoa (int am); 231 232 233 void 234 set_sys_leap( 235 u_char new_sys_leap 236 ) 237 { 238 sys_leap = new_sys_leap; 239 xmt_leap = sys_leap; 240 241 /* 242 * Under certain conditions we send faked leap bits to clients, so 243 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC. 244 */ 245 if (xmt_leap != LEAP_NOTINSYNC) { 246 if (leap_sec_in_progress) { 247 /* always send "not sync" */ 248 xmt_leap = LEAP_NOTINSYNC; 249 } 250 #ifdef LEAP_SMEAR 251 else { 252 /* 253 * If leap smear is enabled in general we must 254 * never send a leap second warning to clients, 255 * so make sure we only send "in sync". 256 */ 257 if (leap_smear.enabled) 258 xmt_leap = LEAP_NOWARNING; 259 } 260 #endif /* LEAP_SMEAR */ 261 } 262 } 263 264 265 /* 266 * Kiss Code check 267 */ 268 int 269 kiss_code_check( 270 u_char hisleap, 271 u_char hisstratum, 272 u_char hismode, 273 u_int32 refid 274 ) 275 { 276 277 if ( hismode == MODE_SERVER 278 && hisleap == LEAP_NOTINSYNC 279 && hisstratum == STRATUM_UNSPEC) { 280 if(memcmp(&refid,"RATE", 4) == 0) { 281 return (RATEKISS); 282 } else if(memcmp(&refid,"DENY", 4) == 0) { 283 return (DENYKISS); 284 } else if(memcmp(&refid,"RSTR", 4) == 0) { 285 return (RSTRKISS); 286 } else if(memcmp(&refid,"X", 1) == 0) { 287 return (XKISS); 288 } 289 } 290 return (NOKISS); 291 } 292 293 294 /* 295 * Check that NAK is valid 296 */ 297 nak_code 298 valid_NAK( 299 struct peer *peer, 300 struct recvbuf *rbufp, 301 u_char hismode 302 ) 303 { 304 int base_packet_length = MIN_V4_PKT_LEN; 305 int remainder_size; 306 struct pkt * rpkt; 307 int keyid; 308 l_fp p_org; /* origin timestamp */ 309 const l_fp * myorg; /* selected peer origin */ 310 311 /* 312 * Check to see if there is something beyond the basic packet 313 */ 314 if (rbufp->recv_length == base_packet_length) { 315 return NONAK; 316 } 317 318 remainder_size = rbufp->recv_length - base_packet_length; 319 /* 320 * Is this a potential NAK? 321 */ 322 if (remainder_size != 4) { 323 return NONAK; 324 } 325 326 /* 327 * Only server responses can contain NAK's 328 */ 329 330 if (hismode != MODE_SERVER && 331 hismode != MODE_ACTIVE && 332 hismode != MODE_PASSIVE 333 ) { 334 return INVALIDNAK; 335 } 336 337 /* 338 * Make sure that the extra field in the packet is all zeros 339 */ 340 rpkt = &rbufp->recv_pkt; 341 keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]); 342 if (keyid != 0) { 343 return INVALIDNAK; 344 } 345 346 /* 347 * During the first few packets of the autokey dance there will 348 * not (yet) be a keyid, but in this case FLAG_SKEY is set. 349 * So the NAK is invalid if either there's no peer, or 350 * if the keyid is 0 and FLAG_SKEY is not set. 351 */ 352 if (!peer || (!peer->keyid && !(peer->flags & FLAG_SKEY))) { 353 return INVALIDNAK; 354 } 355 356 /* 357 * The ORIGIN must match, or this cannot be a valid NAK, either. 358 */ 359 360 if (FLAG_LOOPNONCE & peer->flags) { 361 myorg = &peer->nonce; 362 } else { 363 if (peer->flip > 0) { 364 myorg = &peer->borg; 365 } else { 366 myorg = &peer->aorg; 367 } 368 } 369 370 NTOHL_FP(&rpkt->org, &p_org); 371 372 if (L_ISZERO(&p_org) || 373 L_ISZERO( myorg) || 374 !L_ISEQU(&p_org, myorg)) { 375 return INVALIDNAK; 376 } 377 378 /* If we ever passed all that checks, we should be safe. Well, 379 * as safe as we can ever be with an unauthenticated crypto-nak. 380 */ 381 return VALIDNAK; 382 } 383 384 385 /* 386 * transmit - transmit procedure called by poll timeout 387 */ 388 void 389 transmit( 390 struct peer *peer /* peer structure pointer */ 391 ) 392 { 393 u_char hpoll; 394 395 /* 396 * The polling state machine. There are two kinds of machines, 397 * those that never expect a reply (broadcast and manycast 398 * server modes) and those that do (all other modes). The dance 399 * is intricate... 400 */ 401 hpoll = peer->hpoll; 402 403 /* 404 * If we haven't received anything (even if unsync) since last 405 * send, reset ppoll. 406 */ 407 if (peer->outdate > peer->timelastrec && !peer->reach) 408 peer->ppoll = peer->maxpoll; 409 410 /* 411 * In broadcast mode the poll interval is never changed from 412 * minpoll. 413 */ 414 if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) { 415 peer->outdate = current_time; 416 poll_update(peer, hpoll, 0); 417 if (sys_leap != LEAP_NOTINSYNC) 418 peer_xmit(peer); 419 return; 420 } 421 422 /* 423 * In manycast mode we start with unity ttl. The ttl is 424 * increased by one for each poll until either sys_maxclock 425 * servers have been found or the maximum ttl is reached. When 426 * sys_maxclock servers are found we stop polling until one or 427 * more servers have timed out or until less than sys_minclock 428 * associations turn up. In this case additional better servers 429 * are dragged in and preempt the existing ones. Once every 430 * sys_beacon seconds we are to transmit unconditionally, but 431 * this code is not quite right -- peer->unreach counts polls 432 * and is being compared with sys_beacon, so the beacons happen 433 * every sys_beacon polls. 434 */ 435 if (peer->cast_flags & MDF_ACAST) { 436 peer->outdate = current_time; 437 poll_update(peer, hpoll, 0); 438 if (peer->unreach > sys_beacon) { 439 peer->unreach = 0; 440 peer->ttl = 0; 441 peer_xmit(peer); 442 } else if ( sys_survivors < sys_minclock 443 || peer_associations < sys_maxclock) { 444 if (peer->ttl < sys_ttlmax) 445 peer->ttl++; 446 peer_xmit(peer); 447 } 448 peer->unreach++; 449 return; 450 } 451 452 /* 453 * Pool associations transmit unicast solicitations when there 454 * are less than a hard limit of 2 * sys_maxclock associations, 455 * and either less than sys_minclock survivors or less than 456 * sys_maxclock associations. The hard limit prevents unbounded 457 * growth in associations if the system clock or network quality 458 * result in survivor count dipping below sys_minclock often. 459 * This was observed testing with pool, where sys_maxclock == 12 460 * resulted in 60 associations without the hard limit. A 461 * similar hard limit on manycastclient ephemeral associations 462 * may be appropriate. 463 */ 464 if (peer->cast_flags & MDF_POOL) { 465 peer->outdate = current_time; 466 poll_update(peer, hpoll, 0); 467 if ( (peer_associations <= 2 * sys_maxclock) 468 && ( peer_associations < sys_maxclock 469 || sys_survivors < sys_minclock)) 470 pool_xmit(peer); 471 return; 472 } 473 474 /* 475 * In unicast modes the dance is much more intricate. It is 476 * designed to back off whenever possible to minimize network 477 * traffic. 478 */ 479 if (peer->burst == 0) { 480 u_char oreach; 481 482 /* 483 * Update the reachability status. If not heard for 484 * three consecutive polls, stuff infinity in the clock 485 * filter. 486 */ 487 oreach = peer->reach; 488 peer->outdate = current_time; 489 peer->unreach++; 490 peer->reach <<= 1; 491 if (!peer->reach) { 492 493 /* 494 * Here the peer is unreachable. If it was 495 * previously reachable raise a trap. Send a 496 * burst if enabled. 497 */ 498 clock_filter(peer, 0., 0., MAXDISPERSE); 499 if (oreach) { 500 peer_unfit(peer); 501 report_event(PEVNT_UNREACH, peer, NULL); 502 } 503 if ( (peer->flags & FLAG_IBURST) 504 && peer->retry == 0) 505 peer->retry = NTP_RETRY; 506 } else { 507 508 /* 509 * Here the peer is reachable. Send a burst if 510 * enabled and the peer is fit. Reset unreach 511 * for persistent and ephemeral associations. 512 * Unreach is also reset for survivors in 513 * clock_select(). 514 */ 515 hpoll = sys_poll; 516 if (!(peer->flags & FLAG_PREEMPT)) 517 peer->unreach = 0; 518 if ( (peer->flags & FLAG_BURST) 519 && peer->retry == 0 520 && !peer_unfit(peer)) 521 peer->retry = NTP_RETRY; 522 } 523 524 /* 525 * Watch for timeout. If ephemeral, toss the rascal; 526 * otherwise, bump the poll interval. Note the 527 * poll_update() routine will clamp it to maxpoll. 528 * If preemptible and we have more peers than maxclock, 529 * and this peer has the minimum score of preemptibles, 530 * demobilize. 531 */ 532 if (peer->unreach >= NTP_UNREACH) { 533 hpoll++; 534 /* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */ 535 if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) { 536 report_event(PEVNT_RESTART, peer, "timeout"); 537 peer_clear(peer, "TIME"); 538 unpeer(peer); 539 return; 540 } 541 if ( (peer->flags & FLAG_PREEMPT) 542 && (peer_associations > sys_maxclock) 543 && score_all(peer)) { 544 report_event(PEVNT_RESTART, peer, "timeout"); 545 peer_clear(peer, "TIME"); 546 unpeer(peer); 547 return; 548 } 549 } 550 } else { 551 peer->burst--; 552 if (peer->burst == 0) { 553 554 /* 555 * If ntpdate mode and the clock has not been 556 * set and all peers have completed the burst, 557 * we declare a successful failure. 558 */ 559 if (mode_ntpdate) { 560 peer_ntpdate--; 561 if (peer_ntpdate == 0) { 562 msyslog(LOG_NOTICE, 563 "ntpd: no servers found"); 564 if (!msyslog_term) 565 printf( 566 "ntpd: no servers found\n"); 567 exit (0); 568 } 569 } 570 } 571 } 572 if (peer->retry > 0) 573 peer->retry--; 574 575 /* 576 * Do not transmit if in broadcast client mode. 577 */ 578 poll_update(peer, hpoll, (peer->hmode == MODE_CLIENT)); 579 if (peer->hmode != MODE_BCLIENT) 580 peer_xmit(peer); 581 582 return; 583 } 584 585 586 const char * 587 amtoa( 588 int am 589 ) 590 { 591 char *bp; 592 593 switch(am) { 594 case AM_ERR: return "AM_ERR"; 595 case AM_NOMATCH: return "AM_NOMATCH"; 596 case AM_PROCPKT: return "AM_PROCPKT"; 597 case AM_BCST: return "AM_BCST"; 598 case AM_FXMIT: return "AM_FXMIT"; 599 case AM_MANYCAST: return "AM_MANYCAST"; 600 case AM_NEWPASS: return "AM_NEWPASS"; 601 case AM_NEWBCL: return "AM_NEWBCL"; 602 case AM_POSSBCL: return "AM_POSSBCL"; 603 default: 604 LIB_GETBUF(bp); 605 snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am); 606 return bp; 607 } 608 } 609 610 611 /* 612 * receive - receive procedure called for each packet received 613 */ 614 void 615 receive( 616 struct recvbuf *rbufp 617 ) 618 { 619 register struct peer *peer; /* peer structure pointer */ 620 register struct pkt *pkt; /* receive packet pointer */ 621 u_char hisversion; /* packet version */ 622 u_char hisleap; /* packet leap indicator */ 623 u_char hismode; /* packet mode */ 624 u_char hisstratum; /* packet stratum */ 625 r4addr r4a; /* address restrictions */ 626 u_short restrict_mask; /* restrict bits */ 627 const char *hm_str; /* hismode string */ 628 const char *am_str; /* association match string */ 629 int kissCode = NOKISS; /* Kiss Code */ 630 int has_mac; /* length of MAC field */ 631 int authlen; /* offset of MAC field */ 632 auth_code is_authentic = AUTH_UNKNOWN; /* Was AUTH_NONE */ 633 nak_code crypto_nak_test; /* result of crypto-NAK check */ 634 int retcode = AM_NOMATCH; /* match code */ 635 keyid_t skeyid = 0; /* key IDs */ 636 u_int32 opcode = 0; /* extension field opcode */ 637 sockaddr_u *dstadr_sin; /* active runway */ 638 struct peer *peer2; /* aux peer structure pointer */ 639 endpt *match_ep; /* newpeer() local address */ 640 l_fp p_org; /* origin timestamp */ 641 l_fp p_rec; /* receive timestamp */ 642 l_fp p_xmt; /* transmit timestamp */ 643 #ifdef AUTOKEY 644 char hostname[NTP_MAXSTRLEN + 1]; 645 char *groupname = NULL; 646 struct autokey *ap; /* autokey structure pointer */ 647 int rval; /* cookie snatcher */ 648 keyid_t pkeyid = 0, tkeyid = 0; /* key IDs */ 649 #endif /* AUTOKEY */ 650 #ifdef HAVE_NTP_SIGND 651 static unsigned char zero_key[16]; 652 #endif /* HAVE_NTP_SIGND */ 653 654 /* 655 * Note that there are many places we do not call record_raw_stats(). 656 * 657 * We only want to call it *after* we've sent a response, or perhaps 658 * when we've decided to drop a packet. 659 */ 660 661 /* 662 * Monitor the packet and get restrictions. Note that the packet 663 * length for control and private mode packets must be checked 664 * by the service routines. Some restrictions have to be handled 665 * later in order to generate a kiss-o'-death packet. 666 */ 667 /* 668 * Bogus port check is before anything, since it probably 669 * reveals a clogging attack. Likewise the mimimum packet size 670 * of 2 bytes (for mode 6/7) must be checked first. 671 */ 672 sys_received++; 673 if (0 == SRCPORT(&rbufp->recv_srcadr) || rbufp->recv_length < 2) { 674 sys_badlength++; 675 return; /* bogus port / length */ 676 } 677 restrictions(&rbufp->recv_srcadr, &r4a); 678 restrict_mask = r4a.rflags; 679 680 pkt = &rbufp->recv_pkt; 681 hisversion = PKT_VERSION(pkt->li_vn_mode); 682 hismode = (int)PKT_MODE(pkt->li_vn_mode); 683 684 if (restrict_mask & RES_IGNORE) { 685 DPRINTF(2, ("receive: drop: RES_IGNORE\n")); 686 sys_restricted++; 687 return; /* ignore everything */ 688 } 689 if (hismode == MODE_PRIVATE) { 690 if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) { 691 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 692 sys_restricted++; 693 return; /* no query private */ 694 } 695 process_private(rbufp, ((restrict_mask & 696 RES_NOMODIFY) == 0)); 697 return; 698 } 699 if (hismode == MODE_CONTROL) { 700 if (restrict_mask & RES_NOQUERY) { 701 DPRINTF(2, ("receive: drop: RES_NOQUERY\n")); 702 sys_restricted++; 703 return; /* no query control */ 704 } 705 process_control(rbufp, restrict_mask); 706 return; 707 } 708 if (restrict_mask & RES_DONTSERVE) { 709 DPRINTF(2, ("receive: drop: RES_DONTSERVE\n")); 710 sys_restricted++; 711 return; /* no time serve */ 712 } 713 714 715 /* If we arrive here, we should have a standard NTP packet. We 716 * check that the minimum size is available and fetch some more 717 * items from the packet once we can be sure they are indeed 718 * there. 719 */ 720 if (rbufp->recv_length < LEN_PKT_NOMAC) { 721 sys_badlength++; 722 return; /* bogus length */ 723 } 724 725 hisleap = PKT_LEAP(pkt->li_vn_mode); 726 hisstratum = PKT_TO_STRATUM(pkt->stratum); 727 INSIST(0 != hisstratum); /* paranoia check PKT_TO_STRATUM result */ 728 729 DPRINTF(1, ("receive: at %ld %s<-%s ippeerlimit %d mode %d iflags %s " 730 "restrict %s org %#010x.%08x xmt %#010x.%08x\n", 731 current_time, stoa(&rbufp->dstadr->sin), 732 stoa(&rbufp->recv_srcadr), r4a.ippeerlimit, hismode, 733 build_iflags(rbufp->dstadr->flags), 734 build_rflags(restrict_mask), 735 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 736 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 737 738 /* 739 * This is for testing. If restricted drop ten percent of 740 * surviving packets. 741 */ 742 if (restrict_mask & RES_FLAKE) { 743 if ((double)ntp_random() / 0x7fffffff < .1) { 744 DPRINTF(2, ("receive: drop: RES_FLAKE\n")); 745 sys_restricted++; 746 return; /* no flakeway */ 747 } 748 } 749 750 /* 751 ** Format Layer Checks 752 ** 753 ** Validate the packet format. The packet size, packet header, 754 ** and any extension field lengths are checked. We identify 755 ** the beginning of the MAC, to identify the upper limit of 756 ** of the hash computation. 757 ** 758 ** In case of a format layer check violation, the packet is 759 ** discarded with no further processing. 760 */ 761 762 /* 763 * Version check must be after the query packets, since they 764 * intentionally use an early version. 765 */ 766 if (hisversion == NTP_VERSION) { 767 sys_newversion++; /* new version */ 768 } else if ( !(restrict_mask & RES_VERSION) 769 && hisversion >= NTP_OLDVERSION) { 770 sys_oldversion++; /* previous version */ 771 } else { 772 DPRINTF(2, ("receive: drop: RES_VERSION\n")); 773 sys_badlength++; 774 return; /* old version */ 775 } 776 777 /* 778 * Figure out his mode and validate the packet. This has some 779 * legacy raunch that probably should be removed. In very early 780 * NTP versions mode 0 was equivalent to what later versions 781 * would interpret as client mode. 782 */ 783 if (hismode == MODE_UNSPEC) { 784 if (hisversion == NTP_OLDVERSION) { 785 hismode = MODE_CLIENT; 786 } else { 787 DPRINTF(2, ("receive: drop: MODE_UNSPEC\n")); 788 sys_badlength++; 789 return; /* invalid mode */ 790 } 791 } 792 793 /* 794 * Parse the extension field if present. We figure out whether 795 * an extension field is present by measuring the MAC size. If 796 * the number of words following the packet header is 0, no MAC 797 * is present and the packet is not authenticated. If 1, the 798 * packet is a crypto-NAK; if 3, the packet is authenticated 799 * with DES; if 5, the packet is authenticated with MD5; if 6, 800 * the packet is authenticated with SHA. If 2 or * 4, the packet 801 * is a runt and discarded forthwith. If greater than 6, an 802 * extension field is present, so we subtract the length of the 803 * field and go around again. 804 * 805 * Note the above description is lame. We should/could also check 806 * the two bytes that make up the EF type and subtype, and then 807 * check the two bytes that tell us the EF length. A legacy MAC 808 * has a 4 byte keyID, and for conforming symmetric keys its value 809 * must be <= 64k, meaning the top two bytes will always be zero. 810 * Since the EF Type of 0 is reserved/unused, there's no way a 811 * conforming legacy MAC could ever be misinterpreted as an EF. 812 * 813 * There is more, but this isn't the place to document it. 814 */ 815 816 authlen = LEN_PKT_NOMAC; 817 has_mac = rbufp->recv_length - authlen; 818 while (has_mac > 0) { 819 u_int32 len; 820 #ifdef AUTOKEY 821 u_int32 hostlen; 822 struct exten *ep; 823 #endif /*AUTOKEY */ 824 825 if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) { 826 DPRINTF(2, ("receive: drop: bad post-packet length\n")); 827 sys_badlength++; 828 return; /* bad length */ 829 } 830 /* 831 * This next test is clearly wrong - it needlessly 832 * prohibits short EFs (which don't yet exist) 833 */ 834 if (has_mac <= (int)MAX_MAC_LEN) { 835 skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]); 836 break; 837 838 } else { 839 opcode = ntohl(((u_int32 *)pkt)[authlen / 4]); 840 len = opcode & 0xffff; 841 if ( len % 4 != 0 842 || len < 4 843 || (int)len + authlen > rbufp->recv_length) { 844 DPRINTF(2, ("receive: drop: bad EF length\n")); 845 sys_badlength++; 846 return; /* bad length */ 847 } 848 #ifdef AUTOKEY 849 /* 850 * Extract calling group name for later. If 851 * sys_groupname is non-NULL, there must be 852 * a group name provided to elicit a response. 853 */ 854 if ( (opcode & 0x3fff0000) == CRYPTO_ASSOC 855 && sys_groupname != NULL) { 856 ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4]; 857 hostlen = ntohl(ep->vallen); 858 if ( hostlen >= sizeof(hostname) 859 || hostlen > len - 860 offsetof(struct exten, pkt)) { 861 DPRINTF(2, ("receive: drop: bad autokey hostname length\n")); 862 sys_badlength++; 863 return; /* bad length */ 864 } 865 memcpy(hostname, &ep->pkt, hostlen); 866 hostname[hostlen] = '\0'; 867 groupname = strchr(hostname, '@'); 868 if (groupname == NULL) { 869 DPRINTF(2, ("receive: drop: empty autokey groupname\n")); 870 sys_declined++; 871 return; 872 } 873 groupname++; 874 } 875 #endif /* AUTOKEY */ 876 authlen += len; 877 has_mac -= len; 878 } 879 } 880 881 /* 882 * If has_mac is < 0 we had a malformed packet. 883 */ 884 if (has_mac < 0) { 885 DPRINTF(2, ("receive: drop: post-packet under-read\n")); 886 sys_badlength++; 887 return; /* bad length */ 888 } 889 890 /* 891 ** Packet Data Verification Layer 892 ** 893 ** This layer verifies the packet data content. If 894 ** authentication is required, a MAC must be present. 895 ** If a MAC is present, it must validate. 896 ** Crypto-NAK? Look - a shiny thing! 897 ** 898 ** If authentication fails, we're done. 899 */ 900 901 /* 902 * If authentication is explicitly required, a MAC must be present. 903 */ 904 if (restrict_mask & RES_DONTTRUST && has_mac == 0) { 905 DPRINTF(2, ("receive: drop: RES_DONTTRUST\n")); 906 sys_restricted++; 907 return; /* access denied */ 908 } 909 910 /* 911 * Update the MRU list and finger the cloggers. It can be a 912 * little expensive, so turn it off for production use. 913 * RES_LIMITED and RES_KOD will be cleared in the returned 914 * restrict_mask unless one or both actions are warranted. 915 */ 916 restrict_mask = ntp_monitor(rbufp, restrict_mask); 917 if (restrict_mask & RES_LIMITED) { 918 sys_limitrejected++; 919 if ( !(restrict_mask & RES_KOD) 920 || MODE_BROADCAST == hismode 921 || MODE_SERVER == hismode) { 922 if (MODE_SERVER == hismode) { 923 DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n", 924 stoa(&rbufp->recv_srcadr))); 925 } else { 926 DPRINTF(2, ("receive: drop: RES_KOD\n")); 927 } 928 return; /* rate exceeded */ 929 } 930 if (hismode == MODE_CLIENT) { 931 fast_xmit(rbufp, MODE_SERVER, skeyid, 932 restrict_mask); 933 } else { 934 fast_xmit(rbufp, MODE_ACTIVE, skeyid, 935 restrict_mask); 936 } 937 return; /* rate exceeded */ 938 } 939 restrict_mask &= ~RES_KOD; 940 941 /* 942 * We have tossed out as many buggy packets as possible early in 943 * the game to reduce the exposure to a clogging attack. Now we 944 * have to burn some cycles to find the association and 945 * authenticate the packet if required. Note that we burn only 946 * digest cycles, again to reduce exposure. There may be no 947 * matching association and that's okay. 948 * 949 * More on the autokey mambo. Normally the local interface is 950 * found when the association was mobilized with respect to a 951 * designated remote address. We assume packets arriving from 952 * the remote address arrive via this interface and the local 953 * address used to construct the autokey is the unicast address 954 * of the interface. However, if the sender is a broadcaster, 955 * the interface broadcast address is used instead. 956 * Notwithstanding this technobabble, if the sender is a 957 * multicaster, the broadcast address is null, so we use the 958 * unicast address anyway. Don't ask. 959 */ 960 961 peer = findpeer(rbufp, hismode, &retcode); 962 dstadr_sin = &rbufp->dstadr->sin; 963 NTOHL_FP(&pkt->org, &p_org); 964 NTOHL_FP(&pkt->rec, &p_rec); 965 NTOHL_FP(&pkt->xmt, &p_xmt); 966 hm_str = modetoa(hismode); 967 am_str = amtoa(retcode); 968 969 /* 970 * Authentication is conditioned by three switches: 971 * 972 * NOPEER (RES_NOPEER) do not mobilize an association unless 973 * authenticated 974 * NOTRUST (RES_DONTTRUST) do not allow access unless 975 * authenticated (implies NOPEER) 976 * enable (sys_authenticate) master NOPEER switch, by default 977 * on 978 * 979 * The NOPEER and NOTRUST can be specified on a per-client basis 980 * using the restrict command. The enable switch if on implies 981 * NOPEER for all clients. There are four outcomes: 982 * 983 * NONE The packet has no MAC. 984 * OK the packet has a MAC and authentication succeeds 985 * ERROR the packet has a MAC and authentication fails 986 * CRYPTO crypto-NAK. The MAC has four octets only. 987 * 988 * Note: The AUTH(x, y) macro is used to filter outcomes. If x 989 * is zero, acceptable outcomes of y are NONE and OK. If x is 990 * one, the only acceptable outcome of y is OK. 991 */ 992 crypto_nak_test = valid_NAK(peer, rbufp, hismode); 993 994 /* 995 * Drop any invalid crypto-NAKs 996 */ 997 if (crypto_nak_test == INVALIDNAK) { 998 report_event(PEVNT_AUTH, peer, "Invalid_NAK"); 999 if (0 != peer) { 1000 peer->badNAK++; 1001 } 1002 msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s", 1003 current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr)); 1004 return; 1005 } 1006 1007 if (has_mac == 0) { 1008 restrict_mask &= ~RES_MSSNTP; 1009 is_authentic = AUTH_NONE; /* not required */ 1010 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n", 1011 current_time, stoa(dstadr_sin), 1012 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1013 authlen, 1014 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1015 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1016 } else if (crypto_nak_test == VALIDNAK) { 1017 restrict_mask &= ~RES_MSSNTP; 1018 is_authentic = AUTH_CRYPTO; /* crypto-NAK */ 1019 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x CRYPTONAK\n", 1020 current_time, stoa(dstadr_sin), 1021 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1022 skeyid, authlen + has_mac, is_authentic, 1023 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1024 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1025 1026 #ifdef HAVE_NTP_SIGND 1027 /* 1028 * If the signature is 20 bytes long, the last 16 of 1029 * which are zero, then this is a Microsoft client 1030 * wanting AD-style authentication of the server's 1031 * reply. 1032 * 1033 * This is described in Microsoft's WSPP docs, in MS-SNTP: 1034 * http://msdn.microsoft.com/en-us/library/cc212930.aspx 1035 */ 1036 } else if ( has_mac == MAX_MD5_LEN 1037 && (restrict_mask & RES_MSSNTP) 1038 && (retcode == AM_FXMIT || retcode == AM_NEWPASS) 1039 && (memcmp(zero_key, (char *)pkt + authlen + 4, 1040 MAX_MD5_LEN - 4) == 0)) { 1041 is_authentic = AUTH_NONE; 1042 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x SIGND\n", 1043 current_time, stoa(dstadr_sin), 1044 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1045 authlen, 1046 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1047 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1048 #endif /* HAVE_NTP_SIGND */ 1049 1050 } else { 1051 /* 1052 * has_mac is not 0 1053 * Not a VALID_NAK 1054 * Not an MS-SNTP SIGND packet 1055 * 1056 * So there is a MAC here. 1057 */ 1058 1059 restrict_mask &= ~RES_MSSNTP; 1060 #ifdef AUTOKEY 1061 /* 1062 * For autokey modes, generate the session key 1063 * and install in the key cache. Use the socket 1064 * broadcast or unicast address as appropriate. 1065 */ 1066 if (crypto_flags && skeyid > NTP_MAXKEY) { 1067 1068 /* 1069 * More on the autokey dance (AKD). A cookie is 1070 * constructed from public and private values. 1071 * For broadcast packets, the cookie is public 1072 * (zero). For packets that match no 1073 * association, the cookie is hashed from the 1074 * addresses and private value. For server 1075 * packets, the cookie was previously obtained 1076 * from the server. For symmetric modes, the 1077 * cookie was previously constructed using an 1078 * agreement protocol; however, should PKI be 1079 * unavailable, we construct a fake agreement as 1080 * the EXOR of the peer and host cookies. 1081 * 1082 * hismode ephemeral persistent 1083 * ======================================= 1084 * active 0 cookie# 1085 * passive 0% cookie# 1086 * client sys cookie 0% 1087 * server 0% sys cookie 1088 * broadcast 0 0 1089 * 1090 * # if unsync, 0 1091 * % can't happen 1092 */ 1093 if (has_mac < (int)MAX_MD5_LEN) { 1094 DPRINTF(2, ("receive: drop: MD5 digest too short\n")); 1095 sys_badauth++; 1096 return; 1097 } 1098 if (hismode == MODE_BROADCAST) { 1099 1100 /* 1101 * For broadcaster, use the interface 1102 * broadcast address when available; 1103 * otherwise, use the unicast address 1104 * found when the association was 1105 * mobilized. However, if this is from 1106 * the wildcard interface, game over. 1107 */ 1108 if ( crypto_flags 1109 && rbufp->dstadr == 1110 ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) { 1111 DPRINTF(2, ("receive: drop: BCAST from wildcard\n")); 1112 sys_restricted++; 1113 return; /* no wildcard */ 1114 } 1115 pkeyid = 0; 1116 if (!SOCK_UNSPEC(&rbufp->dstadr->bcast)) 1117 dstadr_sin = 1118 &rbufp->dstadr->bcast; 1119 } else if (peer == NULL) { 1120 pkeyid = session_key( 1121 &rbufp->recv_srcadr, dstadr_sin, 0, 1122 sys_private, 0); 1123 } else { 1124 pkeyid = peer->pcookie; 1125 } 1126 1127 /* 1128 * The session key includes both the public 1129 * values and cookie. In case of an extension 1130 * field, the cookie used for authentication 1131 * purposes is zero. Note the hash is saved for 1132 * use later in the autokey mambo. 1133 */ 1134 if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) { 1135 session_key(&rbufp->recv_srcadr, 1136 dstadr_sin, skeyid, 0, 2); 1137 tkeyid = session_key( 1138 &rbufp->recv_srcadr, dstadr_sin, 1139 skeyid, pkeyid, 0); 1140 } else { 1141 tkeyid = session_key( 1142 &rbufp->recv_srcadr, dstadr_sin, 1143 skeyid, pkeyid, 2); 1144 } 1145 1146 } 1147 #endif /* AUTOKEY */ 1148 1149 /* 1150 * Compute the cryptosum. Note a clogging attack may 1151 * succeed in bloating the key cache. If an autokey, 1152 * purge it immediately, since we won't be needing it 1153 * again. If the packet is authentic, it can mobilize an 1154 * association. Note that there is no key zero. 1155 */ 1156 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1157 has_mac)) 1158 is_authentic = AUTH_ERROR; 1159 else 1160 is_authentic = AUTH_OK; 1161 #ifdef AUTOKEY 1162 if (crypto_flags && skeyid > NTP_MAXKEY) 1163 authtrust(skeyid, 0); 1164 #endif /* AUTOKEY */ 1165 DPRINTF(1, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC\n", 1166 current_time, stoa(dstadr_sin), 1167 stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str, 1168 skeyid, authlen + has_mac, is_authentic, 1169 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 1170 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf))); 1171 } 1172 1173 1174 /* 1175 * Bug 3454: 1176 * 1177 * Now come at this from a different perspective: 1178 * - If we expect a MAC and it's not there, we drop it. 1179 * - If we expect one keyID and get another, we drop it. 1180 * - If we have a MAC ahd it hasn't been validated yet, try. 1181 * - if the provided MAC doesn't validate, we drop it. 1182 * 1183 * There might be more to this. 1184 */ 1185 if (0 != peer && 0 != peer->keyid) { 1186 /* Should we msyslog() any of these? */ 1187 1188 /* 1189 * This should catch: 1190 * - no keyID where one is expected, 1191 * - different keyID than what we expect. 1192 */ 1193 if (peer->keyid != skeyid) { 1194 DPRINTF(2, ("receive: drop: Wanted keyID %d, got %d from %s\n", 1195 peer->keyid, skeyid, 1196 stoa(&rbufp->recv_srcadr))); 1197 sys_restricted++; 1198 return; /* drop: access denied */ 1199 } 1200 1201 /* 1202 * if has_mac != 0 ... 1203 * - If it has not yet been validated, do so. 1204 * (under what circumstances might that happen?) 1205 * - if missing or bad MAC, log and drop. 1206 */ 1207 if (0 != has_mac) { 1208 if (is_authentic == AUTH_UNKNOWN) { 1209 /* How can this happen? */ 1210 DPRINTF(2, ("receive: 3454 check: AUTH_UNKNOWN from %s\n", 1211 stoa(&rbufp->recv_srcadr))); 1212 if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen, 1213 has_mac)) { 1214 /* MAC invalid or not found */ 1215 is_authentic = AUTH_ERROR; 1216 } else { 1217 is_authentic = AUTH_OK; 1218 } 1219 } 1220 if (is_authentic != AUTH_OK) { 1221 DPRINTF(2, ("receive: drop: missing or bad MAC from %s\n", 1222 stoa(&rbufp->recv_srcadr))); 1223 sys_restricted++; 1224 return; /* drop: access denied */ 1225 } 1226 } 1227 } 1228 /**/ 1229 1230 /* 1231 ** On-Wire Protocol Layer 1232 ** 1233 ** Verify protocol operations consistent with the on-wire protocol. 1234 ** The protocol discards bogus and duplicate packets as well as 1235 ** minimizes disruptions doe to protocol restarts and dropped 1236 ** packets. The operations are controlled by two timestamps: 1237 ** the transmit timestamp saved in the client state variables, 1238 ** and the origin timestamp in the server packet header. The 1239 ** comparison of these two timestamps is called the loopback test. 1240 ** The transmit timestamp functions as a nonce to verify that the 1241 ** response corresponds to the original request. The transmit 1242 ** timestamp also serves to discard replays of the most recent 1243 ** packet. Upon failure of either test, the packet is discarded 1244 ** with no further action. 1245 */ 1246 1247 /* 1248 * The association matching rules are implemented by a set of 1249 * routines and an association table. A packet matching an 1250 * association is processed by the peer process for that 1251 * association. If there are no errors, an ephemeral association 1252 * is mobilized: a broadcast packet mobilizes a broadcast client 1253 * aassociation; a manycast server packet mobilizes a manycast 1254 * client association; a symmetric active packet mobilizes a 1255 * symmetric passive association. 1256 */ 1257 DPRINTF(1, ("receive: MATCH_ASSOC dispatch: mode %d/%s:%s \n", 1258 hismode, hm_str, am_str)); 1259 switch (retcode) { 1260 1261 /* 1262 * This is a client mode packet not matching any association. If 1263 * an ordinary client, simply toss a server mode packet back 1264 * over the fence. If a manycast client, we have to work a 1265 * little harder. 1266 * 1267 * There are cases here where we do not call record_raw_stats(). 1268 */ 1269 case AM_FXMIT: 1270 1271 /* 1272 * If authentication OK, send a server reply; otherwise, 1273 * send a crypto-NAK. 1274 */ 1275 if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) { 1276 /* HMS: would be nice to log FAST_XMIT|BADAUTH|RESTRICTED */ 1277 record_raw_stats(&rbufp->recv_srcadr, 1278 &rbufp->dstadr->sin, 1279 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1280 PKT_LEAP(pkt->li_vn_mode), 1281 PKT_VERSION(pkt->li_vn_mode), 1282 PKT_MODE(pkt->li_vn_mode), 1283 PKT_TO_STRATUM(pkt->stratum), 1284 pkt->ppoll, 1285 pkt->precision, 1286 FPTOD(NTOHS_FP(pkt->rootdelay)), 1287 FPTOD(NTOHS_FP(pkt->rootdisp)), 1288 pkt->refid, 1289 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1290 1291 if (AUTH(restrict_mask & RES_DONTTRUST, 1292 is_authentic)) { 1293 /* Bug 3596: Do we want to fuzz the reftime? */ 1294 fast_xmit(rbufp, MODE_SERVER, skeyid, 1295 restrict_mask); 1296 } else if (is_authentic == AUTH_ERROR) { 1297 /* Bug 3596: Do we want to fuzz the reftime? */ 1298 fast_xmit(rbufp, MODE_SERVER, 0, 1299 restrict_mask); 1300 sys_badauth++; 1301 } else { 1302 DPRINTF(2, ("receive: AM_FXMIT drop: !mcast restricted\n")); 1303 sys_restricted++; 1304 } 1305 1306 return; /* hooray */ 1307 } 1308 1309 /* 1310 * This must be manycast. Do not respond if not 1311 * configured as a manycast server. 1312 */ 1313 if (!sys_manycastserver) { 1314 DPRINTF(2, ("receive: AM_FXMIT drop: Not manycastserver\n")); 1315 sys_restricted++; 1316 return; /* not enabled */ 1317 } 1318 1319 #ifdef AUTOKEY 1320 /* 1321 * Do not respond if not the same group. 1322 */ 1323 if (group_test(groupname, NULL)) { 1324 DPRINTF(2, ("receive: AM_FXMIT drop: empty groupname\n")); 1325 sys_declined++; 1326 return; 1327 } 1328 #endif /* AUTOKEY */ 1329 1330 /* 1331 * Do not respond if we are not synchronized or our 1332 * stratum is greater than the manycaster or the 1333 * manycaster has already synchronized to us. 1334 */ 1335 if ( sys_leap == LEAP_NOTINSYNC 1336 || sys_stratum > hisstratum + 1 1337 || (!sys_cohort && sys_stratum == hisstratum + 1) 1338 || rbufp->dstadr->addr_refid == pkt->refid) { 1339 DPRINTF(2, ("receive: sys leap: %0x, sys_stratum %d > hisstratum+1 %d, !sys_cohort %d && sys_stratum == hisstratum+1, loop refid %#x == pkt refid %#x\n", sys_leap, sys_stratum, hisstratum + 1, !sys_cohort, rbufp->dstadr->addr_refid, pkt->refid)); 1340 DPRINTF(2, ("receive: AM_FXMIT drop: LEAP_NOTINSYNC || stratum || loop\n")); 1341 sys_declined++; 1342 return; /* no help */ 1343 } 1344 1345 /* 1346 * Respond only if authentication succeeds. Don't do a 1347 * crypto-NAK, as that would not be useful. 1348 */ 1349 if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic)) { 1350 record_raw_stats(&rbufp->recv_srcadr, 1351 &rbufp->dstadr->sin, 1352 &p_org, &p_rec, &p_xmt, &rbufp->recv_time, 1353 PKT_LEAP(pkt->li_vn_mode), 1354 PKT_VERSION(pkt->li_vn_mode), 1355 PKT_MODE(pkt->li_vn_mode), 1356 PKT_TO_STRATUM(pkt->stratum), 1357 pkt->ppoll, 1358 pkt->precision, 1359 FPTOD(NTOHS_FP(pkt->rootdelay)), 1360 FPTOD(NTOHS_FP(pkt->rootdisp)), 1361 pkt->refid, 1362 rbufp->recv_length - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 1363 1364 /* Bug 3596: Do we want to fuzz the reftime? */ 1365 fast_xmit(rbufp, MODE_SERVER, skeyid, 1366 restrict_mask); 1367 } 1368 return; /* hooray */ 1369 1370 /* 1371 * This is a server mode packet returned in response to a client 1372 * mode packet sent to a multicast group address (for 1373 * manycastclient) or to a unicast address (for pool). The 1374 * origin timestamp is a good nonce to reliably associate the 1375 * reply with what was sent. If there is no match, that's 1376 * curious and could be an intruder attempting to clog, so we 1377 * just ignore it. 1378 * 1379 * If the packet is authentic and the manycastclient or pool 1380 * association is found, we mobilize a client association and 1381 * copy pertinent variables from the manycastclient or pool 1382 * association to the new client association. If not, just 1383 * ignore the packet. 1384 * 1385 * There is an implosion hazard at the manycast client, since 1386 * the manycast servers send the server packet immediately. If 1387 * the guy is already here, don't fire up a duplicate. 1388 * 1389 * There are cases here where we do not call record_raw_stats(). 1390 */ 1391 case AM_MANYCAST: 1392 1393 #ifdef AUTOKEY 1394 /* 1395 * Do not respond if not the same group. 1396 */ 1397 if (group_test(groupname, NULL)) { 1398 DPRINTF(2, ("receive: AM_MANYCAST drop: empty groupname\n")); 1399 sys_declined++; 1400 return; 1401 } 1402 #endif /* AUTOKEY */ 1403 if ((peer2 = findmanycastpeer(rbufp)) == NULL) { 1404 DPRINTF(2, ("receive: AM_MANYCAST drop: No manycast peer\n")); 1405 sys_restricted++; 1406 return; /* not enabled */ 1407 } 1408 if (!AUTH( (!(peer2->cast_flags & MDF_POOL) 1409 && sys_authenticate) 1410 || (restrict_mask & (RES_NOPEER | 1411 RES_DONTTRUST)), is_authentic) 1412 /* MC: RES_NOEPEER? */ 1413 ) { 1414 DPRINTF(2, ("receive: AM_MANYCAST drop: bad auth || (NOPEER|DONTTRUST)\n")); 1415 sys_restricted++; 1416 return; /* access denied */ 1417 } 1418 1419 /* 1420 * Do not respond if unsynchronized or stratum is below 1421 * the floor or at or above the ceiling. 1422 */ 1423 if ( hisleap == LEAP_NOTINSYNC 1424 || hisstratum < sys_floor 1425 || hisstratum >= sys_ceiling) { 1426 DPRINTF(2, ("receive: AM_MANYCAST drop: unsync/stratum\n")); 1427 sys_declined++; 1428 return; /* no help */ 1429 } 1430 peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1431 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1432 peer2->minpoll, peer2->maxpoll, 1433 (FLAG_PREEMPT | (POOL_FLAG_PMASK & peer2->flags)), 1434 (MDF_UCAST | MDF_UCLNT), 0, skeyid, sys_ident); 1435 if (NULL == peer) { 1436 DPRINTF(2, ("receive: AM_MANYCAST drop: duplicate\n")); 1437 sys_declined++; 1438 return; /* ignore duplicate */ 1439 } 1440 1441 /* 1442 * After each ephemeral pool association is spun, 1443 * accelerate the next poll for the pool solicitor so 1444 * the pool will fill promptly. 1445 */ 1446 if (peer2->cast_flags & MDF_POOL) 1447 peer2->nextdate = current_time + 1; 1448 1449 /* 1450 * Further processing of the solicitation response would 1451 * simply detect its origin timestamp as bogus for the 1452 * brand-new association (it matches the prototype 1453 * association) and tinker with peer->nextdate delaying 1454 * first sync. 1455 */ 1456 return; /* solicitation response handled */ 1457 1458 /* 1459 * This is the first packet received from a broadcast server. If 1460 * the packet is authentic and we are enabled as broadcast 1461 * client, mobilize a broadcast client association. We don't 1462 * kiss any frogs here. 1463 * 1464 * There are cases here where we do not call record_raw_stats(). 1465 */ 1466 case AM_NEWBCL: 1467 1468 #ifdef AUTOKEY 1469 /* 1470 * Do not respond if not the same group. 1471 */ 1472 if (group_test(groupname, sys_ident)) { 1473 DPRINTF(2, ("receive: AM_NEWBCL drop: groupname mismatch\n")); 1474 sys_declined++; 1475 return; 1476 } 1477 #endif /* AUTOKEY */ 1478 if (sys_bclient == 0) { 1479 DPRINTF(2, ("receive: AM_NEWBCL drop: not a bclient\n")); 1480 sys_restricted++; 1481 return; /* not enabled */ 1482 } 1483 if (!AUTH(sys_authenticate | (restrict_mask & 1484 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1485 /* NEWBCL: RES_NOEPEER? */ 1486 ) { 1487 DPRINTF(2, ("receive: AM_NEWBCL drop: AUTH failed\n")); 1488 sys_restricted++; 1489 return; /* access denied */ 1490 } 1491 1492 /* 1493 * Do not respond if unsynchronized or stratum is below 1494 * the floor or at or above the ceiling. 1495 */ 1496 if ( hisleap == LEAP_NOTINSYNC 1497 || hisstratum < sys_floor 1498 || hisstratum >= sys_ceiling) { 1499 DPRINTF(2, ("receive: AM_NEWBCL drop: Unsync or bad stratum\n")); 1500 sys_declined++; 1501 return; /* no help */ 1502 } 1503 1504 #ifdef AUTOKEY 1505 /* 1506 * Do not respond if Autokey and the opcode is not a 1507 * CRYPTO_ASSOC response with association ID. 1508 */ 1509 if ( crypto_flags && skeyid > NTP_MAXKEY 1510 && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) { 1511 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not CRYPTO_ASSOC\n")); 1512 sys_declined++; 1513 return; /* protocol error */ 1514 } 1515 #endif /* AUTOKEY */ 1516 1517 /* 1518 * Broadcasts received via a multicast address may 1519 * arrive after a unicast volley has begun 1520 * with the same remote address. newpeer() will not 1521 * find duplicate associations on other local endpoints 1522 * if a non-NULL endpoint is supplied. multicastclient 1523 * ephemeral associations are unique across all local 1524 * endpoints. 1525 */ 1526 if (!(INT_MCASTOPEN & rbufp->dstadr->flags)) 1527 match_ep = rbufp->dstadr; 1528 else 1529 match_ep = NULL; 1530 1531 /* 1532 * Determine whether to execute the initial volley. 1533 */ 1534 if (sys_bdelay > 0.0) { 1535 #ifdef AUTOKEY 1536 /* 1537 * If a two-way exchange is not possible, 1538 * neither is Autokey. 1539 */ 1540 if (crypto_flags && skeyid > NTP_MAXKEY) { 1541 sys_restricted++; 1542 DPRINTF(2, ("receive: AM_NEWBCL drop: Autokey but not 2-way\n")); 1543 return; /* no autokey */ 1544 } 1545 #endif /* AUTOKEY */ 1546 1547 /* 1548 * Do not execute the volley. Start out in 1549 * broadcast client mode. 1550 */ 1551 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1552 r4a.ippeerlimit, MODE_BCLIENT, hisversion, 1553 pkt->ppoll, pkt->ppoll, 1554 FLAG_PREEMPT, MDF_BCLNT, 0, skeyid, sys_ident); 1555 if (NULL == peer) { 1556 DPRINTF(2, ("receive: AM_NEWBCL drop: duplicate\n")); 1557 sys_restricted++; 1558 return; /* ignore duplicate */ 1559 1560 } else { 1561 peer->delay = sys_bdelay; 1562 peer->bxmt = p_xmt; 1563 } 1564 break; 1565 } 1566 1567 /* 1568 * Execute the initial volley in order to calibrate the 1569 * propagation delay and run the Autokey protocol. 1570 * 1571 * Note that the minpoll is taken from the broadcast 1572 * packet, normally 6 (64 s) and that the poll interval 1573 * is fixed at this value. 1574 */ 1575 peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep, 1576 r4a.ippeerlimit, MODE_CLIENT, hisversion, 1577 pkt->ppoll, pkt->ppoll, 1578 FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT, 1579 0, skeyid, sys_ident); 1580 if (NULL == peer) { 1581 DPRINTF(2, ("receive: AM_NEWBCL drop: empty newpeer() failed\n")); 1582 sys_restricted++; 1583 return; /* ignore duplicate */ 1584 } 1585 peer->bxmt = p_xmt; 1586 #ifdef AUTOKEY 1587 if (skeyid > NTP_MAXKEY) 1588 crypto_recv(peer, rbufp); 1589 #endif /* AUTOKEY */ 1590 1591 return; /* hooray */ 1592 1593 /* 1594 * This is the first packet received from a potential ephemeral 1595 * symmetric active peer. First, deal with broken Windows clients. 1596 * Then, if NOEPEER is enabled, drop it. If the packet meets our 1597 * authenticty requirements and is the first he sent, mobilize 1598 * a passive association. 1599 * Otherwise, kiss the frog. 1600 * 1601 * There are cases here where we do not call record_raw_stats(). 1602 */ 1603 case AM_NEWPASS: 1604 1605 DEBUG_REQUIRE(MODE_ACTIVE == hismode); 1606 1607 #ifdef AUTOKEY 1608 /* 1609 * Do not respond if not the same group. 1610 */ 1611 if (group_test(groupname, sys_ident)) { 1612 DPRINTF(2, ("receive: AM_NEWPASS drop: Autokey group mismatch\n")); 1613 sys_declined++; 1614 return; 1615 } 1616 #endif /* AUTOKEY */ 1617 if (!AUTH(sys_authenticate | (restrict_mask & 1618 (RES_NOPEER | RES_DONTTRUST)), is_authentic) 1619 ) { 1620 /* 1621 * If authenticated but cannot mobilize an 1622 * association, send a symmetric passive 1623 * response without mobilizing an association. 1624 * This is for drat broken Windows clients. See 1625 * Microsoft KB 875424 for preferred workaround. 1626 */ 1627 if (AUTH(restrict_mask & RES_DONTTRUST, 1628 is_authentic)) { 1629 fast_xmit(rbufp, MODE_PASSIVE, skeyid, 1630 restrict_mask); 1631 return; /* hooray */ 1632 } 1633 /* HMS: Why is this next set of lines a feature? */ 1634 if (is_authentic == AUTH_ERROR) { 1635 fast_xmit(rbufp, MODE_PASSIVE, 0, 1636 restrict_mask); 1637 sys_restricted++; 1638 return; 1639 } 1640 1641 if (restrict_mask & RES_NOEPEER) { 1642 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1643 sys_declined++; 1644 return; 1645 } 1646 1647 /* [Bug 2941] 1648 * If we got here, the packet isn't part of an 1649 * existing association, either isn't correctly 1650 * authenticated or it is but we are refusing 1651 * ephemeral peer requests, and it didn't meet 1652 * either of the previous two special cases so we 1653 * should just drop it on the floor. For example, 1654 * crypto-NAKs (is_authentic == AUTH_CRYPTO) 1655 * will make it this far. This is just 1656 * debug-printed and not logged to avoid log 1657 * flooding. 1658 */ 1659 DPRINTF(2, ("receive: at %ld refusing to mobilize passive association" 1660 " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n", 1661 current_time, stoa(&rbufp->recv_srcadr), 1662 hismode, hm_str, am_str, skeyid, 1663 (authlen + has_mac), is_authentic)); 1664 sys_declined++; 1665 return; 1666 } 1667 1668 if (restrict_mask & RES_NOEPEER) { 1669 DPRINTF(2, ("receive: AM_NEWPASS drop: NOEPEER\n")); 1670 sys_declined++; 1671 return; 1672 } 1673 1674 /* 1675 * Do not respond if synchronized and if stratum is 1676 * below the floor or at or above the ceiling. Note, 1677 * this allows an unsynchronized peer to synchronize to 1678 * us. It would be very strange if he did and then was 1679 * nipped, but that could only happen if we were 1680 * operating at the top end of the range. It also means 1681 * we will spin an ephemeral association in response to 1682 * MODE_ACTIVE KoDs, which will time out eventually. 1683 */ 1684 if ( hisleap != LEAP_NOTINSYNC 1685 && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) { 1686 DPRINTF(2, ("receive: AM_NEWPASS drop: Remote stratum (%d) out of range\n", 1687 hisstratum)); 1688 sys_declined++; 1689 return; /* no help */ 1690 } 1691 1692 /* 1693 * The message is correctly authenticated and allowed. 1694 * Mobilize a symmetric passive association, if we won't 1695 * exceed the ippeerlimit. 1696 */ 1697 if ((peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr, 1698 r4a.ippeerlimit, MODE_PASSIVE, hisversion, 1699 pkt->ppoll, NTP_MAXDPOLL, 0, MDF_UCAST, 0, 1700 skeyid, sys_ident)) == NULL) { 1701 DPRINTF(2, ("receive: AM_NEWPASS drop: newpeer() failed\n")); 1702 sys_declined++; 1703 return; /* ignore duplicate */ 1704 } 1705 break; 1706 1707 1708 /* 1709 * Process regular packet. Nothing special. 1710 * 1711 * There are cases here where we do not call record_raw_stats(). 1712 */ 1713 case AM_PROCPKT: 1714 1715 #ifdef AUTOKEY 1716 /* 1717 * Do not respond if not the same group. 1718 */ 1719 if (group_test(groupname, peer->ident)) { 1720 DPRINTF(2, ("receive: AM_PROCPKT drop: Autokey group mismatch\n")); 1721 sys_declined++; 1722 return; 1723 } 1724 #endif /* AUTOKEY */ 1725 1726 if (MODE_BROADCAST == hismode) { 1727 int bail = 0; 1728 l_fp tdiff; 1729 u_long deadband; 1730 1731 DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n", 1732 (current_time - peer->timelastrec), 1733 peer->ppoll, (1 << peer->ppoll) 1734 )); 1735 /* Things we can check: 1736 * 1737 * Did the poll interval change? 1738 * Is the poll interval in the packet in-range? 1739 * Did this packet arrive too soon? 1740 * Is the timestamp in this packet monotonic 1741 * with respect to the previous packet? 1742 */ 1743 1744 /* This is noteworthy, not error-worthy */ 1745 if (pkt->ppoll != peer->ppoll) { 1746 msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %u to %u", 1747 stoa(&rbufp->recv_srcadr), 1748 peer->ppoll, pkt->ppoll); 1749 } 1750 1751 /* This is error-worthy */ 1752 if ( pkt->ppoll < peer->minpoll 1753 || pkt->ppoll > peer->maxpoll) { 1754 msyslog(LOG_INFO, "receive: broadcast poll of %u from %s is out-of-range (%d to %d)!", 1755 pkt->ppoll, stoa(&rbufp->recv_srcadr), 1756 peer->minpoll, peer->maxpoll); 1757 ++bail; 1758 } 1759 1760 /* too early? worth an error, too! 1761 * 1762 * [Bug 3113] Ensure that at least one poll 1763 * interval has elapsed since the last **clean** 1764 * packet was received. We limit the check to 1765 * **clean** packets to prevent replayed packets 1766 * and incorrectly authenticated packets, which 1767 * we'll discard, from being used to create a 1768 * denial of service condition. 1769 */ 1770 deadband = (1u << pkt->ppoll); 1771 if (FLAG_BC_VOL & peer->flags) 1772 deadband -= 3; /* allow greater fuzz after volley */ 1773 if ((current_time - peer->timereceived) < deadband) { 1774 msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!", 1775 stoa(&rbufp->recv_srcadr), 1776 (current_time - peer->timereceived), 1777 deadband); 1778 ++bail; 1779 } 1780 1781 /* Alert if time from the server is non-monotonic. 1782 * 1783 * [Bug 3114] is about Broadcast mode replay DoS. 1784 * 1785 * Broadcast mode *assumes* a trusted network. 1786 * Even so, it's nice to be robust in the face 1787 * of attacks. 1788 * 1789 * If we get an authenticated broadcast packet 1790 * with an "earlier" timestamp, it means one of 1791 * two things: 1792 * 1793 * - the broadcast server had a backward step. 1794 * 1795 * - somebody is trying a replay attack. 1796 * 1797 * deadband: By default, we assume the broadcast 1798 * network is trustable, so we take our accepted 1799 * broadcast packets as we receive them. But 1800 * some folks might want to take additional poll 1801 * delays before believing a backward step. 1802 */ 1803 if (sys_bcpollbstep) { 1804 /* pkt->ppoll or peer->ppoll ? */ 1805 deadband = (1u << pkt->ppoll) 1806 * sys_bcpollbstep + 2; 1807 } else { 1808 deadband = 0; 1809 } 1810 1811 if (L_ISZERO(&peer->bxmt)) { 1812 tdiff.l_ui = tdiff.l_uf = 0; 1813 } else { 1814 tdiff = p_xmt; 1815 L_SUB(&tdiff, &peer->bxmt); 1816 } 1817 if ( tdiff.l_i < 0 1818 && (current_time - peer->timereceived) < deadband) 1819 { 1820 msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x", 1821 stoa(&rbufp->recv_srcadr), 1822 peer->bxmt.l_ui, peer->bxmt.l_uf, 1823 p_xmt.l_ui, p_xmt.l_uf 1824 ); 1825 ++bail; 1826 } 1827 1828 if (bail) { 1829 DPRINTF(2, ("receive: AM_PROCPKT drop: bail\n")); 1830 peer->timelastrec = current_time; 1831 sys_declined++; 1832 return; 1833 } 1834 } 1835 1836 break; 1837 1838 /* 1839 * A passive packet matches a passive association. This is 1840 * usually the result of reconfiguring a client on the fly. As 1841 * this association might be legitimate and this packet an 1842 * attempt to deny service, just ignore it. 1843 */ 1844 case AM_ERR: 1845 DPRINTF(2, ("receive: AM_ERR drop.\n")); 1846 sys_declined++; 1847 return; 1848 1849 /* 1850 * For everything else there is the bit bucket. 1851 */ 1852 default: 1853 DPRINTF(2, ("receive: default drop.\n")); 1854 sys_declined++; 1855 return; 1856 } 1857 1858 #ifdef AUTOKEY 1859 /* 1860 * If the association is configured for Autokey, the packet must 1861 * have a public key ID; if not, the packet must have a 1862 * symmetric key ID. 1863 */ 1864 if ( is_authentic != AUTH_CRYPTO 1865 && ( ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY) 1866 || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) { 1867 DPRINTF(2, ("receive: drop: Autokey but wrong/bad auth\n")); 1868 sys_badauth++; 1869 return; 1870 } 1871 #endif /* AUTOKEY */ 1872 1873 peer->received++; 1874 peer->flash &= ~PKT_TEST_MASK; 1875 if (peer->flags & FLAG_XBOGUS) { 1876 peer->flags &= ~FLAG_XBOGUS; 1877 peer->flash |= TEST3; 1878 } 1879 1880 /* 1881 * Next comes a rigorous schedule of timestamp checking. If the 1882 * transmit timestamp is zero, the server has not initialized in 1883 * interleaved modes or is horribly broken. 1884 * 1885 * A KoD packet we pay attention to cannot have a 0 transmit 1886 * timestamp. 1887 */ 1888 1889 kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid); 1890 1891 if (L_ISZERO(&p_xmt)) { 1892 peer->flash |= TEST3; /* unsynch */ 1893 if (kissCode != NOKISS) { /* KoD packet */ 1894 peer->bogusorg++; /* for TEST2 or TEST3 */ 1895 msyslog(LOG_INFO, 1896 "receive: Unexpected zero transmit timestamp in KoD from %s", 1897 ntoa(&peer->srcadr)); 1898 return; 1899 } 1900 1901 /* 1902 * If the transmit timestamp duplicates our previous one, the 1903 * packet is a replay. This prevents the bad guys from replaying 1904 * the most recent packet, authenticated or not. 1905 */ 1906 } else if ( ((FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->nonce, &p_xmt)) 1907 || (!(FLAG_LOOPNONCE & peer->flags) && L_ISEQU(&peer->xmt, &p_xmt)) 1908 ) { 1909 DPRINTF(2, ("receive: drop: Duplicate xmit\n")); 1910 peer->flash |= TEST1; /* duplicate */ 1911 peer->oldpkt++; 1912 return; 1913 1914 /* 1915 * If this is a broadcast mode packet, make sure hisstratum 1916 * is appropriate. Don't do anything else here - we wait to 1917 * see if this is an interleave broadcast packet until after 1918 * we've validated the MAC that SHOULD be provided. 1919 * 1920 * hisstratum cannot be 0 - see assertion above. 1921 * If hisstratum is 15, then we'll advertise as UNSPEC but 1922 * at least we'll be able to sync with the broadcast server. 1923 */ 1924 } else if (hismode == MODE_BROADCAST) { 1925 /* 0 is unexpected too, and impossible */ 1926 if (STRATUM_UNSPEC <= hisstratum) { 1927 /* Is this a ++sys_declined or ??? */ 1928 msyslog(LOG_INFO, 1929 "receive: Unexpected stratum (%d) in broadcast from %s", 1930 hisstratum, ntoa(&peer->srcadr)); 1931 return; 1932 } 1933 1934 /* 1935 * Basic KoD validation checking: 1936 * 1937 * KoD packets are a mixed-blessing. Forged KoD packets 1938 * are DoS attacks. There are rare situations where we might 1939 * get a valid KoD response, though. Since KoD packets are 1940 * a special case that complicate the checks we do next, we 1941 * handle the basic KoD checks here. 1942 * 1943 * Note that we expect the incoming KoD packet to have its 1944 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp 1945 * that we have previously sent out. Watch interleave mode. 1946 */ 1947 } else if (kissCode != NOKISS) { 1948 DEBUG_INSIST(!L_ISZERO(&p_xmt)); 1949 if ( L_ISZERO(&p_org) /* We checked p_xmt above */ 1950 || L_ISZERO(&p_rec)) { 1951 peer->bogusorg++; 1952 msyslog(LOG_INFO, 1953 "receive: KoD packet from %s has a zero org or rec timestamp. Ignoring.", 1954 ntoa(&peer->srcadr)); 1955 return; 1956 } 1957 1958 if ( !L_ISEQU(&p_xmt, &p_org) 1959 || !L_ISEQU(&p_xmt, &p_rec)) { 1960 peer->bogusorg++; 1961 msyslog(LOG_INFO, 1962 "receive: KoD packet from %s has inconsistent xmt/org/rec timestamps. Ignoring.", 1963 ntoa(&peer->srcadr)); 1964 return; 1965 } 1966 1967 /* Be conservative */ 1968 if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) { 1969 peer->bogusorg++; 1970 msyslog(LOG_INFO, 1971 "receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.", 1972 p_org.l_ui, p_org.l_uf, 1973 ntoa(&peer->srcadr), 1974 peer->aorg.l_ui, peer->aorg.l_uf); 1975 return; 1976 } else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) { 1977 peer->bogusorg++; 1978 msyslog(LOG_INFO, 1979 "receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.", 1980 p_org.l_ui, p_org.l_uf, 1981 ntoa(&peer->srcadr), 1982 peer->borg.l_ui, peer->borg.l_uf); 1983 return; 1984 } 1985 1986 /* 1987 * Basic mode checks: 1988 * 1989 * If there is no origin timestamp, it's either an initial packet 1990 * or we've already received a response to our query. Of course, 1991 * should 'aorg' be all-zero because this really was the original 1992 * transmit timestamp, we'll ignore this reply. There is a window 1993 * of one nanosecond once every 136 years' time where this is 1994 * possible. We currently ignore this situation, as a completely 1995 * zero timestamp is (quietly?) disallowed. 1996 * 1997 * Otherwise, check for bogus packet in basic mode. 1998 * If it is bogus, switch to interleaved mode and resynchronize, 1999 * but only after confirming the packet is not bogus in 2000 * symmetric interleaved mode. 2001 * 2002 * This could also mean somebody is forging packets claiming to 2003 * be from us, attempting to cause our server to KoD us. 2004 * 2005 * We have earlier asserted that hisstratum cannot be 0. 2006 * If hisstratum is STRATUM_UNSPEC, it means he's not sync'd. 2007 */ 2008 2009 /* XXX: FLAG_LOOPNONCE */ 2010 DEBUG_INSIST(0 == (FLAG_LOOPNONCE & peer->flags)); 2011 2012 } else if (peer->flip == 0) { 2013 if (0) { 2014 } else if (L_ISZERO(&p_org)) { 2015 const char *action; 2016 2017 #ifdef BUG3361 2018 msyslog(LOG_INFO, 2019 "receive: BUG 3361: Clearing peer->aorg "); 2020 L_CLR(&peer->aorg); 2021 /* Clear peer->nonce, too? */ 2022 #endif 2023 /**/ 2024 switch (hismode) { 2025 /* We allow 0org for: */ 2026 case UCHAR_MAX: 2027 action = "Allow"; 2028 break; 2029 /* We disallow 0org for: */ 2030 case MODE_UNSPEC: 2031 case MODE_ACTIVE: 2032 case MODE_PASSIVE: 2033 case MODE_CLIENT: 2034 case MODE_SERVER: 2035 case MODE_BROADCAST: 2036 action = "Drop"; 2037 peer->bogusorg++; 2038 peer->flash |= TEST2; /* bogus */ 2039 break; 2040 default: 2041 action = ""; /* for cranky compilers / MSVC */ 2042 INSIST(!"receive(): impossible hismode"); 2043 break; 2044 } 2045 /**/ 2046 msyslog(LOG_INFO, 2047 "receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x", 2048 action, hm_str, ntoa(&peer->srcadr), 2049 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2050 } else if (!L_ISEQU(&p_org, &peer->aorg)) { 2051 /* are there cases here where we should bail? */ 2052 /* Should we set TEST2 if we decide to try xleave? */ 2053 peer->bogusorg++; 2054 peer->flash |= TEST2; /* bogus */ 2055 msyslog(LOG_INFO, 2056 "receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x", 2057 ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf), 2058 peer->aorg.l_ui, peer->aorg.l_uf, 2059 hm_str, ntoa(&peer->srcadr), 2060 ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)); 2061 if ( !L_ISZERO(&peer->dst) 2062 && L_ISEQU(&p_org, &peer->dst)) { 2063 /* Might be the start of an interleave */ 2064 if (dynamic_interleave) { 2065 peer->flip = 1; 2066 report_event(PEVNT_XLEAVE, peer, NULL); 2067 } else { 2068 msyslog(LOG_INFO, 2069 "receive: Dynamic interleave from %s@%s denied", 2070 hm_str, ntoa(&peer->srcadr)); 2071 } 2072 } 2073 } else { 2074 L_CLR(&peer->aorg); 2075 /* XXX: FLAG_LOOPNONCE */ 2076 } 2077 2078 /* 2079 * Check for valid nonzero timestamp fields. 2080 */ 2081 } else if ( L_ISZERO(&p_org) 2082 || L_ISZERO(&p_rec) 2083 || L_ISZERO(&peer->dst)) { 2084 peer->flash |= TEST3; /* unsynch */ 2085 2086 /* 2087 * Check for bogus packet in interleaved symmetric mode. This 2088 * can happen if a packet is lost, duplicated or crossed. If 2089 * found, flip and resynchronize. 2090 */ 2091 } else if ( !L_ISZERO(&peer->dst) 2092 && !L_ISEQU(&p_org, &peer->dst)) { 2093 DPRINTF(2, ("receive: drop: Bogus packet in interleaved symmetric mode\n")); 2094 peer->bogusorg++; 2095 peer->flags |= FLAG_XBOGUS; 2096 peer->flash |= TEST2; /* bogus */ 2097 #ifdef BUG3453 2098 return; /* Bogus packet, we are done */ 2099 #endif 2100 } 2101 2102 /**/ 2103 2104 /* 2105 * If this is a crypto_NAK, the server cannot authenticate a 2106 * client packet. The server might have just changed keys. Clear 2107 * the association and restart the protocol. 2108 */ 2109 if (crypto_nak_test == VALIDNAK) { 2110 report_event(PEVNT_AUTH, peer, "crypto_NAK"); 2111 peer->flash |= TEST5; /* bad auth */ 2112 peer->badauth++; 2113 if (peer->flags & FLAG_PREEMPT) { 2114 if (unpeer_crypto_nak_early) { 2115 unpeer(peer); 2116 } 2117 DPRINTF(2, ("receive: drop: PREEMPT crypto_NAK\n")); 2118 return; 2119 } 2120 #ifdef AUTOKEY 2121 if (peer->crypto) { 2122 peer_clear(peer, "AUTH"); 2123 } 2124 #endif /* AUTOKEY */ 2125 DPRINTF(2, ("receive: drop: crypto_NAK\n")); 2126 return; 2127 2128 /* 2129 * If the digest fails or it's missing for authenticated 2130 * associations, the client cannot authenticate a server 2131 * reply to a client packet previously sent. The loopback check 2132 * is designed to avoid a bait-and-switch attack, which was 2133 * possible in past versions. If symmetric modes, return a 2134 * crypto-NAK. The peer should restart the protocol. 2135 */ 2136 } else if (!AUTH(peer->keyid || has_mac || 2137 (restrict_mask & RES_DONTTRUST), is_authentic)) { 2138 2139 if (peer->flash & PKT_TEST_MASK) { 2140 msyslog(LOG_INFO, 2141 "receive: Bad auth in packet with bad timestamps from %s denied - spoof?", 2142 ntoa(&peer->srcadr)); 2143 return; 2144 } 2145 2146 report_event(PEVNT_AUTH, peer, "digest"); 2147 peer->flash |= TEST5; /* bad auth */ 2148 peer->badauth++; 2149 if ( has_mac 2150 && ( hismode == MODE_ACTIVE 2151 || hismode == MODE_PASSIVE)) 2152 fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask); 2153 if (peer->flags & FLAG_PREEMPT) { 2154 if (unpeer_digest_early) { 2155 unpeer(peer); 2156 } 2157 } 2158 #ifdef AUTOKEY 2159 else if (peer_clear_digest_early && peer->crypto) { 2160 peer_clear(peer, "AUTH"); 2161 } 2162 #endif /* AUTOKEY */ 2163 DPRINTF(2, ("receive: drop: Bad or missing AUTH\n")); 2164 return; 2165 } 2166 2167 /* 2168 * For broadcast packets: 2169 * 2170 * HMS: This next line never made much sense to me, even 2171 * when it was up higher: 2172 * If an initial volley, bail out now and let the 2173 * client do its stuff. 2174 * 2175 * If the packet has not failed authentication, then 2176 * - if the origin timestamp is nonzero this is an 2177 * interleaved broadcast, so restart the protocol. 2178 * - else, this is not an interleaved broadcast packet. 2179 */ 2180 if (hismode == MODE_BROADCAST) { 2181 if ( is_authentic == AUTH_OK 2182 || is_authentic == AUTH_NONE) { 2183 if (!L_ISZERO(&p_org)) { 2184 if (!(peer->flags & FLAG_XB)) { 2185 msyslog(LOG_INFO, 2186 "receive: Broadcast server at %s is in interleave mode", 2187 ntoa(&peer->srcadr)); 2188 peer->flags |= FLAG_XB; 2189 peer->aorg = p_xmt; 2190 peer->borg = rbufp->recv_time; 2191 report_event(PEVNT_XLEAVE, peer, NULL); 2192 return; 2193 } 2194 } else if (peer->flags & FLAG_XB) { 2195 msyslog(LOG_INFO, 2196 "receive: Broadcast server at %s is no longer in interleave mode", 2197 ntoa(&peer->srcadr)); 2198 peer->flags &= ~FLAG_XB; 2199 } 2200 } else { 2201 msyslog(LOG_INFO, 2202 "receive: Bad broadcast auth (%d) from %s", 2203 is_authentic, ntoa(&peer->srcadr)); 2204 } 2205 2206 /* 2207 * Now that we know the packet is correctly authenticated, 2208 * update peer->bxmt. 2209 */ 2210 peer->bxmt = p_xmt; 2211 } 2212 2213 2214 /* 2215 ** Update the state variables. 2216 */ 2217 if (peer->flip == 0) { 2218 if (hismode != MODE_BROADCAST) 2219 peer->rec = p_xmt; 2220 peer->dst = rbufp->recv_time; 2221 } 2222 peer->xmt = p_xmt; 2223 2224 /* 2225 * Set the peer ppoll to the maximum of the packet ppoll and the 2226 * peer minpoll. If a kiss-o'-death, set the peer minpoll to 2227 * this maximum and advance the headway to give the sender some 2228 * headroom. Very intricate. 2229 */ 2230 2231 /* 2232 * Check for any kiss codes. Note this is only used when a server 2233 * responds to a packet request. 2234 */ 2235 2236 /* 2237 * Check to see if this is a RATE Kiss Code 2238 * Currently this kiss code will accept whatever poll 2239 * rate that the server sends 2240 */ 2241 peer->ppoll = max(peer->minpoll, pkt->ppoll); 2242 if (kissCode == RATEKISS) { 2243 peer->selbroken++; /* Increment the KoD count */ 2244 report_event(PEVNT_RATE, peer, NULL); 2245 if (pkt->ppoll > peer->minpoll) 2246 peer->minpoll = peer->ppoll; 2247 peer->burst = peer->retry = 0; 2248 peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll); 2249 poll_update(peer, pkt->ppoll, 0); 2250 return; /* kiss-o'-death */ 2251 } 2252 if (kissCode != NOKISS) { 2253 peer->selbroken++; /* Increment the KoD count */ 2254 return; /* Drop any other kiss code packets */ 2255 } 2256 2257 2258 /* 2259 * XXX 2260 */ 2261 2262 2263 /* 2264 * If: 2265 * - this is a *cast (uni-, broad-, or m-) server packet 2266 * - and it's symmetric-key authenticated 2267 * then see if the sender's IP is trusted for this keyid. 2268 * If it is, great - nothing special to do here. 2269 * Otherwise, we should report and bail. 2270 * 2271 * Autokey-authenticated packets are accepted. 2272 */ 2273 2274 switch (hismode) { 2275 case MODE_SERVER: /* server mode */ 2276 case MODE_BROADCAST: /* broadcast mode */ 2277 case MODE_ACTIVE: /* symmetric active mode */ 2278 case MODE_PASSIVE: /* symmetric passive mode */ 2279 if ( is_authentic == AUTH_OK 2280 && skeyid 2281 && skeyid <= NTP_MAXKEY 2282 && !authistrustedip(skeyid, &peer->srcadr)) { 2283 report_event(PEVNT_AUTH, peer, "authIP"); 2284 peer->badauth++; 2285 return; 2286 } 2287 break; 2288 2289 case MODE_CLIENT: /* client mode */ 2290 #if 0 /* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */ 2291 case MODE_CONTROL: /* control mode */ 2292 #endif 2293 case MODE_PRIVATE: /* private mode */ 2294 case MODE_BCLIENT: /* broadcast client mode */ 2295 break; 2296 2297 case MODE_UNSPEC: /* unspecified (old version) */ 2298 default: 2299 msyslog(LOG_INFO, 2300 "receive: Unexpected mode (%d) in packet from %s", 2301 hismode, ntoa(&peer->srcadr)); 2302 break; 2303 } 2304 2305 2306 /* 2307 * That was hard and I am sweaty, but the packet is squeaky 2308 * clean. Get on with real work. 2309 */ 2310 peer->timereceived = current_time; 2311 peer->timelastrec = current_time; 2312 if (is_authentic == AUTH_OK) 2313 peer->flags |= FLAG_AUTHENTIC; 2314 else 2315 peer->flags &= ~FLAG_AUTHENTIC; 2316 2317 #ifdef AUTOKEY 2318 /* 2319 * More autokey dance. The rules of the cha-cha are as follows: 2320 * 2321 * 1. If there is no key or the key is not auto, do nothing. 2322 * 2323 * 2. If this packet is in response to the one just previously 2324 * sent or from a broadcast server, do the extension fields. 2325 * Otherwise, assume bogosity and bail out. 2326 * 2327 * 3. If an extension field contains a verified signature, it is 2328 * self-authenticated and we sit the dance. 2329 * 2330 * 4. If this is a server reply, check only to see that the 2331 * transmitted key ID matches the received key ID. 2332 * 2333 * 5. Check to see that one or more hashes of the current key ID 2334 * matches the previous key ID or ultimate original key ID 2335 * obtained from the broadcaster or symmetric peer. If no 2336 * match, sit the dance and call for new autokey values. 2337 * 2338 * In case of crypto error, fire the orchestra, stop dancing and 2339 * restart the protocol. 2340 */ 2341 if (peer->flags & FLAG_SKEY) { 2342 /* 2343 * Decrement remaining autokey hashes. This isn't 2344 * perfect if a packet is lost, but results in no harm. 2345 */ 2346 ap = (struct autokey *)peer->recval.ptr; 2347 if (ap != NULL) { 2348 if (ap->seq > 0) 2349 ap->seq--; 2350 } 2351 peer->flash |= TEST8; 2352 rval = crypto_recv(peer, rbufp); 2353 if (rval == XEVNT_OK) { 2354 peer->unreach = 0; 2355 } else { 2356 if (rval == XEVNT_ERR) { 2357 report_event(PEVNT_RESTART, peer, 2358 "crypto error"); 2359 peer_clear(peer, "CRYP"); 2360 peer->flash |= TEST9; /* bad crypt */ 2361 if (peer->flags & FLAG_PREEMPT) { 2362 if (unpeer_crypto_early) { 2363 unpeer(peer); 2364 } 2365 } 2366 } 2367 return; 2368 } 2369 2370 /* 2371 * If server mode, verify the receive key ID matches 2372 * the transmit key ID. 2373 */ 2374 if (hismode == MODE_SERVER) { 2375 if (skeyid == peer->keyid) 2376 peer->flash &= ~TEST8; 2377 2378 /* 2379 * If an extension field is present, verify only that it 2380 * has been correctly signed. We don't need a sequence 2381 * check here, but the sequence continues. 2382 */ 2383 } else if (!(peer->flash & TEST8)) { 2384 peer->pkeyid = skeyid; 2385 2386 /* 2387 * Now the fun part. Here, skeyid is the current ID in 2388 * the packet, pkeyid is the ID in the last packet and 2389 * tkeyid is the hash of skeyid. If the autokey values 2390 * have not been received, this is an automatic error. 2391 * If so, check that the tkeyid matches pkeyid. If not, 2392 * hash tkeyid and try again. If the number of hashes 2393 * exceeds the number remaining in the sequence, declare 2394 * a successful failure and refresh the autokey values. 2395 */ 2396 } else if (ap != NULL) { 2397 int i; 2398 2399 for (i = 0; ; i++) { 2400 if ( tkeyid == peer->pkeyid 2401 || tkeyid == ap->key) { 2402 peer->flash &= ~TEST8; 2403 peer->pkeyid = skeyid; 2404 ap->seq -= i; 2405 break; 2406 } 2407 if (i > ap->seq) { 2408 peer->crypto &= 2409 ~CRYPTO_FLAG_AUTO; 2410 break; 2411 } 2412 tkeyid = session_key( 2413 &rbufp->recv_srcadr, dstadr_sin, 2414 tkeyid, pkeyid, 0); 2415 } 2416 if (peer->flash & TEST8) 2417 report_event(PEVNT_AUTH, peer, "keylist"); 2418 } 2419 if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */ 2420 peer->flash |= TEST8; /* bad autokey */ 2421 2422 /* 2423 * The maximum lifetime of the protocol is about one 2424 * week before restarting the Autokey protocol to 2425 * refresh certificates and leapseconds values. 2426 */ 2427 if (current_time > peer->refresh) { 2428 report_event(PEVNT_RESTART, peer, 2429 "crypto refresh"); 2430 peer_clear(peer, "TIME"); 2431 return; 2432 } 2433 } 2434 #endif /* AUTOKEY */ 2435 2436 /* 2437 * The dance is complete and the flash bits have been lit. Toss 2438 * the packet over the fence for processing, which may light up 2439 * more flashers. Leave if the packet is not good. 2440 */ 2441 process_packet(peer, pkt, rbufp->recv_length); 2442 if (peer->flash & PKT_TEST_MASK) 2443 return; 2444 2445 /* [bug 3592] Update poll. Ideally this should not happen in a 2446 * receive branch, but too much is going on here... at least we 2447 * do it only if the packet was good! 2448 */ 2449 poll_update(peer, peer->hpoll, (peer->hmode == MODE_CLIENT)); 2450 2451 /* 2452 * In interleaved mode update the state variables. Also adjust the 2453 * transmit phase to avoid crossover. 2454 */ 2455 if (peer->flip != 0) { 2456 peer->rec = p_rec; 2457 peer->dst = rbufp->recv_time; 2458 if (peer->nextdate - current_time < (1U << min(peer->ppoll, 2459 peer->hpoll)) / 2) 2460 peer->nextdate++; 2461 else 2462 peer->nextdate--; 2463 } 2464 } 2465 2466 2467 /* 2468 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305 2469 * Or almost, at least. If we're in here we have a reasonable 2470 * expectation that we will be having a long term 2471 * relationship with this host. 2472 */ 2473 void 2474 process_packet( 2475 register struct peer *peer, 2476 register struct pkt *pkt, 2477 u_int len 2478 ) 2479 { 2480 double t34, t21; 2481 double p_offset, p_del, p_disp; 2482 l_fp p_rec, p_xmt, p_org, p_reftime, ci; 2483 u_char pmode, pleap, pversion, pstratum; 2484 char statstr[NTP_MAXSTRLEN]; 2485 #ifdef ASSYM 2486 int itemp; 2487 double etemp, ftemp, td; 2488 #endif /* ASSYM */ 2489 2490 p_del = FPTOD(NTOHS_FP(pkt->rootdelay)); 2491 p_offset = 0; 2492 p_disp = FPTOD(NTOHS_FP(pkt->rootdisp)); 2493 NTOHL_FP(&pkt->reftime, &p_reftime); 2494 NTOHL_FP(&pkt->org, &p_org); 2495 NTOHL_FP(&pkt->rec, &p_rec); 2496 NTOHL_FP(&pkt->xmt, &p_xmt); 2497 pmode = PKT_MODE(pkt->li_vn_mode); 2498 pleap = PKT_LEAP(pkt->li_vn_mode); 2499 pversion = PKT_VERSION(pkt->li_vn_mode); 2500 pstratum = PKT_TO_STRATUM(pkt->stratum); 2501 2502 /* 2503 * Verify the server is synchronized; that is, the leap bits, 2504 * stratum and root distance are valid. 2505 */ 2506 if ( pleap == LEAP_NOTINSYNC /* test 6 */ 2507 || pstratum < sys_floor || pstratum >= sys_ceiling) 2508 peer->flash |= TEST6; /* bad synch or strat */ 2509 if (p_del / 2 + p_disp >= MAXDISPERSE) /* test 7 */ 2510 peer->flash |= TEST7; /* bad header */ 2511 2512 /* 2513 * If any tests fail at this point, the packet is discarded. 2514 * Note that some flashers may have already been set in the 2515 * receive() routine. 2516 */ 2517 if (peer->flash & PKT_TEST_MASK) { 2518 peer->seldisptoolarge++; 2519 DPRINTF(1, ("packet: flash header %04x\n", 2520 peer->flash)); 2521 /* [Bug 3592] do *not* update poll on bad packets! */ 2522 return; 2523 } 2524 2525 /* 2526 * update stats, now that we really handle this packet: 2527 */ 2528 sys_processed++; 2529 peer->processed++; 2530 2531 /* 2532 * Capture the header values in the client/peer association.. 2533 */ 2534 record_raw_stats(&peer->srcadr, 2535 peer->dstadr ? &peer->dstadr->sin : NULL, 2536 &p_org, &p_rec, &p_xmt, &peer->dst, 2537 pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision, 2538 p_del, p_disp, pkt->refid, 2539 len - MIN_V4_PKT_LEN, (u_char *)&pkt->exten); 2540 peer->leap = pleap; 2541 peer->stratum = min(pstratum, STRATUM_UNSPEC); 2542 peer->pmode = pmode; 2543 peer->precision = pkt->precision; 2544 peer->rootdelay = p_del; 2545 peer->rootdisp = p_disp; 2546 peer->refid = pkt->refid; /* network byte order */ 2547 peer->reftime = p_reftime; 2548 2549 /* 2550 * First, if either burst mode is armed, enable the burst. 2551 * Compute the headway for the next packet and delay if 2552 * necessary to avoid exceeding the threshold. 2553 */ 2554 if (peer->retry > 0) { 2555 peer->retry = 0; 2556 if (peer->reach) 2557 peer->burst = min(1 << (peer->hpoll - 2558 peer->minpoll), NTP_SHIFT) - 1; 2559 else 2560 peer->burst = NTP_IBURST - 1; 2561 if (peer->burst > 0) 2562 peer->nextdate = current_time; 2563 } 2564 2565 /* 2566 * If the peer was previously unreachable, raise a trap. In any 2567 * case, mark it reachable. 2568 */ 2569 if (!peer->reach) { 2570 report_event(PEVNT_REACH, peer, NULL); 2571 peer->timereachable = current_time; 2572 } 2573 peer->reach |= 1; 2574 2575 /* 2576 * For a client/server association, calculate the clock offset, 2577 * roundtrip delay and dispersion. The equations are reordered 2578 * from the spec for more efficient use of temporaries. For a 2579 * broadcast association, offset the last measurement by the 2580 * computed delay during the client/server volley. Note the 2581 * computation of dispersion includes the system precision plus 2582 * that due to the frequency error since the origin time. 2583 * 2584 * It is very important to respect the hazards of overflow. The 2585 * only permitted operation on raw timestamps is subtraction, 2586 * where the result is a signed quantity spanning from 68 years 2587 * in the past to 68 years in the future. To avoid loss of 2588 * precision, these calculations are done using 64-bit integer 2589 * arithmetic. However, the offset and delay calculations are 2590 * sums and differences of these first-order differences, which 2591 * if done using 64-bit integer arithmetic, would be valid over 2592 * only half that span. Since the typical first-order 2593 * differences are usually very small, they are converted to 64- 2594 * bit doubles and all remaining calculations done in floating- 2595 * double arithmetic. This preserves the accuracy while 2596 * retaining the 68-year span. 2597 * 2598 * There are three interleaving schemes, basic, interleaved 2599 * symmetric and interleaved broadcast. The timestamps are 2600 * idioscyncratically different. See the onwire briefing/white 2601 * paper at www.eecis.udel.edu/~mills for details. 2602 * 2603 * Interleaved symmetric mode 2604 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt, 2605 * t4 = peer->dst 2606 */ 2607 if (peer->flip != 0) { 2608 ci = p_xmt; /* t3 - t4 */ 2609 L_SUB(&ci, &peer->dst); 2610 LFPTOD(&ci, t34); 2611 ci = p_rec; /* t2 - t1 */ 2612 if (peer->flip > 0) 2613 L_SUB(&ci, &peer->borg); 2614 else 2615 L_SUB(&ci, &peer->aorg); 2616 LFPTOD(&ci, t21); 2617 p_del = t21 - t34; 2618 p_offset = (t21 + t34) / 2.; 2619 if (p_del < 0 || p_del > 1.) { 2620 snprintf(statstr, sizeof(statstr), 2621 "t21 %.6f t34 %.6f", t21, t34); 2622 report_event(PEVNT_XERR, peer, statstr); 2623 return; 2624 } 2625 2626 /* 2627 * Broadcast modes 2628 */ 2629 } else if (peer->pmode == MODE_BROADCAST) { 2630 2631 /* 2632 * Interleaved broadcast mode. Use interleaved timestamps. 2633 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg 2634 */ 2635 if (peer->flags & FLAG_XB) { 2636 ci = p_org; /* delay */ 2637 L_SUB(&ci, &peer->aorg); 2638 LFPTOD(&ci, t34); 2639 ci = p_org; /* t2 - t1 */ 2640 L_SUB(&ci, &peer->borg); 2641 LFPTOD(&ci, t21); 2642 peer->aorg = p_xmt; 2643 peer->borg = peer->dst; 2644 if (t34 < 0 || t34 > 1.) { 2645 /* drop all if in the initial volley */ 2646 if (FLAG_BC_VOL & peer->flags) 2647 goto bcc_init_volley_fail; 2648 snprintf(statstr, sizeof(statstr), 2649 "offset %.6f delay %.6f", t21, t34); 2650 report_event(PEVNT_XERR, peer, statstr); 2651 return; 2652 } 2653 p_offset = t21; 2654 peer->xleave = t34; 2655 2656 /* 2657 * Basic broadcast - use direct timestamps. 2658 * t3 = p_xmt, t4 = peer->dst 2659 */ 2660 } else { 2661 ci = p_xmt; /* t3 - t4 */ 2662 L_SUB(&ci, &peer->dst); 2663 LFPTOD(&ci, t34); 2664 p_offset = t34; 2665 } 2666 2667 /* 2668 * When calibration is complete and the clock is 2669 * synchronized, the bias is calculated as the difference 2670 * between the unicast timestamp and the broadcast 2671 * timestamp. This works for both basic and interleaved 2672 * modes. 2673 * [Bug 3031] Don't keep this peer when the delay 2674 * calculation gives reason to suspect clock steps. 2675 * This is assumed for delays > 50ms. 2676 */ 2677 if (FLAG_BC_VOL & peer->flags) { 2678 peer->flags &= ~FLAG_BC_VOL; 2679 peer->delay = fabs(peer->offset - p_offset) * 2; 2680 DPRINTF(2, ("broadcast volley: initial delay=%.6f\n", 2681 peer->delay)); 2682 if (peer->delay > fabs(sys_bdelay)) { 2683 bcc_init_volley_fail: 2684 DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n")); 2685 unpeer(peer); 2686 return; 2687 } 2688 } 2689 peer->nextdate = current_time + (1u << peer->ppoll) - 2u; 2690 p_del = peer->delay; 2691 p_offset += p_del / 2; 2692 2693 2694 /* 2695 * Basic mode, otherwise known as the old fashioned way. 2696 * 2697 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst 2698 */ 2699 } else { 2700 ci = p_xmt; /* t3 - t4 */ 2701 L_SUB(&ci, &peer->dst); 2702 LFPTOD(&ci, t34); 2703 ci = p_rec; /* t2 - t1 */ 2704 L_SUB(&ci, &p_org); 2705 LFPTOD(&ci, t21); 2706 p_del = fabs(t21 - t34); 2707 p_offset = (t21 + t34) / 2.; 2708 } 2709 p_del = max(p_del, LOGTOD(sys_precision)); 2710 p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) + 2711 clock_phi * p_del; 2712 2713 #if ASSYM 2714 /* 2715 * This code calculates the outbound and inbound data rates by 2716 * measuring the differences between timestamps at different 2717 * packet lengths. This is helpful in cases of large asymmetric 2718 * delays commonly experienced on deep space communication 2719 * links. 2720 */ 2721 if (peer->t21_last > 0 && peer->t34_bytes > 0) { 2722 itemp = peer->t21_bytes - peer->t21_last; 2723 if (itemp > 25) { 2724 etemp = t21 - peer->t21; 2725 if (fabs(etemp) > 1e-6) { 2726 ftemp = itemp / etemp; 2727 if (ftemp > 1000.) 2728 peer->r21 = ftemp; 2729 } 2730 } 2731 itemp = len - peer->t34_bytes; 2732 if (itemp > 25) { 2733 etemp = -t34 - peer->t34; 2734 if (fabs(etemp) > 1e-6) { 2735 ftemp = itemp / etemp; 2736 if (ftemp > 1000.) 2737 peer->r34 = ftemp; 2738 } 2739 } 2740 } 2741 2742 /* 2743 * The following section compensates for different data rates on 2744 * the outbound (d21) and inbound (t34) directions. To do this, 2745 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is 2746 * the roundtrip delay. Then it calculates the correction as a 2747 * fraction of d. 2748 */ 2749 peer->t21 = t21; 2750 peer->t21_last = peer->t21_bytes; 2751 peer->t34 = -t34; 2752 peer->t34_bytes = len; 2753 DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21, 2754 peer->t21_bytes, peer->t34, peer->t34_bytes)); 2755 if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) { 2756 if (peer->pmode != MODE_BROADCAST) 2757 td = (peer->r34 / (peer->r21 + peer->r34) - 2758 .5) * p_del; 2759 else 2760 td = 0; 2761 2762 /* 2763 * Unfortunately, in many cases the errors are 2764 * unacceptable, so for the present the rates are not 2765 * used. In future, we might find conditions where the 2766 * calculations are useful, so this should be considered 2767 * a work in progress. 2768 */ 2769 t21 -= td; 2770 t34 -= td; 2771 DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n", 2772 p_del, peer->r21 / 1e3, peer->r34 / 1e3, 2773 td)); 2774 } 2775 #endif /* ASSYM */ 2776 2777 /* 2778 * That was awesome. Now hand off to the clock filter. 2779 */ 2780 clock_filter(peer, p_offset + peer->bias, p_del, p_disp); 2781 2782 /* 2783 * If we are in broadcast calibrate mode, return to broadcast 2784 * client mode when the client is fit and the autokey dance is 2785 * complete. 2786 */ 2787 if ( (FLAG_BC_VOL & peer->flags) 2788 && MODE_CLIENT == peer->hmode 2789 && !(TEST11 & peer_unfit(peer))) { /* distance exceeded */ 2790 #ifdef AUTOKEY 2791 if (peer->flags & FLAG_SKEY) { 2792 if (!(~peer->crypto & CRYPTO_FLAG_ALL)) 2793 peer->hmode = MODE_BCLIENT; 2794 } else { 2795 peer->hmode = MODE_BCLIENT; 2796 } 2797 #else /* !AUTOKEY follows */ 2798 peer->hmode = MODE_BCLIENT; 2799 #endif /* !AUTOKEY */ 2800 } 2801 } 2802 2803 2804 /* 2805 * clock_update - Called at system process update intervals. 2806 */ 2807 static void 2808 clock_update( 2809 struct peer *peer /* peer structure pointer */ 2810 ) 2811 { 2812 double dtemp; 2813 l_fp now; 2814 #ifdef HAVE_LIBSCF_H 2815 char *fmri; 2816 #endif /* HAVE_LIBSCF_H */ 2817 2818 /* 2819 * Update the system state variables. We do this very carefully, 2820 * as the poll interval might need to be clamped differently. 2821 */ 2822 sys_peer = peer; 2823 sys_epoch = peer->epoch; 2824 if (sys_poll < peer->minpoll) 2825 sys_poll = peer->minpoll; 2826 if (sys_poll > peer->maxpoll) 2827 sys_poll = peer->maxpoll; 2828 poll_update(peer, sys_poll, 0); 2829 sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC); 2830 if ( peer->stratum == STRATUM_REFCLOCK 2831 || peer->stratum == STRATUM_UNSPEC) 2832 sys_refid = peer->refid; 2833 else 2834 sys_refid = addr2refid(&peer->srcadr); 2835 /* 2836 * Root Dispersion (E) is defined (in RFC 5905) as: 2837 * 2838 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA| 2839 * 2840 * where: 2841 * p.epsilon_r is the PollProc's root dispersion 2842 * p.epsilon is the PollProc's dispersion 2843 * p.psi is the PollProc's jitter 2844 * THETA is the combined offset 2845 * 2846 * NB: Think Hard about where these numbers come from and 2847 * what they mean. When did peer->update happen? Has anything 2848 * interesting happened since then? What values are the most 2849 * defensible? Why? 2850 * 2851 * DLM thinks this equation is probably the best of all worse choices. 2852 */ 2853 dtemp = peer->rootdisp 2854 + peer->disp 2855 + sys_jitter 2856 + clock_phi * (current_time - peer->update) 2857 + fabs(sys_offset); 2858 2859 p2_rootdisp = prev_rootdisp; 2860 prev_rootdisp = sys_rootdisp; 2861 if (dtemp > sys_mindisp) 2862 sys_rootdisp = dtemp; 2863 else 2864 sys_rootdisp = sys_mindisp; 2865 2866 sys_rootdelay = peer->delay + peer->rootdelay; 2867 2868 p2_reftime = prev_reftime; 2869 p2_time = prev_time; 2870 2871 prev_reftime = sys_reftime; 2872 prev_time = current_time + 64 + (rand() & 0x3f); /* 64-127 s */ 2873 2874 sys_reftime = peer->dst; 2875 2876 DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n", 2877 current_time, peer->epoch, peer->associd)); 2878 2879 /* 2880 * Comes now the moment of truth. Crank the clock discipline and 2881 * see what comes out. 2882 */ 2883 switch (local_clock(peer, sys_offset)) { 2884 2885 /* 2886 * Clock exceeds panic threshold. Life as we know it ends. 2887 */ 2888 case -1: 2889 #ifdef HAVE_LIBSCF_H 2890 /* 2891 * For Solaris enter the maintenance mode. 2892 */ 2893 if ((fmri = getenv("SMF_FMRI")) != NULL) { 2894 if (smf_maintain_instance(fmri, 0) < 0) { 2895 printf("smf_maintain_instance: %s\n", 2896 scf_strerror(scf_error())); 2897 exit(1); 2898 } 2899 /* 2900 * Sleep until SMF kills us. 2901 */ 2902 for (;;) 2903 pause(); 2904 } 2905 #endif /* HAVE_LIBSCF_H */ 2906 exit (-1); 2907 /* not reached */ 2908 2909 /* 2910 * Clock was stepped. Flush all time values of all peers. 2911 */ 2912 case 2: 2913 clear_all(); 2914 set_sys_leap(LEAP_NOTINSYNC); 2915 sys_stratum = STRATUM_UNSPEC; 2916 memcpy(&sys_refid, "STEP", 4); 2917 sys_rootdelay = 0; 2918 p2_rootdisp = 0; 2919 prev_rootdisp = 0; 2920 sys_rootdisp = 0; 2921 L_CLR(&p2_reftime); /* Should we clear p2_reftime? */ 2922 L_CLR(&prev_reftime); /* Should we clear prev_reftime? */ 2923 L_CLR(&sys_reftime); 2924 sys_jitter = LOGTOD(sys_precision); 2925 leapsec_reset_frame(); 2926 break; 2927 2928 /* 2929 * Clock was slewed. Handle the leapsecond stuff. 2930 */ 2931 case 1: 2932 2933 /* 2934 * If this is the first time the clock is set, reset the 2935 * leap bits. If crypto, the timer will goose the setup 2936 * process. 2937 */ 2938 if (sys_leap == LEAP_NOTINSYNC) { 2939 set_sys_leap(LEAP_NOWARNING); 2940 #ifdef AUTOKEY 2941 if (crypto_flags) 2942 crypto_update(); 2943 #endif /* AUTOKEY */ 2944 /* 2945 * If our parent process is waiting for the 2946 * first clock sync, send them home satisfied. 2947 */ 2948 #ifdef HAVE_WORKING_FORK 2949 if (daemon_pipe[1] != -1) { 2950 write(daemon_pipe[1], "S\n", 2); 2951 close(daemon_pipe[1]); 2952 daemon_pipe[1] = -1; 2953 DPRINTF(1, ("notified parent --wait-sync is done\n")); 2954 } 2955 #endif /* HAVE_WORKING_FORK */ 2956 2957 } 2958 2959 /* 2960 * If there is no leap second pending and the number of 2961 * survivor leap bits is greater than half the number of 2962 * survivors, try to schedule a leap for the end of the 2963 * current month. (This only works if no leap second for 2964 * that range is in the table, so doing this more than 2965 * once is mostly harmless.) 2966 */ 2967 if (leapsec == LSPROX_NOWARN) { 2968 if ( leap_vote_ins > leap_vote_del 2969 && leap_vote_ins > sys_survivors / 2) { 2970 get_systime(&now); 2971 leapsec_add_dyn(TRUE, now.l_ui, NULL); 2972 } 2973 if ( leap_vote_del > leap_vote_ins 2974 && leap_vote_del > sys_survivors / 2) { 2975 get_systime(&now); 2976 leapsec_add_dyn(FALSE, now.l_ui, NULL); 2977 } 2978 } 2979 break; 2980 2981 /* 2982 * Popcorn spike or step threshold exceeded. Pretend it never 2983 * happened. 2984 */ 2985 default: 2986 break; 2987 } 2988 } 2989 2990 2991 /* 2992 * poll_update - update peer poll interval 2993 */ 2994 void 2995 poll_update( 2996 struct peer *peer, /* peer structure pointer */ 2997 u_char mpoll, 2998 u_char skewpoll 2999 ) 3000 { 3001 u_long next, utemp, limit; 3002 u_char hpoll; 3003 3004 /* 3005 * This routine figures out when the next poll should be sent. 3006 * That turns out to be wickedly complicated. One problem is 3007 * that sometimes the time for the next poll is in the past when 3008 * the poll interval is reduced. We watch out for races here 3009 * between the receive process and the poll process. 3010 * 3011 * Clamp the poll interval between minpoll and maxpoll. 3012 */ 3013 hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll); 3014 3015 #ifdef AUTOKEY 3016 /* 3017 * If during the crypto protocol the poll interval has changed, 3018 * the lifetimes in the key list are probably bogus. Purge the 3019 * the key list and regenerate it later. 3020 */ 3021 if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll) 3022 key_expire(peer); 3023 #endif /* AUTOKEY */ 3024 peer->hpoll = hpoll; 3025 3026 /* 3027 * There are three variables important for poll scheduling, the 3028 * current time (current_time), next scheduled time (nextdate) 3029 * and the earliest time (utemp). The earliest time is 2 s 3030 * seconds, but could be more due to rate management. When 3031 * sending in a burst, use the earliest time. When not in a 3032 * burst but with a reply pending, send at the earliest time 3033 * unless the next scheduled time has not advanced. This can 3034 * only happen if multiple replies are pending in the same 3035 * response interval. Otherwise, send at the later of the next 3036 * scheduled time and the earliest time. 3037 * 3038 * Now we figure out if there is an override. If a burst is in 3039 * progress and we get called from the receive process, just 3040 * slink away. If called from the poll process, delay 1 s for a 3041 * reference clock, otherwise 2 s. 3042 */ 3043 utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) * 3044 (1 << peer->minpoll), ntp_minpkt); 3045 3046 /*[Bug 3592] avoid unlimited postpone of next poll */ 3047 limit = (2u << hpoll); 3048 if (limit > 64) 3049 limit -= (limit >> 2); 3050 limit += peer->outdate; 3051 if (limit < current_time) 3052 limit = current_time; 3053 3054 if (peer->burst > 0) { 3055 if (peer->nextdate > current_time) 3056 return; 3057 #ifdef REFCLOCK 3058 else if (peer->flags & FLAG_REFCLOCK) 3059 peer->nextdate = current_time + RESP_DELAY; 3060 #endif /* REFCLOCK */ 3061 else 3062 peer->nextdate = utemp; 3063 3064 #ifdef AUTOKEY 3065 /* 3066 * If a burst is not in progress and a crypto response message 3067 * is pending, delay 2 s, but only if this is a new interval. 3068 */ 3069 } else if (peer->cmmd != NULL) { 3070 if (peer->nextdate > current_time) { 3071 if (peer->nextdate + ntp_minpkt != utemp) 3072 peer->nextdate = utemp; 3073 } else { 3074 peer->nextdate = utemp; 3075 } 3076 #endif /* AUTOKEY */ 3077 3078 /* 3079 * The ordinary case. If a retry, use minpoll; if unreachable, 3080 * use host poll; otherwise, use the minimum of host and peer 3081 * polls; In other words, oversampling is okay but 3082 * understampling is evil. Use the maximum of this value and the 3083 * headway. If the average headway is greater than the headway 3084 * threshold, increase the headway by the minimum interval. 3085 */ 3086 } else { 3087 if (peer->retry > 0) 3088 hpoll = peer->minpoll; 3089 else 3090 hpoll = min(peer->ppoll, peer->hpoll); 3091 #ifdef REFCLOCK 3092 if (peer->flags & FLAG_REFCLOCK) 3093 next = 1 << hpoll; 3094 else 3095 #endif /* REFCLOCK */ 3096 next = ((0x1000UL | (ntp_random() & 0x0ff)) << 3097 hpoll) >> 12; 3098 next += peer->outdate; 3099 /* XXX: bug3596: Deal with poll skew list? */ 3100 if (skewpoll) { 3101 psl_item psi; 3102 3103 if (0 == get_pollskew(hpoll, &psi)) { 3104 int sub = psi.sub; 3105 int qty = psi.qty; 3106 int msk = psi.msk; 3107 int val; 3108 3109 if ( 0 != sub 3110 || 0 != qty) { 3111 do { 3112 val = ntp_random() & msk; 3113 } while (val > qty); 3114 3115 next -= sub; 3116 next += val; 3117 } 3118 } else { 3119 /* get_pollskew() already logged this */ 3120 } 3121 } 3122 if (next > utemp) 3123 peer->nextdate = next; 3124 else 3125 peer->nextdate = utemp; 3126 if (peer->throttle > (1 << peer->minpoll)) 3127 peer->nextdate += ntp_minpkt; 3128 } 3129 3130 /*[Bug 3592] avoid unlimited postpone of next poll */ 3131 if (peer->nextdate > limit) { 3132 DPRINTF(1, ("poll_update: clamp reached; limit %lu next %lu\n", 3133 limit, peer->nextdate)); 3134 peer->nextdate = limit; 3135 } 3136 DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n", 3137 current_time, ntoa(&peer->srcadr), peer->hpoll, 3138 peer->burst, peer->retry, peer->throttle, 3139 utemp - current_time, peer->nextdate - 3140 current_time)); 3141 } 3142 3143 3144 /* 3145 * peer_clear - clear peer filter registers. See Section 3.4.8 of the 3146 * spec. 3147 */ 3148 void 3149 peer_clear( 3150 struct peer *peer, /* peer structure */ 3151 const char *ident /* tally lights */ 3152 ) 3153 { 3154 u_char u; 3155 l_fp bxmt = peer->bxmt; /* bcast clients retain this! */ 3156 3157 #ifdef AUTOKEY 3158 /* 3159 * If cryptographic credentials have been acquired, toss them to 3160 * Valhalla. Note that autokeys are ephemeral, in that they are 3161 * tossed immediately upon use. Therefore, the keylist can be 3162 * purged anytime without needing to preserve random keys. Note 3163 * that, if the peer is purged, the cryptographic variables are 3164 * purged, too. This makes it much harder to sneak in some 3165 * unauthenticated data in the clock filter. 3166 */ 3167 key_expire(peer); 3168 if (peer->iffval != NULL) 3169 BN_free(peer->iffval); 3170 value_free(&peer->cookval); 3171 value_free(&peer->recval); 3172 value_free(&peer->encrypt); 3173 value_free(&peer->sndval); 3174 if (peer->cmmd != NULL) 3175 free(peer->cmmd); 3176 if (peer->subject != NULL) 3177 free(peer->subject); 3178 if (peer->issuer != NULL) 3179 free(peer->issuer); 3180 #endif /* AUTOKEY */ 3181 3182 /* 3183 * Clear all values, including the optional crypto values above. 3184 */ 3185 memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer)); 3186 peer->ppoll = peer->maxpoll; 3187 peer->hpoll = peer->minpoll; 3188 peer->disp = MAXDISPERSE; 3189 peer->flash = peer_unfit(peer); 3190 peer->jitter = LOGTOD(sys_precision); 3191 3192 /* Don't throw away our broadcast replay protection */ 3193 if (peer->hmode == MODE_BCLIENT) 3194 peer->bxmt = bxmt; 3195 3196 /* 3197 * If interleave mode, initialize the alternate origin switch. 3198 */ 3199 if (peer->flags & FLAG_XLEAVE) 3200 peer->flip = 1; 3201 for (u = 0; u < NTP_SHIFT; u++) { 3202 peer->filter_order[u] = u; 3203 peer->filter_disp[u] = MAXDISPERSE; 3204 } 3205 #ifdef REFCLOCK 3206 if (!(peer->flags & FLAG_REFCLOCK)) { 3207 #endif 3208 peer->leap = LEAP_NOTINSYNC; 3209 peer->stratum = STRATUM_UNSPEC; 3210 memcpy(&peer->refid, ident, 4); 3211 #ifdef REFCLOCK 3212 } else { 3213 /* Clear refclock sample filter */ 3214 peer->procptr->codeproc = 0; 3215 peer->procptr->coderecv = 0; 3216 } 3217 #endif 3218 3219 /* 3220 * During initialization use the association count to spread out 3221 * the polls at one-second intervals. Passive associations' 3222 * first poll is delayed by the "discard minimum" to avoid rate 3223 * limiting. Other post-startup new or cleared associations 3224 * randomize the first poll over the minimum poll interval to 3225 * avoid implosion. 3226 */ 3227 peer->nextdate = peer->update = peer->outdate = current_time; 3228 if (initializing) { 3229 peer->nextdate += peer_associations; 3230 } else if (MODE_PASSIVE == peer->hmode) { 3231 peer->nextdate += ntp_minpkt; 3232 } else { 3233 peer->nextdate += ntp_random() % peer->minpoll; 3234 } 3235 #ifdef AUTOKEY 3236 peer->refresh = current_time + (1 << NTP_REFRESH); 3237 #endif /* AUTOKEY */ 3238 DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n", 3239 current_time, peer->nextdate, peer->associd, 3240 ident)); 3241 } 3242 3243 3244 /* 3245 * clock_filter - add incoming clock sample to filter register and run 3246 * the filter procedure to find the best sample. 3247 */ 3248 void 3249 clock_filter( 3250 struct peer *peer, /* peer structure pointer */ 3251 double sample_offset, /* clock offset */ 3252 double sample_delay, /* roundtrip delay */ 3253 double sample_disp /* dispersion */ 3254 ) 3255 { 3256 double dst[NTP_SHIFT]; /* distance vector */ 3257 int ord[NTP_SHIFT]; /* index vector */ 3258 int i, j, k, m; 3259 double dtemp, etemp; 3260 char tbuf[80]; 3261 3262 /* 3263 * A sample consists of the offset, delay, dispersion and epoch 3264 * of arrival. The offset and delay are determined by the on- 3265 * wire protocol. The dispersion grows from the last outbound 3266 * packet to the arrival of this one increased by the sum of the 3267 * peer precision and the system precision as required by the 3268 * error budget. First, shift the new arrival into the shift 3269 * register discarding the oldest one. 3270 */ 3271 j = peer->filter_nextpt; 3272 peer->filter_offset[j] = sample_offset; 3273 peer->filter_delay[j] = sample_delay; 3274 peer->filter_disp[j] = sample_disp; 3275 peer->filter_epoch[j] = current_time; 3276 j = (j + 1) % NTP_SHIFT; 3277 peer->filter_nextpt = j; 3278 3279 /* 3280 * Update dispersions since the last update and at the same 3281 * time initialize the distance and index lists. Since samples 3282 * become increasingly uncorrelated beyond the Allan intercept, 3283 * only under exceptional cases will an older sample be used. 3284 * Therefore, the distance list uses a compound metric. If the 3285 * dispersion is greater than the maximum dispersion, clamp the 3286 * distance at that value. If the time since the last update is 3287 * less than the Allan intercept use the delay; otherwise, use 3288 * the sum of the delay and dispersion. 3289 */ 3290 dtemp = clock_phi * (current_time - peer->update); 3291 peer->update = current_time; 3292 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3293 if (i != 0) 3294 peer->filter_disp[j] += dtemp; 3295 if (peer->filter_disp[j] >= MAXDISPERSE) { 3296 peer->filter_disp[j] = MAXDISPERSE; 3297 dst[i] = MAXDISPERSE; 3298 } else if (peer->update - peer->filter_epoch[j] > 3299 (u_long)ULOGTOD(allan_xpt)) { 3300 dst[i] = peer->filter_delay[j] + 3301 peer->filter_disp[j]; 3302 } else { 3303 dst[i] = peer->filter_delay[j]; 3304 } 3305 ord[i] = j; 3306 j = (j + 1) % NTP_SHIFT; 3307 } 3308 3309 /* 3310 * If the clock has stabilized, sort the samples by distance. 3311 */ 3312 if (freq_cnt == 0) { 3313 for (i = 1; i < NTP_SHIFT; i++) { 3314 for (j = 0; j < i; j++) { 3315 if (dst[j] > dst[i]) { 3316 k = ord[j]; 3317 ord[j] = ord[i]; 3318 ord[i] = k; 3319 etemp = dst[j]; 3320 dst[j] = dst[i]; 3321 dst[i] = etemp; 3322 } 3323 } 3324 } 3325 } 3326 3327 /* 3328 * Copy the index list to the association structure so ntpq 3329 * can see it later. Prune the distance list to leave only 3330 * samples less than the maximum dispersion, which disfavors 3331 * uncorrelated samples older than the Allan intercept. To 3332 * further improve the jitter estimate, of the remainder leave 3333 * only samples less than the maximum distance, but keep at 3334 * least two samples for jitter calculation. 3335 */ 3336 m = 0; 3337 for (i = 0; i < NTP_SHIFT; i++) { 3338 peer->filter_order[i] = (u_char) ord[i]; 3339 if ( dst[i] >= MAXDISPERSE 3340 || (m >= 2 && dst[i] >= sys_maxdist)) 3341 continue; 3342 m++; 3343 } 3344 3345 /* 3346 * Compute the dispersion and jitter. The dispersion is weighted 3347 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close 3348 * to 1.0. The jitter is the RMS differences relative to the 3349 * lowest delay sample. 3350 */ 3351 peer->disp = peer->jitter = 0; 3352 k = ord[0]; 3353 for (i = NTP_SHIFT - 1; i >= 0; i--) { 3354 j = ord[i]; 3355 peer->disp = NTP_FWEIGHT * (peer->disp + 3356 peer->filter_disp[j]); 3357 if (i < m) 3358 peer->jitter += DIFF(peer->filter_offset[j], 3359 peer->filter_offset[k]); 3360 } 3361 3362 /* 3363 * If no acceptable samples remain in the shift register, 3364 * quietly tiptoe home leaving only the dispersion. Otherwise, 3365 * save the offset, delay and jitter. Note the jitter must not 3366 * be less than the precision. 3367 */ 3368 if (m == 0) { 3369 clock_select(); 3370 return; 3371 } 3372 etemp = fabs(peer->offset - peer->filter_offset[k]); 3373 peer->offset = peer->filter_offset[k]; 3374 peer->delay = peer->filter_delay[k]; 3375 if (m > 1) 3376 peer->jitter /= m - 1; 3377 peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision)); 3378 3379 /* 3380 * If the the new sample and the current sample are both valid 3381 * and the difference between their offsets exceeds CLOCK_SGATE 3382 * (3) times the jitter and the interval between them is less 3383 * than twice the host poll interval, consider the new sample 3384 * a popcorn spike and ignore it. 3385 */ 3386 if ( peer->disp < sys_maxdist 3387 && peer->filter_disp[k] < sys_maxdist 3388 && etemp > CLOCK_SGATE * peer->jitter 3389 && peer->filter_epoch[k] - peer->epoch 3390 < 2. * ULOGTOD(peer->hpoll)) { 3391 snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp); 3392 report_event(PEVNT_POPCORN, peer, tbuf); 3393 return; 3394 } 3395 3396 /* 3397 * A new minimum sample is useful only if it is later than the 3398 * last one used. In this design the maximum lifetime of any 3399 * sample is not greater than eight times the poll interval, so 3400 * the maximum interval between minimum samples is eight 3401 * packets. 3402 */ 3403 if (peer->filter_epoch[k] <= peer->epoch) { 3404 DPRINTF(2, ("clock_filter: old sample %lu\n", current_time - 3405 peer->filter_epoch[k])); 3406 return; 3407 } 3408 peer->epoch = peer->filter_epoch[k]; 3409 3410 /* 3411 * The mitigated sample statistics are saved for later 3412 * processing. If not synchronized or not in a burst, tickle the 3413 * clock select algorithm. 3414 */ 3415 record_peer_stats(&peer->srcadr, ctlpeerstatus(peer), 3416 peer->offset, peer->delay, peer->disp, peer->jitter); 3417 DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n", 3418 m, peer->offset, peer->delay, peer->disp, 3419 peer->jitter)); 3420 if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC) 3421 clock_select(); 3422 } 3423 3424 3425 /* 3426 * clock_select - find the pick-of-the-litter clock 3427 * 3428 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always 3429 * be enabled, even if declared falseticker, (2) only the prefer peer 3430 * can be selected as the system peer, (3) if the external source is 3431 * down, the system leap bits are set to 11 and the stratum set to 3432 * infinity. 3433 */ 3434 void 3435 clock_select(void) 3436 { 3437 struct peer *peer; 3438 int i, j, k, n; 3439 int nlist, nl2; 3440 int allow; 3441 int speer; 3442 double d, e, f, g; 3443 double high, low; 3444 double speermet; 3445 double lastresort_dist = MAXDISPERSE; 3446 double orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */ 3447 struct endpoint endp; 3448 struct peer *osys_peer; 3449 struct peer *sys_prefer = NULL; /* prefer peer */ 3450 struct peer *typesystem = NULL; 3451 struct peer *typelastresort = NULL; 3452 struct peer *typeorphan = NULL; 3453 #ifdef REFCLOCK 3454 struct peer *typeacts = NULL; 3455 struct peer *typelocal = NULL; 3456 struct peer *typepps = NULL; 3457 #endif /* REFCLOCK */ 3458 static struct endpoint *endpoint = NULL; 3459 static int *indx = NULL; 3460 static peer_select *peers = NULL; 3461 static u_int endpoint_size = 0; 3462 static u_int peers_size = 0; 3463 static u_int indx_size = 0; 3464 size_t octets; 3465 3466 /* 3467 * Initialize and create endpoint, index and peer lists big 3468 * enough to handle all associations. 3469 */ 3470 osys_peer = sys_peer; 3471 sys_survivors = 0; 3472 #ifdef LOCKCLOCK 3473 set_sys_leap(LEAP_NOTINSYNC); 3474 sys_stratum = STRATUM_UNSPEC; 3475 memcpy(&sys_refid, "DOWN", 4); 3476 #endif /* LOCKCLOCK */ 3477 3478 /* 3479 * Allocate dynamic space depending on the number of 3480 * associations. 3481 */ 3482 nlist = 1; 3483 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3484 nlist++; 3485 endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint)); 3486 peers_size = ALIGNED_SIZE(nlist * sizeof(*peers)); 3487 indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx)); 3488 octets = endpoint_size + peers_size + indx_size; 3489 endpoint = erealloc(endpoint, octets); 3490 peers = INC_ALIGNED_PTR(endpoint, endpoint_size); 3491 indx = INC_ALIGNED_PTR(peers, peers_size); 3492 3493 /* 3494 * Initially, we populate the island with all the rifraff peers 3495 * that happen to be lying around. Those with seriously 3496 * defective clocks are immediately booted off the island. Then, 3497 * the falsetickers are culled and put to sea. The truechimers 3498 * remaining are subject to repeated rounds where the most 3499 * unpopular at each round is kicked off. When the population 3500 * has dwindled to sys_minclock, the survivors split a million 3501 * bucks and collectively crank the chimes. 3502 */ 3503 nlist = nl2 = 0; /* none yet */ 3504 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3505 peer->new_status = CTL_PST_SEL_REJECT; 3506 3507 /* 3508 * Leave the island immediately if the peer is 3509 * unfit to synchronize. 3510 */ 3511 if (peer_unfit(peer)) { 3512 continue; 3513 } 3514 3515 /* 3516 * If we have never been synchronised, look for any peer 3517 * which has ever been synchronised and pick the one which 3518 * has the lowest root distance. This can be used as a last 3519 * resort if all else fails. Once we get an initial sync 3520 * with this peer, sys_reftime gets set and so this 3521 * function becomes disabled. 3522 */ 3523 if (L_ISZERO(&sys_reftime)) { 3524 d = root_distance(peer); 3525 if (!L_ISZERO(&peer->reftime) && d < lastresort_dist) { 3526 typelastresort = peer; 3527 lastresort_dist = d; 3528 } 3529 } 3530 3531 /* 3532 * If this peer is an orphan parent, elect the 3533 * one with the lowest metric defined as the 3534 * IPv4 address or the first 64 bits of the 3535 * hashed IPv6 address. To ensure convergence 3536 * on the same selected orphan, consider as 3537 * well that this system may have the lowest 3538 * metric and be the orphan parent. If this 3539 * system wins, sys_peer will be NULL to trigger 3540 * orphan mode in timer(). 3541 */ 3542 if (peer->stratum == sys_orphan) { 3543 u_int32 localmet; 3544 u_int32 peermet; 3545 3546 if (peer->dstadr != NULL) 3547 localmet = ntohl(peer->dstadr->addr_refid); 3548 else 3549 localmet = U_INT32_MAX; 3550 peermet = ntohl(addr2refid(&peer->srcadr)); 3551 if (peermet < localmet && peermet < orphmet) { 3552 typeorphan = peer; 3553 orphmet = peermet; 3554 } 3555 continue; 3556 } 3557 3558 /* 3559 * If this peer could have the orphan parent 3560 * as a synchronization ancestor, exclude it 3561 * from selection to avoid forming a 3562 * synchronization loop within the orphan mesh, 3563 * triggering stratum climb to infinity 3564 * instability. Peers at stratum higher than 3565 * the orphan stratum could have the orphan 3566 * parent in ancestry so are excluded. 3567 * See http://bugs.ntp.org/2050 3568 */ 3569 if (peer->stratum > sys_orphan) { 3570 continue; 3571 } 3572 #ifdef REFCLOCK 3573 /* 3574 * The following are special cases. We deal 3575 * with them later. 3576 */ 3577 if (!(peer->flags & FLAG_PREFER)) { 3578 switch (peer->refclktype) { 3579 case REFCLK_LOCALCLOCK: 3580 if ( current_time > orphwait 3581 && typelocal == NULL) 3582 typelocal = peer; 3583 continue; 3584 3585 case REFCLK_ACTS: 3586 if ( current_time > orphwait 3587 && typeacts == NULL) 3588 typeacts = peer; 3589 continue; 3590 } 3591 } 3592 #endif /* REFCLOCK */ 3593 3594 /* 3595 * If we get this far, the peer can stay on the 3596 * island, but does not yet have the immunity 3597 * idol. 3598 */ 3599 peer->new_status = CTL_PST_SEL_SANE; 3600 f = root_distance(peer); 3601 peers[nlist].peer = peer; 3602 peers[nlist].error = peer->jitter; 3603 peers[nlist].synch = f; 3604 nlist++; 3605 3606 /* 3607 * Insert each interval endpoint on the unsorted 3608 * endpoint[] list. 3609 */ 3610 e = peer->offset; 3611 endpoint[nl2].type = -1; /* lower end */ 3612 endpoint[nl2].val = e - f; 3613 nl2++; 3614 endpoint[nl2].type = 1; /* upper end */ 3615 endpoint[nl2].val = e + f; 3616 nl2++; 3617 } 3618 /* 3619 * Construct sorted indx[] of endpoint[] indexes ordered by 3620 * offset. 3621 */ 3622 for (i = 0; i < nl2; i++) 3623 indx[i] = i; 3624 for (i = 0; i < nl2; i++) { 3625 endp = endpoint[indx[i]]; 3626 e = endp.val; 3627 k = i; 3628 for (j = i + 1; j < nl2; j++) { 3629 endp = endpoint[indx[j]]; 3630 if (endp.val < e) { 3631 e = endp.val; 3632 k = j; 3633 } 3634 } 3635 if (k != i) { 3636 j = indx[k]; 3637 indx[k] = indx[i]; 3638 indx[i] = j; 3639 } 3640 } 3641 for (i = 0; i < nl2; i++) 3642 DPRINTF(3, ("select: endpoint %2d %.6f\n", 3643 endpoint[indx[i]].type, endpoint[indx[i]].val)); 3644 3645 /* 3646 * This is the actual algorithm that cleaves the truechimers 3647 * from the falsetickers. The original algorithm was described 3648 * in Keith Marzullo's dissertation, but has been modified for 3649 * better accuracy. 3650 * 3651 * Briefly put, we first assume there are no falsetickers, then 3652 * scan the candidate list first from the low end upwards and 3653 * then from the high end downwards. The scans stop when the 3654 * number of intersections equals the number of candidates less 3655 * the number of falsetickers. If this doesn't happen for a 3656 * given number of falsetickers, we bump the number of 3657 * falsetickers and try again. If the number of falsetickers 3658 * becomes equal to or greater than half the number of 3659 * candidates, the Albanians have won the Byzantine wars and 3660 * correct synchronization is not possible. 3661 * 3662 * Here, nlist is the number of candidates and allow is the 3663 * number of falsetickers. Upon exit, the truechimers are the 3664 * survivors with offsets not less than low and not greater than 3665 * high. There may be none of them. 3666 */ 3667 low = 1e9; 3668 high = -1e9; 3669 for (allow = 0; 2 * allow < nlist; allow++) { 3670 3671 /* 3672 * Bound the interval (low, high) as the smallest 3673 * interval containing points from the most sources. 3674 */ 3675 n = 0; 3676 for (i = 0; i < nl2; i++) { 3677 low = endpoint[indx[i]].val; 3678 n -= endpoint[indx[i]].type; 3679 if (n >= nlist - allow) 3680 break; 3681 } 3682 n = 0; 3683 for (j = nl2 - 1; j >= 0; j--) { 3684 high = endpoint[indx[j]].val; 3685 n += endpoint[indx[j]].type; 3686 if (n >= nlist - allow) 3687 break; 3688 } 3689 3690 /* 3691 * If an interval containing truechimers is found, stop. 3692 * If not, increase the number of falsetickers and go 3693 * around again. 3694 */ 3695 if (high > low) 3696 break; 3697 } 3698 3699 /* 3700 * Clustering algorithm. Whittle candidate list of falsetickers, 3701 * who leave the island immediately. The TRUE peer is always a 3702 * truechimer. We must leave at least one peer to collect the 3703 * million bucks. 3704 * 3705 * We assert the correct time is contained in the interval, but 3706 * the best offset estimate for the interval might not be 3707 * contained in the interval. For this purpose, a truechimer is 3708 * defined as the midpoint of an interval that overlaps the 3709 * intersection interval. 3710 */ 3711 j = 0; 3712 for (i = 0; i < nlist; i++) { 3713 double h; 3714 3715 peer = peers[i].peer; 3716 h = peers[i].synch; 3717 if (( high <= low 3718 || peer->offset + h < low 3719 || peer->offset - h > high 3720 ) && !(peer->flags & FLAG_TRUE)) 3721 continue; 3722 3723 #ifdef REFCLOCK 3724 /* 3725 * Eligible PPS peers must survive the intersection 3726 * algorithm. Use the first one found, but don't 3727 * include any of them in the cluster population. 3728 */ 3729 if (peer->flags & FLAG_PPS) { 3730 if (typepps == NULL) 3731 typepps = peer; 3732 if (!(peer->flags & FLAG_TSTAMP_PPS)) 3733 continue; 3734 } 3735 #endif /* REFCLOCK */ 3736 3737 if (j != i) 3738 peers[j] = peers[i]; 3739 j++; 3740 } 3741 nlist = j; 3742 3743 /* 3744 * If no survivors remain at this point, check if the modem 3745 * driver, local driver or orphan parent in that order. If so, 3746 * nominate the first one found as the only survivor. 3747 * Otherwise, give up and leave the island to the rats. 3748 */ 3749 if (nlist == 0) { 3750 peers[0].error = 0; 3751 peers[0].synch = sys_mindisp; 3752 #ifdef REFCLOCK 3753 if (typeacts != NULL) { 3754 peers[0].peer = typeacts; 3755 nlist = 1; 3756 } else if (typelocal != NULL) { 3757 peers[0].peer = typelocal; 3758 nlist = 1; 3759 } else 3760 #endif /* REFCLOCK */ 3761 if (typeorphan != NULL) { 3762 peers[0].peer = typeorphan; 3763 nlist = 1; 3764 } else if (typelastresort != NULL) { 3765 peers[0].peer = typelastresort; 3766 nlist = 1; 3767 } 3768 } 3769 3770 /* 3771 * Mark the candidates at this point as truechimers. 3772 */ 3773 for (i = 0; i < nlist; i++) { 3774 peers[i].peer->new_status = CTL_PST_SEL_SELCAND; 3775 DPRINTF(2, ("select: survivor %s %f\n", 3776 stoa(&peers[i].peer->srcadr), peers[i].synch)); 3777 } 3778 3779 /* 3780 * Now, vote outliers off the island by select jitter weighted 3781 * by root distance. Continue voting as long as there are more 3782 * than sys_minclock survivors and the select jitter of the peer 3783 * with the worst metric is greater than the minimum peer 3784 * jitter. Stop if we are about to discard a TRUE or PREFER 3785 * peer, who of course have the immunity idol. 3786 */ 3787 while (1) { 3788 d = 1e9; 3789 e = -1e9; 3790 g = 0; 3791 k = 0; 3792 for (i = 0; i < nlist; i++) { 3793 if (peers[i].error < d) 3794 d = peers[i].error; 3795 peers[i].seljit = 0; 3796 if (nlist > 1) { 3797 f = 0; 3798 for (j = 0; j < nlist; j++) 3799 f += DIFF(peers[j].peer->offset, 3800 peers[i].peer->offset); 3801 peers[i].seljit = SQRT(f / (nlist - 1)); 3802 } 3803 if (peers[i].seljit * peers[i].synch > e) { 3804 g = peers[i].seljit; 3805 e = peers[i].seljit * peers[i].synch; 3806 k = i; 3807 } 3808 } 3809 g = max(g, LOGTOD(sys_precision)); 3810 if ( nlist <= max(1, sys_minclock) 3811 || g <= d 3812 || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags)) 3813 break; 3814 3815 DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n", 3816 ntoa(&peers[k].peer->srcadr), g, d)); 3817 if (nlist > sys_maxclock) 3818 peers[k].peer->new_status = CTL_PST_SEL_EXCESS; 3819 for (j = k + 1; j < nlist; j++) 3820 peers[j - 1] = peers[j]; 3821 nlist--; 3822 } 3823 3824 /* 3825 * What remains is a list usually not greater than sys_minclock 3826 * peers. Note that unsynchronized peers cannot survive this 3827 * far. Count and mark these survivors. 3828 * 3829 * While at it, count the number of leap warning bits found. 3830 * This will be used later to vote the system leap warning bit. 3831 * If a leap warning bit is found on a reference clock, the vote 3832 * is always won. 3833 * 3834 * Choose the system peer using a hybrid metric composed of the 3835 * selection jitter scaled by the root distance augmented by 3836 * stratum scaled by sys_mindisp (.001 by default). The goal of 3837 * the small stratum factor is to avoid clockhop between a 3838 * reference clock and a network peer which has a refclock and 3839 * is using an older ntpd, which does not floor sys_rootdisp at 3840 * sys_mindisp. 3841 * 3842 * In contrast, ntpd 4.2.6 and earlier used stratum primarily 3843 * in selecting the system peer, using a weight of 1 second of 3844 * additional root distance per stratum. This heavy bias is no 3845 * longer appropriate, as the scaled root distance provides a 3846 * more rational metric carrying the cumulative error budget. 3847 */ 3848 e = 1e9; 3849 speer = 0; 3850 leap_vote_ins = 0; 3851 leap_vote_del = 0; 3852 for (i = 0; i < nlist; i++) { 3853 peer = peers[i].peer; 3854 peer->unreach = 0; 3855 peer->new_status = CTL_PST_SEL_SYNCCAND; 3856 sys_survivors++; 3857 if (peer->leap == LEAP_ADDSECOND) { 3858 if (peer->flags & FLAG_REFCLOCK) 3859 leap_vote_ins = nlist; 3860 else if (leap_vote_ins < nlist) 3861 leap_vote_ins++; 3862 } 3863 if (peer->leap == LEAP_DELSECOND) { 3864 if (peer->flags & FLAG_REFCLOCK) 3865 leap_vote_del = nlist; 3866 else if (leap_vote_del < nlist) 3867 leap_vote_del++; 3868 } 3869 if (peer->flags & FLAG_PREFER) 3870 sys_prefer = peer; 3871 speermet = peers[i].seljit * peers[i].synch + 3872 peer->stratum * sys_mindisp; 3873 if (speermet < e) { 3874 e = speermet; 3875 speer = i; 3876 } 3877 } 3878 3879 /* 3880 * Unless there are at least sys_misane survivors, leave the 3881 * building dark. Otherwise, do a clockhop dance. Ordinarily, 3882 * use the selected survivor speer. However, if the current 3883 * system peer is not speer, stay with the current system peer 3884 * as long as it doesn't get too old or too ugly. 3885 */ 3886 if (nlist > 0 && nlist >= sys_minsane) { 3887 double x; 3888 3889 typesystem = peers[speer].peer; 3890 if (osys_peer == NULL || osys_peer == typesystem) { 3891 sys_clockhop = 0; 3892 } else if ((x = fabs(typesystem->offset - 3893 osys_peer->offset)) < sys_mindisp) { 3894 if (sys_clockhop == 0) 3895 sys_clockhop = sys_mindisp; 3896 else 3897 sys_clockhop *= .5; 3898 DPRINTF(1, ("select: clockhop %d %.6f %.6f\n", 3899 j, x, sys_clockhop)); 3900 if (fabs(x) < sys_clockhop) 3901 typesystem = osys_peer; 3902 else 3903 sys_clockhop = 0; 3904 } else { 3905 sys_clockhop = 0; 3906 } 3907 } 3908 3909 /* 3910 * Mitigation rules of the game. We have the pick of the 3911 * litter in typesystem if any survivors are left. If 3912 * there is a prefer peer, use its offset and jitter. 3913 * Otherwise, use the combined offset and jitter of all kitters. 3914 */ 3915 if (typesystem != NULL) { 3916 if (sys_prefer == NULL) { 3917 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3918 clock_combine(peers, sys_survivors, speer); 3919 } else { 3920 typesystem = sys_prefer; 3921 sys_clockhop = 0; 3922 typesystem->new_status = CTL_PST_SEL_SYSPEER; 3923 sys_offset = typesystem->offset; 3924 sys_jitter = typesystem->jitter; 3925 } 3926 DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n", 3927 sys_offset, sys_jitter)); 3928 } 3929 #ifdef REFCLOCK 3930 /* 3931 * If a PPS driver is lit and the combined offset is less than 3932 * 0.4 s, select the driver as the PPS peer and use its offset 3933 * and jitter. However, if this is the atom driver, use it only 3934 * if there is a prefer peer or there are no survivors and none 3935 * are required. 3936 */ 3937 if ( typepps != NULL 3938 && fabs(sys_offset) < 0.4 3939 && ( typepps->refclktype != REFCLK_ATOM_PPS 3940 || ( typepps->refclktype == REFCLK_ATOM_PPS 3941 && ( sys_prefer != NULL 3942 || (typesystem == NULL && sys_minsane == 0))))) { 3943 typesystem = typepps; 3944 sys_clockhop = 0; 3945 typesystem->new_status = CTL_PST_SEL_PPS; 3946 sys_offset = typesystem->offset; 3947 sys_jitter = typesystem->jitter; 3948 DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n", 3949 sys_offset, sys_jitter)); 3950 } 3951 #endif /* REFCLOCK */ 3952 3953 /* 3954 * If there are no survivors at this point, there is no 3955 * system peer. If so and this is an old update, keep the 3956 * current statistics, but do not update the clock. 3957 */ 3958 if (typesystem == NULL) { 3959 if (osys_peer != NULL) { 3960 orphwait = current_time + sys_orphwait; 3961 report_event(EVNT_NOPEER, NULL, NULL); 3962 } 3963 sys_peer = NULL; 3964 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3965 peer->status = peer->new_status; 3966 return; 3967 } 3968 3969 /* 3970 * Do not use old data, as this may mess up the clock discipline 3971 * stability. 3972 */ 3973 if (typesystem->epoch <= sys_epoch) 3974 return; 3975 3976 /* 3977 * We have found the alpha male. Wind the clock. 3978 */ 3979 if (osys_peer != typesystem) 3980 report_event(PEVNT_NEWPEER, typesystem, NULL); 3981 for (peer = peer_list; peer != NULL; peer = peer->p_link) 3982 peer->status = peer->new_status; 3983 clock_update(typesystem); 3984 } 3985 3986 3987 static void 3988 clock_combine( 3989 peer_select * peers, /* survivor list */ 3990 int npeers, /* number of survivors */ 3991 int syspeer /* index of sys.peer */ 3992 ) 3993 { 3994 int i; 3995 double x, y, z, w; 3996 3997 y = z = w = 0; 3998 for (i = 0; i < npeers; i++) { 3999 x = 1. / peers[i].synch; 4000 y += x; 4001 z += x * peers[i].peer->offset; 4002 w += x * DIFF(peers[i].peer->offset, 4003 peers[syspeer].peer->offset); 4004 } 4005 sys_offset = z / y; 4006 sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit)); 4007 } 4008 4009 4010 /* 4011 * root_distance - compute synchronization distance from peer to root 4012 */ 4013 static double 4014 root_distance( 4015 struct peer *peer /* peer structure pointer */ 4016 ) 4017 { 4018 double dtemp; 4019 4020 /* 4021 * Root Distance (LAMBDA) is defined as: 4022 * (delta + DELTA)/2 + epsilon + EPSILON + D 4023 * 4024 * where: 4025 * delta is the round-trip delay 4026 * DELTA is the root delay 4027 * epsilon is the peer dispersion 4028 * + (15 usec each second) 4029 * EPSILON is the root dispersion 4030 * D is sys_jitter 4031 * 4032 * NB: Think hard about why we are using these values, and what 4033 * the alternatives are, and the various pros/cons. 4034 * 4035 * DLM thinks these are probably the best choices from any of the 4036 * other worse choices. 4037 */ 4038 dtemp = (peer->delay + peer->rootdelay) / 2 4039 + peer->disp 4040 + clock_phi * (current_time - peer->update) 4041 + peer->rootdisp 4042 + peer->jitter; 4043 /* 4044 * Careful squeak here. The value returned must be greater than 4045 * the minimum root dispersion in order to avoid clockhop with 4046 * highly precise reference clocks. Note that the root distance 4047 * cannot exceed the sys_maxdist, as this is the cutoff by the 4048 * selection algorithm. 4049 */ 4050 if (dtemp < sys_mindisp) 4051 dtemp = sys_mindisp; 4052 return (dtemp); 4053 } 4054 4055 4056 /* 4057 * peer_xmit - send packet for persistent association. 4058 */ 4059 static void 4060 peer_xmit( 4061 struct peer *peer /* peer structure pointer */ 4062 ) 4063 { 4064 struct pkt xpkt; /* transmit packet */ 4065 size_t sendlen, authlen; 4066 keyid_t xkeyid = 0; /* transmit key ID */ 4067 l_fp xmt_tx, xmt_ty; 4068 4069 if (!peer->dstadr) /* drop peers without interface */ 4070 return; 4071 4072 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version, 4073 peer->hmode); 4074 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4075 xpkt.ppoll = peer->hpoll; 4076 xpkt.precision = sys_precision; 4077 xpkt.refid = sys_refid; 4078 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4079 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4080 /* Use sys_reftime for peer exchanges */ 4081 HTONL_FP(&sys_reftime, &xpkt.reftime); 4082 HTONL_FP(&peer->rec, &xpkt.org); 4083 HTONL_FP(&peer->dst, &xpkt.rec); 4084 4085 /* 4086 * If the received packet contains a MAC, the transmitted packet 4087 * is authenticated and contains a MAC. If not, the transmitted 4088 * packet is not authenticated. 4089 * 4090 * It is most important when autokey is in use that the local 4091 * interface IP address be known before the first packet is 4092 * sent. Otherwise, it is not possible to compute a correct MAC 4093 * the recipient will accept. Thus, the I/O semantics have to do 4094 * a little more work. In particular, the wildcard interface 4095 * might not be usable. 4096 */ 4097 sendlen = LEN_PKT_NOMAC; 4098 if ( 4099 #ifdef AUTOKEY 4100 !(peer->flags & FLAG_SKEY) && 4101 #endif /* !AUTOKEY */ 4102 peer->keyid == 0) { 4103 4104 /* 4105 * Transmit a-priori timestamps 4106 */ 4107 get_systime(&xmt_tx); 4108 if (peer->flip == 0) { /* basic mode */ 4109 peer->aorg = xmt_tx; 4110 HTONL_FP(&xmt_tx, &xpkt.xmt); 4111 } else { /* interleaved modes */ 4112 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4113 HTONL_FP(&xmt_tx, &xpkt.xmt); 4114 if (peer->flip > 0) 4115 HTONL_FP(&peer->borg, 4116 &xpkt.org); 4117 else 4118 HTONL_FP(&peer->aorg, 4119 &xpkt.org); 4120 } else { /* symmetric */ 4121 if (peer->flip > 0) 4122 HTONL_FP(&peer->borg, 4123 &xpkt.xmt); 4124 else 4125 HTONL_FP(&peer->aorg, 4126 &xpkt.xmt); 4127 } 4128 } 4129 peer->t21_bytes = sendlen; 4130 sendpkt(&peer->srcadr, peer->dstadr, 4131 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4132 &xpkt, sendlen); 4133 peer->sent++; 4134 peer->throttle += (1 << peer->minpoll) - 2; 4135 4136 /* 4137 * Capture a-posteriori timestamps 4138 */ 4139 get_systime(&xmt_ty); 4140 if (peer->flip != 0) { /* interleaved modes */ 4141 if (peer->flip > 0) 4142 peer->aorg = xmt_ty; 4143 else 4144 peer->borg = xmt_ty; 4145 peer->flip = -peer->flip; 4146 } 4147 L_SUB(&xmt_ty, &xmt_tx); 4148 LFPTOD(&xmt_ty, peer->xleave); 4149 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n", 4150 current_time, 4151 peer->dstadr ? stoa(&peer->dstadr->sin) : "-", 4152 stoa(&peer->srcadr), peer->hmode, sendlen, 4153 xmt_tx.l_ui, xmt_tx.l_uf)); 4154 return; 4155 } 4156 4157 /* 4158 * Authentication is enabled, so the transmitted packet must be 4159 * authenticated. If autokey is enabled, fuss with the various 4160 * modes; otherwise, symmetric key cryptography is used. 4161 */ 4162 #ifdef AUTOKEY 4163 if (peer->flags & FLAG_SKEY) { 4164 struct exten *exten; /* extension field */ 4165 4166 /* 4167 * The Public Key Dance (PKD): Cryptographic credentials 4168 * are contained in extension fields, each including a 4169 * 4-octet length/code word followed by a 4-octet 4170 * association ID and optional additional data. Optional 4171 * data includes a 4-octet data length field followed by 4172 * the data itself. Request messages are sent from a 4173 * configured association; response messages can be sent 4174 * from a configured association or can take the fast 4175 * path without ever matching an association. Response 4176 * messages have the same code as the request, but have 4177 * a response bit and possibly an error bit set. In this 4178 * implementation, a message may contain no more than 4179 * one command and one or more responses. 4180 * 4181 * Cryptographic session keys include both a public and 4182 * a private componet. Request and response messages 4183 * using extension fields are always sent with the 4184 * private component set to zero. Packets without 4185 * extension fields indlude the private component when 4186 * the session key is generated. 4187 */ 4188 while (1) { 4189 4190 /* 4191 * Allocate and initialize a keylist if not 4192 * already done. Then, use the list in inverse 4193 * order, discarding keys once used. Keep the 4194 * latest key around until the next one, so 4195 * clients can use client/server packets to 4196 * compute propagation delay. 4197 * 4198 * Note that once a key is used from the list, 4199 * it is retained in the key cache until the 4200 * next key is used. This is to allow a client 4201 * to retrieve the encrypted session key 4202 * identifier to verify authenticity. 4203 * 4204 * If for some reason a key is no longer in the 4205 * key cache, a birthday has happened or the key 4206 * has expired, so the pseudo-random sequence is 4207 * broken. In that case, purge the keylist and 4208 * regenerate it. 4209 */ 4210 if (peer->keynumber == 0) 4211 make_keylist(peer, peer->dstadr); 4212 else 4213 peer->keynumber--; 4214 xkeyid = peer->keylist[peer->keynumber]; 4215 if (authistrusted(xkeyid)) 4216 break; 4217 else 4218 key_expire(peer); 4219 } 4220 peer->keyid = xkeyid; 4221 exten = NULL; 4222 switch (peer->hmode) { 4223 4224 /* 4225 * In broadcast server mode the autokey values are 4226 * required by the broadcast clients. Push them when a 4227 * new keylist is generated; otherwise, push the 4228 * association message so the client can request them at 4229 * other times. 4230 */ 4231 case MODE_BROADCAST: 4232 if (peer->flags & FLAG_ASSOC) 4233 exten = crypto_args(peer, CRYPTO_AUTO | 4234 CRYPTO_RESP, peer->associd, NULL); 4235 else 4236 exten = crypto_args(peer, CRYPTO_ASSOC | 4237 CRYPTO_RESP, peer->associd, NULL); 4238 break; 4239 4240 /* 4241 * In symmetric modes the parameter, certificate, 4242 * identity, cookie and autokey exchanges are 4243 * required. The leapsecond exchange is optional. But, a 4244 * peer will not believe the other peer until the other 4245 * peer has synchronized, so the certificate exchange 4246 * might loop until then. If a peer finds a broken 4247 * autokey sequence, it uses the autokey exchange to 4248 * retrieve the autokey values. In any case, if a new 4249 * keylist is generated, the autokey values are pushed. 4250 */ 4251 case MODE_ACTIVE: 4252 case MODE_PASSIVE: 4253 4254 /* 4255 * Parameter, certificate and identity. 4256 */ 4257 if (!peer->crypto) 4258 exten = crypto_args(peer, CRYPTO_ASSOC, 4259 peer->associd, hostval.ptr); 4260 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4261 exten = crypto_args(peer, CRYPTO_CERT, 4262 peer->associd, peer->issuer); 4263 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4264 exten = crypto_args(peer, 4265 crypto_ident(peer), peer->associd, 4266 NULL); 4267 4268 /* 4269 * Cookie and autokey. We request the cookie 4270 * only when the this peer and the other peer 4271 * are synchronized. But, this peer needs the 4272 * autokey values when the cookie is zero. Any 4273 * time we regenerate the key list, we offer the 4274 * autokey values without being asked. If for 4275 * some reason either peer finds a broken 4276 * autokey sequence, the autokey exchange is 4277 * used to retrieve the autokey values. 4278 */ 4279 else if ( sys_leap != LEAP_NOTINSYNC 4280 && peer->leap != LEAP_NOTINSYNC 4281 && !(peer->crypto & CRYPTO_FLAG_COOK)) 4282 exten = crypto_args(peer, CRYPTO_COOK, 4283 peer->associd, NULL); 4284 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4285 exten = crypto_args(peer, CRYPTO_AUTO, 4286 peer->associd, NULL); 4287 else if ( peer->flags & FLAG_ASSOC 4288 && peer->crypto & CRYPTO_FLAG_SIGN) 4289 exten = crypto_args(peer, CRYPTO_AUTO | 4290 CRYPTO_RESP, peer->assoc, NULL); 4291 4292 /* 4293 * Wait for clock sync, then sign the 4294 * certificate and retrieve the leapsecond 4295 * values. 4296 */ 4297 else if (sys_leap == LEAP_NOTINSYNC) 4298 break; 4299 4300 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4301 exten = crypto_args(peer, CRYPTO_SIGN, 4302 peer->associd, hostval.ptr); 4303 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4304 exten = crypto_args(peer, CRYPTO_LEAP, 4305 peer->associd, NULL); 4306 break; 4307 4308 /* 4309 * In client mode the parameter, certificate, identity, 4310 * cookie and sign exchanges are required. The 4311 * leapsecond exchange is optional. If broadcast client 4312 * mode the same exchanges are required, except that the 4313 * autokey exchange is substitutes for the cookie 4314 * exchange, since the cookie is always zero. If the 4315 * broadcast client finds a broken autokey sequence, it 4316 * uses the autokey exchange to retrieve the autokey 4317 * values. 4318 */ 4319 case MODE_CLIENT: 4320 4321 /* 4322 * Parameter, certificate and identity. 4323 */ 4324 if (!peer->crypto) 4325 exten = crypto_args(peer, CRYPTO_ASSOC, 4326 peer->associd, hostval.ptr); 4327 else if (!(peer->crypto & CRYPTO_FLAG_CERT)) 4328 exten = crypto_args(peer, CRYPTO_CERT, 4329 peer->associd, peer->issuer); 4330 else if (!(peer->crypto & CRYPTO_FLAG_VRFY)) 4331 exten = crypto_args(peer, 4332 crypto_ident(peer), peer->associd, 4333 NULL); 4334 4335 /* 4336 * Cookie and autokey. These are requests, but 4337 * we use the peer association ID with autokey 4338 * rather than our own. 4339 */ 4340 else if (!(peer->crypto & CRYPTO_FLAG_COOK)) 4341 exten = crypto_args(peer, CRYPTO_COOK, 4342 peer->associd, NULL); 4343 else if (!(peer->crypto & CRYPTO_FLAG_AUTO)) 4344 exten = crypto_args(peer, CRYPTO_AUTO, 4345 peer->assoc, NULL); 4346 4347 /* 4348 * Wait for clock sync, then sign the 4349 * certificate and retrieve the leapsecond 4350 * values. 4351 */ 4352 else if (sys_leap == LEAP_NOTINSYNC) 4353 break; 4354 4355 else if (!(peer->crypto & CRYPTO_FLAG_SIGN)) 4356 exten = crypto_args(peer, CRYPTO_SIGN, 4357 peer->associd, hostval.ptr); 4358 else if (!(peer->crypto & CRYPTO_FLAG_LEAP)) 4359 exten = crypto_args(peer, CRYPTO_LEAP, 4360 peer->associd, NULL); 4361 break; 4362 } 4363 4364 /* 4365 * Add a queued extension field if present. This is 4366 * always a request message, so the reply ID is already 4367 * in the message. If an error occurs, the error bit is 4368 * lit in the response. 4369 */ 4370 if (peer->cmmd != NULL) { 4371 u_int32 temp32; 4372 4373 temp32 = CRYPTO_RESP; 4374 peer->cmmd->opcode |= htonl(temp32); 4375 sendlen += crypto_xmit(peer, &xpkt, NULL, 4376 sendlen, peer->cmmd, 0); 4377 free(peer->cmmd); 4378 peer->cmmd = NULL; 4379 } 4380 4381 /* 4382 * Add an extension field created above. All but the 4383 * autokey response message are request messages. 4384 */ 4385 if (exten != NULL) { 4386 if (exten->opcode != 0) 4387 sendlen += crypto_xmit(peer, &xpkt, 4388 NULL, sendlen, exten, 0); 4389 free(exten); 4390 } 4391 4392 /* 4393 * Calculate the next session key. Since extension 4394 * fields are present, the cookie value is zero. 4395 */ 4396 if (sendlen > (int)LEN_PKT_NOMAC) { 4397 session_key(&peer->dstadr->sin, &peer->srcadr, 4398 xkeyid, 0, 2); 4399 } 4400 } 4401 #endif /* AUTOKEY */ 4402 4403 /* 4404 * Transmit a-priori timestamps 4405 */ 4406 get_systime(&xmt_tx); 4407 if (peer->flip == 0) { /* basic mode */ 4408 peer->aorg = xmt_tx; 4409 HTONL_FP(&xmt_tx, &xpkt.xmt); 4410 } else { /* interleaved modes */ 4411 if (peer->hmode == MODE_BROADCAST) { /* bcst */ 4412 HTONL_FP(&xmt_tx, &xpkt.xmt); 4413 if (peer->flip > 0) 4414 HTONL_FP(&peer->borg, &xpkt.org); 4415 else 4416 HTONL_FP(&peer->aorg, &xpkt.org); 4417 } else { /* symmetric */ 4418 if (peer->flip > 0) 4419 HTONL_FP(&peer->borg, &xpkt.xmt); 4420 else 4421 HTONL_FP(&peer->aorg, &xpkt.xmt); 4422 } 4423 } 4424 xkeyid = peer->keyid; 4425 authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4426 if (authlen == 0) { 4427 report_event(PEVNT_AUTH, peer, "no key"); 4428 peer->flash |= TEST5; /* auth error */ 4429 peer->badauth++; 4430 return; 4431 } 4432 sendlen += authlen; 4433 #ifdef AUTOKEY 4434 if (xkeyid > NTP_MAXKEY) 4435 authtrust(xkeyid, 0); 4436 #endif /* AUTOKEY */ 4437 if (sendlen > sizeof(xpkt)) { 4438 msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen); 4439 exit (-1); 4440 } 4441 peer->t21_bytes = sendlen; 4442 sendpkt(&peer->srcadr, peer->dstadr, 4443 sys_ttl[(peer->ttl >= sys_ttlmax) ? sys_ttlmax : peer->ttl], 4444 &xpkt, sendlen); 4445 peer->sent++; 4446 peer->throttle += (1 << peer->minpoll) - 2; 4447 4448 /* 4449 * Capture a-posteriori timestamps 4450 */ 4451 get_systime(&xmt_ty); 4452 if (peer->flip != 0) { /* interleaved modes */ 4453 if (peer->flip > 0) 4454 peer->aorg = xmt_ty; 4455 else 4456 peer->borg = xmt_ty; 4457 peer->flip = -peer->flip; 4458 } 4459 L_SUB(&xmt_ty, &xmt_tx); 4460 LFPTOD(&xmt_ty, peer->xleave); 4461 #ifdef AUTOKEY 4462 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n", 4463 current_time, latoa(peer->dstadr), 4464 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen, 4465 peer->keynumber)); 4466 #else /* !AUTOKEY follows */ 4467 DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu\n", 4468 current_time, peer->dstadr ? 4469 ntoa(&peer->dstadr->sin) : "-", 4470 ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen)); 4471 #endif /* !AUTOKEY */ 4472 4473 return; 4474 } 4475 4476 4477 #ifdef LEAP_SMEAR 4478 4479 static void 4480 leap_smear_add_offs( 4481 l_fp *t, 4482 l_fp *t_recv 4483 ) 4484 { 4485 4486 L_ADD(t, &leap_smear.offset); 4487 4488 /* 4489 ** XXX: Should the smear be added to the root dispersion? 4490 */ 4491 4492 return; 4493 } 4494 4495 #endif /* LEAP_SMEAR */ 4496 4497 4498 /* 4499 * fast_xmit - Send packet for nonpersistent association. Note that 4500 * neither the source or destination can be a broadcast address. 4501 */ 4502 static void 4503 fast_xmit( 4504 struct recvbuf *rbufp, /* receive packet pointer */ 4505 int xmode, /* receive mode */ /* XXX: HMS: really? */ 4506 keyid_t xkeyid, /* transmit key ID */ 4507 int flags /* restrict mask */ 4508 ) 4509 { 4510 struct pkt xpkt; /* transmit packet structure */ 4511 struct pkt *rpkt; /* receive packet structure */ 4512 l_fp xmt_tx, xmt_ty; 4513 size_t sendlen; 4514 #ifdef AUTOKEY 4515 u_int32 temp32; 4516 #endif 4517 4518 /* 4519 * Initialize transmit packet header fields from the receive 4520 * buffer provided. We leave the fields intact as received, but 4521 * set the peer poll at the maximum of the receive peer poll and 4522 * the system minimum poll (ntp_minpoll). This is for KoD rate 4523 * control and not strictly specification compliant, but doesn't 4524 * break anything. 4525 * 4526 * If the gazinta was from a multicast address, the gazoutta 4527 * must go out another way. 4528 */ 4529 rpkt = &rbufp->recv_pkt; 4530 if (rbufp->dstadr->flags & INT_MCASTOPEN) 4531 rbufp->dstadr = findinterface(&rbufp->recv_srcadr); 4532 4533 /* 4534 * If this is a kiss-o'-death (KoD) packet, show leap 4535 * unsynchronized, stratum zero, reference ID the four-character 4536 * kiss code and (???) system root delay. Note we don't reveal 4537 * the local time, so these packets can't be used for 4538 * synchronization. 4539 */ 4540 if (flags & RES_KOD) { 4541 sys_kodsent++; 4542 xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC, 4543 PKT_VERSION(rpkt->li_vn_mode), xmode); 4544 xpkt.stratum = STRATUM_PKT_UNSPEC; 4545 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4546 xpkt.precision = rpkt->precision; 4547 memcpy(&xpkt.refid, "RATE", 4); 4548 xpkt.rootdelay = rpkt->rootdelay; 4549 xpkt.rootdisp = rpkt->rootdisp; 4550 xpkt.reftime = rpkt->reftime; 4551 xpkt.org = rpkt->xmt; 4552 xpkt.rec = rpkt->xmt; 4553 xpkt.xmt = rpkt->xmt; 4554 4555 /* 4556 * This is a normal packet. Use the system variables. 4557 */ 4558 } else { 4559 double this_rootdisp; 4560 l_fp this_ref_time; 4561 4562 #ifdef LEAP_SMEAR 4563 /* 4564 * Make copies of the variables which can be affected by smearing. 4565 */ 4566 l_fp this_recv_time; 4567 #endif 4568 4569 /* 4570 * If we are inside the leap smear interval we add 4571 * the current smear offset to: 4572 * - the packet receive time, 4573 * - the packet transmit time, 4574 * - and eventually to the reftime to make sure the 4575 * reftime isn't later than the transmit/receive times. 4576 */ 4577 xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap, 4578 PKT_VERSION(rpkt->li_vn_mode), xmode); 4579 4580 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4581 xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll); 4582 xpkt.precision = sys_precision; 4583 xpkt.refid = sys_refid; 4584 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4585 4586 /* 4587 ** Server Response Fuzzing 4588 ** 4589 ** Which values do we want to use for reftime and rootdisp? 4590 */ 4591 4592 if ( MODE_SERVER == xmode 4593 && RES_SRVRSPFUZ & flags) { 4594 if (current_time < p2_time) { 4595 this_ref_time = p2_reftime; 4596 this_rootdisp = p2_rootdisp; 4597 } else if (current_time < prev_time) { 4598 this_ref_time = prev_reftime; 4599 this_rootdisp = prev_rootdisp; 4600 } else { 4601 this_ref_time = sys_reftime; 4602 this_rootdisp = sys_rootdisp; 4603 } 4604 4605 SRVRSP_FUZZ(this_ref_time); 4606 } else { 4607 this_ref_time = sys_reftime; 4608 this_rootdisp = sys_rootdisp; 4609 } 4610 4611 /* 4612 ** ROOT DISPERSION 4613 */ 4614 4615 xpkt.rootdisp = HTONS_FP(DTOUFP(this_rootdisp)); 4616 4617 /* 4618 ** REFTIME 4619 */ 4620 4621 #ifdef LEAP_SMEAR 4622 if (leap_smear.in_progress) { 4623 /* adjust the reftime by the same amount as the 4624 * leap smear, as we don't want to risk the 4625 * reftime being later than the transmit time. 4626 */ 4627 leap_smear_add_offs(&this_ref_time, NULL); 4628 } 4629 #endif 4630 4631 HTONL_FP(&this_ref_time, &xpkt.reftime); 4632 4633 /* 4634 ** REFID 4635 */ 4636 4637 #ifdef LEAP_SMEAR 4638 if (leap_smear.in_progress) { 4639 xpkt.refid = convertLFPToRefID(leap_smear.offset); 4640 DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n", 4641 ntohl(xpkt.refid), 4642 lfptoa(&leap_smear.offset, 8) 4643 )); 4644 } 4645 #endif 4646 4647 /* 4648 ** ORIGIN 4649 */ 4650 4651 xpkt.org = rpkt->xmt; 4652 4653 /* 4654 ** RECEIVE 4655 */ 4656 #ifdef LEAP_SMEAR 4657 this_recv_time = rbufp->recv_time; 4658 if (leap_smear.in_progress) 4659 leap_smear_add_offs(&this_recv_time, NULL); 4660 HTONL_FP(&this_recv_time, &xpkt.rec); 4661 #else 4662 HTONL_FP(&rbufp->recv_time, &xpkt.rec); 4663 #endif 4664 4665 /* 4666 ** TRANSMIT 4667 */ 4668 4669 get_systime(&xmt_tx); 4670 #ifdef LEAP_SMEAR 4671 if (leap_smear.in_progress) 4672 leap_smear_add_offs(&xmt_tx, &this_recv_time); 4673 #endif 4674 HTONL_FP(&xmt_tx, &xpkt.xmt); 4675 } 4676 4677 #ifdef HAVE_NTP_SIGND 4678 if (flags & RES_MSSNTP) { 4679 send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt); 4680 return; 4681 } 4682 #endif /* HAVE_NTP_SIGND */ 4683 4684 /* 4685 * If the received packet contains a MAC, the transmitted packet 4686 * is authenticated and contains a MAC. If not, the transmitted 4687 * packet is not authenticated. 4688 */ 4689 sendlen = LEN_PKT_NOMAC; 4690 if (rbufp->recv_length == sendlen) { 4691 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, 4692 sendlen); 4693 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n", 4694 current_time, stoa(&rbufp->dstadr->sin), 4695 stoa(&rbufp->recv_srcadr), xmode, 4696 (u_long)sendlen)); 4697 return; 4698 } 4699 4700 /* 4701 * The received packet contains a MAC, so the transmitted packet 4702 * must be authenticated. For symmetric key cryptography, use 4703 * the predefined and trusted symmetric keys to generate the 4704 * cryptosum. For autokey cryptography, use the server private 4705 * value to generate the cookie, which is unique for every 4706 * source-destination-key ID combination. 4707 */ 4708 #ifdef AUTOKEY 4709 if (xkeyid > NTP_MAXKEY) { 4710 keyid_t cookie; 4711 4712 /* 4713 * The only way to get here is a reply to a legitimate 4714 * client request message, so the mode must be 4715 * MODE_SERVER. If an extension field is present, there 4716 * can be only one and that must be a command. Do what 4717 * needs, but with private value of zero so the poor 4718 * jerk can decode it. If no extension field is present, 4719 * use the cookie to generate the session key. 4720 */ 4721 cookie = session_key(&rbufp->recv_srcadr, 4722 &rbufp->dstadr->sin, 0, sys_private, 0); 4723 if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) { 4724 session_key(&rbufp->dstadr->sin, 4725 &rbufp->recv_srcadr, xkeyid, 0, 2); 4726 temp32 = CRYPTO_RESP; 4727 rpkt->exten[0] |= htonl(temp32); 4728 sendlen += crypto_xmit(NULL, &xpkt, rbufp, 4729 sendlen, (struct exten *)rpkt->exten, 4730 cookie); 4731 } else { 4732 session_key(&rbufp->dstadr->sin, 4733 &rbufp->recv_srcadr, xkeyid, cookie, 2); 4734 } 4735 } 4736 #endif /* AUTOKEY */ 4737 get_systime(&xmt_tx); 4738 sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen); 4739 #ifdef AUTOKEY 4740 if (xkeyid > NTP_MAXKEY) 4741 authtrust(xkeyid, 0); 4742 #endif /* AUTOKEY */ 4743 sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen); 4744 get_systime(&xmt_ty); 4745 L_SUB(&xmt_ty, &xmt_tx); 4746 sys_authdelay = xmt_ty; 4747 DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n", 4748 current_time, ntoa(&rbufp->dstadr->sin), 4749 ntoa(&rbufp->recv_srcadr), xmode, xkeyid, 4750 (u_long)sendlen)); 4751 } 4752 4753 4754 /* 4755 * pool_xmit - resolve hostname or send unicast solicitation for pool. 4756 */ 4757 static void 4758 pool_xmit( 4759 struct peer *pool /* pool solicitor association */ 4760 ) 4761 { 4762 #ifdef WORKER 4763 struct pkt xpkt; /* transmit packet structure */ 4764 struct addrinfo hints; 4765 int rc; 4766 struct interface * lcladr; 4767 sockaddr_u * rmtadr; 4768 r4addr r4a; 4769 u_short restrict_mask; 4770 struct peer * p; 4771 l_fp xmt_tx; 4772 4773 DEBUG_REQUIRE(pool); 4774 if (NULL == pool->ai) { 4775 if (pool->addrs != NULL) { 4776 /* free() is used with copy_addrinfo_list() */ 4777 free(pool->addrs); 4778 pool->addrs = NULL; 4779 } 4780 ZERO(hints); 4781 hints.ai_family = AF(&pool->srcadr); 4782 hints.ai_socktype = SOCK_DGRAM; 4783 hints.ai_protocol = IPPROTO_UDP; 4784 /* ignore getaddrinfo_sometime() errors, we will retry */ 4785 rc = getaddrinfo_sometime( 4786 pool->hostname, 4787 "ntp", 4788 &hints, 4789 0, /* no retry */ 4790 &pool_name_resolved, 4791 (void *)(intptr_t)pool->associd); 4792 if (!rc) 4793 DPRINTF(1, ("pool DNS lookup %s started\n", 4794 pool->hostname)); 4795 else 4796 msyslog(LOG_ERR, 4797 "unable to start pool DNS %s: %m", 4798 pool->hostname); 4799 return; 4800 } 4801 4802 do { 4803 /* copy_addrinfo_list ai_addr points to a sockaddr_u */ 4804 rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr; 4805 pool->ai = pool->ai->ai_next; 4806 p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0, NULL); 4807 } while (p != NULL && pool->ai != NULL); 4808 if (p != NULL) 4809 return; /* out of addresses, re-query DNS next poll */ 4810 restrictions(rmtadr, &r4a); 4811 restrict_mask = r4a.rflags; 4812 if (RES_FLAGS & restrict_mask) 4813 restrict_source(rmtadr, 0, 4814 current_time + POOL_SOLICIT_WINDOW + 1); 4815 lcladr = findinterface(rmtadr); 4816 memset(&xpkt, 0, sizeof(xpkt)); 4817 xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version, 4818 MODE_CLIENT); 4819 xpkt.stratum = STRATUM_TO_PKT(sys_stratum); 4820 xpkt.ppoll = pool->hpoll; 4821 xpkt.precision = sys_precision; 4822 xpkt.refid = sys_refid; 4823 xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay)); 4824 xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp)); 4825 /* Bug 3596: What are the pros/cons of using sys_reftime here? */ 4826 HTONL_FP(&sys_reftime, &xpkt.reftime); 4827 4828 /* HMS: the following is better done after the ntp_random() calls */ 4829 get_systime(&xmt_tx); 4830 pool->aorg = xmt_tx; 4831 4832 if (FLAG_LOOPNONCE & pool->flags) { 4833 l_fp nonce; 4834 4835 do { 4836 nonce.l_ui = ntp_random(); 4837 } while (0 == nonce.l_ui); 4838 do { 4839 nonce.l_uf = ntp_random(); 4840 } while (0 == nonce.l_uf); 4841 pool->nonce = nonce; 4842 HTONL_FP(&nonce, &xpkt.xmt); 4843 } else { 4844 L_CLR(&pool->nonce); 4845 HTONL_FP(&xmt_tx, &xpkt.xmt); 4846 } 4847 sendpkt(rmtadr, lcladr, 4848 sys_ttl[(pool->ttl >= sys_ttlmax) ? sys_ttlmax : pool->ttl], 4849 &xpkt, LEN_PKT_NOMAC); 4850 pool->sent++; 4851 pool->throttle += (1 << pool->minpoll) - 2; 4852 DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n", 4853 current_time, latoa(lcladr), stoa(rmtadr))); 4854 msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr)); 4855 #endif /* WORKER */ 4856 } 4857 4858 4859 #ifdef AUTOKEY 4860 /* 4861 * group_test - test if this is the same group 4862 * 4863 * host assoc return action 4864 * none none 0 mobilize * 4865 * none group 0 mobilize * 4866 * group none 0 mobilize * 4867 * group group 1 mobilize 4868 * group different 1 ignore 4869 * * ignore if notrust 4870 */ 4871 int 4872 group_test( 4873 char *grp, 4874 char *ident 4875 ) 4876 { 4877 if (grp == NULL) 4878 return (0); 4879 4880 if (strcmp(grp, sys_groupname) == 0) 4881 return (0); 4882 4883 if (ident == NULL) 4884 return (1); 4885 4886 if (strcmp(grp, ident) == 0) 4887 return (0); 4888 4889 return (1); 4890 } 4891 #endif /* AUTOKEY */ 4892 4893 4894 #ifdef WORKER 4895 void 4896 pool_name_resolved( 4897 int rescode, 4898 int gai_errno, 4899 void * context, 4900 const char * name, 4901 const char * service, 4902 const struct addrinfo * hints, 4903 const struct addrinfo * res 4904 ) 4905 { 4906 struct peer * pool; /* pool solicitor association */ 4907 associd_t assoc; 4908 4909 if (rescode) { 4910 msyslog(LOG_ERR, 4911 "error resolving pool %s: %s (%d)", 4912 name, gai_strerror(rescode), rescode); 4913 return; 4914 } 4915 4916 assoc = (associd_t)(intptr_t)context; 4917 pool = findpeerbyassoc(assoc); 4918 if (NULL == pool) { 4919 msyslog(LOG_ERR, 4920 "Could not find assoc %u for pool DNS %s", 4921 assoc, name); 4922 return; 4923 } 4924 DPRINTF(1, ("pool DNS %s completed\n", name)); 4925 pool->addrs = copy_addrinfo_list(res); 4926 pool->ai = pool->addrs; 4927 pool_xmit(pool); 4928 4929 } 4930 #endif /* WORKER */ 4931 4932 4933 #ifdef AUTOKEY 4934 /* 4935 * key_expire - purge the key list 4936 */ 4937 void 4938 key_expire( 4939 struct peer *peer /* peer structure pointer */ 4940 ) 4941 { 4942 int i; 4943 4944 if (peer->keylist != NULL) { 4945 for (i = 0; i <= peer->keynumber; i++) 4946 authtrust(peer->keylist[i], 0); 4947 free(peer->keylist); 4948 peer->keylist = NULL; 4949 } 4950 value_free(&peer->sndval); 4951 peer->keynumber = 0; 4952 peer->flags &= ~FLAG_ASSOC; 4953 DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time, 4954 peer->associd)); 4955 } 4956 #endif /* AUTOKEY */ 4957 4958 4959 /* 4960 * local_refid(peer) - check peer refid to avoid selecting peers 4961 * currently synced to this ntpd. 4962 */ 4963 static int 4964 local_refid( 4965 struct peer * p 4966 ) 4967 { 4968 endpt * unicast_ep; 4969 4970 if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags)) 4971 unicast_ep = p->dstadr; 4972 else 4973 unicast_ep = findinterface(&p->srcadr); 4974 4975 if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid) 4976 return TRUE; 4977 else 4978 return FALSE; 4979 } 4980 4981 4982 /* 4983 * Determine if the peer is unfit for synchronization 4984 * 4985 * A peer is unfit for synchronization if 4986 * > TEST10 bad leap or stratum below floor or at or above ceiling 4987 * > TEST11 root distance exceeded for remote peer 4988 * > TEST12 a direct or indirect synchronization loop would form 4989 * > TEST13 unreachable or noselect 4990 */ 4991 int /* FALSE if fit, TRUE if unfit */ 4992 peer_unfit( 4993 struct peer *peer /* peer structure pointer */ 4994 ) 4995 { 4996 int rval = 0; 4997 4998 /* 4999 * A stratum error occurs if (1) the server has never been 5000 * synchronized, (2) the server stratum is below the floor or 5001 * greater than or equal to the ceiling. 5002 */ 5003 if ( peer->leap == LEAP_NOTINSYNC 5004 || peer->stratum < sys_floor 5005 || peer->stratum >= sys_ceiling) { 5006 rval |= TEST10; /* bad synch or stratum */ 5007 } 5008 5009 /* 5010 * A distance error for a remote peer occurs if the root 5011 * distance is greater than or equal to the distance threshold 5012 * plus the increment due to one host poll interval. 5013 */ 5014 if ( !(peer->flags & FLAG_REFCLOCK) 5015 && root_distance(peer) >= sys_maxdist 5016 + clock_phi * ULOGTOD(peer->hpoll)) { 5017 rval |= TEST11; /* distance exceeded */ 5018 } 5019 5020 /* 5021 * A loop error occurs if the remote peer is synchronized to the 5022 * local peer or if the remote peer is synchronized to the same 5023 * server as the local peer but only if the remote peer is 5024 * neither a reference clock nor an orphan. 5025 */ 5026 if (peer->stratum > 1 && local_refid(peer)) { 5027 rval |= TEST12; /* synchronization loop */ 5028 } 5029 5030 /* 5031 * An unreachable error occurs if the server is unreachable or 5032 * the noselect bit is set. 5033 */ 5034 if (!peer->reach || (peer->flags & FLAG_NOSELECT)) { 5035 rval |= TEST13; /* unreachable */ 5036 } 5037 5038 peer->flash &= ~PEER_TEST_MASK; 5039 peer->flash |= rval; 5040 return (rval); 5041 } 5042 5043 5044 /* 5045 * Find the precision of this particular machine 5046 */ 5047 #define MINSTEP 20e-9 /* minimum clock increment (s) */ 5048 #define MAXSTEP 1 /* maximum clock increment (s) */ 5049 #define MINCHANGES 12 /* minimum number of step samples */ 5050 #define MAXLOOPS ((int)(1. / MINSTEP)) /* avoid infinite loop */ 5051 5052 /* 5053 * This routine measures the system precision defined as the minimum of 5054 * a sequence of differences between successive readings of the system 5055 * clock. However, if a difference is less than MINSTEP, the clock has 5056 * been read more than once during a clock tick and the difference is 5057 * ignored. We set MINSTEP greater than zero in case something happens 5058 * like a cache miss, and to tolerate underlying system clocks which 5059 * ensure each reading is strictly greater than prior readings while 5060 * using an underlying stepping (not interpolated) clock. 5061 * 5062 * sys_tick and sys_precision represent the time to read the clock for 5063 * systems with high-precision clocks, and the tick interval or step 5064 * size for lower-precision stepping clocks. 5065 * 5066 * This routine also measures the time to read the clock on stepping 5067 * system clocks by counting the number of readings between changes of 5068 * the underlying clock. With either type of clock, the minimum time 5069 * to read the clock is saved as sys_fuzz, and used to ensure the 5070 * get_systime() readings always increase and are fuzzed below sys_fuzz. 5071 */ 5072 void 5073 measure_precision(void) 5074 { 5075 /* 5076 * With sys_fuzz set to zero, get_systime() fuzzing of low bits 5077 * is effectively disabled. trunc_os_clock is FALSE to disable 5078 * get_ostime() simulation of a low-precision system clock. 5079 */ 5080 set_sys_fuzz(0.); 5081 trunc_os_clock = FALSE; 5082 measured_tick = measure_tick_fuzz(); 5083 set_sys_tick_precision(measured_tick); 5084 msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)", 5085 sys_tick * 1e6, sys_precision); 5086 if (sys_fuzz < sys_tick) { 5087 msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec", 5088 sys_fuzz * 1e6); 5089 } 5090 } 5091 5092 5093 /* 5094 * measure_tick_fuzz() 5095 * 5096 * measures the minimum time to read the clock (stored in sys_fuzz) 5097 * and returns the tick, the larger of the minimum increment observed 5098 * between successive clock readings and the time to read the clock. 5099 */ 5100 double 5101 measure_tick_fuzz(void) 5102 { 5103 l_fp minstep; /* MINSTEP as l_fp */ 5104 l_fp val; /* current seconds fraction */ 5105 l_fp last; /* last seconds fraction */ 5106 l_fp ldiff; /* val - last */ 5107 double tick; /* computed tick value */ 5108 double diff; 5109 long repeats; 5110 long max_repeats; 5111 int changes; 5112 int i; /* log2 precision */ 5113 5114 tick = MAXSTEP; 5115 max_repeats = 0; 5116 repeats = 0; 5117 changes = 0; 5118 DTOLFP(MINSTEP, &minstep); 5119 get_systime(&last); 5120 for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) { 5121 get_systime(&val); 5122 ldiff = val; 5123 L_SUB(&ldiff, &last); 5124 last = val; 5125 if (L_ISGT(&ldiff, &minstep)) { 5126 max_repeats = max(repeats, max_repeats); 5127 repeats = 0; 5128 changes++; 5129 LFPTOD(&ldiff, diff); 5130 tick = min(diff, tick); 5131 } else { 5132 repeats++; 5133 } 5134 } 5135 if (changes < MINCHANGES) { 5136 msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)"); 5137 exit(1); 5138 } 5139 5140 if (0 == max_repeats) { 5141 set_sys_fuzz(tick); 5142 } else { 5143 set_sys_fuzz(tick / max_repeats); 5144 } 5145 5146 return tick; 5147 } 5148 5149 5150 void 5151 set_sys_tick_precision( 5152 double tick 5153 ) 5154 { 5155 int i; 5156 5157 if (tick > 1.) { 5158 msyslog(LOG_ERR, 5159 "unsupported tick %.3f > 1s ignored", tick); 5160 return; 5161 } 5162 if (tick < measured_tick) { 5163 msyslog(LOG_ERR, 5164 "proto: tick %.3f less than measured tick %.3f, ignored", 5165 tick, measured_tick); 5166 return; 5167 } else if (tick > measured_tick) { 5168 trunc_os_clock = TRUE; 5169 msyslog(LOG_NOTICE, 5170 "proto: truncating system clock to multiples of %.9f", 5171 tick); 5172 } 5173 sys_tick = tick; 5174 5175 /* 5176 * Find the nearest power of two. 5177 */ 5178 for (i = 0; tick <= 1; i--) 5179 tick *= 2; 5180 if (tick - 1 > 1 - tick / 2) 5181 i++; 5182 5183 sys_precision = (s_char)i; 5184 } 5185 5186 5187 /* 5188 * init_proto - initialize the protocol module's data 5189 */ 5190 void 5191 init_proto(void) 5192 { 5193 l_fp dummy; 5194 int i; 5195 5196 /* 5197 * Fill in the sys_* stuff. Default is don't listen to 5198 * broadcasting, require authentication. 5199 */ 5200 set_sys_leap(LEAP_NOTINSYNC); 5201 sys_stratum = STRATUM_UNSPEC; 5202 memcpy(&sys_refid, "INIT", 4); 5203 sys_peer = NULL; 5204 sys_rootdelay = 0; 5205 sys_rootdisp = 0; 5206 L_CLR(&sys_reftime); 5207 sys_jitter = 0; 5208 measure_precision(); 5209 get_systime(&dummy); 5210 sys_survivors = 0; 5211 sys_manycastserver = 0; 5212 sys_bclient = 0; 5213 sys_bdelay = BDELAY_DEFAULT; /*[Bug 3031] delay cutoff */ 5214 sys_authenticate = 1; 5215 sys_stattime = current_time; 5216 orphwait = current_time + sys_orphwait; 5217 proto_clr_stats(); 5218 for (i = 0; i < MAX_TTL; ++i) 5219 sys_ttl[i] = (u_char)((i * 256) / MAX_TTL); 5220 sys_ttlmax = (MAX_TTL - 1); 5221 hardpps_enable = 0; 5222 stats_control = 1; 5223 } 5224 5225 5226 /* 5227 * proto_config - configure the protocol module 5228 */ 5229 void 5230 proto_config( 5231 int item, 5232 u_long value, 5233 double dvalue, 5234 sockaddr_u *svalue 5235 ) 5236 { 5237 /* 5238 * Figure out what he wants to change, then do it 5239 */ 5240 DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n", 5241 item, value, dvalue)); 5242 5243 switch (item) { 5244 5245 /* 5246 * enable and disable commands - arguments are Boolean. 5247 */ 5248 case PROTO_AUTHENTICATE: /* authentication (auth) */ 5249 sys_authenticate = value; 5250 break; 5251 5252 case PROTO_BROADCLIENT: /* broadcast client (bclient) */ 5253 sys_bclient = (int)value; 5254 if (sys_bclient == 0) 5255 io_unsetbclient(); 5256 else 5257 io_setbclient(); 5258 break; 5259 5260 #ifdef REFCLOCK 5261 case PROTO_CAL: /* refclock calibrate (calibrate) */ 5262 cal_enable = value; 5263 break; 5264 #endif /* REFCLOCK */ 5265 5266 case PROTO_KERNEL: /* kernel discipline (kernel) */ 5267 select_loop(value); 5268 break; 5269 5270 case PROTO_MONITOR: /* monitoring (monitor) */ 5271 if (value) 5272 mon_start(MON_ON); 5273 else { 5274 mon_stop(MON_ON); 5275 if (mon_enabled) 5276 msyslog(LOG_WARNING, 5277 "restrict: 'monitor' cannot be disabled while 'limited' is enabled"); 5278 } 5279 break; 5280 5281 case PROTO_NTP: /* NTP discipline (ntp) */ 5282 ntp_enable = value; 5283 break; 5284 5285 case PROTO_MODE7: /* mode7 management (ntpdc) */ 5286 ntp_mode7 = value; 5287 break; 5288 5289 case PROTO_PPS: /* PPS discipline (pps) */ 5290 hardpps_enable = value; 5291 break; 5292 5293 case PROTO_FILEGEN: /* statistics (stats) */ 5294 stats_control = value; 5295 break; 5296 5297 /* 5298 * tos command - arguments are double, sometimes cast to int 5299 */ 5300 5301 case PROTO_BCPOLLBSTEP: /* Broadcast Poll Backstep gate (bcpollbstep) */ 5302 sys_bcpollbstep = (u_char)dvalue; 5303 break; 5304 5305 case PROTO_BEACON: /* manycast beacon (beacon) */ 5306 sys_beacon = (int)dvalue; 5307 break; 5308 5309 case PROTO_BROADDELAY: /* default broadcast delay (bdelay) */ 5310 sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT); 5311 break; 5312 5313 case PROTO_CEILING: /* stratum ceiling (ceiling) */ 5314 sys_ceiling = (int)dvalue; 5315 break; 5316 5317 case PROTO_COHORT: /* cohort switch (cohort) */ 5318 sys_cohort = (int)dvalue; 5319 break; 5320 5321 case PROTO_FLOOR: /* stratum floor (floor) */ 5322 sys_floor = (int)dvalue; 5323 break; 5324 5325 case PROTO_MAXCLOCK: /* maximum candidates (maxclock) */ 5326 sys_maxclock = (int)dvalue; 5327 break; 5328 5329 case PROTO_MAXDIST: /* select threshold (maxdist) */ 5330 sys_maxdist = dvalue; 5331 break; 5332 5333 case PROTO_CALLDELAY: /* modem call delay (mdelay) */ 5334 break; /* NOT USED */ 5335 5336 case PROTO_MINCLOCK: /* minimum candidates (minclock) */ 5337 sys_minclock = (int)dvalue; 5338 break; 5339 5340 case PROTO_MINDISP: /* minimum distance (mindist) */ 5341 sys_mindisp = dvalue; 5342 break; 5343 5344 case PROTO_MINSANE: /* minimum survivors (minsane) */ 5345 sys_minsane = (int)dvalue; 5346 break; 5347 5348 case PROTO_ORPHAN: /* orphan stratum (orphan) */ 5349 sys_orphan = (int)dvalue; 5350 break; 5351 5352 case PROTO_ORPHWAIT: /* orphan wait (orphwait) */ 5353 orphwait -= sys_orphwait; 5354 sys_orphwait = (dvalue >= 1) ? (int)dvalue : NTP_ORPHWAIT; 5355 orphwait += sys_orphwait; 5356 break; 5357 5358 /* 5359 * Miscellaneous commands 5360 */ 5361 case PROTO_MULTICAST_ADD: /* add group address */ 5362 if (svalue != NULL) 5363 io_multicast_add(svalue); 5364 sys_bclient = 1; 5365 break; 5366 5367 case PROTO_MULTICAST_DEL: /* delete group address */ 5368 if (svalue != NULL) 5369 io_multicast_del(svalue); 5370 break; 5371 5372 /* 5373 * Peer_clear Early policy choices 5374 */ 5375 5376 case PROTO_PCEDIGEST: /* Digest */ 5377 peer_clear_digest_early = value; 5378 break; 5379 5380 /* 5381 * Unpeer Early policy choices 5382 */ 5383 5384 case PROTO_UECRYPTO: /* Crypto */ 5385 unpeer_crypto_early = value; 5386 break; 5387 5388 case PROTO_UECRYPTONAK: /* Crypto_NAK */ 5389 unpeer_crypto_nak_early = value; 5390 break; 5391 5392 case PROTO_UEDIGEST: /* Digest */ 5393 unpeer_digest_early = value; 5394 break; 5395 5396 default: 5397 msyslog(LOG_NOTICE, 5398 "proto: unsupported option %d", item); 5399 } 5400 } 5401 5402 5403 /* 5404 * proto_clr_stats - clear protocol stat counters 5405 */ 5406 void 5407 proto_clr_stats(void) 5408 { 5409 sys_stattime = current_time; 5410 sys_received = 0; 5411 sys_processed = 0; 5412 sys_newversion = 0; 5413 sys_oldversion = 0; 5414 sys_declined = 0; 5415 sys_restricted = 0; 5416 sys_badlength = 0; 5417 sys_badauth = 0; 5418 sys_limitrejected = 0; 5419 sys_kodsent = 0; 5420 sys_lamport = 0; 5421 sys_tsrounding = 0; 5422 } 5423