1 /* 2 * ntp_crypto.c - NTP version 4 public key routines 3 */ 4 #ifdef HAVE_CONFIG_H 5 #include <config.h> 6 #endif 7 8 #ifdef AUTOKEY 9 #include <stdio.h> 10 #include <stdlib.h> /* strtoul */ 11 #include <sys/types.h> 12 #include <sys/param.h> 13 #include <unistd.h> 14 #include <fcntl.h> 15 16 #include "ntpd.h" 17 #include "ntp_stdlib.h" 18 #include "ntp_unixtime.h" 19 #include "ntp_string.h" 20 #include "ntp_random.h" 21 #include "ntp_assert.h" 22 #include "ntp_calendar.h" 23 #include "ntp_leapsec.h" 24 25 #include "openssl/asn1_mac.h" 26 #include "openssl/bn.h" 27 #include "openssl/err.h" 28 #include "openssl/evp.h" 29 #include "openssl/pem.h" 30 #include "openssl/rand.h" 31 #include "openssl/x509v3.h" 32 33 #ifdef KERNEL_PLL 34 #include "ntp_syscall.h" 35 #endif /* KERNEL_PLL */ 36 37 /* 38 * calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp 39 * No, it's not a plotter. If you don't understand that, you're too young. 40 */ 41 static int calcomp(struct calendar *pjd1, struct calendar *pjd2) 42 { 43 int32_t diff; /* large enough to hold the signed difference between two uint16_t values */ 44 45 diff = pjd1->year - pjd2->year; 46 if (diff < 0) return -1; else if (diff > 0) return 1; 47 /* same year; compare months */ 48 diff = pjd1->month - pjd2->month; 49 if (diff < 0) return -1; else if (diff > 0) return 1; 50 /* same year and month; compare monthday */ 51 diff = pjd1->monthday - pjd2->monthday; 52 if (diff < 0) return -1; else if (diff > 0) return 1; 53 /* same year and month and monthday; compare time */ 54 diff = pjd1->hour - pjd2->hour; 55 if (diff < 0) return -1; else if (diff > 0) return 1; 56 diff = pjd1->minute - pjd2->minute; 57 if (diff < 0) return -1; else if (diff > 0) return 1; 58 diff = pjd1->second - pjd2->second; 59 if (diff < 0) return -1; else if (diff > 0) return 1; 60 /* identical */ 61 return 0; 62 } 63 64 /* 65 * Extension field message format 66 * 67 * These are always signed and saved before sending in network byte 68 * order. They must be converted to and from host byte order for 69 * processing. 70 * 71 * +-------+-------+ 72 * | op | len | <- extension pointer 73 * +-------+-------+ 74 * | associd | 75 * +---------------+ 76 * | timestamp | <- value pointer 77 * +---------------+ 78 * | filestamp | 79 * +---------------+ 80 * | value len | 81 * +---------------+ 82 * | | 83 * = value = 84 * | | 85 * +---------------+ 86 * | signature len | 87 * +---------------+ 88 * | | 89 * = signature = 90 * | | 91 * +---------------+ 92 * 93 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses. 94 * Requests carry the association ID of the receiver; responses carry 95 * the association ID of the sender. Some messages include only the 96 * operation/length and association ID words and so have length 8 97 * octets. Ohers include the value structure and associated value and 98 * signature fields. These messages include the timestamp, filestamp, 99 * value and signature words and so have length at least 24 octets. The 100 * signature and/or value fields can be empty, in which case the 101 * respective length words are zero. An empty value with nonempty 102 * signature is syntactically valid, but semantically questionable. 103 * 104 * The filestamp represents the time when a cryptographic data file such 105 * as a public/private key pair is created. It follows every reference 106 * depending on that file and serves as a means to obsolete earlier data 107 * of the same type. The timestamp represents the time when the 108 * cryptographic data of the message were last signed. Creation of a 109 * cryptographic data file or signing a message can occur only when the 110 * creator or signor is synchronized to an authoritative source and 111 * proventicated to a trusted authority. 112 * 113 * Note there are several conditions required for server trust. First, 114 * the public key on the server certificate must be verified, which can 115 * involve a hike along the certificate trail to a trusted host. Next, 116 * the server trust must be confirmed by one of several identity 117 * schemes. Valid cryptographic values are signed with attached 118 * timestamp and filestamp. Individual packet trust is confirmed 119 * relative to these values by a message digest with keys generated by a 120 * reverse-order pseudorandom hash. 121 * 122 * State decomposition. These flags are lit in the order given. They are 123 * dim only when the association is demobilized. 124 * 125 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message 126 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is 127 * accepted. 128 * CRYPTO_FLAG_VRFY Lit when identity is confirmed. 129 * CRYPTO_FLAG_PROV Lit when the first signature is verified. 130 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted. 131 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted. 132 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is 133 * accepted. 134 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted. 135 */ 136 /* 137 * Cryptodefines 138 */ 139 #define TAI_1972 10 /* initial TAI offset (s) */ 140 #define MAX_LEAP 100 /* max UTC leapseconds (s) */ 141 #define VALUE_LEN (6 * 4) /* min response field length */ 142 #define MAX_VALLEN (65535 - VALUE_LEN) 143 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */ 144 145 /* 146 * Global cryptodata in host byte order 147 */ 148 u_int32 crypto_flags = 0x0; /* status word */ 149 int crypto_nid = KEY_TYPE_MD5; /* digest nid */ 150 char *sys_hostname = NULL; 151 char *sys_groupname = NULL; 152 static char *host_filename = NULL; /* host file name */ 153 static char *ident_filename = NULL; /* group file name */ 154 155 /* 156 * Global cryptodata in network byte order 157 */ 158 struct cert_info *cinfo = NULL; /* certificate info/value cache */ 159 struct cert_info *cert_host = NULL; /* host certificate */ 160 struct pkey_info *pkinfo = NULL; /* key info/value cache */ 161 struct value hostval; /* host value */ 162 struct value pubkey; /* public key */ 163 struct value tai_leap; /* leapseconds values */ 164 struct pkey_info *iffkey_info = NULL; /* IFF keys */ 165 struct pkey_info *gqkey_info = NULL; /* GQ keys */ 166 struct pkey_info *mvkey_info = NULL; /* MV keys */ 167 168 /* 169 * Private cryptodata in host byte order 170 */ 171 static char *passwd = NULL; /* private key password */ 172 static EVP_PKEY *host_pkey = NULL; /* host key */ 173 static EVP_PKEY *sign_pkey = NULL; /* sign key */ 174 static const EVP_MD *sign_digest = NULL; /* sign digest */ 175 static u_int sign_siglen; /* sign key length */ 176 static char *rand_file = NULL; /* random seed file */ 177 178 /* 179 * Cryptotypes 180 */ 181 static int crypto_verify (struct exten *, struct value *, 182 struct peer *); 183 static int crypto_encrypt (const u_char *, u_int, keyid_t *, 184 struct value *); 185 static int crypto_alice (struct peer *, struct value *); 186 static int crypto_alice2 (struct peer *, struct value *); 187 static int crypto_alice3 (struct peer *, struct value *); 188 static int crypto_bob (struct exten *, struct value *); 189 static int crypto_bob2 (struct exten *, struct value *); 190 static int crypto_bob3 (struct exten *, struct value *); 191 static int crypto_iff (struct exten *, struct peer *); 192 static int crypto_gq (struct exten *, struct peer *); 193 static int crypto_mv (struct exten *, struct peer *); 194 static int crypto_send (struct exten *, struct value *, int); 195 static tstamp_t crypto_time (void); 196 static void asn_to_calendar (ASN1_TIME *, struct calendar*); 197 static struct cert_info *cert_parse (const u_char *, long, tstamp_t); 198 static int cert_sign (struct exten *, struct value *); 199 static struct cert_info *cert_install (struct exten *, struct peer *); 200 static int cert_hike (struct peer *, struct cert_info *); 201 static void cert_free (struct cert_info *); 202 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *); 203 static void bighash (BIGNUM *, BIGNUM *); 204 static struct cert_info *crypto_cert (char *); 205 206 #ifdef SYS_WINNT 207 int 208 readlink(char * link, char * file, int len) { 209 return (-1); 210 } 211 #endif 212 213 /* 214 * session_key - generate session key 215 * 216 * This routine generates a session key from the source address, 217 * destination address, key ID and private value. The value of the 218 * session key is the MD5 hash of these values, while the next key ID is 219 * the first four octets of the hash. 220 * 221 * Returns the next key ID or 0 if there is no destination address. 222 */ 223 keyid_t 224 session_key( 225 sockaddr_u *srcadr, /* source address */ 226 sockaddr_u *dstadr, /* destination address */ 227 keyid_t keyno, /* key ID */ 228 keyid_t private, /* private value */ 229 u_long lifetime /* key lifetime */ 230 ) 231 { 232 EVP_MD_CTX ctx; /* message digest context */ 233 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 234 keyid_t keyid; /* key identifer */ 235 u_int32 header[10]; /* data in network byte order */ 236 u_int hdlen, len; 237 238 if (!dstadr) 239 return 0; 240 241 /* 242 * Generate the session key and key ID. If the lifetime is 243 * greater than zero, install the key and call it trusted. 244 */ 245 hdlen = 0; 246 switch(AF(srcadr)) { 247 case AF_INET: 248 header[0] = NSRCADR(srcadr); 249 header[1] = NSRCADR(dstadr); 250 header[2] = htonl(keyno); 251 header[3] = htonl(private); 252 hdlen = 4 * sizeof(u_int32); 253 break; 254 255 case AF_INET6: 256 memcpy(&header[0], PSOCK_ADDR6(srcadr), 257 sizeof(struct in6_addr)); 258 memcpy(&header[4], PSOCK_ADDR6(dstadr), 259 sizeof(struct in6_addr)); 260 header[8] = htonl(keyno); 261 header[9] = htonl(private); 262 hdlen = 10 * sizeof(u_int32); 263 break; 264 } 265 EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid)); 266 EVP_DigestUpdate(&ctx, (u_char *)header, hdlen); 267 EVP_DigestFinal(&ctx, dgst, &len); 268 memcpy(&keyid, dgst, 4); 269 keyid = ntohl(keyid); 270 if (lifetime != 0) { 271 MD5auth_setkey(keyno, crypto_nid, dgst, len); 272 authtrust(keyno, lifetime); 273 } 274 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n", 275 stoa(srcadr), stoa(dstadr), keyno, 276 private, keyid, lifetime)); 277 278 return (keyid); 279 } 280 281 282 /* 283 * make_keylist - generate key list 284 * 285 * Returns 286 * XEVNT_OK success 287 * XEVNT_ERR protocol error 288 * 289 * This routine constructs a pseudo-random sequence by repeatedly 290 * hashing the session key starting from a given source address, 291 * destination address, private value and the next key ID of the 292 * preceeding session key. The last entry on the list is saved along 293 * with its sequence number and public signature. 294 */ 295 int 296 make_keylist( 297 struct peer *peer, /* peer structure pointer */ 298 struct interface *dstadr /* interface */ 299 ) 300 { 301 EVP_MD_CTX ctx; /* signature context */ 302 tstamp_t tstamp; /* NTP timestamp */ 303 struct autokey *ap; /* autokey pointer */ 304 struct value *vp; /* value pointer */ 305 keyid_t keyid = 0; /* next key ID */ 306 keyid_t cookie; /* private value */ 307 long lifetime; 308 u_int len, mpoll; 309 int i; 310 311 if (!dstadr) 312 return XEVNT_ERR; 313 314 /* 315 * Allocate the key list if necessary. 316 */ 317 tstamp = crypto_time(); 318 if (peer->keylist == NULL) 319 peer->keylist = emalloc(sizeof(keyid_t) * 320 NTP_MAXSESSION); 321 322 /* 323 * Generate an initial key ID which is unique and greater than 324 * NTP_MAXKEY. 325 */ 326 while (1) { 327 keyid = ntp_random() & 0xffffffff; 328 if (keyid <= NTP_MAXKEY) 329 continue; 330 331 if (authhavekey(keyid)) 332 continue; 333 break; 334 } 335 336 /* 337 * Generate up to NTP_MAXSESSION session keys. Stop if the 338 * next one would not be unique or not a session key ID or if 339 * it would expire before the next poll. The private value 340 * included in the hash is zero if broadcast mode, the peer 341 * cookie if client mode or the host cookie if symmetric modes. 342 */ 343 mpoll = 1 << min(peer->ppoll, peer->hpoll); 344 lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll); 345 if (peer->hmode == MODE_BROADCAST) 346 cookie = 0; 347 else 348 cookie = peer->pcookie; 349 for (i = 0; i < NTP_MAXSESSION; i++) { 350 peer->keylist[i] = keyid; 351 peer->keynumber = i; 352 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid, 353 cookie, lifetime + mpoll); 354 lifetime -= mpoll; 355 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY || 356 lifetime < 0 || tstamp == 0) 357 break; 358 } 359 360 /* 361 * Save the last session key ID, sequence number and timestamp, 362 * then sign these values for later retrieval by the clients. Be 363 * careful not to use invalid key media. Use the public values 364 * timestamp as filestamp. 365 */ 366 vp = &peer->sndval; 367 if (vp->ptr == NULL) 368 vp->ptr = emalloc(sizeof(struct autokey)); 369 ap = (struct autokey *)vp->ptr; 370 ap->seq = htonl(peer->keynumber); 371 ap->key = htonl(keyid); 372 vp->tstamp = htonl(tstamp); 373 vp->fstamp = hostval.tstamp; 374 vp->vallen = htonl(sizeof(struct autokey)); 375 vp->siglen = 0; 376 if (tstamp != 0) { 377 if (vp->sig == NULL) 378 vp->sig = emalloc(sign_siglen); 379 EVP_SignInit(&ctx, sign_digest); 380 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 381 EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey)); 382 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) { 383 vp->siglen = htonl(sign_siglen); 384 peer->flags |= FLAG_ASSOC; 385 } 386 } 387 #ifdef DEBUG 388 if (debug) 389 printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n", 390 peer->keynumber, keyid, cookie, ntohl(vp->tstamp), 391 ntohl(vp->fstamp), peer->hpoll); 392 #endif 393 return (XEVNT_OK); 394 } 395 396 397 /* 398 * crypto_recv - parse extension fields 399 * 400 * This routine is called when the packet has been matched to an 401 * association and passed sanity, format and MAC checks. We believe the 402 * extension field values only if the field has proper format and 403 * length, the timestamp and filestamp are valid and the signature has 404 * valid length and is verified. There are a few cases where some values 405 * are believed even if the signature fails, but only if the proventic 406 * bit is not set. 407 * 408 * Returns 409 * XEVNT_OK success 410 * XEVNT_ERR protocol error 411 * XEVNT_LEN bad field format or length 412 */ 413 int 414 crypto_recv( 415 struct peer *peer, /* peer structure pointer */ 416 struct recvbuf *rbufp /* packet buffer pointer */ 417 ) 418 { 419 const EVP_MD *dp; /* message digest algorithm */ 420 u_int32 *pkt; /* receive packet pointer */ 421 struct autokey *ap, *bp; /* autokey pointer */ 422 struct exten *ep, *fp; /* extension pointers */ 423 struct cert_info *xinfo; /* certificate info pointer */ 424 int has_mac; /* length of MAC field */ 425 int authlen; /* offset of MAC field */ 426 associd_t associd; /* association ID */ 427 tstamp_t fstamp = 0; /* filestamp */ 428 u_int len; /* extension field length */ 429 u_int code; /* extension field opcode */ 430 u_int vallen = 0; /* value length */ 431 X509 *cert; /* X509 certificate */ 432 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 433 keyid_t cookie; /* crumbles */ 434 int hismode; /* packet mode */ 435 int rval = XEVNT_OK; 436 const u_char *puch; 437 u_int32 temp32; 438 439 /* 440 * Initialize. Note that the packet has already been checked for 441 * valid format and extension field lengths. First extract the 442 * field length, command code and association ID in host byte 443 * order. These are used with all commands and modes. Then check 444 * the version number, which must be 2, and length, which must 445 * be at least 8 for requests and VALUE_LEN (24) for responses. 446 * Packets that fail either test sink without a trace. The 447 * association ID is saved only if nonzero. 448 */ 449 authlen = LEN_PKT_NOMAC; 450 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode); 451 while ((has_mac = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) { 452 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4; 453 ep = (struct exten *)pkt; 454 code = ntohl(ep->opcode) & 0xffff0000; 455 len = ntohl(ep->opcode) & 0x0000ffff; 456 // HMS: Why pkt[1] instead of ep->associd ? 457 associd = (associd_t)ntohl(pkt[1]); 458 rval = XEVNT_OK; 459 #ifdef DEBUG 460 if (debug) 461 printf( 462 "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n", 463 peer->crypto, authlen, len, code >> 16, 464 associd); 465 #endif 466 467 /* 468 * Check version number and field length. If bad, 469 * quietly ignore the packet. 470 */ 471 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) { 472 sys_badlength++; 473 code |= CRYPTO_ERROR; 474 } 475 476 if (len >= VALUE_LEN) { 477 fstamp = ntohl(ep->fstamp); 478 vallen = ntohl(ep->vallen); 479 /* 480 * Bug 2761: I hope this isn't too early... 481 */ 482 if ( vallen == 0 483 || len - VALUE_LEN < vallen) 484 return XEVNT_LEN; 485 } 486 switch (code) { 487 488 /* 489 * Install status word, host name, signature scheme and 490 * association ID. In OpenSSL the signature algorithm is 491 * bound to the digest algorithm, so the NID completely 492 * defines the signature scheme. Note the request and 493 * response are identical, but neither is validated by 494 * signature. The request is processed here only in 495 * symmetric modes. The server name field might be 496 * useful to implement access controls in future. 497 */ 498 case CRYPTO_ASSOC: 499 500 /* 501 * If our state machine is running when this 502 * message arrives, the other fellow might have 503 * restarted. However, this could be an 504 * intruder, so just clamp the poll interval and 505 * find out for ourselves. Otherwise, pass the 506 * extension field to the transmit side. 507 */ 508 if (peer->crypto & CRYPTO_FLAG_CERT) { 509 rval = XEVNT_ERR; 510 break; 511 } 512 if (peer->cmmd) { 513 if (peer->assoc != associd) { 514 rval = XEVNT_ERR; 515 break; 516 } 517 } 518 fp = emalloc(len); 519 memcpy(fp, ep, len); 520 fp->associd = htonl(peer->associd); 521 peer->cmmd = fp; 522 /* fall through */ 523 524 case CRYPTO_ASSOC | CRYPTO_RESP: 525 526 /* 527 * Discard the message if it has already been 528 * stored or the message has been amputated. 529 */ 530 if (peer->crypto) { 531 if (peer->assoc != associd) 532 rval = XEVNT_ERR; 533 break; 534 } 535 INSIST(len >= VALUE_LEN); 536 if (vallen == 0 || vallen > MAXHOSTNAME || 537 len - VALUE_LEN < vallen) { 538 rval = XEVNT_LEN; 539 break; 540 } 541 #ifdef DEBUG 542 if (debug) 543 printf( 544 "crypto_recv: ident host 0x%x %d server 0x%x %d\n", 545 crypto_flags, peer->associd, fstamp, 546 peer->assoc); 547 #endif 548 temp32 = crypto_flags & CRYPTO_FLAG_MASK; 549 550 /* 551 * If the client scheme is PC, the server scheme 552 * must be PC. The public key and identity are 553 * presumed valid, so we skip the certificate 554 * and identity exchanges and move immediately 555 * to the cookie exchange which confirms the 556 * server signature. 557 */ 558 if (crypto_flags & CRYPTO_FLAG_PRIV) { 559 if (!(fstamp & CRYPTO_FLAG_PRIV)) { 560 rval = XEVNT_KEY; 561 break; 562 } 563 fstamp |= CRYPTO_FLAG_CERT | 564 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN; 565 566 /* 567 * It is an error if either peer supports 568 * identity, but the other does not. 569 */ 570 } else if (hismode == MODE_ACTIVE || hismode == 571 MODE_PASSIVE) { 572 if ((temp32 && !(fstamp & 573 CRYPTO_FLAG_MASK)) || 574 (!temp32 && (fstamp & 575 CRYPTO_FLAG_MASK))) { 576 rval = XEVNT_KEY; 577 break; 578 } 579 } 580 581 /* 582 * Discard the message if the signature digest 583 * NID is not supported. 584 */ 585 temp32 = (fstamp >> 16) & 0xffff; 586 dp = 587 (const EVP_MD *)EVP_get_digestbynid(temp32); 588 if (dp == NULL) { 589 rval = XEVNT_MD; 590 break; 591 } 592 593 /* 594 * Save status word, host name and message 595 * digest/signature type. If this is from a 596 * broadcast and the association ID has changed, 597 * request the autokey values. 598 */ 599 peer->assoc = associd; 600 if (hismode == MODE_SERVER) 601 fstamp |= CRYPTO_FLAG_AUTO; 602 if (!(fstamp & CRYPTO_FLAG_TAI)) 603 fstamp |= CRYPTO_FLAG_LEAP; 604 RAND_bytes((u_char *)&peer->hcookie, 4); 605 peer->crypto = fstamp; 606 peer->digest = dp; 607 if (peer->subject != NULL) 608 free(peer->subject); 609 peer->subject = emalloc(vallen + 1); 610 memcpy(peer->subject, ep->pkt, vallen); 611 peer->subject[vallen] = '\0'; 612 if (peer->issuer != NULL) 613 free(peer->issuer); 614 peer->issuer = estrdup(peer->subject); 615 snprintf(statstr, sizeof(statstr), 616 "assoc %d %d host %s %s", peer->associd, 617 peer->assoc, peer->subject, 618 OBJ_nid2ln(temp32)); 619 record_crypto_stats(&peer->srcadr, statstr); 620 #ifdef DEBUG 621 if (debug) 622 printf("crypto_recv: %s\n", statstr); 623 #endif 624 break; 625 626 /* 627 * Decode X509 certificate in ASN.1 format and extract 628 * the data containing, among other things, subject 629 * name and public key. In the default identification 630 * scheme, the certificate trail is followed to a self 631 * signed trusted certificate. 632 */ 633 case CRYPTO_CERT | CRYPTO_RESP: 634 635 /* 636 * Discard the message if empty or invalid. 637 */ 638 if (len < VALUE_LEN) 639 break; 640 641 if ((rval = crypto_verify(ep, NULL, peer)) != 642 XEVNT_OK) 643 break; 644 645 /* 646 * Scan the certificate list to delete old 647 * versions and link the newest version first on 648 * the list. Then, verify the signature. If the 649 * certificate is bad or missing, just ignore 650 * it. 651 */ 652 if ((xinfo = cert_install(ep, peer)) == NULL) { 653 rval = XEVNT_CRT; 654 break; 655 } 656 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK) 657 break; 658 659 /* 660 * We plug in the public key and lifetime from 661 * the first certificate received. However, note 662 * that this certificate might not be signed by 663 * the server, so we can't check the 664 * signature/digest NID. 665 */ 666 if (peer->pkey == NULL) { 667 puch = xinfo->cert.ptr; 668 cert = d2i_X509(NULL, &puch, 669 ntohl(xinfo->cert.vallen)); 670 peer->pkey = X509_get_pubkey(cert); 671 X509_free(cert); 672 } 673 peer->flash &= ~TEST8; 674 temp32 = xinfo->nid; 675 snprintf(statstr, sizeof(statstr), 676 "cert %s %s 0x%x %s (%u) fs %u", 677 xinfo->subject, xinfo->issuer, xinfo->flags, 678 OBJ_nid2ln(temp32), temp32, 679 ntohl(ep->fstamp)); 680 record_crypto_stats(&peer->srcadr, statstr); 681 #ifdef DEBUG 682 if (debug) 683 printf("crypto_recv: %s\n", statstr); 684 #endif 685 break; 686 687 /* 688 * Schnorr (IFF) identity scheme. This scheme is 689 * designed for use with shared secret server group keys 690 * and where the certificate may be generated by a third 691 * party. The client sends a challenge to the server, 692 * which performs a calculation and returns the result. 693 * A positive result is possible only if both client and 694 * server contain the same secret group key. 695 */ 696 case CRYPTO_IFF | CRYPTO_RESP: 697 698 /* 699 * Discard the message if invalid. 700 */ 701 if ((rval = crypto_verify(ep, NULL, peer)) != 702 XEVNT_OK) 703 break; 704 705 /* 706 * If the challenge matches the response, the 707 * server public key, signature and identity are 708 * all verified at the same time. The server is 709 * declared trusted, so we skip further 710 * certificate exchanges and move immediately to 711 * the cookie exchange. 712 */ 713 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK) 714 break; 715 716 peer->crypto |= CRYPTO_FLAG_VRFY; 717 peer->flash &= ~TEST8; 718 snprintf(statstr, sizeof(statstr), "iff %s fs %u", 719 peer->issuer, ntohl(ep->fstamp)); 720 record_crypto_stats(&peer->srcadr, statstr); 721 #ifdef DEBUG 722 if (debug) 723 printf("crypto_recv: %s\n", statstr); 724 #endif 725 break; 726 727 /* 728 * Guillou-Quisquater (GQ) identity scheme. This scheme 729 * is designed for use with public certificates carrying 730 * the GQ public key in an extension field. The client 731 * sends a challenge to the server, which performs a 732 * calculation and returns the result. A positive result 733 * is possible only if both client and server contain 734 * the same group key and the server has the matching GQ 735 * private key. 736 */ 737 case CRYPTO_GQ | CRYPTO_RESP: 738 739 /* 740 * Discard the message if invalid 741 */ 742 if ((rval = crypto_verify(ep, NULL, peer)) != 743 XEVNT_OK) 744 break; 745 746 /* 747 * If the challenge matches the response, the 748 * server public key, signature and identity are 749 * all verified at the same time. The server is 750 * declared trusted, so we skip further 751 * certificate exchanges and move immediately to 752 * the cookie exchange. 753 */ 754 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK) 755 break; 756 757 peer->crypto |= CRYPTO_FLAG_VRFY; 758 peer->flash &= ~TEST8; 759 snprintf(statstr, sizeof(statstr), "gq %s fs %u", 760 peer->issuer, ntohl(ep->fstamp)); 761 record_crypto_stats(&peer->srcadr, statstr); 762 #ifdef DEBUG 763 if (debug) 764 printf("crypto_recv: %s\n", statstr); 765 #endif 766 break; 767 768 /* 769 * Mu-Varadharajan (MV) identity scheme. This scheme is 770 * designed for use with three levels of trust, trusted 771 * host, server and client. The trusted host key is 772 * opaque to servers and clients; the server keys are 773 * opaque to clients and each client key is different. 774 * Client keys can be revoked without requiring new key 775 * generations. 776 */ 777 case CRYPTO_MV | CRYPTO_RESP: 778 779 /* 780 * Discard the message if invalid. 781 */ 782 if ((rval = crypto_verify(ep, NULL, peer)) != 783 XEVNT_OK) 784 break; 785 786 /* 787 * If the challenge matches the response, the 788 * server public key, signature and identity are 789 * all verified at the same time. The server is 790 * declared trusted, so we skip further 791 * certificate exchanges and move immediately to 792 * the cookie exchange. 793 */ 794 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK) 795 break; 796 797 peer->crypto |= CRYPTO_FLAG_VRFY; 798 peer->flash &= ~TEST8; 799 snprintf(statstr, sizeof(statstr), "mv %s fs %u", 800 peer->issuer, ntohl(ep->fstamp)); 801 record_crypto_stats(&peer->srcadr, statstr); 802 #ifdef DEBUG 803 if (debug) 804 printf("crypto_recv: %s\n", statstr); 805 #endif 806 break; 807 808 809 /* 810 * Cookie response in client and symmetric modes. If the 811 * cookie bit is set, the working cookie is the EXOR of 812 * the current and new values. 813 */ 814 case CRYPTO_COOK | CRYPTO_RESP: 815 816 /* 817 * Discard the message if invalid or signature 818 * not verified with respect to the cookie 819 * values. 820 */ 821 if ((rval = crypto_verify(ep, &peer->cookval, 822 peer)) != XEVNT_OK) 823 break; 824 825 /* 826 * Decrypt the cookie, hunting all the time for 827 * errors. 828 */ 829 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) { 830 u_int32 *cookiebuf = malloc( 831 RSA_size(host_pkey->pkey.rsa)); 832 if (!cookiebuf) { 833 rval = XEVNT_CKY; 834 break; 835 } 836 837 if (RSA_private_decrypt(vallen, 838 (u_char *)ep->pkt, 839 (u_char *)cookiebuf, 840 host_pkey->pkey.rsa, 841 RSA_PKCS1_OAEP_PADDING) != 4) { 842 rval = XEVNT_CKY; 843 free(cookiebuf); 844 break; 845 } else { 846 cookie = ntohl(*cookiebuf); 847 free(cookiebuf); 848 } 849 } else { 850 rval = XEVNT_CKY; 851 break; 852 } 853 854 /* 855 * Install cookie values and light the cookie 856 * bit. If this is not broadcast client mode, we 857 * are done here. 858 */ 859 key_expire(peer); 860 if (hismode == MODE_ACTIVE || hismode == 861 MODE_PASSIVE) 862 peer->pcookie = peer->hcookie ^ cookie; 863 else 864 peer->pcookie = cookie; 865 peer->crypto |= CRYPTO_FLAG_COOK; 866 peer->flash &= ~TEST8; 867 snprintf(statstr, sizeof(statstr), 868 "cook %x ts %u fs %u", peer->pcookie, 869 ntohl(ep->tstamp), ntohl(ep->fstamp)); 870 record_crypto_stats(&peer->srcadr, statstr); 871 #ifdef DEBUG 872 if (debug) 873 printf("crypto_recv: %s\n", statstr); 874 #endif 875 break; 876 877 /* 878 * Install autokey values in broadcast client and 879 * symmetric modes. We have to do this every time the 880 * sever/peer cookie changes or a new keylist is 881 * rolled. Ordinarily, this is automatic as this message 882 * is piggybacked on the first NTP packet sent upon 883 * either of these events. Note that a broadcast client 884 * or symmetric peer can receive this response without a 885 * matching request. 886 */ 887 case CRYPTO_AUTO | CRYPTO_RESP: 888 889 /* 890 * Discard the message if invalid or signature 891 * not verified with respect to the receive 892 * autokey values. 893 */ 894 if ((rval = crypto_verify(ep, &peer->recval, 895 peer)) != XEVNT_OK) 896 break; 897 898 /* 899 * Discard the message if a broadcast client and 900 * the association ID does not match. This might 901 * happen if a broacast server restarts the 902 * protocol. A protocol restart will occur at 903 * the next ASSOC message. 904 */ 905 if ((peer->cast_flags & MDF_BCLNT) && 906 peer->assoc != associd) 907 break; 908 909 /* 910 * Install autokey values and light the 911 * autokey bit. This is not hard. 912 */ 913 if (ep->tstamp == 0) 914 break; 915 916 if (peer->recval.ptr == NULL) 917 peer->recval.ptr = 918 emalloc(sizeof(struct autokey)); 919 bp = (struct autokey *)peer->recval.ptr; 920 peer->recval.tstamp = ep->tstamp; 921 peer->recval.fstamp = ep->fstamp; 922 ap = (struct autokey *)ep->pkt; 923 bp->seq = ntohl(ap->seq); 924 bp->key = ntohl(ap->key); 925 peer->pkeyid = bp->key; 926 peer->crypto |= CRYPTO_FLAG_AUTO; 927 peer->flash &= ~TEST8; 928 snprintf(statstr, sizeof(statstr), 929 "auto seq %d key %x ts %u fs %u", bp->seq, 930 bp->key, ntohl(ep->tstamp), 931 ntohl(ep->fstamp)); 932 record_crypto_stats(&peer->srcadr, statstr); 933 #ifdef DEBUG 934 if (debug) 935 printf("crypto_recv: %s\n", statstr); 936 #endif 937 break; 938 939 /* 940 * X509 certificate sign response. Validate the 941 * certificate signed by the server and install. Later 942 * this can be provided to clients of this server in 943 * lieu of the self signed certificate in order to 944 * validate the public key. 945 */ 946 case CRYPTO_SIGN | CRYPTO_RESP: 947 948 /* 949 * Discard the message if invalid. 950 */ 951 if ((rval = crypto_verify(ep, NULL, peer)) != 952 XEVNT_OK) 953 break; 954 955 /* 956 * Scan the certificate list to delete old 957 * versions and link the newest version first on 958 * the list. 959 */ 960 if ((xinfo = cert_install(ep, peer)) == NULL) { 961 rval = XEVNT_CRT; 962 break; 963 } 964 peer->crypto |= CRYPTO_FLAG_SIGN; 965 peer->flash &= ~TEST8; 966 temp32 = xinfo->nid; 967 snprintf(statstr, sizeof(statstr), 968 "sign %s %s 0x%x %s (%u) fs %u", 969 xinfo->subject, xinfo->issuer, xinfo->flags, 970 OBJ_nid2ln(temp32), temp32, 971 ntohl(ep->fstamp)); 972 record_crypto_stats(&peer->srcadr, statstr); 973 #ifdef DEBUG 974 if (debug) 975 printf("crypto_recv: %s\n", statstr); 976 #endif 977 break; 978 979 /* 980 * Install leapseconds values. While the leapsecond 981 * values epoch, TAI offset and values expiration epoch 982 * are retained, only the current TAI offset is provided 983 * via the kernel to other applications. 984 */ 985 case CRYPTO_LEAP | CRYPTO_RESP: 986 /* 987 * Discard the message if invalid. We can't 988 * compare the value timestamps here, as they 989 * can be updated by different servers. 990 */ 991 if ((rval = crypto_verify(ep, NULL, peer)) != 992 XEVNT_OK) 993 break; 994 995 /* 996 * If the packet leap values are more recent 997 * than the stored ones, install the new leap 998 * values and recompute the signatures. 999 */ 1000 if (leapsec_add_fix(ntohl(ep->pkt[0]), 1001 ntohl(ep->pkt[1]), 1002 ntohl(ep->pkt[2]), 1003 NULL)) 1004 { 1005 leap_signature_t lsig; 1006 1007 leapsec_getsig(&lsig); 1008 tai_leap.tstamp = ep->tstamp; 1009 tai_leap.fstamp = ep->fstamp; 1010 tai_leap.vallen = ep->vallen; 1011 crypto_update(); 1012 mprintf_event(EVNT_TAI, peer, 1013 "%d leap %s expire %s", lsig.taiof, 1014 fstostr(lsig.ttime), 1015 fstostr(lsig.etime)); 1016 } 1017 peer->crypto |= CRYPTO_FLAG_LEAP; 1018 peer->flash &= ~TEST8; 1019 snprintf(statstr, sizeof(statstr), 1020 "leap TAI offset %d at %u expire %u fs %u", 1021 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]), 1022 ntohl(ep->pkt[2]), ntohl(ep->fstamp)); 1023 record_crypto_stats(&peer->srcadr, statstr); 1024 #ifdef DEBUG 1025 if (debug) 1026 printf("crypto_recv: %s\n", statstr); 1027 #endif 1028 break; 1029 1030 /* 1031 * We come here in symmetric modes for miscellaneous 1032 * commands that have value fields but are processed on 1033 * the transmit side. All we need do here is check for 1034 * valid field length. Note that ASSOC is handled 1035 * separately. 1036 */ 1037 case CRYPTO_CERT: 1038 case CRYPTO_IFF: 1039 case CRYPTO_GQ: 1040 case CRYPTO_MV: 1041 case CRYPTO_COOK: 1042 case CRYPTO_SIGN: 1043 if (len < VALUE_LEN) { 1044 rval = XEVNT_LEN; 1045 break; 1046 } 1047 /* fall through */ 1048 1049 /* 1050 * We come here in symmetric modes for requests 1051 * requiring a response (above plus AUTO and LEAP) and 1052 * for responses. If a request, save the extension field 1053 * for later; invalid requests will be caught on the 1054 * transmit side. If an error or invalid response, 1055 * declare a protocol error. 1056 */ 1057 default: 1058 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) { 1059 rval = XEVNT_ERR; 1060 } else if (peer->cmmd == NULL) { 1061 fp = emalloc(len); 1062 memcpy(fp, ep, len); 1063 peer->cmmd = fp; 1064 } 1065 } 1066 1067 /* 1068 * The first error found terminates the extension field 1069 * scan and we return the laundry to the caller. 1070 */ 1071 if (rval != XEVNT_OK) { 1072 snprintf(statstr, sizeof(statstr), 1073 "%04x %d %02x %s", htonl(ep->opcode), 1074 associd, rval, eventstr(rval)); 1075 record_crypto_stats(&peer->srcadr, statstr); 1076 #ifdef DEBUG 1077 if (debug) 1078 printf("crypto_recv: %s\n", statstr); 1079 #endif 1080 return (rval); 1081 } 1082 authlen += (len + 3) / 4 * 4; 1083 } 1084 return (rval); 1085 } 1086 1087 1088 /* 1089 * crypto_xmit - construct extension fields 1090 * 1091 * This routine is called both when an association is configured and 1092 * when one is not. The only case where this matters is to retrieve the 1093 * autokey information, in which case the caller has to provide the 1094 * association ID to match the association. 1095 * 1096 * Side effect: update the packet offset. 1097 * 1098 * Errors 1099 * XEVNT_OK success 1100 * XEVNT_CRT bad or missing certificate 1101 * XEVNT_ERR protocol error 1102 * XEVNT_LEN bad field format or length 1103 * XEVNT_PER host certificate expired 1104 */ 1105 int 1106 crypto_xmit( 1107 struct peer *peer, /* peer structure pointer */ 1108 struct pkt *xpkt, /* transmit packet pointer */ 1109 struct recvbuf *rbufp, /* receive buffer pointer */ 1110 int start, /* offset to extension field */ 1111 struct exten *ep, /* extension pointer */ 1112 keyid_t cookie /* session cookie */ 1113 ) 1114 { 1115 struct exten *fp; /* extension pointers */ 1116 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */ 1117 sockaddr_u *srcadr_sin; /* source address */ 1118 u_int32 *pkt; /* packet pointer */ 1119 u_int opcode; /* extension field opcode */ 1120 char certname[MAXHOSTNAME + 1]; /* subject name buffer */ 1121 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1122 tstamp_t tstamp; 1123 struct calendar tscal; 1124 u_int vallen; 1125 struct value vtemp; 1126 associd_t associd; 1127 int rval; 1128 int len; 1129 keyid_t tcookie; 1130 1131 /* 1132 * Generate the requested extension field request code, length 1133 * and association ID. If this is a response and the host is not 1134 * synchronized, light the error bit and go home. 1135 */ 1136 pkt = (u_int32 *)xpkt + start / 4; 1137 fp = (struct exten *)pkt; 1138 opcode = ntohl(ep->opcode); 1139 if (peer != NULL) { 1140 srcadr_sin = &peer->srcadr; 1141 if (!(opcode & CRYPTO_RESP)) 1142 peer->opcode = ep->opcode; 1143 } else { 1144 srcadr_sin = &rbufp->recv_srcadr; 1145 } 1146 associd = (associd_t) ntohl(ep->associd); 1147 len = 8; 1148 fp->opcode = htonl((opcode & 0xffff0000) | len); 1149 fp->associd = ep->associd; 1150 rval = XEVNT_OK; 1151 tstamp = crypto_time(); 1152 switch (opcode & 0xffff0000) { 1153 1154 /* 1155 * Send association request and response with status word and 1156 * host name. Note, this message is not signed and the filestamp 1157 * contains only the status word. 1158 */ 1159 case CRYPTO_ASSOC: 1160 case CRYPTO_ASSOC | CRYPTO_RESP: 1161 len = crypto_send(fp, &hostval, start); 1162 fp->fstamp = htonl(crypto_flags); 1163 break; 1164 1165 /* 1166 * Send certificate request. Use the values from the extension 1167 * field. 1168 */ 1169 case CRYPTO_CERT: 1170 memset(&vtemp, 0, sizeof(vtemp)); 1171 vtemp.tstamp = ep->tstamp; 1172 vtemp.fstamp = ep->fstamp; 1173 vtemp.vallen = ep->vallen; 1174 vtemp.ptr = (u_char *)ep->pkt; 1175 len = crypto_send(fp, &vtemp, start); 1176 break; 1177 1178 /* 1179 * Send sign request. Use the host certificate, which is self- 1180 * signed and may or may not be trusted. 1181 */ 1182 case CRYPTO_SIGN: 1183 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 1184 if ((calcomp(&tscal, &(cert_host->first)) < 0) 1185 || (calcomp(&tscal, &(cert_host->last)) > 0)) 1186 rval = XEVNT_PER; 1187 else 1188 len = crypto_send(fp, &cert_host->cert, start); 1189 break; 1190 1191 /* 1192 * Send certificate response. Use the name in the extension 1193 * field to find the certificate in the cache. If the request 1194 * contains no subject name, assume the name of this host. This 1195 * is for backwards compatibility. Private certificates are 1196 * never sent. 1197 * 1198 * There may be several certificates matching the request. First 1199 * choice is a self-signed trusted certificate; second choice is 1200 * any certificate signed by another host. There is no third 1201 * choice. 1202 */ 1203 case CRYPTO_CERT | CRYPTO_RESP: 1204 vallen = ntohl(ep->vallen); /* Must be <64k */ 1205 if (vallen == 0 || vallen > MAXHOSTNAME || 1206 len - VALUE_LEN < vallen) { 1207 rval = XEVNT_LEN; 1208 break; 1209 } 1210 1211 /* 1212 * Find all public valid certificates with matching 1213 * subject. If a self-signed, trusted certificate is 1214 * found, use that certificate. If not, use the last non 1215 * self-signed certificate. 1216 */ 1217 memcpy(certname, ep->pkt, vallen); 1218 certname[vallen] = '\0'; 1219 xp = yp = NULL; 1220 for (cp = cinfo; cp != NULL; cp = cp->link) { 1221 if (cp->flags & (CERT_PRIV | CERT_ERROR)) 1222 continue; 1223 1224 if (strcmp(certname, cp->subject) != 0) 1225 continue; 1226 1227 if (strcmp(certname, cp->issuer) != 0) 1228 yp = cp; 1229 else if (cp ->flags & CERT_TRUST) 1230 xp = cp; 1231 continue; 1232 } 1233 1234 /* 1235 * Be careful who you trust. If the certificate is not 1236 * found, return an empty response. Note that we dont 1237 * enforce lifetimes here. 1238 * 1239 * The timestamp and filestamp are taken from the 1240 * certificate value structure. For all certificates the 1241 * timestamp is the latest signature update time. For 1242 * host and imported certificates the filestamp is the 1243 * creation epoch. For signed certificates the filestamp 1244 * is the creation epoch of the trusted certificate at 1245 * the root of the certificate trail. In principle, this 1246 * allows strong checking for signature masquerade. 1247 */ 1248 if (xp == NULL) 1249 xp = yp; 1250 if (xp == NULL) 1251 break; 1252 1253 if (tstamp == 0) 1254 break; 1255 1256 len = crypto_send(fp, &xp->cert, start); 1257 break; 1258 1259 /* 1260 * Send challenge in Schnorr (IFF) identity scheme. 1261 */ 1262 case CRYPTO_IFF: 1263 if (peer == NULL) 1264 break; /* hack attack */ 1265 1266 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) { 1267 len = crypto_send(fp, &vtemp, start); 1268 value_free(&vtemp); 1269 } 1270 break; 1271 1272 /* 1273 * Send response in Schnorr (IFF) identity scheme. 1274 */ 1275 case CRYPTO_IFF | CRYPTO_RESP: 1276 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) { 1277 len = crypto_send(fp, &vtemp, start); 1278 value_free(&vtemp); 1279 } 1280 break; 1281 1282 /* 1283 * Send challenge in Guillou-Quisquater (GQ) identity scheme. 1284 */ 1285 case CRYPTO_GQ: 1286 if (peer == NULL) 1287 break; /* hack attack */ 1288 1289 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) { 1290 len = crypto_send(fp, &vtemp, start); 1291 value_free(&vtemp); 1292 } 1293 break; 1294 1295 /* 1296 * Send response in Guillou-Quisquater (GQ) identity scheme. 1297 */ 1298 case CRYPTO_GQ | CRYPTO_RESP: 1299 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) { 1300 len = crypto_send(fp, &vtemp, start); 1301 value_free(&vtemp); 1302 } 1303 break; 1304 1305 /* 1306 * Send challenge in MV identity scheme. 1307 */ 1308 case CRYPTO_MV: 1309 if (peer == NULL) 1310 break; /* hack attack */ 1311 1312 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) { 1313 len = crypto_send(fp, &vtemp, start); 1314 value_free(&vtemp); 1315 } 1316 break; 1317 1318 /* 1319 * Send response in MV identity scheme. 1320 */ 1321 case CRYPTO_MV | CRYPTO_RESP: 1322 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) { 1323 len = crypto_send(fp, &vtemp, start); 1324 value_free(&vtemp); 1325 } 1326 break; 1327 1328 /* 1329 * Send certificate sign response. The integrity of the request 1330 * certificate has already been verified on the receive side. 1331 * Sign the response using the local server key. Use the 1332 * filestamp from the request and use the timestamp as the 1333 * current time. Light the error bit if the certificate is 1334 * invalid or contains an unverified signature. 1335 */ 1336 case CRYPTO_SIGN | CRYPTO_RESP: 1337 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) { 1338 len = crypto_send(fp, &vtemp, start); 1339 value_free(&vtemp); 1340 } 1341 break; 1342 1343 /* 1344 * Send public key and signature. Use the values from the public 1345 * key. 1346 */ 1347 case CRYPTO_COOK: 1348 len = crypto_send(fp, &pubkey, start); 1349 break; 1350 1351 /* 1352 * Encrypt and send cookie and signature. Light the error bit if 1353 * anything goes wrong. 1354 */ 1355 case CRYPTO_COOK | CRYPTO_RESP: 1356 vallen = ntohl(ep->vallen); /* Must be <64k */ 1357 if ( vallen == 0 1358 || (vallen >= MAX_VALLEN) 1359 || (opcode & 0x0000ffff) < VALUE_LEN + vallen) { 1360 rval = XEVNT_LEN; 1361 break; 1362 } 1363 if (peer == NULL) 1364 tcookie = cookie; 1365 else 1366 tcookie = peer->hcookie; 1367 if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp)) 1368 == XEVNT_OK) { 1369 len = crypto_send(fp, &vtemp, start); 1370 value_free(&vtemp); 1371 } 1372 break; 1373 1374 /* 1375 * Find peer and send autokey data and signature in broadcast 1376 * server and symmetric modes. Use the values in the autokey 1377 * structure. If no association is found, either the server has 1378 * restarted with new associations or some perp has replayed an 1379 * old message, in which case light the error bit. 1380 */ 1381 case CRYPTO_AUTO | CRYPTO_RESP: 1382 if (peer == NULL) { 1383 if ((peer = findpeerbyassoc(associd)) == NULL) { 1384 rval = XEVNT_ERR; 1385 break; 1386 } 1387 } 1388 peer->flags &= ~FLAG_ASSOC; 1389 len = crypto_send(fp, &peer->sndval, start); 1390 break; 1391 1392 /* 1393 * Send leapseconds values and signature. Use the values from 1394 * the tai structure. If no table has been loaded, just send an 1395 * empty request. 1396 */ 1397 case CRYPTO_LEAP | CRYPTO_RESP: 1398 len = crypto_send(fp, &tai_leap, start); 1399 break; 1400 1401 /* 1402 * Default - Send a valid command for unknown requests; send 1403 * an error response for unknown resonses. 1404 */ 1405 default: 1406 if (opcode & CRYPTO_RESP) 1407 rval = XEVNT_ERR; 1408 } 1409 1410 /* 1411 * In case of error, flame the log. If a request, toss the 1412 * puppy; if a response, return so the sender can flame, too. 1413 */ 1414 if (rval != XEVNT_OK) { 1415 u_int32 uint32; 1416 1417 uint32 = CRYPTO_ERROR; 1418 opcode |= uint32; 1419 fp->opcode |= htonl(uint32); 1420 snprintf(statstr, sizeof(statstr), 1421 "%04x %d %02x %s", opcode, associd, rval, 1422 eventstr(rval)); 1423 record_crypto_stats(srcadr_sin, statstr); 1424 #ifdef DEBUG 1425 if (debug) 1426 printf("crypto_xmit: %s\n", statstr); 1427 #endif 1428 if (!(opcode & CRYPTO_RESP)) 1429 return (0); 1430 } 1431 #ifdef DEBUG 1432 if (debug) 1433 printf( 1434 "crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n", 1435 crypto_flags, start, len, opcode >> 16, associd); 1436 #endif 1437 return (len); 1438 } 1439 1440 1441 /* 1442 * crypto_verify - verify the extension field value and signature 1443 * 1444 * Returns 1445 * XEVNT_OK success 1446 * XEVNT_ERR protocol error 1447 * XEVNT_FSP bad filestamp 1448 * XEVNT_LEN bad field format or length 1449 * XEVNT_PUB bad or missing public key 1450 * XEVNT_SGL bad signature length 1451 * XEVNT_SIG signature not verified 1452 * XEVNT_TSP bad timestamp 1453 */ 1454 static int 1455 crypto_verify( 1456 struct exten *ep, /* extension pointer */ 1457 struct value *vp, /* value pointer */ 1458 struct peer *peer /* peer structure pointer */ 1459 ) 1460 { 1461 EVP_PKEY *pkey; /* server public key */ 1462 EVP_MD_CTX ctx; /* signature context */ 1463 tstamp_t tstamp, tstamp1 = 0; /* timestamp */ 1464 tstamp_t fstamp, fstamp1 = 0; /* filestamp */ 1465 u_int vallen; /* value length */ 1466 u_int siglen; /* signature length */ 1467 u_int opcode, len; 1468 int i; 1469 1470 /* 1471 * We are extremely parannoyed. We require valid opcode, length, 1472 * association ID, timestamp, filestamp, public key, digest, 1473 * signature length and signature, where relevant. Note that 1474 * preliminary length checks are done in the main loop. 1475 */ 1476 len = ntohl(ep->opcode) & 0x0000ffff; 1477 opcode = ntohl(ep->opcode) & 0xffff0000; 1478 1479 /* 1480 * Check for valid value header, association ID and extension 1481 * field length. Remember, it is not an error to receive an 1482 * unsolicited response; however, the response ID must match 1483 * the association ID. 1484 */ 1485 if (opcode & CRYPTO_ERROR) 1486 return (XEVNT_ERR); 1487 1488 if (len < VALUE_LEN) 1489 return (XEVNT_LEN); 1490 1491 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode == 1492 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) { 1493 if (ntohl(ep->associd) != peer->assoc) 1494 return (XEVNT_ERR); 1495 } else { 1496 if (ntohl(ep->associd) != peer->associd) 1497 return (XEVNT_ERR); 1498 } 1499 1500 /* 1501 * We have a valid value header. Check for valid value and 1502 * signature field lengths. The extension field length must be 1503 * long enough to contain the value header, value and signature. 1504 * Note both the value and signature field lengths are rounded 1505 * up to the next word (4 octets). 1506 */ 1507 vallen = ntohl(ep->vallen); 1508 if ( vallen == 0 1509 || vallen > MAX_VALLEN) 1510 return (XEVNT_LEN); 1511 1512 i = (vallen + 3) / 4; 1513 siglen = ntohl(ep->pkt[i++]); 1514 if ( siglen > MAX_VALLEN 1515 || len - VALUE_LEN < ((vallen + 3) / 4) * 4 1516 || len - VALUE_LEN - ((vallen + 3) / 4) * 4 1517 < ((siglen + 3) / 4) * 4) 1518 return (XEVNT_LEN); 1519 1520 /* 1521 * Check for valid timestamp and filestamp. If the timestamp is 1522 * zero, the sender is not synchronized and signatures are 1523 * not possible. If nonzero the timestamp must not precede the 1524 * filestamp. The timestamp and filestamp must not precede the 1525 * corresponding values in the value structure, if present. 1526 */ 1527 tstamp = ntohl(ep->tstamp); 1528 fstamp = ntohl(ep->fstamp); 1529 if (tstamp == 0) 1530 return (XEVNT_TSP); 1531 1532 if (tstamp < fstamp) 1533 return (XEVNT_TSP); 1534 1535 if (vp != NULL) { 1536 tstamp1 = ntohl(vp->tstamp); 1537 fstamp1 = ntohl(vp->fstamp); 1538 if (tstamp1 != 0 && fstamp1 != 0) { 1539 if (tstamp < tstamp1) 1540 return (XEVNT_TSP); 1541 1542 if ((tstamp < fstamp1 || fstamp < fstamp1)) 1543 return (XEVNT_FSP); 1544 } 1545 } 1546 1547 /* 1548 * At the time the certificate message is validated, the public 1549 * key in the message is not available. Thus, don't try to 1550 * verify the signature. 1551 */ 1552 if (opcode == (CRYPTO_CERT | CRYPTO_RESP)) 1553 return (XEVNT_OK); 1554 1555 /* 1556 * Check for valid signature length, public key and digest 1557 * algorithm. 1558 */ 1559 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV) 1560 pkey = sign_pkey; 1561 else 1562 pkey = peer->pkey; 1563 if (siglen == 0 || pkey == NULL || peer->digest == NULL) 1564 return (XEVNT_ERR); 1565 1566 if (siglen != (u_int)EVP_PKEY_size(pkey)) 1567 return (XEVNT_SGL); 1568 1569 /* 1570 * Darn, I thought we would never get here. Verify the 1571 * signature. If the identity exchange is verified, light the 1572 * proventic bit. What a relief. 1573 */ 1574 EVP_VerifyInit(&ctx, peer->digest); 1575 /* XXX: the "+ 12" needs to be at least documented... */ 1576 EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12); 1577 if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, 1578 pkey) <= 0) 1579 return (XEVNT_SIG); 1580 1581 if (peer->crypto & CRYPTO_FLAG_VRFY) 1582 peer->crypto |= CRYPTO_FLAG_PROV; 1583 return (XEVNT_OK); 1584 } 1585 1586 1587 /* 1588 * crypto_encrypt - construct vp (encrypted cookie and signature) from 1589 * the public key and cookie. 1590 * 1591 * Returns: 1592 * XEVNT_OK success 1593 * XEVNT_CKY bad or missing cookie 1594 * XEVNT_PUB bad or missing public key 1595 */ 1596 static int 1597 crypto_encrypt( 1598 const u_char *ptr, /* Public Key */ 1599 u_int vallen, /* Length of Public Key */ 1600 keyid_t *cookie, /* server cookie */ 1601 struct value *vp /* value pointer */ 1602 ) 1603 { 1604 EVP_PKEY *pkey; /* public key */ 1605 EVP_MD_CTX ctx; /* signature context */ 1606 tstamp_t tstamp; /* NTP timestamp */ 1607 u_int32 temp32; 1608 u_char *puch; 1609 1610 /* 1611 * Extract the public key from the request. 1612 */ 1613 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen); 1614 if (pkey == NULL) { 1615 msyslog(LOG_ERR, "crypto_encrypt: %s", 1616 ERR_error_string(ERR_get_error(), NULL)); 1617 return (XEVNT_PUB); 1618 } 1619 1620 /* 1621 * Encrypt the cookie, encode in ASN.1 and sign. 1622 */ 1623 memset(vp, 0, sizeof(struct value)); 1624 tstamp = crypto_time(); 1625 vp->tstamp = htonl(tstamp); 1626 vp->fstamp = hostval.tstamp; 1627 vallen = EVP_PKEY_size(pkey); 1628 vp->vallen = htonl(vallen); 1629 vp->ptr = emalloc(vallen); 1630 puch = vp->ptr; 1631 temp32 = htonl(*cookie); 1632 if (RSA_public_encrypt(4, (u_char *)&temp32, puch, 1633 pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) { 1634 msyslog(LOG_ERR, "crypto_encrypt: %s", 1635 ERR_error_string(ERR_get_error(), NULL)); 1636 free(vp->ptr); 1637 EVP_PKEY_free(pkey); 1638 return (XEVNT_CKY); 1639 } 1640 EVP_PKEY_free(pkey); 1641 if (tstamp == 0) 1642 return (XEVNT_OK); 1643 1644 vp->sig = emalloc(sign_siglen); 1645 EVP_SignInit(&ctx, sign_digest); 1646 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 1647 EVP_SignUpdate(&ctx, vp->ptr, vallen); 1648 if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) 1649 vp->siglen = htonl(sign_siglen); 1650 return (XEVNT_OK); 1651 } 1652 1653 1654 /* 1655 * crypto_ident - construct extension field for identity scheme 1656 * 1657 * This routine determines which identity scheme is in use and 1658 * constructs an extension field for that scheme. 1659 * 1660 * Returns 1661 * CRYTPO_IFF IFF scheme 1662 * CRYPTO_GQ GQ scheme 1663 * CRYPTO_MV MV scheme 1664 * CRYPTO_NULL no available scheme 1665 */ 1666 u_int 1667 crypto_ident( 1668 struct peer *peer /* peer structure pointer */ 1669 ) 1670 { 1671 char filename[MAXFILENAME]; 1672 const char * scheme_name; 1673 u_int scheme_id; 1674 1675 /* 1676 * We come here after the group trusted host has been found; its 1677 * name defines the group name. Search the key cache for all 1678 * keys matching the same group name in order IFF, GQ and MV. 1679 * Use the first one available. 1680 */ 1681 scheme_name = NULL; 1682 if (peer->crypto & CRYPTO_FLAG_IFF) { 1683 scheme_name = "iff"; 1684 scheme_id = CRYPTO_IFF; 1685 } else if (peer->crypto & CRYPTO_FLAG_GQ) { 1686 scheme_name = "gq"; 1687 scheme_id = CRYPTO_GQ; 1688 } else if (peer->crypto & CRYPTO_FLAG_MV) { 1689 scheme_name = "mv"; 1690 scheme_id = CRYPTO_MV; 1691 } 1692 1693 if (scheme_name != NULL) { 1694 snprintf(filename, sizeof(filename), "ntpkey_%spar_%s", 1695 scheme_name, peer->ident); 1696 peer->ident_pkey = crypto_key(filename, NULL, 1697 &peer->srcadr); 1698 if (peer->ident_pkey != NULL) 1699 return scheme_id; 1700 } 1701 1702 msyslog(LOG_NOTICE, 1703 "crypto_ident: no identity parameters found for group %s", 1704 peer->ident); 1705 1706 return CRYPTO_NULL; 1707 } 1708 1709 1710 /* 1711 * crypto_args - construct extension field from arguments 1712 * 1713 * This routine creates an extension field with current timestamps and 1714 * specified opcode, association ID and optional string. Note that the 1715 * extension field is created here, but freed after the crypto_xmit() 1716 * call in the protocol module. 1717 * 1718 * Returns extension field pointer (no errors) 1719 * 1720 * XXX: opcode and len should really be 32-bit quantities and 1721 * we should make sure that str is not too big. 1722 */ 1723 struct exten * 1724 crypto_args( 1725 struct peer *peer, /* peer structure pointer */ 1726 u_int opcode, /* operation code */ 1727 associd_t associd, /* association ID */ 1728 char *str /* argument string */ 1729 ) 1730 { 1731 tstamp_t tstamp; /* NTP timestamp */ 1732 struct exten *ep; /* extension field pointer */ 1733 u_int len; /* extension field length */ 1734 size_t slen; 1735 1736 tstamp = crypto_time(); 1737 len = sizeof(struct exten); 1738 if (str != NULL) { 1739 slen = strlen(str); 1740 INSIST(slen < MAX_VALLEN); 1741 len += slen; 1742 } 1743 ep = emalloc_zero(len); 1744 if (opcode == 0) 1745 return (ep); 1746 1747 REQUIRE(0 == (len & ~0x0000ffff)); 1748 REQUIRE(0 == (opcode & ~0xffff0000)); 1749 1750 ep->opcode = htonl(opcode + len); 1751 ep->associd = htonl(associd); 1752 ep->tstamp = htonl(tstamp); 1753 ep->fstamp = hostval.tstamp; 1754 ep->vallen = 0; 1755 if (str != NULL) { 1756 ep->vallen = htonl(slen); 1757 memcpy((char *)ep->pkt, str, slen); 1758 } 1759 return (ep); 1760 } 1761 1762 1763 /* 1764 * crypto_send - construct extension field from value components 1765 * 1766 * The value and signature fields are zero-padded to a word boundary. 1767 * Note: it is not polite to send a nonempty signature with zero 1768 * timestamp or a nonzero timestamp with an empty signature, but those 1769 * rules are not enforced here. 1770 * 1771 * XXX This code won't work on a box with 16-bit ints. 1772 */ 1773 int 1774 crypto_send( 1775 struct exten *ep, /* extension field pointer */ 1776 struct value *vp, /* value pointer */ 1777 int start /* buffer offset */ 1778 ) 1779 { 1780 u_int len, vallen, siglen, opcode; 1781 u_int i, j; 1782 1783 /* 1784 * Calculate extension field length and check for buffer 1785 * overflow. Leave room for the MAC. 1786 */ 1787 len = 16; /* XXX Document! */ 1788 vallen = ntohl(vp->vallen); 1789 INSIST(vallen <= MAX_VALLEN); 1790 len += ((vallen + 3) / 4 + 1) * 4; 1791 siglen = ntohl(vp->siglen); 1792 len += ((siglen + 3) / 4 + 1) * 4; 1793 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN) 1794 return (0); 1795 1796 /* 1797 * Copy timestamps. 1798 */ 1799 ep->tstamp = vp->tstamp; 1800 ep->fstamp = vp->fstamp; 1801 ep->vallen = vp->vallen; 1802 1803 /* 1804 * Copy value. If the data field is empty or zero length, 1805 * encode an empty value with length zero. 1806 */ 1807 i = 0; 1808 if (vallen > 0 && vp->ptr != NULL) { 1809 j = vallen / 4; 1810 if (j * 4 < vallen) 1811 ep->pkt[i + j++] = 0; 1812 memcpy(&ep->pkt[i], vp->ptr, vallen); 1813 i += j; 1814 } 1815 1816 /* 1817 * Copy signature. If the signature field is empty or zero 1818 * length, encode an empty signature with length zero. 1819 */ 1820 ep->pkt[i++] = vp->siglen; 1821 if (siglen > 0 && vp->sig != NULL) { 1822 j = siglen / 4; 1823 if (j * 4 < siglen) 1824 ep->pkt[i + j++] = 0; 1825 memcpy(&ep->pkt[i], vp->sig, siglen); 1826 i += j; 1827 } 1828 opcode = ntohl(ep->opcode); 1829 ep->opcode = htonl((opcode & 0xffff0000) | len); 1830 ENSURE(len <= MAX_VALLEN); 1831 return (len); 1832 } 1833 1834 1835 /* 1836 * crypto_update - compute new public value and sign extension fields 1837 * 1838 * This routine runs periodically, like once a day, and when something 1839 * changes. It updates the timestamps on three value structures and one 1840 * value structure list, then signs all the structures: 1841 * 1842 * hostval host name (not signed) 1843 * pubkey public key 1844 * cinfo certificate info/value list 1845 * tai_leap leap values 1846 * 1847 * Filestamps are proventic data, so this routine runs only when the 1848 * host is synchronized to a proventicated source. Thus, the timestamp 1849 * is proventic and can be used to deflect clogging attacks. 1850 * 1851 * Returns void (no errors) 1852 */ 1853 void 1854 crypto_update(void) 1855 { 1856 EVP_MD_CTX ctx; /* message digest context */ 1857 struct cert_info *cp; /* certificate info/value */ 1858 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 1859 u_int32 *ptr; 1860 u_int len; 1861 leap_signature_t lsig; 1862 1863 hostval.tstamp = htonl(crypto_time()); 1864 if (hostval.tstamp == 0) 1865 return; 1866 1867 /* 1868 * Sign public key and timestamps. The filestamp is derived from 1869 * the host key file extension from wherever the file was 1870 * generated. 1871 */ 1872 if (pubkey.vallen != 0) { 1873 pubkey.tstamp = hostval.tstamp; 1874 pubkey.siglen = 0; 1875 if (pubkey.sig == NULL) 1876 pubkey.sig = emalloc(sign_siglen); 1877 EVP_SignInit(&ctx, sign_digest); 1878 EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12); 1879 EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen)); 1880 if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) 1881 pubkey.siglen = htonl(sign_siglen); 1882 } 1883 1884 /* 1885 * Sign certificates and timestamps. The filestamp is derived 1886 * from the certificate file extension from wherever the file 1887 * was generated. Note we do not throw expired certificates 1888 * away; they may have signed younger ones. 1889 */ 1890 for (cp = cinfo; cp != NULL; cp = cp->link) { 1891 cp->cert.tstamp = hostval.tstamp; 1892 cp->cert.siglen = 0; 1893 if (cp->cert.sig == NULL) 1894 cp->cert.sig = emalloc(sign_siglen); 1895 EVP_SignInit(&ctx, sign_digest); 1896 EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12); 1897 EVP_SignUpdate(&ctx, cp->cert.ptr, 1898 ntohl(cp->cert.vallen)); 1899 if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) 1900 cp->cert.siglen = htonl(sign_siglen); 1901 } 1902 1903 /* 1904 * Sign leapseconds values and timestamps. Note it is not an 1905 * error to return null values. 1906 */ 1907 tai_leap.tstamp = hostval.tstamp; 1908 tai_leap.fstamp = hostval.fstamp; 1909 len = 3 * sizeof(u_int32); 1910 if (tai_leap.ptr == NULL) 1911 tai_leap.ptr = emalloc(len); 1912 tai_leap.vallen = htonl(len); 1913 ptr = (u_int32 *)tai_leap.ptr; 1914 leapsec_getsig(&lsig); 1915 ptr[0] = htonl(lsig.taiof); 1916 ptr[1] = htonl(lsig.ttime); 1917 ptr[2] = htonl(lsig.etime); 1918 if (tai_leap.sig == NULL) 1919 tai_leap.sig = emalloc(sign_siglen); 1920 EVP_SignInit(&ctx, sign_digest); 1921 EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12); 1922 EVP_SignUpdate(&ctx, tai_leap.ptr, len); 1923 if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) 1924 tai_leap.siglen = htonl(sign_siglen); 1925 if (lsig.ttime > 0) 1926 crypto_flags |= CRYPTO_FLAG_TAI; 1927 snprintf(statstr, sizeof(statstr), "signature update ts %u", 1928 ntohl(hostval.tstamp)); 1929 record_crypto_stats(NULL, statstr); 1930 #ifdef DEBUG 1931 if (debug) 1932 printf("crypto_update: %s\n", statstr); 1933 #endif 1934 } 1935 1936 1937 /* 1938 * value_free - free value structure components. 1939 * 1940 * Returns void (no errors) 1941 */ 1942 void 1943 value_free( 1944 struct value *vp /* value structure */ 1945 ) 1946 { 1947 if (vp->ptr != NULL) 1948 free(vp->ptr); 1949 if (vp->sig != NULL) 1950 free(vp->sig); 1951 memset(vp, 0, sizeof(struct value)); 1952 } 1953 1954 1955 /* 1956 * crypto_time - returns current NTP time. 1957 * 1958 * Returns NTP seconds if in synch, 0 otherwise 1959 */ 1960 tstamp_t 1961 crypto_time() 1962 { 1963 l_fp tstamp; /* NTP time */ 1964 1965 L_CLR(&tstamp); 1966 if (sys_leap != LEAP_NOTINSYNC) 1967 get_systime(&tstamp); 1968 return (tstamp.l_ui); 1969 } 1970 1971 1972 /* 1973 * asn_to_calendar - convert ASN1_TIME time structure to struct calendar. 1974 * 1975 */ 1976 static 1977 void 1978 asn_to_calendar ( 1979 ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */ 1980 struct calendar *pjd /* pointer to result */ 1981 ) 1982 { 1983 size_t len; /* length of ASN1_TIME string */ 1984 char v[24]; /* writable copy of ASN1_TIME string */ 1985 unsigned long temp; /* result from strtoul */ 1986 1987 /* 1988 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure. 1989 * Or YYYYMMDDHHMMSSZ. 1990 * Note that the YY, MM, DD fields start with one, the HH, MM, 1991 * SS fields start with zero and the Z character is ignored. 1992 * Also note that two-digit years less than 50 map to years greater than 1993 * 100. Dontcha love ASN.1? Better than MIL-188. 1994 */ 1995 len = asn1time->length; 1996 NTP_REQUIRE(len < sizeof(v)); 1997 (void)strncpy(v, (char *)(asn1time->data), len); 1998 NTP_REQUIRE(len >= 13); 1999 temp = strtoul(v+len-3, NULL, 10); 2000 pjd->second = temp; 2001 v[len-3] = '\0'; 2002 2003 temp = strtoul(v+len-5, NULL, 10); 2004 pjd->minute = temp; 2005 v[len-5] = '\0'; 2006 2007 temp = strtoul(v+len-7, NULL, 10); 2008 pjd->hour = temp; 2009 v[len-7] = '\0'; 2010 2011 temp = strtoul(v+len-9, NULL, 10); 2012 pjd->monthday = temp; 2013 v[len-9] = '\0'; 2014 2015 temp = strtoul(v+len-11, NULL, 10); 2016 pjd->month = temp; 2017 v[len-11] = '\0'; 2018 2019 temp = strtoul(v, NULL, 10); 2020 /* handle two-digit years */ 2021 if (temp < 50UL) 2022 temp += 100UL; 2023 if (temp < 150UL) 2024 temp += 1900UL; 2025 pjd->year = temp; 2026 2027 pjd->yearday = pjd->weekday = 0; 2028 return; 2029 } 2030 2031 2032 /* 2033 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number. 2034 * 2035 * Returns void (no errors) 2036 */ 2037 static void 2038 bighash( 2039 BIGNUM *bn, /* BIGNUM * from */ 2040 BIGNUM *bk /* BIGNUM * to */ 2041 ) 2042 { 2043 EVP_MD_CTX ctx; /* message digest context */ 2044 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */ 2045 u_char *ptr; /* a BIGNUM as binary string */ 2046 u_int len; 2047 2048 len = BN_num_bytes(bn); 2049 ptr = emalloc(len); 2050 BN_bn2bin(bn, ptr); 2051 EVP_DigestInit(&ctx, EVP_md5()); 2052 EVP_DigestUpdate(&ctx, ptr, len); 2053 EVP_DigestFinal(&ctx, dgst, &len); 2054 BN_bin2bn(dgst, len, bk); 2055 free(ptr); 2056 } 2057 2058 2059 /* 2060 *********************************************************************** 2061 * * 2062 * The following routines implement the Schnorr (IFF) identity scheme * 2063 * * 2064 *********************************************************************** 2065 * 2066 * The Schnorr (IFF) identity scheme is intended for use when 2067 * certificates are generated by some other trusted certificate 2068 * authority and the certificate cannot be used to convey public 2069 * parameters. There are two kinds of files: encrypted server files that 2070 * contain private and public values and nonencrypted client files that 2071 * contain only public values. New generations of server files must be 2072 * securely transmitted to all servers of the group; client files can be 2073 * distributed by any means. The scheme is self contained and 2074 * independent of new generations of host keys, sign keys and 2075 * certificates. 2076 * 2077 * The IFF values hide in a DSA cuckoo structure which uses the same 2078 * parameters. The values are used by an identity scheme based on DSA 2079 * cryptography and described in Stimson p. 285. The p is a 512-bit 2080 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 2081 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a 2082 * private random group key b (0 < b < q) and public key v = g^b, then 2083 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. 2084 * Alice challenges Bob to confirm identity using the protocol described 2085 * below. 2086 * 2087 * How it works 2088 * 2089 * The scheme goes like this. Both Alice and Bob have the public primes 2090 * p, q and generator g. The TA gives private key b to Bob and public 2091 * key v to Alice. 2092 * 2093 * Alice rolls new random challenge r (o < r < q) and sends to Bob in 2094 * the IFF request message. Bob rolls new random k (0 < k < q), then 2095 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) 2096 * to Alice in the response message. Besides making the response 2097 * shorter, the hash makes it effectivey impossible for an intruder to 2098 * solve for b by observing a number of these messages. 2099 * 2100 * Alice receives the response and computes g^y v^r mod p. After a bit 2101 * of algebra, this simplifies to g^k. If the hash of this result 2102 * matches hash(x), Alice knows that Bob has the group key b. The signed 2103 * response binds this knowledge to Bob's private key and the public key 2104 * previously received in his certificate. 2105 * 2106 * crypto_alice - construct Alice's challenge in IFF scheme 2107 * 2108 * Returns 2109 * XEVNT_OK success 2110 * XEVNT_ID bad or missing group key 2111 * XEVNT_PUB bad or missing public key 2112 */ 2113 static int 2114 crypto_alice( 2115 struct peer *peer, /* peer pointer */ 2116 struct value *vp /* value pointer */ 2117 ) 2118 { 2119 DSA *dsa; /* IFF parameters */ 2120 BN_CTX *bctx; /* BIGNUM context */ 2121 EVP_MD_CTX ctx; /* signature context */ 2122 tstamp_t tstamp; 2123 u_int len; 2124 2125 /* 2126 * The identity parameters must have correct format and content. 2127 */ 2128 if (peer->ident_pkey == NULL) { 2129 msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable"); 2130 return (XEVNT_ID); 2131 } 2132 2133 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2134 msyslog(LOG_NOTICE, "crypto_alice: defective key"); 2135 return (XEVNT_PUB); 2136 } 2137 2138 /* 2139 * Roll new random r (0 < r < q). 2140 */ 2141 if (peer->iffval != NULL) 2142 BN_free(peer->iffval); 2143 peer->iffval = BN_new(); 2144 len = BN_num_bytes(dsa->q); 2145 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/ 2146 bctx = BN_CTX_new(); 2147 BN_mod(peer->iffval, peer->iffval, dsa->q, bctx); 2148 BN_CTX_free(bctx); 2149 2150 /* 2151 * Sign and send to Bob. The filestamp is from the local file. 2152 */ 2153 memset(vp, 0, sizeof(struct value)); 2154 tstamp = crypto_time(); 2155 vp->tstamp = htonl(tstamp); 2156 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2157 vp->vallen = htonl(len); 2158 vp->ptr = emalloc(len); 2159 BN_bn2bin(peer->iffval, vp->ptr); 2160 if (tstamp == 0) 2161 return (XEVNT_OK); 2162 2163 vp->sig = emalloc(sign_siglen); 2164 EVP_SignInit(&ctx, sign_digest); 2165 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2166 EVP_SignUpdate(&ctx, vp->ptr, len); 2167 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2168 vp->siglen = htonl(sign_siglen); 2169 return (XEVNT_OK); 2170 } 2171 2172 2173 /* 2174 * crypto_bob - construct Bob's response to Alice's challenge 2175 * 2176 * Returns 2177 * XEVNT_OK success 2178 * XEVNT_ERR protocol error 2179 * XEVNT_ID bad or missing group key 2180 */ 2181 static int 2182 crypto_bob( 2183 struct exten *ep, /* extension pointer */ 2184 struct value *vp /* value pointer */ 2185 ) 2186 { 2187 DSA *dsa; /* IFF parameters */ 2188 DSA_SIG *sdsa; /* DSA signature context fake */ 2189 BN_CTX *bctx; /* BIGNUM context */ 2190 EVP_MD_CTX ctx; /* signature context */ 2191 tstamp_t tstamp; /* NTP timestamp */ 2192 BIGNUM *bn, *bk, *r; 2193 u_char *ptr; 2194 u_int len; /* extension field length */ 2195 u_int vallen = 0; /* value length */ 2196 2197 /* 2198 * If the IFF parameters are not valid, something awful 2199 * happened or we are being tormented. 2200 */ 2201 if (iffkey_info == NULL) { 2202 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable"); 2203 return (XEVNT_ID); 2204 } 2205 dsa = iffkey_info->pkey->pkey.dsa; 2206 2207 /* 2208 * Extract r from the challenge. 2209 */ 2210 vallen = ntohl(ep->vallen); 2211 len = ntohl(ep->opcode) & 0x0000ffff; 2212 if (vallen == 0 || len < VALUE_LEN || len - VALUE_LEN < vallen) 2213 return XEVNT_LEN; 2214 if ((r = BN_bin2bn((u_char *)ep->pkt, vallen, NULL)) == NULL) { 2215 msyslog(LOG_ERR, "crypto_bob: %s", 2216 ERR_error_string(ERR_get_error(), NULL)); 2217 return (XEVNT_ERR); 2218 } 2219 2220 /* 2221 * Bob rolls random k (0 < k < q), computes y = k + b r mod q 2222 * and x = g^k mod p, then sends (y, hash(x)) to Alice. 2223 */ 2224 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2225 sdsa = DSA_SIG_new(); 2226 BN_rand(bk, vallen * 8, -1, 1); /* k */ 2227 BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */ 2228 BN_add(bn, bn, bk); 2229 BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */ 2230 sdsa->r = BN_dup(bn); 2231 BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */ 2232 bighash(bk, bk); 2233 sdsa->s = BN_dup(bk); 2234 BN_CTX_free(bctx); 2235 BN_free(r); BN_free(bn); BN_free(bk); 2236 #ifdef DEBUG 2237 if (debug > 1) 2238 DSA_print_fp(stdout, dsa, 0); 2239 #endif 2240 2241 /* 2242 * Encode the values in ASN.1 and sign. The filestamp is from 2243 * the local file. 2244 */ 2245 vallen = i2d_DSA_SIG(sdsa, NULL); 2246 if (vallen == 0) { 2247 msyslog(LOG_ERR, "crypto_bob: %s", 2248 ERR_error_string(ERR_get_error(), NULL)); 2249 DSA_SIG_free(sdsa); 2250 return (XEVNT_ERR); 2251 } 2252 if (vallen > MAX_VALLEN) { 2253 msyslog(LOG_ERR, "crypto_bob: signature is too big: %d", 2254 vallen); 2255 DSA_SIG_free(sdsa); 2256 return (XEVNT_LEN); 2257 } 2258 memset(vp, 0, sizeof(struct value)); 2259 tstamp = crypto_time(); 2260 vp->tstamp = htonl(tstamp); 2261 vp->fstamp = htonl(iffkey_info->fstamp); 2262 vp->vallen = htonl(vallen); 2263 ptr = emalloc(vallen); 2264 vp->ptr = ptr; 2265 i2d_DSA_SIG(sdsa, &ptr); 2266 DSA_SIG_free(sdsa); 2267 if (tstamp == 0) 2268 return (XEVNT_OK); 2269 2270 /* XXX: more validation to make sure the sign fits... */ 2271 vp->sig = emalloc(sign_siglen); 2272 EVP_SignInit(&ctx, sign_digest); 2273 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2274 EVP_SignUpdate(&ctx, vp->ptr, vallen); 2275 if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) 2276 vp->siglen = htonl(sign_siglen); 2277 return (XEVNT_OK); 2278 } 2279 2280 2281 /* 2282 * crypto_iff - verify Bob's response to Alice's challenge 2283 * 2284 * Returns 2285 * XEVNT_OK success 2286 * XEVNT_FSP bad filestamp 2287 * XEVNT_ID bad or missing group key 2288 * XEVNT_PUB bad or missing public key 2289 */ 2290 int 2291 crypto_iff( 2292 struct exten *ep, /* extension pointer */ 2293 struct peer *peer /* peer structure pointer */ 2294 ) 2295 { 2296 DSA *dsa; /* IFF parameters */ 2297 BN_CTX *bctx; /* BIGNUM context */ 2298 DSA_SIG *sdsa; /* DSA parameters */ 2299 BIGNUM *bn, *bk; 2300 u_int len; 2301 const u_char *ptr; 2302 int temp; 2303 2304 /* 2305 * If the IFF parameters are not valid or no challenge was sent, 2306 * something awful happened or we are being tormented. 2307 */ 2308 if (peer->ident_pkey == NULL) { 2309 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable"); 2310 return (XEVNT_ID); 2311 } 2312 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2313 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u", 2314 ntohl(ep->fstamp)); 2315 return (XEVNT_FSP); 2316 } 2317 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2318 msyslog(LOG_NOTICE, "crypto_iff: defective key"); 2319 return (XEVNT_PUB); 2320 } 2321 if (peer->iffval == NULL) { 2322 msyslog(LOG_NOTICE, "crypto_iff: missing challenge"); 2323 return (XEVNT_ID); 2324 } 2325 2326 /* 2327 * Extract the k + b r and g^k values from the response. 2328 */ 2329 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new(); 2330 len = ntohl(ep->vallen); 2331 ptr = (u_char *)ep->pkt; 2332 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2333 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2334 msyslog(LOG_ERR, "crypto_iff: %s", 2335 ERR_error_string(ERR_get_error(), NULL)); 2336 return (XEVNT_ERR); 2337 } 2338 2339 /* 2340 * Compute g^(k + b r) g^(q - b)r mod p. 2341 */ 2342 BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx); 2343 BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx); 2344 BN_mod_mul(bn, bn, bk, dsa->p, bctx); 2345 2346 /* 2347 * Verify the hash of the result matches hash(x). 2348 */ 2349 bighash(bn, bn); 2350 temp = BN_cmp(bn, sdsa->s); 2351 BN_free(bn); BN_free(bk); BN_CTX_free(bctx); 2352 BN_free(peer->iffval); 2353 peer->iffval = NULL; 2354 DSA_SIG_free(sdsa); 2355 if (temp == 0) 2356 return (XEVNT_OK); 2357 2358 msyslog(LOG_NOTICE, "crypto_iff: identity not verified"); 2359 return (XEVNT_ID); 2360 } 2361 2362 2363 /* 2364 *********************************************************************** 2365 * * 2366 * The following routines implement the Guillou-Quisquater (GQ) * 2367 * identity scheme * 2368 * * 2369 *********************************************************************** 2370 * 2371 * The Guillou-Quisquater (GQ) identity scheme is intended for use when 2372 * the certificate can be used to convey public parameters. The scheme 2373 * uses a X509v3 certificate extension field do convey the public key of 2374 * a private key known only to servers. There are two kinds of files: 2375 * encrypted server files that contain private and public values and 2376 * nonencrypted client files that contain only public values. New 2377 * generations of server files must be securely transmitted to all 2378 * servers of the group; client files can be distributed by any means. 2379 * The scheme is self contained and independent of new generations of 2380 * host keys and sign keys. The scheme is self contained and independent 2381 * of new generations of host keys and sign keys. 2382 * 2383 * The GQ parameters hide in a RSA cuckoo structure which uses the same 2384 * parameters. The values are used by an identity scheme based on RSA 2385 * cryptography and described in Stimson p. 300 (with errors). The 512- 2386 * bit public modulus is n = p q, where p and q are secret large primes. 2387 * The TA rolls private random group key b as RSA exponent. These values 2388 * are known to all group members. 2389 * 2390 * When rolling new certificates, a server recomputes the private and 2391 * public keys. The private key u is a random roll, while the public key 2392 * is the inverse obscured by the group key v = (u^-1)^b. These values 2393 * replace the private and public keys normally generated by the RSA 2394 * scheme. Alice challenges Bob to confirm identity using the protocol 2395 * described below. 2396 * 2397 * How it works 2398 * 2399 * The scheme goes like this. Both Alice and Bob have the same modulus n 2400 * and some random b as the group key. These values are computed and 2401 * distributed in advance via secret means, although only the group key 2402 * b is truly secret. Each has a private random private key u and public 2403 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice 2404 * can regenerate the key pair from time to time without affecting 2405 * operations. The public key is conveyed on the certificate in an 2406 * extension field; the private key is never revealed. 2407 * 2408 * Alice rolls new random challenge r and sends to Bob in the GQ 2409 * request message. Bob rolls new random k, then computes y = k u^r mod 2410 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response 2411 * message. Besides making the response shorter, the hash makes it 2412 * effectivey impossible for an intruder to solve for b by observing 2413 * a number of these messages. 2414 * 2415 * Alice receives the response and computes y^b v^r mod n. After a bit 2416 * of algebra, this simplifies to k^b. If the hash of this result 2417 * matches hash(x), Alice knows that Bob has the group key b. The signed 2418 * response binds this knowledge to Bob's private key and the public key 2419 * previously received in his certificate. 2420 * 2421 * crypto_alice2 - construct Alice's challenge in GQ scheme 2422 * 2423 * Returns 2424 * XEVNT_OK success 2425 * XEVNT_ID bad or missing group key 2426 * XEVNT_PUB bad or missing public key 2427 */ 2428 static int 2429 crypto_alice2( 2430 struct peer *peer, /* peer pointer */ 2431 struct value *vp /* value pointer */ 2432 ) 2433 { 2434 RSA *rsa; /* GQ parameters */ 2435 BN_CTX *bctx; /* BIGNUM context */ 2436 EVP_MD_CTX ctx; /* signature context */ 2437 tstamp_t tstamp; 2438 u_int len; 2439 2440 /* 2441 * The identity parameters must have correct format and content. 2442 */ 2443 if (peer->ident_pkey == NULL) 2444 return (XEVNT_ID); 2445 2446 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2447 msyslog(LOG_NOTICE, "crypto_alice2: defective key"); 2448 return (XEVNT_PUB); 2449 } 2450 2451 /* 2452 * Roll new random r (0 < r < n). 2453 */ 2454 if (peer->iffval != NULL) 2455 BN_free(peer->iffval); 2456 peer->iffval = BN_new(); 2457 len = BN_num_bytes(rsa->n); 2458 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */ 2459 bctx = BN_CTX_new(); 2460 BN_mod(peer->iffval, peer->iffval, rsa->n, bctx); 2461 BN_CTX_free(bctx); 2462 2463 /* 2464 * Sign and send to Bob. The filestamp is from the local file. 2465 */ 2466 memset(vp, 0, sizeof(struct value)); 2467 tstamp = crypto_time(); 2468 vp->tstamp = htonl(tstamp); 2469 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2470 vp->vallen = htonl(len); 2471 vp->ptr = emalloc(len); 2472 BN_bn2bin(peer->iffval, vp->ptr); 2473 if (tstamp == 0) 2474 return (XEVNT_OK); 2475 2476 vp->sig = emalloc(sign_siglen); 2477 EVP_SignInit(&ctx, sign_digest); 2478 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2479 EVP_SignUpdate(&ctx, vp->ptr, len); 2480 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2481 vp->siglen = htonl(sign_siglen); 2482 return (XEVNT_OK); 2483 } 2484 2485 2486 /* 2487 * crypto_bob2 - construct Bob's response to Alice's challenge 2488 * 2489 * Returns 2490 * XEVNT_OK success 2491 * XEVNT_ERR protocol error 2492 * XEVNT_ID bad or missing group key 2493 */ 2494 static int 2495 crypto_bob2( 2496 struct exten *ep, /* extension pointer */ 2497 struct value *vp /* value pointer */ 2498 ) 2499 { 2500 RSA *rsa; /* GQ parameters */ 2501 DSA_SIG *sdsa; /* DSA parameters */ 2502 BN_CTX *bctx; /* BIGNUM context */ 2503 EVP_MD_CTX ctx; /* signature context */ 2504 tstamp_t tstamp; /* NTP timestamp */ 2505 BIGNUM *r, *k, *g, *y; 2506 u_char *ptr; 2507 u_int len; 2508 int s_len; 2509 2510 /* 2511 * If the GQ parameters are not valid, something awful 2512 * happened or we are being tormented. 2513 */ 2514 if (gqkey_info == NULL) { 2515 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable"); 2516 return (XEVNT_ID); 2517 } 2518 rsa = gqkey_info->pkey->pkey.rsa; 2519 2520 /* 2521 * Extract r from the challenge. 2522 */ 2523 len = ntohl(ep->vallen); 2524 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2525 msyslog(LOG_ERR, "crypto_bob2: %s", 2526 ERR_error_string(ERR_get_error(), NULL)); 2527 return (XEVNT_ERR); 2528 } 2529 2530 /* 2531 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and 2532 * x = k^b mod n, then sends (y, hash(x)) to Alice. 2533 */ 2534 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new(); 2535 sdsa = DSA_SIG_new(); 2536 BN_rand(k, len * 8, -1, 1); /* k */ 2537 BN_mod(k, k, rsa->n, bctx); 2538 BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */ 2539 BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */ 2540 sdsa->r = BN_dup(y); 2541 BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */ 2542 bighash(g, g); 2543 sdsa->s = BN_dup(g); 2544 BN_CTX_free(bctx); 2545 BN_free(r); BN_free(k); BN_free(g); BN_free(y); 2546 #ifdef DEBUG 2547 if (debug > 1) 2548 RSA_print_fp(stdout, rsa, 0); 2549 #endif 2550 2551 /* 2552 * Encode the values in ASN.1 and sign. The filestamp is from 2553 * the local file. 2554 */ 2555 len = s_len = i2d_DSA_SIG(sdsa, NULL); 2556 if (s_len <= 0) { 2557 msyslog(LOG_ERR, "crypto_bob2: %s", 2558 ERR_error_string(ERR_get_error(), NULL)); 2559 DSA_SIG_free(sdsa); 2560 return (XEVNT_ERR); 2561 } 2562 memset(vp, 0, sizeof(struct value)); 2563 tstamp = crypto_time(); 2564 vp->tstamp = htonl(tstamp); 2565 vp->fstamp = htonl(gqkey_info->fstamp); 2566 vp->vallen = htonl(len); 2567 ptr = emalloc(len); 2568 vp->ptr = ptr; 2569 i2d_DSA_SIG(sdsa, &ptr); 2570 DSA_SIG_free(sdsa); 2571 if (tstamp == 0) 2572 return (XEVNT_OK); 2573 2574 vp->sig = emalloc(sign_siglen); 2575 EVP_SignInit(&ctx, sign_digest); 2576 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2577 EVP_SignUpdate(&ctx, vp->ptr, len); 2578 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2579 vp->siglen = htonl(sign_siglen); 2580 return (XEVNT_OK); 2581 } 2582 2583 2584 /* 2585 * crypto_gq - verify Bob's response to Alice's challenge 2586 * 2587 * Returns 2588 * XEVNT_OK success 2589 * XEVNT_ERR protocol error 2590 * XEVNT_FSP bad filestamp 2591 * XEVNT_ID bad or missing group keys 2592 * XEVNT_PUB bad or missing public key 2593 */ 2594 int 2595 crypto_gq( 2596 struct exten *ep, /* extension pointer */ 2597 struct peer *peer /* peer structure pointer */ 2598 ) 2599 { 2600 RSA *rsa; /* GQ parameters */ 2601 BN_CTX *bctx; /* BIGNUM context */ 2602 DSA_SIG *sdsa; /* RSA signature context fake */ 2603 BIGNUM *y, *v; 2604 const u_char *ptr; 2605 long len; 2606 u_int temp; 2607 2608 /* 2609 * If the GQ parameters are not valid or no challenge was sent, 2610 * something awful happened or we are being tormented. Note that 2611 * the filestamp on the local key file can be greater than on 2612 * the remote parameter file if the keys have been refreshed. 2613 */ 2614 if (peer->ident_pkey == NULL) { 2615 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable"); 2616 return (XEVNT_ID); 2617 } 2618 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) { 2619 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u", 2620 ntohl(ep->fstamp)); 2621 return (XEVNT_FSP); 2622 } 2623 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) { 2624 msyslog(LOG_NOTICE, "crypto_gq: defective key"); 2625 return (XEVNT_PUB); 2626 } 2627 if (peer->iffval == NULL) { 2628 msyslog(LOG_NOTICE, "crypto_gq: missing challenge"); 2629 return (XEVNT_ID); 2630 } 2631 2632 /* 2633 * Extract the y = k u^r and hash(x = k^b) values from the 2634 * response. 2635 */ 2636 bctx = BN_CTX_new(); y = BN_new(); v = BN_new(); 2637 len = ntohl(ep->vallen); 2638 ptr = (u_char *)ep->pkt; 2639 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) { 2640 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2641 msyslog(LOG_ERR, "crypto_gq: %s", 2642 ERR_error_string(ERR_get_error(), NULL)); 2643 return (XEVNT_ERR); 2644 } 2645 2646 /* 2647 * Compute v^r y^b mod n. 2648 */ 2649 if (peer->grpkey == NULL) { 2650 msyslog(LOG_NOTICE, "crypto_gq: missing group key"); 2651 return (XEVNT_ID); 2652 } 2653 BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx); 2654 /* v^r mod n */ 2655 BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */ 2656 BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */ 2657 2658 /* 2659 * Verify the hash of the result matches hash(x). 2660 */ 2661 bighash(y, y); 2662 temp = BN_cmp(y, sdsa->s); 2663 BN_CTX_free(bctx); BN_free(y); BN_free(v); 2664 BN_free(peer->iffval); 2665 peer->iffval = NULL; 2666 DSA_SIG_free(sdsa); 2667 if (temp == 0) 2668 return (XEVNT_OK); 2669 2670 msyslog(LOG_NOTICE, "crypto_gq: identity not verified"); 2671 return (XEVNT_ID); 2672 } 2673 2674 2675 /* 2676 *********************************************************************** 2677 * * 2678 * The following routines implement the Mu-Varadharajan (MV) identity * 2679 * scheme * 2680 * * 2681 *********************************************************************** 2682 * 2683 * The Mu-Varadharajan (MV) cryptosystem was originally intended when 2684 * servers broadcast messages to clients, but clients never send 2685 * messages to servers. There is one encryption key for the server and a 2686 * separate decryption key for each client. It operated something like a 2687 * pay-per-view satellite broadcasting system where the session key is 2688 * encrypted by the broadcaster and the decryption keys are held in a 2689 * tamperproof set-top box. 2690 * 2691 * The MV parameters and private encryption key hide in a DSA cuckoo 2692 * structure which uses the same parameters, but generated in a 2693 * different way. The values are used in an encryption scheme similar to 2694 * El Gamal cryptography and a polynomial formed from the expansion of 2695 * product terms (x - x[j]), as described in Mu, Y., and V. 2696 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, 2697 * 223-231. The paper has significant errors and serious omissions. 2698 * 2699 * Let q be the product of n distinct primes s1[j] (j = 1...n), where 2700 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so 2701 * that q and each s1[j] divide p - 1 and p has M = n * m + 1 2702 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) 2703 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then 2704 * project into Zp* as exponents of g. Sometimes we have to compute an 2705 * inverse b^-1 of random b in Zq, but for that purpose we require 2706 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n 2707 * relatively small, like 30. These are the parameters of the scheme and 2708 * they are expensive to compute. 2709 * 2710 * We set up an instance of the scheme as follows. A set of random 2711 * values x[j] mod q (j = 1...n), are generated as the zeros of a 2712 * polynomial of order n. The product terms (x - x[j]) are expanded to 2713 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are 2714 * used as exponents of the generator g mod p to generate the private 2715 * encryption key A. The pair (gbar, ghat) of public server keys and the 2716 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used 2717 * to construct the decryption keys. The devil is in the details. 2718 * 2719 * This routine generates a private server encryption file including the 2720 * private encryption key E and partial decryption keys gbar and ghat. 2721 * It then generates public client decryption files including the public 2722 * keys xbar[j] and xhat[j] for each client j. The partial decryption 2723 * files are used to compute the inverse of E. These values are suitably 2724 * blinded so secrets are not revealed. 2725 * 2726 * The distinguishing characteristic of this scheme is the capability to 2727 * revoke keys. Included in the calculation of E, gbar and ghat is the 2728 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is 2729 * subsequently removed from the product and E, gbar and ghat 2730 * recomputed, the jth client will no longer be able to compute E^-1 and 2731 * thus unable to decrypt the messageblock. 2732 * 2733 * How it works 2734 * 2735 * The scheme goes like this. Bob has the server values (p, E, q, gbar, 2736 * ghat) and Alice has the client values (p, xbar, xhat). 2737 * 2738 * Alice rolls new random nonce r mod p and sends to Bob in the MV 2739 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k 2740 * mod p and sends (y, gbar^k, ghat^k) to Alice. 2741 * 2742 * Alice receives the response and computes the inverse (E^k)^-1 from 2743 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then 2744 * decrypts y and verifies it matches the original r. The signed 2745 * response binds this knowledge to Bob's private key and the public key 2746 * previously received in his certificate. 2747 * 2748 * crypto_alice3 - construct Alice's challenge in MV scheme 2749 * 2750 * Returns 2751 * XEVNT_OK success 2752 * XEVNT_ID bad or missing group key 2753 * XEVNT_PUB bad or missing public key 2754 */ 2755 static int 2756 crypto_alice3( 2757 struct peer *peer, /* peer pointer */ 2758 struct value *vp /* value pointer */ 2759 ) 2760 { 2761 DSA *dsa; /* MV parameters */ 2762 BN_CTX *bctx; /* BIGNUM context */ 2763 EVP_MD_CTX ctx; /* signature context */ 2764 tstamp_t tstamp; 2765 u_int len; 2766 2767 /* 2768 * The identity parameters must have correct format and content. 2769 */ 2770 if (peer->ident_pkey == NULL) 2771 return (XEVNT_ID); 2772 2773 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2774 msyslog(LOG_NOTICE, "crypto_alice3: defective key"); 2775 return (XEVNT_PUB); 2776 } 2777 2778 /* 2779 * Roll new random r (0 < r < q). 2780 */ 2781 if (peer->iffval != NULL) 2782 BN_free(peer->iffval); 2783 peer->iffval = BN_new(); 2784 len = BN_num_bytes(dsa->p); 2785 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */ 2786 bctx = BN_CTX_new(); 2787 BN_mod(peer->iffval, peer->iffval, dsa->p, bctx); 2788 BN_CTX_free(bctx); 2789 2790 /* 2791 * Sign and send to Bob. The filestamp is from the local file. 2792 */ 2793 memset(vp, 0, sizeof(struct value)); 2794 tstamp = crypto_time(); 2795 vp->tstamp = htonl(tstamp); 2796 vp->fstamp = htonl(peer->ident_pkey->fstamp); 2797 vp->vallen = htonl(len); 2798 vp->ptr = emalloc(len); 2799 BN_bn2bin(peer->iffval, vp->ptr); 2800 if (tstamp == 0) 2801 return (XEVNT_OK); 2802 2803 vp->sig = emalloc(sign_siglen); 2804 EVP_SignInit(&ctx, sign_digest); 2805 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2806 EVP_SignUpdate(&ctx, vp->ptr, len); 2807 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2808 vp->siglen = htonl(sign_siglen); 2809 return (XEVNT_OK); 2810 } 2811 2812 2813 /* 2814 * crypto_bob3 - construct Bob's response to Alice's challenge 2815 * 2816 * Returns 2817 * XEVNT_OK success 2818 * XEVNT_ERR protocol error 2819 */ 2820 static int 2821 crypto_bob3( 2822 struct exten *ep, /* extension pointer */ 2823 struct value *vp /* value pointer */ 2824 ) 2825 { 2826 DSA *dsa; /* MV parameters */ 2827 DSA *sdsa; /* DSA signature context fake */ 2828 BN_CTX *bctx; /* BIGNUM context */ 2829 EVP_MD_CTX ctx; /* signature context */ 2830 tstamp_t tstamp; /* NTP timestamp */ 2831 BIGNUM *r, *k, *u; 2832 u_char *ptr; 2833 u_int len; 2834 2835 /* 2836 * If the MV parameters are not valid, something awful 2837 * happened or we are being tormented. 2838 */ 2839 if (mvkey_info == NULL) { 2840 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable"); 2841 return (XEVNT_ID); 2842 } 2843 dsa = mvkey_info->pkey->pkey.dsa; 2844 2845 /* 2846 * Extract r from the challenge. 2847 */ 2848 len = ntohl(ep->vallen); 2849 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) { 2850 msyslog(LOG_ERR, "crypto_bob3: %s", 2851 ERR_error_string(ERR_get_error(), NULL)); 2852 return (XEVNT_ERR); 2853 } 2854 2855 /* 2856 * Bob rolls random k (0 < k < q), making sure it is not a 2857 * factor of q. He then computes y = r A^k and sends (y, gbar^k, 2858 * and ghat^k) to Alice. 2859 */ 2860 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); 2861 sdsa = DSA_new(); 2862 sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new(); 2863 while (1) { 2864 BN_rand(k, BN_num_bits(dsa->q), 0, 0); 2865 BN_mod(k, k, dsa->q, bctx); 2866 BN_gcd(u, k, dsa->q, bctx); 2867 if (BN_is_one(u)) 2868 break; 2869 } 2870 BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */ 2871 BN_mod_mul(sdsa->p, u, r, dsa->p, bctx); 2872 BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */ 2873 BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */ 2874 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u); 2875 #ifdef DEBUG 2876 if (debug > 1) 2877 DSA_print_fp(stdout, sdsa, 0); 2878 #endif 2879 2880 /* 2881 * Encode the values in ASN.1 and sign. The filestamp is from 2882 * the local file. 2883 */ 2884 memset(vp, 0, sizeof(struct value)); 2885 tstamp = crypto_time(); 2886 vp->tstamp = htonl(tstamp); 2887 vp->fstamp = htonl(mvkey_info->fstamp); 2888 len = i2d_DSAparams(sdsa, NULL); 2889 if (len == 0) { 2890 msyslog(LOG_ERR, "crypto_bob3: %s", 2891 ERR_error_string(ERR_get_error(), NULL)); 2892 DSA_free(sdsa); 2893 return (XEVNT_ERR); 2894 } 2895 vp->vallen = htonl(len); 2896 ptr = emalloc(len); 2897 vp->ptr = ptr; 2898 i2d_DSAparams(sdsa, &ptr); 2899 DSA_free(sdsa); 2900 if (tstamp == 0) 2901 return (XEVNT_OK); 2902 2903 vp->sig = emalloc(sign_siglen); 2904 EVP_SignInit(&ctx, sign_digest); 2905 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12); 2906 EVP_SignUpdate(&ctx, vp->ptr, len); 2907 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 2908 vp->siglen = htonl(sign_siglen); 2909 return (XEVNT_OK); 2910 } 2911 2912 2913 /* 2914 * crypto_mv - verify Bob's response to Alice's challenge 2915 * 2916 * Returns 2917 * XEVNT_OK success 2918 * XEVNT_ERR protocol error 2919 * XEVNT_FSP bad filestamp 2920 * XEVNT_ID bad or missing group key 2921 * XEVNT_PUB bad or missing public key 2922 */ 2923 int 2924 crypto_mv( 2925 struct exten *ep, /* extension pointer */ 2926 struct peer *peer /* peer structure pointer */ 2927 ) 2928 { 2929 DSA *dsa; /* MV parameters */ 2930 DSA *sdsa; /* DSA parameters */ 2931 BN_CTX *bctx; /* BIGNUM context */ 2932 BIGNUM *k, *u, *v; 2933 u_int len; 2934 const u_char *ptr; 2935 int temp; 2936 2937 /* 2938 * If the MV parameters are not valid or no challenge was sent, 2939 * something awful happened or we are being tormented. 2940 */ 2941 if (peer->ident_pkey == NULL) { 2942 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable"); 2943 return (XEVNT_ID); 2944 } 2945 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) { 2946 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u", 2947 ntohl(ep->fstamp)); 2948 return (XEVNT_FSP); 2949 } 2950 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) { 2951 msyslog(LOG_NOTICE, "crypto_mv: defective key"); 2952 return (XEVNT_PUB); 2953 } 2954 if (peer->iffval == NULL) { 2955 msyslog(LOG_NOTICE, "crypto_mv: missing challenge"); 2956 return (XEVNT_ID); 2957 } 2958 2959 /* 2960 * Extract the y, gbar and ghat values from the response. 2961 */ 2962 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new(); 2963 len = ntohl(ep->vallen); 2964 ptr = (u_char *)ep->pkt; 2965 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) { 2966 msyslog(LOG_ERR, "crypto_mv: %s", 2967 ERR_error_string(ERR_get_error(), NULL)); 2968 return (XEVNT_ERR); 2969 } 2970 2971 /* 2972 * Compute (gbar^xhat ghat^xbar) mod p. 2973 */ 2974 BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx); 2975 BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx); 2976 BN_mod_mul(u, u, v, dsa->p, bctx); 2977 BN_mod_mul(u, u, sdsa->p, dsa->p, bctx); 2978 2979 /* 2980 * The result should match r. 2981 */ 2982 temp = BN_cmp(u, peer->iffval); 2983 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v); 2984 BN_free(peer->iffval); 2985 peer->iffval = NULL; 2986 DSA_free(sdsa); 2987 if (temp == 0) 2988 return (XEVNT_OK); 2989 2990 msyslog(LOG_NOTICE, "crypto_mv: identity not verified"); 2991 return (XEVNT_ID); 2992 } 2993 2994 2995 /* 2996 *********************************************************************** 2997 * * 2998 * The following routines are used to manipulate certificates * 2999 * * 3000 *********************************************************************** 3001 */ 3002 /* 3003 * cert_sign - sign x509 certificate equest and update value structure. 3004 * 3005 * The certificate request includes a copy of the host certificate, 3006 * which includes the version number, subject name and public key of the 3007 * host. The resulting certificate includes these values plus the 3008 * serial number, issuer name and valid interval of the server. The 3009 * valid interval extends from the current time to the same time one 3010 * year hence. This may extend the life of the signed certificate beyond 3011 * that of the signer certificate. 3012 * 3013 * It is convenient to use the NTP seconds of the current time as the 3014 * serial number. In the value structure the timestamp is the current 3015 * time and the filestamp is taken from the extension field. Note this 3016 * routine is called only when the client clock is synchronized to a 3017 * proventic source, so timestamp comparisons are valid. 3018 * 3019 * The host certificate is valid from the time it was generated for a 3020 * period of one year. A signed certificate is valid from the time of 3021 * signature for a period of one year, but only the host certificate (or 3022 * sign certificate if used) is actually used to encrypt and decrypt 3023 * signatures. The signature trail is built from the client via the 3024 * intermediate servers to the trusted server. Each signature on the 3025 * trail must be valid at the time of signature, but it could happen 3026 * that a signer certificate expire before the signed certificate, which 3027 * remains valid until its expiration. 3028 * 3029 * Returns 3030 * XEVNT_OK success 3031 * XEVNT_CRT bad or missing certificate 3032 * XEVNT_PER host certificate expired 3033 * XEVNT_PUB bad or missing public key 3034 * XEVNT_VFY certificate not verified 3035 */ 3036 static int 3037 cert_sign( 3038 struct exten *ep, /* extension field pointer */ 3039 struct value *vp /* value pointer */ 3040 ) 3041 { 3042 X509 *req; /* X509 certificate request */ 3043 X509 *cert; /* X509 certificate */ 3044 X509_EXTENSION *ext; /* certificate extension */ 3045 ASN1_INTEGER *serial; /* serial number */ 3046 X509_NAME *subj; /* distinguished (common) name */ 3047 EVP_PKEY *pkey; /* public key */ 3048 EVP_MD_CTX ctx; /* message digest context */ 3049 tstamp_t tstamp; /* NTP timestamp */ 3050 struct calendar tscal; 3051 u_int len; 3052 const u_char *cptr; 3053 u_char *ptr; 3054 int i, temp; 3055 3056 /* 3057 * Decode ASN.1 objects and construct certificate structure. 3058 * Make sure the system clock is synchronized to a proventic 3059 * source. 3060 */ 3061 tstamp = crypto_time(); 3062 if (tstamp == 0) 3063 return (XEVNT_TSP); 3064 3065 cptr = (void *)ep->pkt; 3066 if ((req = d2i_X509(NULL, &cptr, ntohl(ep->vallen))) == NULL) { 3067 msyslog(LOG_ERR, "cert_sign: %s", 3068 ERR_error_string(ERR_get_error(), NULL)); 3069 return (XEVNT_CRT); 3070 } 3071 /* 3072 * Extract public key and check for errors. 3073 */ 3074 if ((pkey = X509_get_pubkey(req)) == NULL) { 3075 msyslog(LOG_ERR, "cert_sign: %s", 3076 ERR_error_string(ERR_get_error(), NULL)); 3077 X509_free(req); 3078 return (XEVNT_PUB); 3079 } 3080 3081 /* 3082 * Generate X509 certificate signed by this server. If this is a 3083 * trusted host, the issuer name is the group name; otherwise, 3084 * it is the host name. Also copy any extensions that might be 3085 * present. 3086 */ 3087 cert = X509_new(); 3088 X509_set_version(cert, X509_get_version(req)); 3089 serial = ASN1_INTEGER_new(); 3090 ASN1_INTEGER_set(serial, tstamp); 3091 X509_set_serialNumber(cert, serial); 3092 X509_gmtime_adj(X509_get_notBefore(cert), 0L); 3093 X509_gmtime_adj(X509_get_notAfter(cert), YEAR); 3094 subj = X509_get_issuer_name(cert); 3095 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, 3096 hostval.ptr, strlen((const char *)hostval.ptr), -1, 0); 3097 subj = X509_get_subject_name(req); 3098 X509_set_subject_name(cert, subj); 3099 X509_set_pubkey(cert, pkey); 3100 temp = X509_get_ext_count(req); 3101 for (i = 0; i < temp; i++) { 3102 ext = X509_get_ext(req, i); 3103 INSIST(X509_add_ext(cert, ext, -1)); 3104 } 3105 X509_free(req); 3106 3107 /* 3108 * Sign and verify the client certificate, but only if the host 3109 * certificate has not expired. 3110 */ 3111 (void)ntpcal_ntp_to_date(&tscal, tstamp, NULL); 3112 if ((calcomp(&tscal, &(cert_host->first)) < 0) 3113 || (calcomp(&tscal, &(cert_host->last)) > 0)) { 3114 X509_free(cert); 3115 return (XEVNT_PER); 3116 } 3117 X509_sign(cert, sign_pkey, sign_digest); 3118 if (X509_verify(cert, sign_pkey) <= 0) { 3119 msyslog(LOG_ERR, "cert_sign: %s", 3120 ERR_error_string(ERR_get_error(), NULL)); 3121 X509_free(cert); 3122 return (XEVNT_VFY); 3123 } 3124 len = i2d_X509(cert, NULL); 3125 3126 /* 3127 * Build and sign the value structure. We have to sign it here, 3128 * since the response has to be returned right away. This is a 3129 * clogging hazard. 3130 */ 3131 memset(vp, 0, sizeof(struct value)); 3132 vp->tstamp = htonl(tstamp); 3133 vp->fstamp = ep->fstamp; 3134 vp->vallen = htonl(len); 3135 vp->ptr = emalloc(len); 3136 ptr = vp->ptr; 3137 i2d_X509(cert, (unsigned char **)(intptr_t)&ptr); 3138 vp->siglen = 0; 3139 if (tstamp != 0) { 3140 vp->sig = emalloc(sign_siglen); 3141 EVP_SignInit(&ctx, sign_digest); 3142 EVP_SignUpdate(&ctx, (u_char *)vp, 12); 3143 EVP_SignUpdate(&ctx, vp->ptr, len); 3144 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) 3145 vp->siglen = htonl(sign_siglen); 3146 } 3147 #ifdef DEBUG 3148 if (debug > 1) 3149 X509_print_fp(stdout, cert); 3150 #endif 3151 X509_free(cert); 3152 return (XEVNT_OK); 3153 } 3154 3155 3156 /* 3157 * cert_install - install certificate in certificate cache 3158 * 3159 * This routine encodes an extension field into a certificate info/value 3160 * structure. It searches the certificate list for duplicates and 3161 * expunges whichever is older. Finally, it inserts this certificate 3162 * first on the list. 3163 * 3164 * Returns certificate info pointer if valid, NULL if not. 3165 */ 3166 struct cert_info * 3167 cert_install( 3168 struct exten *ep, /* cert info/value */ 3169 struct peer *peer /* peer structure */ 3170 ) 3171 { 3172 struct cert_info *cp, *xp, **zp; 3173 3174 /* 3175 * Parse and validate the signed certificate. If valid, 3176 * construct the info/value structure; otherwise, scamper home 3177 * empty handed. 3178 */ 3179 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen), 3180 (tstamp_t)ntohl(ep->fstamp))) == NULL) 3181 return (NULL); 3182 3183 /* 3184 * Scan certificate list looking for another certificate with 3185 * the same subject and issuer. If another is found with the 3186 * same or older filestamp, unlink it and return the goodies to 3187 * the heap. If another is found with a later filestamp, discard 3188 * the new one and leave the building with the old one. 3189 * 3190 * Make a note to study this issue again. An earlier certificate 3191 * with a long lifetime might be overtaken by a later 3192 * certificate with a short lifetime, thus invalidating the 3193 * earlier signature. However, we gotta find a way to leak old 3194 * stuff from the cache, so we do it anyway. 3195 */ 3196 zp = &cinfo; 3197 for (xp = cinfo; xp != NULL; xp = xp->link) { 3198 if (strcmp(cp->subject, xp->subject) == 0 && 3199 strcmp(cp->issuer, xp->issuer) == 0) { 3200 if (ntohl(cp->cert.fstamp) <= 3201 ntohl(xp->cert.fstamp)) { 3202 cert_free(cp); 3203 cp = xp; 3204 } else { 3205 *zp = xp->link; 3206 cert_free(xp); 3207 xp = NULL; 3208 } 3209 break; 3210 } 3211 zp = &xp->link; 3212 } 3213 if (xp == NULL) { 3214 cp->link = cinfo; 3215 cinfo = cp; 3216 } 3217 cp->flags |= CERT_VALID; 3218 crypto_update(); 3219 return (cp); 3220 } 3221 3222 3223 /* 3224 * cert_hike - verify the signature using the issuer public key 3225 * 3226 * Returns 3227 * XEVNT_OK success 3228 * XEVNT_CRT bad or missing certificate 3229 * XEVNT_PER host certificate expired 3230 * XEVNT_VFY certificate not verified 3231 */ 3232 int 3233 cert_hike( 3234 struct peer *peer, /* peer structure pointer */ 3235 struct cert_info *yp /* issuer certificate */ 3236 ) 3237 { 3238 struct cert_info *xp; /* subject certificate */ 3239 X509 *cert; /* X509 certificate */ 3240 const u_char *ptr; 3241 3242 /* 3243 * Save the issuer on the new certificate, but remember the old 3244 * one. 3245 */ 3246 if (peer->issuer != NULL) 3247 free(peer->issuer); 3248 peer->issuer = estrdup(yp->issuer); 3249 xp = peer->xinfo; 3250 peer->xinfo = yp; 3251 3252 /* 3253 * If subject Y matches issuer Y, then the certificate trail is 3254 * complete. If Y is not trusted, the server certificate has yet 3255 * been signed, so keep trying. Otherwise, save the group key 3256 * and light the valid bit. If the host certificate is trusted, 3257 * do not execute a sign exchange. If no identity scheme is in 3258 * use, light the identity and proventic bits. 3259 */ 3260 if (strcmp(yp->subject, yp->issuer) == 0) { 3261 if (!(yp->flags & CERT_TRUST)) 3262 return (XEVNT_OK); 3263 3264 /* 3265 * If the server has an an identity scheme, fetch the 3266 * identity credentials. If not, the identity is 3267 * verified only by the trusted certificate. The next 3268 * signature will set the server proventic. 3269 */ 3270 peer->crypto |= CRYPTO_FLAG_CERT; 3271 peer->grpkey = yp->grpkey; 3272 if (peer->ident == NULL || !(peer->crypto & 3273 CRYPTO_FLAG_MASK)) 3274 peer->crypto |= CRYPTO_FLAG_VRFY; 3275 } 3276 3277 /* 3278 * If X exists, verify signature X using public key Y. 3279 */ 3280 if (xp == NULL) 3281 return (XEVNT_OK); 3282 3283 ptr = (u_char *)xp->cert.ptr; 3284 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen)); 3285 if (cert == NULL) { 3286 xp->flags |= CERT_ERROR; 3287 return (XEVNT_CRT); 3288 } 3289 if (X509_verify(cert, yp->pkey) <= 0) { 3290 X509_free(cert); 3291 xp->flags |= CERT_ERROR; 3292 return (XEVNT_VFY); 3293 } 3294 X509_free(cert); 3295 3296 /* 3297 * Signature X is valid only if it begins during the 3298 * lifetime of Y. 3299 */ 3300 if ((calcomp(&(xp->first), &(yp->first)) < 0) 3301 || (calcomp(&(xp->first), &(yp->last)) > 0)) { 3302 xp->flags |= CERT_ERROR; 3303 return (XEVNT_PER); 3304 } 3305 xp->flags |= CERT_SIGN; 3306 return (XEVNT_OK); 3307 } 3308 3309 3310 /* 3311 * cert_parse - parse x509 certificate and create info/value structures. 3312 * 3313 * The server certificate includes the version number, issuer name, 3314 * subject name, public key and valid date interval. If the issuer name 3315 * is the same as the subject name, the certificate is self signed and 3316 * valid only if the server is configured as trustable. If the names are 3317 * different, another issuer has signed the server certificate and 3318 * vouched for it. In this case the server certificate is valid if 3319 * verified by the issuer public key. 3320 * 3321 * Returns certificate info/value pointer if valid, NULL if not. 3322 */ 3323 struct cert_info * /* certificate information structure */ 3324 cert_parse( 3325 const u_char *asn1cert, /* X509 certificate */ 3326 long len, /* certificate length */ 3327 tstamp_t fstamp /* filestamp */ 3328 ) 3329 { 3330 X509 *cert; /* X509 certificate */ 3331 X509_EXTENSION *ext; /* X509v3 extension */ 3332 struct cert_info *ret; /* certificate info/value */ 3333 BIO *bp; 3334 char pathbuf[MAXFILENAME]; 3335 const u_char *ptr; 3336 char *pch; 3337 int temp, cnt, i; 3338 struct calendar fscal; 3339 3340 /* 3341 * Decode ASN.1 objects and construct certificate structure. 3342 */ 3343 ptr = asn1cert; 3344 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) { 3345 msyslog(LOG_ERR, "cert_parse: %s", 3346 ERR_error_string(ERR_get_error(), NULL)); 3347 return (NULL); 3348 } 3349 #ifdef DEBUG 3350 if (debug > 1) 3351 X509_print_fp(stdout, cert); 3352 #endif 3353 3354 /* 3355 * Extract version, subject name and public key. 3356 */ 3357 ret = emalloc_zero(sizeof(*ret)); 3358 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) { 3359 msyslog(LOG_ERR, "cert_parse: %s", 3360 ERR_error_string(ERR_get_error(), NULL)); 3361 cert_free(ret); 3362 X509_free(cert); 3363 return (NULL); 3364 } 3365 ret->version = X509_get_version(cert); 3366 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf, 3367 sizeof(pathbuf)); 3368 pch = strstr(pathbuf, "CN="); 3369 if (NULL == pch) { 3370 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s", 3371 pathbuf); 3372 cert_free(ret); 3373 X509_free(cert); 3374 return (NULL); 3375 } 3376 ret->subject = estrdup(pch + 3); 3377 3378 /* 3379 * Extract remaining objects. Note that the NTP serial number is 3380 * the NTP seconds at the time of signing, but this might not be 3381 * the case for other authority. We don't bother to check the 3382 * objects at this time, since the real crunch can happen only 3383 * when the time is valid but not yet certificated. 3384 */ 3385 ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm); 3386 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid); 3387 ret->serial = 3388 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert)); 3389 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf, 3390 sizeof(pathbuf)); 3391 if ((pch = strstr(pathbuf, "CN=")) == NULL) { 3392 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s", 3393 pathbuf); 3394 cert_free(ret); 3395 X509_free(cert); 3396 return (NULL); 3397 } 3398 ret->issuer = estrdup(pch + 3); 3399 asn_to_calendar(X509_get_notBefore(cert), &(ret->first)); 3400 asn_to_calendar(X509_get_notAfter(cert), &(ret->last)); 3401 3402 /* 3403 * Extract extension fields. These are ad hoc ripoffs of 3404 * currently assigned functions and will certainly be changed 3405 * before prime time. 3406 */ 3407 cnt = X509_get_ext_count(cert); 3408 for (i = 0; i < cnt; i++) { 3409 ext = X509_get_ext(cert, i); 3410 temp = OBJ_obj2nid(ext->object); 3411 switch (temp) { 3412 3413 /* 3414 * If a key_usage field is present, we decode whether 3415 * this is a trusted or private certificate. This is 3416 * dorky; all we want is to compare NIDs, but OpenSSL 3417 * insists on BIO text strings. 3418 */ 3419 case NID_ext_key_usage: 3420 bp = BIO_new(BIO_s_mem()); 3421 X509V3_EXT_print(bp, ext, 0, 0); 3422 BIO_gets(bp, pathbuf, sizeof(pathbuf)); 3423 BIO_free(bp); 3424 if (strcmp(pathbuf, "Trust Root") == 0) 3425 ret->flags |= CERT_TRUST; 3426 else if (strcmp(pathbuf, "Private") == 0) 3427 ret->flags |= CERT_PRIV; 3428 #if DEBUG 3429 if (debug) 3430 printf("cert_parse: %s: %s\n", 3431 OBJ_nid2ln(temp), pathbuf); 3432 #endif 3433 break; 3434 3435 /* 3436 * If a NID_subject_key_identifier field is present, it 3437 * contains the GQ public key. 3438 */ 3439 case NID_subject_key_identifier: 3440 ret->grpkey = BN_bin2bn(&ext->value->data[2], 3441 ext->value->length - 2, NULL); 3442 /* fall through */ 3443 #if DEBUG 3444 default: 3445 if (debug) 3446 printf("cert_parse: %s\n", 3447 OBJ_nid2ln(temp)); 3448 #endif 3449 } 3450 } 3451 if (strcmp(ret->subject, ret->issuer) == 0) { 3452 3453 /* 3454 * If certificate is self signed, verify signature. 3455 */ 3456 if (X509_verify(cert, ret->pkey) <= 0) { 3457 msyslog(LOG_NOTICE, 3458 "cert_parse: signature not verified %s", 3459 ret->subject); 3460 cert_free(ret); 3461 X509_free(cert); 3462 return (NULL); 3463 } 3464 } else { 3465 3466 /* 3467 * Check for a certificate loop. 3468 */ 3469 if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) { 3470 msyslog(LOG_NOTICE, 3471 "cert_parse: certificate trail loop %s", 3472 ret->subject); 3473 cert_free(ret); 3474 X509_free(cert); 3475 return (NULL); 3476 } 3477 } 3478 3479 /* 3480 * Verify certificate valid times. Note that certificates cannot 3481 * be retroactive. 3482 */ 3483 (void)ntpcal_ntp_to_date(&fscal, fstamp, NULL); 3484 if ((calcomp(&(ret->first), &(ret->last)) > 0) 3485 || (calcomp(&(ret->first), &fscal) < 0)) { 3486 msyslog(LOG_NOTICE, 3487 "cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u", 3488 ret->subject, 3489 ret->first.year, ret->first.month, ret->first.monthday, 3490 ret->first.hour, ret->first.minute, ret->first.second, 3491 ret->last.year, ret->last.month, ret->last.monthday, 3492 ret->last.hour, ret->last.minute, ret->last.second, 3493 fscal.year, fscal.month, fscal.monthday, 3494 fscal.hour, fscal.minute, fscal.second); 3495 cert_free(ret); 3496 X509_free(cert); 3497 return (NULL); 3498 } 3499 3500 /* 3501 * Build the value structure to sign and send later. 3502 */ 3503 ret->cert.fstamp = htonl(fstamp); 3504 ret->cert.vallen = htonl(len); 3505 ret->cert.ptr = emalloc(len); 3506 memcpy(ret->cert.ptr, asn1cert, len); 3507 X509_free(cert); 3508 return (ret); 3509 } 3510 3511 3512 /* 3513 * cert_free - free certificate information structure 3514 */ 3515 void 3516 cert_free( 3517 struct cert_info *cinf /* certificate info/value structure */ 3518 ) 3519 { 3520 if (cinf->pkey != NULL) 3521 EVP_PKEY_free(cinf->pkey); 3522 if (cinf->subject != NULL) 3523 free(cinf->subject); 3524 if (cinf->issuer != NULL) 3525 free(cinf->issuer); 3526 if (cinf->grpkey != NULL) 3527 BN_free(cinf->grpkey); 3528 value_free(&cinf->cert); 3529 free(cinf); 3530 } 3531 3532 3533 /* 3534 * crypto_key - load cryptographic parameters and keys 3535 * 3536 * This routine searches the key cache for matching name in the form 3537 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv, 3538 * and <name> is the host/group name. If not found, it tries to load a 3539 * PEM-encoded file of the same name and extracts the filestamp from 3540 * the first line of the file name. It returns the key pointer if valid, 3541 * NULL if not. 3542 */ 3543 static struct pkey_info * 3544 crypto_key( 3545 char *cp, /* file name */ 3546 char *passwd1, /* password */ 3547 sockaddr_u *addr /* IP address */ 3548 ) 3549 { 3550 FILE *str; /* file handle */ 3551 struct pkey_info *pkp; /* generic key */ 3552 EVP_PKEY *pkey = NULL; /* public/private key */ 3553 tstamp_t fstamp; 3554 char filename[MAXFILENAME]; /* name of key file */ 3555 char linkname[MAXFILENAME]; /* filestamp buffer) */ 3556 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3557 char *ptr; 3558 3559 /* 3560 * Search the key cache for matching key and name. 3561 */ 3562 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) { 3563 if (strcmp(cp, pkp->name) == 0) 3564 return (pkp); 3565 } 3566 3567 /* 3568 * Open the key file. If the first character of the file name is 3569 * not '/', prepend the keys directory string. If something goes 3570 * wrong, abandon ship. 3571 */ 3572 if (*cp == '/') 3573 strlcpy(filename, cp, sizeof(filename)); 3574 else 3575 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3576 cp); 3577 str = fopen(filename, "r"); 3578 if (str == NULL) 3579 return (NULL); 3580 3581 /* 3582 * Read the filestamp, which is contained in the first line. 3583 */ 3584 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3585 msyslog(LOG_ERR, "crypto_key: empty file %s", 3586 filename); 3587 fclose(str); 3588 return (NULL); 3589 } 3590 if ((ptr = strrchr(ptr, '.')) == NULL) { 3591 msyslog(LOG_ERR, "crypto_key: no filestamp %s", 3592 filename); 3593 fclose(str); 3594 return (NULL); 3595 } 3596 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3597 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s", 3598 filename); 3599 fclose(str); 3600 return (NULL); 3601 } 3602 3603 /* 3604 * Read and decrypt PEM-encoded private key. If it fails to 3605 * decrypt, game over. 3606 */ 3607 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1); 3608 fclose(str); 3609 if (pkey == NULL) { 3610 msyslog(LOG_ERR, "crypto_key: %s", 3611 ERR_error_string(ERR_get_error(), NULL)); 3612 exit (-1); 3613 } 3614 3615 /* 3616 * Make a new entry in the key cache. 3617 */ 3618 pkp = emalloc(sizeof(struct pkey_info)); 3619 pkp->link = pkinfo; 3620 pkinfo = pkp; 3621 pkp->pkey = pkey; 3622 pkp->name = estrdup(cp); 3623 pkp->fstamp = fstamp; 3624 3625 /* 3626 * Leave tracks in the cryptostats. 3627 */ 3628 if ((ptr = strrchr(linkname, '\n')) != NULL) 3629 *ptr = '\0'; 3630 snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2], 3631 EVP_PKEY_size(pkey) * 8); 3632 record_crypto_stats(addr, statstr); 3633 #ifdef DEBUG 3634 if (debug) 3635 printf("crypto_key: %s\n", statstr); 3636 if (debug > 1) { 3637 if (pkey->type == EVP_PKEY_DSA) 3638 DSA_print_fp(stdout, pkey->pkey.dsa, 0); 3639 else if (pkey->type == EVP_PKEY_RSA) 3640 RSA_print_fp(stdout, pkey->pkey.rsa, 0); 3641 } 3642 #endif 3643 return (pkp); 3644 } 3645 3646 3647 /* 3648 *********************************************************************** 3649 * * 3650 * The following routines are used only at initialization time * 3651 * * 3652 *********************************************************************** 3653 */ 3654 /* 3655 * crypto_cert - load certificate from file 3656 * 3657 * This routine loads an X.509 RSA or DSA certificate from a file and 3658 * constructs a info/cert value structure for this machine. The 3659 * structure includes a filestamp extracted from the file name. Later 3660 * the certificate can be sent to another machine on request. 3661 * 3662 * Returns certificate info/value pointer if valid, NULL if not. 3663 */ 3664 static struct cert_info * /* certificate information */ 3665 crypto_cert( 3666 char *cp /* file name */ 3667 ) 3668 { 3669 struct cert_info *ret; /* certificate information */ 3670 FILE *str; /* file handle */ 3671 char filename[MAXFILENAME]; /* name of certificate file */ 3672 char linkname[MAXFILENAME]; /* filestamp buffer */ 3673 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3674 tstamp_t fstamp; /* filestamp */ 3675 long len; 3676 char *ptr; 3677 char *name, *header; 3678 u_char *data; 3679 3680 /* 3681 * Open the certificate file. If the first character of the file 3682 * name is not '/', prepend the keys directory string. If 3683 * something goes wrong, abandon ship. 3684 */ 3685 if (*cp == '/') 3686 strlcpy(filename, cp, sizeof(filename)); 3687 else 3688 snprintf(filename, sizeof(filename), "%s/%s", keysdir, 3689 cp); 3690 str = fopen(filename, "r"); 3691 if (str == NULL) 3692 return (NULL); 3693 3694 /* 3695 * Read the filestamp, which is contained in the first line. 3696 */ 3697 if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) { 3698 msyslog(LOG_ERR, "crypto_cert: empty file %s", 3699 filename); 3700 fclose(str); 3701 return (NULL); 3702 } 3703 if ((ptr = strrchr(ptr, '.')) == NULL) { 3704 msyslog(LOG_ERR, "crypto_cert: no filestamp %s", 3705 filename); 3706 fclose(str); 3707 return (NULL); 3708 } 3709 if (sscanf(++ptr, "%u", &fstamp) != 1) { 3710 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s", 3711 filename); 3712 fclose(str); 3713 return (NULL); 3714 } 3715 3716 /* 3717 * Read PEM-encoded certificate and install. 3718 */ 3719 if (!PEM_read(str, &name, &header, &data, &len)) { 3720 msyslog(LOG_ERR, "crypto_cert: %s", 3721 ERR_error_string(ERR_get_error(), NULL)); 3722 fclose(str); 3723 return (NULL); 3724 } 3725 fclose(str); 3726 free(header); 3727 if (strcmp(name, "CERTIFICATE") != 0) { 3728 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s", 3729 name); 3730 free(name); 3731 free(data); 3732 return (NULL); 3733 } 3734 free(name); 3735 3736 /* 3737 * Parse certificate and generate info/value structure. The 3738 * pointer and copy nonsense is due something broken in Solaris. 3739 */ 3740 ret = cert_parse(data, len, fstamp); 3741 free(data); 3742 if (ret == NULL) 3743 return (NULL); 3744 3745 if ((ptr = strrchr(linkname, '\n')) != NULL) 3746 *ptr = '\0'; 3747 snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu", 3748 &linkname[2], ret->flags, len); 3749 record_crypto_stats(NULL, statstr); 3750 #ifdef DEBUG 3751 if (debug) 3752 printf("crypto_cert: %s\n", statstr); 3753 #endif 3754 return (ret); 3755 } 3756 3757 3758 /* 3759 * crypto_setup - load keys, certificate and identity parameters 3760 * 3761 * This routine loads the public/private host key and certificate. If 3762 * available, it loads the public/private sign key, which defaults to 3763 * the host key. The host key must be RSA, but the sign key can be 3764 * either RSA or DSA. If a trusted certificate, it loads the identity 3765 * parameters. In either case, the public key on the certificate must 3766 * agree with the sign key. 3767 * 3768 * Required but missing files and inconsistent data and errors are 3769 * fatal. Allowing configuration to continue would be hazardous and 3770 * require really messy error checks. 3771 */ 3772 void 3773 crypto_setup(void) 3774 { 3775 struct pkey_info *pinfo; /* private/public key */ 3776 char filename[MAXFILENAME]; /* file name buffer */ 3777 char hostname[MAXFILENAME]; /* host name buffer */ 3778 char *randfile; 3779 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */ 3780 l_fp seed; /* crypto PRNG seed as NTP timestamp */ 3781 u_int len; 3782 int bytes; 3783 u_char *ptr; 3784 3785 /* 3786 * Check for correct OpenSSL version and avoid initialization in 3787 * the case of multiple crypto commands. 3788 */ 3789 if (crypto_flags & CRYPTO_FLAG_ENAB) { 3790 msyslog(LOG_NOTICE, 3791 "crypto_setup: spurious crypto command"); 3792 return; 3793 } 3794 ssl_check_version(); 3795 3796 /* 3797 * Load required random seed file and seed the random number 3798 * generator. Be default, it is found as .rnd in the user home 3799 * directory. The root home directory may be / or /root, 3800 * depending on the system. Wiggle the contents a bit and write 3801 * it back so the sequence does not repeat when we next restart. 3802 */ 3803 if (!RAND_status()) { 3804 if (rand_file == NULL) { 3805 RAND_file_name(filename, sizeof(filename)); 3806 randfile = filename; 3807 } else if (*rand_file != '/') { 3808 snprintf(filename, sizeof(filename), "%s/%s", 3809 keysdir, rand_file); 3810 randfile = filename; 3811 } else 3812 randfile = rand_file; 3813 3814 if ((bytes = RAND_load_file(randfile, -1)) == 0) { 3815 msyslog(LOG_ERR, 3816 "crypto_setup: random seed file %s missing", 3817 randfile); 3818 exit (-1); 3819 } 3820 arc4random_buf(&seed, sizeof(l_fp)); 3821 RAND_seed(&seed, sizeof(l_fp)); 3822 RAND_write_file(randfile); 3823 #ifdef DEBUG 3824 if (debug) 3825 printf( 3826 "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n", 3827 SSLeay(), randfile, bytes); 3828 #endif 3829 } 3830 3831 /* 3832 * Initialize structures. 3833 */ 3834 gethostname(hostname, sizeof(hostname)); 3835 if (host_filename != NULL) 3836 strlcpy(hostname, host_filename, sizeof(hostname)); 3837 if (passwd == NULL) 3838 passwd = estrdup(hostname); 3839 memset(&hostval, 0, sizeof(hostval)); 3840 memset(&pubkey, 0, sizeof(pubkey)); 3841 memset(&tai_leap, 0, sizeof(tai_leap)); 3842 3843 /* 3844 * Load required host key from file "ntpkey_host_<hostname>". If 3845 * no host key file is not found or has invalid password, life 3846 * as we know it ends. The host key also becomes the default 3847 * sign key. 3848 */ 3849 snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); 3850 pinfo = crypto_key(filename, passwd, NULL); 3851 if (pinfo == NULL) { 3852 msyslog(LOG_ERR, 3853 "crypto_setup: host key file %s not found or corrupt", 3854 filename); 3855 exit (-1); 3856 } 3857 if (pinfo->pkey->type != EVP_PKEY_RSA) { 3858 msyslog(LOG_ERR, 3859 "crypto_setup: host key is not RSA key type"); 3860 exit (-1); 3861 } 3862 host_pkey = pinfo->pkey; 3863 sign_pkey = host_pkey; 3864 hostval.fstamp = htonl(pinfo->fstamp); 3865 3866 /* 3867 * Construct public key extension field for agreement scheme. 3868 */ 3869 len = i2d_PublicKey(host_pkey, NULL); 3870 ptr = emalloc(len); 3871 pubkey.ptr = ptr; 3872 i2d_PublicKey(host_pkey, &ptr); 3873 pubkey.fstamp = hostval.fstamp; 3874 pubkey.vallen = htonl(len); 3875 3876 /* 3877 * Load optional sign key from file "ntpkey_sign_<hostname>". If 3878 * available, it becomes the sign key. 3879 */ 3880 snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); 3881 pinfo = crypto_key(filename, passwd, NULL); 3882 if (pinfo != NULL) 3883 sign_pkey = pinfo->pkey; 3884 3885 /* 3886 * Load required certificate from file "ntpkey_cert_<hostname>". 3887 */ 3888 snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); 3889 cinfo = crypto_cert(filename); 3890 if (cinfo == NULL) { 3891 msyslog(LOG_ERR, 3892 "crypto_setup: certificate file %s not found or corrupt", 3893 filename); 3894 exit (-1); 3895 } 3896 cert_host = cinfo; 3897 sign_digest = cinfo->digest; 3898 sign_siglen = EVP_PKEY_size(sign_pkey); 3899 if (cinfo->flags & CERT_PRIV) 3900 crypto_flags |= CRYPTO_FLAG_PRIV; 3901 3902 /* 3903 * The certificate must be self-signed. 3904 */ 3905 if (strcmp(cinfo->subject, cinfo->issuer) != 0) { 3906 msyslog(LOG_ERR, 3907 "crypto_setup: certificate %s is not self-signed", 3908 filename); 3909 exit (-1); 3910 } 3911 hostval.ptr = estrdup(cinfo->subject); 3912 hostval.vallen = htonl(strlen(cinfo->subject)); 3913 sys_hostname = hostval.ptr; 3914 ptr = (u_char *)strchr(sys_hostname, '@'); 3915 if (ptr != NULL) 3916 sys_groupname = estrdup((char *)++ptr); 3917 if (ident_filename != NULL) 3918 strlcpy(hostname, ident_filename, sizeof(hostname)); 3919 3920 /* 3921 * Load optional IFF parameters from file 3922 * "ntpkey_iffkey_<hostname>". 3923 */ 3924 snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", 3925 hostname); 3926 iffkey_info = crypto_key(filename, passwd, NULL); 3927 if (iffkey_info != NULL) 3928 crypto_flags |= CRYPTO_FLAG_IFF; 3929 3930 /* 3931 * Load optional GQ parameters from file 3932 * "ntpkey_gqkey_<hostname>". 3933 */ 3934 snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", 3935 hostname); 3936 gqkey_info = crypto_key(filename, passwd, NULL); 3937 if (gqkey_info != NULL) 3938 crypto_flags |= CRYPTO_FLAG_GQ; 3939 3940 /* 3941 * Load optional MV parameters from file 3942 * "ntpkey_mvkey_<hostname>". 3943 */ 3944 snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s", 3945 hostname); 3946 mvkey_info = crypto_key(filename, passwd, NULL); 3947 if (mvkey_info != NULL) 3948 crypto_flags |= CRYPTO_FLAG_MV; 3949 3950 /* 3951 * We met the enemy and he is us. Now strike up the dance. 3952 */ 3953 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16); 3954 snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s", 3955 crypto_flags, hostname, OBJ_nid2ln(cinfo->nid)); 3956 record_crypto_stats(NULL, statstr); 3957 #ifdef DEBUG 3958 if (debug) 3959 printf("crypto_setup: %s\n", statstr); 3960 #endif 3961 } 3962 3963 3964 /* 3965 * crypto_config - configure data from the crypto command. 3966 */ 3967 void 3968 crypto_config( 3969 int item, /* configuration item */ 3970 char *cp /* item name */ 3971 ) 3972 { 3973 int nid; 3974 3975 #ifdef DEBUG 3976 if (debug > 1) 3977 printf("crypto_config: item %d %s\n", item, cp); 3978 #endif 3979 switch (item) { 3980 3981 /* 3982 * Set host name (host). 3983 */ 3984 case CRYPTO_CONF_PRIV: 3985 if (NULL != host_filename) 3986 free(host_filename); 3987 host_filename = estrdup(cp); 3988 break; 3989 3990 /* 3991 * Set group name (ident). 3992 */ 3993 case CRYPTO_CONF_IDENT: 3994 if (NULL != ident_filename) 3995 free(ident_filename); 3996 ident_filename = estrdup(cp); 3997 break; 3998 3999 /* 4000 * Set private key password (pw). 4001 */ 4002 case CRYPTO_CONF_PW: 4003 if (NULL != passwd) 4004 free(passwd); 4005 passwd = estrdup(cp); 4006 break; 4007 4008 /* 4009 * Set random seed file name (randfile). 4010 */ 4011 case CRYPTO_CONF_RAND: 4012 if (NULL != rand_file) 4013 free(rand_file); 4014 rand_file = estrdup(cp); 4015 break; 4016 4017 /* 4018 * Set message digest NID. 4019 */ 4020 case CRYPTO_CONF_NID: 4021 nid = OBJ_sn2nid(cp); 4022 if (nid == 0) 4023 msyslog(LOG_ERR, 4024 "crypto_config: invalid digest name %s", cp); 4025 else 4026 crypto_nid = nid; 4027 break; 4028 } 4029 } 4030 # else /* !AUTOKEY follows */ 4031 int ntp_crypto_bs_pubkey; 4032 # endif /* !AUTOKEY */ 4033