1 /* 2 * ntp_control.c - respond to mode 6 control messages and send async 3 * traps. Provides service to ntpq and others. 4 */ 5 6 #ifdef HAVE_CONFIG_H 7 # include <config.h> 8 #endif 9 10 #include <stdio.h> 11 #include <ctype.h> 12 #include <signal.h> 13 #include <sys/stat.h> 14 #ifdef HAVE_NETINET_IN_H 15 # include <netinet/in.h> 16 #endif 17 #include <arpa/inet.h> 18 19 #include "ntpd.h" 20 #include "ntp_io.h" 21 #include "ntp_refclock.h" 22 #include "ntp_control.h" 23 #include "ntp_unixtime.h" 24 #include "ntp_stdlib.h" 25 #include "ntp_config.h" 26 #include "ntp_crypto.h" 27 #include "ntp_assert.h" 28 #include "ntp_leapsec.h" 29 #include "ntp_md5.h" /* provides OpenSSL digest API */ 30 #include "lib_strbuf.h" 31 #include "timexsup.h" 32 33 #include <rc_cmdlength.h> 34 #ifdef KERNEL_PLL 35 # include "ntp_syscall.h" 36 #endif 37 38 /* 39 * Structure to hold request procedure information 40 */ 41 42 struct ctl_proc { 43 short control_code; /* defined request code */ 44 #define NO_REQUEST (-1) 45 u_short flags; /* flags word */ 46 /* Only one flag. Authentication required or not. */ 47 #define NOAUTH 0 48 #define AUTH 1 49 void (*handler) (struct recvbuf *, int); /* handle request */ 50 }; 51 52 53 /* 54 * Request processing routines 55 */ 56 static void ctl_error (u_char); 57 #ifdef REFCLOCK 58 static u_short ctlclkstatus (struct refclockstat *); 59 #endif 60 static void ctl_flushpkt (u_char); 61 static void ctl_putdata (const char *, unsigned int, int); 62 static void ctl_putstr (const char *, const char *, size_t); 63 static void ctl_putdblf (const char *, int, int, double); 64 #define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d) 65 #define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d) 66 #define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \ 67 FPTOD(sfp)) 68 static void ctl_putuint (const char *, u_long); 69 static void ctl_puthex (const char *, u_long); 70 static void ctl_putint (const char *, long); 71 static void ctl_putts (const char *, l_fp *); 72 static void ctl_putadr (const char *, u_int32, 73 sockaddr_u *); 74 static void ctl_putrefid (const char *, u_int32); 75 static void ctl_putarray (const char *, double *, int); 76 static void ctl_putsys (int); 77 static void ctl_putpeer (int, struct peer *); 78 static void ctl_putfs (const char *, tstamp_t); 79 static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2); 80 #ifdef REFCLOCK 81 static void ctl_putclock (int, struct refclockstat *, int); 82 #endif /* REFCLOCK */ 83 static const struct ctl_var *ctl_getitem(const struct ctl_var *, 84 char **); 85 static u_short count_var (const struct ctl_var *); 86 static void control_unspec (struct recvbuf *, int); 87 static void read_status (struct recvbuf *, int); 88 static void read_sysvars (void); 89 static void read_peervars (void); 90 static void read_variables (struct recvbuf *, int); 91 static void write_variables (struct recvbuf *, int); 92 static void read_clockstatus(struct recvbuf *, int); 93 static void write_clockstatus(struct recvbuf *, int); 94 static void set_trap (struct recvbuf *, int); 95 static void save_config (struct recvbuf *, int); 96 static void configure (struct recvbuf *, int); 97 static void send_mru_entry (mon_entry *, int); 98 static void send_random_tag_value(int); 99 static void read_mru_list (struct recvbuf *, int); 100 static void send_ifstats_entry(endpt *, u_int); 101 static void read_ifstats (struct recvbuf *); 102 static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *, 103 restrict_u *, int); 104 static void send_restrict_entry(restrict_u *, int, u_int); 105 static void send_restrict_list(restrict_u *, int, u_int *); 106 static void read_addr_restrictions(struct recvbuf *); 107 static void read_ordlist (struct recvbuf *, int); 108 static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32); 109 static void generate_nonce (struct recvbuf *, char *, size_t); 110 static int validate_nonce (const char *, struct recvbuf *); 111 static void req_nonce (struct recvbuf *, int); 112 static void unset_trap (struct recvbuf *, int); 113 static struct ctl_trap *ctlfindtrap(sockaddr_u *, 114 struct interface *); 115 116 int/*BOOL*/ is_safe_filename(const char * name); 117 118 static const struct ctl_proc control_codes[] = { 119 { CTL_OP_UNSPEC, NOAUTH, control_unspec }, 120 { CTL_OP_READSTAT, NOAUTH, read_status }, 121 { CTL_OP_READVAR, NOAUTH, read_variables }, 122 { CTL_OP_WRITEVAR, AUTH, write_variables }, 123 { CTL_OP_READCLOCK, NOAUTH, read_clockstatus }, 124 { CTL_OP_WRITECLOCK, AUTH, write_clockstatus }, 125 { CTL_OP_SETTRAP, AUTH, set_trap }, 126 { CTL_OP_CONFIGURE, AUTH, configure }, 127 { CTL_OP_SAVECONFIG, AUTH, save_config }, 128 { CTL_OP_READ_MRU, NOAUTH, read_mru_list }, 129 { CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist }, 130 { CTL_OP_REQ_NONCE, NOAUTH, req_nonce }, 131 { CTL_OP_UNSETTRAP, AUTH, unset_trap }, 132 { NO_REQUEST, 0, NULL } 133 }; 134 135 /* 136 * System variables we understand 137 */ 138 #define CS_LEAP 1 139 #define CS_STRATUM 2 140 #define CS_PRECISION 3 141 #define CS_ROOTDELAY 4 142 #define CS_ROOTDISPERSION 5 143 #define CS_REFID 6 144 #define CS_REFTIME 7 145 #define CS_POLL 8 146 #define CS_PEERID 9 147 #define CS_OFFSET 10 148 #define CS_DRIFT 11 149 #define CS_JITTER 12 150 #define CS_ERROR 13 151 #define CS_CLOCK 14 152 #define CS_PROCESSOR 15 153 #define CS_SYSTEM 16 154 #define CS_VERSION 17 155 #define CS_STABIL 18 156 #define CS_VARLIST 19 157 #define CS_TAI 20 158 #define CS_LEAPTAB 21 159 #define CS_LEAPEND 22 160 #define CS_RATE 23 161 #define CS_MRU_ENABLED 24 162 #define CS_MRU_DEPTH 25 163 #define CS_MRU_DEEPEST 26 164 #define CS_MRU_MINDEPTH 27 165 #define CS_MRU_MAXAGE 28 166 #define CS_MRU_MAXDEPTH 29 167 #define CS_MRU_MEM 30 168 #define CS_MRU_MAXMEM 31 169 #define CS_SS_UPTIME 32 170 #define CS_SS_RESET 33 171 #define CS_SS_RECEIVED 34 172 #define CS_SS_THISVER 35 173 #define CS_SS_OLDVER 36 174 #define CS_SS_BADFORMAT 37 175 #define CS_SS_BADAUTH 38 176 #define CS_SS_DECLINED 39 177 #define CS_SS_RESTRICTED 40 178 #define CS_SS_LIMITED 41 179 #define CS_SS_KODSENT 42 180 #define CS_SS_PROCESSED 43 181 #define CS_SS_LAMPORT 44 182 #define CS_SS_TSROUNDING 45 183 #define CS_PEERADR 46 184 #define CS_PEERMODE 47 185 #define CS_BCASTDELAY 48 186 #define CS_AUTHDELAY 49 187 #define CS_AUTHKEYS 50 188 #define CS_AUTHFREEK 51 189 #define CS_AUTHKLOOKUPS 52 190 #define CS_AUTHKNOTFOUND 53 191 #define CS_AUTHKUNCACHED 54 192 #define CS_AUTHKEXPIRED 55 193 #define CS_AUTHENCRYPTS 56 194 #define CS_AUTHDECRYPTS 57 195 #define CS_AUTHRESET 58 196 #define CS_K_OFFSET 59 197 #define CS_K_FREQ 60 198 #define CS_K_MAXERR 61 199 #define CS_K_ESTERR 62 200 #define CS_K_STFLAGS 63 201 #define CS_K_TIMECONST 64 202 #define CS_K_PRECISION 65 203 #define CS_K_FREQTOL 66 204 #define CS_K_PPS_FREQ 67 205 #define CS_K_PPS_STABIL 68 206 #define CS_K_PPS_JITTER 69 207 #define CS_K_PPS_CALIBDUR 70 208 #define CS_K_PPS_CALIBS 71 209 #define CS_K_PPS_CALIBERRS 72 210 #define CS_K_PPS_JITEXC 73 211 #define CS_K_PPS_STBEXC 74 212 #define CS_KERN_FIRST CS_K_OFFSET 213 #define CS_KERN_LAST CS_K_PPS_STBEXC 214 #define CS_IOSTATS_RESET 75 215 #define CS_TOTAL_RBUF 76 216 #define CS_FREE_RBUF 77 217 #define CS_USED_RBUF 78 218 #define CS_RBUF_LOWATER 79 219 #define CS_IO_DROPPED 80 220 #define CS_IO_IGNORED 81 221 #define CS_IO_RECEIVED 82 222 #define CS_IO_SENT 83 223 #define CS_IO_SENDFAILED 84 224 #define CS_IO_WAKEUPS 85 225 #define CS_IO_GOODWAKEUPS 86 226 #define CS_TIMERSTATS_RESET 87 227 #define CS_TIMER_OVERRUNS 88 228 #define CS_TIMER_XMTS 89 229 #define CS_FUZZ 90 230 #define CS_WANDER_THRESH 91 231 #define CS_LEAPSMEARINTV 92 232 #define CS_LEAPSMEAROFFS 93 233 #define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS 234 #ifdef AUTOKEY 235 #define CS_FLAGS (1 + CS_MAX_NOAUTOKEY) 236 #define CS_HOST (2 + CS_MAX_NOAUTOKEY) 237 #define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY) 238 #define CS_CERTIF (4 + CS_MAX_NOAUTOKEY) 239 #define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY) 240 #define CS_REVTIME (6 + CS_MAX_NOAUTOKEY) 241 #define CS_IDENT (7 + CS_MAX_NOAUTOKEY) 242 #define CS_DIGEST (8 + CS_MAX_NOAUTOKEY) 243 #define CS_MAXCODE CS_DIGEST 244 #else /* !AUTOKEY follows */ 245 #define CS_MAXCODE CS_MAX_NOAUTOKEY 246 #endif /* !AUTOKEY */ 247 248 /* 249 * Peer variables we understand 250 */ 251 #define CP_CONFIG 1 252 #define CP_AUTHENABLE 2 253 #define CP_AUTHENTIC 3 254 #define CP_SRCADR 4 255 #define CP_SRCPORT 5 256 #define CP_DSTADR 6 257 #define CP_DSTPORT 7 258 #define CP_LEAP 8 259 #define CP_HMODE 9 260 #define CP_STRATUM 10 261 #define CP_PPOLL 11 262 #define CP_HPOLL 12 263 #define CP_PRECISION 13 264 #define CP_ROOTDELAY 14 265 #define CP_ROOTDISPERSION 15 266 #define CP_REFID 16 267 #define CP_REFTIME 17 268 #define CP_ORG 18 269 #define CP_REC 19 270 #define CP_XMT 20 271 #define CP_REACH 21 272 #define CP_UNREACH 22 273 #define CP_TIMER 23 274 #define CP_DELAY 24 275 #define CP_OFFSET 25 276 #define CP_JITTER 26 277 #define CP_DISPERSION 27 278 #define CP_KEYID 28 279 #define CP_FILTDELAY 29 280 #define CP_FILTOFFSET 30 281 #define CP_PMODE 31 282 #define CP_RECEIVED 32 283 #define CP_SENT 33 284 #define CP_FILTERROR 34 285 #define CP_FLASH 35 286 #define CP_TTL 36 287 #define CP_VARLIST 37 288 #define CP_IN 38 289 #define CP_OUT 39 290 #define CP_RATE 40 291 #define CP_BIAS 41 292 #define CP_SRCHOST 42 293 #define CP_TIMEREC 43 294 #define CP_TIMEREACH 44 295 #define CP_BADAUTH 45 296 #define CP_BOGUSORG 46 297 #define CP_OLDPKT 47 298 #define CP_SELDISP 48 299 #define CP_SELBROKEN 49 300 #define CP_CANDIDATE 50 301 #define CP_MAX_NOAUTOKEY CP_CANDIDATE 302 #ifdef AUTOKEY 303 #define CP_FLAGS (1 + CP_MAX_NOAUTOKEY) 304 #define CP_HOST (2 + CP_MAX_NOAUTOKEY) 305 #define CP_VALID (3 + CP_MAX_NOAUTOKEY) 306 #define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY) 307 #define CP_INITKEY (5 + CP_MAX_NOAUTOKEY) 308 #define CP_INITTSP (6 + CP_MAX_NOAUTOKEY) 309 #define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY) 310 #define CP_IDENT (8 + CP_MAX_NOAUTOKEY) 311 #define CP_MAXCODE CP_IDENT 312 #else /* !AUTOKEY follows */ 313 #define CP_MAXCODE CP_MAX_NOAUTOKEY 314 #endif /* !AUTOKEY */ 315 316 /* 317 * Clock variables we understand 318 */ 319 #define CC_TYPE 1 320 #define CC_TIMECODE 2 321 #define CC_POLL 3 322 #define CC_NOREPLY 4 323 #define CC_BADFORMAT 5 324 #define CC_BADDATA 6 325 #define CC_FUDGETIME1 7 326 #define CC_FUDGETIME2 8 327 #define CC_FUDGEVAL1 9 328 #define CC_FUDGEVAL2 10 329 #define CC_FLAGS 11 330 #define CC_DEVICE 12 331 #define CC_VARLIST 13 332 #define CC_FUDGEMINJIT 14 333 #define CC_MAXCODE CC_FUDGEMINJIT 334 335 /* 336 * System variable values. The array can be indexed by the variable 337 * index to find the textual name. 338 */ 339 static const struct ctl_var sys_var[] = { 340 { 0, PADDING, "" }, /* 0 */ 341 { CS_LEAP, RW, "leap" }, /* 1 */ 342 { CS_STRATUM, RO, "stratum" }, /* 2 */ 343 { CS_PRECISION, RO, "precision" }, /* 3 */ 344 { CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */ 345 { CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */ 346 { CS_REFID, RO, "refid" }, /* 6 */ 347 { CS_REFTIME, RO, "reftime" }, /* 7 */ 348 { CS_POLL, RO, "tc" }, /* 8 */ 349 { CS_PEERID, RO, "peer" }, /* 9 */ 350 { CS_OFFSET, RO, "offset" }, /* 10 */ 351 { CS_DRIFT, RO, "frequency" }, /* 11 */ 352 { CS_JITTER, RO, "sys_jitter" }, /* 12 */ 353 { CS_ERROR, RO, "clk_jitter" }, /* 13 */ 354 { CS_CLOCK, RO, "clock" }, /* 14 */ 355 { CS_PROCESSOR, RO, "processor" }, /* 15 */ 356 { CS_SYSTEM, RO, "system" }, /* 16 */ 357 { CS_VERSION, RO, "version" }, /* 17 */ 358 { CS_STABIL, RO, "clk_wander" }, /* 18 */ 359 { CS_VARLIST, RO, "sys_var_list" }, /* 19 */ 360 { CS_TAI, RO, "tai" }, /* 20 */ 361 { CS_LEAPTAB, RO, "leapsec" }, /* 21 */ 362 { CS_LEAPEND, RO, "expire" }, /* 22 */ 363 { CS_RATE, RO, "mintc" }, /* 23 */ 364 { CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */ 365 { CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */ 366 { CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */ 367 { CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */ 368 { CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */ 369 { CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */ 370 { CS_MRU_MEM, RO, "mru_mem" }, /* 30 */ 371 { CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */ 372 { CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */ 373 { CS_SS_RESET, RO, "ss_reset" }, /* 33 */ 374 { CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */ 375 { CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */ 376 { CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */ 377 { CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */ 378 { CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */ 379 { CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */ 380 { CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */ 381 { CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */ 382 { CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */ 383 { CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */ 384 { CS_SS_LAMPORT, RO, "ss_lamport" }, /* 44 */ 385 { CS_SS_TSROUNDING, RO, "ss_tsrounding" }, /* 45 */ 386 { CS_PEERADR, RO, "peeradr" }, /* 46 */ 387 { CS_PEERMODE, RO, "peermode" }, /* 47 */ 388 { CS_BCASTDELAY, RO, "bcastdelay" }, /* 48 */ 389 { CS_AUTHDELAY, RO, "authdelay" }, /* 49 */ 390 { CS_AUTHKEYS, RO, "authkeys" }, /* 50 */ 391 { CS_AUTHFREEK, RO, "authfreek" }, /* 51 */ 392 { CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 52 */ 393 { CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 53 */ 394 { CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 54 */ 395 { CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 55 */ 396 { CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 56 */ 397 { CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 57 */ 398 { CS_AUTHRESET, RO, "authreset" }, /* 58 */ 399 { CS_K_OFFSET, RO, "koffset" }, /* 59 */ 400 { CS_K_FREQ, RO, "kfreq" }, /* 60 */ 401 { CS_K_MAXERR, RO, "kmaxerr" }, /* 61 */ 402 { CS_K_ESTERR, RO, "kesterr" }, /* 62 */ 403 { CS_K_STFLAGS, RO, "kstflags" }, /* 63 */ 404 { CS_K_TIMECONST, RO, "ktimeconst" }, /* 64 */ 405 { CS_K_PRECISION, RO, "kprecis" }, /* 65 */ 406 { CS_K_FREQTOL, RO, "kfreqtol" }, /* 66 */ 407 { CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 67 */ 408 { CS_K_PPS_STABIL, RO, "kppsstab" }, /* 68 */ 409 { CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 69 */ 410 { CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 70 */ 411 { CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 71 */ 412 { CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 72 */ 413 { CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 73 */ 414 { CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 74 */ 415 { CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 75 */ 416 { CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 76 */ 417 { CS_FREE_RBUF, RO, "free_rbuf" }, /* 77 */ 418 { CS_USED_RBUF, RO, "used_rbuf" }, /* 78 */ 419 { CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 79 */ 420 { CS_IO_DROPPED, RO, "io_dropped" }, /* 80 */ 421 { CS_IO_IGNORED, RO, "io_ignored" }, /* 81 */ 422 { CS_IO_RECEIVED, RO, "io_received" }, /* 82 */ 423 { CS_IO_SENT, RO, "io_sent" }, /* 83 */ 424 { CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 84 */ 425 { CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 85 */ 426 { CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 86 */ 427 { CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 87 */ 428 { CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 88 */ 429 { CS_TIMER_XMTS, RO, "timer_xmts" }, /* 89 */ 430 { CS_FUZZ, RO, "fuzz" }, /* 90 */ 431 { CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 91 */ 432 433 { CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 92 */ 434 { CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 93 */ 435 436 #ifdef AUTOKEY 437 { CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */ 438 { CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */ 439 { CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */ 440 { CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */ 441 { CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */ 442 { CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */ 443 { CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */ 444 { CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */ 445 #endif /* AUTOKEY */ 446 { 0, EOV, "" } /* 94/102 */ 447 }; 448 449 static struct ctl_var *ext_sys_var = NULL; 450 451 /* 452 * System variables we print by default (in fuzzball order, 453 * more-or-less) 454 */ 455 static const u_char def_sys_var[] = { 456 CS_VERSION, 457 CS_PROCESSOR, 458 CS_SYSTEM, 459 CS_LEAP, 460 CS_STRATUM, 461 CS_PRECISION, 462 CS_ROOTDELAY, 463 CS_ROOTDISPERSION, 464 CS_REFID, 465 CS_REFTIME, 466 CS_CLOCK, 467 CS_PEERID, 468 CS_POLL, 469 CS_RATE, 470 CS_OFFSET, 471 CS_DRIFT, 472 CS_JITTER, 473 CS_ERROR, 474 CS_STABIL, 475 CS_TAI, 476 CS_LEAPTAB, 477 CS_LEAPEND, 478 CS_LEAPSMEARINTV, 479 CS_LEAPSMEAROFFS, 480 #ifdef AUTOKEY 481 CS_HOST, 482 CS_IDENT, 483 CS_FLAGS, 484 CS_DIGEST, 485 CS_SIGNATURE, 486 CS_PUBLIC, 487 CS_CERTIF, 488 #endif /* AUTOKEY */ 489 0 490 }; 491 492 493 /* 494 * Peer variable list 495 */ 496 static const struct ctl_var peer_var[] = { 497 { 0, PADDING, "" }, /* 0 */ 498 { CP_CONFIG, RO, "config" }, /* 1 */ 499 { CP_AUTHENABLE, RO, "authenable" }, /* 2 */ 500 { CP_AUTHENTIC, RO, "authentic" }, /* 3 */ 501 { CP_SRCADR, RO, "srcadr" }, /* 4 */ 502 { CP_SRCPORT, RO, "srcport" }, /* 5 */ 503 { CP_DSTADR, RO, "dstadr" }, /* 6 */ 504 { CP_DSTPORT, RO, "dstport" }, /* 7 */ 505 { CP_LEAP, RO, "leap" }, /* 8 */ 506 { CP_HMODE, RO, "hmode" }, /* 9 */ 507 { CP_STRATUM, RO, "stratum" }, /* 10 */ 508 { CP_PPOLL, RO, "ppoll" }, /* 11 */ 509 { CP_HPOLL, RO, "hpoll" }, /* 12 */ 510 { CP_PRECISION, RO, "precision" }, /* 13 */ 511 { CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */ 512 { CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */ 513 { CP_REFID, RO, "refid" }, /* 16 */ 514 { CP_REFTIME, RO, "reftime" }, /* 17 */ 515 { CP_ORG, RO, "org" }, /* 18 */ 516 { CP_REC, RO, "rec" }, /* 19 */ 517 { CP_XMT, RO, "xleave" }, /* 20 */ 518 { CP_REACH, RO, "reach" }, /* 21 */ 519 { CP_UNREACH, RO, "unreach" }, /* 22 */ 520 { CP_TIMER, RO, "timer" }, /* 23 */ 521 { CP_DELAY, RO, "delay" }, /* 24 */ 522 { CP_OFFSET, RO, "offset" }, /* 25 */ 523 { CP_JITTER, RO, "jitter" }, /* 26 */ 524 { CP_DISPERSION, RO, "dispersion" }, /* 27 */ 525 { CP_KEYID, RO, "keyid" }, /* 28 */ 526 { CP_FILTDELAY, RO, "filtdelay" }, /* 29 */ 527 { CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */ 528 { CP_PMODE, RO, "pmode" }, /* 31 */ 529 { CP_RECEIVED, RO, "received"}, /* 32 */ 530 { CP_SENT, RO, "sent" }, /* 33 */ 531 { CP_FILTERROR, RO, "filtdisp" }, /* 34 */ 532 { CP_FLASH, RO, "flash" }, /* 35 */ 533 { CP_TTL, RO, "ttl" }, /* 36 */ 534 { CP_VARLIST, RO, "peer_var_list" }, /* 37 */ 535 { CP_IN, RO, "in" }, /* 38 */ 536 { CP_OUT, RO, "out" }, /* 39 */ 537 { CP_RATE, RO, "headway" }, /* 40 */ 538 { CP_BIAS, RO, "bias" }, /* 41 */ 539 { CP_SRCHOST, RO, "srchost" }, /* 42 */ 540 { CP_TIMEREC, RO, "timerec" }, /* 43 */ 541 { CP_TIMEREACH, RO, "timereach" }, /* 44 */ 542 { CP_BADAUTH, RO, "badauth" }, /* 45 */ 543 { CP_BOGUSORG, RO, "bogusorg" }, /* 46 */ 544 { CP_OLDPKT, RO, "oldpkt" }, /* 47 */ 545 { CP_SELDISP, RO, "seldisp" }, /* 48 */ 546 { CP_SELBROKEN, RO, "selbroken" }, /* 49 */ 547 { CP_CANDIDATE, RO, "candidate" }, /* 50 */ 548 #ifdef AUTOKEY 549 { CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */ 550 { CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */ 551 { CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */ 552 { CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */ 553 { CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */ 554 { CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */ 555 { CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */ 556 { CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */ 557 #endif /* AUTOKEY */ 558 { 0, EOV, "" } /* 50/58 */ 559 }; 560 561 562 /* 563 * Peer variables we print by default 564 */ 565 static const u_char def_peer_var[] = { 566 CP_SRCADR, 567 CP_SRCPORT, 568 CP_SRCHOST, 569 CP_DSTADR, 570 CP_DSTPORT, 571 CP_OUT, 572 CP_IN, 573 CP_LEAP, 574 CP_STRATUM, 575 CP_PRECISION, 576 CP_ROOTDELAY, 577 CP_ROOTDISPERSION, 578 CP_REFID, 579 CP_REFTIME, 580 CP_REC, 581 CP_REACH, 582 CP_UNREACH, 583 CP_HMODE, 584 CP_PMODE, 585 CP_HPOLL, 586 CP_PPOLL, 587 CP_RATE, 588 CP_FLASH, 589 CP_KEYID, 590 CP_TTL, 591 CP_OFFSET, 592 CP_DELAY, 593 CP_DISPERSION, 594 CP_JITTER, 595 CP_XMT, 596 CP_BIAS, 597 CP_FILTDELAY, 598 CP_FILTOFFSET, 599 CP_FILTERROR, 600 #ifdef AUTOKEY 601 CP_HOST, 602 CP_FLAGS, 603 CP_SIGNATURE, 604 CP_VALID, 605 CP_INITSEQ, 606 CP_IDENT, 607 #endif /* AUTOKEY */ 608 0 609 }; 610 611 612 #ifdef REFCLOCK 613 /* 614 * Clock variable list 615 */ 616 static const struct ctl_var clock_var[] = { 617 { 0, PADDING, "" }, /* 0 */ 618 { CC_TYPE, RO, "type" }, /* 1 */ 619 { CC_TIMECODE, RO, "timecode" }, /* 2 */ 620 { CC_POLL, RO, "poll" }, /* 3 */ 621 { CC_NOREPLY, RO, "noreply" }, /* 4 */ 622 { CC_BADFORMAT, RO, "badformat" }, /* 5 */ 623 { CC_BADDATA, RO, "baddata" }, /* 6 */ 624 { CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */ 625 { CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */ 626 { CC_FUDGEVAL1, RO, "stratum" }, /* 9 */ 627 { CC_FUDGEVAL2, RO, "refid" }, /* 10 */ 628 { CC_FLAGS, RO, "flags" }, /* 11 */ 629 { CC_DEVICE, RO, "device" }, /* 12 */ 630 { CC_VARLIST, RO, "clock_var_list" }, /* 13 */ 631 { CC_FUDGEMINJIT, RO, "minjitter" }, /* 14 */ 632 { 0, EOV, "" } /* 15 */ 633 }; 634 635 636 /* 637 * Clock variables printed by default 638 */ 639 static const u_char def_clock_var[] = { 640 CC_DEVICE, 641 CC_TYPE, /* won't be output if device = known */ 642 CC_TIMECODE, 643 CC_POLL, 644 CC_NOREPLY, 645 CC_BADFORMAT, 646 CC_BADDATA, 647 CC_FUDGEMINJIT, 648 CC_FUDGETIME1, 649 CC_FUDGETIME2, 650 CC_FUDGEVAL1, 651 CC_FUDGEVAL2, 652 CC_FLAGS, 653 0 654 }; 655 #endif 656 657 /* 658 * MRU string constants shared by send_mru_entry() and read_mru_list(). 659 */ 660 static const char addr_fmt[] = "addr.%d"; 661 static const char last_fmt[] = "last.%d"; 662 663 /* 664 * System and processor definitions. 665 */ 666 #ifndef HAVE_UNAME 667 # ifndef STR_SYSTEM 668 # define STR_SYSTEM "UNIX" 669 # endif 670 # ifndef STR_PROCESSOR 671 # define STR_PROCESSOR "unknown" 672 # endif 673 674 static const char str_system[] = STR_SYSTEM; 675 static const char str_processor[] = STR_PROCESSOR; 676 #else 677 # include <sys/utsname.h> 678 static struct utsname utsnamebuf; 679 #endif /* HAVE_UNAME */ 680 681 /* 682 * Trap structures. We only allow a few of these, and send a copy of 683 * each async message to each live one. Traps time out after an hour, it 684 * is up to the trap receipient to keep resetting it to avoid being 685 * timed out. 686 */ 687 /* ntp_request.c */ 688 struct ctl_trap ctl_traps[CTL_MAXTRAPS]; 689 int num_ctl_traps; 690 691 /* 692 * Type bits, for ctlsettrap() call. 693 */ 694 #define TRAP_TYPE_CONFIG 0 /* used by configuration code */ 695 #define TRAP_TYPE_PRIO 1 /* priority trap */ 696 #define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */ 697 698 699 /* 700 * List relating reference clock types to control message time sources. 701 * Index by the reference clock type. This list will only be used iff 702 * the reference clock driver doesn't set peer->sstclktype to something 703 * different than CTL_SST_TS_UNSPEC. 704 */ 705 #ifdef REFCLOCK 706 static const u_char clocktypes[] = { 707 CTL_SST_TS_NTP, /* REFCLK_NONE (0) */ 708 CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */ 709 CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */ 710 CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */ 711 CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */ 712 CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */ 713 CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */ 714 CTL_SST_TS_HF, /* REFCLK_CHU (7) */ 715 CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */ 716 CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */ 717 CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */ 718 CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */ 719 CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */ 720 CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */ 721 CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */ 722 CTL_SST_TS_NTP, /* not used (15) */ 723 CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */ 724 CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */ 725 CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */ 726 CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */ 727 CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */ 728 CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */ 729 CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */ 730 CTL_SST_TS_NTP, /* not used (23) */ 731 CTL_SST_TS_NTP, /* not used (24) */ 732 CTL_SST_TS_NTP, /* not used (25) */ 733 CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */ 734 CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */ 735 CTL_SST_TS_UHF, /* REFCLK_SHM (28) */ 736 CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */ 737 CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */ 738 CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */ 739 CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */ 740 CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */ 741 CTL_SST_TS_LF, /* REFCLK_ULINK (34) */ 742 CTL_SST_TS_LF, /* REFCLK_PCF (35) */ 743 CTL_SST_TS_HF, /* REFCLK_WWV (36) */ 744 CTL_SST_TS_LF, /* REFCLK_FG (37) */ 745 CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */ 746 CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */ 747 CTL_SST_TS_LF, /* REFCLK_JJY (40) */ 748 CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */ 749 CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */ 750 CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */ 751 CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */ 752 CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */ 753 CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */ 754 }; 755 #endif /* REFCLOCK */ 756 757 758 /* 759 * Keyid used for authenticating write requests. 760 */ 761 keyid_t ctl_auth_keyid; 762 763 /* 764 * We keep track of the last error reported by the system internally 765 */ 766 static u_char ctl_sys_last_event; 767 static u_char ctl_sys_num_events; 768 769 770 /* 771 * Statistic counters to keep track of requests and responses. 772 */ 773 u_long ctltimereset; /* time stats reset */ 774 u_long numctlreq; /* number of requests we've received */ 775 u_long numctlbadpkts; /* number of bad control packets */ 776 u_long numctlresponses; /* number of resp packets sent with data */ 777 u_long numctlfrags; /* number of fragments sent */ 778 u_long numctlerrors; /* number of error responses sent */ 779 u_long numctltooshort; /* number of too short input packets */ 780 u_long numctlinputresp; /* number of responses on input */ 781 u_long numctlinputfrag; /* number of fragments on input */ 782 u_long numctlinputerr; /* number of input pkts with err bit set */ 783 u_long numctlbadoffset; /* number of input pkts with nonzero offset */ 784 u_long numctlbadversion; /* number of input pkts with unknown version */ 785 u_long numctldatatooshort; /* data too short for count */ 786 u_long numctlbadop; /* bad op code found in packet */ 787 u_long numasyncmsgs; /* number of async messages we've sent */ 788 789 /* 790 * Response packet used by these routines. Also some state information 791 * so that we can handle packet formatting within a common set of 792 * subroutines. Note we try to enter data in place whenever possible, 793 * but the need to set the more bit correctly means we occasionally 794 * use the extra buffer and copy. 795 */ 796 static struct ntp_control rpkt; 797 static u_char res_version; 798 static u_char res_opcode; 799 static associd_t res_associd; 800 static u_short res_frags; /* datagrams in this response */ 801 static int res_offset; /* offset of payload in response */ 802 static u_char * datapt; 803 static u_char * dataend; 804 static int datalinelen; 805 static int datasent; /* flag to avoid initial ", " */ 806 static int datanotbinflag; 807 static sockaddr_u *rmt_addr; 808 static struct interface *lcl_inter; 809 810 static u_char res_authenticate; 811 static u_char res_authokay; 812 static keyid_t res_keyid; 813 814 #define MAXDATALINELEN (72) 815 816 static u_char res_async; /* sending async trap response? */ 817 818 /* 819 * Pointers for saving state when decoding request packets 820 */ 821 static char *reqpt; 822 static char *reqend; 823 824 #ifndef MIN 825 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) 826 #endif 827 828 /* 829 * init_control - initialize request data 830 */ 831 void 832 init_control(void) 833 { 834 size_t i; 835 836 #ifdef HAVE_UNAME 837 uname(&utsnamebuf); 838 #endif /* HAVE_UNAME */ 839 840 ctl_clr_stats(); 841 842 ctl_auth_keyid = 0; 843 ctl_sys_last_event = EVNT_UNSPEC; 844 ctl_sys_num_events = 0; 845 846 num_ctl_traps = 0; 847 for (i = 0; i < COUNTOF(ctl_traps); i++) 848 ctl_traps[i].tr_flags = 0; 849 } 850 851 852 /* 853 * ctl_error - send an error response for the current request 854 */ 855 static void 856 ctl_error( 857 u_char errcode 858 ) 859 { 860 size_t maclen; 861 862 numctlerrors++; 863 DPRINTF(3, ("sending control error %u\n", errcode)); 864 865 /* 866 * Fill in the fields. We assume rpkt.sequence and rpkt.associd 867 * have already been filled in. 868 */ 869 rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR | 870 (res_opcode & CTL_OP_MASK); 871 rpkt.status = htons((u_short)(errcode << 8) & 0xff00); 872 rpkt.count = 0; 873 874 /* 875 * send packet and bump counters 876 */ 877 if (res_authenticate && sys_authenticate) { 878 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt, 879 CTL_HEADER_LEN); 880 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt, 881 CTL_HEADER_LEN + maclen); 882 } else 883 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt, 884 CTL_HEADER_LEN); 885 } 886 887 int/*BOOL*/ 888 is_safe_filename(const char * name) 889 { 890 /* We need a strict validation of filenames we should write: The 891 * daemon might run with special permissions and is remote 892 * controllable, so we better take care what we allow as file 893 * name! 894 * 895 * The first character must be digit or a letter from the ASCII 896 * base plane or a '_' ([_A-Za-z0-9]), the following characters 897 * must be from [-._+A-Za-z0-9]. 898 * 899 * We do not trust the character classification much here: Since 900 * the NTP protocol makes no provisions for UTF-8 or local code 901 * pages, we strictly require the 7bit ASCII code page. 902 * 903 * The following table is a packed bit field of 128 two-bit 904 * groups. The LSB in each group tells us if a character is 905 * acceptable at the first position, the MSB if the character is 906 * accepted at any other position. 907 * 908 * This does not ensure that the file name is syntactically 909 * correct (multiple dots will not work with VMS...) but it will 910 * exclude potential globbing bombs and directory traversal. It 911 * also rules out drive selection. (For systems that have this 912 * notion, like Windows or VMS.) 913 */ 914 static const uint32_t chclass[8] = { 915 0x00000000, 0x00000000, 916 0x28800000, 0x000FFFFF, 917 0xFFFFFFFC, 0xC03FFFFF, 918 0xFFFFFFFC, 0x003FFFFF 919 }; 920 921 u_int widx, bidx, mask; 922 if ( ! (name && *name)) 923 return FALSE; 924 925 mask = 1u; 926 while (0 != (widx = (u_char)*name++)) { 927 bidx = (widx & 15) << 1; 928 widx = widx >> 4; 929 if (widx >= sizeof(chclass)/sizeof(chclass[0])) 930 return FALSE; 931 if (0 == ((chclass[widx] >> bidx) & mask)) 932 return FALSE; 933 mask = 2u; 934 } 935 return TRUE; 936 } 937 938 939 /* 940 * save_config - Implements ntpq -c "saveconfig <filename>" 941 * Writes current configuration including any runtime 942 * changes by ntpq's :config or config-from-file 943 * 944 * Note: There should be no buffer overflow or truncation in the 945 * processing of file names -- both cause security problems. This is bit 946 * painful to code but essential here. 947 */ 948 void 949 save_config( 950 struct recvbuf *rbufp, 951 int restrict_mask 952 ) 953 { 954 /* block directory traversal by searching for characters that 955 * indicate directory components in a file path. 956 * 957 * Conceptually we should be searching for DIRSEP in filename, 958 * however Windows actually recognizes both forward and 959 * backslashes as equivalent directory separators at the API 960 * level. On POSIX systems we could allow '\\' but such 961 * filenames are tricky to manipulate from a shell, so just 962 * reject both types of slashes on all platforms. 963 */ 964 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 965 static const char * illegal_in_filename = 966 #if defined(VMS) 967 ":[]" /* do not allow drive and path components here */ 968 #elif defined(SYS_WINNT) 969 ":\\/" /* path and drive separators */ 970 #else 971 "\\/" /* separator and critical char for POSIX */ 972 #endif 973 ; 974 char reply[128]; 975 #ifdef SAVECONFIG 976 static const char savedconfig_eq[] = "savedconfig="; 977 978 /* Build a safe open mode from the available mode flags. We want 979 * to create a new file and write it in text mode (when 980 * applicable -- only Windows does this...) 981 */ 982 static const int openmode = O_CREAT | O_TRUNC | O_WRONLY 983 # if defined(O_EXCL) /* posix, vms */ 984 | O_EXCL 985 # elif defined(_O_EXCL) /* windows is alway very special... */ 986 | _O_EXCL 987 # endif 988 # if defined(_O_TEXT) /* windows, again */ 989 | _O_TEXT 990 #endif 991 ; 992 993 char filespec[128]; 994 char filename[128]; 995 char fullpath[512]; 996 char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)]; 997 time_t now; 998 int fd; 999 FILE *fptr; 1000 int prc; 1001 size_t reqlen; 1002 #endif 1003 1004 if (RES_NOMODIFY & restrict_mask) { 1005 ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify"); 1006 ctl_flushpkt(0); 1007 NLOG(NLOG_SYSINFO) 1008 msyslog(LOG_NOTICE, 1009 "saveconfig from %s rejected due to nomodify restriction", 1010 stoa(&rbufp->recv_srcadr)); 1011 sys_restricted++; 1012 return; 1013 } 1014 1015 #ifdef SAVECONFIG 1016 if (NULL == saveconfigdir) { 1017 ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured"); 1018 ctl_flushpkt(0); 1019 NLOG(NLOG_SYSINFO) 1020 msyslog(LOG_NOTICE, 1021 "saveconfig from %s rejected, no saveconfigdir", 1022 stoa(&rbufp->recv_srcadr)); 1023 return; 1024 } 1025 1026 /* The length checking stuff gets serious. Do not assume a NUL 1027 * byte can be found, but if so, use it to calculate the needed 1028 * buffer size. If the available buffer is too short, bail out; 1029 * likewise if there is no file spec. (The latter will not 1030 * happen when using NTPQ, but there are other ways to craft a 1031 * network packet!) 1032 */ 1033 reqlen = (size_t)(reqend - reqpt); 1034 if (0 != reqlen) { 1035 char * nulpos = (char*)memchr(reqpt, 0, reqlen); 1036 if (NULL != nulpos) 1037 reqlen = (size_t)(nulpos - reqpt); 1038 } 1039 if (0 == reqlen) 1040 return; 1041 if (reqlen >= sizeof(filespec)) { 1042 ctl_printf("saveconfig exceeded maximum raw name length (%u)", 1043 (u_int)sizeof(filespec)); 1044 ctl_flushpkt(0); 1045 msyslog(LOG_NOTICE, 1046 "saveconfig exceeded maximum raw name length from %s", 1047 stoa(&rbufp->recv_srcadr)); 1048 return; 1049 } 1050 1051 /* copy data directly as we exactly know the size */ 1052 memcpy(filespec, reqpt, reqlen); 1053 filespec[reqlen] = '\0'; 1054 1055 /* 1056 * allow timestamping of the saved config filename with 1057 * strftime() format such as: 1058 * ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf" 1059 * XXX: Nice feature, but not too safe. 1060 * YYY: The check for permitted characters in file names should 1061 * weed out the worst. Let's hope 'strftime()' does not 1062 * develop pathological problems. 1063 */ 1064 time(&now); 1065 if (0 == strftime(filename, sizeof(filename), filespec, 1066 localtime(&now))) 1067 { 1068 /* 1069 * If we arrive here, 'strftime()' balked; most likely 1070 * the buffer was too short. (Or it encounterd an empty 1071 * format, or just a format that expands to an empty 1072 * string.) We try to use the original name, though this 1073 * is very likely to fail later if there are format 1074 * specs in the string. Note that truncation cannot 1075 * happen here as long as both buffers have the same 1076 * size! 1077 */ 1078 strlcpy(filename, filespec, sizeof(filename)); 1079 } 1080 1081 /* 1082 * Check the file name for sanity. This might/will rule out file 1083 * names that would be legal but problematic, and it blocks 1084 * directory traversal. 1085 */ 1086 if (!is_safe_filename(filename)) { 1087 ctl_printf("saveconfig rejects unsafe file name '%s'", 1088 filename); 1089 ctl_flushpkt(0); 1090 msyslog(LOG_NOTICE, 1091 "saveconfig rejects unsafe file name from %s", 1092 stoa(&rbufp->recv_srcadr)); 1093 return; 1094 } 1095 1096 /* 1097 * XXX: This next test may not be needed with is_safe_filename() 1098 */ 1099 1100 /* block directory/drive traversal */ 1101 /* TALOS-CAN-0062: block directory traversal for VMS, too */ 1102 if (NULL != strpbrk(filename, illegal_in_filename)) { 1103 snprintf(reply, sizeof(reply), 1104 "saveconfig does not allow directory in filename"); 1105 ctl_putdata(reply, strlen(reply), 0); 1106 ctl_flushpkt(0); 1107 msyslog(LOG_NOTICE, 1108 "saveconfig rejects unsafe file name from %s", 1109 stoa(&rbufp->recv_srcadr)); 1110 return; 1111 } 1112 1113 /* concatenation of directory and path can cause another 1114 * truncation... 1115 */ 1116 prc = snprintf(fullpath, sizeof(fullpath), "%s%s", 1117 saveconfigdir, filename); 1118 if (prc < 0 || (size_t)prc >= sizeof(fullpath)) { 1119 ctl_printf("saveconfig exceeded maximum path length (%u)", 1120 (u_int)sizeof(fullpath)); 1121 ctl_flushpkt(0); 1122 msyslog(LOG_NOTICE, 1123 "saveconfig exceeded maximum path length from %s", 1124 stoa(&rbufp->recv_srcadr)); 1125 return; 1126 } 1127 1128 fd = open(fullpath, openmode, S_IRUSR | S_IWUSR); 1129 if (-1 == fd) 1130 fptr = NULL; 1131 else 1132 fptr = fdopen(fd, "w"); 1133 1134 if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) { 1135 ctl_printf("Unable to save configuration to file '%s': %s", 1136 filename, strerror(errno)); 1137 msyslog(LOG_ERR, 1138 "saveconfig %s from %s failed", filename, 1139 stoa(&rbufp->recv_srcadr)); 1140 } else { 1141 ctl_printf("Configuration saved to '%s'", filename); 1142 msyslog(LOG_NOTICE, 1143 "Configuration saved to '%s' (requested by %s)", 1144 fullpath, stoa(&rbufp->recv_srcadr)); 1145 /* 1146 * save the output filename in system variable 1147 * savedconfig, retrieved with: 1148 * ntpq -c "rv 0 savedconfig" 1149 * Note: the way 'savedconfig' is defined makes overflow 1150 * checks unnecessary here. 1151 */ 1152 snprintf(savedconfig, sizeof(savedconfig), "%s%s", 1153 savedconfig_eq, filename); 1154 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO); 1155 } 1156 1157 if (NULL != fptr) 1158 fclose(fptr); 1159 #else /* !SAVECONFIG follows */ 1160 ctl_printf("%s", 1161 "saveconfig unavailable, configured with --disable-saveconfig"); 1162 #endif 1163 ctl_flushpkt(0); 1164 } 1165 1166 1167 /* 1168 * process_control - process an incoming control message 1169 */ 1170 void 1171 process_control( 1172 struct recvbuf *rbufp, 1173 int restrict_mask 1174 ) 1175 { 1176 struct ntp_control *pkt; 1177 int req_count; 1178 int req_data; 1179 const struct ctl_proc *cc; 1180 keyid_t *pkid; 1181 int properlen; 1182 size_t maclen; 1183 1184 DPRINTF(3, ("in process_control()\n")); 1185 1186 /* 1187 * Save the addresses for error responses 1188 */ 1189 numctlreq++; 1190 rmt_addr = &rbufp->recv_srcadr; 1191 lcl_inter = rbufp->dstadr; 1192 pkt = (struct ntp_control *)&rbufp->recv_pkt; 1193 1194 /* 1195 * If the length is less than required for the header, 1196 * ignore it. 1197 */ 1198 if (rbufp->recv_length < (int)CTL_HEADER_LEN) { 1199 DPRINTF(1, ("Short control packet\n")); 1200 numctltooshort++; 1201 return; 1202 } 1203 1204 /* 1205 * If this packet is a response or a fragment, ignore it. 1206 */ 1207 if ( (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op 1208 || pkt->offset != 0) { 1209 DPRINTF(1, ("invalid format in control packet\n")); 1210 if (CTL_RESPONSE & pkt->r_m_e_op) 1211 numctlinputresp++; 1212 if (CTL_MORE & pkt->r_m_e_op) 1213 numctlinputfrag++; 1214 if (CTL_ERROR & pkt->r_m_e_op) 1215 numctlinputerr++; 1216 if (pkt->offset != 0) 1217 numctlbadoffset++; 1218 return; 1219 } 1220 1221 res_version = PKT_VERSION(pkt->li_vn_mode); 1222 if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) { 1223 DPRINTF(1, ("unknown version %d in control packet\n", 1224 res_version)); 1225 numctlbadversion++; 1226 return; 1227 } 1228 1229 /* 1230 * Pull enough data from the packet to make intelligent 1231 * responses 1232 */ 1233 rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version, 1234 MODE_CONTROL); 1235 res_opcode = pkt->r_m_e_op; 1236 rpkt.sequence = pkt->sequence; 1237 rpkt.associd = pkt->associd; 1238 rpkt.status = 0; 1239 res_frags = 1; 1240 res_offset = 0; 1241 res_associd = htons(pkt->associd); 1242 res_async = FALSE; 1243 res_authenticate = FALSE; 1244 res_keyid = 0; 1245 res_authokay = FALSE; 1246 req_count = (int)ntohs(pkt->count); 1247 datanotbinflag = FALSE; 1248 datalinelen = 0; 1249 datasent = 0; 1250 datapt = rpkt.u.data; 1251 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 1252 1253 if ((rbufp->recv_length & 0x3) != 0) 1254 DPRINTF(3, ("Control packet length %d unrounded\n", 1255 rbufp->recv_length)); 1256 1257 /* 1258 * We're set up now. Make sure we've got at least enough 1259 * incoming data space to match the count. 1260 */ 1261 req_data = rbufp->recv_length - CTL_HEADER_LEN; 1262 if (req_data < req_count || rbufp->recv_length & 0x3) { 1263 ctl_error(CERR_BADFMT); 1264 numctldatatooshort++; 1265 return; 1266 } 1267 1268 properlen = req_count + CTL_HEADER_LEN; 1269 /* round up proper len to a 8 octet boundary */ 1270 1271 properlen = (properlen + 7) & ~7; 1272 maclen = rbufp->recv_length - properlen; 1273 if ((rbufp->recv_length & 3) == 0 && 1274 maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN && 1275 sys_authenticate) { 1276 res_authenticate = TRUE; 1277 pkid = (void *)((char *)pkt + properlen); 1278 res_keyid = ntohl(*pkid); 1279 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n", 1280 rbufp->recv_length, properlen, res_keyid, 1281 maclen)); 1282 1283 if (!authistrustedip(res_keyid, &rbufp->recv_srcadr)) 1284 DPRINTF(3, ("invalid keyid %08x\n", res_keyid)); 1285 else if (authdecrypt(res_keyid, (u_int32 *)pkt, 1286 rbufp->recv_length - maclen, 1287 maclen)) { 1288 res_authokay = TRUE; 1289 DPRINTF(3, ("authenticated okay\n")); 1290 } else { 1291 res_keyid = 0; 1292 DPRINTF(3, ("authentication failed\n")); 1293 } 1294 } 1295 1296 /* 1297 * Set up translate pointers 1298 */ 1299 reqpt = (char *)pkt->u.data; 1300 reqend = reqpt + req_count; 1301 1302 /* 1303 * Look for the opcode processor 1304 */ 1305 for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) { 1306 if (cc->control_code == res_opcode) { 1307 DPRINTF(3, ("opcode %d, found command handler\n", 1308 res_opcode)); 1309 if (cc->flags == AUTH 1310 && (!res_authokay 1311 || res_keyid != ctl_auth_keyid)) { 1312 ctl_error(CERR_PERMISSION); 1313 return; 1314 } 1315 (cc->handler)(rbufp, restrict_mask); 1316 return; 1317 } 1318 } 1319 1320 /* 1321 * Can't find this one, return an error. 1322 */ 1323 numctlbadop++; 1324 ctl_error(CERR_BADOP); 1325 return; 1326 } 1327 1328 1329 /* 1330 * ctlpeerstatus - return a status word for this peer 1331 */ 1332 u_short 1333 ctlpeerstatus( 1334 register struct peer *p 1335 ) 1336 { 1337 u_short status; 1338 1339 status = p->status; 1340 if (FLAG_CONFIG & p->flags) 1341 status |= CTL_PST_CONFIG; 1342 if (p->keyid) 1343 status |= CTL_PST_AUTHENABLE; 1344 if (FLAG_AUTHENTIC & p->flags) 1345 status |= CTL_PST_AUTHENTIC; 1346 if (p->reach) 1347 status |= CTL_PST_REACH; 1348 if (MDF_TXONLY_MASK & p->cast_flags) 1349 status |= CTL_PST_BCAST; 1350 1351 return CTL_PEER_STATUS(status, p->num_events, p->last_event); 1352 } 1353 1354 1355 /* 1356 * ctlclkstatus - return a status word for this clock 1357 */ 1358 #ifdef REFCLOCK 1359 static u_short 1360 ctlclkstatus( 1361 struct refclockstat *pcs 1362 ) 1363 { 1364 return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus); 1365 } 1366 #endif 1367 1368 1369 /* 1370 * ctlsysstatus - return the system status word 1371 */ 1372 u_short 1373 ctlsysstatus(void) 1374 { 1375 register u_char this_clock; 1376 1377 this_clock = CTL_SST_TS_UNSPEC; 1378 #ifdef REFCLOCK 1379 if (sys_peer != NULL) { 1380 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype) 1381 this_clock = sys_peer->sstclktype; 1382 else if (sys_peer->refclktype < COUNTOF(clocktypes)) 1383 this_clock = clocktypes[sys_peer->refclktype]; 1384 } 1385 #else /* REFCLOCK */ 1386 if (sys_peer != 0) 1387 this_clock = CTL_SST_TS_NTP; 1388 #endif /* REFCLOCK */ 1389 return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events, 1390 ctl_sys_last_event); 1391 } 1392 1393 1394 /* 1395 * ctl_flushpkt - write out the current packet and prepare 1396 * another if necessary. 1397 */ 1398 static void 1399 ctl_flushpkt( 1400 u_char more 1401 ) 1402 { 1403 size_t i; 1404 size_t dlen; 1405 size_t sendlen; 1406 size_t maclen; 1407 size_t totlen; 1408 keyid_t keyid; 1409 1410 dlen = datapt - rpkt.u.data; 1411 if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) { 1412 /* 1413 * Big hack, output a trailing \r\n 1414 */ 1415 *datapt++ = '\r'; 1416 *datapt++ = '\n'; 1417 dlen += 2; 1418 } 1419 sendlen = dlen + CTL_HEADER_LEN; 1420 1421 /* 1422 * Pad to a multiple of 32 bits 1423 */ 1424 while (sendlen & 0x3) { 1425 *datapt++ = '\0'; 1426 sendlen++; 1427 } 1428 1429 /* 1430 * Fill in the packet with the current info 1431 */ 1432 rpkt.r_m_e_op = CTL_RESPONSE | more | 1433 (res_opcode & CTL_OP_MASK); 1434 rpkt.count = htons((u_short)dlen); 1435 rpkt.offset = htons((u_short)res_offset); 1436 if (res_async) { 1437 for (i = 0; i < COUNTOF(ctl_traps); i++) { 1438 if (TRAP_INUSE & ctl_traps[i].tr_flags) { 1439 rpkt.li_vn_mode = 1440 PKT_LI_VN_MODE( 1441 sys_leap, 1442 ctl_traps[i].tr_version, 1443 MODE_CONTROL); 1444 rpkt.sequence = 1445 htons(ctl_traps[i].tr_sequence); 1446 sendpkt(&ctl_traps[i].tr_addr, 1447 ctl_traps[i].tr_localaddr, -4, 1448 (struct pkt *)&rpkt, sendlen); 1449 if (!more) 1450 ctl_traps[i].tr_sequence++; 1451 numasyncmsgs++; 1452 } 1453 } 1454 } else { 1455 if (res_authenticate && sys_authenticate) { 1456 totlen = sendlen; 1457 /* 1458 * If we are going to authenticate, then there 1459 * is an additional requirement that the MAC 1460 * begin on a 64 bit boundary. 1461 */ 1462 while (totlen & 7) { 1463 *datapt++ = '\0'; 1464 totlen++; 1465 } 1466 keyid = htonl(res_keyid); 1467 memcpy(datapt, &keyid, sizeof(keyid)); 1468 maclen = authencrypt(res_keyid, 1469 (u_int32 *)&rpkt, totlen); 1470 sendpkt(rmt_addr, lcl_inter, -5, 1471 (struct pkt *)&rpkt, totlen + maclen); 1472 } else { 1473 sendpkt(rmt_addr, lcl_inter, -6, 1474 (struct pkt *)&rpkt, sendlen); 1475 } 1476 if (more) 1477 numctlfrags++; 1478 else 1479 numctlresponses++; 1480 } 1481 1482 /* 1483 * Set us up for another go around. 1484 */ 1485 res_frags++; 1486 res_offset += dlen; 1487 datapt = rpkt.u.data; 1488 } 1489 1490 1491 /* -------------------------------------------------------------------- 1492 * block transfer API -- stream string/data fragments into xmit buffer 1493 * without additional copying 1494 */ 1495 1496 /* buffer descriptor: address & size of fragment 1497 * 'buf' may only be NULL when 'len' is zero! 1498 */ 1499 typedef struct { 1500 const void *buf; 1501 size_t len; 1502 } CtlMemBufT; 1503 1504 /* put ctl data in a gather-style operation */ 1505 static void 1506 ctl_putdata_ex( 1507 const CtlMemBufT * argv, 1508 size_t argc, 1509 int/*BOOL*/ bin /* set to 1 when data is binary */ 1510 ) 1511 { 1512 const char * src_ptr; 1513 size_t src_len, cur_len, add_len, argi; 1514 1515 /* text / binary preprocessing, possibly create new linefeed */ 1516 if (bin) { 1517 add_len = 0; 1518 } else { 1519 datanotbinflag = TRUE; 1520 add_len = 3; 1521 1522 if (datasent) { 1523 *datapt++ = ','; 1524 datalinelen++; 1525 1526 /* sum up total length */ 1527 for (argi = 0, src_len = 0; argi < argc; ++argi) 1528 src_len += argv[argi].len; 1529 /* possibly start a new line, assume no size_t overflow */ 1530 if ((src_len + datalinelen + 1) >= MAXDATALINELEN) { 1531 *datapt++ = '\r'; 1532 *datapt++ = '\n'; 1533 datalinelen = 0; 1534 } else { 1535 *datapt++ = ' '; 1536 datalinelen++; 1537 } 1538 } 1539 } 1540 1541 /* now stream out all buffers */ 1542 for (argi = 0; argi < argc; ++argi) { 1543 src_ptr = argv[argi].buf; 1544 src_len = argv[argi].len; 1545 1546 if ( ! (src_ptr && src_len)) 1547 continue; 1548 1549 cur_len = (size_t)(dataend - datapt); 1550 while ((src_len + add_len) > cur_len) { 1551 /* Not enough room in this one, flush it out. */ 1552 if (src_len < cur_len) 1553 cur_len = src_len; 1554 1555 memcpy(datapt, src_ptr, cur_len); 1556 datapt += cur_len; 1557 datalinelen += cur_len; 1558 1559 src_ptr += cur_len; 1560 src_len -= cur_len; 1561 1562 ctl_flushpkt(CTL_MORE); 1563 cur_len = (size_t)(dataend - datapt); 1564 } 1565 1566 memcpy(datapt, src_ptr, src_len); 1567 datapt += src_len; 1568 datalinelen += src_len; 1569 1570 datasent = TRUE; 1571 } 1572 } 1573 1574 /* 1575 * ctl_putdata - write data into the packet, fragmenting and starting 1576 * another if this one is full. 1577 */ 1578 static void 1579 ctl_putdata( 1580 const char *dp, 1581 unsigned int dlen, 1582 int bin /* set to 1 when data is binary */ 1583 ) 1584 { 1585 CtlMemBufT args[1]; 1586 1587 args[0].buf = dp; 1588 args[0].len = dlen; 1589 ctl_putdata_ex(args, 1, bin); 1590 } 1591 1592 /* 1593 * ctl_putstr - write a tagged string into the response packet 1594 * in the form: 1595 * 1596 * tag="data" 1597 * 1598 * len is the data length excluding the NUL terminator, 1599 * as in ctl_putstr("var", "value", strlen("value")); 1600 */ 1601 static void 1602 ctl_putstr( 1603 const char * tag, 1604 const char * data, 1605 size_t len 1606 ) 1607 { 1608 CtlMemBufT args[4]; 1609 1610 args[0].buf = tag; 1611 args[0].len = strlen(tag); 1612 if (data && len) { 1613 args[1].buf = "=\""; 1614 args[1].len = 2; 1615 args[2].buf = data; 1616 args[2].len = len; 1617 args[3].buf = "\""; 1618 args[3].len = 1; 1619 ctl_putdata_ex(args, 4, FALSE); 1620 } else { 1621 args[1].buf = "=\"\""; 1622 args[1].len = 3; 1623 ctl_putdata_ex(args, 2, FALSE); 1624 } 1625 } 1626 1627 1628 /* 1629 * ctl_putunqstr - write a tagged string into the response packet 1630 * in the form: 1631 * 1632 * tag=data 1633 * 1634 * len is the data length excluding the NUL terminator. 1635 * data must not contain a comma or whitespace. 1636 */ 1637 static void 1638 ctl_putunqstr( 1639 const char * tag, 1640 const char * data, 1641 size_t len 1642 ) 1643 { 1644 CtlMemBufT args[3]; 1645 1646 args[0].buf = tag; 1647 args[0].len = strlen(tag); 1648 args[1].buf = "="; 1649 args[1].len = 1; 1650 if (data && len) { 1651 args[2].buf = data; 1652 args[2].len = len; 1653 ctl_putdata_ex(args, 3, FALSE); 1654 } else { 1655 ctl_putdata_ex(args, 2, FALSE); 1656 } 1657 } 1658 1659 1660 /* 1661 * ctl_putdblf - write a tagged, signed double into the response packet 1662 */ 1663 static void 1664 ctl_putdblf( 1665 const char * tag, 1666 int use_f, 1667 int precision, 1668 double d 1669 ) 1670 { 1671 char buffer[40]; 1672 int rc; 1673 1674 rc = snprintf(buffer, sizeof(buffer), 1675 (use_f ? "%.*f" : "%.*g"), 1676 precision, d); 1677 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1678 ctl_putunqstr(tag, buffer, rc); 1679 } 1680 1681 /* 1682 * ctl_putuint - write a tagged unsigned integer into the response 1683 */ 1684 static void 1685 ctl_putuint( 1686 const char *tag, 1687 u_long uval 1688 ) 1689 { 1690 char buffer[24]; /* needs to fit for 64 bits! */ 1691 int rc; 1692 1693 rc = snprintf(buffer, sizeof(buffer), "%lu", uval); 1694 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1695 ctl_putunqstr(tag, buffer, rc); 1696 } 1697 1698 /* 1699 * ctl_putcal - write a decoded calendar data into the response. 1700 * only used with AUTOKEY currently, so compiled conditional 1701 */ 1702 #ifdef AUTOKEY 1703 static void 1704 ctl_putcal( 1705 const char *tag, 1706 const struct calendar *pcal 1707 ) 1708 { 1709 char buffer[16]; 1710 int rc; 1711 1712 rc = snprintf(buffer, sizeof(buffer), 1713 "%04d%02d%02d%02d%02d", 1714 pcal->year, pcal->month, pcal->monthday, 1715 pcal->hour, pcal->minute 1716 ); 1717 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1718 ctl_putunqstr(tag, buffer, rc); 1719 } 1720 #endif 1721 1722 /* 1723 * ctl_putfs - write a decoded filestamp into the response 1724 */ 1725 static void 1726 ctl_putfs( 1727 const char *tag, 1728 tstamp_t uval 1729 ) 1730 { 1731 char buffer[16]; 1732 int rc; 1733 1734 time_t fstamp = (time_t)uval - JAN_1970; 1735 struct tm *tm = gmtime(&fstamp); 1736 1737 if (NULL == tm) 1738 return; 1739 1740 rc = snprintf(buffer, sizeof(buffer), 1741 "%04d%02d%02d%02d%02d", 1742 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, 1743 tm->tm_hour, tm->tm_min); 1744 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1745 ctl_putunqstr(tag, buffer, rc); 1746 } 1747 1748 1749 /* 1750 * ctl_puthex - write a tagged unsigned integer, in hex, into the 1751 * response 1752 */ 1753 static void 1754 ctl_puthex( 1755 const char *tag, 1756 u_long uval 1757 ) 1758 { 1759 char buffer[24]; /* must fit 64bit int! */ 1760 int rc; 1761 1762 rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval); 1763 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1764 ctl_putunqstr(tag, buffer, rc); 1765 } 1766 1767 1768 /* 1769 * ctl_putint - write a tagged signed integer into the response 1770 */ 1771 static void 1772 ctl_putint( 1773 const char *tag, 1774 long ival 1775 ) 1776 { 1777 char buffer[24]; /*must fit 64bit int */ 1778 int rc; 1779 1780 rc = snprintf(buffer, sizeof(buffer), "%ld", ival); 1781 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1782 ctl_putunqstr(tag, buffer, rc); 1783 } 1784 1785 1786 /* 1787 * ctl_putts - write a tagged timestamp, in hex, into the response 1788 */ 1789 static void 1790 ctl_putts( 1791 const char *tag, 1792 l_fp *ts 1793 ) 1794 { 1795 char buffer[24]; 1796 int rc; 1797 1798 rc = snprintf(buffer, sizeof(buffer), 1799 "0x%08lx.%08lx", 1800 (u_long)ts->l_ui, (u_long)ts->l_uf); 1801 INSIST(rc >= 0 && (size_t)rc < sizeof(buffer)); 1802 ctl_putunqstr(tag, buffer, rc); 1803 } 1804 1805 1806 /* 1807 * ctl_putadr - write an IP address into the response 1808 */ 1809 static void 1810 ctl_putadr( 1811 const char *tag, 1812 u_int32 addr32, 1813 sockaddr_u *addr 1814 ) 1815 { 1816 const char *cq; 1817 1818 if (NULL == addr) 1819 cq = numtoa(addr32); 1820 else 1821 cq = stoa(addr); 1822 ctl_putunqstr(tag, cq, strlen(cq)); 1823 } 1824 1825 1826 /* 1827 * ctl_putrefid - send a u_int32 refid as printable text 1828 */ 1829 static void 1830 ctl_putrefid( 1831 const char * tag, 1832 u_int32 refid 1833 ) 1834 { 1835 size_t nc; 1836 1837 union { 1838 uint32_t w; 1839 uint8_t b[sizeof(uint32_t)]; 1840 } bytes; 1841 1842 bytes.w = refid; 1843 for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc) 1844 if ( !isprint(bytes.b[nc]) 1845 || isspace(bytes.b[nc]) 1846 || bytes.b[nc] == ',' ) 1847 bytes.b[nc] = '.'; 1848 ctl_putunqstr(tag, (const char*)bytes.b, nc); 1849 } 1850 1851 1852 /* 1853 * ctl_putarray - write a tagged eight element double array into the response 1854 */ 1855 static void 1856 ctl_putarray( 1857 const char *tag, 1858 double *arr, 1859 int start 1860 ) 1861 { 1862 char *cp, *ep; 1863 char buffer[200]; 1864 int i, rc; 1865 1866 cp = buffer; 1867 ep = buffer + sizeof(buffer); 1868 i = start; 1869 do { 1870 if (i == 0) 1871 i = NTP_SHIFT; 1872 i--; 1873 rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3); 1874 INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp)); 1875 cp += rc; 1876 } while (i != start); 1877 ctl_putunqstr(tag, buffer, (size_t)(cp - buffer)); 1878 } 1879 1880 /* 1881 * ctl_printf - put a formatted string into the data buffer 1882 */ 1883 static void 1884 ctl_printf( 1885 const char * fmt, 1886 ... 1887 ) 1888 { 1889 static const char * ellipsis = "[...]"; 1890 va_list va; 1891 char fmtbuf[128]; 1892 int rc; 1893 1894 va_start(va, fmt); 1895 rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va); 1896 va_end(va); 1897 if (rc < 0 || (size_t)rc >= sizeof(fmtbuf)) 1898 strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1, 1899 ellipsis); 1900 ctl_putdata(fmtbuf, strlen(fmtbuf), 0); 1901 } 1902 1903 1904 /* 1905 * ctl_putsys - output a system variable 1906 */ 1907 static void 1908 ctl_putsys( 1909 int varid 1910 ) 1911 { 1912 l_fp tmp; 1913 char str[256]; 1914 u_int u; 1915 double kb; 1916 double dtemp; 1917 const char *ss; 1918 #ifdef AUTOKEY 1919 struct cert_info *cp; 1920 #endif /* AUTOKEY */ 1921 #ifdef KERNEL_PLL 1922 static struct timex ntx; 1923 static u_long ntp_adjtime_time; 1924 1925 /* 1926 * CS_K_* variables depend on up-to-date output of ntp_adjtime() 1927 */ 1928 if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST && 1929 current_time != ntp_adjtime_time) { 1930 ZERO(ntx); 1931 if (ntp_adjtime(&ntx) < 0) 1932 msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m"); 1933 else 1934 ntp_adjtime_time = current_time; 1935 } 1936 #endif /* KERNEL_PLL */ 1937 1938 switch (varid) { 1939 1940 case CS_LEAP: 1941 ctl_putuint(sys_var[CS_LEAP].text, sys_leap); 1942 break; 1943 1944 case CS_STRATUM: 1945 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum); 1946 break; 1947 1948 case CS_PRECISION: 1949 ctl_putint(sys_var[CS_PRECISION].text, sys_precision); 1950 break; 1951 1952 case CS_ROOTDELAY: 1953 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay * 1954 1e3); 1955 break; 1956 1957 case CS_ROOTDISPERSION: 1958 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text, 1959 sys_rootdisp * 1e3); 1960 break; 1961 1962 case CS_REFID: 1963 if (REFID_ISTEXT(sys_stratum)) 1964 ctl_putrefid(sys_var[varid].text, sys_refid); 1965 else 1966 ctl_putadr(sys_var[varid].text, sys_refid, NULL); 1967 break; 1968 1969 case CS_REFTIME: 1970 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime); 1971 break; 1972 1973 case CS_POLL: 1974 ctl_putuint(sys_var[CS_POLL].text, sys_poll); 1975 break; 1976 1977 case CS_PEERID: 1978 if (sys_peer == NULL) 1979 ctl_putuint(sys_var[CS_PEERID].text, 0); 1980 else 1981 ctl_putuint(sys_var[CS_PEERID].text, 1982 sys_peer->associd); 1983 break; 1984 1985 case CS_PEERADR: 1986 if (sys_peer != NULL && sys_peer->dstadr != NULL) 1987 ss = sptoa(&sys_peer->srcadr); 1988 else 1989 ss = "0.0.0.0:0"; 1990 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss)); 1991 break; 1992 1993 case CS_PEERMODE: 1994 u = (sys_peer != NULL) 1995 ? sys_peer->hmode 1996 : MODE_UNSPEC; 1997 ctl_putuint(sys_var[CS_PEERMODE].text, u); 1998 break; 1999 2000 case CS_OFFSET: 2001 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3); 2002 break; 2003 2004 case CS_DRIFT: 2005 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6); 2006 break; 2007 2008 case CS_JITTER: 2009 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3); 2010 break; 2011 2012 case CS_ERROR: 2013 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3); 2014 break; 2015 2016 case CS_CLOCK: 2017 get_systime(&tmp); 2018 ctl_putts(sys_var[CS_CLOCK].text, &tmp); 2019 break; 2020 2021 case CS_PROCESSOR: 2022 #ifndef HAVE_UNAME 2023 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor, 2024 sizeof(str_processor) - 1); 2025 #else 2026 ctl_putstr(sys_var[CS_PROCESSOR].text, 2027 utsnamebuf.machine, strlen(utsnamebuf.machine)); 2028 #endif /* HAVE_UNAME */ 2029 break; 2030 2031 case CS_SYSTEM: 2032 #ifndef HAVE_UNAME 2033 ctl_putstr(sys_var[CS_SYSTEM].text, str_system, 2034 sizeof(str_system) - 1); 2035 #else 2036 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname, 2037 utsnamebuf.release); 2038 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str)); 2039 #endif /* HAVE_UNAME */ 2040 break; 2041 2042 case CS_VERSION: 2043 ctl_putstr(sys_var[CS_VERSION].text, Version, 2044 strlen(Version)); 2045 break; 2046 2047 case CS_STABIL: 2048 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability * 2049 1e6); 2050 break; 2051 2052 case CS_VARLIST: 2053 { 2054 char buf[CTL_MAX_DATA_LEN]; 2055 //buffPointer, firstElementPointer, buffEndPointer 2056 char *buffp, *buffend; 2057 int firstVarName; 2058 const char *ss1; 2059 int len; 2060 const struct ctl_var *k; 2061 2062 buffp = buf; 2063 buffend = buf + sizeof(buf); 2064 if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4)) 2065 break; /* really long var name */ 2066 2067 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text); 2068 buffp += strlen(buffp); 2069 firstVarName = TRUE; 2070 for (k = sys_var; !(k->flags & EOV); k++) { 2071 if (k->flags & PADDING) 2072 continue; 2073 len = strlen(k->text); 2074 if (len + 1 >= buffend - buffp) 2075 break; 2076 if (!firstVarName) 2077 *buffp++ = ','; 2078 else 2079 firstVarName = FALSE; 2080 memcpy(buffp, k->text, len); 2081 buffp += len; 2082 } 2083 2084 for (k = ext_sys_var; k && !(k->flags & EOV); k++) { 2085 if (k->flags & PADDING) 2086 continue; 2087 if (NULL == k->text) 2088 continue; 2089 ss1 = strchr(k->text, '='); 2090 if (NULL == ss1) 2091 len = strlen(k->text); 2092 else 2093 len = ss1 - k->text; 2094 if (len + 1 >= buffend - buffp) 2095 break; 2096 if (firstVarName) { 2097 *buffp++ = ','; 2098 firstVarName = FALSE; 2099 } 2100 memcpy(buffp, k->text,(unsigned)len); 2101 buffp += len; 2102 } 2103 if (2 >= buffend - buffp) 2104 break; 2105 2106 *buffp++ = '"'; 2107 *buffp = '\0'; 2108 2109 ctl_putdata(buf, (unsigned)( buffp - buf ), 0); 2110 break; 2111 } 2112 2113 case CS_TAI: 2114 if (sys_tai > 0) 2115 ctl_putuint(sys_var[CS_TAI].text, sys_tai); 2116 break; 2117 2118 case CS_LEAPTAB: 2119 { 2120 leap_signature_t lsig; 2121 leapsec_getsig(&lsig); 2122 if (lsig.ttime > 0) 2123 ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime); 2124 break; 2125 } 2126 2127 case CS_LEAPEND: 2128 { 2129 leap_signature_t lsig; 2130 leapsec_getsig(&lsig); 2131 if (lsig.etime > 0) 2132 ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime); 2133 break; 2134 } 2135 2136 #ifdef LEAP_SMEAR 2137 case CS_LEAPSMEARINTV: 2138 if (leap_smear_intv > 0) 2139 ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv); 2140 break; 2141 2142 case CS_LEAPSMEAROFFS: 2143 if (leap_smear_intv > 0) 2144 ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text, 2145 leap_smear.doffset * 1e3); 2146 break; 2147 #endif /* LEAP_SMEAR */ 2148 2149 case CS_RATE: 2150 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll); 2151 break; 2152 2153 case CS_MRU_ENABLED: 2154 ctl_puthex(sys_var[varid].text, mon_enabled); 2155 break; 2156 2157 case CS_MRU_DEPTH: 2158 ctl_putuint(sys_var[varid].text, mru_entries); 2159 break; 2160 2161 case CS_MRU_MEM: 2162 kb = mru_entries * (sizeof(mon_entry) / 1024.); 2163 u = (u_int)kb; 2164 if (kb - u >= 0.5) 2165 u++; 2166 ctl_putuint(sys_var[varid].text, u); 2167 break; 2168 2169 case CS_MRU_DEEPEST: 2170 ctl_putuint(sys_var[varid].text, mru_peakentries); 2171 break; 2172 2173 case CS_MRU_MINDEPTH: 2174 ctl_putuint(sys_var[varid].text, mru_mindepth); 2175 break; 2176 2177 case CS_MRU_MAXAGE: 2178 ctl_putint(sys_var[varid].text, mru_maxage); 2179 break; 2180 2181 case CS_MRU_MAXDEPTH: 2182 ctl_putuint(sys_var[varid].text, mru_maxdepth); 2183 break; 2184 2185 case CS_MRU_MAXMEM: 2186 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.); 2187 u = (u_int)kb; 2188 if (kb - u >= 0.5) 2189 u++; 2190 ctl_putuint(sys_var[varid].text, u); 2191 break; 2192 2193 case CS_SS_UPTIME: 2194 ctl_putuint(sys_var[varid].text, current_time); 2195 break; 2196 2197 case CS_SS_RESET: 2198 ctl_putuint(sys_var[varid].text, 2199 current_time - sys_stattime); 2200 break; 2201 2202 case CS_SS_RECEIVED: 2203 ctl_putuint(sys_var[varid].text, sys_received); 2204 break; 2205 2206 case CS_SS_THISVER: 2207 ctl_putuint(sys_var[varid].text, sys_newversion); 2208 break; 2209 2210 case CS_SS_OLDVER: 2211 ctl_putuint(sys_var[varid].text, sys_oldversion); 2212 break; 2213 2214 case CS_SS_BADFORMAT: 2215 ctl_putuint(sys_var[varid].text, sys_badlength); 2216 break; 2217 2218 case CS_SS_BADAUTH: 2219 ctl_putuint(sys_var[varid].text, sys_badauth); 2220 break; 2221 2222 case CS_SS_DECLINED: 2223 ctl_putuint(sys_var[varid].text, sys_declined); 2224 break; 2225 2226 case CS_SS_RESTRICTED: 2227 ctl_putuint(sys_var[varid].text, sys_restricted); 2228 break; 2229 2230 case CS_SS_LIMITED: 2231 ctl_putuint(sys_var[varid].text, sys_limitrejected); 2232 break; 2233 2234 case CS_SS_LAMPORT: 2235 ctl_putuint(sys_var[varid].text, sys_lamport); 2236 break; 2237 2238 case CS_SS_TSROUNDING: 2239 ctl_putuint(sys_var[varid].text, sys_tsrounding); 2240 break; 2241 2242 case CS_SS_KODSENT: 2243 ctl_putuint(sys_var[varid].text, sys_kodsent); 2244 break; 2245 2246 case CS_SS_PROCESSED: 2247 ctl_putuint(sys_var[varid].text, sys_processed); 2248 break; 2249 2250 case CS_BCASTDELAY: 2251 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3); 2252 break; 2253 2254 case CS_AUTHDELAY: 2255 LFPTOD(&sys_authdelay, dtemp); 2256 ctl_putdbl(sys_var[varid].text, dtemp * 1e3); 2257 break; 2258 2259 case CS_AUTHKEYS: 2260 ctl_putuint(sys_var[varid].text, authnumkeys); 2261 break; 2262 2263 case CS_AUTHFREEK: 2264 ctl_putuint(sys_var[varid].text, authnumfreekeys); 2265 break; 2266 2267 case CS_AUTHKLOOKUPS: 2268 ctl_putuint(sys_var[varid].text, authkeylookups); 2269 break; 2270 2271 case CS_AUTHKNOTFOUND: 2272 ctl_putuint(sys_var[varid].text, authkeynotfound); 2273 break; 2274 2275 case CS_AUTHKUNCACHED: 2276 ctl_putuint(sys_var[varid].text, authkeyuncached); 2277 break; 2278 2279 case CS_AUTHKEXPIRED: 2280 ctl_putuint(sys_var[varid].text, authkeyexpired); 2281 break; 2282 2283 case CS_AUTHENCRYPTS: 2284 ctl_putuint(sys_var[varid].text, authencryptions); 2285 break; 2286 2287 case CS_AUTHDECRYPTS: 2288 ctl_putuint(sys_var[varid].text, authdecryptions); 2289 break; 2290 2291 case CS_AUTHRESET: 2292 ctl_putuint(sys_var[varid].text, 2293 current_time - auth_timereset); 2294 break; 2295 2296 /* 2297 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is 2298 * unavailable, otherwise calls putfunc with args. 2299 */ 2300 #ifndef KERNEL_PLL 2301 # define CTL_IF_KERNLOOP(putfunc, args) \ 2302 ctl_putint(sys_var[varid].text, 0) 2303 #else 2304 # define CTL_IF_KERNLOOP(putfunc, args) \ 2305 putfunc args 2306 #endif 2307 2308 /* 2309 * CTL_IF_KERNPPS() puts a zero if either the kernel 2310 * loop is unavailable, or kernel hard PPS is not 2311 * active, otherwise calls putfunc with args. 2312 */ 2313 #ifndef KERNEL_PLL 2314 # define CTL_IF_KERNPPS(putfunc, args) \ 2315 ctl_putint(sys_var[varid].text, 0) 2316 #else 2317 # define CTL_IF_KERNPPS(putfunc, args) \ 2318 if (0 == ntx.shift) \ 2319 ctl_putint(sys_var[varid].text, 0); \ 2320 else \ 2321 putfunc args /* no trailing ; */ 2322 #endif 2323 2324 case CS_K_OFFSET: 2325 CTL_IF_KERNLOOP( 2326 ctl_putdblf, 2327 (sys_var[varid].text, 0, -1, 2328 1000 * dbl_from_var_long(ntx.offset, ntx.status)) 2329 ); 2330 break; 2331 2332 case CS_K_FREQ: 2333 CTL_IF_KERNLOOP( 2334 ctl_putsfp, 2335 (sys_var[varid].text, ntx.freq) 2336 ); 2337 break; 2338 2339 case CS_K_MAXERR: 2340 CTL_IF_KERNLOOP( 2341 ctl_putdblf, 2342 (sys_var[varid].text, 0, 6, 2343 1000 * dbl_from_usec_long(ntx.maxerror)) 2344 ); 2345 break; 2346 2347 case CS_K_ESTERR: 2348 CTL_IF_KERNLOOP( 2349 ctl_putdblf, 2350 (sys_var[varid].text, 0, 6, 2351 1000 * dbl_from_usec_long(ntx.esterror)) 2352 ); 2353 break; 2354 2355 case CS_K_STFLAGS: 2356 #ifndef KERNEL_PLL 2357 ss = ""; 2358 #else 2359 ss = k_st_flags(ntx.status); 2360 #endif 2361 ctl_putstr(sys_var[varid].text, ss, strlen(ss)); 2362 break; 2363 2364 case CS_K_TIMECONST: 2365 CTL_IF_KERNLOOP( 2366 ctl_putint, 2367 (sys_var[varid].text, ntx.constant) 2368 ); 2369 break; 2370 2371 case CS_K_PRECISION: 2372 CTL_IF_KERNLOOP( 2373 ctl_putdblf, 2374 (sys_var[varid].text, 0, 6, 2375 1000 * dbl_from_var_long(ntx.precision, ntx.status)) 2376 ); 2377 break; 2378 2379 case CS_K_FREQTOL: 2380 CTL_IF_KERNLOOP( 2381 ctl_putsfp, 2382 (sys_var[varid].text, ntx.tolerance) 2383 ); 2384 break; 2385 2386 case CS_K_PPS_FREQ: 2387 CTL_IF_KERNPPS( 2388 ctl_putsfp, 2389 (sys_var[varid].text, ntx.ppsfreq) 2390 ); 2391 break; 2392 2393 case CS_K_PPS_STABIL: 2394 CTL_IF_KERNPPS( 2395 ctl_putsfp, 2396 (sys_var[varid].text, ntx.stabil) 2397 ); 2398 break; 2399 2400 case CS_K_PPS_JITTER: 2401 CTL_IF_KERNPPS( 2402 ctl_putdbl, 2403 (sys_var[varid].text, 2404 1000 * dbl_from_var_long(ntx.jitter, ntx.status)) 2405 ); 2406 break; 2407 2408 case CS_K_PPS_CALIBDUR: 2409 CTL_IF_KERNPPS( 2410 ctl_putint, 2411 (sys_var[varid].text, 1 << ntx.shift) 2412 ); 2413 break; 2414 2415 case CS_K_PPS_CALIBS: 2416 CTL_IF_KERNPPS( 2417 ctl_putint, 2418 (sys_var[varid].text, ntx.calcnt) 2419 ); 2420 break; 2421 2422 case CS_K_PPS_CALIBERRS: 2423 CTL_IF_KERNPPS( 2424 ctl_putint, 2425 (sys_var[varid].text, ntx.errcnt) 2426 ); 2427 break; 2428 2429 case CS_K_PPS_JITEXC: 2430 CTL_IF_KERNPPS( 2431 ctl_putint, 2432 (sys_var[varid].text, ntx.jitcnt) 2433 ); 2434 break; 2435 2436 case CS_K_PPS_STBEXC: 2437 CTL_IF_KERNPPS( 2438 ctl_putint, 2439 (sys_var[varid].text, ntx.stbcnt) 2440 ); 2441 break; 2442 2443 case CS_IOSTATS_RESET: 2444 ctl_putuint(sys_var[varid].text, 2445 current_time - io_timereset); 2446 break; 2447 2448 case CS_TOTAL_RBUF: 2449 ctl_putuint(sys_var[varid].text, total_recvbuffs()); 2450 break; 2451 2452 case CS_FREE_RBUF: 2453 ctl_putuint(sys_var[varid].text, free_recvbuffs()); 2454 break; 2455 2456 case CS_USED_RBUF: 2457 ctl_putuint(sys_var[varid].text, full_recvbuffs()); 2458 break; 2459 2460 case CS_RBUF_LOWATER: 2461 ctl_putuint(sys_var[varid].text, lowater_additions()); 2462 break; 2463 2464 case CS_IO_DROPPED: 2465 ctl_putuint(sys_var[varid].text, packets_dropped); 2466 break; 2467 2468 case CS_IO_IGNORED: 2469 ctl_putuint(sys_var[varid].text, packets_ignored); 2470 break; 2471 2472 case CS_IO_RECEIVED: 2473 ctl_putuint(sys_var[varid].text, packets_received); 2474 break; 2475 2476 case CS_IO_SENT: 2477 ctl_putuint(sys_var[varid].text, packets_sent); 2478 break; 2479 2480 case CS_IO_SENDFAILED: 2481 ctl_putuint(sys_var[varid].text, packets_notsent); 2482 break; 2483 2484 case CS_IO_WAKEUPS: 2485 ctl_putuint(sys_var[varid].text, handler_calls); 2486 break; 2487 2488 case CS_IO_GOODWAKEUPS: 2489 ctl_putuint(sys_var[varid].text, handler_pkts); 2490 break; 2491 2492 case CS_TIMERSTATS_RESET: 2493 ctl_putuint(sys_var[varid].text, 2494 current_time - timer_timereset); 2495 break; 2496 2497 case CS_TIMER_OVERRUNS: 2498 ctl_putuint(sys_var[varid].text, alarm_overflow); 2499 break; 2500 2501 case CS_TIMER_XMTS: 2502 ctl_putuint(sys_var[varid].text, timer_xmtcalls); 2503 break; 2504 2505 case CS_FUZZ: 2506 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3); 2507 break; 2508 case CS_WANDER_THRESH: 2509 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6); 2510 break; 2511 #ifdef AUTOKEY 2512 case CS_FLAGS: 2513 if (crypto_flags) 2514 ctl_puthex(sys_var[CS_FLAGS].text, 2515 crypto_flags); 2516 break; 2517 2518 case CS_DIGEST: 2519 if (crypto_flags) { 2520 strlcpy(str, OBJ_nid2ln(crypto_nid), 2521 COUNTOF(str)); 2522 ctl_putstr(sys_var[CS_DIGEST].text, str, 2523 strlen(str)); 2524 } 2525 break; 2526 2527 case CS_SIGNATURE: 2528 if (crypto_flags) { 2529 const EVP_MD *dp; 2530 2531 dp = EVP_get_digestbynid(crypto_flags >> 16); 2532 strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)), 2533 COUNTOF(str)); 2534 ctl_putstr(sys_var[CS_SIGNATURE].text, str, 2535 strlen(str)); 2536 } 2537 break; 2538 2539 case CS_HOST: 2540 if (hostval.ptr != NULL) 2541 ctl_putstr(sys_var[CS_HOST].text, hostval.ptr, 2542 strlen(hostval.ptr)); 2543 break; 2544 2545 case CS_IDENT: 2546 if (sys_ident != NULL) 2547 ctl_putstr(sys_var[CS_IDENT].text, sys_ident, 2548 strlen(sys_ident)); 2549 break; 2550 2551 case CS_CERTIF: 2552 for (cp = cinfo; cp != NULL; cp = cp->link) { 2553 snprintf(str, sizeof(str), "%s %s 0x%x", 2554 cp->subject, cp->issuer, cp->flags); 2555 ctl_putstr(sys_var[CS_CERTIF].text, str, 2556 strlen(str)); 2557 ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last)); 2558 } 2559 break; 2560 2561 case CS_PUBLIC: 2562 if (hostval.tstamp != 0) 2563 ctl_putfs(sys_var[CS_PUBLIC].text, 2564 ntohl(hostval.tstamp)); 2565 break; 2566 #endif /* AUTOKEY */ 2567 2568 default: 2569 break; 2570 } 2571 } 2572 2573 2574 /* 2575 * ctl_putpeer - output a peer variable 2576 */ 2577 static void 2578 ctl_putpeer( 2579 int id, 2580 struct peer *p 2581 ) 2582 { 2583 char buf[CTL_MAX_DATA_LEN]; 2584 char *s; 2585 char *t; 2586 char *be; 2587 int i; 2588 const struct ctl_var *k; 2589 #ifdef AUTOKEY 2590 struct autokey *ap; 2591 const EVP_MD *dp; 2592 const char *str; 2593 #endif /* AUTOKEY */ 2594 2595 switch (id) { 2596 2597 case CP_CONFIG: 2598 ctl_putuint(peer_var[id].text, 2599 !(FLAG_PREEMPT & p->flags)); 2600 break; 2601 2602 case CP_AUTHENABLE: 2603 ctl_putuint(peer_var[id].text, !(p->keyid)); 2604 break; 2605 2606 case CP_AUTHENTIC: 2607 ctl_putuint(peer_var[id].text, 2608 !!(FLAG_AUTHENTIC & p->flags)); 2609 break; 2610 2611 case CP_SRCADR: 2612 ctl_putadr(peer_var[id].text, 0, &p->srcadr); 2613 break; 2614 2615 case CP_SRCPORT: 2616 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr)); 2617 break; 2618 2619 case CP_SRCHOST: 2620 if (p->hostname != NULL) 2621 ctl_putstr(peer_var[id].text, p->hostname, 2622 strlen(p->hostname)); 2623 break; 2624 2625 case CP_DSTADR: 2626 ctl_putadr(peer_var[id].text, 0, 2627 (p->dstadr != NULL) 2628 ? &p->dstadr->sin 2629 : NULL); 2630 break; 2631 2632 case CP_DSTPORT: 2633 ctl_putuint(peer_var[id].text, 2634 (p->dstadr != NULL) 2635 ? SRCPORT(&p->dstadr->sin) 2636 : 0); 2637 break; 2638 2639 case CP_IN: 2640 if (p->r21 > 0.) 2641 ctl_putdbl(peer_var[id].text, p->r21 / 1e3); 2642 break; 2643 2644 case CP_OUT: 2645 if (p->r34 > 0.) 2646 ctl_putdbl(peer_var[id].text, p->r34 / 1e3); 2647 break; 2648 2649 case CP_RATE: 2650 ctl_putuint(peer_var[id].text, p->throttle); 2651 break; 2652 2653 case CP_LEAP: 2654 ctl_putuint(peer_var[id].text, p->leap); 2655 break; 2656 2657 case CP_HMODE: 2658 ctl_putuint(peer_var[id].text, p->hmode); 2659 break; 2660 2661 case CP_STRATUM: 2662 ctl_putuint(peer_var[id].text, p->stratum); 2663 break; 2664 2665 case CP_PPOLL: 2666 ctl_putuint(peer_var[id].text, p->ppoll); 2667 break; 2668 2669 case CP_HPOLL: 2670 ctl_putuint(peer_var[id].text, p->hpoll); 2671 break; 2672 2673 case CP_PRECISION: 2674 ctl_putint(peer_var[id].text, p->precision); 2675 break; 2676 2677 case CP_ROOTDELAY: 2678 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3); 2679 break; 2680 2681 case CP_ROOTDISPERSION: 2682 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3); 2683 break; 2684 2685 case CP_REFID: 2686 #ifdef REFCLOCK 2687 if (p->flags & FLAG_REFCLOCK) { 2688 ctl_putrefid(peer_var[id].text, p->refid); 2689 break; 2690 } 2691 #endif 2692 if (REFID_ISTEXT(p->stratum)) 2693 ctl_putrefid(peer_var[id].text, p->refid); 2694 else 2695 ctl_putadr(peer_var[id].text, p->refid, NULL); 2696 break; 2697 2698 case CP_REFTIME: 2699 ctl_putts(peer_var[id].text, &p->reftime); 2700 break; 2701 2702 case CP_ORG: 2703 ctl_putts(peer_var[id].text, &p->aorg); 2704 break; 2705 2706 case CP_REC: 2707 ctl_putts(peer_var[id].text, &p->dst); 2708 break; 2709 2710 case CP_XMT: 2711 if (p->xleave) 2712 ctl_putdbl(peer_var[id].text, p->xleave * 1e3); 2713 break; 2714 2715 case CP_BIAS: 2716 if (p->bias != 0.) 2717 ctl_putdbl(peer_var[id].text, p->bias * 1e3); 2718 break; 2719 2720 case CP_REACH: 2721 ctl_puthex(peer_var[id].text, p->reach); 2722 break; 2723 2724 case CP_FLASH: 2725 ctl_puthex(peer_var[id].text, p->flash); 2726 break; 2727 2728 case CP_TTL: 2729 #ifdef REFCLOCK 2730 if (p->flags & FLAG_REFCLOCK) { 2731 ctl_putuint(peer_var[id].text, p->ttl); 2732 break; 2733 } 2734 #endif 2735 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl)) 2736 ctl_putint(peer_var[id].text, 2737 sys_ttl[p->ttl]); 2738 break; 2739 2740 case CP_UNREACH: 2741 ctl_putuint(peer_var[id].text, p->unreach); 2742 break; 2743 2744 case CP_TIMER: 2745 ctl_putuint(peer_var[id].text, 2746 p->nextdate - current_time); 2747 break; 2748 2749 case CP_DELAY: 2750 ctl_putdbl(peer_var[id].text, p->delay * 1e3); 2751 break; 2752 2753 case CP_OFFSET: 2754 ctl_putdbl(peer_var[id].text, p->offset * 1e3); 2755 break; 2756 2757 case CP_JITTER: 2758 ctl_putdbl(peer_var[id].text, p->jitter * 1e3); 2759 break; 2760 2761 case CP_DISPERSION: 2762 ctl_putdbl(peer_var[id].text, p->disp * 1e3); 2763 break; 2764 2765 case CP_KEYID: 2766 if (p->keyid > NTP_MAXKEY) 2767 ctl_puthex(peer_var[id].text, p->keyid); 2768 else 2769 ctl_putuint(peer_var[id].text, p->keyid); 2770 break; 2771 2772 case CP_FILTDELAY: 2773 ctl_putarray(peer_var[id].text, p->filter_delay, 2774 p->filter_nextpt); 2775 break; 2776 2777 case CP_FILTOFFSET: 2778 ctl_putarray(peer_var[id].text, p->filter_offset, 2779 p->filter_nextpt); 2780 break; 2781 2782 case CP_FILTERROR: 2783 ctl_putarray(peer_var[id].text, p->filter_disp, 2784 p->filter_nextpt); 2785 break; 2786 2787 case CP_PMODE: 2788 ctl_putuint(peer_var[id].text, p->pmode); 2789 break; 2790 2791 case CP_RECEIVED: 2792 ctl_putuint(peer_var[id].text, p->received); 2793 break; 2794 2795 case CP_SENT: 2796 ctl_putuint(peer_var[id].text, p->sent); 2797 break; 2798 2799 case CP_VARLIST: 2800 s = buf; 2801 be = buf + sizeof(buf); 2802 if (strlen(peer_var[id].text) + 4 > sizeof(buf)) 2803 break; /* really long var name */ 2804 2805 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text); 2806 s += strlen(s); 2807 t = s; 2808 for (k = peer_var; !(EOV & k->flags); k++) { 2809 if (PADDING & k->flags) 2810 continue; 2811 i = strlen(k->text); 2812 if (s + i + 1 >= be) 2813 break; 2814 if (s != t) 2815 *s++ = ','; 2816 memcpy(s, k->text, i); 2817 s += i; 2818 } 2819 if (s + 2 < be) { 2820 *s++ = '"'; 2821 *s = '\0'; 2822 ctl_putdata(buf, (u_int)(s - buf), 0); 2823 } 2824 break; 2825 2826 case CP_TIMEREC: 2827 ctl_putuint(peer_var[id].text, 2828 current_time - p->timereceived); 2829 break; 2830 2831 case CP_TIMEREACH: 2832 ctl_putuint(peer_var[id].text, 2833 current_time - p->timereachable); 2834 break; 2835 2836 case CP_BADAUTH: 2837 ctl_putuint(peer_var[id].text, p->badauth); 2838 break; 2839 2840 case CP_BOGUSORG: 2841 ctl_putuint(peer_var[id].text, p->bogusorg); 2842 break; 2843 2844 case CP_OLDPKT: 2845 ctl_putuint(peer_var[id].text, p->oldpkt); 2846 break; 2847 2848 case CP_SELDISP: 2849 ctl_putuint(peer_var[id].text, p->seldisptoolarge); 2850 break; 2851 2852 case CP_SELBROKEN: 2853 ctl_putuint(peer_var[id].text, p->selbroken); 2854 break; 2855 2856 case CP_CANDIDATE: 2857 ctl_putuint(peer_var[id].text, p->status); 2858 break; 2859 #ifdef AUTOKEY 2860 case CP_FLAGS: 2861 if (p->crypto) 2862 ctl_puthex(peer_var[id].text, p->crypto); 2863 break; 2864 2865 case CP_SIGNATURE: 2866 if (p->crypto) { 2867 dp = EVP_get_digestbynid(p->crypto >> 16); 2868 str = OBJ_nid2ln(EVP_MD_pkey_type(dp)); 2869 ctl_putstr(peer_var[id].text, str, strlen(str)); 2870 } 2871 break; 2872 2873 case CP_HOST: 2874 if (p->subject != NULL) 2875 ctl_putstr(peer_var[id].text, p->subject, 2876 strlen(p->subject)); 2877 break; 2878 2879 case CP_VALID: /* not used */ 2880 break; 2881 2882 case CP_INITSEQ: 2883 if (NULL == (ap = p->recval.ptr)) 2884 break; 2885 2886 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq); 2887 ctl_puthex(peer_var[CP_INITKEY].text, ap->key); 2888 ctl_putfs(peer_var[CP_INITTSP].text, 2889 ntohl(p->recval.tstamp)); 2890 break; 2891 2892 case CP_IDENT: 2893 if (p->ident != NULL) 2894 ctl_putstr(peer_var[id].text, p->ident, 2895 strlen(p->ident)); 2896 break; 2897 2898 2899 #endif /* AUTOKEY */ 2900 } 2901 } 2902 2903 2904 #ifdef REFCLOCK 2905 /* 2906 * ctl_putclock - output clock variables 2907 */ 2908 static void 2909 ctl_putclock( 2910 int id, 2911 struct refclockstat *pcs, 2912 int mustput 2913 ) 2914 { 2915 char buf[CTL_MAX_DATA_LEN]; 2916 char *s, *t, *be; 2917 const char *ss; 2918 int i; 2919 const struct ctl_var *k; 2920 2921 switch (id) { 2922 2923 case CC_TYPE: 2924 if (mustput || pcs->clockdesc == NULL 2925 || *(pcs->clockdesc) == '\0') { 2926 ctl_putuint(clock_var[id].text, pcs->type); 2927 } 2928 break; 2929 case CC_TIMECODE: 2930 ctl_putstr(clock_var[id].text, 2931 pcs->p_lastcode, 2932 (unsigned)pcs->lencode); 2933 break; 2934 2935 case CC_POLL: 2936 ctl_putuint(clock_var[id].text, pcs->polls); 2937 break; 2938 2939 case CC_NOREPLY: 2940 ctl_putuint(clock_var[id].text, 2941 pcs->noresponse); 2942 break; 2943 2944 case CC_BADFORMAT: 2945 ctl_putuint(clock_var[id].text, 2946 pcs->badformat); 2947 break; 2948 2949 case CC_BADDATA: 2950 ctl_putuint(clock_var[id].text, 2951 pcs->baddata); 2952 break; 2953 2954 case CC_FUDGETIME1: 2955 if (mustput || (pcs->haveflags & CLK_HAVETIME1)) 2956 ctl_putdbl(clock_var[id].text, 2957 pcs->fudgetime1 * 1e3); 2958 break; 2959 2960 case CC_FUDGETIME2: 2961 if (mustput || (pcs->haveflags & CLK_HAVETIME2)) 2962 ctl_putdbl(clock_var[id].text, 2963 pcs->fudgetime2 * 1e3); 2964 break; 2965 2966 case CC_FUDGEVAL1: 2967 if (mustput || (pcs->haveflags & CLK_HAVEVAL1)) 2968 ctl_putint(clock_var[id].text, 2969 pcs->fudgeval1); 2970 break; 2971 2972 case CC_FUDGEVAL2: 2973 /* RefID of clocks are always text even if stratum is fudged */ 2974 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) 2975 ctl_putrefid(clock_var[id].text, pcs->fudgeval2); 2976 break; 2977 2978 case CC_FLAGS: 2979 ctl_putuint(clock_var[id].text, pcs->flags); 2980 break; 2981 2982 case CC_DEVICE: 2983 if (pcs->clockdesc == NULL || 2984 *(pcs->clockdesc) == '\0') { 2985 if (mustput) 2986 ctl_putstr(clock_var[id].text, 2987 "", 0); 2988 } else { 2989 ctl_putstr(clock_var[id].text, 2990 pcs->clockdesc, 2991 strlen(pcs->clockdesc)); 2992 } 2993 break; 2994 2995 case CC_VARLIST: 2996 s = buf; 2997 be = buf + sizeof(buf); 2998 if (strlen(clock_var[CC_VARLIST].text) + 4 > 2999 sizeof(buf)) 3000 break; /* really long var name */ 3001 3002 snprintf(s, sizeof(buf), "%s=\"", 3003 clock_var[CC_VARLIST].text); 3004 s += strlen(s); 3005 t = s; 3006 3007 for (k = clock_var; !(EOV & k->flags); k++) { 3008 if (PADDING & k->flags) 3009 continue; 3010 3011 i = strlen(k->text); 3012 if (s + i + 1 >= be) 3013 break; 3014 3015 if (s != t) 3016 *s++ = ','; 3017 memcpy(s, k->text, i); 3018 s += i; 3019 } 3020 3021 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) { 3022 if (PADDING & k->flags) 3023 continue; 3024 3025 ss = k->text; 3026 if (NULL == ss) 3027 continue; 3028 3029 while (*ss && *ss != '=') 3030 ss++; 3031 i = ss - k->text; 3032 if (s + i + 1 >= be) 3033 break; 3034 3035 if (s != t) 3036 *s++ = ','; 3037 memcpy(s, k->text, (unsigned)i); 3038 s += i; 3039 *s = '\0'; 3040 } 3041 if (s + 2 >= be) 3042 break; 3043 3044 *s++ = '"'; 3045 *s = '\0'; 3046 ctl_putdata(buf, (unsigned)(s - buf), 0); 3047 break; 3048 3049 case CC_FUDGEMINJIT: 3050 if (mustput || (pcs->haveflags & CLK_HAVEMINJIT)) 3051 ctl_putdbl(clock_var[id].text, 3052 pcs->fudgeminjitter * 1e3); 3053 break; 3054 3055 default: 3056 break; 3057 3058 } 3059 } 3060 #endif 3061 3062 3063 3064 /* 3065 * ctl_getitem - get the next data item from the incoming packet 3066 */ 3067 static const struct ctl_var * 3068 ctl_getitem( 3069 const struct ctl_var *var_list, 3070 char **data 3071 ) 3072 { 3073 /* [Bug 3008] First check the packet data sanity, then search 3074 * the key. This improves the consistency of result values: If 3075 * the result is NULL once, it will never be EOV again for this 3076 * packet; If it's EOV, it will never be NULL again until the 3077 * variable is found and processed in a given 'var_list'. (That 3078 * is, a result is returned that is neither NULL nor EOV). 3079 */ 3080 static const struct ctl_var eol = { 0, EOV, NULL }; 3081 static char buf[128]; 3082 static u_long quiet_until; 3083 const struct ctl_var *v; 3084 char *cp; 3085 char *tp; 3086 3087 /* 3088 * Part One: Validate the packet state 3089 */ 3090 3091 /* Delete leading commas and white space */ 3092 while (reqpt < reqend && (*reqpt == ',' || 3093 isspace((unsigned char)*reqpt))) 3094 reqpt++; 3095 if (reqpt >= reqend) 3096 return NULL; 3097 3098 /* Scan the string in the packet until we hit comma or 3099 * EoB. Register position of first '=' on the fly. */ 3100 for (tp = NULL, cp = reqpt; cp != reqend; ++cp) { 3101 if (*cp == '=' && tp == NULL) 3102 tp = cp; 3103 if (*cp == ',') 3104 break; 3105 } 3106 3107 /* Process payload, if any. */ 3108 *data = NULL; 3109 if (NULL != tp) { 3110 /* eventually strip white space from argument. */ 3111 const char *plhead = tp + 1; /* skip the '=' */ 3112 const char *pltail = cp; 3113 size_t plsize; 3114 3115 while (plhead != pltail && isspace((u_char)plhead[0])) 3116 ++plhead; 3117 while (plhead != pltail && isspace((u_char)pltail[-1])) 3118 --pltail; 3119 3120 /* check payload size, terminate packet on overflow */ 3121 plsize = (size_t)(pltail - plhead); 3122 if (plsize >= sizeof(buf)) 3123 goto badpacket; 3124 3125 /* copy data, NUL terminate, and set result data ptr */ 3126 memcpy(buf, plhead, plsize); 3127 buf[plsize] = '\0'; 3128 *data = buf; 3129 } else { 3130 /* no payload, current end --> current name termination */ 3131 tp = cp; 3132 } 3133 3134 /* Part Two 3135 * 3136 * Now we're sure that the packet data itself is sane. Scan the 3137 * list now. Make sure a NULL list is properly treated by 3138 * returning a synthetic End-Of-Values record. We must not 3139 * return NULL pointers after this point, or the behaviour would 3140 * become inconsistent if called several times with different 3141 * variable lists after an EoV was returned. (Such a behavior 3142 * actually caused Bug 3008.) 3143 */ 3144 3145 if (NULL == var_list) 3146 return &eol; 3147 3148 for (v = var_list; !(EOV & v->flags); ++v) 3149 if (!(PADDING & v->flags)) { 3150 /* Check if the var name matches the buffer. The 3151 * name is bracketed by [reqpt..tp] and not NUL 3152 * terminated, and it contains no '=' char. The 3153 * lookup value IS NUL-terminated but might 3154 * include a '='... We have to look out for 3155 * that! 3156 */ 3157 const char *sp1 = reqpt; 3158 const char *sp2 = v->text; 3159 3160 /* [Bug 3412] do not compare past NUL byte in name */ 3161 while ( (sp1 != tp) 3162 && ('\0' != *sp2) && (*sp1 == *sp2)) { 3163 ++sp1; 3164 ++sp2; 3165 } 3166 if (sp1 == tp && (*sp2 == '\0' || *sp2 == '=')) 3167 break; 3168 } 3169 3170 /* See if we have found a valid entry or not. If found, advance 3171 * the request pointer for the next round; if not, clear the 3172 * data pointer so we have no dangling garbage here. 3173 */ 3174 if (EOV & v->flags) 3175 *data = NULL; 3176 else 3177 reqpt = cp + (cp != reqend); 3178 return v; 3179 3180 badpacket: 3181 /*TODO? somehow indicate this packet was bad, apart from syslog? */ 3182 numctlbadpkts++; 3183 NLOG(NLOG_SYSEVENT) 3184 if (quiet_until <= current_time) { 3185 quiet_until = current_time + 300; 3186 msyslog(LOG_WARNING, 3187 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", 3188 stoa(rmt_addr), SRCPORT(rmt_addr)); 3189 } 3190 reqpt = reqend; /* never again for this packet! */ 3191 return NULL; 3192 } 3193 3194 3195 /* 3196 * control_unspec - response to an unspecified op-code 3197 */ 3198 /*ARGSUSED*/ 3199 static void 3200 control_unspec( 3201 struct recvbuf *rbufp, 3202 int restrict_mask 3203 ) 3204 { 3205 struct peer *peer; 3206 3207 /* 3208 * What is an appropriate response to an unspecified op-code? 3209 * I return no errors and no data, unless a specified assocation 3210 * doesn't exist. 3211 */ 3212 if (res_associd) { 3213 peer = findpeerbyassoc(res_associd); 3214 if (NULL == peer) { 3215 ctl_error(CERR_BADASSOC); 3216 return; 3217 } 3218 rpkt.status = htons(ctlpeerstatus(peer)); 3219 } else 3220 rpkt.status = htons(ctlsysstatus()); 3221 ctl_flushpkt(0); 3222 } 3223 3224 3225 /* 3226 * read_status - return either a list of associd's, or a particular 3227 * peer's status. 3228 */ 3229 /*ARGSUSED*/ 3230 static void 3231 read_status( 3232 struct recvbuf *rbufp, 3233 int restrict_mask 3234 ) 3235 { 3236 struct peer *peer; 3237 const u_char *cp; 3238 size_t n; 3239 /* a_st holds association ID, status pairs alternating */ 3240 u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)]; 3241 3242 #ifdef DEBUG 3243 if (debug > 2) 3244 printf("read_status: ID %d\n", res_associd); 3245 #endif 3246 /* 3247 * Two choices here. If the specified association ID is 3248 * zero we return all known assocation ID's. Otherwise 3249 * we return a bunch of stuff about the particular peer. 3250 */ 3251 if (res_associd) { 3252 peer = findpeerbyassoc(res_associd); 3253 if (NULL == peer) { 3254 ctl_error(CERR_BADASSOC); 3255 return; 3256 } 3257 rpkt.status = htons(ctlpeerstatus(peer)); 3258 if (res_authokay) 3259 peer->num_events = 0; 3260 /* 3261 * For now, output everything we know about the 3262 * peer. May be more selective later. 3263 */ 3264 for (cp = def_peer_var; *cp != 0; cp++) 3265 ctl_putpeer((int)*cp, peer); 3266 ctl_flushpkt(0); 3267 return; 3268 } 3269 n = 0; 3270 rpkt.status = htons(ctlsysstatus()); 3271 for (peer = peer_list; peer != NULL; peer = peer->p_link) { 3272 a_st[n++] = htons(peer->associd); 3273 a_st[n++] = htons(ctlpeerstatus(peer)); 3274 /* two entries each loop iteration, so n + 1 */ 3275 if (n + 1 >= COUNTOF(a_st)) { 3276 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 3277 1); 3278 n = 0; 3279 } 3280 } 3281 if (n) 3282 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1); 3283 ctl_flushpkt(0); 3284 } 3285 3286 3287 /* 3288 * read_peervars - half of read_variables() implementation 3289 */ 3290 static void 3291 read_peervars(void) 3292 { 3293 const struct ctl_var *v; 3294 struct peer *peer; 3295 const u_char *cp; 3296 size_t i; 3297 char * valuep; 3298 u_char wants[CP_MAXCODE + 1]; 3299 u_int gotvar; 3300 3301 /* 3302 * Wants info for a particular peer. See if we know 3303 * the guy. 3304 */ 3305 peer = findpeerbyassoc(res_associd); 3306 if (NULL == peer) { 3307 ctl_error(CERR_BADASSOC); 3308 return; 3309 } 3310 rpkt.status = htons(ctlpeerstatus(peer)); 3311 if (res_authokay) 3312 peer->num_events = 0; 3313 ZERO(wants); 3314 gotvar = 0; 3315 while (NULL != (v = ctl_getitem(peer_var, &valuep))) { 3316 if (v->flags & EOV) { 3317 ctl_error(CERR_UNKNOWNVAR); 3318 return; 3319 } 3320 INSIST(v->code < COUNTOF(wants)); 3321 wants[v->code] = 1; 3322 gotvar = 1; 3323 } 3324 if (gotvar) { 3325 for (i = 1; i < COUNTOF(wants); i++) 3326 if (wants[i]) 3327 ctl_putpeer(i, peer); 3328 } else 3329 for (cp = def_peer_var; *cp != 0; cp++) 3330 ctl_putpeer((int)*cp, peer); 3331 ctl_flushpkt(0); 3332 } 3333 3334 3335 /* 3336 * read_sysvars - half of read_variables() implementation 3337 */ 3338 static void 3339 read_sysvars(void) 3340 { 3341 const struct ctl_var *v; 3342 struct ctl_var *kv; 3343 u_int n; 3344 u_int gotvar; 3345 const u_char *cs; 3346 char * valuep; 3347 const char * pch; 3348 u_char *wants; 3349 size_t wants_count; 3350 3351 /* 3352 * Wants system variables. Figure out which he wants 3353 * and give them to him. 3354 */ 3355 rpkt.status = htons(ctlsysstatus()); 3356 if (res_authokay) 3357 ctl_sys_num_events = 0; 3358 wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var); 3359 wants = emalloc_zero(wants_count); 3360 gotvar = 0; 3361 while (NULL != (v = ctl_getitem(sys_var, &valuep))) { 3362 if (!(EOV & v->flags)) { 3363 INSIST(v->code < wants_count); 3364 wants[v->code] = 1; 3365 gotvar = 1; 3366 } else { 3367 v = ctl_getitem(ext_sys_var, &valuep); 3368 if (NULL == v) { 3369 ctl_error(CERR_BADVALUE); 3370 free(wants); 3371 return; 3372 } 3373 if (EOV & v->flags) { 3374 ctl_error(CERR_UNKNOWNVAR); 3375 free(wants); 3376 return; 3377 } 3378 n = v->code + CS_MAXCODE + 1; 3379 INSIST(n < wants_count); 3380 wants[n] = 1; 3381 gotvar = 1; 3382 } 3383 } 3384 if (gotvar) { 3385 for (n = 1; n <= CS_MAXCODE; n++) 3386 if (wants[n]) 3387 ctl_putsys(n); 3388 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++) 3389 if (wants[n + CS_MAXCODE + 1]) { 3390 pch = ext_sys_var[n].text; 3391 ctl_putdata(pch, strlen(pch), 0); 3392 } 3393 } else { 3394 for (cs = def_sys_var; *cs != 0; cs++) 3395 ctl_putsys((int)*cs); 3396 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++) 3397 if (DEF & kv->flags) 3398 ctl_putdata(kv->text, strlen(kv->text), 3399 0); 3400 } 3401 free(wants); 3402 ctl_flushpkt(0); 3403 } 3404 3405 3406 /* 3407 * read_variables - return the variables the caller asks for 3408 */ 3409 /*ARGSUSED*/ 3410 static void 3411 read_variables( 3412 struct recvbuf *rbufp, 3413 int restrict_mask 3414 ) 3415 { 3416 if (res_associd) 3417 read_peervars(); 3418 else 3419 read_sysvars(); 3420 } 3421 3422 3423 /* 3424 * write_variables - write into variables. We only allow leap bit 3425 * writing this way. 3426 */ 3427 /*ARGSUSED*/ 3428 static void 3429 write_variables( 3430 struct recvbuf *rbufp, 3431 int restrict_mask 3432 ) 3433 { 3434 const struct ctl_var *v; 3435 int ext_var; 3436 char *valuep; 3437 long val; 3438 size_t octets; 3439 char *vareqv; 3440 const char *t; 3441 char *tt; 3442 3443 val = 0; 3444 /* 3445 * If he's trying to write into a peer tell him no way 3446 */ 3447 if (res_associd != 0) { 3448 ctl_error(CERR_PERMISSION); 3449 return; 3450 } 3451 3452 /* 3453 * Set status 3454 */ 3455 rpkt.status = htons(ctlsysstatus()); 3456 3457 /* 3458 * Look through the variables. Dump out at the first sign of 3459 * trouble. 3460 */ 3461 while ((v = ctl_getitem(sys_var, &valuep)) != NULL) { 3462 ext_var = 0; 3463 if (v->flags & EOV) { 3464 v = ctl_getitem(ext_sys_var, &valuep); 3465 if (v != NULL) { 3466 if (v->flags & EOV) { 3467 ctl_error(CERR_UNKNOWNVAR); 3468 return; 3469 } 3470 ext_var = 1; 3471 } else { 3472 break; 3473 } 3474 } 3475 if (!(v->flags & CAN_WRITE)) { 3476 ctl_error(CERR_PERMISSION); 3477 return; 3478 } 3479 /* [bug 3565] writing makes sense only if we *have* a 3480 * value in the packet! 3481 */ 3482 if (valuep == NULL) { 3483 ctl_error(CERR_BADFMT); 3484 return; 3485 } 3486 if (!ext_var) { 3487 if ( !(*valuep && atoint(valuep, &val))) { 3488 ctl_error(CERR_BADFMT); 3489 return; 3490 } 3491 if ((val & ~LEAP_NOTINSYNC) != 0) { 3492 ctl_error(CERR_BADVALUE); 3493 return; 3494 } 3495 } 3496 3497 if (ext_var) { 3498 octets = strlen(v->text) + strlen(valuep) + 2; 3499 vareqv = emalloc(octets); 3500 tt = vareqv; 3501 t = v->text; 3502 while (*t && *t != '=') 3503 *tt++ = *t++; 3504 *tt++ = '='; 3505 memcpy(tt, valuep, 1 + strlen(valuep)); 3506 set_sys_var(vareqv, 1 + strlen(vareqv), v->flags); 3507 free(vareqv); 3508 } else { 3509 ctl_error(CERR_UNSPEC); /* really */ 3510 return; 3511 } 3512 } 3513 3514 /* 3515 * If we got anything, do it. xxx nothing to do *** 3516 */ 3517 /* 3518 if (leapind != ~0 || leapwarn != ~0) { 3519 if (!leap_setleap((int)leapind, (int)leapwarn)) { 3520 ctl_error(CERR_PERMISSION); 3521 return; 3522 } 3523 } 3524 */ 3525 ctl_flushpkt(0); 3526 } 3527 3528 3529 /* 3530 * configure() processes ntpq :config/config-from-file, allowing 3531 * generic runtime reconfiguration. 3532 */ 3533 static void configure( 3534 struct recvbuf *rbufp, 3535 int restrict_mask 3536 ) 3537 { 3538 size_t data_count; 3539 int retval; 3540 3541 /* I haven't yet implemented changes to an existing association. 3542 * Hence check if the association id is 0 3543 */ 3544 if (res_associd != 0) { 3545 ctl_error(CERR_BADVALUE); 3546 return; 3547 } 3548 3549 if (RES_NOMODIFY & restrict_mask) { 3550 snprintf(remote_config.err_msg, 3551 sizeof(remote_config.err_msg), 3552 "runtime configuration prohibited by restrict ... nomodify"); 3553 ctl_putdata(remote_config.err_msg, 3554 strlen(remote_config.err_msg), 0); 3555 ctl_flushpkt(0); 3556 NLOG(NLOG_SYSINFO) 3557 msyslog(LOG_NOTICE, 3558 "runtime config from %s rejected due to nomodify restriction", 3559 stoa(&rbufp->recv_srcadr)); 3560 sys_restricted++; 3561 return; 3562 } 3563 3564 /* Initialize the remote config buffer */ 3565 data_count = remoteconfig_cmdlength(reqpt, reqend); 3566 3567 if (data_count > sizeof(remote_config.buffer) - 2) { 3568 snprintf(remote_config.err_msg, 3569 sizeof(remote_config.err_msg), 3570 "runtime configuration failed: request too long"); 3571 ctl_putdata(remote_config.err_msg, 3572 strlen(remote_config.err_msg), 0); 3573 ctl_flushpkt(0); 3574 msyslog(LOG_NOTICE, 3575 "runtime config from %s rejected: request too long", 3576 stoa(&rbufp->recv_srcadr)); 3577 return; 3578 } 3579 /* Bug 2853 -- check if all characters were acceptable */ 3580 if (data_count != (size_t)(reqend - reqpt)) { 3581 snprintf(remote_config.err_msg, 3582 sizeof(remote_config.err_msg), 3583 "runtime configuration failed: request contains an unprintable character"); 3584 ctl_putdata(remote_config.err_msg, 3585 strlen(remote_config.err_msg), 0); 3586 ctl_flushpkt(0); 3587 msyslog(LOG_NOTICE, 3588 "runtime config from %s rejected: request contains an unprintable character: %0x", 3589 stoa(&rbufp->recv_srcadr), 3590 reqpt[data_count]); 3591 return; 3592 } 3593 3594 memcpy(remote_config.buffer, reqpt, data_count); 3595 /* The buffer has no trailing linefeed or NUL right now. For 3596 * logging, we do not want a newline, so we do that first after 3597 * adding the necessary NUL byte. 3598 */ 3599 remote_config.buffer[data_count] = '\0'; 3600 DPRINTF(1, ("Got Remote Configuration Command: %s\n", 3601 remote_config.buffer)); 3602 msyslog(LOG_NOTICE, "%s config: %s", 3603 stoa(&rbufp->recv_srcadr), 3604 remote_config.buffer); 3605 3606 /* Now we have to make sure there is a NL/NUL sequence at the 3607 * end of the buffer before we parse it. 3608 */ 3609 remote_config.buffer[data_count++] = '\n'; 3610 remote_config.buffer[data_count] = '\0'; 3611 remote_config.pos = 0; 3612 remote_config.err_pos = 0; 3613 remote_config.no_errors = 0; 3614 config_remotely(&rbufp->recv_srcadr); 3615 3616 /* 3617 * Check if errors were reported. If not, output 'Config 3618 * Succeeded'. Else output the error count. It would be nice 3619 * to output any parser error messages. 3620 */ 3621 if (0 == remote_config.no_errors) { 3622 retval = snprintf(remote_config.err_msg, 3623 sizeof(remote_config.err_msg), 3624 "Config Succeeded"); 3625 if (retval > 0) 3626 remote_config.err_pos += retval; 3627 } 3628 3629 ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0); 3630 ctl_flushpkt(0); 3631 3632 DPRINTF(1, ("Reply: %s\n", remote_config.err_msg)); 3633 3634 if (remote_config.no_errors > 0) 3635 msyslog(LOG_NOTICE, "%d error in %s config", 3636 remote_config.no_errors, 3637 stoa(&rbufp->recv_srcadr)); 3638 } 3639 3640 3641 /* 3642 * derive_nonce - generate client-address-specific nonce value 3643 * associated with a given timestamp. 3644 */ 3645 static u_int32 derive_nonce( 3646 sockaddr_u * addr, 3647 u_int32 ts_i, 3648 u_int32 ts_f 3649 ) 3650 { 3651 static u_int32 salt[4]; 3652 static u_long last_salt_update; 3653 union d_tag { 3654 u_char digest[EVP_MAX_MD_SIZE]; 3655 u_int32 extract; 3656 } d; 3657 EVP_MD_CTX *ctx; 3658 u_int len; 3659 3660 while (!salt[0] || current_time - last_salt_update >= 3600) { 3661 salt[0] = ntp_random(); 3662 salt[1] = ntp_random(); 3663 salt[2] = ntp_random(); 3664 salt[3] = ntp_random(); 3665 last_salt_update = current_time; 3666 } 3667 3668 ctx = EVP_MD_CTX_new(); 3669 # if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW) 3670 /* [Bug 3457] set flags and don't kill them again */ 3671 EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); 3672 EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL); 3673 # else 3674 EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5)); 3675 # endif 3676 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3677 EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i)); 3678 EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f)); 3679 if (IS_IPV4(addr)) 3680 EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr), 3681 sizeof(SOCK_ADDR4(addr))); 3682 else 3683 EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr), 3684 sizeof(SOCK_ADDR6(addr))); 3685 EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr))); 3686 EVP_DigestUpdate(ctx, salt, sizeof(salt)); 3687 EVP_DigestFinal(ctx, d.digest, &len); 3688 EVP_MD_CTX_free(ctx); 3689 3690 return d.extract; 3691 } 3692 3693 3694 /* 3695 * generate_nonce - generate client-address-specific nonce string. 3696 */ 3697 static void generate_nonce( 3698 struct recvbuf * rbufp, 3699 char * nonce, 3700 size_t nonce_octets 3701 ) 3702 { 3703 u_int32 derived; 3704 3705 derived = derive_nonce(&rbufp->recv_srcadr, 3706 rbufp->recv_time.l_ui, 3707 rbufp->recv_time.l_uf); 3708 snprintf(nonce, nonce_octets, "%08x%08x%08x", 3709 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived); 3710 } 3711 3712 3713 /* 3714 * validate_nonce - validate client-address-specific nonce string. 3715 * 3716 * Returns TRUE if the local calculation of the nonce matches the 3717 * client-provided value and the timestamp is recent enough. 3718 */ 3719 static int validate_nonce( 3720 const char * pnonce, 3721 struct recvbuf * rbufp 3722 ) 3723 { 3724 u_int ts_i; 3725 u_int ts_f; 3726 l_fp ts; 3727 l_fp now_delta; 3728 u_int supposed; 3729 u_int derived; 3730 3731 if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed)) 3732 return FALSE; 3733 3734 ts.l_ui = (u_int32)ts_i; 3735 ts.l_uf = (u_int32)ts_f; 3736 derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf); 3737 get_systime(&now_delta); 3738 L_SUB(&now_delta, &ts); 3739 3740 return (supposed == derived && now_delta.l_ui < 16); 3741 } 3742 3743 3744 /* 3745 * send_random_tag_value - send a randomly-generated three character 3746 * tag prefix, a '.', an index, a '=' and a 3747 * random integer value. 3748 * 3749 * To try to force clients to ignore unrecognized tags in mrulist, 3750 * reslist, and ifstats responses, the first and last rows are spiced 3751 * with randomly-generated tag names with correct .# index. Make it 3752 * three characters knowing that none of the currently-used subscripted 3753 * tags have that length, avoiding the need to test for 3754 * tag collision. 3755 */ 3756 static void 3757 send_random_tag_value( 3758 int indx 3759 ) 3760 { 3761 int noise; 3762 char buf[32]; 3763 3764 noise = rand() ^ (rand() << 16); 3765 buf[0] = 'a' + noise % 26; 3766 noise >>= 5; 3767 buf[1] = 'a' + noise % 26; 3768 noise >>= 5; 3769 buf[2] = 'a' + noise % 26; 3770 noise >>= 5; 3771 buf[3] = '.'; 3772 snprintf(&buf[4], sizeof(buf) - 4, "%d", indx); 3773 ctl_putuint(buf, noise); 3774 } 3775 3776 3777 /* 3778 * Send a MRU list entry in response to a "ntpq -c mrulist" operation. 3779 * 3780 * To keep clients honest about not depending on the order of values, 3781 * and thereby avoid being locked into ugly workarounds to maintain 3782 * backward compatibility later as new fields are added to the response, 3783 * the order is random. 3784 */ 3785 static void 3786 send_mru_entry( 3787 mon_entry * mon, 3788 int count 3789 ) 3790 { 3791 const char first_fmt[] = "first.%d"; 3792 const char ct_fmt[] = "ct.%d"; 3793 const char mv_fmt[] = "mv.%d"; 3794 const char rs_fmt[] = "rs.%d"; 3795 char tag[32]; 3796 u_char sent[6]; /* 6 tag=value pairs */ 3797 u_int32 noise; 3798 u_int which; 3799 u_int remaining; 3800 const char * pch; 3801 3802 remaining = COUNTOF(sent); 3803 ZERO(sent); 3804 noise = (u_int32)(rand() ^ (rand() << 16)); 3805 while (remaining > 0) { 3806 which = (noise & 7) % COUNTOF(sent); 3807 noise >>= 3; 3808 while (sent[which]) 3809 which = (which + 1) % COUNTOF(sent); 3810 3811 switch (which) { 3812 3813 case 0: 3814 snprintf(tag, sizeof(tag), addr_fmt, count); 3815 pch = sptoa(&mon->rmtadr); 3816 ctl_putunqstr(tag, pch, strlen(pch)); 3817 break; 3818 3819 case 1: 3820 snprintf(tag, sizeof(tag), last_fmt, count); 3821 ctl_putts(tag, &mon->last); 3822 break; 3823 3824 case 2: 3825 snprintf(tag, sizeof(tag), first_fmt, count); 3826 ctl_putts(tag, &mon->first); 3827 break; 3828 3829 case 3: 3830 snprintf(tag, sizeof(tag), ct_fmt, count); 3831 ctl_putint(tag, mon->count); 3832 break; 3833 3834 case 4: 3835 snprintf(tag, sizeof(tag), mv_fmt, count); 3836 ctl_putuint(tag, mon->vn_mode); 3837 break; 3838 3839 case 5: 3840 snprintf(tag, sizeof(tag), rs_fmt, count); 3841 ctl_puthex(tag, mon->flags); 3842 break; 3843 } 3844 sent[which] = TRUE; 3845 remaining--; 3846 } 3847 } 3848 3849 3850 /* 3851 * read_mru_list - supports ntpq's mrulist command. 3852 * 3853 * The challenge here is to match ntpdc's monlist functionality without 3854 * being limited to hundreds of entries returned total, and without 3855 * requiring state on the server. If state were required, ntpq's 3856 * mrulist command would require authentication. 3857 * 3858 * The approach was suggested by Ry Jones. A finite and variable number 3859 * of entries are retrieved per request, to avoid having responses with 3860 * such large numbers of packets that socket buffers are overflowed and 3861 * packets lost. The entries are retrieved oldest-first, taking into 3862 * account that the MRU list will be changing between each request. We 3863 * can expect to see duplicate entries for addresses updated in the MRU 3864 * list during the fetch operation. In the end, the client can assemble 3865 * a close approximation of the MRU list at the point in time the last 3866 * response was sent by ntpd. The only difference is it may be longer, 3867 * containing some number of oldest entries which have since been 3868 * reclaimed. If necessary, the protocol could be extended to zap those 3869 * from the client snapshot at the end, but so far that doesn't seem 3870 * useful. 3871 * 3872 * To accomodate the changing MRU list, the starting point for requests 3873 * after the first request is supplied as a series of last seen 3874 * timestamps and associated addresses, the newest ones the client has 3875 * received. As long as at least one of those entries hasn't been 3876 * bumped to the head of the MRU list, ntpd can pick up at that point. 3877 * Otherwise, the request is failed and it is up to ntpq to back up and 3878 * provide the next newest entry's timestamps and addresses, conceivably 3879 * backing up all the way to the starting point. 3880 * 3881 * input parameters: 3882 * nonce= Regurgitated nonce retrieved by the client 3883 * previously using CTL_OP_REQ_NONCE, demonstrating 3884 * ability to receive traffic sent to its address. 3885 * frags= Limit on datagrams (fragments) in response. Used 3886 * by newer ntpq versions instead of limit= when 3887 * retrieving multiple entries. 3888 * limit= Limit on MRU entries returned. One of frags= or 3889 * limit= must be provided. 3890 * limit=1 is a special case: Instead of fetching 3891 * beginning with the supplied starting point's 3892 * newer neighbor, fetch the supplied entry, and 3893 * in that case the #.last timestamp can be zero. 3894 * This enables fetching a single entry by IP 3895 * address. When limit is not one and frags= is 3896 * provided, the fragment limit controls. 3897 * mincount= (decimal) Return entries with count >= mincount. 3898 * laddr= Return entries associated with the server's IP 3899 * address given. No port specification is needed, 3900 * and any supplied is ignored. 3901 * resall= 0x-prefixed hex restrict bits which must all be 3902 * lit for an MRU entry to be included. 3903 * Has precedence over any resany=. 3904 * resany= 0x-prefixed hex restrict bits, at least one of 3905 * which must be list for an MRU entry to be 3906 * included. 3907 * last.0= 0x-prefixed hex l_fp timestamp of newest entry 3908 * which client previously received. 3909 * addr.0= text of newest entry's IP address and port, 3910 * IPv6 addresses in bracketed form: [::]:123 3911 * last.1= timestamp of 2nd newest entry client has. 3912 * addr.1= address of 2nd newest entry. 3913 * [...] 3914 * 3915 * ntpq provides as many last/addr pairs as will fit in a single request 3916 * packet, except for the first request in a MRU fetch operation. 3917 * 3918 * The response begins with a new nonce value to be used for any 3919 * followup request. Following the nonce is the next newer entry than 3920 * referred to by last.0 and addr.0, if the "0" entry has not been 3921 * bumped to the front. If it has, the first entry returned will be the 3922 * next entry newer than referred to by last.1 and addr.1, and so on. 3923 * If none of the referenced entries remain unchanged, the request fails 3924 * and ntpq backs up to the next earlier set of entries to resync. 3925 * 3926 * Except for the first response, the response begins with confirmation 3927 * of the entry that precedes the first additional entry provided: 3928 * 3929 * last.older= hex l_fp timestamp matching one of the input 3930 * .last timestamps, which entry now precedes the 3931 * response 0. entry in the MRU list. 3932 * addr.older= text of address corresponding to older.last. 3933 * 3934 * And in any case, a successful response contains sets of values 3935 * comprising entries, with the oldest numbered 0 and incrementing from 3936 * there: 3937 * 3938 * addr.# text of IPv4 or IPv6 address and port 3939 * last.# hex l_fp timestamp of last receipt 3940 * first.# hex l_fp timestamp of first receipt 3941 * ct.# count of packets received 3942 * mv.# mode and version 3943 * rs.# restriction mask (RES_* bits) 3944 * 3945 * Note the code currently assumes there are no valid three letter 3946 * tags sent with each row, and needs to be adjusted if that changes. 3947 * 3948 * The client should accept the values in any order, and ignore .# 3949 * values which it does not understand, to allow a smooth path to 3950 * future changes without requiring a new opcode. Clients can rely 3951 * on all *.0 values preceding any *.1 values, that is all values for 3952 * a given index number are together in the response. 3953 * 3954 * The end of the response list is noted with one or two tag=value 3955 * pairs. Unconditionally: 3956 * 3957 * now= 0x-prefixed l_fp timestamp at the server marking 3958 * the end of the operation. 3959 * 3960 * If any entries were returned, now= is followed by: 3961 * 3962 * last.newest= hex l_fp identical to last.# of the prior 3963 * entry. 3964 */ 3965 static void read_mru_list( 3966 struct recvbuf *rbufp, 3967 int restrict_mask 3968 ) 3969 { 3970 static const char nulltxt[1] = { '\0' }; 3971 static const char nonce_text[] = "nonce"; 3972 static const char frags_text[] = "frags"; 3973 static const char limit_text[] = "limit"; 3974 static const char mincount_text[] = "mincount"; 3975 static const char resall_text[] = "resall"; 3976 static const char resany_text[] = "resany"; 3977 static const char maxlstint_text[] = "maxlstint"; 3978 static const char laddr_text[] = "laddr"; 3979 static const char resaxx_fmt[] = "0x%hx"; 3980 3981 u_int limit; 3982 u_short frags; 3983 u_short resall; 3984 u_short resany; 3985 int mincount; 3986 u_int maxlstint; 3987 sockaddr_u laddr; 3988 struct interface * lcladr; 3989 u_int count; 3990 u_int ui; 3991 u_int uf; 3992 l_fp last[16]; 3993 sockaddr_u addr[COUNTOF(last)]; 3994 char buf[128]; 3995 struct ctl_var * in_parms; 3996 const struct ctl_var * v; 3997 const char * val; 3998 const char * pch; 3999 char * pnonce; 4000 int nonce_valid; 4001 size_t i; 4002 int priors; 4003 u_short hash; 4004 mon_entry * mon; 4005 mon_entry * prior_mon; 4006 l_fp now; 4007 4008 if (RES_NOMRULIST & restrict_mask) { 4009 ctl_error(CERR_PERMISSION); 4010 NLOG(NLOG_SYSINFO) 4011 msyslog(LOG_NOTICE, 4012 "mrulist from %s rejected due to nomrulist restriction", 4013 stoa(&rbufp->recv_srcadr)); 4014 sys_restricted++; 4015 return; 4016 } 4017 /* 4018 * fill in_parms var list with all possible input parameters. 4019 */ 4020 in_parms = NULL; 4021 set_var(&in_parms, nonce_text, sizeof(nonce_text), 0); 4022 set_var(&in_parms, frags_text, sizeof(frags_text), 0); 4023 set_var(&in_parms, limit_text, sizeof(limit_text), 0); 4024 set_var(&in_parms, mincount_text, sizeof(mincount_text), 0); 4025 set_var(&in_parms, resall_text, sizeof(resall_text), 0); 4026 set_var(&in_parms, resany_text, sizeof(resany_text), 0); 4027 set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0); 4028 set_var(&in_parms, laddr_text, sizeof(laddr_text), 0); 4029 for (i = 0; i < COUNTOF(last); i++) { 4030 snprintf(buf, sizeof(buf), last_fmt, (int)i); 4031 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4032 snprintf(buf, sizeof(buf), addr_fmt, (int)i); 4033 set_var(&in_parms, buf, strlen(buf) + 1, 0); 4034 } 4035 4036 /* decode input parms */ 4037 pnonce = NULL; 4038 frags = 0; 4039 limit = 0; 4040 mincount = 0; 4041 resall = 0; 4042 resany = 0; 4043 maxlstint = 0; 4044 lcladr = NULL; 4045 priors = 0; 4046 ZERO(last); 4047 ZERO(addr); 4048 4049 /* have to go through '(void*)' to drop 'const' property from pointer. 4050 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org 4051 */ 4052 while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) && 4053 !(EOV & v->flags)) { 4054 int si; 4055 4056 if (NULL == val) 4057 val = nulltxt; 4058 4059 if (!strcmp(nonce_text, v->text)) { 4060 free(pnonce); 4061 pnonce = (*val) ? estrdup(val) : NULL; 4062 } else if (!strcmp(frags_text, v->text)) { 4063 if (1 != sscanf(val, "%hu", &frags)) 4064 goto blooper; 4065 } else if (!strcmp(limit_text, v->text)) { 4066 if (1 != sscanf(val, "%u", &limit)) 4067 goto blooper; 4068 } else if (!strcmp(mincount_text, v->text)) { 4069 if (1 != sscanf(val, "%d", &mincount)) 4070 goto blooper; 4071 if (mincount < 0) 4072 mincount = 0; 4073 } else if (!strcmp(resall_text, v->text)) { 4074 if (1 != sscanf(val, resaxx_fmt, &resall)) 4075 goto blooper; 4076 } else if (!strcmp(resany_text, v->text)) { 4077 if (1 != sscanf(val, resaxx_fmt, &resany)) 4078 goto blooper; 4079 } else if (!strcmp(maxlstint_text, v->text)) { 4080 if (1 != sscanf(val, "%u", &maxlstint)) 4081 goto blooper; 4082 } else if (!strcmp(laddr_text, v->text)) { 4083 if (!decodenetnum(val, &laddr)) 4084 goto blooper; 4085 lcladr = getinterface(&laddr, 0); 4086 } else if (1 == sscanf(v->text, last_fmt, &si) && 4087 (size_t)si < COUNTOF(last)) { 4088 if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf)) 4089 goto blooper; 4090 last[si].l_ui = ui; 4091 last[si].l_uf = uf; 4092 if (!SOCK_UNSPEC(&addr[si]) && si == priors) 4093 priors++; 4094 } else if (1 == sscanf(v->text, addr_fmt, &si) && 4095 (size_t)si < COUNTOF(addr)) { 4096 if (!decodenetnum(val, &addr[si])) 4097 goto blooper; 4098 if (last[si].l_ui && last[si].l_uf && si == priors) 4099 priors++; 4100 } else { 4101 DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n", 4102 v->text)); 4103 continue; 4104 4105 blooper: 4106 DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n", 4107 v->text, val)); 4108 free(pnonce); 4109 pnonce = NULL; 4110 break; 4111 } 4112 } 4113 free_varlist(in_parms); 4114 in_parms = NULL; 4115 4116 /* return no responses until the nonce is validated */ 4117 if (NULL == pnonce) 4118 return; 4119 4120 nonce_valid = validate_nonce(pnonce, rbufp); 4121 free(pnonce); 4122 if (!nonce_valid) 4123 return; 4124 4125 if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) || 4126 frags > MRU_FRAGS_LIMIT) { 4127 ctl_error(CERR_BADVALUE); 4128 return; 4129 } 4130 4131 /* 4132 * If either frags or limit is not given, use the max. 4133 */ 4134 if (0 != frags && 0 == limit) 4135 limit = UINT_MAX; 4136 else if (0 != limit && 0 == frags) 4137 frags = MRU_FRAGS_LIMIT; 4138 4139 /* 4140 * Find the starting point if one was provided. 4141 */ 4142 mon = NULL; 4143 for (i = 0; i < (size_t)priors; i++) { 4144 hash = MON_HASH(&addr[i]); 4145 for (mon = mon_hash[hash]; 4146 mon != NULL; 4147 mon = mon->hash_next) 4148 if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i])) 4149 break; 4150 if (mon != NULL) { 4151 if (L_ISEQU(&mon->last, &last[i])) 4152 break; 4153 mon = NULL; 4154 } 4155 } 4156 4157 /* If a starting point was provided... */ 4158 if (priors) { 4159 /* and none could be found unmodified... */ 4160 if (NULL == mon) { 4161 /* tell ntpq to try again with older entries */ 4162 ctl_error(CERR_UNKNOWNVAR); 4163 return; 4164 } 4165 /* confirm the prior entry used as starting point */ 4166 ctl_putts("last.older", &mon->last); 4167 pch = sptoa(&mon->rmtadr); 4168 ctl_putunqstr("addr.older", pch, strlen(pch)); 4169 4170 /* 4171 * Move on to the first entry the client doesn't have, 4172 * except in the special case of a limit of one. In 4173 * that case return the starting point entry. 4174 */ 4175 if (limit > 1) 4176 mon = PREV_DLIST(mon_mru_list, mon, mru); 4177 } else { /* start with the oldest */ 4178 mon = TAIL_DLIST(mon_mru_list, mru); 4179 } 4180 4181 /* 4182 * send up to limit= entries in up to frags= datagrams 4183 */ 4184 get_systime(&now); 4185 generate_nonce(rbufp, buf, sizeof(buf)); 4186 ctl_putunqstr("nonce", buf, strlen(buf)); 4187 prior_mon = NULL; 4188 for (count = 0; 4189 mon != NULL && res_frags < frags && count < limit; 4190 mon = PREV_DLIST(mon_mru_list, mon, mru)) { 4191 4192 if (mon->count < mincount) 4193 continue; 4194 if (resall && resall != (resall & mon->flags)) 4195 continue; 4196 if (resany && !(resany & mon->flags)) 4197 continue; 4198 if (maxlstint > 0 && now.l_ui - mon->last.l_ui > 4199 maxlstint) 4200 continue; 4201 if (lcladr != NULL && mon->lcladr != lcladr) 4202 continue; 4203 4204 send_mru_entry(mon, count); 4205 if (!count) 4206 send_random_tag_value(0); 4207 count++; 4208 prior_mon = mon; 4209 } 4210 4211 /* 4212 * If this batch completes the MRU list, say so explicitly with 4213 * a now= l_fp timestamp. 4214 */ 4215 if (NULL == mon) { 4216 if (count > 1) 4217 send_random_tag_value(count - 1); 4218 ctl_putts("now", &now); 4219 /* if any entries were returned confirm the last */ 4220 if (prior_mon != NULL) 4221 ctl_putts("last.newest", &prior_mon->last); 4222 } 4223 ctl_flushpkt(0); 4224 } 4225 4226 4227 /* 4228 * Send a ifstats entry in response to a "ntpq -c ifstats" request. 4229 * 4230 * To keep clients honest about not depending on the order of values, 4231 * and thereby avoid being locked into ugly workarounds to maintain 4232 * backward compatibility later as new fields are added to the response, 4233 * the order is random. 4234 */ 4235 static void 4236 send_ifstats_entry( 4237 endpt * la, 4238 u_int ifnum 4239 ) 4240 { 4241 const char addr_fmtu[] = "addr.%u"; 4242 const char bcast_fmt[] = "bcast.%u"; 4243 const char en_fmt[] = "en.%u"; /* enabled */ 4244 const char name_fmt[] = "name.%u"; 4245 const char flags_fmt[] = "flags.%u"; 4246 const char tl_fmt[] = "tl.%u"; /* ttl */ 4247 const char mc_fmt[] = "mc.%u"; /* mcast count */ 4248 const char rx_fmt[] = "rx.%u"; 4249 const char tx_fmt[] = "tx.%u"; 4250 const char txerr_fmt[] = "txerr.%u"; 4251 const char pc_fmt[] = "pc.%u"; /* peer count */ 4252 const char up_fmt[] = "up.%u"; /* uptime */ 4253 char tag[32]; 4254 u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */ 4255 int noisebits; 4256 u_int32 noise; 4257 u_int which; 4258 u_int remaining; 4259 const char *pch; 4260 4261 remaining = COUNTOF(sent); 4262 ZERO(sent); 4263 noise = 0; 4264 noisebits = 0; 4265 while (remaining > 0) { 4266 if (noisebits < 4) { 4267 noise = rand() ^ (rand() << 16); 4268 noisebits = 31; 4269 } 4270 which = (noise & 0xf) % COUNTOF(sent); 4271 noise >>= 4; 4272 noisebits -= 4; 4273 4274 while (sent[which]) 4275 which = (which + 1) % COUNTOF(sent); 4276 4277 switch (which) { 4278 4279 case 0: 4280 snprintf(tag, sizeof(tag), addr_fmtu, ifnum); 4281 pch = sptoa(&la->sin); 4282 ctl_putunqstr(tag, pch, strlen(pch)); 4283 break; 4284 4285 case 1: 4286 snprintf(tag, sizeof(tag), bcast_fmt, ifnum); 4287 if (INT_BCASTOPEN & la->flags) 4288 pch = sptoa(&la->bcast); 4289 else 4290 pch = ""; 4291 ctl_putunqstr(tag, pch, strlen(pch)); 4292 break; 4293 4294 case 2: 4295 snprintf(tag, sizeof(tag), en_fmt, ifnum); 4296 ctl_putint(tag, !la->ignore_packets); 4297 break; 4298 4299 case 3: 4300 snprintf(tag, sizeof(tag), name_fmt, ifnum); 4301 ctl_putstr(tag, la->name, strlen(la->name)); 4302 break; 4303 4304 case 4: 4305 snprintf(tag, sizeof(tag), flags_fmt, ifnum); 4306 ctl_puthex(tag, (u_int)la->flags); 4307 break; 4308 4309 case 5: 4310 snprintf(tag, sizeof(tag), tl_fmt, ifnum); 4311 ctl_putint(tag, la->last_ttl); 4312 break; 4313 4314 case 6: 4315 snprintf(tag, sizeof(tag), mc_fmt, ifnum); 4316 ctl_putint(tag, la->num_mcast); 4317 break; 4318 4319 case 7: 4320 snprintf(tag, sizeof(tag), rx_fmt, ifnum); 4321 ctl_putint(tag, la->received); 4322 break; 4323 4324 case 8: 4325 snprintf(tag, sizeof(tag), tx_fmt, ifnum); 4326 ctl_putint(tag, la->sent); 4327 break; 4328 4329 case 9: 4330 snprintf(tag, sizeof(tag), txerr_fmt, ifnum); 4331 ctl_putint(tag, la->notsent); 4332 break; 4333 4334 case 10: 4335 snprintf(tag, sizeof(tag), pc_fmt, ifnum); 4336 ctl_putuint(tag, la->peercnt); 4337 break; 4338 4339 case 11: 4340 snprintf(tag, sizeof(tag), up_fmt, ifnum); 4341 ctl_putuint(tag, current_time - la->starttime); 4342 break; 4343 } 4344 sent[which] = TRUE; 4345 remaining--; 4346 } 4347 send_random_tag_value((int)ifnum); 4348 } 4349 4350 4351 /* 4352 * read_ifstats - send statistics for each local address, exposed by 4353 * ntpq -c ifstats 4354 */ 4355 static void 4356 read_ifstats( 4357 struct recvbuf * rbufp 4358 ) 4359 { 4360 u_int ifidx; 4361 endpt * la; 4362 4363 /* 4364 * loop over [0..sys_ifnum] searching ep_list for each 4365 * ifnum in turn. 4366 */ 4367 for (ifidx = 0; ifidx < sys_ifnum; ifidx++) { 4368 for (la = ep_list; la != NULL; la = la->elink) 4369 if (ifidx == la->ifnum) 4370 break; 4371 if (NULL == la) 4372 continue; 4373 /* return stats for one local address */ 4374 send_ifstats_entry(la, ifidx); 4375 } 4376 ctl_flushpkt(0); 4377 } 4378 4379 static void 4380 sockaddrs_from_restrict_u( 4381 sockaddr_u * psaA, 4382 sockaddr_u * psaM, 4383 restrict_u * pres, 4384 int ipv6 4385 ) 4386 { 4387 ZERO(*psaA); 4388 ZERO(*psaM); 4389 if (!ipv6) { 4390 psaA->sa.sa_family = AF_INET; 4391 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr); 4392 psaM->sa.sa_family = AF_INET; 4393 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask); 4394 } else { 4395 psaA->sa.sa_family = AF_INET6; 4396 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr, 4397 sizeof(psaA->sa6.sin6_addr)); 4398 psaM->sa.sa_family = AF_INET6; 4399 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask, 4400 sizeof(psaA->sa6.sin6_addr)); 4401 } 4402 } 4403 4404 4405 /* 4406 * Send a restrict entry in response to a "ntpq -c reslist" request. 4407 * 4408 * To keep clients honest about not depending on the order of values, 4409 * and thereby avoid being locked into ugly workarounds to maintain 4410 * backward compatibility later as new fields are added to the response, 4411 * the order is random. 4412 */ 4413 static void 4414 send_restrict_entry( 4415 restrict_u * pres, 4416 int ipv6, 4417 u_int idx 4418 ) 4419 { 4420 const char addr_fmtu[] = "addr.%u"; 4421 const char mask_fmtu[] = "mask.%u"; 4422 const char hits_fmt[] = "hits.%u"; 4423 const char flags_fmt[] = "flags.%u"; 4424 char tag[32]; 4425 u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */ 4426 int noisebits; 4427 u_int32 noise; 4428 u_int which; 4429 u_int remaining; 4430 sockaddr_u addr; 4431 sockaddr_u mask; 4432 const char * pch; 4433 char * buf; 4434 const char * match_str; 4435 const char * access_str; 4436 4437 sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6); 4438 remaining = COUNTOF(sent); 4439 ZERO(sent); 4440 noise = 0; 4441 noisebits = 0; 4442 while (remaining > 0) { 4443 if (noisebits < 2) { 4444 noise = rand() ^ (rand() << 16); 4445 noisebits = 31; 4446 } 4447 which = (noise & 0x3) % COUNTOF(sent); 4448 noise >>= 2; 4449 noisebits -= 2; 4450 4451 while (sent[which]) 4452 which = (which + 1) % COUNTOF(sent); 4453 4454 /* XXX: Numbers? Really? */ 4455 switch (which) { 4456 4457 case 0: 4458 snprintf(tag, sizeof(tag), addr_fmtu, idx); 4459 pch = stoa(&addr); 4460 ctl_putunqstr(tag, pch, strlen(pch)); 4461 break; 4462 4463 case 1: 4464 snprintf(tag, sizeof(tag), mask_fmtu, idx); 4465 pch = stoa(&mask); 4466 ctl_putunqstr(tag, pch, strlen(pch)); 4467 break; 4468 4469 case 2: 4470 snprintf(tag, sizeof(tag), hits_fmt, idx); 4471 ctl_putuint(tag, pres->count); 4472 break; 4473 4474 case 3: 4475 snprintf(tag, sizeof(tag), flags_fmt, idx); 4476 match_str = res_match_flags(pres->mflags); 4477 access_str = res_access_flags(pres->rflags); 4478 if ('\0' == match_str[0]) { 4479 pch = access_str; 4480 } else { 4481 LIB_GETBUF(buf); 4482 snprintf(buf, LIB_BUFLENGTH, "%s %s", 4483 match_str, access_str); 4484 pch = buf; 4485 } 4486 ctl_putunqstr(tag, pch, strlen(pch)); 4487 break; 4488 } 4489 sent[which] = TRUE; 4490 remaining--; 4491 } 4492 send_random_tag_value((int)idx); 4493 } 4494 4495 4496 static void 4497 send_restrict_list( 4498 restrict_u * pres, 4499 int ipv6, 4500 u_int * pidx 4501 ) 4502 { 4503 for ( ; pres != NULL; pres = pres->link) { 4504 send_restrict_entry(pres, ipv6, *pidx); 4505 (*pidx)++; 4506 } 4507 } 4508 4509 4510 /* 4511 * read_addr_restrictions - returns IPv4 and IPv6 access control lists 4512 */ 4513 static void 4514 read_addr_restrictions( 4515 struct recvbuf * rbufp 4516 ) 4517 { 4518 u_int idx; 4519 4520 idx = 0; 4521 send_restrict_list(restrictlist4, FALSE, &idx); 4522 send_restrict_list(restrictlist6, TRUE, &idx); 4523 ctl_flushpkt(0); 4524 } 4525 4526 4527 /* 4528 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist 4529 */ 4530 static void 4531 read_ordlist( 4532 struct recvbuf * rbufp, 4533 int restrict_mask 4534 ) 4535 { 4536 const char ifstats_s[] = "ifstats"; 4537 const size_t ifstats_chars = COUNTOF(ifstats_s) - 1; 4538 const char addr_rst_s[] = "addr_restrictions"; 4539 const size_t a_r_chars = COUNTOF(addr_rst_s) - 1; 4540 struct ntp_control * cpkt; 4541 u_short qdata_octets; 4542 4543 /* 4544 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and 4545 * used only for ntpq -c ifstats. With the addition of reslist 4546 * the same opcode was generalized to retrieve ordered lists 4547 * which require authentication. The request data is empty or 4548 * contains "ifstats" (not null terminated) to retrieve local 4549 * addresses and associated stats. It is "addr_restrictions" 4550 * to retrieve the IPv4 then IPv6 remote address restrictions, 4551 * which are access control lists. Other request data return 4552 * CERR_UNKNOWNVAR. 4553 */ 4554 cpkt = (struct ntp_control *)&rbufp->recv_pkt; 4555 qdata_octets = ntohs(cpkt->count); 4556 if (0 == qdata_octets || (ifstats_chars == qdata_octets && 4557 !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) { 4558 read_ifstats(rbufp); 4559 return; 4560 } 4561 if (a_r_chars == qdata_octets && 4562 !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) { 4563 read_addr_restrictions(rbufp); 4564 return; 4565 } 4566 ctl_error(CERR_UNKNOWNVAR); 4567 } 4568 4569 4570 /* 4571 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite. 4572 */ 4573 static void req_nonce( 4574 struct recvbuf * rbufp, 4575 int restrict_mask 4576 ) 4577 { 4578 char buf[64]; 4579 4580 generate_nonce(rbufp, buf, sizeof(buf)); 4581 ctl_putunqstr("nonce", buf, strlen(buf)); 4582 ctl_flushpkt(0); 4583 } 4584 4585 4586 /* 4587 * read_clockstatus - return clock radio status 4588 */ 4589 /*ARGSUSED*/ 4590 static void 4591 read_clockstatus( 4592 struct recvbuf *rbufp, 4593 int restrict_mask 4594 ) 4595 { 4596 #ifndef REFCLOCK 4597 /* 4598 * If no refclock support, no data to return 4599 */ 4600 ctl_error(CERR_BADASSOC); 4601 #else 4602 const struct ctl_var * v; 4603 int i; 4604 struct peer * peer; 4605 char * valuep; 4606 u_char * wants; 4607 size_t wants_alloc; 4608 int gotvar; 4609 const u_char * cc; 4610 struct ctl_var * kv; 4611 struct refclockstat cs; 4612 4613 if (res_associd != 0) { 4614 peer = findpeerbyassoc(res_associd); 4615 } else { 4616 /* 4617 * Find a clock for this jerk. If the system peer 4618 * is a clock use it, else search peer_list for one. 4619 */ 4620 if (sys_peer != NULL && (FLAG_REFCLOCK & 4621 sys_peer->flags)) 4622 peer = sys_peer; 4623 else 4624 for (peer = peer_list; 4625 peer != NULL; 4626 peer = peer->p_link) 4627 if (FLAG_REFCLOCK & peer->flags) 4628 break; 4629 } 4630 if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) { 4631 ctl_error(CERR_BADASSOC); 4632 return; 4633 } 4634 /* 4635 * If we got here we have a peer which is a clock. Get his 4636 * status. 4637 */ 4638 cs.kv_list = NULL; 4639 refclock_control(&peer->srcadr, NULL, &cs); 4640 kv = cs.kv_list; 4641 /* 4642 * Look for variables in the packet. 4643 */ 4644 rpkt.status = htons(ctlclkstatus(&cs)); 4645 wants_alloc = CC_MAXCODE + 1 + count_var(kv); 4646 wants = emalloc_zero(wants_alloc); 4647 gotvar = FALSE; 4648 while (NULL != (v = ctl_getitem(clock_var, &valuep))) { 4649 if (!(EOV & v->flags)) { 4650 wants[v->code] = TRUE; 4651 gotvar = TRUE; 4652 } else { 4653 v = ctl_getitem(kv, &valuep); 4654 if (NULL == v) { 4655 ctl_error(CERR_BADVALUE); 4656 free(wants); 4657 free_varlist(cs.kv_list); 4658 return; 4659 } 4660 if (EOV & v->flags) { 4661 ctl_error(CERR_UNKNOWNVAR); 4662 free(wants); 4663 free_varlist(cs.kv_list); 4664 return; 4665 } 4666 wants[CC_MAXCODE + 1 + v->code] = TRUE; 4667 gotvar = TRUE; 4668 } 4669 } 4670 4671 if (gotvar) { 4672 for (i = 1; i <= CC_MAXCODE; i++) 4673 if (wants[i]) 4674 ctl_putclock(i, &cs, TRUE); 4675 if (kv != NULL) 4676 for (i = 0; !(EOV & kv[i].flags); i++) 4677 if (wants[i + CC_MAXCODE + 1]) 4678 ctl_putdata(kv[i].text, 4679 strlen(kv[i].text), 4680 FALSE); 4681 } else { 4682 for (cc = def_clock_var; *cc != 0; cc++) 4683 ctl_putclock((int)*cc, &cs, FALSE); 4684 for ( ; kv != NULL && !(EOV & kv->flags); kv++) 4685 if (DEF & kv->flags) 4686 ctl_putdata(kv->text, strlen(kv->text), 4687 FALSE); 4688 } 4689 4690 free(wants); 4691 free_varlist(cs.kv_list); 4692 4693 ctl_flushpkt(0); 4694 #endif 4695 } 4696 4697 4698 /* 4699 * write_clockstatus - we don't do this 4700 */ 4701 /*ARGSUSED*/ 4702 static void 4703 write_clockstatus( 4704 struct recvbuf *rbufp, 4705 int restrict_mask 4706 ) 4707 { 4708 ctl_error(CERR_PERMISSION); 4709 } 4710 4711 /* 4712 * Trap support from here on down. We send async trap messages when the 4713 * upper levels report trouble. Traps can by set either by control 4714 * messages or by configuration. 4715 */ 4716 /* 4717 * set_trap - set a trap in response to a control message 4718 */ 4719 static void 4720 set_trap( 4721 struct recvbuf *rbufp, 4722 int restrict_mask 4723 ) 4724 { 4725 int traptype; 4726 4727 /* 4728 * See if this guy is allowed 4729 */ 4730 if (restrict_mask & RES_NOTRAP) { 4731 ctl_error(CERR_PERMISSION); 4732 return; 4733 } 4734 4735 /* 4736 * Determine his allowed trap type. 4737 */ 4738 traptype = TRAP_TYPE_PRIO; 4739 if (restrict_mask & RES_LPTRAP) 4740 traptype = TRAP_TYPE_NONPRIO; 4741 4742 /* 4743 * Call ctlsettrap() to do the work. Return 4744 * an error if it can't assign the trap. 4745 */ 4746 if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype, 4747 (int)res_version)) 4748 ctl_error(CERR_NORESOURCE); 4749 ctl_flushpkt(0); 4750 } 4751 4752 4753 /* 4754 * unset_trap - unset a trap in response to a control message 4755 */ 4756 static void 4757 unset_trap( 4758 struct recvbuf *rbufp, 4759 int restrict_mask 4760 ) 4761 { 4762 int traptype; 4763 4764 /* 4765 * We don't prevent anyone from removing his own trap unless the 4766 * trap is configured. Note we also must be aware of the 4767 * possibility that restriction flags were changed since this 4768 * guy last set his trap. Set the trap type based on this. 4769 */ 4770 traptype = TRAP_TYPE_PRIO; 4771 if (restrict_mask & RES_LPTRAP) 4772 traptype = TRAP_TYPE_NONPRIO; 4773 4774 /* 4775 * Call ctlclrtrap() to clear this out. 4776 */ 4777 if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype)) 4778 ctl_error(CERR_BADASSOC); 4779 ctl_flushpkt(0); 4780 } 4781 4782 4783 /* 4784 * ctlsettrap - called to set a trap 4785 */ 4786 int 4787 ctlsettrap( 4788 sockaddr_u *raddr, 4789 struct interface *linter, 4790 int traptype, 4791 int version 4792 ) 4793 { 4794 size_t n; 4795 struct ctl_trap *tp; 4796 struct ctl_trap *tptouse; 4797 4798 /* 4799 * See if we can find this trap. If so, we only need update 4800 * the flags and the time. 4801 */ 4802 if ((tp = ctlfindtrap(raddr, linter)) != NULL) { 4803 switch (traptype) { 4804 4805 case TRAP_TYPE_CONFIG: 4806 tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED; 4807 break; 4808 4809 case TRAP_TYPE_PRIO: 4810 if (tp->tr_flags & TRAP_CONFIGURED) 4811 return (1); /* don't change anything */ 4812 tp->tr_flags = TRAP_INUSE; 4813 break; 4814 4815 case TRAP_TYPE_NONPRIO: 4816 if (tp->tr_flags & TRAP_CONFIGURED) 4817 return (1); /* don't change anything */ 4818 tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO; 4819 break; 4820 } 4821 tp->tr_settime = current_time; 4822 tp->tr_resets++; 4823 return (1); 4824 } 4825 4826 /* 4827 * First we heard of this guy. Try to find a trap structure 4828 * for him to use, clearing out lesser priority guys if we 4829 * have to. Clear out anyone who's expired while we're at it. 4830 */ 4831 tptouse = NULL; 4832 for (n = 0; n < COUNTOF(ctl_traps); n++) { 4833 tp = &ctl_traps[n]; 4834 if ((TRAP_INUSE & tp->tr_flags) && 4835 !(TRAP_CONFIGURED & tp->tr_flags) && 4836 ((tp->tr_settime + CTL_TRAPTIME) > current_time)) { 4837 tp->tr_flags = 0; 4838 num_ctl_traps--; 4839 } 4840 if (!(TRAP_INUSE & tp->tr_flags)) { 4841 tptouse = tp; 4842 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) { 4843 switch (traptype) { 4844 4845 case TRAP_TYPE_CONFIG: 4846 if (tptouse == NULL) { 4847 tptouse = tp; 4848 break; 4849 } 4850 if ((TRAP_NONPRIO & tptouse->tr_flags) && 4851 !(TRAP_NONPRIO & tp->tr_flags)) 4852 break; 4853 4854 if (!(TRAP_NONPRIO & tptouse->tr_flags) 4855 && (TRAP_NONPRIO & tp->tr_flags)) { 4856 tptouse = tp; 4857 break; 4858 } 4859 if (tptouse->tr_origtime < 4860 tp->tr_origtime) 4861 tptouse = tp; 4862 break; 4863 4864 case TRAP_TYPE_PRIO: 4865 if ( TRAP_NONPRIO & tp->tr_flags) { 4866 if (tptouse == NULL || 4867 ((TRAP_INUSE & 4868 tptouse->tr_flags) && 4869 tptouse->tr_origtime < 4870 tp->tr_origtime)) 4871 tptouse = tp; 4872 } 4873 break; 4874 4875 case TRAP_TYPE_NONPRIO: 4876 break; 4877 } 4878 } 4879 } 4880 4881 /* 4882 * If we don't have room for him return an error. 4883 */ 4884 if (tptouse == NULL) 4885 return (0); 4886 4887 /* 4888 * Set up this structure for him. 4889 */ 4890 tptouse->tr_settime = tptouse->tr_origtime = current_time; 4891 tptouse->tr_count = tptouse->tr_resets = 0; 4892 tptouse->tr_sequence = 1; 4893 tptouse->tr_addr = *raddr; 4894 tptouse->tr_localaddr = linter; 4895 tptouse->tr_version = (u_char) version; 4896 tptouse->tr_flags = TRAP_INUSE; 4897 if (traptype == TRAP_TYPE_CONFIG) 4898 tptouse->tr_flags |= TRAP_CONFIGURED; 4899 else if (traptype == TRAP_TYPE_NONPRIO) 4900 tptouse->tr_flags |= TRAP_NONPRIO; 4901 num_ctl_traps++; 4902 return (1); 4903 } 4904 4905 4906 /* 4907 * ctlclrtrap - called to clear a trap 4908 */ 4909 int 4910 ctlclrtrap( 4911 sockaddr_u *raddr, 4912 struct interface *linter, 4913 int traptype 4914 ) 4915 { 4916 register struct ctl_trap *tp; 4917 4918 if ((tp = ctlfindtrap(raddr, linter)) == NULL) 4919 return (0); 4920 4921 if (tp->tr_flags & TRAP_CONFIGURED 4922 && traptype != TRAP_TYPE_CONFIG) 4923 return (0); 4924 4925 tp->tr_flags = 0; 4926 num_ctl_traps--; 4927 return (1); 4928 } 4929 4930 4931 /* 4932 * ctlfindtrap - find a trap given the remote and local addresses 4933 */ 4934 static struct ctl_trap * 4935 ctlfindtrap( 4936 sockaddr_u *raddr, 4937 struct interface *linter 4938 ) 4939 { 4940 size_t n; 4941 4942 for (n = 0; n < COUNTOF(ctl_traps); n++) 4943 if ((ctl_traps[n].tr_flags & TRAP_INUSE) 4944 && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr) 4945 && (linter == ctl_traps[n].tr_localaddr)) 4946 return &ctl_traps[n]; 4947 4948 return NULL; 4949 } 4950 4951 4952 /* 4953 * report_event - report an event to the trappers 4954 */ 4955 void 4956 report_event( 4957 int err, /* error code */ 4958 struct peer *peer, /* peer structure pointer */ 4959 const char *str /* protostats string */ 4960 ) 4961 { 4962 char statstr[NTP_MAXSTRLEN]; 4963 int i; 4964 size_t len; 4965 4966 /* 4967 * Report the error to the protostats file, system log and 4968 * trappers. 4969 */ 4970 if (peer == NULL) { 4971 4972 /* 4973 * Discard a system report if the number of reports of 4974 * the same type exceeds the maximum. 4975 */ 4976 if (ctl_sys_last_event != (u_char)err) 4977 ctl_sys_num_events= 0; 4978 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS) 4979 return; 4980 4981 ctl_sys_last_event = (u_char)err; 4982 ctl_sys_num_events++; 4983 snprintf(statstr, sizeof(statstr), 4984 "0.0.0.0 %04x %02x %s", 4985 ctlsysstatus(), err, eventstr(err)); 4986 if (str != NULL) { 4987 len = strlen(statstr); 4988 snprintf(statstr + len, sizeof(statstr) - len, 4989 " %s", str); 4990 } 4991 NLOG(NLOG_SYSEVENT) 4992 msyslog(LOG_INFO, "%s", statstr); 4993 } else { 4994 4995 /* 4996 * Discard a peer report if the number of reports of 4997 * the same type exceeds the maximum for that peer. 4998 */ 4999 const char * src; 5000 u_char errlast; 5001 5002 errlast = (u_char)err & ~PEER_EVENT; 5003 if (peer->last_event != errlast) 5004 peer->num_events = 0; 5005 if (peer->num_events >= CTL_PEER_MAXEVENTS) 5006 return; 5007 5008 peer->last_event = errlast; 5009 peer->num_events++; 5010 if (ISREFCLOCKADR(&peer->srcadr)) 5011 src = refnumtoa(&peer->srcadr); 5012 else 5013 src = stoa(&peer->srcadr); 5014 5015 snprintf(statstr, sizeof(statstr), 5016 "%s %04x %02x %s", src, 5017 ctlpeerstatus(peer), err, eventstr(err)); 5018 if (str != NULL) { 5019 len = strlen(statstr); 5020 snprintf(statstr + len, sizeof(statstr) - len, 5021 " %s", str); 5022 } 5023 NLOG(NLOG_PEEREVENT) 5024 msyslog(LOG_INFO, "%s", statstr); 5025 } 5026 record_proto_stats(statstr); 5027 #if DEBUG 5028 if (debug) 5029 printf("event at %lu %s\n", current_time, statstr); 5030 #endif 5031 5032 /* 5033 * If no trappers, return. 5034 */ 5035 if (num_ctl_traps <= 0) 5036 return; 5037 5038 /* [Bug 3119] 5039 * Peer Events should be associated with a peer -- hence the 5040 * name. But there are instances where this function is called 5041 * *without* a valid peer. This happens e.g. with an unsolicited 5042 * CryptoNAK, or when a leap second alarm is going off while 5043 * currently without a system peer. 5044 * 5045 * The most sensible approach to this seems to bail out here if 5046 * this happens. Avoiding to call this function would also 5047 * bypass the log reporting in the first part of this function, 5048 * and this is probably not the best of all options. 5049 * -*-perlinger@ntp.org-*- 5050 */ 5051 if ((err & PEER_EVENT) && !peer) 5052 return; 5053 5054 /* 5055 * Set up the outgoing packet variables 5056 */ 5057 res_opcode = CTL_OP_ASYNCMSG; 5058 res_offset = 0; 5059 res_async = TRUE; 5060 res_authenticate = FALSE; 5061 datapt = rpkt.u.data; 5062 dataend = &rpkt.u.data[CTL_MAX_DATA_LEN]; 5063 if (!(err & PEER_EVENT)) { 5064 rpkt.associd = 0; 5065 rpkt.status = htons(ctlsysstatus()); 5066 5067 /* Include the core system variables and the list. */ 5068 for (i = 1; i <= CS_VARLIST; i++) 5069 ctl_putsys(i); 5070 } else if (NULL != peer) { /* paranoia -- skip output */ 5071 rpkt.associd = htons(peer->associd); 5072 rpkt.status = htons(ctlpeerstatus(peer)); 5073 5074 /* Dump it all. Later, maybe less. */ 5075 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++) 5076 ctl_putpeer(i, peer); 5077 # ifdef REFCLOCK 5078 /* 5079 * for clock exception events: add clock variables to 5080 * reflect info on exception 5081 */ 5082 if (err == PEVNT_CLOCK) { 5083 struct refclockstat cs; 5084 struct ctl_var *kv; 5085 5086 cs.kv_list = NULL; 5087 refclock_control(&peer->srcadr, NULL, &cs); 5088 5089 ctl_puthex("refclockstatus", 5090 ctlclkstatus(&cs)); 5091 5092 for (i = 1; i <= CC_MAXCODE; i++) 5093 ctl_putclock(i, &cs, FALSE); 5094 for (kv = cs.kv_list; 5095 kv != NULL && !(EOV & kv->flags); 5096 kv++) 5097 if (DEF & kv->flags) 5098 ctl_putdata(kv->text, 5099 strlen(kv->text), 5100 FALSE); 5101 free_varlist(cs.kv_list); 5102 } 5103 # endif /* REFCLOCK */ 5104 } 5105 5106 /* 5107 * We're done, return. 5108 */ 5109 ctl_flushpkt(0); 5110 } 5111 5112 5113 /* 5114 * mprintf_event - printf-style varargs variant of report_event() 5115 */ 5116 int 5117 mprintf_event( 5118 int evcode, /* event code */ 5119 struct peer * p, /* may be NULL */ 5120 const char * fmt, /* msnprintf format */ 5121 ... 5122 ) 5123 { 5124 va_list ap; 5125 int rc; 5126 char msg[512]; 5127 5128 va_start(ap, fmt); 5129 rc = mvsnprintf(msg, sizeof(msg), fmt, ap); 5130 va_end(ap); 5131 report_event(evcode, p, msg); 5132 5133 return rc; 5134 } 5135 5136 5137 /* 5138 * ctl_clr_stats - clear stat counters 5139 */ 5140 void 5141 ctl_clr_stats(void) 5142 { 5143 ctltimereset = current_time; 5144 numctlreq = 0; 5145 numctlbadpkts = 0; 5146 numctlresponses = 0; 5147 numctlfrags = 0; 5148 numctlerrors = 0; 5149 numctlfrags = 0; 5150 numctltooshort = 0; 5151 numctlinputresp = 0; 5152 numctlinputfrag = 0; 5153 numctlinputerr = 0; 5154 numctlbadoffset = 0; 5155 numctlbadversion = 0; 5156 numctldatatooshort = 0; 5157 numctlbadop = 0; 5158 numasyncmsgs = 0; 5159 } 5160 5161 static u_short 5162 count_var( 5163 const struct ctl_var *k 5164 ) 5165 { 5166 u_int c; 5167 5168 if (NULL == k) 5169 return 0; 5170 5171 c = 0; 5172 while (!(EOV & (k++)->flags)) 5173 c++; 5174 5175 ENSURE(c <= USHRT_MAX); 5176 return (u_short)c; 5177 } 5178 5179 5180 char * 5181 add_var( 5182 struct ctl_var **kv, 5183 u_long size, 5184 u_short def 5185 ) 5186 { 5187 u_short c; 5188 struct ctl_var *k; 5189 char * buf; 5190 5191 c = count_var(*kv); 5192 *kv = erealloc(*kv, (c + 2) * sizeof(**kv)); 5193 k = *kv; 5194 buf = emalloc(size); 5195 k[c].code = c; 5196 k[c].text = buf; 5197 k[c].flags = def; 5198 k[c + 1].code = 0; 5199 k[c + 1].text = NULL; 5200 k[c + 1].flags = EOV; 5201 5202 return buf; 5203 } 5204 5205 5206 void 5207 set_var( 5208 struct ctl_var **kv, 5209 const char *data, 5210 u_long size, 5211 u_short def 5212 ) 5213 { 5214 struct ctl_var *k; 5215 const char *s; 5216 const char *t; 5217 char *td; 5218 5219 if (NULL == data || !size) 5220 return; 5221 5222 k = *kv; 5223 if (k != NULL) { 5224 while (!(EOV & k->flags)) { 5225 if (NULL == k->text) { 5226 td = emalloc(size); 5227 memcpy(td, data, size); 5228 k->text = td; 5229 k->flags = def; 5230 return; 5231 } else { 5232 s = data; 5233 t = k->text; 5234 while (*t != '=' && *s == *t) { 5235 s++; 5236 t++; 5237 } 5238 if (*s == *t && ((*t == '=') || !*t)) { 5239 td = erealloc((void *)(intptr_t)k->text, size); 5240 memcpy(td, data, size); 5241 k->text = td; 5242 k->flags = def; 5243 return; 5244 } 5245 } 5246 k++; 5247 } 5248 } 5249 td = add_var(kv, size, def); 5250 memcpy(td, data, size); 5251 } 5252 5253 5254 void 5255 set_sys_var( 5256 const char *data, 5257 u_long size, 5258 u_short def 5259 ) 5260 { 5261 set_var(&ext_sys_var, data, size, def); 5262 } 5263 5264 5265 /* 5266 * get_ext_sys_var() retrieves the value of a user-defined variable or 5267 * NULL if the variable has not been setvar'd. 5268 */ 5269 const char * 5270 get_ext_sys_var(const char *tag) 5271 { 5272 struct ctl_var * v; 5273 size_t c; 5274 const char * val; 5275 5276 val = NULL; 5277 c = strlen(tag); 5278 for (v = ext_sys_var; !(EOV & v->flags); v++) { 5279 if (NULL != v->text && !memcmp(tag, v->text, c)) { 5280 if ('=' == v->text[c]) { 5281 val = v->text + c + 1; 5282 break; 5283 } else if ('\0' == v->text[c]) { 5284 val = ""; 5285 break; 5286 } 5287 } 5288 } 5289 5290 return val; 5291 } 5292 5293 5294 void 5295 free_varlist( 5296 struct ctl_var *kv 5297 ) 5298 { 5299 struct ctl_var *k; 5300 if (kv) { 5301 for (k = kv; !(k->flags & EOV); k++) 5302 free((void *)(intptr_t)k->text); 5303 free((void *)kv); 5304 } 5305 } 5306