xref: /freebsd/contrib/netbsd-tests/sys/uvm/t_uvm_physseg_load.c (revision 5f4c09dd85bff675e0ca63c55ea3c517e0fddfcc)
1 /* $NetBSD: t_uvm_physseg_load.c,v 1.2 2016/12/22 08:15:20 cherry Exp $ */
2 
3 /*-
4  * Copyright (c) 2015, 2016 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Santhosh N. Raju <santhosh.raju@gmail.com> and
9  * by Cherry G. Mathew
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __RCSID("$NetBSD: t_uvm_physseg_load.c,v 1.2 2016/12/22 08:15:20 cherry Exp $");
35 
36 /*
37  * If this line is commented out tests related touvm_physseg_get_pmseg()
38  * wont run.
39  *
40  * Have a look at machine/uvm_physseg.h for more details.
41  */
42 #define __HAVE_PMAP_PHYSSEG
43 
44 /*
45  * This is a dummy struct used for testing purposes
46  *
47  * In reality this struct would exist in the MD part of the code residing in
48  * machines/vmparam.h
49  */
50 
51 #ifdef __HAVE_PMAP_PHYSSEG
52 struct pmap_physseg {
53 	int dummy_variable;		/* Dummy variable use for testing */
54 };
55 #endif
56 
57 /* Testing API - assumes userland */
58 /* Provide Kernel API equivalents */
59 #include <assert.h>
60 #include <stdbool.h>
61 #include <string.h> /* memset(3) et. al */
62 #include <stdio.h> /* printf(3) */
63 #include <stdlib.h> /* malloc(3) */
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <time.h>
67 
68 #define	PRIxPADDR	"lx"
69 #define	PRIxPSIZE	"lx"
70 #define	PRIuPSIZE	"lu"
71 #define	PRIxVADDR	"lx"
72 #define	PRIxVSIZE	"lx"
73 #define	PRIuVSIZE	"lu"
74 
75 #define UVM_HOTPLUG /* Enable hotplug with rbtree. */
76 #define PMAP_STEAL_MEMORY
77 #define DEBUG /* Enable debug functionality. */
78 
79 typedef unsigned long vaddr_t;
80 typedef unsigned long paddr_t;
81 typedef unsigned long psize_t;
82 typedef unsigned long vsize_t;
83 
84 #include <uvm/uvm_physseg.h>
85 #include <uvm/uvm_page.h>
86 
87 #ifndef DIAGNOSTIC
88 #define	KASSERTMSG(e, msg, ...)	/* NOTHING */
89 #define	KASSERT(e)		/* NOTHING */
90 #else
91 #define	KASSERT(a)		assert(a)
92 #define KASSERTMSG(exp, ...)    printf(__VA_ARGS__); assert((exp))
93 #endif
94 
95 #define VM_PHYSSEG_STRAT VM_PSTRAT_BSEARCH
96 
97 #define VM_NFREELIST            4
98 #define VM_FREELIST_DEFAULT     0
99 #define VM_FREELIST_FIRST16     3
100 #define VM_FREELIST_FIRST1G     2
101 #define VM_FREELIST_FIRST4G     1
102 
103 /*
104  * Used in tests when Array implementation is tested
105  */
106 #if !defined(VM_PHYSSEG_MAX)
107 #define VM_PHYSSEG_MAX          32
108 #endif
109 
110 #define PAGE_SIZE               4096
111 #define PAGE_SHIFT              12
112 #define atop(x)         (((paddr_t)(x)) >> PAGE_SHIFT)
113 
114 #define	mutex_enter(l)
115 #define	mutex_exit(l)
116 
117 #define	_SYS_KMEM_H_ /* Disallow the real kmem API (see below) */
118 /* free(p) XXX: pgs management need more thought */
119 #define kmem_alloc(size, flags) malloc(size)
120 #define kmem_zalloc(size, flags) malloc(size)
121 #define kmem_free(p, size) free(p)
122 
123 psize_t physmem;
124 
125 struct uvmexp uvmexp;        /* decl */
126 
127 /*
128  * uvm structure borrowed from uvm.h
129  *
130  * Remember this is a dummy structure used within the ATF Tests and
131  * uses only necessary fields from the original uvm struct.
132  * See uvm/uvm.h for the full struct.
133  */
134 
135 struct uvm {
136 	/* vm_page related parameters */
137 
138 	bool page_init_done;		/* TRUE if uvm_page_init() finished */
139 } uvm;
140 
141 static void
142 panic(const char *fmt, ...)
143 {
144 	va_list ap;
145 
146 	va_start(ap, fmt);
147 	vprintf(fmt, ap);
148 	printf("\n");
149 	va_end(ap);
150 	KASSERT(false);
151 
152 	/*NOTREACHED*/
153 }
154 
155 static void
156 uvm_pagefree(struct vm_page *pg)
157 {
158 	return;
159 }
160 
161 #if defined(UVM_HOTPLUG)
162 static void
163 uvmpdpol_reinit(void)
164 {
165 	return;
166 }
167 #endif /* UVM_HOTPLUG */
168 
169 /* end - Provide Kernel API equivalents */
170 
171 #include "uvm/uvm_physseg.c"
172 
173 #include <atf-c.h>
174 
175 #define ONE_MEGABYTE 1024 * 1024
176 
177 /* Sample Page Frame Numbers */
178 #define VALID_START_PFN_1 atop(0)
179 #define VALID_END_PFN_1 atop(ONE_MEGABYTE)
180 #define VALID_AVAIL_START_PFN_1 atop(0)
181 #define VALID_AVAIL_END_PFN_1 atop(ONE_MEGABYTE)
182 
183 #define VALID_START_PFN_2 atop(ONE_MEGABYTE + 1)
184 #define VALID_END_PFN_2 atop(ONE_MEGABYTE * 2)
185 #define VALID_AVAIL_START_PFN_2 atop(ONE_MEGABYTE + 1)
186 #define VALID_AVAIL_END_PFN_2 atop(ONE_MEGABYTE * 2)
187 
188 #define VALID_START_PFN_3 atop((ONE_MEGABYTE * 2) + 1)
189 #define VALID_END_PFN_3 atop(ONE_MEGABYTE * 3)
190 #define VALID_AVAIL_START_PFN_3 atop((ONE_MEGABYTE * 2) + 1)
191 #define VALID_AVAIL_END_PFN_3 atop(ONE_MEGABYTE * 3)
192 
193 #define VALID_START_PFN_4 atop(ONE_MEGABYTE + 1)
194 #define VALID_END_PFN_4 atop(ONE_MEGABYTE * 128)
195 #define VALID_AVAIL_START_PFN_4 atop(ONE_MEGABYTE + 1)
196 #define VALID_AVAIL_END_PFN_4 atop(ONE_MEGABYTE * 128)
197 
198 #define VALID_START_PFN_5 atop(ONE_MEGABYTE + 1)
199 #define VALID_END_PFN_5 atop(ONE_MEGABYTE * 256)
200 #define VALID_AVAIL_START_PFN_5 atop(ONE_MEGABYTE + 1)
201 #define VALID_AVAIL_END_PFN_5 atop(ONE_MEGABYTE * 256)
202 
203 /*
204  * Total number of pages (of 4K size each) should be 256 for 1MB of memory.
205  */
206 #define PAGE_COUNT_1M      256
207 
208 /*
209  * The number of Page Frames to allot per segment
210  */
211 #define PF_STEP 8
212 
213 /*
214  * A debug fucntion to print the content of upm.
215  */
216 	static inline void
217 	uvm_physseg_dump_seg(uvm_physseg_t upm)
218 	{
219 #if defined(DEBUG)
220 		printf("%s: seg->start == %ld\n", __func__,
221 		    uvm_physseg_get_start(upm));
222 		printf("%s: seg->end == %ld\n", __func__,
223 		    uvm_physseg_get_end(upm));
224 		printf("%s: seg->avail_start == %ld\n", __func__,
225 		    uvm_physseg_get_avail_start(upm));
226 		printf("%s: seg->avail_end == %ld\n", __func__,
227 		    uvm_physseg_get_avail_end(upm));
228 
229 		printf("====\n\n");
230 #else
231 		return;
232 #endif /* DEBUG */
233 	}
234 
235 /*
236  * Private accessor that gets the value of vm_physmem.nentries
237  */
238 static int
239 uvm_physseg_get_entries(void)
240 {
241 #if defined(UVM_HOTPLUG)
242 	return uvm_physseg_graph.nentries;
243 #else
244 	return vm_nphysmem;
245 #endif /* UVM_HOTPLUG */
246 }
247 
248 /*
249  * Note: This function replicates verbatim what happens in
250  * uvm_page.c:uvm_page_init().
251  *
252  * Please track any changes that happen there.
253  */
254 static void
255 uvm_page_init_fake(struct vm_page *pagearray, psize_t pagecount)
256 {
257 	uvm_physseg_t bank;
258 	size_t n;
259 
260 	for (bank = uvm_physseg_get_first(),
261 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
262 	     uvm_physseg_valid_p(bank);
263 	     bank = uvm_physseg_get_next(bank)) {
264 
265 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
266 		uvm_physseg_seg_alloc_from_slab(bank, n);
267 		uvm_physseg_init_seg(bank, pagearray);
268 
269 		/* set up page array pointers */
270 		pagearray += n;
271 		pagecount -= n;
272 	}
273 
274 	uvm.page_init_done = true;
275 }
276 
277 /*
278  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
279  * back from an I/O mapping (ugh!).   used in some MD code as well.
280  */
281 static struct vm_page *
282 uvm_phys_to_vm_page(paddr_t pa)
283 {
284 	paddr_t pf = atop(pa);
285 	paddr_t off;
286 	uvm_physseg_t psi;
287 
288 	psi = uvm_physseg_find(pf, &off);
289 	if (psi != UVM_PHYSSEG_TYPE_INVALID)
290 		return uvm_physseg_get_pg(psi, off);
291 	return(NULL);
292 }
293 
294 //static paddr_t
295 //uvm_vm_page_to_phys(const struct vm_page *pg)
296 //{
297 //
298 //	return pg->phys_addr;
299 //}
300 
301 /*
302  * XXX: To do, write control test cases for uvm_vm_page_to_phys().
303  */
304 
305 /* #define VM_PAGE_TO_PHYS(entry)  uvm_vm_page_to_phys(entry) */
306 
307 #define PHYS_TO_VM_PAGE(pa)     uvm_phys_to_vm_page(pa)
308 
309 /*
310  * Test Fixture SetUp().
311  */
312 static void
313 setup(void)
314 {
315 	/* Prerequisites for running certain calls in uvm_physseg */
316 	uvmexp.pagesize = PAGE_SIZE;
317 	uvmexp.npages = 0;
318 	uvm.page_init_done = false;
319 	uvm_physseg_init();
320 }
321 
322 ATF_TC(uvm_physseg_100);
323 ATF_TC_HEAD(uvm_physseg_100, tc)
324 {
325 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
326 	    100 calls, VM_PHYSSEG_MAX is 32.");
327 }
328 ATF_TC_BODY(uvm_physseg_100, tc)
329 {
330 	paddr_t pa;
331 
332 	setup();
333 
334 	for(paddr_t i = VALID_START_PFN_1;
335 	    i < VALID_END_PFN_1; i += PF_STEP) {
336 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
337 		    VM_FREELIST_DEFAULT);
338 	}
339 
340 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
341 
342 	srandom((unsigned)time(NULL));
343 	for(int i = 0; i < 100; i++) {
344 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
345 		PHYS_TO_VM_PAGE(pa);
346 	}
347 
348 	ATF_CHECK_EQ(true, true);
349 }
350 
351 ATF_TC(uvm_physseg_1K);
352 ATF_TC_HEAD(uvm_physseg_1K, tc)
353 {
354 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
355 	    1000 calls, VM_PHYSSEG_MAX is 32.");
356 }
357 ATF_TC_BODY(uvm_physseg_1K, tc)
358 {
359 	paddr_t pa;
360 
361 	setup();
362 
363 	for(paddr_t i = VALID_START_PFN_1;
364 	    i < VALID_END_PFN_1; i += PF_STEP) {
365 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
366 		    VM_FREELIST_DEFAULT);
367 	}
368 
369 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
370 
371 	srandom((unsigned)time(NULL));
372 	for(int i = 0; i < 1000; i++) {
373 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
374 		PHYS_TO_VM_PAGE(pa);
375 	}
376 
377 	ATF_CHECK_EQ(true, true);
378 }
379 
380 ATF_TC(uvm_physseg_10K);
381 ATF_TC_HEAD(uvm_physseg_10K, tc)
382 {
383 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
384 	    10,000 calls, VM_PHYSSEG_MAX is 32.");
385 }
386 ATF_TC_BODY(uvm_physseg_10K, tc)
387 {
388 	paddr_t pa;
389 
390 	setup();
391 
392 	for(paddr_t i = VALID_START_PFN_1;
393 	    i < VALID_END_PFN_1; i += PF_STEP) {
394 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
395 		    VM_FREELIST_DEFAULT);
396 	}
397 
398 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
399 
400 	srandom((unsigned)time(NULL));
401 	for(int i = 0; i < 10000; i++) {
402 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
403 		PHYS_TO_VM_PAGE(pa);
404 	}
405 
406 	ATF_CHECK_EQ(true, true);
407 }
408 
409 ATF_TC(uvm_physseg_100K);
410 ATF_TC_HEAD(uvm_physseg_100K, tc)
411 {
412 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
413 	    100,000 calls, VM_PHYSSEG_MAX is 32.");
414 }
415 ATF_TC_BODY(uvm_physseg_100K, tc)
416 {
417 	paddr_t pa;
418 
419 	setup();
420 
421 	for(paddr_t i = VALID_START_PFN_1;
422 	    i < VALID_END_PFN_1; i += PF_STEP) {
423 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
424 		    VM_FREELIST_DEFAULT);
425 	}
426 
427 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
428 
429 	srandom((unsigned)time(NULL));
430 	for(int i = 0; i < 100000; i++) {
431 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
432 		PHYS_TO_VM_PAGE(pa);
433 	}
434 
435 	ATF_CHECK_EQ(true, true);
436 }
437 
438 ATF_TC(uvm_physseg_1M);
439 ATF_TC_HEAD(uvm_physseg_1M, tc)
440 {
441 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
442 	    1,000,000 calls, VM_PHYSSEG_MAX is 32.");
443 }
444 ATF_TC_BODY(uvm_physseg_1M, tc)
445 {
446 	paddr_t pa;
447 
448 	setup();
449 
450 	for(paddr_t i = VALID_START_PFN_1;
451 	    i < VALID_END_PFN_1; i += PF_STEP) {
452 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
453 		    VM_FREELIST_DEFAULT);
454 	}
455 
456 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
457 
458 	srandom((unsigned)time(NULL));
459 	for(int i = 0; i < 1000000; i++) {
460 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
461 		PHYS_TO_VM_PAGE(pa);
462 	}
463 
464 	ATF_CHECK_EQ(true, true);
465 }
466 
467 ATF_TC(uvm_physseg_10M);
468 ATF_TC_HEAD(uvm_physseg_10M, tc)
469 {
470 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
471 	    10,000,000 calls, VM_PHYSSEG_MAX is 32.");
472 }
473 ATF_TC_BODY(uvm_physseg_10M, tc)
474 {
475 	paddr_t pa;
476 
477 	setup();
478 
479 	for(paddr_t i = VALID_START_PFN_1;
480 	    i < VALID_END_PFN_1; i += PF_STEP) {
481 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
482 		    VM_FREELIST_DEFAULT);
483 	}
484 
485 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
486 
487 	srandom((unsigned)time(NULL));
488 	for(int i = 0; i < 10000000; i++) {
489 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
490 		PHYS_TO_VM_PAGE(pa);
491 	}
492 
493 	ATF_CHECK_EQ(true, true);
494 }
495 
496 ATF_TC(uvm_physseg_100M);
497 ATF_TC_HEAD(uvm_physseg_100M, tc)
498 {
499 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
500 	    100,000,000 calls, VM_PHYSSEG_MAX is 32.");
501 }
502 ATF_TC_BODY(uvm_physseg_100M, tc)
503 {
504 	paddr_t pa;
505 
506 	setup();
507 
508 	for(paddr_t i = VALID_START_PFN_1;
509 	    i < VALID_END_PFN_1; i += PF_STEP) {
510 		uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
511 		    VM_FREELIST_DEFAULT);
512 	}
513 
514 	ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
515 
516 	srandom((unsigned)time(NULL));
517 	for(int i = 0; i < 100000000; i++) {
518 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
519 		PHYS_TO_VM_PAGE(pa);
520 	}
521 
522 	ATF_CHECK_EQ(true, true);
523 }
524 
525 ATF_TC(uvm_physseg_1MB);
526 ATF_TC_HEAD(uvm_physseg_1MB, tc)
527 {
528 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
529 	    10,000,000 calls, VM_PHYSSEG_MAX is 32 on 1 MB Segment.");
530 }
531 ATF_TC_BODY(uvm_physseg_1MB, t)
532 {
533 	paddr_t pa = 0;
534 
535 	paddr_t pf = 0;
536 
537 	psize_t pf_chunk_size = 0;
538 
539 	psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
540 
541 	psize_t npages2 = (VALID_END_PFN_2 - VALID_START_PFN_2);
542 
543 	struct vm_page *slab = malloc(sizeof(struct vm_page) *
544 	    (npages1 + npages2));
545 
546 	setup();
547 
548 	/* We start with zero segments */
549 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
550 	ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
551 
552 	/* Post boot: Fake all segments and pages accounted for. */
553 	uvm_page_init_fake(slab, npages1 + npages2);
554 
555 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
556 	ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
557 
558 	srandom((unsigned)time(NULL));
559 	for(pf = VALID_START_PFN_2; pf < VALID_END_PFN_2; pf += PF_STEP) {
560 		pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
561 		uvm_physseg_unplug(pf, pf_chunk_size);
562 	}
563 
564 	for(int i = 0; i < 10000000; i++) {
565 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_2);
566 		if(pa < ctob(VALID_START_PFN_2))
567 			pa += ctob(VALID_START_PFN_2);
568 		PHYS_TO_VM_PAGE(pa);
569 	}
570 
571 	ATF_CHECK_EQ(true, true);
572 }
573 
574 ATF_TC(uvm_physseg_64MB);
575 ATF_TC_HEAD(uvm_physseg_64MB, tc)
576 {
577 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
578 	    10,000,000 calls, VM_PHYSSEG_MAX is 32 on 64 MB Segment.");
579 }
580 ATF_TC_BODY(uvm_physseg_64MB, t)
581 {
582 	paddr_t pa = 0;
583 
584 	paddr_t pf = 0;
585 
586 	psize_t pf_chunk_size = 0;
587 
588 	psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
589 
590 	psize_t npages2 = (VALID_END_PFN_3 - VALID_START_PFN_3);
591 
592 	struct vm_page *slab = malloc(sizeof(struct vm_page)  *
593 	    (npages1 + npages2));
594 
595 	setup();
596 
597 	/* We start with zero segments */
598 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
599 	ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
600 
601 	/* Post boot: Fake all segments and pages accounted for. */
602 	uvm_page_init_fake(slab, npages1 + npages2);
603 
604 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_3, npages2, NULL));
605 	ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
606 
607 	srandom((unsigned)time(NULL));
608 	for(pf = VALID_START_PFN_3; pf < VALID_END_PFN_3; pf += PF_STEP) {
609 		pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
610 		uvm_physseg_unplug(pf, pf_chunk_size);
611 	}
612 
613 	for(int i = 0; i < 10000000; i++) {
614 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_3);
615 		if(pa < ctob(VALID_START_PFN_3))
616 			pa += ctob(VALID_START_PFN_3);
617 		PHYS_TO_VM_PAGE(pa);
618 	}
619 
620 	ATF_CHECK_EQ(true, true);
621 }
622 
623 ATF_TC(uvm_physseg_128MB);
624 ATF_TC_HEAD(uvm_physseg_128MB, tc)
625 {
626 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
627 	    10,000,000 calls, VM_PHYSSEG_MAX is 32 on 128 MB Segment.");
628 }
629 ATF_TC_BODY(uvm_physseg_128MB, t)
630 {
631 	paddr_t pa = 0;
632 
633 	paddr_t pf = 0;
634 
635 	psize_t pf_chunk_size = 0;
636 
637 	psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
638 
639 	psize_t npages2 = (VALID_END_PFN_4 - VALID_START_PFN_4);
640 
641 	struct vm_page *slab = malloc(sizeof(struct vm_page)
642 	    * (npages1 + npages2));
643 
644 	setup();
645 
646 	/* We start with zero segments */
647 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
648 	ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
649 
650 	/* Post boot: Fake all segments and pages accounted for. */
651 	uvm_page_init_fake(slab, npages1 + npages2);
652 
653 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
654 	ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
655 
656 	srandom((unsigned)time(NULL));
657 	for(pf = VALID_START_PFN_4; pf < VALID_END_PFN_4; pf += PF_STEP) {
658 		pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
659 		uvm_physseg_unplug(pf, pf_chunk_size);
660 	}
661 
662 	for(int i = 0; i < 10000000; i++) {
663 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_4);
664 		if(pa < ctob(VALID_START_PFN_4))
665 			pa += ctob(VALID_START_PFN_4);
666 		PHYS_TO_VM_PAGE(pa);
667 	}
668 
669 	ATF_CHECK_EQ(true, true);
670 }
671 
672 ATF_TC(uvm_physseg_256MB);
673 ATF_TC_HEAD(uvm_physseg_256MB, tc)
674 {
675 	atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
676 	    10,000,000 calls, VM_PHYSSEG_MAX is 32 on 256 MB Segment.");
677 }
678 ATF_TC_BODY(uvm_physseg_256MB, t)
679 {
680 	paddr_t pa = 0;
681 
682 	paddr_t pf = 0;
683 
684 	psize_t pf_chunk_size = 0;
685 
686 	psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
687 
688 	psize_t npages2 = (VALID_END_PFN_5 - VALID_START_PFN_5);
689 
690 	struct vm_page *slab = malloc(sizeof(struct vm_page)  * (npages1 + npages2));
691 
692 	setup();
693 
694 	/* We start with zero segments */
695 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
696 	ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
697 
698 	/* Post boot: Fake all segments and pages accounted for. */
699 	uvm_page_init_fake(slab, npages1 + npages2);
700 
701 	ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
702 	ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
703 
704 	srandom((unsigned)time(NULL));
705 	for(pf = VALID_START_PFN_5; pf < VALID_END_PFN_5; pf += PF_STEP) {
706 		pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
707 		uvm_physseg_unplug(pf, pf_chunk_size);
708 	}
709 
710 	for(int i = 0; i < 10000000; i++) {
711 		pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_5);
712 		if(pa < ctob(VALID_END_PFN_5))
713 			pa += ctob(VALID_START_PFN_5);
714 		PHYS_TO_VM_PAGE(pa);
715 	}
716 
717 	ATF_CHECK_EQ(true, true);
718 }
719 
720 ATF_TP_ADD_TCS(tp)
721 {
722 	/* Fixed memory size tests. */
723 	ATF_TP_ADD_TC(tp, uvm_physseg_100);
724 	ATF_TP_ADD_TC(tp, uvm_physseg_1K);
725 	ATF_TP_ADD_TC(tp, uvm_physseg_10K);
726 	ATF_TP_ADD_TC(tp, uvm_physseg_100K);
727 	ATF_TP_ADD_TC(tp, uvm_physseg_1M);
728 	ATF_TP_ADD_TC(tp, uvm_physseg_10M);
729 	ATF_TP_ADD_TC(tp, uvm_physseg_100M);
730 
731 #if defined(UVM_HOTPLUG)
732 	/* Variable memory size tests. */
733 	ATF_TP_ADD_TC(tp, uvm_physseg_1MB);
734 	ATF_TP_ADD_TC(tp, uvm_physseg_64MB);
735 	ATF_TP_ADD_TC(tp, uvm_physseg_128MB);
736 	ATF_TP_ADD_TC(tp, uvm_physseg_256MB);
737 #endif /* UVM_HOTPLUG */
738 
739 	return atf_no_error();
740 }
741