1 /* 2 ** $Id: lgc.c $ 3 ** Garbage Collector 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lgc_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 #include <stdio.h> 13 #include <string.h> 14 15 16 #include "lua.h" 17 18 #include "ldebug.h" 19 #include "ldo.h" 20 #include "lfunc.h" 21 #include "lgc.h" 22 #include "lmem.h" 23 #include "lobject.h" 24 #include "lstate.h" 25 #include "lstring.h" 26 #include "ltable.h" 27 #include "ltm.h" 28 29 30 /* 31 ** Maximum number of elements to sweep in each single step. 32 ** (Large enough to dissipate fixed overheads but small enough 33 ** to allow small steps for the collector.) 34 */ 35 #define GCSWEEPMAX 100 36 37 /* 38 ** Maximum number of finalizers to call in each single step. 39 */ 40 #define GCFINMAX 10 41 42 43 /* 44 ** Cost of calling one finalizer. 45 */ 46 #define GCFINALIZECOST 50 47 48 49 /* 50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot, 51 ** sweeping an object, etc.) 52 */ 53 #define WORK2MEM sizeof(TValue) 54 55 56 /* 57 ** macro to adjust 'pause': 'pause' is actually used like 58 ** 'pause / PAUSEADJ' (value chosen by tests) 59 */ 60 #define PAUSEADJ 100 61 62 63 /* mask with all color bits */ 64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) 65 66 /* mask with all GC bits */ 67 #define maskgcbits (maskcolors | AGEBITS) 68 69 70 /* macro to erase all color bits then set only the current white bit */ 71 #define makewhite(g,x) \ 72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) 73 74 /* make an object gray (neither white nor black) */ 75 #define set2gray(x) resetbits(x->marked, maskcolors) 76 77 78 /* make an object black (coming from any color) */ 79 #define set2black(x) \ 80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) 81 82 83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) 84 85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) 86 87 88 /* 89 ** Protected access to objects in values 90 */ 91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) 92 93 94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \ 95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } 96 97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } 98 99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } 100 101 /* 102 ** mark an object that can be NULL (either because it is really optional, 103 ** or it was stripped as debug info, or inside an uncompleted structure) 104 */ 105 #define markobjectN(g,t) { if (t) markobject(g,t); } 106 107 static void reallymarkobject (global_State *g, GCObject *o); 108 static lu_mem atomic (lua_State *L); 109 static void entersweep (lua_State *L); 110 111 112 /* 113 ** {====================================================== 114 ** Generic functions 115 ** ======================================================= 116 */ 117 118 119 /* 120 ** one after last element in a hash array 121 */ 122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) 123 124 125 static GCObject **getgclist (GCObject *o) { 126 switch (o->tt) { 127 case LUA_VTABLE: return &gco2t(o)->gclist; 128 case LUA_VLCL: return &gco2lcl(o)->gclist; 129 case LUA_VCCL: return &gco2ccl(o)->gclist; 130 case LUA_VTHREAD: return &gco2th(o)->gclist; 131 case LUA_VPROTO: return &gco2p(o)->gclist; 132 case LUA_VUSERDATA: { 133 Udata *u = gco2u(o); 134 lua_assert(u->nuvalue > 0); 135 return &u->gclist; 136 } 137 default: lua_assert(0); return 0; 138 } 139 } 140 141 142 /* 143 ** Link a collectable object 'o' with a known type into the list 'p'. 144 ** (Must be a macro to access the 'gclist' field in different types.) 145 */ 146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) 147 148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { 149 lua_assert(!isgray(o)); /* cannot be in a gray list */ 150 *pnext = *list; 151 *list = o; 152 set2gray(o); /* now it is */ 153 } 154 155 156 /* 157 ** Link a generic collectable object 'o' into the list 'p'. 158 */ 159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) 160 161 162 163 /* 164 ** Clear keys for empty entries in tables. If entry is empty, mark its 165 ** entry as dead. This allows the collection of the key, but keeps its 166 ** entry in the table: its removal could break a chain and could break 167 ** a table traversal. Other places never manipulate dead keys, because 168 ** its associated empty value is enough to signal that the entry is 169 ** logically empty. 170 */ 171 static void clearkey (Node *n) { 172 lua_assert(isempty(gval(n))); 173 if (keyiscollectable(n)) 174 setdeadkey(n); /* unused key; remove it */ 175 } 176 177 178 /* 179 ** tells whether a key or value can be cleared from a weak 180 ** table. Non-collectable objects are never removed from weak 181 ** tables. Strings behave as 'values', so are never removed too. for 182 ** other objects: if really collected, cannot keep them; for objects 183 ** being finalized, keep them in keys, but not in values 184 */ 185 static int iscleared (global_State *g, const GCObject *o) { 186 if (o == NULL) return 0; /* non-collectable value */ 187 else if (novariant(o->tt) == LUA_TSTRING) { 188 markobject(g, o); /* strings are 'values', so are never weak */ 189 return 0; 190 } 191 else return iswhite(o); 192 } 193 194 195 /* 196 ** Barrier that moves collector forward, that is, marks the white object 197 ** 'v' being pointed by the black object 'o'. In the generational 198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot 199 ** be changed directly to OLD, because it may still point to non-old 200 ** objects. So, it is marked as OLD0. In the next cycle it will become 201 ** OLD1, and in the next it will finally become OLD (regular old). By 202 ** then, any object it points to will also be old. If called in the 203 ** incremental sweep phase, it clears the black object to white (sweep 204 ** it) to avoid other barrier calls for this same object. (That cannot 205 ** be done is generational mode, as its sweep does not distinguish 206 ** whites from deads.) 207 */ 208 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { 209 global_State *g = G(L); 210 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); 211 if (keepinvariant(g)) { /* must keep invariant? */ 212 reallymarkobject(g, v); /* restore invariant */ 213 if (isold(o)) { 214 lua_assert(!isold(v)); /* white object could not be old */ 215 setage(v, G_OLD0); /* restore generational invariant */ 216 } 217 } 218 else { /* sweep phase */ 219 lua_assert(issweepphase(g)); 220 if (g->gckind == KGC_INC) /* incremental mode? */ 221 makewhite(g, o); /* mark 'o' as white to avoid other barriers */ 222 } 223 } 224 225 226 /* 227 ** barrier that moves collector backward, that is, mark the black object 228 ** pointing to a white object as gray again. 229 */ 230 void luaC_barrierback_ (lua_State *L, GCObject *o) { 231 global_State *g = G(L); 232 lua_assert(isblack(o) && !isdead(g, o)); 233 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); 234 if (getage(o) == G_TOUCHED2) /* already in gray list? */ 235 set2gray(o); /* make it gray to become touched1 */ 236 else /* link it in 'grayagain' and paint it gray */ 237 linkobjgclist(o, g->grayagain); 238 if (isold(o)) /* generational mode? */ 239 setage(o, G_TOUCHED1); /* touched in current cycle */ 240 } 241 242 243 void luaC_fix (lua_State *L, GCObject *o) { 244 global_State *g = G(L); 245 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ 246 set2gray(o); /* they will be gray forever */ 247 setage(o, G_OLD); /* and old forever */ 248 g->allgc = o->next; /* remove object from 'allgc' list */ 249 o->next = g->fixedgc; /* link it to 'fixedgc' list */ 250 g->fixedgc = o; 251 } 252 253 254 /* 255 ** create a new collectable object (with given type, size, and offset) 256 ** and link it to 'allgc' list. 257 */ 258 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) { 259 global_State *g = G(L); 260 char *p = cast_charp(luaM_newobject(L, novariant(tt), sz)); 261 GCObject *o = cast(GCObject *, p + offset); 262 o->marked = luaC_white(g); 263 o->tt = tt; 264 o->next = g->allgc; 265 g->allgc = o; 266 return o; 267 } 268 269 270 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { 271 return luaC_newobjdt(L, tt, sz, 0); 272 } 273 274 /* }====================================================== */ 275 276 277 278 /* 279 ** {====================================================== 280 ** Mark functions 281 ** ======================================================= 282 */ 283 284 285 /* 286 ** Mark an object. Userdata with no user values, strings, and closed 287 ** upvalues are visited and turned black here. Open upvalues are 288 ** already indirectly linked through their respective threads in the 289 ** 'twups' list, so they don't go to the gray list; nevertheless, they 290 ** are kept gray to avoid barriers, as their values will be revisited 291 ** by the thread or by 'remarkupvals'. Other objects are added to the 292 ** gray list to be visited (and turned black) later. Both userdata and 293 ** upvalues can call this function recursively, but this recursion goes 294 ** for at most two levels: An upvalue cannot refer to another upvalue 295 ** (only closures can), and a userdata's metatable must be a table. 296 */ 297 static void reallymarkobject (global_State *g, GCObject *o) { 298 switch (o->tt) { 299 case LUA_VSHRSTR: 300 case LUA_VLNGSTR: { 301 set2black(o); /* nothing to visit */ 302 break; 303 } 304 case LUA_VUPVAL: { 305 UpVal *uv = gco2upv(o); 306 if (upisopen(uv)) 307 set2gray(uv); /* open upvalues are kept gray */ 308 else 309 set2black(uv); /* closed upvalues are visited here */ 310 markvalue(g, uv->v.p); /* mark its content */ 311 break; 312 } 313 case LUA_VUSERDATA: { 314 Udata *u = gco2u(o); 315 if (u->nuvalue == 0) { /* no user values? */ 316 markobjectN(g, u->metatable); /* mark its metatable */ 317 set2black(u); /* nothing else to mark */ 318 break; 319 } 320 /* else... */ 321 } /* FALLTHROUGH */ 322 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: 323 case LUA_VTHREAD: case LUA_VPROTO: { 324 linkobjgclist(o, g->gray); /* to be visited later */ 325 break; 326 } 327 default: lua_assert(0); break; 328 } 329 } 330 331 332 /* 333 ** mark metamethods for basic types 334 */ 335 static void markmt (global_State *g) { 336 int i; 337 for (i=0; i < LUA_NUMTAGS; i++) 338 markobjectN(g, g->mt[i]); 339 } 340 341 342 /* 343 ** mark all objects in list of being-finalized 344 */ 345 static lu_mem markbeingfnz (global_State *g) { 346 GCObject *o; 347 lu_mem count = 0; 348 for (o = g->tobefnz; o != NULL; o = o->next) { 349 count++; 350 markobject(g, o); 351 } 352 return count; 353 } 354 355 356 /* 357 ** For each non-marked thread, simulates a barrier between each open 358 ** upvalue and its value. (If the thread is collected, the value will be 359 ** assigned to the upvalue, but then it can be too late for the barrier 360 ** to act. The "barrier" does not need to check colors: A non-marked 361 ** thread must be young; upvalues cannot be older than their threads; so 362 ** any visited upvalue must be young too.) Also removes the thread from 363 ** the list, as it was already visited. Removes also threads with no 364 ** upvalues, as they have nothing to be checked. (If the thread gets an 365 ** upvalue later, it will be linked in the list again.) 366 */ 367 static int remarkupvals (global_State *g) { 368 lua_State *thread; 369 lua_State **p = &g->twups; 370 int work = 0; /* estimate of how much work was done here */ 371 while ((thread = *p) != NULL) { 372 work++; 373 if (!iswhite(thread) && thread->openupval != NULL) 374 p = &thread->twups; /* keep marked thread with upvalues in the list */ 375 else { /* thread is not marked or without upvalues */ 376 UpVal *uv; 377 lua_assert(!isold(thread) || thread->openupval == NULL); 378 *p = thread->twups; /* remove thread from the list */ 379 thread->twups = thread; /* mark that it is out of list */ 380 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { 381 lua_assert(getage(uv) <= getage(thread)); 382 work++; 383 if (!iswhite(uv)) { /* upvalue already visited? */ 384 lua_assert(upisopen(uv) && isgray(uv)); 385 markvalue(g, uv->v.p); /* mark its value */ 386 } 387 } 388 } 389 } 390 return work; 391 } 392 393 394 static void cleargraylists (global_State *g) { 395 g->gray = g->grayagain = NULL; 396 g->weak = g->allweak = g->ephemeron = NULL; 397 } 398 399 400 /* 401 ** mark root set and reset all gray lists, to start a new collection 402 */ 403 static void restartcollection (global_State *g) { 404 cleargraylists(g); 405 markobject(g, g->mainthread); 406 markvalue(g, &g->l_registry); 407 markmt(g); 408 markbeingfnz(g); /* mark any finalizing object left from previous cycle */ 409 } 410 411 /* }====================================================== */ 412 413 414 /* 415 ** {====================================================== 416 ** Traverse functions 417 ** ======================================================= 418 */ 419 420 421 /* 422 ** Check whether object 'o' should be kept in the 'grayagain' list for 423 ** post-processing by 'correctgraylist'. (It could put all old objects 424 ** in the list and leave all the work to 'correctgraylist', but it is 425 ** more efficient to avoid adding elements that will be removed.) Only 426 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go 427 ** back to a gray list, but then it must become OLD. (That is what 428 ** 'correctgraylist' does when it finds a TOUCHED2 object.) 429 */ 430 static void genlink (global_State *g, GCObject *o) { 431 lua_assert(isblack(o)); 432 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ 433 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ 434 } /* everything else do not need to be linked back */ 435 else if (getage(o) == G_TOUCHED2) 436 changeage(o, G_TOUCHED2, G_OLD); /* advance age */ 437 } 438 439 440 /* 441 ** Traverse a table with weak values and link it to proper list. During 442 ** propagate phase, keep it in 'grayagain' list, to be revisited in the 443 ** atomic phase. In the atomic phase, if table has any white value, 444 ** put it in 'weak' list, to be cleared. 445 */ 446 static void traverseweakvalue (global_State *g, Table *h) { 447 Node *n, *limit = gnodelast(h); 448 /* if there is array part, assume it may have white values (it is not 449 worth traversing it now just to check) */ 450 int hasclears = (h->alimit > 0); 451 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 452 if (isempty(gval(n))) /* entry is empty? */ 453 clearkey(n); /* clear its key */ 454 else { 455 lua_assert(!keyisnil(n)); 456 markkey(g, n); 457 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ 458 hasclears = 1; /* table will have to be cleared */ 459 } 460 } 461 if (g->gcstate == GCSatomic && hasclears) 462 linkgclist(h, g->weak); /* has to be cleared later */ 463 else 464 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 465 } 466 467 468 /* 469 ** Traverse an ephemeron table and link it to proper list. Returns true 470 ** iff any object was marked during this traversal (which implies that 471 ** convergence has to continue). During propagation phase, keep table 472 ** in 'grayagain' list, to be visited again in the atomic phase. In 473 ** the atomic phase, if table has any white->white entry, it has to 474 ** be revisited during ephemeron convergence (as that key may turn 475 ** black). Otherwise, if it has any white key, table has to be cleared 476 ** (in the atomic phase). In generational mode, some tables 477 ** must be kept in some gray list for post-processing; this is done 478 ** by 'genlink'. 479 */ 480 static int traverseephemeron (global_State *g, Table *h, int inv) { 481 int marked = 0; /* true if an object is marked in this traversal */ 482 int hasclears = 0; /* true if table has white keys */ 483 int hasww = 0; /* true if table has entry "white-key -> white-value" */ 484 unsigned int i; 485 unsigned int asize = luaH_realasize(h); 486 unsigned int nsize = sizenode(h); 487 /* traverse array part */ 488 for (i = 0; i < asize; i++) { 489 if (valiswhite(&h->array[i])) { 490 marked = 1; 491 reallymarkobject(g, gcvalue(&h->array[i])); 492 } 493 } 494 /* traverse hash part; if 'inv', traverse descending 495 (see 'convergeephemerons') */ 496 for (i = 0; i < nsize; i++) { 497 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); 498 if (isempty(gval(n))) /* entry is empty? */ 499 clearkey(n); /* clear its key */ 500 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ 501 hasclears = 1; /* table must be cleared */ 502 if (valiswhite(gval(n))) /* value not marked yet? */ 503 hasww = 1; /* white-white entry */ 504 } 505 else if (valiswhite(gval(n))) { /* value not marked yet? */ 506 marked = 1; 507 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ 508 } 509 } 510 /* link table into proper list */ 511 if (g->gcstate == GCSpropagate) 512 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 513 else if (hasww) /* table has white->white entries? */ 514 linkgclist(h, g->ephemeron); /* have to propagate again */ 515 else if (hasclears) /* table has white keys? */ 516 linkgclist(h, g->allweak); /* may have to clean white keys */ 517 else 518 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ 519 return marked; 520 } 521 522 523 static void traversestrongtable (global_State *g, Table *h) { 524 Node *n, *limit = gnodelast(h); 525 unsigned int i; 526 unsigned int asize = luaH_realasize(h); 527 for (i = 0; i < asize; i++) /* traverse array part */ 528 markvalue(g, &h->array[i]); 529 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 530 if (isempty(gval(n))) /* entry is empty? */ 531 clearkey(n); /* clear its key */ 532 else { 533 lua_assert(!keyisnil(n)); 534 markkey(g, n); 535 markvalue(g, gval(n)); 536 } 537 } 538 genlink(g, obj2gco(h)); 539 } 540 541 542 static lu_mem traversetable (global_State *g, Table *h) { 543 const char *weakkey, *weakvalue; 544 const TValue *mode = gfasttm(g, h->metatable, TM_MODE); 545 markobjectN(g, h->metatable); 546 if (mode && ttisstring(mode) && /* is there a weak mode? */ 547 (cast_void(weakkey = strchr(svalue(mode), 'k')), 548 cast_void(weakvalue = strchr(svalue(mode), 'v')), 549 (weakkey || weakvalue))) { /* is really weak? */ 550 if (!weakkey) /* strong keys? */ 551 traverseweakvalue(g, h); 552 else if (!weakvalue) /* strong values? */ 553 traverseephemeron(g, h, 0); 554 else /* all weak */ 555 linkgclist(h, g->allweak); /* nothing to traverse now */ 556 } 557 else /* not weak */ 558 traversestrongtable(g, h); 559 return 1 + h->alimit + 2 * allocsizenode(h); 560 } 561 562 563 static int traverseudata (global_State *g, Udata *u) { 564 int i; 565 markobjectN(g, u->metatable); /* mark its metatable */ 566 for (i = 0; i < u->nuvalue; i++) 567 markvalue(g, &u->uv[i].uv); 568 genlink(g, obj2gco(u)); 569 return 1 + u->nuvalue; 570 } 571 572 573 /* 574 ** Traverse a prototype. (While a prototype is being build, its 575 ** arrays can be larger than needed; the extra slots are filled with 576 ** NULL, so the use of 'markobjectN') 577 */ 578 static int traverseproto (global_State *g, Proto *f) { 579 int i; 580 markobjectN(g, f->source); 581 for (i = 0; i < f->sizek; i++) /* mark literals */ 582 markvalue(g, &f->k[i]); 583 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ 584 markobjectN(g, f->upvalues[i].name); 585 for (i = 0; i < f->sizep; i++) /* mark nested protos */ 586 markobjectN(g, f->p[i]); 587 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ 588 markobjectN(g, f->locvars[i].varname); 589 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; 590 } 591 592 593 static int traverseCclosure (global_State *g, CClosure *cl) { 594 int i; 595 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ 596 markvalue(g, &cl->upvalue[i]); 597 return 1 + cl->nupvalues; 598 } 599 600 /* 601 ** Traverse a Lua closure, marking its prototype and its upvalues. 602 ** (Both can be NULL while closure is being created.) 603 */ 604 static int traverseLclosure (global_State *g, LClosure *cl) { 605 int i; 606 markobjectN(g, cl->p); /* mark its prototype */ 607 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ 608 UpVal *uv = cl->upvals[i]; 609 markobjectN(g, uv); /* mark upvalue */ 610 } 611 return 1 + cl->nupvalues; 612 } 613 614 615 /* 616 ** Traverse a thread, marking the elements in the stack up to its top 617 ** and cleaning the rest of the stack in the final traversal. That 618 ** ensures that the entire stack have valid (non-dead) objects. 619 ** Threads have no barriers. In gen. mode, old threads must be visited 620 ** at every cycle, because they might point to young objects. In inc. 621 ** mode, the thread can still be modified before the end of the cycle, 622 ** and therefore it must be visited again in the atomic phase. To ensure 623 ** these visits, threads must return to a gray list if they are not new 624 ** (which can only happen in generational mode) or if the traverse is in 625 ** the propagate phase (which can only happen in incremental mode). 626 */ 627 static int traversethread (global_State *g, lua_State *th) { 628 UpVal *uv; 629 StkId o = th->stack.p; 630 if (isold(th) || g->gcstate == GCSpropagate) 631 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 632 if (o == NULL) 633 return 1; /* stack not completely built yet */ 634 lua_assert(g->gcstate == GCSatomic || 635 th->openupval == NULL || isintwups(th)); 636 for (; o < th->top.p; o++) /* mark live elements in the stack */ 637 markvalue(g, s2v(o)); 638 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) 639 markobject(g, uv); /* open upvalues cannot be collected */ 640 if (g->gcstate == GCSatomic) { /* final traversal? */ 641 for (; o < th->stack_last.p + EXTRA_STACK; o++) 642 setnilvalue(s2v(o)); /* clear dead stack slice */ 643 /* 'remarkupvals' may have removed thread from 'twups' list */ 644 if (!isintwups(th) && th->openupval != NULL) { 645 th->twups = g->twups; /* link it back to the list */ 646 g->twups = th; 647 } 648 } 649 else if (!g->gcemergency) 650 luaD_shrinkstack(th); /* do not change stack in emergency cycle */ 651 return 1 + stacksize(th); 652 } 653 654 655 /* 656 ** traverse one gray object, turning it to black. 657 */ 658 static lu_mem propagatemark (global_State *g) { 659 GCObject *o = g->gray; 660 nw2black(o); 661 g->gray = *getgclist(o); /* remove from 'gray' list */ 662 switch (o->tt) { 663 case LUA_VTABLE: return traversetable(g, gco2t(o)); 664 case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); 665 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); 666 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); 667 case LUA_VPROTO: return traverseproto(g, gco2p(o)); 668 case LUA_VTHREAD: return traversethread(g, gco2th(o)); 669 default: lua_assert(0); return 0; 670 } 671 } 672 673 674 static lu_mem propagateall (global_State *g) { 675 lu_mem tot = 0; 676 while (g->gray) 677 tot += propagatemark(g); 678 return tot; 679 } 680 681 682 /* 683 ** Traverse all ephemeron tables propagating marks from keys to values. 684 ** Repeat until it converges, that is, nothing new is marked. 'dir' 685 ** inverts the direction of the traversals, trying to speed up 686 ** convergence on chains in the same table. 687 ** 688 */ 689 static void convergeephemerons (global_State *g) { 690 int changed; 691 int dir = 0; 692 do { 693 GCObject *w; 694 GCObject *next = g->ephemeron; /* get ephemeron list */ 695 g->ephemeron = NULL; /* tables may return to this list when traversed */ 696 changed = 0; 697 while ((w = next) != NULL) { /* for each ephemeron table */ 698 Table *h = gco2t(w); 699 next = h->gclist; /* list is rebuilt during loop */ 700 nw2black(h); /* out of the list (for now) */ 701 if (traverseephemeron(g, h, dir)) { /* marked some value? */ 702 propagateall(g); /* propagate changes */ 703 changed = 1; /* will have to revisit all ephemeron tables */ 704 } 705 } 706 dir = !dir; /* invert direction next time */ 707 } while (changed); /* repeat until no more changes */ 708 } 709 710 /* }====================================================== */ 711 712 713 /* 714 ** {====================================================== 715 ** Sweep Functions 716 ** ======================================================= 717 */ 718 719 720 /* 721 ** clear entries with unmarked keys from all weaktables in list 'l' 722 */ 723 static void clearbykeys (global_State *g, GCObject *l) { 724 for (; l; l = gco2t(l)->gclist) { 725 Table *h = gco2t(l); 726 Node *limit = gnodelast(h); 727 Node *n; 728 for (n = gnode(h, 0); n < limit; n++) { 729 if (iscleared(g, gckeyN(n))) /* unmarked key? */ 730 setempty(gval(n)); /* remove entry */ 731 if (isempty(gval(n))) /* is entry empty? */ 732 clearkey(n); /* clear its key */ 733 } 734 } 735 } 736 737 738 /* 739 ** clear entries with unmarked values from all weaktables in list 'l' up 740 ** to element 'f' 741 */ 742 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { 743 for (; l != f; l = gco2t(l)->gclist) { 744 Table *h = gco2t(l); 745 Node *n, *limit = gnodelast(h); 746 unsigned int i; 747 unsigned int asize = luaH_realasize(h); 748 for (i = 0; i < asize; i++) { 749 TValue *o = &h->array[i]; 750 if (iscleared(g, gcvalueN(o))) /* value was collected? */ 751 setempty(o); /* remove entry */ 752 } 753 for (n = gnode(h, 0); n < limit; n++) { 754 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ 755 setempty(gval(n)); /* remove entry */ 756 if (isempty(gval(n))) /* is entry empty? */ 757 clearkey(n); /* clear its key */ 758 } 759 } 760 } 761 762 763 static void freeupval (lua_State *L, UpVal *uv) { 764 if (upisopen(uv)) 765 luaF_unlinkupval(uv); 766 luaM_free(L, uv); 767 } 768 769 770 static void freeobj (lua_State *L, GCObject *o) { 771 switch (o->tt) { 772 case LUA_VPROTO: 773 luaF_freeproto(L, gco2p(o)); 774 break; 775 case LUA_VUPVAL: 776 freeupval(L, gco2upv(o)); 777 break; 778 case LUA_VLCL: { 779 LClosure *cl = gco2lcl(o); 780 luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); 781 break; 782 } 783 case LUA_VCCL: { 784 CClosure *cl = gco2ccl(o); 785 luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); 786 break; 787 } 788 case LUA_VTABLE: 789 luaH_free(L, gco2t(o)); 790 break; 791 case LUA_VTHREAD: 792 luaE_freethread(L, gco2th(o)); 793 break; 794 case LUA_VUSERDATA: { 795 Udata *u = gco2u(o); 796 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); 797 break; 798 } 799 case LUA_VSHRSTR: { 800 TString *ts = gco2ts(o); 801 luaS_remove(L, ts); /* remove it from hash table */ 802 luaM_freemem(L, ts, sizelstring(ts->shrlen)); 803 break; 804 } 805 case LUA_VLNGSTR: { 806 TString *ts = gco2ts(o); 807 luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); 808 break; 809 } 810 default: lua_assert(0); 811 } 812 } 813 814 815 /* 816 ** sweep at most 'countin' elements from a list of GCObjects erasing dead 817 ** objects, where a dead object is one marked with the old (non current) 818 ** white; change all non-dead objects back to white, preparing for next 819 ** collection cycle. Return where to continue the traversal or NULL if 820 ** list is finished. ('*countout' gets the number of elements traversed.) 821 */ 822 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, 823 int *countout) { 824 global_State *g = G(L); 825 int ow = otherwhite(g); 826 int i; 827 int white = luaC_white(g); /* current white */ 828 for (i = 0; *p != NULL && i < countin; i++) { 829 GCObject *curr = *p; 830 int marked = curr->marked; 831 if (isdeadm(ow, marked)) { /* is 'curr' dead? */ 832 *p = curr->next; /* remove 'curr' from list */ 833 freeobj(L, curr); /* erase 'curr' */ 834 } 835 else { /* change mark to 'white' */ 836 curr->marked = cast_byte((marked & ~maskgcbits) | white); 837 p = &curr->next; /* go to next element */ 838 } 839 } 840 if (countout) 841 *countout = i; /* number of elements traversed */ 842 return (*p == NULL) ? NULL : p; 843 } 844 845 846 /* 847 ** sweep a list until a live object (or end of list) 848 */ 849 static GCObject **sweeptolive (lua_State *L, GCObject **p) { 850 GCObject **old = p; 851 do { 852 p = sweeplist(L, p, 1, NULL); 853 } while (p == old); 854 return p; 855 } 856 857 /* }====================================================== */ 858 859 860 /* 861 ** {====================================================== 862 ** Finalization 863 ** ======================================================= 864 */ 865 866 /* 867 ** If possible, shrink string table. 868 */ 869 static void checkSizes (lua_State *L, global_State *g) { 870 if (!g->gcemergency) { 871 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ 872 l_mem olddebt = g->GCdebt; 873 luaS_resize(L, g->strt.size / 2); 874 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ 875 } 876 } 877 } 878 879 880 /* 881 ** Get the next udata to be finalized from the 'tobefnz' list, and 882 ** link it back into the 'allgc' list. 883 */ 884 static GCObject *udata2finalize (global_State *g) { 885 GCObject *o = g->tobefnz; /* get first element */ 886 lua_assert(tofinalize(o)); 887 g->tobefnz = o->next; /* remove it from 'tobefnz' list */ 888 o->next = g->allgc; /* return it to 'allgc' list */ 889 g->allgc = o; 890 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ 891 if (issweepphase(g)) 892 makewhite(g, o); /* "sweep" object */ 893 else if (getage(o) == G_OLD1) 894 g->firstold1 = o; /* it is the first OLD1 object in the list */ 895 return o; 896 } 897 898 899 static void dothecall (lua_State *L, void *ud) { 900 UNUSED(ud); 901 luaD_callnoyield(L, L->top.p - 2, 0); 902 } 903 904 905 static void GCTM (lua_State *L) { 906 global_State *g = G(L); 907 const TValue *tm; 908 TValue v; 909 lua_assert(!g->gcemergency); 910 setgcovalue(L, &v, udata2finalize(g)); 911 tm = luaT_gettmbyobj(L, &v, TM_GC); 912 if (!notm(tm)) { /* is there a finalizer? */ 913 int status; 914 lu_byte oldah = L->allowhook; 915 int oldgcstp = g->gcstp; 916 g->gcstp |= GCSTPGC; /* avoid GC steps */ 917 L->allowhook = 0; /* stop debug hooks during GC metamethod */ 918 setobj2s(L, L->top.p++, tm); /* push finalizer... */ 919 setobj2s(L, L->top.p++, &v); /* ... and its argument */ 920 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ 921 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0); 922 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ 923 L->allowhook = oldah; /* restore hooks */ 924 g->gcstp = oldgcstp; /* restore state */ 925 if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ 926 luaE_warnerror(L, "__gc"); 927 L->top.p--; /* pops error object */ 928 } 929 } 930 } 931 932 933 /* 934 ** Call a few finalizers 935 */ 936 static int runafewfinalizers (lua_State *L, int n) { 937 global_State *g = G(L); 938 int i; 939 for (i = 0; i < n && g->tobefnz; i++) 940 GCTM(L); /* call one finalizer */ 941 return i; 942 } 943 944 945 /* 946 ** call all pending finalizers 947 */ 948 static void callallpendingfinalizers (lua_State *L) { 949 global_State *g = G(L); 950 while (g->tobefnz) 951 GCTM(L); 952 } 953 954 955 /* 956 ** find last 'next' field in list 'p' list (to add elements in its end) 957 */ 958 static GCObject **findlast (GCObject **p) { 959 while (*p != NULL) 960 p = &(*p)->next; 961 return p; 962 } 963 964 965 /* 966 ** Move all unreachable objects (or 'all' objects) that need 967 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). 968 ** (Note that objects after 'finobjold1' cannot be white, so they 969 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, 970 ** so the whole list is traversed.) 971 */ 972 static void separatetobefnz (global_State *g, int all) { 973 GCObject *curr; 974 GCObject **p = &g->finobj; 975 GCObject **lastnext = findlast(&g->tobefnz); 976 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ 977 lua_assert(tofinalize(curr)); 978 if (!(iswhite(curr) || all)) /* not being collected? */ 979 p = &curr->next; /* don't bother with it */ 980 else { 981 if (curr == g->finobjsur) /* removing 'finobjsur'? */ 982 g->finobjsur = curr->next; /* correct it */ 983 *p = curr->next; /* remove 'curr' from 'finobj' list */ 984 curr->next = *lastnext; /* link at the end of 'tobefnz' list */ 985 *lastnext = curr; 986 lastnext = &curr->next; 987 } 988 } 989 } 990 991 992 /* 993 ** If pointer 'p' points to 'o', move it to the next element. 994 */ 995 static void checkpointer (GCObject **p, GCObject *o) { 996 if (o == *p) 997 *p = o->next; 998 } 999 1000 1001 /* 1002 ** Correct pointers to objects inside 'allgc' list when 1003 ** object 'o' is being removed from the list. 1004 */ 1005 static void correctpointers (global_State *g, GCObject *o) { 1006 checkpointer(&g->survival, o); 1007 checkpointer(&g->old1, o); 1008 checkpointer(&g->reallyold, o); 1009 checkpointer(&g->firstold1, o); 1010 } 1011 1012 1013 /* 1014 ** if object 'o' has a finalizer, remove it from 'allgc' list (must 1015 ** search the list to find it) and link it in 'finobj' list. 1016 */ 1017 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { 1018 global_State *g = G(L); 1019 if (tofinalize(o) || /* obj. is already marked... */ 1020 gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */ 1021 (g->gcstp & GCSTPCLS)) /* or closing state? */ 1022 return; /* nothing to be done */ 1023 else { /* move 'o' to 'finobj' list */ 1024 GCObject **p; 1025 if (issweepphase(g)) { 1026 makewhite(g, o); /* "sweep" object 'o' */ 1027 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ 1028 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ 1029 } 1030 else 1031 correctpointers(g, o); 1032 /* search for pointer pointing to 'o' */ 1033 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } 1034 *p = o->next; /* remove 'o' from 'allgc' list */ 1035 o->next = g->finobj; /* link it in 'finobj' list */ 1036 g->finobj = o; 1037 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ 1038 } 1039 } 1040 1041 /* }====================================================== */ 1042 1043 1044 /* 1045 ** {====================================================== 1046 ** Generational Collector 1047 ** ======================================================= 1048 */ 1049 1050 1051 /* 1052 ** Set the "time" to wait before starting a new GC cycle; cycle will 1053 ** start when memory use hits the threshold of ('estimate' * pause / 1054 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, 1055 ** because Lua cannot even start with less than PAUSEADJ bytes). 1056 */ 1057 static void setpause (global_State *g) { 1058 l_mem threshold, debt; 1059 int pause = getgcparam(g->gcpause); 1060 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ 1061 lua_assert(estimate > 0); 1062 threshold = (pause < MAX_LMEM / estimate) /* overflow? */ 1063 ? estimate * pause /* no overflow */ 1064 : MAX_LMEM; /* overflow; truncate to maximum */ 1065 debt = gettotalbytes(g) - threshold; 1066 if (debt > 0) debt = 0; 1067 luaE_setdebt(g, debt); 1068 } 1069 1070 1071 /* 1072 ** Sweep a list of objects to enter generational mode. Deletes dead 1073 ** objects and turns the non dead to old. All non-dead threads---which 1074 ** are now old---must be in a gray list. Everything else is not in a 1075 ** gray list. Open upvalues are also kept gray. 1076 */ 1077 static void sweep2old (lua_State *L, GCObject **p) { 1078 GCObject *curr; 1079 global_State *g = G(L); 1080 while ((curr = *p) != NULL) { 1081 if (iswhite(curr)) { /* is 'curr' dead? */ 1082 lua_assert(isdead(g, curr)); 1083 *p = curr->next; /* remove 'curr' from list */ 1084 freeobj(L, curr); /* erase 'curr' */ 1085 } 1086 else { /* all surviving objects become old */ 1087 setage(curr, G_OLD); 1088 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ 1089 lua_State *th = gco2th(curr); 1090 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 1091 } 1092 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) 1093 set2gray(curr); /* open upvalues are always gray */ 1094 else /* everything else is black */ 1095 nw2black(curr); 1096 p = &curr->next; /* go to next element */ 1097 } 1098 } 1099 } 1100 1101 1102 /* 1103 ** Sweep for generational mode. Delete dead objects. (Because the 1104 ** collection is not incremental, there are no "new white" objects 1105 ** during the sweep. So, any white object must be dead.) For 1106 ** non-dead objects, advance their ages and clear the color of 1107 ** new objects. (Old objects keep their colors.) 1108 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced 1109 ** here, because these old-generation objects are usually not swept 1110 ** here. They will all be advanced in 'correctgraylist'. That function 1111 ** will also remove objects turned white here from any gray list. 1112 */ 1113 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, 1114 GCObject *limit, GCObject **pfirstold1) { 1115 static const lu_byte nextage[] = { 1116 G_SURVIVAL, /* from G_NEW */ 1117 G_OLD1, /* from G_SURVIVAL */ 1118 G_OLD1, /* from G_OLD0 */ 1119 G_OLD, /* from G_OLD1 */ 1120 G_OLD, /* from G_OLD (do not change) */ 1121 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ 1122 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ 1123 }; 1124 int white = luaC_white(g); 1125 GCObject *curr; 1126 while ((curr = *p) != limit) { 1127 if (iswhite(curr)) { /* is 'curr' dead? */ 1128 lua_assert(!isold(curr) && isdead(g, curr)); 1129 *p = curr->next; /* remove 'curr' from list */ 1130 freeobj(L, curr); /* erase 'curr' */ 1131 } 1132 else { /* correct mark and age */ 1133 if (getage(curr) == G_NEW) { /* new objects go back to white */ 1134 int marked = curr->marked & ~maskgcbits; /* erase GC bits */ 1135 curr->marked = cast_byte(marked | G_SURVIVAL | white); 1136 } 1137 else { /* all other objects will be old, and so keep their color */ 1138 setage(curr, nextage[getage(curr)]); 1139 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) 1140 *pfirstold1 = curr; /* first OLD1 object in the list */ 1141 } 1142 p = &curr->next; /* go to next element */ 1143 } 1144 } 1145 return p; 1146 } 1147 1148 1149 /* 1150 ** Traverse a list making all its elements white and clearing their 1151 ** age. In incremental mode, all objects are 'new' all the time, 1152 ** except for fixed strings (which are always old). 1153 */ 1154 static void whitelist (global_State *g, GCObject *p) { 1155 int white = luaC_white(g); 1156 for (; p != NULL; p = p->next) 1157 p->marked = cast_byte((p->marked & ~maskgcbits) | white); 1158 } 1159 1160 1161 /* 1162 ** Correct a list of gray objects. Return pointer to where rest of the 1163 ** list should be linked. 1164 ** Because this correction is done after sweeping, young objects might 1165 ** be turned white and still be in the list. They are only removed. 1166 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; 1167 ** Non-white threads also remain on the list; 'TOUCHED2' objects become 1168 ** regular old; they and anything else are removed from the list. 1169 */ 1170 static GCObject **correctgraylist (GCObject **p) { 1171 GCObject *curr; 1172 while ((curr = *p) != NULL) { 1173 GCObject **next = getgclist(curr); 1174 if (iswhite(curr)) 1175 goto remove; /* remove all white objects */ 1176 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ 1177 lua_assert(isgray(curr)); 1178 nw2black(curr); /* make it black, for next barrier */ 1179 changeage(curr, G_TOUCHED1, G_TOUCHED2); 1180 goto remain; /* keep it in the list and go to next element */ 1181 } 1182 else if (curr->tt == LUA_VTHREAD) { 1183 lua_assert(isgray(curr)); 1184 goto remain; /* keep non-white threads on the list */ 1185 } 1186 else { /* everything else is removed */ 1187 lua_assert(isold(curr)); /* young objects should be white here */ 1188 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ 1189 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ 1190 nw2black(curr); /* make object black (to be removed) */ 1191 goto remove; 1192 } 1193 remove: *p = *next; continue; 1194 remain: p = next; continue; 1195 } 1196 return p; 1197 } 1198 1199 1200 /* 1201 ** Correct all gray lists, coalescing them into 'grayagain'. 1202 */ 1203 static void correctgraylists (global_State *g) { 1204 GCObject **list = correctgraylist(&g->grayagain); 1205 *list = g->weak; g->weak = NULL; 1206 list = correctgraylist(list); 1207 *list = g->allweak; g->allweak = NULL; 1208 list = correctgraylist(list); 1209 *list = g->ephemeron; g->ephemeron = NULL; 1210 correctgraylist(list); 1211 } 1212 1213 1214 /* 1215 ** Mark black 'OLD1' objects when starting a new young collection. 1216 ** Gray objects are already in some gray list, and so will be visited 1217 ** in the atomic step. 1218 */ 1219 static void markold (global_State *g, GCObject *from, GCObject *to) { 1220 GCObject *p; 1221 for (p = from; p != to; p = p->next) { 1222 if (getage(p) == G_OLD1) { 1223 lua_assert(!iswhite(p)); 1224 changeage(p, G_OLD1, G_OLD); /* now they are old */ 1225 if (isblack(p)) 1226 reallymarkobject(g, p); 1227 } 1228 } 1229 } 1230 1231 1232 /* 1233 ** Finish a young-generation collection. 1234 */ 1235 static void finishgencycle (lua_State *L, global_State *g) { 1236 correctgraylists(g); 1237 checkSizes(L, g); 1238 g->gcstate = GCSpropagate; /* skip restart */ 1239 if (!g->gcemergency) 1240 callallpendingfinalizers(L); 1241 } 1242 1243 1244 /* 1245 ** Does a young collection. First, mark 'OLD1' objects. Then does the 1246 ** atomic step. Then, sweep all lists and advance pointers. Finally, 1247 ** finish the collection. 1248 */ 1249 static void youngcollection (lua_State *L, global_State *g) { 1250 GCObject **psurvival; /* to point to first non-dead survival object */ 1251 GCObject *dummy; /* dummy out parameter to 'sweepgen' */ 1252 lua_assert(g->gcstate == GCSpropagate); 1253 if (g->firstold1) { /* are there regular OLD1 objects? */ 1254 markold(g, g->firstold1, g->reallyold); /* mark them */ 1255 g->firstold1 = NULL; /* no more OLD1 objects (for now) */ 1256 } 1257 markold(g, g->finobj, g->finobjrold); 1258 markold(g, g->tobefnz, NULL); 1259 atomic(L); 1260 1261 /* sweep nursery and get a pointer to its last live element */ 1262 g->gcstate = GCSswpallgc; 1263 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); 1264 /* sweep 'survival' */ 1265 sweepgen(L, g, psurvival, g->old1, &g->firstold1); 1266 g->reallyold = g->old1; 1267 g->old1 = *psurvival; /* 'survival' survivals are old now */ 1268 g->survival = g->allgc; /* all news are survivals */ 1269 1270 /* repeat for 'finobj' lists */ 1271 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ 1272 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); 1273 /* sweep 'survival' */ 1274 sweepgen(L, g, psurvival, g->finobjold1, &dummy); 1275 g->finobjrold = g->finobjold1; 1276 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ 1277 g->finobjsur = g->finobj; /* all news are survivals */ 1278 1279 sweepgen(L, g, &g->tobefnz, NULL, &dummy); 1280 finishgencycle(L, g); 1281 } 1282 1283 1284 /* 1285 ** Clears all gray lists, sweeps objects, and prepare sublists to enter 1286 ** generational mode. The sweeps remove dead objects and turn all 1287 ** surviving objects to old. Threads go back to 'grayagain'; everything 1288 ** else is turned black (not in any gray list). 1289 */ 1290 static void atomic2gen (lua_State *L, global_State *g) { 1291 cleargraylists(g); 1292 /* sweep all elements making them old */ 1293 g->gcstate = GCSswpallgc; 1294 sweep2old(L, &g->allgc); 1295 /* everything alive now is old */ 1296 g->reallyold = g->old1 = g->survival = g->allgc; 1297 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ 1298 1299 /* repeat for 'finobj' lists */ 1300 sweep2old(L, &g->finobj); 1301 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; 1302 1303 sweep2old(L, &g->tobefnz); 1304 1305 g->gckind = KGC_GEN; 1306 g->lastatomic = 0; 1307 g->GCestimate = gettotalbytes(g); /* base for memory control */ 1308 finishgencycle(L, g); 1309 } 1310 1311 1312 /* 1313 ** Set debt for the next minor collection, which will happen when 1314 ** memory grows 'genminormul'%. 1315 */ 1316 static void setminordebt (global_State *g) { 1317 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); 1318 } 1319 1320 1321 /* 1322 ** Enter generational mode. Must go until the end of an atomic cycle 1323 ** to ensure that all objects are correctly marked and weak tables 1324 ** are cleared. Then, turn all objects into old and finishes the 1325 ** collection. 1326 */ 1327 static lu_mem entergen (lua_State *L, global_State *g) { 1328 lu_mem numobjs; 1329 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ 1330 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1331 numobjs = atomic(L); /* propagates all and then do the atomic stuff */ 1332 atomic2gen(L, g); 1333 setminordebt(g); /* set debt assuming next cycle will be minor */ 1334 return numobjs; 1335 } 1336 1337 1338 /* 1339 ** Enter incremental mode. Turn all objects white, make all 1340 ** intermediate lists point to NULL (to avoid invalid pointers), 1341 ** and go to the pause state. 1342 */ 1343 static void enterinc (global_State *g) { 1344 whitelist(g, g->allgc); 1345 g->reallyold = g->old1 = g->survival = NULL; 1346 whitelist(g, g->finobj); 1347 whitelist(g, g->tobefnz); 1348 g->finobjrold = g->finobjold1 = g->finobjsur = NULL; 1349 g->gcstate = GCSpause; 1350 g->gckind = KGC_INC; 1351 g->lastatomic = 0; 1352 } 1353 1354 1355 /* 1356 ** Change collector mode to 'newmode'. 1357 */ 1358 void luaC_changemode (lua_State *L, int newmode) { 1359 global_State *g = G(L); 1360 if (newmode != g->gckind) { 1361 if (newmode == KGC_GEN) /* entering generational mode? */ 1362 entergen(L, g); 1363 else 1364 enterinc(g); /* entering incremental mode */ 1365 } 1366 g->lastatomic = 0; 1367 } 1368 1369 1370 /* 1371 ** Does a full collection in generational mode. 1372 */ 1373 static lu_mem fullgen (lua_State *L, global_State *g) { 1374 enterinc(g); 1375 return entergen(L, g); 1376 } 1377 1378 1379 /* 1380 ** Does a major collection after last collection was a "bad collection". 1381 ** 1382 ** When the program is building a big structure, it allocates lots of 1383 ** memory but generates very little garbage. In those scenarios, 1384 ** the generational mode just wastes time doing small collections, and 1385 ** major collections are frequently what we call a "bad collection", a 1386 ** collection that frees too few objects. To avoid the cost of switching 1387 ** between generational mode and the incremental mode needed for full 1388 ** (major) collections, the collector tries to stay in incremental mode 1389 ** after a bad collection, and to switch back to generational mode only 1390 ** after a "good" collection (one that traverses less than 9/8 objects 1391 ** of the previous one). 1392 ** The collector must choose whether to stay in incremental mode or to 1393 ** switch back to generational mode before sweeping. At this point, it 1394 ** does not know the real memory in use, so it cannot use memory to 1395 ** decide whether to return to generational mode. Instead, it uses the 1396 ** number of objects traversed (returned by 'atomic') as a proxy. The 1397 ** field 'g->lastatomic' keeps this count from the last collection. 1398 ** ('g->lastatomic != 0' also means that the last collection was bad.) 1399 */ 1400 static void stepgenfull (lua_State *L, global_State *g) { 1401 lu_mem newatomic; /* count of traversed objects */ 1402 lu_mem lastatomic = g->lastatomic; /* count from last collection */ 1403 if (g->gckind == KGC_GEN) /* still in generational mode? */ 1404 enterinc(g); /* enter incremental mode */ 1405 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1406 newatomic = atomic(L); /* mark everybody */ 1407 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ 1408 atomic2gen(L, g); /* return to generational mode */ 1409 setminordebt(g); 1410 } 1411 else { /* another bad collection; stay in incremental mode */ 1412 g->GCestimate = gettotalbytes(g); /* first estimate */; 1413 entersweep(L); 1414 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1415 setpause(g); 1416 g->lastatomic = newatomic; 1417 } 1418 } 1419 1420 1421 /* 1422 ** Does a generational "step". 1423 ** Usually, this means doing a minor collection and setting the debt to 1424 ** make another collection when memory grows 'genminormul'% larger. 1425 ** 1426 ** However, there are exceptions. If memory grows 'genmajormul'% 1427 ** larger than it was at the end of the last major collection (kept 1428 ** in 'g->GCestimate'), the function does a major collection. At the 1429 ** end, it checks whether the major collection was able to free a 1430 ** decent amount of memory (at least half the growth in memory since 1431 ** previous major collection). If so, the collector keeps its state, 1432 ** and the next collection will probably be minor again. Otherwise, 1433 ** we have what we call a "bad collection". In that case, set the field 1434 ** 'g->lastatomic' to signal that fact, so that the next collection will 1435 ** go to 'stepgenfull'. 1436 ** 1437 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; 1438 ** in that case, do a minor collection. 1439 */ 1440 static void genstep (lua_State *L, global_State *g) { 1441 if (g->lastatomic != 0) /* last collection was a bad one? */ 1442 stepgenfull(L, g); /* do a full step */ 1443 else { 1444 lu_mem majorbase = g->GCestimate; /* memory after last major collection */ 1445 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); 1446 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { 1447 lu_mem numobjs = fullgen(L, g); /* do a major collection */ 1448 if (gettotalbytes(g) < majorbase + (majorinc / 2)) { 1449 /* collected at least half of memory growth since last major 1450 collection; keep doing minor collections. */ 1451 lua_assert(g->lastatomic == 0); 1452 } 1453 else { /* bad collection */ 1454 g->lastatomic = numobjs; /* signal that last collection was bad */ 1455 setpause(g); /* do a long wait for next (major) collection */ 1456 } 1457 } 1458 else { /* regular case; do a minor collection */ 1459 youngcollection(L, g); 1460 setminordebt(g); 1461 g->GCestimate = majorbase; /* preserve base value */ 1462 } 1463 } 1464 lua_assert(isdecGCmodegen(g)); 1465 } 1466 1467 /* }====================================================== */ 1468 1469 1470 /* 1471 ** {====================================================== 1472 ** GC control 1473 ** ======================================================= 1474 */ 1475 1476 1477 /* 1478 ** Enter first sweep phase. 1479 ** The call to 'sweeptolive' makes the pointer point to an object 1480 ** inside the list (instead of to the header), so that the real sweep do 1481 ** not need to skip objects created between "now" and the start of the 1482 ** real sweep. 1483 */ 1484 static void entersweep (lua_State *L) { 1485 global_State *g = G(L); 1486 g->gcstate = GCSswpallgc; 1487 lua_assert(g->sweepgc == NULL); 1488 g->sweepgc = sweeptolive(L, &g->allgc); 1489 } 1490 1491 1492 /* 1493 ** Delete all objects in list 'p' until (but not including) object 1494 ** 'limit'. 1495 */ 1496 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { 1497 while (p != limit) { 1498 GCObject *next = p->next; 1499 freeobj(L, p); 1500 p = next; 1501 } 1502 } 1503 1504 1505 /* 1506 ** Call all finalizers of the objects in the given Lua state, and 1507 ** then free all objects, except for the main thread. 1508 */ 1509 void luaC_freeallobjects (lua_State *L) { 1510 global_State *g = G(L); 1511 g->gcstp = GCSTPCLS; /* no extra finalizers after here */ 1512 luaC_changemode(L, KGC_INC); 1513 separatetobefnz(g, 1); /* separate all objects with finalizers */ 1514 lua_assert(g->finobj == NULL); 1515 callallpendingfinalizers(L); 1516 deletelist(L, g->allgc, obj2gco(g->mainthread)); 1517 lua_assert(g->finobj == NULL); /* no new finalizers */ 1518 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ 1519 lua_assert(g->strt.nuse == 0); 1520 } 1521 1522 1523 static lu_mem atomic (lua_State *L) { 1524 global_State *g = G(L); 1525 lu_mem work = 0; 1526 GCObject *origweak, *origall; 1527 GCObject *grayagain = g->grayagain; /* save original list */ 1528 g->grayagain = NULL; 1529 lua_assert(g->ephemeron == NULL && g->weak == NULL); 1530 lua_assert(!iswhite(g->mainthread)); 1531 g->gcstate = GCSatomic; 1532 markobject(g, L); /* mark running thread */ 1533 /* registry and global metatables may be changed by API */ 1534 markvalue(g, &g->l_registry); 1535 markmt(g); /* mark global metatables */ 1536 work += propagateall(g); /* empties 'gray' list */ 1537 /* remark occasional upvalues of (maybe) dead threads */ 1538 work += remarkupvals(g); 1539 work += propagateall(g); /* propagate changes */ 1540 g->gray = grayagain; 1541 work += propagateall(g); /* traverse 'grayagain' list */ 1542 convergeephemerons(g); 1543 /* at this point, all strongly accessible objects are marked. */ 1544 /* Clear values from weak tables, before checking finalizers */ 1545 clearbyvalues(g, g->weak, NULL); 1546 clearbyvalues(g, g->allweak, NULL); 1547 origweak = g->weak; origall = g->allweak; 1548 separatetobefnz(g, 0); /* separate objects to be finalized */ 1549 work += markbeingfnz(g); /* mark objects that will be finalized */ 1550 work += propagateall(g); /* remark, to propagate 'resurrection' */ 1551 convergeephemerons(g); 1552 /* at this point, all resurrected objects are marked. */ 1553 /* remove dead objects from weak tables */ 1554 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ 1555 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ 1556 /* clear values from resurrected weak tables */ 1557 clearbyvalues(g, g->weak, origweak); 1558 clearbyvalues(g, g->allweak, origall); 1559 luaS_clearcache(g); 1560 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ 1561 lua_assert(g->gray == NULL); 1562 return work; /* estimate of slots marked by 'atomic' */ 1563 } 1564 1565 1566 static int sweepstep (lua_State *L, global_State *g, 1567 int nextstate, GCObject **nextlist) { 1568 if (g->sweepgc) { 1569 l_mem olddebt = g->GCdebt; 1570 int count; 1571 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); 1572 g->GCestimate += g->GCdebt - olddebt; /* update estimate */ 1573 return count; 1574 } 1575 else { /* enter next state */ 1576 g->gcstate = nextstate; 1577 g->sweepgc = nextlist; 1578 return 0; /* no work done */ 1579 } 1580 } 1581 1582 1583 static lu_mem singlestep (lua_State *L) { 1584 global_State *g = G(L); 1585 lu_mem work; 1586 lua_assert(!g->gcstopem); /* collector is not reentrant */ 1587 g->gcstopem = 1; /* no emergency collections while collecting */ 1588 switch (g->gcstate) { 1589 case GCSpause: { 1590 restartcollection(g); 1591 g->gcstate = GCSpropagate; 1592 work = 1; 1593 break; 1594 } 1595 case GCSpropagate: { 1596 if (g->gray == NULL) { /* no more gray objects? */ 1597 g->gcstate = GCSenteratomic; /* finish propagate phase */ 1598 work = 0; 1599 } 1600 else 1601 work = propagatemark(g); /* traverse one gray object */ 1602 break; 1603 } 1604 case GCSenteratomic: { 1605 work = atomic(L); /* work is what was traversed by 'atomic' */ 1606 entersweep(L); 1607 g->GCestimate = gettotalbytes(g); /* first estimate */; 1608 break; 1609 } 1610 case GCSswpallgc: { /* sweep "regular" objects */ 1611 work = sweepstep(L, g, GCSswpfinobj, &g->finobj); 1612 break; 1613 } 1614 case GCSswpfinobj: { /* sweep objects with finalizers */ 1615 work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); 1616 break; 1617 } 1618 case GCSswptobefnz: { /* sweep objects to be finalized */ 1619 work = sweepstep(L, g, GCSswpend, NULL); 1620 break; 1621 } 1622 case GCSswpend: { /* finish sweeps */ 1623 checkSizes(L, g); 1624 g->gcstate = GCScallfin; 1625 work = 0; 1626 break; 1627 } 1628 case GCScallfin: { /* call remaining finalizers */ 1629 if (g->tobefnz && !g->gcemergency) { 1630 g->gcstopem = 0; /* ok collections during finalizers */ 1631 work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; 1632 } 1633 else { /* emergency mode or no more finalizers */ 1634 g->gcstate = GCSpause; /* finish collection */ 1635 work = 0; 1636 } 1637 break; 1638 } 1639 default: lua_assert(0); return 0; 1640 } 1641 g->gcstopem = 0; 1642 return work; 1643 } 1644 1645 1646 /* 1647 ** advances the garbage collector until it reaches a state allowed 1648 ** by 'statemask' 1649 */ 1650 void luaC_runtilstate (lua_State *L, int statesmask) { 1651 global_State *g = G(L); 1652 while (!testbit(statesmask, g->gcstate)) 1653 singlestep(L); 1654 } 1655 1656 1657 1658 /* 1659 ** Performs a basic incremental step. The debt and step size are 1660 ** converted from bytes to "units of work"; then the function loops 1661 ** running single steps until adding that many units of work or 1662 ** finishing a cycle (pause state). Finally, it sets the debt that 1663 ** controls when next step will be performed. 1664 */ 1665 static void incstep (lua_State *L, global_State *g) { 1666 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ 1667 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; 1668 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) 1669 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul 1670 : MAX_LMEM; /* overflow; keep maximum value */ 1671 do { /* repeat until pause or enough "credit" (negative debt) */ 1672 lu_mem work = singlestep(L); /* perform one single step */ 1673 debt -= work; 1674 } while (debt > -stepsize && g->gcstate != GCSpause); 1675 if (g->gcstate == GCSpause) 1676 setpause(g); /* pause until next cycle */ 1677 else { 1678 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ 1679 luaE_setdebt(g, debt); 1680 } 1681 } 1682 1683 /* 1684 ** Performs a basic GC step if collector is running. (If collector is 1685 ** not running, set a reasonable debt to avoid it being called at 1686 ** every single check.) 1687 */ 1688 void luaC_step (lua_State *L) { 1689 global_State *g = G(L); 1690 if (!gcrunning(g)) /* not running? */ 1691 luaE_setdebt(g, -2000); 1692 else { 1693 if(isdecGCmodegen(g)) 1694 genstep(L, g); 1695 else 1696 incstep(L, g); 1697 } 1698 } 1699 1700 1701 /* 1702 ** Perform a full collection in incremental mode. 1703 ** Before running the collection, check 'keepinvariant'; if it is true, 1704 ** there may be some objects marked as black, so the collector has 1705 ** to sweep all objects to turn them back to white (as white has not 1706 ** changed, nothing will be collected). 1707 */ 1708 static void fullinc (lua_State *L, global_State *g) { 1709 if (keepinvariant(g)) /* black objects? */ 1710 entersweep(L); /* sweep everything to turn them back to white */ 1711 /* finish any pending sweep phase to start a new cycle */ 1712 luaC_runtilstate(L, bitmask(GCSpause)); 1713 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ 1714 /* estimate must be correct after a full GC cycle */ 1715 lua_assert(g->GCestimate == gettotalbytes(g)); 1716 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1717 setpause(g); 1718 } 1719 1720 1721 /* 1722 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid 1723 ** some operations which could change the interpreter state in some 1724 ** unexpected ways (running finalizers and shrinking some structures). 1725 */ 1726 void luaC_fullgc (lua_State *L, int isemergency) { 1727 global_State *g = G(L); 1728 lua_assert(!g->gcemergency); 1729 g->gcemergency = isemergency; /* set flag */ 1730 if (g->gckind == KGC_INC) 1731 fullinc(L, g); 1732 else 1733 fullgen(L, g); 1734 g->gcemergency = 0; 1735 } 1736 1737 /* }====================================================== */ 1738 1739 1740