1 /* 2 * kmp_barrier.cpp 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp_wait_release.h" 14 #include "kmp_barrier.h" 15 #include "kmp_itt.h" 16 #include "kmp_os.h" 17 #include "kmp_stats.h" 18 #include "ompt-specific.h" 19 // for distributed barrier 20 #include "kmp_affinity.h" 21 22 #if KMP_MIC 23 #include <immintrin.h> 24 #define USE_NGO_STORES 1 25 #endif // KMP_MIC 26 27 #if KMP_MIC && USE_NGO_STORES 28 // ICV copying 29 #define ngo_load(src) __m512d Vt = _mm512_load_pd((void *)(src)) 30 #define ngo_store_icvs(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt) 31 #define ngo_store_go(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt) 32 #define ngo_sync() __asm__ volatile("lock; addl $0,0(%%rsp)" ::: "memory") 33 #else 34 #define ngo_load(src) ((void)0) 35 #define ngo_store_icvs(dst, src) copy_icvs((dst), (src)) 36 #define ngo_store_go(dst, src) KMP_MEMCPY((dst), (src), CACHE_LINE) 37 #define ngo_sync() ((void)0) 38 #endif /* KMP_MIC && USE_NGO_STORES */ 39 40 void __kmp_print_structure(void); // Forward declaration 41 42 // ---------------------------- Barrier Algorithms ---------------------------- 43 // Distributed barrier 44 45 // Compute how many threads to have polling each cache-line. 46 // We want to limit the number of writes to IDEAL_GO_RESOLUTION. 47 void distributedBarrier::computeVarsForN(size_t n) { 48 int nsockets = 1; 49 if (__kmp_topology) { 50 int socket_level = __kmp_topology->get_level(KMP_HW_SOCKET); 51 int core_level = __kmp_topology->get_level(KMP_HW_CORE); 52 int ncores_per_socket = 53 __kmp_topology->calculate_ratio(core_level, socket_level); 54 nsockets = __kmp_topology->get_count(socket_level); 55 56 if (nsockets <= 0) 57 nsockets = 1; 58 if (ncores_per_socket <= 0) 59 ncores_per_socket = 1; 60 61 threads_per_go = ncores_per_socket >> 1; 62 if (!fix_threads_per_go) { 63 // Minimize num_gos 64 if (threads_per_go > 4) { 65 if (KMP_OPTIMIZE_FOR_REDUCTIONS) { 66 threads_per_go = threads_per_go >> 1; 67 } 68 if (threads_per_go > 4 && nsockets == 1) 69 threads_per_go = threads_per_go >> 1; 70 } 71 } 72 if (threads_per_go == 0) 73 threads_per_go = 1; 74 fix_threads_per_go = true; 75 num_gos = n / threads_per_go; 76 if (n % threads_per_go) 77 num_gos++; 78 if (nsockets == 1 || num_gos == 1) 79 num_groups = 1; 80 else { 81 num_groups = num_gos / nsockets; 82 if (num_gos % nsockets) 83 num_groups++; 84 } 85 if (num_groups <= 0) 86 num_groups = 1; 87 gos_per_group = num_gos / num_groups; 88 if (num_gos % num_groups) 89 gos_per_group++; 90 threads_per_group = threads_per_go * gos_per_group; 91 } else { 92 num_gos = n / threads_per_go; 93 if (n % threads_per_go) 94 num_gos++; 95 if (num_gos == 1) 96 num_groups = 1; 97 else { 98 num_groups = num_gos / 2; 99 if (num_gos % 2) 100 num_groups++; 101 } 102 gos_per_group = num_gos / num_groups; 103 if (num_gos % num_groups) 104 gos_per_group++; 105 threads_per_group = threads_per_go * gos_per_group; 106 } 107 } 108 109 void distributedBarrier::computeGo(size_t n) { 110 // Minimize num_gos 111 for (num_gos = 1;; num_gos++) 112 if (IDEAL_CONTENTION * num_gos >= n) 113 break; 114 threads_per_go = n / num_gos; 115 if (n % num_gos) 116 threads_per_go++; 117 while (num_gos > MAX_GOS) { 118 threads_per_go++; 119 num_gos = n / threads_per_go; 120 if (n % threads_per_go) 121 num_gos++; 122 } 123 computeVarsForN(n); 124 } 125 126 // This function is to resize the barrier arrays when the new number of threads 127 // exceeds max_threads, which is the current size of all the arrays 128 void distributedBarrier::resize(size_t nthr) { 129 KMP_DEBUG_ASSERT(nthr > max_threads); 130 131 // expand to requested size * 2 132 max_threads = nthr * 2; 133 134 // allocate arrays to new max threads 135 for (int i = 0; i < MAX_ITERS; ++i) { 136 if (flags[i]) 137 flags[i] = (flags_s *)KMP_INTERNAL_REALLOC(flags[i], 138 max_threads * sizeof(flags_s)); 139 else 140 flags[i] = (flags_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(flags_s)); 141 } 142 143 if (go) 144 go = (go_s *)KMP_INTERNAL_REALLOC(go, max_threads * sizeof(go_s)); 145 else 146 go = (go_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(go_s)); 147 148 if (iter) 149 iter = (iter_s *)KMP_INTERNAL_REALLOC(iter, max_threads * sizeof(iter_s)); 150 else 151 iter = (iter_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(iter_s)); 152 153 if (sleep) 154 sleep = 155 (sleep_s *)KMP_INTERNAL_REALLOC(sleep, max_threads * sizeof(sleep_s)); 156 else 157 sleep = (sleep_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(sleep_s)); 158 } 159 160 // This function is to set all the go flags that threads might be waiting 161 // on, and when blocktime is not infinite, it should be followed by a wake-up 162 // call to each thread 163 kmp_uint64 distributedBarrier::go_release() { 164 kmp_uint64 next_go = iter[0].iter + distributedBarrier::MAX_ITERS; 165 for (size_t j = 0; j < num_gos; j++) { 166 go[j].go.store(next_go); 167 } 168 return next_go; 169 } 170 171 void distributedBarrier::go_reset() { 172 for (size_t j = 0; j < max_threads; ++j) { 173 for (size_t i = 0; i < distributedBarrier::MAX_ITERS; ++i) { 174 flags[i][j].stillNeed = 1; 175 } 176 go[j].go.store(0); 177 iter[j].iter = 0; 178 } 179 } 180 181 // This function inits/re-inits the distributed barrier for a particular number 182 // of threads. If a resize of arrays is needed, it calls the resize function. 183 void distributedBarrier::init(size_t nthr) { 184 size_t old_max = max_threads; 185 if (nthr > max_threads) { // need more space in arrays 186 resize(nthr); 187 } 188 189 for (size_t i = 0; i < max_threads; i++) { 190 for (size_t j = 0; j < distributedBarrier::MAX_ITERS; j++) { 191 flags[j][i].stillNeed = 1; 192 } 193 go[i].go.store(0); 194 iter[i].iter = 0; 195 if (i >= old_max) 196 sleep[i].sleep = false; 197 } 198 199 // Recalculate num_gos, etc. based on new nthr 200 computeVarsForN(nthr); 201 202 num_threads = nthr; 203 204 if (team_icvs == NULL) 205 team_icvs = __kmp_allocate(sizeof(kmp_internal_control_t)); 206 } 207 208 // This function is used only when KMP_BLOCKTIME is not infinite. 209 // static 210 void __kmp_dist_barrier_wakeup(enum barrier_type bt, kmp_team_t *team, 211 size_t start, size_t stop, size_t inc, 212 size_t tid) { 213 KMP_DEBUG_ASSERT(__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME); 214 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 215 return; 216 217 kmp_info_t **other_threads = team->t.t_threads; 218 for (size_t thr = start; thr < stop; thr += inc) { 219 KMP_DEBUG_ASSERT(other_threads[thr]); 220 int gtid = other_threads[thr]->th.th_info.ds.ds_gtid; 221 // Wake up worker regardless of if it appears to be sleeping or not 222 __kmp_atomic_resume_64(gtid, (kmp_atomic_flag_64<> *)NULL); 223 } 224 } 225 226 static void __kmp_dist_barrier_gather( 227 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 228 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 229 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_gather); 230 kmp_team_t *team; 231 distributedBarrier *b; 232 kmp_info_t **other_threads; 233 kmp_uint64 my_current_iter, my_next_iter; 234 kmp_uint32 nproc; 235 bool group_leader; 236 237 team = this_thr->th.th_team; 238 nproc = this_thr->th.th_team_nproc; 239 other_threads = team->t.t_threads; 240 b = team->t.b; 241 my_current_iter = b->iter[tid].iter; 242 my_next_iter = (my_current_iter + 1) % distributedBarrier::MAX_ITERS; 243 group_leader = ((tid % b->threads_per_group) == 0); 244 245 KA_TRACE(20, 246 ("__kmp_dist_barrier_gather: T#%d(%d:%d) enter; barrier type %d\n", 247 gtid, team->t.t_id, tid, bt)); 248 249 #if USE_ITT_BUILD && USE_ITT_NOTIFY 250 // Barrier imbalance - save arrive time to the thread 251 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { 252 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = 253 __itt_get_timestamp(); 254 } 255 #endif 256 257 if (group_leader) { 258 // Start from the thread after the group leader 259 size_t group_start = tid + 1; 260 size_t group_end = tid + b->threads_per_group; 261 size_t threads_pending = 0; 262 263 if (group_end > nproc) 264 group_end = nproc; 265 do { // wait for threads in my group 266 threads_pending = 0; 267 // Check all the flags every time to avoid branch misspredict 268 for (size_t thr = group_start; thr < group_end; thr++) { 269 // Each thread uses a different cache line 270 threads_pending += b->flags[my_current_iter][thr].stillNeed; 271 } 272 // Execute tasks here 273 if (__kmp_tasking_mode != tskm_immediate_exec) { 274 kmp_task_team_t *task_team = this_thr->th.th_task_team; 275 if (task_team != NULL) { 276 if (TCR_SYNC_4(task_team->tt.tt_active)) { 277 if (KMP_TASKING_ENABLED(task_team)) { 278 int tasks_completed = FALSE; 279 __kmp_atomic_execute_tasks_64( 280 this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE, 281 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); 282 } else 283 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 284 } 285 } else { 286 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 287 } // if 288 } 289 if (TCR_4(__kmp_global.g.g_done)) { 290 if (__kmp_global.g.g_abort) 291 __kmp_abort_thread(); 292 break; 293 } else if (__kmp_tasking_mode != tskm_immediate_exec && 294 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { 295 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 296 } 297 } while (threads_pending > 0); 298 299 if (reduce) { // Perform reduction if needed 300 OMPT_REDUCTION_DECL(this_thr, gtid); 301 OMPT_REDUCTION_BEGIN; 302 // Group leader reduces all threads in group 303 for (size_t thr = group_start; thr < group_end; thr++) { 304 (*reduce)(this_thr->th.th_local.reduce_data, 305 other_threads[thr]->th.th_local.reduce_data); 306 } 307 OMPT_REDUCTION_END; 308 } 309 310 // Set flag for next iteration 311 b->flags[my_next_iter][tid].stillNeed = 1; 312 // Each thread uses a different cache line; resets stillNeed to 0 to 313 // indicate it has reached the barrier 314 b->flags[my_current_iter][tid].stillNeed = 0; 315 316 do { // wait for all group leaders 317 threads_pending = 0; 318 for (size_t thr = 0; thr < nproc; thr += b->threads_per_group) { 319 threads_pending += b->flags[my_current_iter][thr].stillNeed; 320 } 321 // Execute tasks here 322 if (__kmp_tasking_mode != tskm_immediate_exec) { 323 kmp_task_team_t *task_team = this_thr->th.th_task_team; 324 if (task_team != NULL) { 325 if (TCR_SYNC_4(task_team->tt.tt_active)) { 326 if (KMP_TASKING_ENABLED(task_team)) { 327 int tasks_completed = FALSE; 328 __kmp_atomic_execute_tasks_64( 329 this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE, 330 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); 331 } else 332 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 333 } 334 } else { 335 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 336 } // if 337 } 338 if (TCR_4(__kmp_global.g.g_done)) { 339 if (__kmp_global.g.g_abort) 340 __kmp_abort_thread(); 341 break; 342 } else if (__kmp_tasking_mode != tskm_immediate_exec && 343 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { 344 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 345 } 346 } while (threads_pending > 0); 347 348 if (reduce) { // Perform reduction if needed 349 if (KMP_MASTER_TID(tid)) { // Master reduces over group leaders 350 OMPT_REDUCTION_DECL(this_thr, gtid); 351 OMPT_REDUCTION_BEGIN; 352 for (size_t thr = b->threads_per_group; thr < nproc; 353 thr += b->threads_per_group) { 354 (*reduce)(this_thr->th.th_local.reduce_data, 355 other_threads[thr]->th.th_local.reduce_data); 356 } 357 OMPT_REDUCTION_END; 358 } 359 } 360 } else { 361 // Set flag for next iteration 362 b->flags[my_next_iter][tid].stillNeed = 1; 363 // Each thread uses a different cache line; resets stillNeed to 0 to 364 // indicate it has reached the barrier 365 b->flags[my_current_iter][tid].stillNeed = 0; 366 } 367 368 KMP_MFENCE(); 369 370 KA_TRACE(20, 371 ("__kmp_dist_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", 372 gtid, team->t.t_id, tid, bt)); 373 } 374 375 static void __kmp_dist_barrier_release( 376 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 377 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 378 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_release); 379 kmp_team_t *team; 380 distributedBarrier *b; 381 kmp_bstate_t *thr_bar; 382 kmp_uint64 my_current_iter, next_go; 383 size_t my_go_index; 384 bool group_leader; 385 386 KA_TRACE(20, ("__kmp_dist_barrier_release: T#%d(%d) enter; barrier type %d\n", 387 gtid, tid, bt)); 388 389 thr_bar = &this_thr->th.th_bar[bt].bb; 390 391 if (!KMP_MASTER_TID(tid)) { 392 // workers and non-master group leaders need to check their presence in team 393 do { 394 if (this_thr->th.th_used_in_team.load() != 1 && 395 this_thr->th.th_used_in_team.load() != 3) { 396 // Thread is not in use in a team. Wait on location in tid's thread 397 // struct. The 0 value tells anyone looking that this thread is spinning 398 // or sleeping until this location becomes 3 again; 3 is the transition 399 // state to get to 1 which is waiting on go and being in the team 400 kmp_flag_32<false, false> my_flag(&(this_thr->th.th_used_in_team), 3); 401 if (KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 2, 402 0) || 403 this_thr->th.th_used_in_team.load() == 0) { 404 my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj)); 405 } 406 #if USE_ITT_BUILD && USE_ITT_NOTIFY 407 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { 408 // In fork barrier where we could not get the object reliably 409 itt_sync_obj = 410 __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); 411 // Cancel wait on previous parallel region... 412 __kmp_itt_task_starting(itt_sync_obj); 413 414 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 415 return; 416 417 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 418 if (itt_sync_obj != NULL) 419 // Call prepare as early as possible for "new" barrier 420 __kmp_itt_task_finished(itt_sync_obj); 421 } else 422 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 423 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 424 return; 425 } 426 if (this_thr->th.th_used_in_team.load() != 1 && 427 this_thr->th.th_used_in_team.load() != 3) // spurious wake-up? 428 continue; 429 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 430 return; 431 432 // At this point, the thread thinks it is in use in a team, or in 433 // transition to be used in a team, but it might have reached this barrier 434 // before it was marked unused by the team. Unused threads are awoken and 435 // shifted to wait on local thread struct elsewhere. It also might reach 436 // this point by being picked up for use by a different team. Either way, 437 // we need to update the tid. 438 tid = __kmp_tid_from_gtid(gtid); 439 team = this_thr->th.th_team; 440 KMP_DEBUG_ASSERT(tid >= 0); 441 KMP_DEBUG_ASSERT(team); 442 b = team->t.b; 443 my_current_iter = b->iter[tid].iter; 444 next_go = my_current_iter + distributedBarrier::MAX_ITERS; 445 my_go_index = tid / b->threads_per_go; 446 if (this_thr->th.th_used_in_team.load() == 3) { 447 KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 3, 1); 448 } 449 // Check if go flag is set 450 if (b->go[my_go_index].go.load() != next_go) { 451 // Wait on go flag on team 452 kmp_atomic_flag_64<false, true> my_flag( 453 &(b->go[my_go_index].go), next_go, &(b->sleep[tid].sleep)); 454 my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj)); 455 KMP_DEBUG_ASSERT(my_current_iter == b->iter[tid].iter || 456 b->iter[tid].iter == 0); 457 KMP_DEBUG_ASSERT(b->sleep[tid].sleep == false); 458 } 459 460 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 461 return; 462 // At this point, the thread's go location was set. This means the primary 463 // thread is safely in the barrier, and so this thread's data is 464 // up-to-date, but we should check again that this thread is really in 465 // use in the team, as it could have been woken up for the purpose of 466 // changing team size, or reaping threads at shutdown. 467 if (this_thr->th.th_used_in_team.load() == 1) 468 break; 469 } while (1); 470 471 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 472 return; 473 474 group_leader = ((tid % b->threads_per_group) == 0); 475 if (group_leader) { 476 // Tell all the threads in my group they can go! 477 for (size_t go_idx = my_go_index + 1; 478 go_idx < my_go_index + b->gos_per_group; go_idx++) { 479 b->go[go_idx].go.store(next_go); 480 } 481 // Fence added so that workers can see changes to go. sfence inadequate. 482 KMP_MFENCE(); 483 } 484 485 #if KMP_BARRIER_ICV_PUSH 486 if (propagate_icvs) { // copy ICVs to final dest 487 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, 488 tid, FALSE); 489 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 490 (kmp_internal_control_t *)team->t.b->team_icvs); 491 copy_icvs(&thr_bar->th_fixed_icvs, 492 &team->t.t_implicit_task_taskdata[tid].td_icvs); 493 } 494 #endif 495 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && group_leader) { 496 // This thread is now awake and participating in the barrier; 497 // wake up the other threads in the group 498 size_t nproc = this_thr->th.th_team_nproc; 499 size_t group_end = tid + b->threads_per_group; 500 if (nproc < group_end) 501 group_end = nproc; 502 __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid); 503 } 504 } else { // Primary thread 505 team = this_thr->th.th_team; 506 b = team->t.b; 507 my_current_iter = b->iter[tid].iter; 508 next_go = my_current_iter + distributedBarrier::MAX_ITERS; 509 #if KMP_BARRIER_ICV_PUSH 510 if (propagate_icvs) { 511 // primary thread has ICVs in final destination; copy 512 copy_icvs(&thr_bar->th_fixed_icvs, 513 &team->t.t_implicit_task_taskdata[tid].td_icvs); 514 } 515 #endif 516 // Tell all the group leaders they can go! 517 for (size_t go_idx = 0; go_idx < b->num_gos; go_idx += b->gos_per_group) { 518 b->go[go_idx].go.store(next_go); 519 } 520 521 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 522 // Wake-up the group leaders 523 size_t nproc = this_thr->th.th_team_nproc; 524 __kmp_dist_barrier_wakeup(bt, team, tid + b->threads_per_group, nproc, 525 b->threads_per_group, tid); 526 } 527 528 // Tell all the threads in my group they can go! 529 for (size_t go_idx = 1; go_idx < b->gos_per_group; go_idx++) { 530 b->go[go_idx].go.store(next_go); 531 } 532 533 // Fence added so that workers can see changes to go. sfence inadequate. 534 KMP_MFENCE(); 535 536 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 537 // Wake-up the other threads in my group 538 size_t nproc = this_thr->th.th_team_nproc; 539 size_t group_end = tid + b->threads_per_group; 540 if (nproc < group_end) 541 group_end = nproc; 542 __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid); 543 } 544 } 545 // Update to next iteration 546 KMP_ASSERT(my_current_iter == b->iter[tid].iter); 547 b->iter[tid].iter = (b->iter[tid].iter + 1) % distributedBarrier::MAX_ITERS; 548 549 KA_TRACE( 550 20, ("__kmp_dist_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", 551 gtid, team->t.t_id, tid, bt)); 552 } 553 554 // Linear Barrier 555 template <bool cancellable = false> 556 static bool __kmp_linear_barrier_gather_template( 557 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 558 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 559 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_gather); 560 kmp_team_t *team = this_thr->th.th_team; 561 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 562 kmp_info_t **other_threads = team->t.t_threads; 563 564 KA_TRACE( 565 20, 566 ("__kmp_linear_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", 567 gtid, team->t.t_id, tid, bt)); 568 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); 569 570 #if USE_ITT_BUILD && USE_ITT_NOTIFY 571 // Barrier imbalance - save arrive time to the thread 572 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { 573 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = 574 __itt_get_timestamp(); 575 } 576 #endif 577 // We now perform a linear reduction to signal that all of the threads have 578 // arrived. 579 if (!KMP_MASTER_TID(tid)) { 580 KA_TRACE(20, 581 ("__kmp_linear_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d)" 582 "arrived(%p): %llu => %llu\n", 583 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(0, team), 584 team->t.t_id, 0, &thr_bar->b_arrived, thr_bar->b_arrived, 585 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); 586 // Mark arrival to primary thread 587 /* After performing this write, a worker thread may not assume that the team 588 is valid any more - it could be deallocated by the primary thread at any 589 time. */ 590 kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[0]); 591 flag.release(); 592 } else { 593 kmp_balign_team_t *team_bar = &team->t.t_bar[bt]; 594 int nproc = this_thr->th.th_team_nproc; 595 int i; 596 // Don't have to worry about sleep bit here or atomic since team setting 597 kmp_uint64 new_state = team_bar->b_arrived + KMP_BARRIER_STATE_BUMP; 598 599 // Collect all the worker team member threads. 600 for (i = 1; i < nproc; ++i) { 601 #if KMP_CACHE_MANAGE 602 // Prefetch next thread's arrived count 603 if (i + 1 < nproc) 604 KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_arrived); 605 #endif /* KMP_CACHE_MANAGE */ 606 KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%d) " 607 "arrived(%p) == %llu\n", 608 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team), 609 team->t.t_id, i, 610 &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state)); 611 612 // Wait for worker thread to arrive 613 if (cancellable) { 614 kmp_flag_64<true, false> flag( 615 &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state); 616 if (flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj))) 617 return true; 618 } else { 619 kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_arrived, 620 new_state); 621 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 622 } 623 #if USE_ITT_BUILD && USE_ITT_NOTIFY 624 // Barrier imbalance - write min of the thread time and the other thread 625 // time to the thread. 626 if (__kmp_forkjoin_frames_mode == 2) { 627 this_thr->th.th_bar_min_time = KMP_MIN( 628 this_thr->th.th_bar_min_time, other_threads[i]->th.th_bar_min_time); 629 } 630 #endif 631 if (reduce) { 632 KA_TRACE(100, 633 ("__kmp_linear_barrier_gather: T#%d(%d:%d) += T#%d(%d:%d)\n", 634 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team), 635 team->t.t_id, i)); 636 OMPT_REDUCTION_DECL(this_thr, gtid); 637 OMPT_REDUCTION_BEGIN; 638 (*reduce)(this_thr->th.th_local.reduce_data, 639 other_threads[i]->th.th_local.reduce_data); 640 OMPT_REDUCTION_END; 641 } 642 } 643 // Don't have to worry about sleep bit here or atomic since team setting 644 team_bar->b_arrived = new_state; 645 KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) set team %d " 646 "arrived(%p) = %llu\n", 647 gtid, team->t.t_id, tid, team->t.t_id, &team_bar->b_arrived, 648 new_state)); 649 } 650 KA_TRACE( 651 20, 652 ("__kmp_linear_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", 653 gtid, team->t.t_id, tid, bt)); 654 return false; 655 } 656 657 template <bool cancellable = false> 658 static bool __kmp_linear_barrier_release_template( 659 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 660 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 661 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_release); 662 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 663 kmp_team_t *team; 664 665 if (KMP_MASTER_TID(tid)) { 666 unsigned int i; 667 kmp_uint32 nproc = this_thr->th.th_team_nproc; 668 kmp_info_t **other_threads; 669 670 team = __kmp_threads[gtid]->th.th_team; 671 KMP_DEBUG_ASSERT(team != NULL); 672 other_threads = team->t.t_threads; 673 674 KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d(%d:%d) primary enter for " 675 "barrier type %d\n", 676 gtid, team->t.t_id, tid, bt)); 677 678 if (nproc > 1) { 679 #if KMP_BARRIER_ICV_PUSH 680 { 681 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); 682 if (propagate_icvs) { 683 ngo_load(&team->t.t_implicit_task_taskdata[0].td_icvs); 684 for (i = 1; i < nproc; ++i) { 685 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[i], 686 team, i, FALSE); 687 ngo_store_icvs(&team->t.t_implicit_task_taskdata[i].td_icvs, 688 &team->t.t_implicit_task_taskdata[0].td_icvs); 689 } 690 ngo_sync(); 691 } 692 } 693 #endif // KMP_BARRIER_ICV_PUSH 694 695 // Now, release all of the worker threads 696 for (i = 1; i < nproc; ++i) { 697 #if KMP_CACHE_MANAGE 698 // Prefetch next thread's go flag 699 if (i + 1 < nproc) 700 KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_go); 701 #endif /* KMP_CACHE_MANAGE */ 702 KA_TRACE( 703 20, 704 ("__kmp_linear_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%d) " 705 "go(%p): %u => %u\n", 706 gtid, team->t.t_id, tid, other_threads[i]->th.th_info.ds.ds_gtid, 707 team->t.t_id, i, &other_threads[i]->th.th_bar[bt].bb.b_go, 708 other_threads[i]->th.th_bar[bt].bb.b_go, 709 other_threads[i]->th.th_bar[bt].bb.b_go + KMP_BARRIER_STATE_BUMP)); 710 kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_go, 711 other_threads[i]); 712 flag.release(); 713 } 714 } 715 } else { // Wait for the PRIMARY thread to release us 716 KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d wait go(%p) == %u\n", 717 gtid, &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); 718 if (cancellable) { 719 kmp_flag_64<true, false> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); 720 if (flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj))) 721 return true; 722 } else { 723 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); 724 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 725 } 726 #if USE_ITT_BUILD && USE_ITT_NOTIFY 727 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { 728 // In a fork barrier; cannot get the object reliably (or ITTNOTIFY is 729 // disabled) 730 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); 731 // Cancel wait on previous parallel region... 732 __kmp_itt_task_starting(itt_sync_obj); 733 734 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 735 return false; 736 737 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 738 if (itt_sync_obj != NULL) 739 // Call prepare as early as possible for "new" barrier 740 __kmp_itt_task_finished(itt_sync_obj); 741 } else 742 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 743 // Early exit for reaping threads releasing forkjoin barrier 744 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 745 return false; 746 // The worker thread may now assume that the team is valid. 747 #ifdef KMP_DEBUG 748 tid = __kmp_tid_from_gtid(gtid); 749 team = __kmp_threads[gtid]->th.th_team; 750 #endif 751 KMP_DEBUG_ASSERT(team != NULL); 752 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); 753 KA_TRACE(20, 754 ("__kmp_linear_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", 755 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); 756 KMP_MB(); // Flush all pending memory write invalidates. 757 } 758 KA_TRACE( 759 20, 760 ("__kmp_linear_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", 761 gtid, team->t.t_id, tid, bt)); 762 return false; 763 } 764 765 static void __kmp_linear_barrier_gather( 766 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 767 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 768 __kmp_linear_barrier_gather_template<false>( 769 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 770 } 771 772 static bool __kmp_linear_barrier_gather_cancellable( 773 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 774 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 775 return __kmp_linear_barrier_gather_template<true>( 776 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 777 } 778 779 static void __kmp_linear_barrier_release( 780 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 781 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 782 __kmp_linear_barrier_release_template<false>( 783 bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj)); 784 } 785 786 static bool __kmp_linear_barrier_release_cancellable( 787 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 788 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 789 return __kmp_linear_barrier_release_template<true>( 790 bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj)); 791 } 792 793 // Tree barrier 794 static void __kmp_tree_barrier_gather( 795 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 796 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 797 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_gather); 798 kmp_team_t *team = this_thr->th.th_team; 799 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 800 kmp_info_t **other_threads = team->t.t_threads; 801 kmp_uint32 nproc = this_thr->th.th_team_nproc; 802 kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt]; 803 kmp_uint32 branch_factor = 1 << branch_bits; 804 kmp_uint32 child; 805 kmp_uint32 child_tid; 806 kmp_uint64 new_state = 0; 807 808 KA_TRACE( 809 20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", 810 gtid, team->t.t_id, tid, bt)); 811 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); 812 813 #if USE_ITT_BUILD && USE_ITT_NOTIFY 814 // Barrier imbalance - save arrive time to the thread 815 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { 816 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = 817 __itt_get_timestamp(); 818 } 819 #endif 820 // Perform tree gather to wait until all threads have arrived; reduce any 821 // required data as we go 822 child_tid = (tid << branch_bits) + 1; 823 if (child_tid < nproc) { 824 // Parent threads wait for all their children to arrive 825 new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; 826 child = 1; 827 do { 828 kmp_info_t *child_thr = other_threads[child_tid]; 829 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 830 #if KMP_CACHE_MANAGE 831 // Prefetch next thread's arrived count 832 if (child + 1 <= branch_factor && child_tid + 1 < nproc) 833 KMP_CACHE_PREFETCH( 834 &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_arrived); 835 #endif /* KMP_CACHE_MANAGE */ 836 KA_TRACE(20, 837 ("__kmp_tree_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) " 838 "arrived(%p) == %llu\n", 839 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 840 team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); 841 // Wait for child to arrive 842 kmp_flag_64<> flag(&child_bar->b_arrived, new_state); 843 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 844 #if USE_ITT_BUILD && USE_ITT_NOTIFY 845 // Barrier imbalance - write min of the thread time and a child time to 846 // the thread. 847 if (__kmp_forkjoin_frames_mode == 2) { 848 this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time, 849 child_thr->th.th_bar_min_time); 850 } 851 #endif 852 if (reduce) { 853 KA_TRACE(100, 854 ("__kmp_tree_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n", 855 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 856 team->t.t_id, child_tid)); 857 OMPT_REDUCTION_DECL(this_thr, gtid); 858 OMPT_REDUCTION_BEGIN; 859 (*reduce)(this_thr->th.th_local.reduce_data, 860 child_thr->th.th_local.reduce_data); 861 OMPT_REDUCTION_END; 862 } 863 child++; 864 child_tid++; 865 } while (child <= branch_factor && child_tid < nproc); 866 } 867 868 if (!KMP_MASTER_TID(tid)) { // Worker threads 869 kmp_int32 parent_tid = (tid - 1) >> branch_bits; 870 871 KA_TRACE(20, 872 ("__kmp_tree_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) " 873 "arrived(%p): %llu => %llu\n", 874 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team), 875 team->t.t_id, parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived, 876 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); 877 878 // Mark arrival to parent thread 879 /* After performing this write, a worker thread may not assume that the team 880 is valid any more - it could be deallocated by the primary thread at any 881 time. */ 882 kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[parent_tid]); 883 flag.release(); 884 } else { 885 // Need to update the team arrived pointer if we are the primary thread 886 if (nproc > 1) // New value was already computed above 887 team->t.t_bar[bt].b_arrived = new_state; 888 else 889 team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP; 890 KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) set team %d " 891 "arrived(%p) = %llu\n", 892 gtid, team->t.t_id, tid, team->t.t_id, 893 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); 894 } 895 KA_TRACE(20, 896 ("__kmp_tree_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", 897 gtid, team->t.t_id, tid, bt)); 898 } 899 900 static void __kmp_tree_barrier_release( 901 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 902 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 903 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_release); 904 kmp_team_t *team; 905 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 906 kmp_uint32 nproc; 907 kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt]; 908 kmp_uint32 branch_factor = 1 << branch_bits; 909 kmp_uint32 child; 910 kmp_uint32 child_tid; 911 912 // Perform a tree release for all of the threads that have been gathered 913 if (!KMP_MASTER_TID( 914 tid)) { // Handle fork barrier workers who aren't part of a team yet 915 KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d wait go(%p) == %u\n", gtid, 916 &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); 917 // Wait for parent thread to release us 918 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); 919 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 920 #if USE_ITT_BUILD && USE_ITT_NOTIFY 921 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { 922 // In fork barrier where we could not get the object reliably (or 923 // ITTNOTIFY is disabled) 924 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); 925 // Cancel wait on previous parallel region... 926 __kmp_itt_task_starting(itt_sync_obj); 927 928 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 929 return; 930 931 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 932 if (itt_sync_obj != NULL) 933 // Call prepare as early as possible for "new" barrier 934 __kmp_itt_task_finished(itt_sync_obj); 935 } else 936 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 937 // Early exit for reaping threads releasing forkjoin barrier 938 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 939 return; 940 941 // The worker thread may now assume that the team is valid. 942 team = __kmp_threads[gtid]->th.th_team; 943 KMP_DEBUG_ASSERT(team != NULL); 944 tid = __kmp_tid_from_gtid(gtid); 945 946 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); 947 KA_TRACE(20, 948 ("__kmp_tree_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid, 949 team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); 950 KMP_MB(); // Flush all pending memory write invalidates. 951 } else { 952 team = __kmp_threads[gtid]->th.th_team; 953 KMP_DEBUG_ASSERT(team != NULL); 954 KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d(%d:%d) primary enter for " 955 "barrier type %d\n", 956 gtid, team->t.t_id, tid, bt)); 957 } 958 nproc = this_thr->th.th_team_nproc; 959 child_tid = (tid << branch_bits) + 1; 960 961 if (child_tid < nproc) { 962 kmp_info_t **other_threads = team->t.t_threads; 963 child = 1; 964 // Parent threads release all their children 965 do { 966 kmp_info_t *child_thr = other_threads[child_tid]; 967 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 968 #if KMP_CACHE_MANAGE 969 // Prefetch next thread's go count 970 if (child + 1 <= branch_factor && child_tid + 1 < nproc) 971 KMP_CACHE_PREFETCH( 972 &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_go); 973 #endif /* KMP_CACHE_MANAGE */ 974 975 #if KMP_BARRIER_ICV_PUSH 976 { 977 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); 978 if (propagate_icvs) { 979 __kmp_init_implicit_task(team->t.t_ident, 980 team->t.t_threads[child_tid], team, 981 child_tid, FALSE); 982 copy_icvs(&team->t.t_implicit_task_taskdata[child_tid].td_icvs, 983 &team->t.t_implicit_task_taskdata[0].td_icvs); 984 } 985 } 986 #endif // KMP_BARRIER_ICV_PUSH 987 KA_TRACE(20, 988 ("__kmp_tree_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)" 989 "go(%p): %u => %u\n", 990 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 991 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, 992 child_bar->b_go + KMP_BARRIER_STATE_BUMP)); 993 // Release child from barrier 994 kmp_flag_64<> flag(&child_bar->b_go, child_thr); 995 flag.release(); 996 child++; 997 child_tid++; 998 } while (child <= branch_factor && child_tid < nproc); 999 } 1000 KA_TRACE( 1001 20, ("__kmp_tree_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", 1002 gtid, team->t.t_id, tid, bt)); 1003 } 1004 1005 // Hyper Barrier 1006 static void __kmp_hyper_barrier_gather( 1007 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 1008 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 1009 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_gather); 1010 kmp_team_t *team = this_thr->th.th_team; 1011 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 1012 kmp_info_t **other_threads = team->t.t_threads; 1013 kmp_uint64 new_state = KMP_BARRIER_UNUSED_STATE; 1014 kmp_uint32 num_threads = this_thr->th.th_team_nproc; 1015 kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt]; 1016 kmp_uint32 branch_factor = 1 << branch_bits; 1017 kmp_uint32 offset; 1018 kmp_uint32 level; 1019 1020 KA_TRACE( 1021 20, 1022 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", 1023 gtid, team->t.t_id, tid, bt)); 1024 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); 1025 1026 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1027 // Barrier imbalance - save arrive time to the thread 1028 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { 1029 this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = 1030 __itt_get_timestamp(); 1031 } 1032 #endif 1033 /* Perform a hypercube-embedded tree gather to wait until all of the threads 1034 have arrived, and reduce any required data as we go. */ 1035 kmp_flag_64<> p_flag(&thr_bar->b_arrived); 1036 for (level = 0, offset = 1; offset < num_threads; 1037 level += branch_bits, offset <<= branch_bits) { 1038 kmp_uint32 child; 1039 kmp_uint32 child_tid; 1040 1041 if (((tid >> level) & (branch_factor - 1)) != 0) { 1042 kmp_int32 parent_tid = tid & ~((1 << (level + branch_bits)) - 1); 1043 1044 KMP_MB(); // Synchronize parent and child threads. 1045 KA_TRACE(20, 1046 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) " 1047 "arrived(%p): %llu => %llu\n", 1048 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team), 1049 team->t.t_id, parent_tid, &thr_bar->b_arrived, 1050 thr_bar->b_arrived, 1051 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); 1052 // Mark arrival to parent thread 1053 /* After performing this write (in the last iteration of the enclosing for 1054 loop), a worker thread may not assume that the team is valid any more 1055 - it could be deallocated by the primary thread at any time. */ 1056 p_flag.set_waiter(other_threads[parent_tid]); 1057 p_flag.release(); 1058 break; 1059 } 1060 1061 // Parent threads wait for children to arrive 1062 if (new_state == KMP_BARRIER_UNUSED_STATE) 1063 new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; 1064 for (child = 1, child_tid = tid + (1 << level); 1065 child < branch_factor && child_tid < num_threads; 1066 child++, child_tid += (1 << level)) { 1067 kmp_info_t *child_thr = other_threads[child_tid]; 1068 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1069 #if KMP_CACHE_MANAGE 1070 kmp_uint32 next_child_tid = child_tid + (1 << level); 1071 // Prefetch next thread's arrived count 1072 if (child + 1 < branch_factor && next_child_tid < num_threads) 1073 KMP_CACHE_PREFETCH( 1074 &other_threads[next_child_tid]->th.th_bar[bt].bb.b_arrived); 1075 #endif /* KMP_CACHE_MANAGE */ 1076 KA_TRACE(20, 1077 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) " 1078 "arrived(%p) == %llu\n", 1079 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 1080 team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); 1081 // Wait for child to arrive 1082 kmp_flag_64<> c_flag(&child_bar->b_arrived, new_state); 1083 c_flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1084 KMP_MB(); // Synchronize parent and child threads. 1085 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1086 // Barrier imbalance - write min of the thread time and a child time to 1087 // the thread. 1088 if (__kmp_forkjoin_frames_mode == 2) { 1089 this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time, 1090 child_thr->th.th_bar_min_time); 1091 } 1092 #endif 1093 if (reduce) { 1094 KA_TRACE(100, 1095 ("__kmp_hyper_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n", 1096 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 1097 team->t.t_id, child_tid)); 1098 OMPT_REDUCTION_DECL(this_thr, gtid); 1099 OMPT_REDUCTION_BEGIN; 1100 (*reduce)(this_thr->th.th_local.reduce_data, 1101 child_thr->th.th_local.reduce_data); 1102 OMPT_REDUCTION_END; 1103 } 1104 } 1105 } 1106 1107 if (KMP_MASTER_TID(tid)) { 1108 // Need to update the team arrived pointer if we are the primary thread 1109 if (new_state == KMP_BARRIER_UNUSED_STATE) 1110 team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP; 1111 else 1112 team->t.t_bar[bt].b_arrived = new_state; 1113 KA_TRACE(20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) set team %d " 1114 "arrived(%p) = %llu\n", 1115 gtid, team->t.t_id, tid, team->t.t_id, 1116 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); 1117 } 1118 KA_TRACE( 1119 20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", 1120 gtid, team->t.t_id, tid, bt)); 1121 } 1122 1123 // The reverse versions seem to beat the forward versions overall 1124 #define KMP_REVERSE_HYPER_BAR 1125 static void __kmp_hyper_barrier_release( 1126 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 1127 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 1128 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_release); 1129 kmp_team_t *team; 1130 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 1131 kmp_info_t **other_threads; 1132 kmp_uint32 num_threads; 1133 kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt]; 1134 kmp_uint32 branch_factor = 1 << branch_bits; 1135 kmp_uint32 child; 1136 kmp_uint32 child_tid; 1137 kmp_uint32 offset; 1138 kmp_uint32 level; 1139 1140 /* Perform a hypercube-embedded tree release for all of the threads that have 1141 been gathered. If KMP_REVERSE_HYPER_BAR is defined (default) the threads 1142 are released in the reverse order of the corresponding gather, otherwise 1143 threads are released in the same order. */ 1144 if (KMP_MASTER_TID(tid)) { // primary thread 1145 team = __kmp_threads[gtid]->th.th_team; 1146 KMP_DEBUG_ASSERT(team != NULL); 1147 KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) primary enter for " 1148 "barrier type %d\n", 1149 gtid, team->t.t_id, tid, bt)); 1150 #if KMP_BARRIER_ICV_PUSH 1151 if (propagate_icvs) { // primary already has ICVs in final destination; copy 1152 copy_icvs(&thr_bar->th_fixed_icvs, 1153 &team->t.t_implicit_task_taskdata[tid].td_icvs); 1154 } 1155 #endif 1156 } else { // Handle fork barrier workers who aren't part of a team yet 1157 KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d wait go(%p) == %u\n", gtid, 1158 &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); 1159 // Wait for parent thread to release us 1160 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); 1161 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 1162 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1163 if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { 1164 // In fork barrier where we could not get the object reliably 1165 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); 1166 // Cancel wait on previous parallel region... 1167 __kmp_itt_task_starting(itt_sync_obj); 1168 1169 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 1170 return; 1171 1172 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 1173 if (itt_sync_obj != NULL) 1174 // Call prepare as early as possible for "new" barrier 1175 __kmp_itt_task_finished(itt_sync_obj); 1176 } else 1177 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 1178 // Early exit for reaping threads releasing forkjoin barrier 1179 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 1180 return; 1181 1182 // The worker thread may now assume that the team is valid. 1183 team = __kmp_threads[gtid]->th.th_team; 1184 KMP_DEBUG_ASSERT(team != NULL); 1185 tid = __kmp_tid_from_gtid(gtid); 1186 1187 TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); 1188 KA_TRACE(20, 1189 ("__kmp_hyper_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", 1190 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); 1191 KMP_MB(); // Flush all pending memory write invalidates. 1192 } 1193 num_threads = this_thr->th.th_team_nproc; 1194 other_threads = team->t.t_threads; 1195 1196 #ifdef KMP_REVERSE_HYPER_BAR 1197 // Count up to correct level for parent 1198 for (level = 0, offset = 1; 1199 offset < num_threads && (((tid >> level) & (branch_factor - 1)) == 0); 1200 level += branch_bits, offset <<= branch_bits) 1201 ; 1202 1203 // Now go down from there 1204 for (level -= branch_bits, offset >>= branch_bits; offset != 0; 1205 level -= branch_bits, offset >>= branch_bits) 1206 #else 1207 // Go down the tree, level by level 1208 for (level = 0, offset = 1; offset < num_threads; 1209 level += branch_bits, offset <<= branch_bits) 1210 #endif // KMP_REVERSE_HYPER_BAR 1211 { 1212 #ifdef KMP_REVERSE_HYPER_BAR 1213 /* Now go in reverse order through the children, highest to lowest. 1214 Initial setting of child is conservative here. */ 1215 child = num_threads >> ((level == 0) ? level : level - 1); 1216 for (child = (child < branch_factor - 1) ? child : branch_factor - 1, 1217 child_tid = tid + (child << level); 1218 child >= 1; child--, child_tid -= (1 << level)) 1219 #else 1220 if (((tid >> level) & (branch_factor - 1)) != 0) 1221 // No need to go lower than this, since this is the level parent would be 1222 // notified 1223 break; 1224 // Iterate through children on this level of the tree 1225 for (child = 1, child_tid = tid + (1 << level); 1226 child < branch_factor && child_tid < num_threads; 1227 child++, child_tid += (1 << level)) 1228 #endif // KMP_REVERSE_HYPER_BAR 1229 { 1230 if (child_tid >= num_threads) 1231 continue; // Child doesn't exist so keep going 1232 else { 1233 kmp_info_t *child_thr = other_threads[child_tid]; 1234 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1235 #if KMP_CACHE_MANAGE 1236 kmp_uint32 next_child_tid = child_tid - (1 << level); 1237 // Prefetch next thread's go count 1238 #ifdef KMP_REVERSE_HYPER_BAR 1239 if (child - 1 >= 1 && next_child_tid < num_threads) 1240 #else 1241 if (child + 1 < branch_factor && next_child_tid < num_threads) 1242 #endif // KMP_REVERSE_HYPER_BAR 1243 KMP_CACHE_PREFETCH( 1244 &other_threads[next_child_tid]->th.th_bar[bt].bb.b_go); 1245 #endif /* KMP_CACHE_MANAGE */ 1246 1247 #if KMP_BARRIER_ICV_PUSH 1248 if (propagate_icvs) // push my fixed ICVs to my child 1249 copy_icvs(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs); 1250 #endif // KMP_BARRIER_ICV_PUSH 1251 1252 KA_TRACE( 1253 20, 1254 ("__kmp_hyper_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)" 1255 "go(%p): %u => %u\n", 1256 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 1257 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, 1258 child_bar->b_go + KMP_BARRIER_STATE_BUMP)); 1259 // Release child from barrier 1260 kmp_flag_64<> flag(&child_bar->b_go, child_thr); 1261 flag.release(); 1262 } 1263 } 1264 } 1265 #if KMP_BARRIER_ICV_PUSH 1266 if (propagate_icvs && 1267 !KMP_MASTER_TID(tid)) { // copy ICVs locally to final dest 1268 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, 1269 FALSE); 1270 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 1271 &thr_bar->th_fixed_icvs); 1272 } 1273 #endif 1274 KA_TRACE( 1275 20, 1276 ("__kmp_hyper_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", 1277 gtid, team->t.t_id, tid, bt)); 1278 } 1279 1280 // Hierarchical Barrier 1281 1282 // Initialize thread barrier data 1283 /* Initializes/re-initializes the hierarchical barrier data stored on a thread. 1284 Performs the minimum amount of initialization required based on how the team 1285 has changed. Returns true if leaf children will require both on-core and 1286 traditional wake-up mechanisms. For example, if the team size increases, 1287 threads already in the team will respond to on-core wakeup on their parent 1288 thread, but threads newly added to the team will only be listening on the 1289 their local b_go. */ 1290 static bool __kmp_init_hierarchical_barrier_thread(enum barrier_type bt, 1291 kmp_bstate_t *thr_bar, 1292 kmp_uint32 nproc, int gtid, 1293 int tid, kmp_team_t *team) { 1294 // Checks to determine if (re-)initialization is needed 1295 bool uninitialized = thr_bar->team == NULL; 1296 bool team_changed = team != thr_bar->team; 1297 bool team_sz_changed = nproc != thr_bar->nproc; 1298 bool tid_changed = tid != thr_bar->old_tid; 1299 bool retval = false; 1300 1301 if (uninitialized || team_sz_changed) { 1302 __kmp_get_hierarchy(nproc, thr_bar); 1303 } 1304 1305 if (uninitialized || team_sz_changed || tid_changed) { 1306 thr_bar->my_level = thr_bar->depth - 1; // default for primary thread 1307 thr_bar->parent_tid = -1; // default for primary thread 1308 if (!KMP_MASTER_TID(tid)) { 1309 // if not primary thread, find parent thread in hierarchy 1310 kmp_uint32 d = 0; 1311 while (d < thr_bar->depth) { // find parent based on level of thread in 1312 // hierarchy, and note level 1313 kmp_uint32 rem; 1314 if (d == thr_bar->depth - 2) { // reached level right below the primary 1315 thr_bar->parent_tid = 0; 1316 thr_bar->my_level = d; 1317 break; 1318 } else if ((rem = tid % thr_bar->skip_per_level[d + 1]) != 0) { 1319 // TODO: can we make the above op faster? 1320 // thread is not a subtree root at next level, so this is max 1321 thr_bar->parent_tid = tid - rem; 1322 thr_bar->my_level = d; 1323 break; 1324 } 1325 ++d; 1326 } 1327 } 1328 __kmp_type_convert(7 - ((tid - thr_bar->parent_tid) / 1329 (thr_bar->skip_per_level[thr_bar->my_level])), 1330 &(thr_bar->offset)); 1331 thr_bar->old_tid = tid; 1332 thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING; 1333 thr_bar->team = team; 1334 thr_bar->parent_bar = 1335 &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb; 1336 } 1337 if (uninitialized || team_changed || tid_changed) { 1338 thr_bar->team = team; 1339 thr_bar->parent_bar = 1340 &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb; 1341 retval = true; 1342 } 1343 if (uninitialized || team_sz_changed || tid_changed) { 1344 thr_bar->nproc = nproc; 1345 thr_bar->leaf_kids = thr_bar->base_leaf_kids; 1346 if (thr_bar->my_level == 0) 1347 thr_bar->leaf_kids = 0; 1348 if (thr_bar->leaf_kids && (kmp_uint32)tid + thr_bar->leaf_kids + 1 > nproc) 1349 __kmp_type_convert(nproc - tid - 1, &(thr_bar->leaf_kids)); 1350 thr_bar->leaf_state = 0; 1351 for (int i = 0; i < thr_bar->leaf_kids; ++i) 1352 ((char *)&(thr_bar->leaf_state))[7 - i] = 1; 1353 } 1354 return retval; 1355 } 1356 1357 static void __kmp_hierarchical_barrier_gather( 1358 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 1359 void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 1360 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_gather); 1361 kmp_team_t *team = this_thr->th.th_team; 1362 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 1363 kmp_uint32 nproc = this_thr->th.th_team_nproc; 1364 kmp_info_t **other_threads = team->t.t_threads; 1365 kmp_uint64 new_state = 0; 1366 1367 int level = team->t.t_level; 1368 if (other_threads[0] 1369 ->th.th_teams_microtask) // are we inside the teams construct? 1370 if (this_thr->th.th_teams_size.nteams > 1) 1371 ++level; // level was not increased in teams construct for team_of_masters 1372 if (level == 1) 1373 thr_bar->use_oncore_barrier = 1; 1374 else 1375 thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested 1376 1377 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) enter for " 1378 "barrier type %d\n", 1379 gtid, team->t.t_id, tid, bt)); 1380 KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); 1381 1382 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1383 // Barrier imbalance - save arrive time to the thread 1384 if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { 1385 this_thr->th.th_bar_arrive_time = __itt_get_timestamp(); 1386 } 1387 #endif 1388 1389 (void)__kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid, tid, 1390 team); 1391 1392 if (thr_bar->my_level) { // not a leaf (my_level==0 means leaf) 1393 kmp_int32 child_tid; 1394 new_state = 1395 (kmp_uint64)team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; 1396 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1397 thr_bar->use_oncore_barrier) { 1398 if (thr_bar->leaf_kids) { 1399 // First, wait for leaf children to check-in on my b_arrived flag 1400 kmp_uint64 leaf_state = 1401 KMP_MASTER_TID(tid) 1402 ? thr_bar->b_arrived | thr_bar->leaf_state 1403 : team->t.t_bar[bt].b_arrived | thr_bar->leaf_state; 1404 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) waiting " 1405 "for leaf kids\n", 1406 gtid, team->t.t_id, tid)); 1407 kmp_flag_64<> flag(&thr_bar->b_arrived, leaf_state); 1408 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1409 if (reduce) { 1410 OMPT_REDUCTION_DECL(this_thr, gtid); 1411 OMPT_REDUCTION_BEGIN; 1412 for (child_tid = tid + 1; child_tid <= tid + thr_bar->leaf_kids; 1413 ++child_tid) { 1414 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " 1415 "T#%d(%d:%d)\n", 1416 gtid, team->t.t_id, tid, 1417 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1418 child_tid)); 1419 (*reduce)(this_thr->th.th_local.reduce_data, 1420 other_threads[child_tid]->th.th_local.reduce_data); 1421 } 1422 OMPT_REDUCTION_END; 1423 } 1424 // clear leaf_state bits 1425 KMP_TEST_THEN_AND64(&thr_bar->b_arrived, ~(thr_bar->leaf_state)); 1426 } 1427 // Next, wait for higher level children on each child's b_arrived flag 1428 for (kmp_uint32 d = 1; d < thr_bar->my_level; 1429 ++d) { // gather lowest level threads first, but skip 0 1430 kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1], 1431 skip = thr_bar->skip_per_level[d]; 1432 if (last > nproc) 1433 last = nproc; 1434 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { 1435 kmp_info_t *child_thr = other_threads[child_tid]; 1436 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1437 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait " 1438 "T#%d(%d:%d) " 1439 "arrived(%p) == %llu\n", 1440 gtid, team->t.t_id, tid, 1441 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1442 child_tid, &child_bar->b_arrived, new_state)); 1443 kmp_flag_64<> flag(&child_bar->b_arrived, new_state); 1444 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1445 if (reduce) { 1446 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " 1447 "T#%d(%d:%d)\n", 1448 gtid, team->t.t_id, tid, 1449 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1450 child_tid)); 1451 (*reduce)(this_thr->th.th_local.reduce_data, 1452 child_thr->th.th_local.reduce_data); 1453 } 1454 } 1455 } 1456 } else { // Blocktime is not infinite 1457 for (kmp_uint32 d = 0; d < thr_bar->my_level; 1458 ++d) { // Gather lowest level threads first 1459 kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1], 1460 skip = thr_bar->skip_per_level[d]; 1461 if (last > nproc) 1462 last = nproc; 1463 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { 1464 kmp_info_t *child_thr = other_threads[child_tid]; 1465 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1466 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait " 1467 "T#%d(%d:%d) " 1468 "arrived(%p) == %llu\n", 1469 gtid, team->t.t_id, tid, 1470 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1471 child_tid, &child_bar->b_arrived, new_state)); 1472 kmp_flag_64<> flag(&child_bar->b_arrived, new_state); 1473 flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1474 if (reduce) { 1475 KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " 1476 "T#%d(%d:%d)\n", 1477 gtid, team->t.t_id, tid, 1478 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1479 child_tid)); 1480 (*reduce)(this_thr->th.th_local.reduce_data, 1481 child_thr->th.th_local.reduce_data); 1482 } 1483 } 1484 } 1485 } 1486 } 1487 // All subordinates are gathered; now release parent if not primary thread 1488 1489 if (!KMP_MASTER_TID(tid)) { // worker threads release parent in hierarchy 1490 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) releasing" 1491 " T#%d(%d:%d) arrived(%p): %llu => %llu\n", 1492 gtid, team->t.t_id, tid, 1493 __kmp_gtid_from_tid(thr_bar->parent_tid, team), team->t.t_id, 1494 thr_bar->parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived, 1495 thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); 1496 /* Mark arrival to parent: After performing this write, a worker thread may 1497 not assume that the team is valid any more - it could be deallocated by 1498 the primary thread at any time. */ 1499 if (thr_bar->my_level || __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || 1500 !thr_bar->use_oncore_barrier) { // Parent is waiting on my b_arrived 1501 // flag; release it 1502 kmp_flag_64<> flag(&thr_bar->b_arrived, 1503 other_threads[thr_bar->parent_tid]); 1504 flag.release(); 1505 } else { 1506 // Leaf does special release on "offset" bits of parent's b_arrived flag 1507 thr_bar->b_arrived = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; 1508 kmp_flag_oncore flag(&thr_bar->parent_bar->b_arrived, 1509 thr_bar->offset + 1); 1510 flag.set_waiter(other_threads[thr_bar->parent_tid]); 1511 flag.release(); 1512 } 1513 } else { // Primary thread needs to update the team's b_arrived value 1514 team->t.t_bar[bt].b_arrived = new_state; 1515 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) set team %d " 1516 "arrived(%p) = %llu\n", 1517 gtid, team->t.t_id, tid, team->t.t_id, 1518 &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); 1519 } 1520 // Is the team access below unsafe or just technically invalid? 1521 KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) exit for " 1522 "barrier type %d\n", 1523 gtid, team->t.t_id, tid, bt)); 1524 } 1525 1526 static void __kmp_hierarchical_barrier_release( 1527 enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, 1528 int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 1529 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_release); 1530 kmp_team_t *team; 1531 kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; 1532 kmp_uint32 nproc; 1533 bool team_change = false; // indicates on-core barrier shouldn't be used 1534 1535 if (KMP_MASTER_TID(tid)) { 1536 team = __kmp_threads[gtid]->th.th_team; 1537 KMP_DEBUG_ASSERT(team != NULL); 1538 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) primary " 1539 "entered barrier type %d\n", 1540 gtid, team->t.t_id, tid, bt)); 1541 } else { // Worker threads 1542 // Wait for parent thread to release me 1543 if (!thr_bar->use_oncore_barrier || 1544 __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || thr_bar->my_level != 0 || 1545 thr_bar->team == NULL) { 1546 // Use traditional method of waiting on my own b_go flag 1547 thr_bar->wait_flag = KMP_BARRIER_OWN_FLAG; 1548 kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); 1549 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 1550 TCW_8(thr_bar->b_go, 1551 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time 1552 } else { // Thread barrier data is initialized, this is a leaf, blocktime is 1553 // infinite, not nested 1554 // Wait on my "offset" bits on parent's b_go flag 1555 thr_bar->wait_flag = KMP_BARRIER_PARENT_FLAG; 1556 kmp_flag_oncore flag(&thr_bar->parent_bar->b_go, KMP_BARRIER_STATE_BUMP, 1557 thr_bar->offset + 1, bt, 1558 this_thr USE_ITT_BUILD_ARG(itt_sync_obj)); 1559 flag.wait(this_thr, TRUE); 1560 if (thr_bar->wait_flag == 1561 KMP_BARRIER_SWITCHING) { // Thread was switched to own b_go 1562 TCW_8(thr_bar->b_go, 1563 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time 1564 } else { // Reset my bits on parent's b_go flag 1565 (RCAST(volatile char *, 1566 &(thr_bar->parent_bar->b_go)))[thr_bar->offset + 1] = 0; 1567 } 1568 } 1569 thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING; 1570 // Early exit for reaping threads releasing forkjoin barrier 1571 if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) 1572 return; 1573 // The worker thread may now assume that the team is valid. 1574 team = __kmp_threads[gtid]->th.th_team; 1575 KMP_DEBUG_ASSERT(team != NULL); 1576 tid = __kmp_tid_from_gtid(gtid); 1577 1578 KA_TRACE( 1579 20, 1580 ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", 1581 gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); 1582 KMP_MB(); // Flush all pending memory write invalidates. 1583 } 1584 1585 nproc = this_thr->th.th_team_nproc; 1586 int level = team->t.t_level; 1587 if (team->t.t_threads[0] 1588 ->th.th_teams_microtask) { // are we inside the teams construct? 1589 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1590 this_thr->th.th_teams_level == level) 1591 ++level; // level was not increased in teams construct for team_of_workers 1592 if (this_thr->th.th_teams_size.nteams > 1) 1593 ++level; // level was not increased in teams construct for team_of_masters 1594 } 1595 if (level == 1) 1596 thr_bar->use_oncore_barrier = 1; 1597 else 1598 thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested 1599 1600 // If the team size has increased, we still communicate with old leaves via 1601 // oncore barrier. 1602 unsigned short int old_leaf_kids = thr_bar->leaf_kids; 1603 kmp_uint64 old_leaf_state = thr_bar->leaf_state; 1604 team_change = __kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid, 1605 tid, team); 1606 // But if the entire team changes, we won't use oncore barrier at all 1607 if (team_change) 1608 old_leaf_kids = 0; 1609 1610 #if KMP_BARRIER_ICV_PUSH 1611 if (propagate_icvs) { 1612 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, 1613 FALSE); 1614 if (KMP_MASTER_TID( 1615 tid)) { // primary already has copy in final destination; copy 1616 copy_icvs(&thr_bar->th_fixed_icvs, 1617 &team->t.t_implicit_task_taskdata[tid].td_icvs); 1618 } else if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1619 thr_bar->use_oncore_barrier) { // optimization for inf blocktime 1620 if (!thr_bar->my_level) // I'm a leaf in the hierarchy (my_level==0) 1621 // leaves (on-core children) pull parent's fixed ICVs directly to local 1622 // ICV store 1623 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 1624 &thr_bar->parent_bar->th_fixed_icvs); 1625 // non-leaves will get ICVs piggybacked with b_go via NGO store 1626 } else { // blocktime is not infinite; pull ICVs from parent's fixed ICVs 1627 if (thr_bar->my_level) // not a leaf; copy ICVs to my fixed ICVs child can 1628 // access 1629 copy_icvs(&thr_bar->th_fixed_icvs, &thr_bar->parent_bar->th_fixed_icvs); 1630 else // leaves copy parent's fixed ICVs directly to local ICV store 1631 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 1632 &thr_bar->parent_bar->th_fixed_icvs); 1633 } 1634 } 1635 #endif // KMP_BARRIER_ICV_PUSH 1636 1637 // Now, release my children 1638 if (thr_bar->my_level) { // not a leaf 1639 kmp_int32 child_tid; 1640 kmp_uint32 last; 1641 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1642 thr_bar->use_oncore_barrier) { 1643 if (KMP_MASTER_TID(tid)) { // do a flat release 1644 // Set local b_go to bump children via NGO store of the cache line 1645 // containing IVCs and b_go. 1646 thr_bar->b_go = KMP_BARRIER_STATE_BUMP; 1647 // Use ngo stores if available; b_go piggybacks in the last 8 bytes of 1648 // the cache line 1649 ngo_load(&thr_bar->th_fixed_icvs); 1650 // This loops over all the threads skipping only the leaf nodes in the 1651 // hierarchy 1652 for (child_tid = thr_bar->skip_per_level[1]; child_tid < (int)nproc; 1653 child_tid += thr_bar->skip_per_level[1]) { 1654 kmp_bstate_t *child_bar = 1655 &team->t.t_threads[child_tid]->th.th_bar[bt].bb; 1656 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) " 1657 "releasing T#%d(%d:%d)" 1658 " go(%p): %u => %u\n", 1659 gtid, team->t.t_id, tid, 1660 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1661 child_tid, &child_bar->b_go, child_bar->b_go, 1662 child_bar->b_go + KMP_BARRIER_STATE_BUMP)); 1663 // Use ngo store (if available) to both store ICVs and release child 1664 // via child's b_go 1665 ngo_store_go(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs); 1666 } 1667 ngo_sync(); 1668 } 1669 TCW_8(thr_bar->b_go, 1670 KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time 1671 // Now, release leaf children 1672 if (thr_bar->leaf_kids) { // if there are any 1673 // We test team_change on the off-chance that the level 1 team changed. 1674 if (team_change || 1675 old_leaf_kids < thr_bar->leaf_kids) { // some old, some new 1676 if (old_leaf_kids) { // release old leaf kids 1677 thr_bar->b_go |= old_leaf_state; 1678 } 1679 // Release new leaf kids 1680 last = tid + thr_bar->skip_per_level[1]; 1681 if (last > nproc) 1682 last = nproc; 1683 for (child_tid = tid + 1 + old_leaf_kids; child_tid < (int)last; 1684 ++child_tid) { // skip_per_level[0]=1 1685 kmp_info_t *child_thr = team->t.t_threads[child_tid]; 1686 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1687 KA_TRACE( 1688 20, 1689 ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) releasing" 1690 " T#%d(%d:%d) go(%p): %u => %u\n", 1691 gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), 1692 team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, 1693 child_bar->b_go + KMP_BARRIER_STATE_BUMP)); 1694 // Release child using child's b_go flag 1695 kmp_flag_64<> flag(&child_bar->b_go, child_thr); 1696 flag.release(); 1697 } 1698 } else { // Release all children at once with leaf_state bits on my own 1699 // b_go flag 1700 thr_bar->b_go |= thr_bar->leaf_state; 1701 } 1702 } 1703 } else { // Blocktime is not infinite; do a simple hierarchical release 1704 for (int d = thr_bar->my_level - 1; d >= 0; 1705 --d) { // Release highest level threads first 1706 last = tid + thr_bar->skip_per_level[d + 1]; 1707 kmp_uint32 skip = thr_bar->skip_per_level[d]; 1708 if (last > nproc) 1709 last = nproc; 1710 for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { 1711 kmp_info_t *child_thr = team->t.t_threads[child_tid]; 1712 kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; 1713 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) " 1714 "releasing T#%d(%d:%d) go(%p): %u => %u\n", 1715 gtid, team->t.t_id, tid, 1716 __kmp_gtid_from_tid(child_tid, team), team->t.t_id, 1717 child_tid, &child_bar->b_go, child_bar->b_go, 1718 child_bar->b_go + KMP_BARRIER_STATE_BUMP)); 1719 // Release child using child's b_go flag 1720 kmp_flag_64<> flag(&child_bar->b_go, child_thr); 1721 flag.release(); 1722 } 1723 } 1724 } 1725 #if KMP_BARRIER_ICV_PUSH 1726 if (propagate_icvs && !KMP_MASTER_TID(tid)) 1727 // non-leaves copy ICVs from fixed ICVs to local dest 1728 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 1729 &thr_bar->th_fixed_icvs); 1730 #endif // KMP_BARRIER_ICV_PUSH 1731 } 1732 KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) exit for " 1733 "barrier type %d\n", 1734 gtid, team->t.t_id, tid, bt)); 1735 } 1736 1737 // End of Barrier Algorithms 1738 1739 // type traits for cancellable value 1740 // if cancellable is true, then is_cancellable is a normal boolean variable 1741 // if cancellable is false, then is_cancellable is a compile time constant 1742 template <bool cancellable> struct is_cancellable {}; 1743 template <> struct is_cancellable<true> { 1744 bool value; 1745 is_cancellable() : value(false) {} 1746 is_cancellable(bool b) : value(b) {} 1747 is_cancellable &operator=(bool b) { 1748 value = b; 1749 return *this; 1750 } 1751 operator bool() const { return value; } 1752 }; 1753 template <> struct is_cancellable<false> { 1754 is_cancellable &operator=(bool b) { return *this; } 1755 constexpr operator bool() const { return false; } 1756 }; 1757 1758 // Internal function to do a barrier. 1759 /* If is_split is true, do a split barrier, otherwise, do a plain barrier 1760 If reduce is non-NULL, do a split reduction barrier, otherwise, do a split 1761 barrier 1762 When cancellable = false, 1763 Returns 0 if primary thread, 1 if worker thread. 1764 When cancellable = true 1765 Returns 0 if not cancelled, 1 if cancelled. */ 1766 template <bool cancellable = false> 1767 static int __kmp_barrier_template(enum barrier_type bt, int gtid, int is_split, 1768 size_t reduce_size, void *reduce_data, 1769 void (*reduce)(void *, void *)) { 1770 KMP_TIME_PARTITIONED_BLOCK(OMP_plain_barrier); 1771 KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER); 1772 int tid = __kmp_tid_from_gtid(gtid); 1773 kmp_info_t *this_thr = __kmp_threads[gtid]; 1774 kmp_team_t *team = this_thr->th.th_team; 1775 int status = 0; 1776 is_cancellable<cancellable> cancelled; 1777 #if OMPT_SUPPORT && OMPT_OPTIONAL 1778 ompt_data_t *my_task_data; 1779 ompt_data_t *my_parallel_data; 1780 void *return_address; 1781 ompt_sync_region_t barrier_kind; 1782 #endif 1783 1784 KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) has arrived\n", gtid, 1785 __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid))); 1786 1787 #if OMPT_SUPPORT 1788 if (ompt_enabled.enabled) { 1789 #if OMPT_OPTIONAL 1790 my_task_data = OMPT_CUR_TASK_DATA(this_thr); 1791 my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr); 1792 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1793 barrier_kind = __ompt_get_barrier_kind(bt, this_thr); 1794 if (ompt_enabled.ompt_callback_sync_region) { 1795 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1796 barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data, 1797 return_address); 1798 } 1799 if (ompt_enabled.ompt_callback_sync_region_wait) { 1800 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1801 barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data, 1802 return_address); 1803 } 1804 #endif 1805 // It is OK to report the barrier state after the barrier begin callback. 1806 // According to the OMPT specification, a compliant implementation may 1807 // even delay reporting this state until the barrier begins to wait. 1808 this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier; 1809 } 1810 #endif 1811 1812 if (!team->t.t_serialized) { 1813 #if USE_ITT_BUILD 1814 // This value will be used in itt notify events below. 1815 void *itt_sync_obj = NULL; 1816 #if USE_ITT_NOTIFY 1817 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 1818 itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1); 1819 #endif 1820 #endif /* USE_ITT_BUILD */ 1821 if (__kmp_tasking_mode == tskm_extra_barrier) { 1822 __kmp_tasking_barrier(team, this_thr, gtid); 1823 KA_TRACE(15, 1824 ("__kmp_barrier: T#%d(%d:%d) past tasking barrier\n", gtid, 1825 __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid))); 1826 } 1827 1828 /* Copy the blocktime info to the thread, where __kmp_wait_template() can 1829 access it when the team struct is not guaranteed to exist. */ 1830 // See note about the corresponding code in __kmp_join_barrier() being 1831 // performance-critical. 1832 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 1833 #if KMP_USE_MONITOR 1834 this_thr->th.th_team_bt_intervals = 1835 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; 1836 this_thr->th.th_team_bt_set = 1837 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; 1838 #else 1839 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); 1840 #endif 1841 } 1842 1843 #if USE_ITT_BUILD 1844 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 1845 __kmp_itt_barrier_starting(gtid, itt_sync_obj); 1846 #endif /* USE_ITT_BUILD */ 1847 #if USE_DEBUGGER 1848 // Let the debugger know: the thread arrived to the barrier and waiting. 1849 if (KMP_MASTER_TID(tid)) { // Primary thread counter stored in team struct 1850 team->t.t_bar[bt].b_master_arrived += 1; 1851 } else { 1852 this_thr->th.th_bar[bt].bb.b_worker_arrived += 1; 1853 } // if 1854 #endif /* USE_DEBUGGER */ 1855 if (reduce != NULL) { 1856 // KMP_DEBUG_ASSERT( is_split == TRUE ); // #C69956 1857 this_thr->th.th_local.reduce_data = reduce_data; 1858 } 1859 1860 if (KMP_MASTER_TID(tid) && __kmp_tasking_mode != tskm_immediate_exec) 1861 // use 0 to only setup the current team if nthreads > 1 1862 __kmp_task_team_setup(this_thr, team, 0); 1863 1864 if (cancellable) { 1865 cancelled = __kmp_linear_barrier_gather_cancellable( 1866 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1867 } else { 1868 switch (__kmp_barrier_gather_pattern[bt]) { 1869 case bp_dist_bar: { 1870 __kmp_dist_barrier_gather(bt, this_thr, gtid, tid, 1871 reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1872 break; 1873 } 1874 case bp_hyper_bar: { 1875 // don't set branch bits to 0; use linear 1876 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]); 1877 __kmp_hyper_barrier_gather(bt, this_thr, gtid, tid, 1878 reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1879 break; 1880 } 1881 case bp_hierarchical_bar: { 1882 __kmp_hierarchical_barrier_gather( 1883 bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1884 break; 1885 } 1886 case bp_tree_bar: { 1887 // don't set branch bits to 0; use linear 1888 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]); 1889 __kmp_tree_barrier_gather(bt, this_thr, gtid, tid, 1890 reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1891 break; 1892 } 1893 default: { 1894 __kmp_linear_barrier_gather(bt, this_thr, gtid, tid, 1895 reduce USE_ITT_BUILD_ARG(itt_sync_obj)); 1896 } 1897 } 1898 } 1899 1900 KMP_MB(); 1901 1902 if (KMP_MASTER_TID(tid)) { 1903 status = 0; 1904 if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) { 1905 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); 1906 } 1907 #if USE_DEBUGGER 1908 // Let the debugger know: All threads are arrived and starting leaving the 1909 // barrier. 1910 team->t.t_bar[bt].b_team_arrived += 1; 1911 #endif 1912 1913 if (__kmp_omp_cancellation) { 1914 kmp_int32 cancel_request = KMP_ATOMIC_LD_RLX(&team->t.t_cancel_request); 1915 // Reset cancellation flag for worksharing constructs 1916 if (cancel_request == cancel_loop || 1917 cancel_request == cancel_sections) { 1918 KMP_ATOMIC_ST_RLX(&team->t.t_cancel_request, cancel_noreq); 1919 } 1920 } 1921 #if USE_ITT_BUILD 1922 /* TODO: In case of split reduction barrier, primary thread may send 1923 acquired event early, before the final summation into the shared 1924 variable is done (final summation can be a long operation for array 1925 reductions). */ 1926 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 1927 __kmp_itt_barrier_middle(gtid, itt_sync_obj); 1928 #endif /* USE_ITT_BUILD */ 1929 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1930 // Barrier - report frame end (only if active_level == 1) 1931 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 1932 __kmp_forkjoin_frames_mode && 1933 (this_thr->th.th_teams_microtask == NULL || // either not in teams 1934 this_thr->th.th_teams_size.nteams == 1) && // or inside single team 1935 team->t.t_active_level == 1) { 1936 ident_t *loc = __kmp_threads[gtid]->th.th_ident; 1937 kmp_uint64 cur_time = __itt_get_timestamp(); 1938 kmp_info_t **other_threads = team->t.t_threads; 1939 int nproc = this_thr->th.th_team_nproc; 1940 int i; 1941 switch (__kmp_forkjoin_frames_mode) { 1942 case 1: 1943 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, 1944 loc, nproc); 1945 this_thr->th.th_frame_time = cur_time; 1946 break; 1947 case 2: // AC 2015-01-19: currently does not work for hierarchical (to 1948 // be fixed) 1949 __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time, 1950 1, loc, nproc); 1951 break; 1952 case 3: 1953 if (__itt_metadata_add_ptr) { 1954 // Initialize with primary thread's wait time 1955 kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time; 1956 // Set arrive time to zero to be able to check it in 1957 // __kmp_invoke_task(); the same is done inside the loop below 1958 this_thr->th.th_bar_arrive_time = 0; 1959 for (i = 1; i < nproc; ++i) { 1960 delta += (cur_time - other_threads[i]->th.th_bar_arrive_time); 1961 other_threads[i]->th.th_bar_arrive_time = 0; 1962 } 1963 __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time, 1964 cur_time, delta, 1965 (kmp_uint64)(reduce != NULL)); 1966 } 1967 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, 1968 loc, nproc); 1969 this_thr->th.th_frame_time = cur_time; 1970 break; 1971 } 1972 } 1973 #endif /* USE_ITT_BUILD */ 1974 } else { 1975 status = 1; 1976 #if USE_ITT_BUILD 1977 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 1978 __kmp_itt_barrier_middle(gtid, itt_sync_obj); 1979 #endif /* USE_ITT_BUILD */ 1980 } 1981 if ((status == 1 || !is_split) && !cancelled) { 1982 if (cancellable) { 1983 cancelled = __kmp_linear_barrier_release_cancellable( 1984 bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1985 } else { 1986 switch (__kmp_barrier_release_pattern[bt]) { 1987 case bp_dist_bar: { 1988 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); 1989 __kmp_dist_barrier_release(bt, this_thr, gtid, tid, 1990 FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1991 break; 1992 } 1993 case bp_hyper_bar: { 1994 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); 1995 __kmp_hyper_barrier_release(bt, this_thr, gtid, tid, 1996 FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 1997 break; 1998 } 1999 case bp_hierarchical_bar: { 2000 __kmp_hierarchical_barrier_release( 2001 bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 2002 break; 2003 } 2004 case bp_tree_bar: { 2005 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); 2006 __kmp_tree_barrier_release(bt, this_thr, gtid, tid, 2007 FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 2008 break; 2009 } 2010 default: { 2011 __kmp_linear_barrier_release(bt, this_thr, gtid, tid, 2012 FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); 2013 } 2014 } 2015 } 2016 if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) { 2017 __kmp_task_team_sync(this_thr, team); 2018 } 2019 } 2020 2021 #if USE_ITT_BUILD 2022 /* GEH: TODO: Move this under if-condition above and also include in 2023 __kmp_end_split_barrier(). This will more accurately represent the actual 2024 release time of the threads for split barriers. */ 2025 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 2026 __kmp_itt_barrier_finished(gtid, itt_sync_obj); 2027 #endif /* USE_ITT_BUILD */ 2028 } else { // Team is serialized. 2029 status = 0; 2030 if (__kmp_tasking_mode != tskm_immediate_exec) { 2031 if (this_thr->th.th_task_team != NULL) { 2032 #if USE_ITT_NOTIFY 2033 void *itt_sync_obj = NULL; 2034 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2035 itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1); 2036 __kmp_itt_barrier_starting(gtid, itt_sync_obj); 2037 } 2038 #endif 2039 2040 KMP_DEBUG_ASSERT( 2041 this_thr->th.th_task_team->tt.tt_found_proxy_tasks == TRUE || 2042 this_thr->th.th_task_team->tt.tt_hidden_helper_task_encountered == 2043 TRUE); 2044 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); 2045 __kmp_task_team_setup(this_thr, team, 0); 2046 2047 #if USE_ITT_BUILD 2048 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 2049 __kmp_itt_barrier_finished(gtid, itt_sync_obj); 2050 #endif /* USE_ITT_BUILD */ 2051 } 2052 } 2053 } 2054 KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) is leaving with return value %d\n", 2055 gtid, __kmp_team_from_gtid(gtid)->t.t_id, 2056 __kmp_tid_from_gtid(gtid), status)); 2057 2058 #if OMPT_SUPPORT 2059 if (ompt_enabled.enabled) { 2060 #if OMPT_OPTIONAL 2061 if (ompt_enabled.ompt_callback_sync_region_wait) { 2062 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2063 barrier_kind, ompt_scope_end, my_parallel_data, my_task_data, 2064 return_address); 2065 } 2066 if (ompt_enabled.ompt_callback_sync_region) { 2067 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2068 barrier_kind, ompt_scope_end, my_parallel_data, my_task_data, 2069 return_address); 2070 } 2071 #endif 2072 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 2073 } 2074 #endif 2075 2076 if (cancellable) 2077 return (int)cancelled; 2078 return status; 2079 } 2080 2081 // Returns 0 if primary thread, 1 if worker thread. 2082 int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, 2083 size_t reduce_size, void *reduce_data, 2084 void (*reduce)(void *, void *)) { 2085 return __kmp_barrier_template<>(bt, gtid, is_split, reduce_size, reduce_data, 2086 reduce); 2087 } 2088 2089 #if defined(KMP_GOMP_COMPAT) 2090 // Returns 1 if cancelled, 0 otherwise 2091 int __kmp_barrier_gomp_cancel(int gtid) { 2092 if (__kmp_omp_cancellation) { 2093 int cancelled = __kmp_barrier_template<true>(bs_plain_barrier, gtid, FALSE, 2094 0, NULL, NULL); 2095 if (cancelled) { 2096 int tid = __kmp_tid_from_gtid(gtid); 2097 kmp_info_t *this_thr = __kmp_threads[gtid]; 2098 if (KMP_MASTER_TID(tid)) { 2099 // Primary thread does not need to revert anything 2100 } else { 2101 // Workers need to revert their private b_arrived flag 2102 this_thr->th.th_bar[bs_plain_barrier].bb.b_arrived -= 2103 KMP_BARRIER_STATE_BUMP; 2104 } 2105 } 2106 return cancelled; 2107 } 2108 __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); 2109 return FALSE; 2110 } 2111 #endif 2112 2113 void __kmp_end_split_barrier(enum barrier_type bt, int gtid) { 2114 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_end_split_barrier); 2115 KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER); 2116 KMP_DEBUG_ASSERT(bt < bs_last_barrier); 2117 int tid = __kmp_tid_from_gtid(gtid); 2118 kmp_info_t *this_thr = __kmp_threads[gtid]; 2119 kmp_team_t *team = this_thr->th.th_team; 2120 2121 if (!team->t.t_serialized) { 2122 if (KMP_MASTER_GTID(gtid)) { 2123 switch (__kmp_barrier_release_pattern[bt]) { 2124 case bp_dist_bar: { 2125 __kmp_dist_barrier_release(bt, this_thr, gtid, tid, 2126 FALSE USE_ITT_BUILD_ARG(NULL)); 2127 break; 2128 } 2129 case bp_hyper_bar: { 2130 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); 2131 __kmp_hyper_barrier_release(bt, this_thr, gtid, tid, 2132 FALSE USE_ITT_BUILD_ARG(NULL)); 2133 break; 2134 } 2135 case bp_hierarchical_bar: { 2136 __kmp_hierarchical_barrier_release(bt, this_thr, gtid, tid, 2137 FALSE USE_ITT_BUILD_ARG(NULL)); 2138 break; 2139 } 2140 case bp_tree_bar: { 2141 KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); 2142 __kmp_tree_barrier_release(bt, this_thr, gtid, tid, 2143 FALSE USE_ITT_BUILD_ARG(NULL)); 2144 break; 2145 } 2146 default: { 2147 __kmp_linear_barrier_release(bt, this_thr, gtid, tid, 2148 FALSE USE_ITT_BUILD_ARG(NULL)); 2149 } 2150 } 2151 if (__kmp_tasking_mode != tskm_immediate_exec) { 2152 __kmp_task_team_sync(this_thr, team); 2153 } // if 2154 } 2155 } 2156 } 2157 2158 void __kmp_join_barrier(int gtid) { 2159 KMP_TIME_PARTITIONED_BLOCK(OMP_join_barrier); 2160 KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER); 2161 2162 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 2163 2164 kmp_info_t *this_thr = __kmp_threads[gtid]; 2165 kmp_team_t *team; 2166 kmp_uint nproc; 2167 int tid; 2168 #ifdef KMP_DEBUG 2169 int team_id; 2170 #endif /* KMP_DEBUG */ 2171 #if USE_ITT_BUILD 2172 void *itt_sync_obj = NULL; 2173 #if USE_ITT_NOTIFY 2174 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) // Don't call routine without need 2175 // Get object created at fork_barrier 2176 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2177 #endif 2178 #endif /* USE_ITT_BUILD */ 2179 KMP_MB(); 2180 2181 // Get current info 2182 team = this_thr->th.th_team; 2183 nproc = this_thr->th.th_team_nproc; 2184 KMP_DEBUG_ASSERT((int)nproc == team->t.t_nproc); 2185 tid = __kmp_tid_from_gtid(gtid); 2186 #ifdef KMP_DEBUG 2187 team_id = team->t.t_id; 2188 kmp_info_t *master_thread = this_thr->th.th_team_master; 2189 if (master_thread != team->t.t_threads[0]) { 2190 __kmp_print_structure(); 2191 } 2192 #endif /* KMP_DEBUG */ 2193 KMP_DEBUG_ASSERT(master_thread == team->t.t_threads[0]); 2194 KMP_MB(); 2195 2196 // Verify state 2197 KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_team)); 2198 KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_root)); 2199 KMP_DEBUG_ASSERT(this_thr == team->t.t_threads[tid]); 2200 KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) arrived at join barrier\n", 2201 gtid, team_id, tid)); 2202 2203 #if OMPT_SUPPORT 2204 if (ompt_enabled.enabled) { 2205 #if OMPT_OPTIONAL 2206 ompt_data_t *my_task_data; 2207 ompt_data_t *my_parallel_data; 2208 void *codeptr = NULL; 2209 int ds_tid = this_thr->th.th_info.ds.ds_tid; 2210 if (KMP_MASTER_TID(ds_tid) && 2211 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 2212 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 2213 codeptr = team->t.ompt_team_info.master_return_address; 2214 my_task_data = OMPT_CUR_TASK_DATA(this_thr); 2215 my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr); 2216 if (ompt_enabled.ompt_callback_sync_region) { 2217 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2218 ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data, 2219 my_task_data, codeptr); 2220 } 2221 if (ompt_enabled.ompt_callback_sync_region_wait) { 2222 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2223 ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data, 2224 my_task_data, codeptr); 2225 } 2226 if (!KMP_MASTER_TID(ds_tid)) 2227 this_thr->th.ompt_thread_info.task_data = *OMPT_CUR_TASK_DATA(this_thr); 2228 #endif 2229 this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier_implicit; 2230 } 2231 #endif 2232 2233 if (__kmp_tasking_mode == tskm_extra_barrier) { 2234 __kmp_tasking_barrier(team, this_thr, gtid); 2235 KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) past tasking barrier\n", 2236 gtid, team_id, tid)); 2237 } 2238 #ifdef KMP_DEBUG 2239 if (__kmp_tasking_mode != tskm_immediate_exec) { 2240 KA_TRACE(20, ("__kmp_join_barrier: T#%d, old team = %d, old task_team = " 2241 "%p, th_task_team = %p\n", 2242 __kmp_gtid_from_thread(this_thr), team_id, 2243 team->t.t_task_team[this_thr->th.th_task_state], 2244 this_thr->th.th_task_team)); 2245 if (this_thr->th.th_task_team) 2246 KMP_DEBUG_ASSERT(this_thr->th.th_task_team == 2247 team->t.t_task_team[this_thr->th.th_task_state]); 2248 } 2249 #endif /* KMP_DEBUG */ 2250 2251 /* Copy the blocktime info to the thread, where __kmp_wait_template() can 2252 access it when the team struct is not guaranteed to exist. Doing these 2253 loads causes a cache miss slows down EPCC parallel by 2x. As a workaround, 2254 we do not perform the copy if blocktime=infinite, since the values are not 2255 used by __kmp_wait_template() in that case. */ 2256 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 2257 #if KMP_USE_MONITOR 2258 this_thr->th.th_team_bt_intervals = 2259 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; 2260 this_thr->th.th_team_bt_set = 2261 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; 2262 #else 2263 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); 2264 #endif 2265 } 2266 2267 #if USE_ITT_BUILD 2268 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 2269 __kmp_itt_barrier_starting(gtid, itt_sync_obj); 2270 #endif /* USE_ITT_BUILD */ 2271 2272 switch (__kmp_barrier_gather_pattern[bs_forkjoin_barrier]) { 2273 case bp_dist_bar: { 2274 __kmp_dist_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, 2275 NULL USE_ITT_BUILD_ARG(itt_sync_obj)); 2276 break; 2277 } 2278 case bp_hyper_bar: { 2279 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]); 2280 __kmp_hyper_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, 2281 NULL USE_ITT_BUILD_ARG(itt_sync_obj)); 2282 break; 2283 } 2284 case bp_hierarchical_bar: { 2285 __kmp_hierarchical_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, 2286 NULL USE_ITT_BUILD_ARG(itt_sync_obj)); 2287 break; 2288 } 2289 case bp_tree_bar: { 2290 KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]); 2291 __kmp_tree_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, 2292 NULL USE_ITT_BUILD_ARG(itt_sync_obj)); 2293 break; 2294 } 2295 default: { 2296 __kmp_linear_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, 2297 NULL USE_ITT_BUILD_ARG(itt_sync_obj)); 2298 } 2299 } 2300 2301 /* From this point on, the team data structure may be deallocated at any time 2302 by the primary thread - it is unsafe to reference it in any of the worker 2303 threads. Any per-team data items that need to be referenced before the 2304 end of the barrier should be moved to the kmp_task_team_t structs. */ 2305 if (KMP_MASTER_TID(tid)) { 2306 if (__kmp_tasking_mode != tskm_immediate_exec) { 2307 __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); 2308 } 2309 if (__kmp_display_affinity) { 2310 KMP_CHECK_UPDATE(team->t.t_display_affinity, 0); 2311 } 2312 #if KMP_STATS_ENABLED 2313 // Have primary thread flag the workers to indicate they are now waiting for 2314 // next parallel region, Also wake them up so they switch their timers to 2315 // idle. 2316 for (int i = 0; i < team->t.t_nproc; ++i) { 2317 kmp_info_t *team_thread = team->t.t_threads[i]; 2318 if (team_thread == this_thr) 2319 continue; 2320 team_thread->th.th_stats->setIdleFlag(); 2321 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && 2322 team_thread->th.th_sleep_loc != NULL) 2323 __kmp_null_resume_wrapper(team_thread); 2324 } 2325 #endif 2326 #if USE_ITT_BUILD 2327 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 2328 __kmp_itt_barrier_middle(gtid, itt_sync_obj); 2329 #endif /* USE_ITT_BUILD */ 2330 2331 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2332 // Join barrier - report frame end 2333 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2334 __kmp_forkjoin_frames_mode && 2335 (this_thr->th.th_teams_microtask == NULL || // either not in teams 2336 this_thr->th.th_teams_size.nteams == 1) && // or inside single team 2337 team->t.t_active_level == 1) { 2338 kmp_uint64 cur_time = __itt_get_timestamp(); 2339 ident_t *loc = team->t.t_ident; 2340 kmp_info_t **other_threads = team->t.t_threads; 2341 switch (__kmp_forkjoin_frames_mode) { 2342 case 1: 2343 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, 2344 loc, nproc); 2345 break; 2346 case 2: 2347 __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time, 1, 2348 loc, nproc); 2349 break; 2350 case 3: 2351 if (__itt_metadata_add_ptr) { 2352 // Initialize with primary thread's wait time 2353 kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time; 2354 // Set arrive time to zero to be able to check it in 2355 // __kmp_invoke_task(); the same is done inside the loop below 2356 this_thr->th.th_bar_arrive_time = 0; 2357 for (kmp_uint i = 1; i < nproc; ++i) { 2358 delta += (cur_time - other_threads[i]->th.th_bar_arrive_time); 2359 other_threads[i]->th.th_bar_arrive_time = 0; 2360 } 2361 __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time, 2362 cur_time, delta, 0); 2363 } 2364 __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, 2365 loc, nproc); 2366 this_thr->th.th_frame_time = cur_time; 2367 break; 2368 } 2369 } 2370 #endif /* USE_ITT_BUILD */ 2371 } 2372 #if USE_ITT_BUILD 2373 else { 2374 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) 2375 __kmp_itt_barrier_middle(gtid, itt_sync_obj); 2376 } 2377 #endif /* USE_ITT_BUILD */ 2378 2379 #if KMP_DEBUG 2380 if (KMP_MASTER_TID(tid)) { 2381 KA_TRACE( 2382 15, 2383 ("__kmp_join_barrier: T#%d(%d:%d) says all %d team threads arrived\n", 2384 gtid, team_id, tid, nproc)); 2385 } 2386 #endif /* KMP_DEBUG */ 2387 2388 // TODO now, mark worker threads as done so they may be disbanded 2389 KMP_MB(); // Flush all pending memory write invalidates. 2390 KA_TRACE(10, 2391 ("__kmp_join_barrier: T#%d(%d:%d) leaving\n", gtid, team_id, tid)); 2392 2393 } 2394 2395 // TODO release worker threads' fork barriers as we are ready instead of all at 2396 // once 2397 void __kmp_fork_barrier(int gtid, int tid) { 2398 KMP_TIME_PARTITIONED_BLOCK(OMP_fork_barrier); 2399 KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER); 2400 kmp_info_t *this_thr = __kmp_threads[gtid]; 2401 kmp_team_t *team = (tid == 0) ? this_thr->th.th_team : NULL; 2402 #if USE_ITT_BUILD 2403 void *itt_sync_obj = NULL; 2404 #endif /* USE_ITT_BUILD */ 2405 if (team) 2406 2407 KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) has arrived\n", gtid, 2408 (team != NULL) ? team->t.t_id : -1, tid)); 2409 2410 // th_team pointer only valid for primary thread here 2411 if (KMP_MASTER_TID(tid)) { 2412 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2413 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2414 // Create itt barrier object 2415 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 1); 2416 __kmp_itt_barrier_middle(gtid, itt_sync_obj); // Call acquired/releasing 2417 } 2418 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2419 2420 #ifdef KMP_DEBUG 2421 KMP_DEBUG_ASSERT(team); 2422 kmp_info_t **other_threads = team->t.t_threads; 2423 int i; 2424 2425 // Verify state 2426 KMP_MB(); 2427 2428 for (i = 1; i < team->t.t_nproc; ++i) { 2429 KA_TRACE(500, 2430 ("__kmp_fork_barrier: T#%d(%d:0) checking T#%d(%d:%d) fork go " 2431 "== %u.\n", 2432 gtid, team->t.t_id, other_threads[i]->th.th_info.ds.ds_gtid, 2433 team->t.t_id, other_threads[i]->th.th_info.ds.ds_tid, 2434 other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go)); 2435 KMP_DEBUG_ASSERT( 2436 (TCR_4(other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go) & 2437 ~(KMP_BARRIER_SLEEP_STATE)) == KMP_INIT_BARRIER_STATE); 2438 KMP_DEBUG_ASSERT(other_threads[i]->th.th_team == team); 2439 } 2440 #endif 2441 2442 if (__kmp_tasking_mode != tskm_immediate_exec) { 2443 // 0 indicates setup current task team if nthreads > 1 2444 __kmp_task_team_setup(this_thr, team, 0); 2445 } 2446 2447 /* The primary thread may have changed its blocktime between join barrier 2448 and fork barrier. Copy the blocktime info to the thread, where 2449 __kmp_wait_template() can access it when the team struct is not 2450 guaranteed to exist. */ 2451 // See note about the corresponding code in __kmp_join_barrier() being 2452 // performance-critical 2453 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 2454 #if KMP_USE_MONITOR 2455 this_thr->th.th_team_bt_intervals = 2456 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; 2457 this_thr->th.th_team_bt_set = 2458 team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; 2459 #else 2460 this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); 2461 #endif 2462 } 2463 } // primary thread 2464 2465 switch (__kmp_barrier_release_pattern[bs_forkjoin_barrier]) { 2466 case bp_dist_bar: { 2467 __kmp_dist_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, 2468 TRUE USE_ITT_BUILD_ARG(NULL)); 2469 break; 2470 } 2471 case bp_hyper_bar: { 2472 KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]); 2473 __kmp_hyper_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, 2474 TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 2475 break; 2476 } 2477 case bp_hierarchical_bar: { 2478 __kmp_hierarchical_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, 2479 TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 2480 break; 2481 } 2482 case bp_tree_bar: { 2483 KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]); 2484 __kmp_tree_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, 2485 TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 2486 break; 2487 } 2488 default: { 2489 __kmp_linear_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, 2490 TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 2491 } 2492 } 2493 2494 #if OMPT_SUPPORT 2495 if (ompt_enabled.enabled && 2496 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 2497 int ds_tid = this_thr->th.th_info.ds.ds_tid; 2498 ompt_data_t *task_data = (team) 2499 ? OMPT_CUR_TASK_DATA(this_thr) 2500 : &(this_thr->th.ompt_thread_info.task_data); 2501 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 2502 #if OMPT_OPTIONAL 2503 void *codeptr = NULL; 2504 if (KMP_MASTER_TID(ds_tid) && 2505 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 2506 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 2507 codeptr = team ? team->t.ompt_team_info.master_return_address : NULL; 2508 if (ompt_enabled.ompt_callback_sync_region_wait) { 2509 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2510 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 2511 codeptr); 2512 } 2513 if (ompt_enabled.ompt_callback_sync_region) { 2514 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2515 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 2516 codeptr); 2517 } 2518 #endif 2519 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 2520 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2521 ompt_scope_end, NULL, task_data, 0, ds_tid, 2522 ompt_task_implicit); // TODO: Can this be ompt_task_initial? 2523 } 2524 } 2525 #endif 2526 2527 // Early exit for reaping threads releasing forkjoin barrier 2528 if (TCR_4(__kmp_global.g.g_done)) { 2529 this_thr->th.th_task_team = NULL; 2530 2531 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2532 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2533 if (!KMP_MASTER_TID(tid)) { 2534 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2535 if (itt_sync_obj) 2536 __kmp_itt_barrier_finished(gtid, itt_sync_obj); 2537 } 2538 } 2539 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2540 KA_TRACE(10, ("__kmp_fork_barrier: T#%d is leaving early\n", gtid)); 2541 return; 2542 } 2543 2544 /* We can now assume that a valid team structure has been allocated by the 2545 primary thread and propagated to all worker threads. The current thread, 2546 however, may not be part of the team, so we can't blindly assume that the 2547 team pointer is non-null. */ 2548 team = (kmp_team_t *)TCR_PTR(this_thr->th.th_team); 2549 KMP_DEBUG_ASSERT(team != NULL); 2550 tid = __kmp_tid_from_gtid(gtid); 2551 2552 #if KMP_BARRIER_ICV_PULL 2553 /* Primary thread's copy of the ICVs was set up on the implicit taskdata in 2554 __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's 2555 implicit task has this data before this function is called. We cannot 2556 modify __kmp_fork_call() to look at the fixed ICVs in the primary thread's 2557 thread struct, because it is not always the case that the threads arrays 2558 have been allocated when __kmp_fork_call() is executed. */ 2559 { 2560 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); 2561 if (!KMP_MASTER_TID(tid)) { // primary thread already has ICVs 2562 // Copy the initial ICVs from the primary thread's thread struct to the 2563 // implicit task for this tid. 2564 KA_TRACE(10, 2565 ("__kmp_fork_barrier: T#%d(%d) is PULLing ICVs\n", gtid, tid)); 2566 __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, 2567 tid, FALSE); 2568 copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, 2569 &team->t.t_threads[0] 2570 ->th.th_bar[bs_forkjoin_barrier] 2571 .bb.th_fixed_icvs); 2572 } 2573 } 2574 #endif // KMP_BARRIER_ICV_PULL 2575 2576 if (__kmp_tasking_mode != tskm_immediate_exec) { 2577 __kmp_task_team_sync(this_thr, team); 2578 } 2579 2580 #if KMP_AFFINITY_SUPPORTED 2581 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 2582 if (proc_bind == proc_bind_intel) { 2583 // Call dynamic affinity settings 2584 if (__kmp_affinity_type == affinity_balanced && team->t.t_size_changed) { 2585 __kmp_balanced_affinity(this_thr, team->t.t_nproc); 2586 } 2587 } else if (proc_bind != proc_bind_false) { 2588 if (this_thr->th.th_new_place == this_thr->th.th_current_place) { 2589 KA_TRACE(100, ("__kmp_fork_barrier: T#%d already in correct place %d\n", 2590 __kmp_gtid_from_thread(this_thr), 2591 this_thr->th.th_current_place)); 2592 } else { 2593 __kmp_affinity_set_place(gtid); 2594 } 2595 } 2596 #endif // KMP_AFFINITY_SUPPORTED 2597 // Perform the display affinity functionality 2598 if (__kmp_display_affinity) { 2599 if (team->t.t_display_affinity 2600 #if KMP_AFFINITY_SUPPORTED 2601 || (__kmp_affinity_type == affinity_balanced && team->t.t_size_changed) 2602 #endif 2603 ) { 2604 // NULL means use the affinity-format-var ICV 2605 __kmp_aux_display_affinity(gtid, NULL); 2606 this_thr->th.th_prev_num_threads = team->t.t_nproc; 2607 this_thr->th.th_prev_level = team->t.t_level; 2608 } 2609 } 2610 if (!KMP_MASTER_TID(tid)) 2611 KMP_CHECK_UPDATE(this_thr->th.th_def_allocator, team->t.t_def_allocator); 2612 2613 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2614 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2615 if (!KMP_MASTER_TID(tid)) { 2616 // Get correct barrier object 2617 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2618 __kmp_itt_barrier_finished(gtid, itt_sync_obj); // Workers call acquired 2619 } // (prepare called inside barrier_release) 2620 } 2621 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2622 KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) is leaving\n", gtid, 2623 team->t.t_id, tid)); 2624 } 2625 2626 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 2627 kmp_internal_control_t *new_icvs, ident_t *loc) { 2628 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_setup_icv_copy); 2629 2630 KMP_DEBUG_ASSERT(team && new_nproc && new_icvs); 2631 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 2632 2633 /* Primary thread's copy of the ICVs was set up on the implicit taskdata in 2634 __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's 2635 implicit task has this data before this function is called. */ 2636 #if KMP_BARRIER_ICV_PULL 2637 /* Copy ICVs to primary thread's thread structure into th_fixed_icvs (which 2638 remains untouched), where all of the worker threads can access them and 2639 make their own copies after the barrier. */ 2640 KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be 2641 // allocated at this point 2642 copy_icvs( 2643 &team->t.t_threads[0]->th.th_bar[bs_forkjoin_barrier].bb.th_fixed_icvs, 2644 new_icvs); 2645 KF_TRACE(10, ("__kmp_setup_icv_copy: PULL: T#%d this_thread=%p team=%p\n", 0, 2646 team->t.t_threads[0], team)); 2647 #elif KMP_BARRIER_ICV_PUSH 2648 // The ICVs will be propagated in the fork barrier, so nothing needs to be 2649 // done here. 2650 KF_TRACE(10, ("__kmp_setup_icv_copy: PUSH: T#%d this_thread=%p team=%p\n", 0, 2651 team->t.t_threads[0], team)); 2652 #else 2653 // Copy the ICVs to each of the non-primary threads. This takes O(nthreads) 2654 // time. 2655 ngo_load(new_icvs); 2656 KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be 2657 // allocated at this point 2658 for (int f = 1; f < new_nproc; ++f) { // Skip the primary thread 2659 // TODO: GEH - pass in better source location info since usually NULL here 2660 KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n", 2661 f, team->t.t_threads[f], team)); 2662 __kmp_init_implicit_task(loc, team->t.t_threads[f], team, f, FALSE); 2663 ngo_store_icvs(&team->t.t_implicit_task_taskdata[f].td_icvs, new_icvs); 2664 KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n", 2665 f, team->t.t_threads[f], team)); 2666 } 2667 ngo_sync(); 2668 #endif // KMP_BARRIER_ICV_PULL 2669 } 2670