xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp (revision 5036d9652a5701d00e9e40ea942c278e9f77d33d)
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenRegisters.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cstdio>
32 #include <iterator>
33 #include <set>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "dag-patterns"
37 
38 static inline bool isIntegerOrPtr(MVT VT) {
39   return VT.isInteger() || VT == MVT::iPTR;
40 }
41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42 static inline bool isVector(MVT VT) { return VT.isVector(); }
43 static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44 
45 template <typename Predicate>
46 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47   bool Erased = false;
48   // It is ok to iterate over MachineValueTypeSet and remove elements from it
49   // at the same time.
50   for (MVT T : S) {
51     if (!P(T))
52       continue;
53     Erased = true;
54     S.erase(T);
55   }
56   return Erased;
57 }
58 
59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60   SmallVector<MVT, 4> Types(begin(), end());
61   array_pod_sort(Types.begin(), Types.end());
62 
63   OS << '[';
64   ListSeparator LS(" ");
65   for (const MVT &T : Types)
66     OS << LS << ValueTypeByHwMode::getMVTName(T);
67   OS << ']';
68 }
69 
70 // --- TypeSetByHwMode
71 
72 // This is a parameterized type-set class. For each mode there is a list
73 // of types that are currently possible for a given tree node. Type
74 // inference will apply to each mode separately.
75 
76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77   // Take the address space from the first type in the list.
78   if (!VTList.empty())
79     AddrSpace = VTList[0].PtrAddrSpace;
80 
81   for (const ValueTypeByHwMode &VVT : VTList)
82     insert(VVT);
83 }
84 
85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86   for (const auto &I : *this) {
87     if (I.second.size() > 1)
88       return false;
89     if (!AllowEmpty && I.second.empty())
90       return false;
91   }
92   return true;
93 }
94 
95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96   assert(isValueTypeByHwMode(true) &&
97          "The type set has multiple types for at least one HW mode");
98   ValueTypeByHwMode VVT;
99   VVT.PtrAddrSpace = AddrSpace;
100 
101   for (const auto &I : *this) {
102     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103     VVT.getOrCreateTypeForMode(I.first, T);
104   }
105   return VVT;
106 }
107 
108 bool TypeSetByHwMode::isPossible() const {
109   for (const auto &I : *this)
110     if (!I.second.empty())
111       return true;
112   return false;
113 }
114 
115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116   bool Changed = false;
117   bool ContainsDefault = false;
118   MVT DT = MVT::Other;
119 
120   for (const auto &P : VVT) {
121     unsigned M = P.first;
122     // Make sure there exists a set for each specific mode from VVT.
123     Changed |= getOrCreate(M).insert(P.second).second;
124     // Cache VVT's default mode.
125     if (DefaultMode == M) {
126       ContainsDefault = true;
127       DT = P.second;
128     }
129   }
130 
131   // If VVT has a default mode, add the corresponding type to all
132   // modes in "this" that do not exist in VVT.
133   if (ContainsDefault)
134     for (auto &I : *this)
135       if (!VVT.hasMode(I.first))
136         Changed |= I.second.insert(DT).second;
137 
138   return Changed;
139 }
140 
141 // Constrain the type set to be the intersection with VTS.
142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143   bool Changed = false;
144   if (hasDefault()) {
145     for (const auto &I : VTS) {
146       unsigned M = I.first;
147       if (M == DefaultMode || hasMode(M))
148         continue;
149       Map.insert({M, Map.at(DefaultMode)});
150       Changed = true;
151     }
152   }
153 
154   for (auto &I : *this) {
155     unsigned M = I.first;
156     SetType &S = I.second;
157     if (VTS.hasMode(M) || VTS.hasDefault()) {
158       Changed |= intersect(I.second, VTS.get(M));
159     } else if (!S.empty()) {
160       S.clear();
161       Changed = true;
162     }
163   }
164   return Changed;
165 }
166 
167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168   bool Changed = false;
169   for (auto &I : *this)
170     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171   return Changed;
172 }
173 
174 template <typename Predicate>
175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176   assert(empty());
177   for (const auto &I : VTS) {
178     SetType &S = getOrCreate(I.first);
179     for (auto J : I.second)
180       if (P(J))
181         S.insert(J);
182   }
183   return !empty();
184 }
185 
186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187   SmallVector<unsigned, 4> Modes;
188   Modes.reserve(Map.size());
189 
190   for (const auto &I : *this)
191     Modes.push_back(I.first);
192   if (Modes.empty()) {
193     OS << "{}";
194     return;
195   }
196   array_pod_sort(Modes.begin(), Modes.end());
197 
198   OS << '{';
199   for (unsigned M : Modes) {
200     OS << ' ' << getModeName(M) << ':';
201     get(M).writeToStream(OS);
202   }
203   OS << " }";
204 }
205 
206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207   // The isSimple call is much quicker than hasDefault - check this first.
208   bool IsSimple = isSimple();
209   bool VTSIsSimple = VTS.isSimple();
210   if (IsSimple && VTSIsSimple)
211     return getSimple() == VTS.getSimple();
212 
213   // Speedup: We have a default if the set is simple.
214   bool HaveDefault = IsSimple || hasDefault();
215   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216   if (HaveDefault != VTSHaveDefault)
217     return false;
218 
219   SmallSet<unsigned, 4> Modes;
220   for (auto &I : *this)
221     Modes.insert(I.first);
222   for (const auto &I : VTS)
223     Modes.insert(I.first);
224 
225   if (HaveDefault) {
226     // Both sets have default mode.
227     for (unsigned M : Modes) {
228       if (get(M) != VTS.get(M))
229         return false;
230     }
231   } else {
232     // Neither set has default mode.
233     for (unsigned M : Modes) {
234       // If there is no default mode, an empty set is equivalent to not having
235       // the corresponding mode.
236       bool NoModeThis = !hasMode(M) || get(M).empty();
237       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238       if (NoModeThis != NoModeVTS)
239         return false;
240       if (!NoModeThis)
241         if (get(M) != VTS.get(M))
242           return false;
243     }
244   }
245 
246   return true;
247 }
248 
249 namespace llvm {
250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251   T.writeToStream(OS);
252   return OS;
253 }
254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255   T.writeToStream(OS);
256   return OS;
257 }
258 } // namespace llvm
259 
260 LLVM_DUMP_METHOD
261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262 
263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264   auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265     // Complement of In within this partition.
266     auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267 
268     if (!WildVT)
269       return berase_if(Out, CompIn);
270 
271     bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272     if (OutW == InW)
273       return berase_if(Out, CompIn);
274 
275     // Compute the intersection of scalars separately to account for only one
276     // set containing WildVT.
277     // The intersection of WildVT with a set of corresponding types that does
278     // not include WildVT will result in the most specific type:
279     // - WildVT is more specific than any set with two elements or more
280     // - WildVT is less specific than any single type.
281     // For example, for iPTR and scalar integer types
282     // { iPTR } * { i32 }     -> { i32 }
283     // { iPTR } * { i32 i64 } -> { iPTR }
284     // and
285     // { iPTR i32 } * { i32 }          -> { i32 }
286     // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
287     // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288 
289     // Looking at just this partition, let In' = elements only in In,
290     // Out' = elements only in Out, and IO = elements common to both. Normally
291     // IO would be returned as the result of the intersection, but we need to
292     // account for WildVT being a "wildcard" of sorts. Since elements in IO are
293     // those that match both sets exactly, they will all belong to the output.
294     // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295     // that the other set doesn't have it, but it could have (1) a more
296     // specific type, or (2) a set of types that is less specific. The
297     // "leftovers" from the other set is what we want to examine more closely.
298 
299     auto Leftovers = [&](const SetType &A, const SetType &B) {
300       SetType Diff = A;
301       berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302       return Diff;
303     };
304 
305     if (InW) {
306       SetType OutLeftovers = Leftovers(Out, In);
307       if (OutLeftovers.size() < 2) {
308         // WildVT not added to Out. Keep the possible single leftover.
309         return false;
310       }
311       // WildVT replaces the leftovers.
312       berase_if(Out, CompIn);
313       Out.insert(*WildVT);
314       return true;
315     }
316 
317     // OutW == true
318     SetType InLeftovers = Leftovers(In, Out);
319     unsigned SizeOut = Out.size();
320     berase_if(Out, CompIn); // This will remove at least the WildVT.
321     if (InLeftovers.size() < 2) {
322       // WildVT deleted from Out. Add back the possible single leftover.
323       Out.insert(InLeftovers);
324       return true;
325     }
326 
327     // Keep the WildVT in Out.
328     Out.insert(*WildVT);
329     // If WildVT was the only element initially removed from Out, then Out
330     // has not changed.
331     return SizeOut != Out.size();
332   };
333 
334   // Note: must be non-overlapping
335   using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336   static const WildPartT WildParts[] = {
337       {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338   };
339 
340   bool Changed = false;
341   for (const auto &I : WildParts)
342     Changed |= IntersectP(I.first, I.second);
343 
344   Changed |= IntersectP(std::nullopt, [&](MVT T) {
345     return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346   });
347 
348   return Changed;
349 }
350 
351 bool TypeSetByHwMode::validate() const {
352   if (empty())
353     return true;
354   bool AllEmpty = true;
355   for (const auto &I : *this)
356     AllEmpty &= I.second.empty();
357   return !AllEmpty;
358 }
359 
360 // --- TypeInfer
361 
362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363                                 const TypeSetByHwMode &In) const {
364   ValidateOnExit _1(Out, *this);
365   In.validate();
366   if (In.empty() || Out == In || TP.hasError())
367     return false;
368   if (Out.empty()) {
369     Out = In;
370     return true;
371   }
372 
373   bool Changed = Out.constrain(In);
374   if (Changed && Out.empty())
375     TP.error("Type contradiction");
376 
377   return Changed;
378 }
379 
380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   assert(!Out.empty() && "cannot pick from an empty set");
385 
386   bool Changed = false;
387   for (auto &I : Out) {
388     TypeSetByHwMode::SetType &S = I.second;
389     if (S.size() <= 1)
390       continue;
391     MVT T = *S.begin(); // Pick the first element.
392     S.clear();
393     S.insert(T);
394     Changed = true;
395   }
396   return Changed;
397 }
398 
399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400   ValidateOnExit _1(Out, *this);
401   if (TP.hasError())
402     return false;
403   if (!Out.empty())
404     return Out.constrain(isIntegerOrPtr);
405 
406   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407 }
408 
409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410   ValidateOnExit _1(Out, *this);
411   if (TP.hasError())
412     return false;
413   if (!Out.empty())
414     return Out.constrain(isFloatingPoint);
415 
416   return Out.assign_if(getLegalTypes(), isFloatingPoint);
417 }
418 
419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420   ValidateOnExit _1(Out, *this);
421   if (TP.hasError())
422     return false;
423   if (!Out.empty())
424     return Out.constrain(isScalar);
425 
426   return Out.assign_if(getLegalTypes(), isScalar);
427 }
428 
429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430   ValidateOnExit _1(Out, *this);
431   if (TP.hasError())
432     return false;
433   if (!Out.empty())
434     return Out.constrain(isVector);
435 
436   return Out.assign_if(getLegalTypes(), isVector);
437 }
438 
439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440   ValidateOnExit _1(Out, *this);
441   if (TP.hasError() || !Out.empty())
442     return false;
443 
444   Out = getLegalTypes();
445   return true;
446 }
447 
448 template <typename Iter, typename Pred, typename Less>
449 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450   if (B == E)
451     return E;
452   Iter Min = E;
453   for (Iter I = B; I != E; ++I) {
454     if (!P(*I))
455       continue;
456     if (Min == E || L(*I, *Min))
457       Min = I;
458   }
459   return Min;
460 }
461 
462 template <typename Iter, typename Pred, typename Less>
463 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464   if (B == E)
465     return E;
466   Iter Max = E;
467   for (Iter I = B; I != E; ++I) {
468     if (!P(*I))
469       continue;
470     if (Max == E || L(*Max, *I))
471       Max = I;
472   }
473   return Max;
474 }
475 
476 /// Make sure that for each type in Small, there exists a larger type in Big.
477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478                                    bool SmallIsVT) {
479   ValidateOnExit _1(Small, *this), _2(Big, *this);
480   if (TP.hasError())
481     return false;
482   bool Changed = false;
483 
484   assert((!SmallIsVT || !Small.empty()) &&
485          "Small should not be empty for SDTCisVTSmallerThanOp");
486 
487   if (Small.empty())
488     Changed |= EnforceAny(Small);
489   if (Big.empty())
490     Changed |= EnforceAny(Big);
491 
492   assert(Small.hasDefault() && Big.hasDefault());
493 
494   SmallVector<unsigned, 4> Modes;
495   union_modes(Small, Big, Modes);
496 
497   // 1. Only allow integer or floating point types and make sure that
498   //    both sides are both integer or both floating point.
499   // 2. Make sure that either both sides have vector types, or neither
500   //    of them does.
501   for (unsigned M : Modes) {
502     TypeSetByHwMode::SetType &S = Small.get(M);
503     TypeSetByHwMode::SetType &B = Big.get(M);
504 
505     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506 
507     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509       Changed |= berase_if(S, NotInt);
510       Changed |= berase_if(B, NotInt);
511     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513       Changed |= berase_if(S, NotFP);
514       Changed |= berase_if(B, NotFP);
515     } else if (SmallIsVT && B.empty()) {
516       // B is empty and since S is a specific VT, it will never be empty. Don't
517       // report this as a change, just clear S and continue. This prevents an
518       // infinite loop.
519       S.clear();
520     } else if (S.empty() || B.empty()) {
521       Changed = !S.empty() || !B.empty();
522       S.clear();
523       B.clear();
524     } else {
525       TP.error("Incompatible types");
526       return Changed;
527     }
528 
529     if (none_of(S, isVector) || none_of(B, isVector)) {
530       Changed |= berase_if(S, isVector);
531       Changed |= berase_if(B, isVector);
532     }
533   }
534 
535   auto LT = [](MVT A, MVT B) -> bool {
536     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
537     // purposes of ordering.
538     auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539                             A.getSizeInBits().getKnownMinValue());
540     auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541                             B.getSizeInBits().getKnownMinValue());
542     return ASize < BSize;
543   };
544   auto SameKindLE = [](MVT A, MVT B) -> bool {
545     // This function is used when removing elements: when a vector is compared
546     // to a non-vector or a scalable vector to any non-scalable MVT, it should
547     // return false (to avoid removal).
548     if (std::tuple(A.isVector(), A.isScalableVector()) !=
549         std::tuple(B.isVector(), B.isScalableVector()))
550       return false;
551 
552     return std::tuple(A.getScalarSizeInBits(),
553                       A.getSizeInBits().getKnownMinValue()) <=
554            std::tuple(B.getScalarSizeInBits(),
555                       B.getSizeInBits().getKnownMinValue());
556   };
557 
558   for (unsigned M : Modes) {
559     TypeSetByHwMode::SetType &S = Small.get(M);
560     TypeSetByHwMode::SetType &B = Big.get(M);
561     // MinS = min scalar in Small, remove all scalars from Big that are
562     // smaller-or-equal than MinS.
563     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564     if (MinS != S.end())
565       Changed |=
566           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567 
568     // MaxS = max scalar in Big, remove all scalars from Small that are
569     // larger than MaxS.
570     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571     if (MaxS != B.end())
572       Changed |=
573           berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574 
575     // MinV = min vector in Small, remove all vectors from Big that are
576     // smaller-or-equal than MinV.
577     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578     if (MinV != S.end())
579       Changed |=
580           berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581 
582     // MaxV = max vector in Big, remove all vectors from Small that are
583     // larger than MaxV.
584     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585     if (MaxV != B.end())
586       Changed |=
587           berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588   }
589 
590   return Changed;
591 }
592 
593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
594 ///    for each type U in Elem, U is a scalar type.
595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596 ///    type T in Vec, such that U is the element type of T.
597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                        TypeSetByHwMode &Elem) {
599   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600   if (TP.hasError())
601     return false;
602   bool Changed = false;
603 
604   if (Vec.empty())
605     Changed |= EnforceVector(Vec);
606   if (Elem.empty())
607     Changed |= EnforceScalar(Elem);
608 
609   SmallVector<unsigned, 4> Modes;
610   union_modes(Vec, Elem, Modes);
611   for (unsigned M : Modes) {
612     TypeSetByHwMode::SetType &V = Vec.get(M);
613     TypeSetByHwMode::SetType &E = Elem.get(M);
614 
615     Changed |= berase_if(V, isScalar); // Scalar = !vector
616     Changed |= berase_if(E, isVector); // Vector = !scalar
617     assert(!V.empty() && !E.empty());
618 
619     MachineValueTypeSet VT, ST;
620     // Collect element types from the "vector" set.
621     for (MVT T : V)
622       VT.insert(T.getVectorElementType());
623     // Collect scalar types from the "element" set.
624     for (MVT T : E)
625       ST.insert(T);
626 
627     // Remove from V all (vector) types whose element type is not in S.
628     Changed |= berase_if(V, [&ST](MVT T) -> bool {
629       return !ST.count(T.getVectorElementType());
630     });
631     // Remove from E all (scalar) types, for which there is no corresponding
632     // type in V.
633     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634   }
635 
636   return Changed;
637 }
638 
639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640                                        const ValueTypeByHwMode &VVT) {
641   TypeSetByHwMode Tmp(VVT);
642   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643   return EnforceVectorEltTypeIs(Vec, Tmp);
644 }
645 
646 /// Ensure that for each type T in Sub, T is a vector type, and there
647 /// exists a type U in Vec such that U is a vector type with the same
648 /// element type as T and at least as many elements as T.
649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650                                              TypeSetByHwMode &Sub) {
651   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652   if (TP.hasError())
653     return false;
654 
655   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656   auto IsSubVec = [](MVT B, MVT P) -> bool {
657     if (!B.isVector() || !P.isVector())
658       return false;
659     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660     // but until there are obvious use-cases for this, keep the
661     // types separate.
662     if (B.isScalableVector() != P.isScalableVector())
663       return false;
664     if (B.getVectorElementType() != P.getVectorElementType())
665       return false;
666     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667   };
668 
669   /// Return true if S has no element (vector type) that T is a sub-vector of,
670   /// i.e. has the same element type as T and more elements.
671   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672     for (auto I : S)
673       if (IsSubVec(T, I))
674         return false;
675     return true;
676   };
677 
678   /// Return true if S has no element (vector type) that T is a super-vector
679   /// of, i.e. has the same element type as T and fewer elements.
680   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681     for (auto I : S)
682       if (IsSubVec(I, T))
683         return false;
684     return true;
685   };
686 
687   bool Changed = false;
688 
689   if (Vec.empty())
690     Changed |= EnforceVector(Vec);
691   if (Sub.empty())
692     Changed |= EnforceVector(Sub);
693 
694   SmallVector<unsigned, 4> Modes;
695   union_modes(Vec, Sub, Modes);
696   for (unsigned M : Modes) {
697     TypeSetByHwMode::SetType &S = Sub.get(M);
698     TypeSetByHwMode::SetType &V = Vec.get(M);
699 
700     Changed |= berase_if(S, isScalar);
701 
702     // Erase all types from S that are not sub-vectors of a type in V.
703     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704 
705     // Erase all types from V that are not super-vectors of a type in S.
706     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707   }
708 
709   return Changed;
710 }
711 
712 /// 1. Ensure that V has a scalar type iff W has a scalar type.
713 /// 2. Ensure that for each vector type T in V, there exists a vector
714 ///    type U in W, such that T and U have the same number of elements.
715 /// 3. Ensure that for each vector type U in W, there exists a vector
716 ///    type T in V, such that T and U have the same number of elements
717 ///    (reverse of 2).
718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719   ValidateOnExit _1(V, *this), _2(W, *this);
720   if (TP.hasError())
721     return false;
722 
723   bool Changed = false;
724   if (V.empty())
725     Changed |= EnforceAny(V);
726   if (W.empty())
727     Changed |= EnforceAny(W);
728 
729   // An actual vector type cannot have 0 elements, so we can treat scalars
730   // as zero-length vectors. This way both vectors and scalars can be
731   // processed identically.
732   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733                      MVT T) -> bool {
734     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735                                        : ElementCount());
736   };
737 
738   SmallVector<unsigned, 4> Modes;
739   union_modes(V, W, Modes);
740   for (unsigned M : Modes) {
741     TypeSetByHwMode::SetType &VS = V.get(M);
742     TypeSetByHwMode::SetType &WS = W.get(M);
743 
744     SmallDenseSet<ElementCount> VN, WN;
745     for (MVT T : VS)
746       VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747     for (MVT T : WS)
748       WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749 
750     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752   }
753   return Changed;
754 }
755 
756 namespace {
757 struct TypeSizeComparator {
758   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759     return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760            std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761   }
762 };
763 } // end anonymous namespace
764 
765 /// 1. Ensure that for each type T in A, there exists a type U in B,
766 ///    such that T and U have equal size in bits.
767 /// 2. Ensure that for each type U in B, there exists a type T in A
768 ///    such that T and U have equal size in bits (reverse of 1).
769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770   ValidateOnExit _1(A, *this), _2(B, *this);
771   if (TP.hasError())
772     return false;
773   bool Changed = false;
774   if (A.empty())
775     Changed |= EnforceAny(A);
776   if (B.empty())
777     Changed |= EnforceAny(B);
778 
779   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780 
781   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782     return !Sizes.count(T.getSizeInBits());
783   };
784 
785   SmallVector<unsigned, 4> Modes;
786   union_modes(A, B, Modes);
787   for (unsigned M : Modes) {
788     TypeSetByHwMode::SetType &AS = A.get(M);
789     TypeSetByHwMode::SetType &BS = B.get(M);
790     TypeSizeSet AN, BN;
791 
792     for (MVT T : AS)
793       AN.insert(T.getSizeInBits());
794     for (MVT T : BS)
795       BN.insert(T.getSizeInBits());
796 
797     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799   }
800 
801   return Changed;
802 }
803 
804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805   ValidateOnExit _1(VTS, *this);
806   const TypeSetByHwMode &Legal = getLegalTypes();
807   assert(Legal.isSimple() && "Default-mode only expected");
808   const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809 
810   for (auto &I : VTS)
811     expandOverloads(I.second, LegalTypes);
812 }
813 
814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815                                 const TypeSetByHwMode::SetType &Legal) const {
816   if (Out.count(MVT::iPTRAny)) {
817     Out.erase(MVT::iPTRAny);
818     Out.insert(MVT::iPTR);
819   } else if (Out.count(MVT::iAny)) {
820     Out.erase(MVT::iAny);
821     for (MVT T : MVT::integer_valuetypes())
822       if (Legal.count(T))
823         Out.insert(T);
824     for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825       if (Legal.count(T))
826         Out.insert(T);
827     for (MVT T : MVT::integer_scalable_vector_valuetypes())
828       if (Legal.count(T))
829         Out.insert(T);
830   } else if (Out.count(MVT::fAny)) {
831     Out.erase(MVT::fAny);
832     for (MVT T : MVT::fp_valuetypes())
833       if (Legal.count(T))
834         Out.insert(T);
835     for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836       if (Legal.count(T))
837         Out.insert(T);
838     for (MVT T : MVT::fp_scalable_vector_valuetypes())
839       if (Legal.count(T))
840         Out.insert(T);
841   } else if (Out.count(MVT::vAny)) {
842     Out.erase(MVT::vAny);
843     for (MVT T : MVT::vector_valuetypes())
844       if (Legal.count(T))
845         Out.insert(T);
846   } else if (Out.count(MVT::Any)) {
847     Out.erase(MVT::Any);
848     for (MVT T : MVT::all_valuetypes())
849       if (Legal.count(T))
850         Out.insert(T);
851   }
852 }
853 
854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855   if (!LegalTypesCached) {
856     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857     // Stuff all types from all modes into the default mode.
858     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859     for (const auto &I : LTS)
860       LegalTypes.insert(I.second);
861     LegalTypesCached = true;
862   }
863   assert(LegalCache.isSimple() && "Default-mode only expected");
864   return LegalCache;
865 }
866 
867 TypeInfer::ValidateOnExit::~ValidateOnExit() {
868   if (Infer.Validate && !VTS.validate()) {
869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870     errs() << "Type set is empty for each HW mode:\n"
871               "possible type contradiction in the pattern below "
872               "(use -print-records with llvm-tblgen to see all "
873               "expanded records).\n";
874     Infer.TP.dump();
875     errs() << "Generated from record:\n";
876     Infer.TP.getRecord()->dump();
877 #endif
878     PrintFatalError(Infer.TP.getRecord()->getLoc(),
879                     "Type set is empty for each HW mode in '" +
880                         Infer.TP.getRecord()->getName() + "'");
881   }
882 }
883 
884 //===----------------------------------------------------------------------===//
885 // ScopedName Implementation
886 //===----------------------------------------------------------------------===//
887 
888 bool ScopedName::operator==(const ScopedName &o) const {
889   return Scope == o.Scope && Identifier == o.Identifier;
890 }
891 
892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893 
894 //===----------------------------------------------------------------------===//
895 // TreePredicateFn Implementation
896 //===----------------------------------------------------------------------===//
897 
898 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900   assert(
901       (!hasPredCode() || !hasImmCode()) &&
902       ".td file corrupt: can't have a node predicate *and* an imm predicate");
903 }
904 
905 bool TreePredicateFn::hasPredCode() const {
906   return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908 }
909 
910 std::string TreePredicateFn::getPredCode() const {
911   std::string Code;
912 
913   if (!isLoad() && !isStore() && !isAtomic()) {
914     Record *MemoryVT = getMemoryVT();
915 
916     if (MemoryVT)
917       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                       "MemoryVT requires IsLoad or IsStore");
919   }
920 
921   if (!isLoad() && !isStore()) {
922     if (isUnindexed())
923       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                       "IsUnindexed requires IsLoad or IsStore");
925 
926     Record *ScalarMemoryVT = getScalarMemoryVT();
927 
928     if (ScalarMemoryVT)
929       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                       "ScalarMemoryVT requires IsLoad or IsStore");
931   }
932 
933   if (isLoad() + isStore() + isAtomic() > 1)
934     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
936 
937   if (isLoad()) {
938     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
939         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
940         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
941         getMinAlignment() < 1)
942       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                       "IsLoad cannot be used by itself");
944   } else {
945     if (isNonExtLoad())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsNonExtLoad requires IsLoad");
948     if (isAnyExtLoad())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAnyExtLoad requires IsLoad");
951 
952     if (!isAtomic()) {
953       if (isSignExtLoad())
954         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                         "IsSignExtLoad requires IsLoad or IsAtomic");
956       if (isZeroExtLoad())
957         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                         "IsZeroExtLoad requires IsLoad or IsAtomic");
959     }
960   }
961 
962   if (isStore()) {
963     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
964         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
965         getAddressSpaces() == nullptr && getMinAlignment() < 1)
966       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                       "IsStore cannot be used by itself");
968   } else {
969     if (isNonTruncStore())
970       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
971                       "IsNonTruncStore requires IsStore");
972     if (isTruncStore())
973       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                       "IsTruncStore requires IsStore");
975   }
976 
977   if (isAtomic()) {
978     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
979         getAddressSpaces() == nullptr &&
980         // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
981         !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
982         !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
983         !isAtomicOrderingSequentiallyConsistent() &&
984         !isAtomicOrderingAcquireOrStronger() &&
985         !isAtomicOrderingReleaseOrStronger() &&
986         !isAtomicOrderingWeakerThanAcquire() &&
987         !isAtomicOrderingWeakerThanRelease())
988       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989                       "IsAtomic cannot be used by itself");
990   } else {
991     if (isAtomicOrderingMonotonic())
992       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                       "IsAtomicOrderingMonotonic requires IsAtomic");
994     if (isAtomicOrderingAcquire())
995       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996                       "IsAtomicOrderingAcquire requires IsAtomic");
997     if (isAtomicOrderingRelease())
998       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999                       "IsAtomicOrderingRelease requires IsAtomic");
1000     if (isAtomicOrderingAcquireRelease())
1001       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1002                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
1003     if (isAtomicOrderingSequentiallyConsistent())
1004       PrintFatalError(
1005           getOrigPatFragRecord()->getRecord()->getLoc(),
1006           "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1007     if (isAtomicOrderingAcquireOrStronger())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1010     if (isAtomicOrderingReleaseOrStronger())
1011       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1013     if (isAtomicOrderingWeakerThanAcquire())
1014       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1016   }
1017 
1018   if (isLoad() || isStore() || isAtomic()) {
1019     if (ListInit *AddressSpaces = getAddressSpaces()) {
1020       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1021               " if (";
1022 
1023       ListSeparator LS(" && ");
1024       for (Init *Val : AddressSpaces->getValues()) {
1025         Code += LS;
1026 
1027         IntInit *IntVal = dyn_cast<IntInit>(Val);
1028         if (!IntVal) {
1029           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1030                           "AddressSpaces element must be integer");
1031         }
1032 
1033         Code += "AddrSpace != " + utostr(IntVal->getValue());
1034       }
1035 
1036       Code += ")\nreturn false;\n";
1037     }
1038 
1039     int64_t MinAlign = getMinAlignment();
1040     if (MinAlign > 0) {
1041       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1042       Code += utostr(MinAlign);
1043       Code += "))\nreturn false;\n";
1044     }
1045 
1046     Record *MemoryVT = getMemoryVT();
1047 
1048     if (MemoryVT)
1049       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1050                MemoryVT->getName() + ") return false;\n")
1051                   .str();
1052   }
1053 
1054   if (isAtomic() && isAtomicOrderingMonotonic())
1055     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1056             "AtomicOrdering::Monotonic) return false;\n";
1057   if (isAtomic() && isAtomicOrderingAcquire())
1058     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1059             "AtomicOrdering::Acquire) return false;\n";
1060   if (isAtomic() && isAtomicOrderingRelease())
1061     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1062             "AtomicOrdering::Release) return false;\n";
1063   if (isAtomic() && isAtomicOrderingAcquireRelease())
1064     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065             "AtomicOrdering::AcquireRelease) return false;\n";
1066   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1067     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1069 
1070   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1071     Code +=
1072         "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1073         "return false;\n";
1074   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1075     Code +=
1076         "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1077         "return false;\n";
1078 
1079   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1080     Code +=
1081         "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1082         "return false;\n";
1083   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1084     Code +=
1085         "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1086         "return false;\n";
1087 
1088   // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1089   if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1090     Code += "return false;\n";
1091 
1092   if (isLoad() || isStore()) {
1093     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1094 
1095     if (isUnindexed())
1096       Code += ("if (cast<" + SDNodeName +
1097                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1098                "return false;\n")
1099                   .str();
1100 
1101     if (isLoad()) {
1102       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1103            isZeroExtLoad()) > 1)
1104         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1105                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1106                         "IsZeroExtLoad are mutually exclusive");
1107       if (isNonExtLoad())
1108         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1109                 "ISD::NON_EXTLOAD) return false;\n";
1110       if (isAnyExtLoad())
1111         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1112                 "return false;\n";
1113       if (isSignExtLoad())
1114         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1115                 "return false;\n";
1116       if (isZeroExtLoad())
1117         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1118                 "return false;\n";
1119     } else {
1120       if ((isNonTruncStore() + isTruncStore()) > 1)
1121         PrintFatalError(
1122             getOrigPatFragRecord()->getRecord()->getLoc(),
1123             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1124       if (isNonTruncStore())
1125         Code +=
1126             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1127       if (isTruncStore())
1128         Code +=
1129             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1130     }
1131 
1132     Record *ScalarMemoryVT = getScalarMemoryVT();
1133 
1134     if (ScalarMemoryVT)
1135       Code += ("if (cast<" + SDNodeName +
1136                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1137                ScalarMemoryVT->getName() + ") return false;\n")
1138                   .str();
1139   }
1140 
1141   if (hasNoUse())
1142     Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1143   if (hasOneUse())
1144     Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1145 
1146   std::string PredicateCode =
1147       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1148 
1149   Code += PredicateCode;
1150 
1151   if (PredicateCode.empty() && !Code.empty())
1152     Code += "return true;\n";
1153 
1154   return Code;
1155 }
1156 
1157 bool TreePredicateFn::hasImmCode() const {
1158   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1159 }
1160 
1161 std::string TreePredicateFn::getImmCode() const {
1162   return std::string(
1163       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1164 }
1165 
1166 bool TreePredicateFn::immCodeUsesAPInt() const {
1167   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1168 }
1169 
1170 bool TreePredicateFn::immCodeUsesAPFloat() const {
1171   bool Unset;
1172   // The return value will be false when IsAPFloat is unset.
1173   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1174                                                                    Unset);
1175 }
1176 
1177 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1178                                                    bool Value) const {
1179   bool Unset;
1180   bool Result =
1181       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1182   if (Unset)
1183     return false;
1184   return Result == Value;
1185 }
1186 bool TreePredicateFn::usesOperands() const {
1187   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1188 }
1189 bool TreePredicateFn::hasNoUse() const {
1190   return isPredefinedPredicateEqualTo("HasNoUse", true);
1191 }
1192 bool TreePredicateFn::hasOneUse() const {
1193   return isPredefinedPredicateEqualTo("HasOneUse", true);
1194 }
1195 bool TreePredicateFn::isLoad() const {
1196   return isPredefinedPredicateEqualTo("IsLoad", true);
1197 }
1198 bool TreePredicateFn::isStore() const {
1199   return isPredefinedPredicateEqualTo("IsStore", true);
1200 }
1201 bool TreePredicateFn::isAtomic() const {
1202   return isPredefinedPredicateEqualTo("IsAtomic", true);
1203 }
1204 bool TreePredicateFn::isUnindexed() const {
1205   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206 }
1207 bool TreePredicateFn::isNonExtLoad() const {
1208   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209 }
1210 bool TreePredicateFn::isAnyExtLoad() const {
1211   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212 }
1213 bool TreePredicateFn::isSignExtLoad() const {
1214   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215 }
1216 bool TreePredicateFn::isZeroExtLoad() const {
1217   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218 }
1219 bool TreePredicateFn::isNonTruncStore() const {
1220   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221 }
1222 bool TreePredicateFn::isTruncStore() const {
1223   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224 }
1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227 }
1228 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230 }
1231 bool TreePredicateFn::isAtomicOrderingRelease() const {
1232   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233 }
1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236 }
1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239                                       true);
1240 }
1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1243                                       true);
1244 }
1245 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1246   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1247                                       false);
1248 }
1249 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1250   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1251                                       true);
1252 }
1253 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1254   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1255                                       false);
1256 }
1257 Record *TreePredicateFn::getMemoryVT() const {
1258   Record *R = getOrigPatFragRecord()->getRecord();
1259   if (R->isValueUnset("MemoryVT"))
1260     return nullptr;
1261   return R->getValueAsDef("MemoryVT");
1262 }
1263 
1264 ListInit *TreePredicateFn::getAddressSpaces() const {
1265   Record *R = getOrigPatFragRecord()->getRecord();
1266   if (R->isValueUnset("AddressSpaces"))
1267     return nullptr;
1268   return R->getValueAsListInit("AddressSpaces");
1269 }
1270 
1271 int64_t TreePredicateFn::getMinAlignment() const {
1272   Record *R = getOrigPatFragRecord()->getRecord();
1273   if (R->isValueUnset("MinAlignment"))
1274     return 0;
1275   return R->getValueAsInt("MinAlignment");
1276 }
1277 
1278 Record *TreePredicateFn::getScalarMemoryVT() const {
1279   Record *R = getOrigPatFragRecord()->getRecord();
1280   if (R->isValueUnset("ScalarMemoryVT"))
1281     return nullptr;
1282   return R->getValueAsDef("ScalarMemoryVT");
1283 }
1284 bool TreePredicateFn::hasGISelPredicateCode() const {
1285   return !PatFragRec->getRecord()
1286               ->getValueAsString("GISelPredicateCode")
1287               .empty();
1288 }
1289 std::string TreePredicateFn::getGISelPredicateCode() const {
1290   return std::string(
1291       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1292 }
1293 
1294 StringRef TreePredicateFn::getImmType() const {
1295   if (immCodeUsesAPInt())
1296     return "const APInt &";
1297   if (immCodeUsesAPFloat())
1298     return "const APFloat &";
1299   return "int64_t";
1300 }
1301 
1302 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1303   if (immCodeUsesAPInt())
1304     return "APInt";
1305   if (immCodeUsesAPFloat())
1306     return "APFloat";
1307   return "I64";
1308 }
1309 
1310 /// isAlwaysTrue - Return true if this is a noop predicate.
1311 bool TreePredicateFn::isAlwaysTrue() const {
1312   return !hasPredCode() && !hasImmCode();
1313 }
1314 
1315 /// Return the name to use in the generated code to reference this, this is
1316 /// "Predicate_foo" if from a pattern fragment "foo".
1317 std::string TreePredicateFn::getFnName() const {
1318   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1319 }
1320 
1321 /// getCodeToRunOnSDNode - Return the code for the function body that
1322 /// evaluates this predicate.  The argument is expected to be in "Node",
1323 /// not N.  This handles casting and conversion to a concrete node type as
1324 /// appropriate.
1325 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1326   // Handle immediate predicates first.
1327   std::string ImmCode = getImmCode();
1328   if (!ImmCode.empty()) {
1329     if (isLoad())
1330       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1331                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1332     if (isStore())
1333       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1334                       "IsStore cannot be used with ImmLeaf or its subclasses");
1335     if (isUnindexed())
1336       PrintFatalError(
1337           getOrigPatFragRecord()->getRecord()->getLoc(),
1338           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1339     if (isNonExtLoad())
1340       PrintFatalError(
1341           getOrigPatFragRecord()->getRecord()->getLoc(),
1342           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1343     if (isAnyExtLoad())
1344       PrintFatalError(
1345           getOrigPatFragRecord()->getRecord()->getLoc(),
1346           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1347     if (isSignExtLoad())
1348       PrintFatalError(
1349           getOrigPatFragRecord()->getRecord()->getLoc(),
1350           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1351     if (isZeroExtLoad())
1352       PrintFatalError(
1353           getOrigPatFragRecord()->getRecord()->getLoc(),
1354           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1355     if (isNonTruncStore())
1356       PrintFatalError(
1357           getOrigPatFragRecord()->getRecord()->getLoc(),
1358           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1359     if (isTruncStore())
1360       PrintFatalError(
1361           getOrigPatFragRecord()->getRecord()->getLoc(),
1362           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1363     if (getMemoryVT())
1364       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1365                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1366     if (getScalarMemoryVT())
1367       PrintFatalError(
1368           getOrigPatFragRecord()->getRecord()->getLoc(),
1369           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1370 
1371     std::string Result = ("    " + getImmType() + " Imm = ").str();
1372     if (immCodeUsesAPFloat())
1373       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1374     else if (immCodeUsesAPInt())
1375       Result += "Node->getAsAPIntVal();\n";
1376     else
1377       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1378     return Result + ImmCode;
1379   }
1380 
1381   // Handle arbitrary node predicates.
1382   assert(hasPredCode() && "Don't have any predicate code!");
1383 
1384   // If this is using PatFrags, there are multiple trees to search. They should
1385   // all have the same class.  FIXME: Is there a way to find a common
1386   // superclass?
1387   StringRef ClassName;
1388   for (const auto &Tree : PatFragRec->getTrees()) {
1389     StringRef TreeClassName;
1390     if (Tree->isLeaf())
1391       TreeClassName = "SDNode";
1392     else {
1393       Record *Op = Tree->getOperator();
1394       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1395       TreeClassName = Info.getSDClassName();
1396     }
1397 
1398     if (ClassName.empty())
1399       ClassName = TreeClassName;
1400     else if (ClassName != TreeClassName) {
1401       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1402                       "PatFrags trees do not have consistent class");
1403     }
1404   }
1405 
1406   std::string Result;
1407   if (ClassName == "SDNode")
1408     Result = "    SDNode *N = Node;\n";
1409   else
1410     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1411 
1412   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1413 }
1414 
1415 //===----------------------------------------------------------------------===//
1416 // PatternToMatch implementation
1417 //
1418 
1419 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1420   if (!P.isLeaf())
1421     return false;
1422   DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1423   if (!DI)
1424     return false;
1425 
1426   Record *R = DI->getDef();
1427   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1428 }
1429 
1430 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1431 /// patterns before small ones.  This is used to determine the size of a
1432 /// pattern.
1433 static unsigned getPatternSize(const TreePatternNode &P,
1434                                const CodeGenDAGPatterns &CGP) {
1435   unsigned Size = 3; // The node itself.
1436   // If the root node is a ConstantSDNode, increases its size.
1437   // e.g. (set R32:$dst, 0).
1438   if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1439     Size += 2;
1440 
1441   if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1442     Size += AM->getComplexity();
1443     // We don't want to count any children twice, so return early.
1444     return Size;
1445   }
1446 
1447   // If this node has some predicate function that must match, it adds to the
1448   // complexity of this node.
1449   if (!P.getPredicateCalls().empty())
1450     ++Size;
1451 
1452   // Count children in the count if they are also nodes.
1453   for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) {
1454     const TreePatternNode &Child = P.getChild(i);
1455     if (!Child.isLeaf() && Child.getNumTypes()) {
1456       const TypeSetByHwMode &T0 = Child.getExtType(0);
1457       // At this point, all variable type sets should be simple, i.e. only
1458       // have a default mode.
1459       if (T0.getMachineValueType() != MVT::Other) {
1460         Size += getPatternSize(Child, CGP);
1461         continue;
1462       }
1463     }
1464     if (Child.isLeaf()) {
1465       if (isa<IntInit>(Child.getLeafValue()))
1466         Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1467       else if (Child.getComplexPatternInfo(CGP))
1468         Size += getPatternSize(Child, CGP);
1469       else if (isImmAllOnesAllZerosMatch(Child))
1470         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1471       else if (!Child.getPredicateCalls().empty())
1472         ++Size;
1473     }
1474   }
1475 
1476   return Size;
1477 }
1478 
1479 /// Compute the complexity metric for the input pattern.  This roughly
1480 /// corresponds to the number of nodes that are covered.
1481 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1482   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1483 }
1484 
1485 void PatternToMatch::getPredicateRecords(
1486     SmallVectorImpl<Record *> &PredicateRecs) const {
1487   for (Init *I : Predicates->getValues()) {
1488     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1489       Record *Def = Pred->getDef();
1490       if (!Def->isSubClassOf("Predicate")) {
1491 #ifndef NDEBUG
1492         Def->dump();
1493 #endif
1494         llvm_unreachable("Unknown predicate type!");
1495       }
1496       PredicateRecs.push_back(Def);
1497     }
1498   }
1499   // Sort so that different orders get canonicalized to the same string.
1500   llvm::sort(PredicateRecs, LessRecord());
1501   // Remove duplicate predicates.
1502   PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1503 }
1504 
1505 /// getPredicateCheck - Return a single string containing all of this
1506 /// pattern's predicates concatenated with "&&" operators.
1507 ///
1508 std::string PatternToMatch::getPredicateCheck() const {
1509   SmallVector<Record *, 4> PredicateRecs;
1510   getPredicateRecords(PredicateRecs);
1511 
1512   SmallString<128> PredicateCheck;
1513   raw_svector_ostream OS(PredicateCheck);
1514   ListSeparator LS(" && ");
1515   for (Record *Pred : PredicateRecs) {
1516     StringRef CondString = Pred->getValueAsString("CondString");
1517     if (CondString.empty())
1518       continue;
1519     OS << LS << '(' << CondString << ')';
1520   }
1521 
1522   if (!HwModeFeatures.empty())
1523     OS << LS << HwModeFeatures;
1524 
1525   return std::string(PredicateCheck);
1526 }
1527 
1528 //===----------------------------------------------------------------------===//
1529 // SDTypeConstraint implementation
1530 //
1531 
1532 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1533   OperandNo = R->getValueAsInt("OperandNum");
1534 
1535   if (R->isSubClassOf("SDTCisVT")) {
1536     ConstraintType = SDTCisVT;
1537     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1538     for (const auto &P : VVT)
1539       if (P.second == MVT::isVoid)
1540         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1541   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1542     ConstraintType = SDTCisPtrTy;
1543   } else if (R->isSubClassOf("SDTCisInt")) {
1544     ConstraintType = SDTCisInt;
1545   } else if (R->isSubClassOf("SDTCisFP")) {
1546     ConstraintType = SDTCisFP;
1547   } else if (R->isSubClassOf("SDTCisVec")) {
1548     ConstraintType = SDTCisVec;
1549   } else if (R->isSubClassOf("SDTCisSameAs")) {
1550     ConstraintType = SDTCisSameAs;
1551     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1552   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1553     ConstraintType = SDTCisVTSmallerThanOp;
1554     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1555         R->getValueAsInt("OtherOperandNum");
1556   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1557     ConstraintType = SDTCisOpSmallerThanOp;
1558     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1559         R->getValueAsInt("BigOperandNum");
1560   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1561     ConstraintType = SDTCisEltOfVec;
1562     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1563   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1564     ConstraintType = SDTCisSubVecOfVec;
1565     x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1566   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1567     ConstraintType = SDTCVecEltisVT;
1568     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1569     for (const auto &P : VVT) {
1570       MVT T = P.second;
1571       if (T.isVector())
1572         PrintFatalError(R->getLoc(),
1573                         "Cannot use vector type as SDTCVecEltisVT");
1574       if (!T.isInteger() && !T.isFloatingPoint())
1575         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1576                                      "as SDTCVecEltisVT");
1577     }
1578   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1579     ConstraintType = SDTCisSameNumEltsAs;
1580     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1581         R->getValueAsInt("OtherOperandNum");
1582   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1583     ConstraintType = SDTCisSameSizeAs;
1584     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1585         R->getValueAsInt("OtherOperandNum");
1586   } else {
1587     PrintFatalError(R->getLoc(),
1588                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1589   }
1590 }
1591 
1592 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1593 /// N, and the result number in ResNo.
1594 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1595                                       const SDNodeInfo &NodeInfo,
1596                                       unsigned &ResNo) {
1597   unsigned NumResults = NodeInfo.getNumResults();
1598   if (OpNo < NumResults) {
1599     ResNo = OpNo;
1600     return N;
1601   }
1602 
1603   OpNo -= NumResults;
1604 
1605   if (OpNo >= N.getNumChildren()) {
1606     std::string S;
1607     raw_string_ostream OS(S);
1608     OS << "Invalid operand number in type constraint " << (OpNo + NumResults)
1609        << " ";
1610     N.print(OS);
1611     PrintFatalError(S);
1612   }
1613 
1614   return N.getChild(OpNo);
1615 }
1616 
1617 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1618 /// constraint to the nodes operands.  This returns true if it makes a
1619 /// change, false otherwise.  If a type contradiction is found, flag an error.
1620 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1621                                            const SDNodeInfo &NodeInfo,
1622                                            TreePattern &TP) const {
1623   if (TP.hasError())
1624     return false;
1625 
1626   unsigned ResNo = 0; // The result number being referenced.
1627   TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1628   TypeInfer &TI = TP.getInfer();
1629 
1630   switch (ConstraintType) {
1631   case SDTCisVT:
1632     // Operand must be a particular type.
1633     return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1634   case SDTCisPtrTy:
1635     // Operand must be same as target pointer type.
1636     return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1637   case SDTCisInt:
1638     // Require it to be one of the legal integer VTs.
1639     return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1640   case SDTCisFP:
1641     // Require it to be one of the legal fp VTs.
1642     return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1643   case SDTCisVec:
1644     // Require it to be one of the legal vector VTs.
1645     return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1646   case SDTCisSameAs: {
1647     unsigned OResNo = 0;
1648     TreePatternNode &OtherNode =
1649         getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1650     return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1651                                            TP) |
1652            (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1653                                          TP);
1654   }
1655   case SDTCisVTSmallerThanOp: {
1656     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1657     // have an integer type that is smaller than the VT.
1658     if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1659         !cast<DefInit>(NodeToApply.getLeafValue())
1660              ->getDef()
1661              ->isSubClassOf("ValueType")) {
1662       TP.error(N.getOperator()->getName() + " expects a VT operand!");
1663       return false;
1664     }
1665     DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1666     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1667     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1668     TypeSetByHwMode TypeListTmp(VVT);
1669 
1670     unsigned OResNo = 0;
1671     TreePatternNode &OtherNode = getOperandNum(
1672         x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1673 
1674     return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1675                                  /*SmallIsVT*/ true);
1676   }
1677   case SDTCisOpSmallerThanOp: {
1678     unsigned BResNo = 0;
1679     TreePatternNode &BigOperand = getOperandNum(
1680         x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1681     return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1682                                  BigOperand.getExtType(BResNo));
1683   }
1684   case SDTCisEltOfVec: {
1685     unsigned VResNo = 0;
1686     TreePatternNode &VecOperand = getOperandNum(
1687         x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1688     // Filter vector types out of VecOperand that don't have the right element
1689     // type.
1690     return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1691                                      NodeToApply.getExtType(ResNo));
1692   }
1693   case SDTCisSubVecOfVec: {
1694     unsigned VResNo = 0;
1695     TreePatternNode &BigVecOperand = getOperandNum(
1696         x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1697 
1698     // Filter vector types out of BigVecOperand that don't have the
1699     // right subvector type.
1700     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1701                                            NodeToApply.getExtType(ResNo));
1702   }
1703   case SDTCVecEltisVT: {
1704     return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1705   }
1706   case SDTCisSameNumEltsAs: {
1707     unsigned OResNo = 0;
1708     TreePatternNode &OtherNode = getOperandNum(
1709         x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1710     return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1711                                  NodeToApply.getExtType(ResNo));
1712   }
1713   case SDTCisSameSizeAs: {
1714     unsigned OResNo = 0;
1715     TreePatternNode &OtherNode = getOperandNum(
1716         x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1717     return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1718                               NodeToApply.getExtType(ResNo));
1719   }
1720   }
1721   llvm_unreachable("Invalid ConstraintType!");
1722 }
1723 
1724 // Update the node type to match an instruction operand or result as specified
1725 // in the ins or outs lists on the instruction definition. Return true if the
1726 // type was actually changed.
1727 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand,
1728                                              TreePattern &TP) {
1729   // The 'unknown' operand indicates that types should be inferred from the
1730   // context.
1731   if (Operand->isSubClassOf("unknown_class"))
1732     return false;
1733 
1734   // The Operand class specifies a type directly.
1735   if (Operand->isSubClassOf("Operand")) {
1736     Record *R = Operand->getValueAsDef("Type");
1737     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1738     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1739   }
1740 
1741   // PointerLikeRegClass has a type that is determined at runtime.
1742   if (Operand->isSubClassOf("PointerLikeRegClass"))
1743     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1744 
1745   // Both RegisterClass and RegisterOperand operands derive their types from a
1746   // register class def.
1747   Record *RC = nullptr;
1748   if (Operand->isSubClassOf("RegisterClass"))
1749     RC = Operand;
1750   else if (Operand->isSubClassOf("RegisterOperand"))
1751     RC = Operand->getValueAsDef("RegClass");
1752 
1753   assert(RC && "Unknown operand type");
1754   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1755   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1756 }
1757 
1758 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1759   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1760     if (!TP.getInfer().isConcrete(Types[i], true))
1761       return true;
1762   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1763     if (getChild(i).ContainsUnresolvedType(TP))
1764       return true;
1765   return false;
1766 }
1767 
1768 bool TreePatternNode::hasProperTypeByHwMode() const {
1769   for (const TypeSetByHwMode &S : Types)
1770     if (!S.isSimple())
1771       return true;
1772   for (const TreePatternNodePtr &C : Children)
1773     if (C->hasProperTypeByHwMode())
1774       return true;
1775   return false;
1776 }
1777 
1778 bool TreePatternNode::hasPossibleType() const {
1779   for (const TypeSetByHwMode &S : Types)
1780     if (!S.isPossible())
1781       return false;
1782   for (const TreePatternNodePtr &C : Children)
1783     if (!C->hasPossibleType())
1784       return false;
1785   return true;
1786 }
1787 
1788 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1789   for (TypeSetByHwMode &S : Types) {
1790     S.makeSimple(Mode);
1791     // Check if the selected mode had a type conflict.
1792     if (S.get(DefaultMode).empty())
1793       return false;
1794   }
1795   for (const TreePatternNodePtr &C : Children)
1796     if (!C->setDefaultMode(Mode))
1797       return false;
1798   return true;
1799 }
1800 
1801 //===----------------------------------------------------------------------===//
1802 // SDNodeInfo implementation
1803 //
1804 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1805   EnumName = R->getValueAsString("Opcode");
1806   SDClassName = R->getValueAsString("SDClass");
1807   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1808   NumResults = TypeProfile->getValueAsInt("NumResults");
1809   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1810 
1811   // Parse the properties.
1812   Properties = parseSDPatternOperatorProperties(R);
1813 
1814   // Parse the type constraints.
1815   std::vector<Record *> ConstraintList =
1816       TypeProfile->getValueAsListOfDefs("Constraints");
1817   for (Record *R : ConstraintList)
1818     TypeConstraints.emplace_back(R, CGH);
1819 }
1820 
1821 /// getKnownType - If the type constraints on this node imply a fixed type
1822 /// (e.g. all stores return void, etc), then return it as an
1823 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1824 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1825   unsigned NumResults = getNumResults();
1826   assert(NumResults <= 1 &&
1827          "We only work with nodes with zero or one result so far!");
1828   assert(ResNo == 0 && "Only handles single result nodes so far");
1829 
1830   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1831     // Make sure that this applies to the correct node result.
1832     if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1833       continue;
1834 
1835     switch (Constraint.ConstraintType) {
1836     default:
1837       break;
1838     case SDTypeConstraint::SDTCisVT:
1839       if (Constraint.VVT.isSimple())
1840         return Constraint.VVT.getSimple().SimpleTy;
1841       break;
1842     case SDTypeConstraint::SDTCisPtrTy:
1843       return MVT::iPTR;
1844     }
1845   }
1846   return MVT::Other;
1847 }
1848 
1849 //===----------------------------------------------------------------------===//
1850 // TreePatternNode implementation
1851 //
1852 
1853 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1854   if (Operator->getName() == "set" || Operator->getName() == "implicit")
1855     return 0; // All return nothing.
1856 
1857   if (Operator->isSubClassOf("Intrinsic"))
1858     return CDP.getIntrinsic(Operator).IS.RetTys.size();
1859 
1860   if (Operator->isSubClassOf("SDNode"))
1861     return CDP.getSDNodeInfo(Operator).getNumResults();
1862 
1863   if (Operator->isSubClassOf("PatFrags")) {
1864     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1865     // the forward reference case where one pattern fragment references another
1866     // before it is processed.
1867     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1868       // The number of results of a fragment with alternative records is the
1869       // maximum number of results across all alternatives.
1870       unsigned NumResults = 0;
1871       for (const auto &T : PFRec->getTrees())
1872         NumResults = std::max(NumResults, T->getNumTypes());
1873       return NumResults;
1874     }
1875 
1876     ListInit *LI = Operator->getValueAsListInit("Fragments");
1877     assert(LI && "Invalid Fragment");
1878     unsigned NumResults = 0;
1879     for (Init *I : LI->getValues()) {
1880       Record *Op = nullptr;
1881       if (DagInit *Dag = dyn_cast<DagInit>(I))
1882         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1883           Op = DI->getDef();
1884       assert(Op && "Invalid Fragment");
1885       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1886     }
1887     return NumResults;
1888   }
1889 
1890   if (Operator->isSubClassOf("Instruction")) {
1891     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1892 
1893     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1894 
1895     // Subtract any defaulted outputs.
1896     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1897       Record *OperandNode = InstInfo.Operands[i].Rec;
1898 
1899       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1900           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1901         --NumDefsToAdd;
1902     }
1903 
1904     // Add on one implicit def if it has a resolvable type.
1905     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1906         MVT::Other)
1907       ++NumDefsToAdd;
1908     return NumDefsToAdd;
1909   }
1910 
1911   if (Operator->isSubClassOf("SDNodeXForm"))
1912     return 1; // FIXME: Generalize SDNodeXForm
1913 
1914   if (Operator->isSubClassOf("ValueType"))
1915     return 1; // A type-cast of one result.
1916 
1917   if (Operator->isSubClassOf("ComplexPattern"))
1918     return 1;
1919 
1920   errs() << *Operator;
1921   PrintFatalError("Unhandled node in GetNumNodeResults");
1922 }
1923 
1924 void TreePatternNode::print(raw_ostream &OS) const {
1925   if (isLeaf())
1926     OS << *getLeafValue();
1927   else
1928     OS << '(' << getOperator()->getName();
1929 
1930   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1931     OS << ':';
1932     getExtType(i).writeToStream(OS);
1933   }
1934 
1935   if (!isLeaf()) {
1936     if (getNumChildren() != 0) {
1937       OS << " ";
1938       ListSeparator LS;
1939       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1940         OS << LS;
1941         getChild(i).print(OS);
1942       }
1943     }
1944     OS << ")";
1945   }
1946 
1947   for (const TreePredicateCall &Pred : PredicateCalls) {
1948     OS << "<<P:";
1949     if (Pred.Scope)
1950       OS << Pred.Scope << ":";
1951     OS << Pred.Fn.getFnName() << ">>";
1952   }
1953   if (TransformFn)
1954     OS << "<<X:" << TransformFn->getName() << ">>";
1955   if (!getName().empty())
1956     OS << ":$" << getName();
1957 
1958   for (const ScopedName &Name : NamesAsPredicateArg)
1959     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1960 }
1961 void TreePatternNode::dump() const { print(errs()); }
1962 
1963 /// isIsomorphicTo - Return true if this node is recursively
1964 /// isomorphic to the specified node.  For this comparison, the node's
1965 /// entire state is considered. The assigned name is ignored, since
1966 /// nodes with differing names are considered isomorphic. However, if
1967 /// the assigned name is present in the dependent variable set, then
1968 /// the assigned name is considered significant and the node is
1969 /// isomorphic if the names match.
1970 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1971                                      const MultipleUseVarSet &DepVars) const {
1972   if (&N == this)
1973     return true;
1974   if (N.isLeaf() != isLeaf())
1975     return false;
1976 
1977   // Check operator of non-leaves early since it can be cheaper than checking
1978   // types.
1979   if (!isLeaf())
1980     if (N.getOperator() != getOperator() ||
1981         N.getNumChildren() != getNumChildren())
1982       return false;
1983 
1984   if (getExtTypes() != N.getExtTypes() ||
1985       getPredicateCalls() != N.getPredicateCalls() ||
1986       getTransformFn() != N.getTransformFn())
1987     return false;
1988 
1989   if (isLeaf()) {
1990     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1991       if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1992         return ((DI->getDef() == NDI->getDef()) &&
1993                 (!DepVars.contains(getName()) || getName() == N.getName()));
1994       }
1995     }
1996     return getLeafValue() == N.getLeafValue();
1997   }
1998 
1999   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2000     if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
2001       return false;
2002   return true;
2003 }
2004 
2005 /// clone - Make a copy of this tree and all of its children.
2006 ///
2007 TreePatternNodePtr TreePatternNode::clone() const {
2008   TreePatternNodePtr New;
2009   if (isLeaf()) {
2010     New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2011   } else {
2012     std::vector<TreePatternNodePtr> CChildren;
2013     CChildren.reserve(Children.size());
2014     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2015       CChildren.push_back(getChild(i).clone());
2016     New = makeIntrusiveRefCnt<TreePatternNode>(
2017         getOperator(), std::move(CChildren), getNumTypes());
2018   }
2019   New->setName(getName());
2020   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2021   New->Types = Types;
2022   New->setPredicateCalls(getPredicateCalls());
2023   New->setGISelFlagsRecord(getGISelFlagsRecord());
2024   New->setTransformFn(getTransformFn());
2025   return New;
2026 }
2027 
2028 /// RemoveAllTypes - Recursively strip all the types of this tree.
2029 void TreePatternNode::RemoveAllTypes() {
2030   // Reset to unknown type.
2031   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2032   if (isLeaf())
2033     return;
2034   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2035     getChild(i).RemoveAllTypes();
2036 }
2037 
2038 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2039 /// with actual values specified by ArgMap.
2040 void TreePatternNode::SubstituteFormalArguments(
2041     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2042   if (isLeaf())
2043     return;
2044 
2045   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2046     TreePatternNode &Child = getChild(i);
2047     if (Child.isLeaf()) {
2048       Init *Val = Child.getLeafValue();
2049       // Note that, when substituting into an output pattern, Val might be an
2050       // UnsetInit.
2051       if (isa<UnsetInit>(Val) ||
2052           (isa<DefInit>(Val) &&
2053            cast<DefInit>(Val)->getDef()->getName() == "node")) {
2054         // We found a use of a formal argument, replace it with its value.
2055         TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2056         assert(NewChild && "Couldn't find formal argument!");
2057         assert((Child.getPredicateCalls().empty() ||
2058                 NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2059                "Non-empty child predicate clobbered!");
2060         setChild(i, std::move(NewChild));
2061       }
2062     } else {
2063       getChild(i).SubstituteFormalArguments(ArgMap);
2064     }
2065   }
2066 }
2067 
2068 /// InlinePatternFragments - If this pattern refers to any pattern
2069 /// fragments, return the set of inlined versions (this can be more than
2070 /// one if a PatFrags record has multiple alternatives).
2071 void TreePatternNode::InlinePatternFragments(
2072     TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2073 
2074   if (TP.hasError())
2075     return;
2076 
2077   if (isLeaf()) {
2078     OutAlternatives.push_back(this); // nothing to do.
2079     return;
2080   }
2081 
2082   Record *Op = getOperator();
2083 
2084   if (!Op->isSubClassOf("PatFrags")) {
2085     if (getNumChildren() == 0) {
2086       OutAlternatives.push_back(this);
2087       return;
2088     }
2089 
2090     // Recursively inline children nodes.
2091     std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2092         getNumChildren());
2093     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2094       TreePatternNodePtr Child = getChildShared(i);
2095       Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2096       // If there are no alternatives for any child, there are no
2097       // alternatives for this expression as whole.
2098       if (ChildAlternatives[i].empty())
2099         return;
2100 
2101       assert((Child->getPredicateCalls().empty() ||
2102               llvm::all_of(ChildAlternatives[i],
2103                            [&](const TreePatternNodePtr &NewChild) {
2104                              return NewChild->getPredicateCalls() ==
2105                                     Child->getPredicateCalls();
2106                            })) &&
2107              "Non-empty child predicate clobbered!");
2108     }
2109 
2110     // The end result is an all-pairs construction of the resultant pattern.
2111     std::vector<unsigned> Idxs(ChildAlternatives.size());
2112     bool NotDone;
2113     do {
2114       // Create the variant and add it to the output list.
2115       std::vector<TreePatternNodePtr> NewChildren;
2116       NewChildren.reserve(ChildAlternatives.size());
2117       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2118         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2119       TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2120           getOperator(), std::move(NewChildren), getNumTypes());
2121 
2122       // Copy over properties.
2123       R->setName(getName());
2124       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2125       R->setPredicateCalls(getPredicateCalls());
2126       R->setGISelFlagsRecord(getGISelFlagsRecord());
2127       R->setTransformFn(getTransformFn());
2128       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2129         R->setType(i, getExtType(i));
2130       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2131         R->setResultIndex(i, getResultIndex(i));
2132 
2133       // Register alternative.
2134       OutAlternatives.push_back(R);
2135 
2136       // Increment indices to the next permutation by incrementing the
2137       // indices from last index backward, e.g., generate the sequence
2138       // [0, 0], [0, 1], [1, 0], [1, 1].
2139       int IdxsIdx;
2140       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2141         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2142           Idxs[IdxsIdx] = 0;
2143         else
2144           break;
2145       }
2146       NotDone = (IdxsIdx >= 0);
2147     } while (NotDone);
2148 
2149     return;
2150   }
2151 
2152   // Otherwise, we found a reference to a fragment.  First, look up its
2153   // TreePattern record.
2154   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2155 
2156   // Verify that we are passing the right number of operands.
2157   if (Frag->getNumArgs() != getNumChildren()) {
2158     TP.error("'" + Op->getName() + "' fragment requires " +
2159              Twine(Frag->getNumArgs()) + " operands!");
2160     return;
2161   }
2162 
2163   TreePredicateFn PredFn(Frag);
2164   unsigned Scope = 0;
2165   if (TreePredicateFn(Frag).usesOperands())
2166     Scope = TP.getDAGPatterns().allocateScope();
2167 
2168   // Compute the map of formal to actual arguments.
2169   std::map<std::string, TreePatternNodePtr> ArgMap;
2170   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2171     TreePatternNodePtr Child = getChildShared(i);
2172     if (Scope != 0) {
2173       Child = Child->clone();
2174       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2175     }
2176     ArgMap[Frag->getArgName(i)] = Child;
2177   }
2178 
2179   // Loop over all fragment alternatives.
2180   for (const auto &Alternative : Frag->getTrees()) {
2181     TreePatternNodePtr FragTree = Alternative->clone();
2182 
2183     if (!PredFn.isAlwaysTrue())
2184       FragTree->addPredicateCall(PredFn, Scope);
2185 
2186     // Resolve formal arguments to their actual value.
2187     if (Frag->getNumArgs())
2188       FragTree->SubstituteFormalArguments(ArgMap);
2189 
2190     // Transfer types.  Note that the resolved alternative may have fewer
2191     // (but not more) results than the PatFrags node.
2192     FragTree->setName(getName());
2193     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2194       FragTree->UpdateNodeType(i, getExtType(i), TP);
2195 
2196     if (Op->isSubClassOf("GISelFlags"))
2197       FragTree->setGISelFlagsRecord(Op);
2198 
2199     // Transfer in the old predicates.
2200     for (const TreePredicateCall &Pred : getPredicateCalls())
2201       FragTree->addPredicateCall(Pred);
2202 
2203     // The fragment we inlined could have recursive inlining that is needed. See
2204     // if there are any pattern fragments in it and inline them as needed.
2205     FragTree->InlinePatternFragments(TP, OutAlternatives);
2206   }
2207 }
2208 
2209 /// getImplicitType - Check to see if the specified record has an implicit
2210 /// type which should be applied to it.  This will infer the type of register
2211 /// references from the register file information, for example.
2212 ///
2213 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2214 /// the F8RC register class argument in:
2215 ///
2216 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2217 ///
2218 /// When Unnamed is false, return the type of a named DAG operand such as the
2219 /// GPR:$src operand above.
2220 ///
2221 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2222                                        bool NotRegisters, bool Unnamed,
2223                                        TreePattern &TP) {
2224   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2225 
2226   // Check to see if this is a register operand.
2227   if (R->isSubClassOf("RegisterOperand")) {
2228     assert(ResNo == 0 && "Regoperand ref only has one result!");
2229     if (NotRegisters)
2230       return TypeSetByHwMode(); // Unknown.
2231     Record *RegClass = R->getValueAsDef("RegClass");
2232     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2233     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2234   }
2235 
2236   // Check to see if this is a register or a register class.
2237   if (R->isSubClassOf("RegisterClass")) {
2238     assert(ResNo == 0 && "Regclass ref only has one result!");
2239     // An unnamed register class represents itself as an i32 immediate, for
2240     // example on a COPY_TO_REGCLASS instruction.
2241     if (Unnamed)
2242       return TypeSetByHwMode(MVT::i32);
2243 
2244     // In a named operand, the register class provides the possible set of
2245     // types.
2246     if (NotRegisters)
2247       return TypeSetByHwMode(); // Unknown.
2248     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2249     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2250   }
2251 
2252   if (R->isSubClassOf("PatFrags")) {
2253     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2254     // Pattern fragment types will be resolved when they are inlined.
2255     return TypeSetByHwMode(); // Unknown.
2256   }
2257 
2258   if (R->isSubClassOf("Register")) {
2259     assert(ResNo == 0 && "Registers only produce one result!");
2260     if (NotRegisters)
2261       return TypeSetByHwMode(); // Unknown.
2262     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2263     return TypeSetByHwMode(T.getRegisterVTs(R));
2264   }
2265 
2266   if (R->isSubClassOf("SubRegIndex")) {
2267     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2268     return TypeSetByHwMode(MVT::i32);
2269   }
2270 
2271   if (R->isSubClassOf("ValueType")) {
2272     assert(ResNo == 0 && "This node only has one result!");
2273     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2274     //
2275     //   (sext_inreg GPR:$src, i16)
2276     //                         ~~~
2277     if (Unnamed)
2278       return TypeSetByHwMode(MVT::Other);
2279     // With a name, the ValueType simply provides the type of the named
2280     // variable.
2281     //
2282     //   (sext_inreg i32:$src, i16)
2283     //               ~~~~~~~~
2284     if (NotRegisters)
2285       return TypeSetByHwMode(); // Unknown.
2286     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2287     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2288   }
2289 
2290   if (R->isSubClassOf("CondCode")) {
2291     assert(ResNo == 0 && "This node only has one result!");
2292     // Using a CondCodeSDNode.
2293     return TypeSetByHwMode(MVT::Other);
2294   }
2295 
2296   if (R->isSubClassOf("ComplexPattern")) {
2297     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2298     if (NotRegisters)
2299       return TypeSetByHwMode(); // Unknown.
2300     Record *T = CDP.getComplexPattern(R).getValueType();
2301     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2302     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2303   }
2304   if (R->isSubClassOf("PointerLikeRegClass")) {
2305     assert(ResNo == 0 && "Regclass can only have one result!");
2306     TypeSetByHwMode VTS(MVT::iPTR);
2307     TP.getInfer().expandOverloads(VTS);
2308     return VTS;
2309   }
2310 
2311   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2312       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2313       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2314     // Placeholder.
2315     return TypeSetByHwMode(); // Unknown.
2316   }
2317 
2318   if (R->isSubClassOf("Operand")) {
2319     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2320     Record *T = R->getValueAsDef("Type");
2321     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2322   }
2323 
2324   TP.error("Unknown node flavor used in pattern: " + R->getName());
2325   return TypeSetByHwMode(MVT::Other);
2326 }
2327 
2328 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2329 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2330 const CodeGenIntrinsic *
2331 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2332   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2333       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2334       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2335     return nullptr;
2336 
2337   unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2338   return &CDP.getIntrinsicInfo(IID);
2339 }
2340 
2341 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2342 /// return the ComplexPattern information, otherwise return null.
2343 const ComplexPattern *
2344 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2345   Record *Rec;
2346   if (isLeaf()) {
2347     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2348     if (!DI)
2349       return nullptr;
2350     Rec = DI->getDef();
2351   } else
2352     Rec = getOperator();
2353 
2354   if (!Rec->isSubClassOf("ComplexPattern"))
2355     return nullptr;
2356   return &CGP.getComplexPattern(Rec);
2357 }
2358 
2359 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2360   // A ComplexPattern specifically declares how many results it fills in.
2361   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2362     return CP->getNumOperands();
2363 
2364   // If MIOperandInfo is specified, that gives the count.
2365   if (isLeaf()) {
2366     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2367     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2368       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2369       if (MIOps->getNumArgs())
2370         return MIOps->getNumArgs();
2371     }
2372   }
2373 
2374   // Otherwise there is just one result.
2375   return 1;
2376 }
2377 
2378 /// NodeHasProperty - Return true if this node has the specified property.
2379 bool TreePatternNode::NodeHasProperty(SDNP Property,
2380                                       const CodeGenDAGPatterns &CGP) const {
2381   if (isLeaf()) {
2382     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2383       return CP->hasProperty(Property);
2384 
2385     return false;
2386   }
2387 
2388   if (Property != SDNPHasChain) {
2389     // The chain proprety is already present on the different intrinsic node
2390     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2391     // on the intrinsic. Anything else is specific to the individual intrinsic.
2392     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2393       return Int->hasProperty(Property);
2394   }
2395 
2396   if (!getOperator()->isSubClassOf("SDPatternOperator"))
2397     return false;
2398 
2399   return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2400 }
2401 
2402 /// TreeHasProperty - Return true if any node in this tree has the specified
2403 /// property.
2404 bool TreePatternNode::TreeHasProperty(SDNP Property,
2405                                       const CodeGenDAGPatterns &CGP) const {
2406   if (NodeHasProperty(Property, CGP))
2407     return true;
2408   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2409     if (getChild(i).TreeHasProperty(Property, CGP))
2410       return true;
2411   return false;
2412 }
2413 
2414 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2415 /// commutative intrinsic.
2416 bool TreePatternNode::isCommutativeIntrinsic(
2417     const CodeGenDAGPatterns &CDP) const {
2418   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2419     return Int->isCommutative;
2420   return false;
2421 }
2422 
2423 static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2424   if (!N.isLeaf())
2425     return N.getOperator()->isSubClassOf(Class);
2426 
2427   DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2428   if (DI && DI->getDef()->isSubClassOf(Class))
2429     return true;
2430 
2431   return false;
2432 }
2433 
2434 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2435                                      unsigned Expected, unsigned Actual) {
2436   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2437            " operands but expected only " + Twine(Expected) + "!");
2438 }
2439 
2440 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2441                                     unsigned Actual) {
2442   TP.error("Instruction '" + InstName + "' expects more than the provided " +
2443            Twine(Actual) + " operands!");
2444 }
2445 
2446 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2447 /// this node and its children in the tree.  This returns true if it makes a
2448 /// change, false otherwise.  If a type contradiction is found, flag an error.
2449 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2450   if (TP.hasError())
2451     return false;
2452 
2453   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2454   if (isLeaf()) {
2455     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2456       // If it's a regclass or something else known, include the type.
2457       bool MadeChange = false;
2458       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2459         MadeChange |= UpdateNodeType(
2460             i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2461             TP);
2462       return MadeChange;
2463     }
2464 
2465     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2466       assert(Types.size() == 1 && "Invalid IntInit");
2467 
2468       // Int inits are always integers. :)
2469       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2470 
2471       if (!TP.getInfer().isConcrete(Types[0], false))
2472         return MadeChange;
2473 
2474       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2475       for (auto &P : VVT) {
2476         MVT::SimpleValueType VT = P.second.SimpleTy;
2477         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2478           continue;
2479         unsigned Size = MVT(VT).getFixedSizeInBits();
2480         // Make sure that the value is representable for this type.
2481         if (Size >= 32)
2482           continue;
2483         // Check that the value doesn't use more bits than we have. It must
2484         // either be a sign- or zero-extended equivalent of the original.
2485         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2486         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2487             SignBitAndAbove == 1)
2488           continue;
2489 
2490         TP.error("Integer value '" + Twine(II->getValue()) +
2491                  "' is out of range for type '" + getEnumName(VT) + "'!");
2492         break;
2493       }
2494       return MadeChange;
2495     }
2496 
2497     return false;
2498   }
2499 
2500   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2501     bool MadeChange = false;
2502 
2503     // Apply the result type to the node.
2504     unsigned NumRetVTs = Int->IS.RetTys.size();
2505     unsigned NumParamVTs = Int->IS.ParamTys.size();
2506 
2507     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2508       MadeChange |= UpdateNodeType(
2509           i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2510 
2511     if (getNumChildren() != NumParamVTs + 1) {
2512       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2513                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2514       return false;
2515     }
2516 
2517     // Apply type info to the intrinsic ID.
2518     MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2519 
2520     for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2521       MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2522 
2523       MVT::SimpleValueType OpVT =
2524           getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2525       assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2526       MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2527     }
2528     return MadeChange;
2529   }
2530 
2531   if (getOperator()->isSubClassOf("SDNode")) {
2532     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2533 
2534     // Check that the number of operands is sane.  Negative operands -> varargs.
2535     if (NI.getNumOperands() >= 0 &&
2536         getNumChildren() != (unsigned)NI.getNumOperands()) {
2537       TP.error(getOperator()->getName() + " node requires exactly " +
2538                Twine(NI.getNumOperands()) + " operands!");
2539       return false;
2540     }
2541 
2542     bool MadeChange = false;
2543     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2544       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2545     MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2546     return MadeChange;
2547   }
2548 
2549   if (getOperator()->isSubClassOf("Instruction")) {
2550     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2551     CodeGenInstruction &InstInfo =
2552         CDP.getTargetInfo().getInstruction(getOperator());
2553 
2554     bool MadeChange = false;
2555 
2556     // Apply the result types to the node, these come from the things in the
2557     // (outs) list of the instruction.
2558     unsigned NumResultsToAdd =
2559         std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2560     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2561       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2562 
2563     // If the instruction has implicit defs, we apply the first one as a result.
2564     // FIXME: This sucks, it should apply all implicit defs.
2565     if (!InstInfo.ImplicitDefs.empty()) {
2566       unsigned ResNo = NumResultsToAdd;
2567 
2568       // FIXME: Generalize to multiple possible types and multiple possible
2569       // ImplicitDefs.
2570       MVT::SimpleValueType VT =
2571           InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2572 
2573       if (VT != MVT::Other)
2574         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2575     }
2576 
2577     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2578     // be the same.
2579     if (getOperator()->getName() == "INSERT_SUBREG") {
2580       assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2581       MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2582       MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2583     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2584       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2585       // variadic.
2586 
2587       unsigned NChild = getNumChildren();
2588       if (NChild < 3) {
2589         TP.error("REG_SEQUENCE requires at least 3 operands!");
2590         return false;
2591       }
2592 
2593       if (NChild % 2 == 0) {
2594         TP.error("REG_SEQUENCE requires an odd number of operands!");
2595         return false;
2596       }
2597 
2598       if (!isOperandClass(getChild(0), "RegisterClass")) {
2599         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2600         return false;
2601       }
2602 
2603       for (unsigned I = 1; I < NChild; I += 2) {
2604         TreePatternNode &SubIdxChild = getChild(I + 1);
2605         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2606           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2607                    Twine(I + 1) + "!");
2608           return false;
2609         }
2610       }
2611     }
2612 
2613     unsigned NumResults = Inst.getNumResults();
2614     unsigned NumFixedOperands = InstInfo.Operands.size();
2615 
2616     // If one or more operands with a default value appear at the end of the
2617     // formal operand list for an instruction, we allow them to be overridden
2618     // by optional operands provided in the pattern.
2619     //
2620     // But if an operand B without a default appears at any point after an
2621     // operand A with a default, then we don't allow A to be overridden,
2622     // because there would be no way to specify whether the next operand in
2623     // the pattern was intended to override A or skip it.
2624     unsigned NonOverridableOperands = NumFixedOperands;
2625     while (NonOverridableOperands > NumResults &&
2626            CDP.operandHasDefault(
2627                InstInfo.Operands[NonOverridableOperands - 1].Rec))
2628       --NonOverridableOperands;
2629 
2630     unsigned ChildNo = 0;
2631     assert(NumResults <= NumFixedOperands);
2632     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2633       Record *OperandNode = InstInfo.Operands[i].Rec;
2634 
2635       // If the operand has a default value, do we use it? We must use the
2636       // default if we've run out of children of the pattern DAG to consume,
2637       // or if the operand is followed by a non-defaulted one.
2638       if (CDP.operandHasDefault(OperandNode) &&
2639           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2640         continue;
2641 
2642       // If we have run out of child nodes and there _isn't_ a default
2643       // value we can use for the next operand, give an error.
2644       if (ChildNo >= getNumChildren()) {
2645         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2646         return false;
2647       }
2648 
2649       TreePatternNode *Child = &getChild(ChildNo++);
2650       unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2651 
2652       // If the operand has sub-operands, they may be provided by distinct
2653       // child patterns, so attempt to match each sub-operand separately.
2654       if (OperandNode->isSubClassOf("Operand")) {
2655         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2656         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2657           // But don't do that if the whole operand is being provided by
2658           // a single ComplexPattern-related Operand.
2659 
2660           if (Child->getNumMIResults(CDP) < NumArgs) {
2661             // Match first sub-operand against the child we already have.
2662             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2663             MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2664 
2665             // And the remaining sub-operands against subsequent children.
2666             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2667               if (ChildNo >= getNumChildren()) {
2668                 emitTooFewOperandsError(TP, getOperator()->getName(),
2669                                         getNumChildren());
2670                 return false;
2671               }
2672               Child = &getChild(ChildNo++);
2673 
2674               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2675               MadeChange |=
2676                   Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2677             }
2678             continue;
2679           }
2680         }
2681       }
2682 
2683       // If we didn't match by pieces above, attempt to match the whole
2684       // operand now.
2685       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2686     }
2687 
2688     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2689       emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2690                                getNumChildren());
2691       return false;
2692     }
2693 
2694     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2695       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2696     return MadeChange;
2697   }
2698 
2699   if (getOperator()->isSubClassOf("ComplexPattern")) {
2700     bool MadeChange = false;
2701 
2702     if (!NotRegisters) {
2703       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2704       Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2705       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2706       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2707       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2708       // exclusively use those as non-leaf nodes with explicit type casts, so
2709       // for backwards compatibility we do no inference in that case. This is
2710       // not supported when the ComplexPattern is used as a leaf value,
2711       // however; this inconsistency should be resolved, either by adding this
2712       // case there or by altering the backends to not do this (e.g. using Any
2713       // instead may work).
2714       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2715         MadeChange |= UpdateNodeType(0, VVT, TP);
2716     }
2717 
2718     for (unsigned i = 0; i < getNumChildren(); ++i)
2719       MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2720 
2721     return MadeChange;
2722   }
2723 
2724   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2725 
2726   // Node transforms always take one operand.
2727   if (getNumChildren() != 1) {
2728     TP.error("Node transform '" + getOperator()->getName() +
2729              "' requires one operand!");
2730     return false;
2731   }
2732 
2733   bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2734   return MadeChange;
2735 }
2736 
2737 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2738 /// RHS of a commutative operation, not the on LHS.
2739 static bool OnlyOnRHSOfCommutative(TreePatternNode &N) {
2740   if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2741     return true;
2742   if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2743     return true;
2744   if (isImmAllOnesAllZerosMatch(N))
2745     return true;
2746   return false;
2747 }
2748 
2749 /// canPatternMatch - If it is impossible for this pattern to match on this
2750 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2751 /// used as a sanity check for .td files (to prevent people from writing stuff
2752 /// that can never possibly work), and to prevent the pattern permuter from
2753 /// generating stuff that is useless.
2754 bool TreePatternNode::canPatternMatch(std::string &Reason,
2755                                       const CodeGenDAGPatterns &CDP) {
2756   if (isLeaf())
2757     return true;
2758 
2759   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2760     if (!getChild(i).canPatternMatch(Reason, CDP))
2761       return false;
2762 
2763   // If this is an intrinsic, handle cases that would make it not match.  For
2764   // example, if an operand is required to be an immediate.
2765   if (getOperator()->isSubClassOf("Intrinsic")) {
2766     // TODO:
2767     return true;
2768   }
2769 
2770   if (getOperator()->isSubClassOf("ComplexPattern"))
2771     return true;
2772 
2773   // If this node is a commutative operator, check that the LHS isn't an
2774   // immediate.
2775   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2776   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2777   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2778     // Scan all of the operands of the node and make sure that only the last one
2779     // is a constant node, unless the RHS also is.
2780     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2781       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2782       for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2783         if (OnlyOnRHSOfCommutative(getChild(i))) {
2784           Reason =
2785               "Immediate value must be on the RHS of commutative operators!";
2786           return false;
2787         }
2788     }
2789   }
2790 
2791   return true;
2792 }
2793 
2794 //===----------------------------------------------------------------------===//
2795 // TreePattern implementation
2796 //
2797 
2798 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2799                          CodeGenDAGPatterns &cdp)
2800     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2801       Infer(*this) {
2802   for (Init *I : RawPat->getValues())
2803     Trees.push_back(ParseTreePattern(I, ""));
2804 }
2805 
2806 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2807                          CodeGenDAGPatterns &cdp)
2808     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2809       Infer(*this) {
2810   Trees.push_back(ParseTreePattern(Pat, ""));
2811 }
2812 
2813 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2814                          CodeGenDAGPatterns &cdp)
2815     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2816       Infer(*this) {
2817   Trees.push_back(Pat);
2818 }
2819 
2820 void TreePattern::error(const Twine &Msg) {
2821   if (HasError)
2822     return;
2823   dump();
2824   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2825   HasError = true;
2826 }
2827 
2828 void TreePattern::ComputeNamedNodes() {
2829   for (TreePatternNodePtr &Tree : Trees)
2830     ComputeNamedNodes(*Tree);
2831 }
2832 
2833 void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2834   if (!N.getName().empty())
2835     NamedNodes[N.getName()].push_back(&N);
2836 
2837   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
2838     ComputeNamedNodes(N.getChild(i));
2839 }
2840 
2841 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2842                                                  StringRef OpName) {
2843   RecordKeeper &RK = TheInit->getRecordKeeper();
2844   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2845     Record *R = DI->getDef();
2846 
2847     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2848     // TreePatternNode of its own.  For example:
2849     ///   (foo GPR, imm) -> (foo GPR, (imm))
2850     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2851       return ParseTreePattern(
2852           DagInit::get(DI, nullptr,
2853                        std::vector<std::pair<Init *, StringInit *>>()),
2854           OpName);
2855 
2856     // Input argument?
2857     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2858     if (R->getName() == "node" && !OpName.empty()) {
2859       if (OpName.empty())
2860         error("'node' argument requires a name to match with operand list");
2861       Args.push_back(std::string(OpName));
2862     }
2863 
2864     Res->setName(OpName);
2865     return Res;
2866   }
2867 
2868   // ?:$name or just $name.
2869   if (isa<UnsetInit>(TheInit)) {
2870     if (OpName.empty())
2871       error("'?' argument requires a name to match with operand list");
2872     TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2873     Args.push_back(std::string(OpName));
2874     Res->setName(OpName);
2875     return Res;
2876   }
2877 
2878   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2879     if (!OpName.empty())
2880       error("Constant int or bit argument should not have a name!");
2881     if (isa<BitInit>(TheInit))
2882       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2883     return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2884   }
2885 
2886   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2887     // Turn this into an IntInit.
2888     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2889     if (!II || !isa<IntInit>(II))
2890       error("Bits value must be constants!");
2891     return II ? ParseTreePattern(II, OpName) : nullptr;
2892   }
2893 
2894   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2895   if (!Dag) {
2896     TheInit->print(errs());
2897     error("Pattern has unexpected init kind!");
2898     return nullptr;
2899   }
2900   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2901   if (!OpDef) {
2902     error("Pattern has unexpected operator type!");
2903     return nullptr;
2904   }
2905   Record *Operator = OpDef->getDef();
2906 
2907   if (Operator->isSubClassOf("ValueType")) {
2908     // If the operator is a ValueType, then this must be "type cast" of a leaf
2909     // node.
2910     if (Dag->getNumArgs() != 1)
2911       error("Type cast only takes one operand!");
2912 
2913     TreePatternNodePtr New =
2914         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2915 
2916     // Apply the type cast.
2917     if (New->getNumTypes() != 1)
2918       error("Type cast can only have one type!");
2919     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2920     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2921 
2922     if (!OpName.empty())
2923       error("ValueType cast should not have a name!");
2924     return New;
2925   }
2926 
2927   // Verify that this is something that makes sense for an operator.
2928   if (!Operator->isSubClassOf("PatFrags") &&
2929       !Operator->isSubClassOf("SDNode") &&
2930       !Operator->isSubClassOf("Instruction") &&
2931       !Operator->isSubClassOf("SDNodeXForm") &&
2932       !Operator->isSubClassOf("Intrinsic") &&
2933       !Operator->isSubClassOf("ComplexPattern") &&
2934       Operator->getName() != "set" && Operator->getName() != "implicit")
2935     error("Unrecognized node '" + Operator->getName() + "'!");
2936 
2937   //  Check to see if this is something that is illegal in an input pattern.
2938   if (isInputPattern) {
2939     if (Operator->isSubClassOf("Instruction") ||
2940         Operator->isSubClassOf("SDNodeXForm"))
2941       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2942   } else {
2943     if (Operator->isSubClassOf("Intrinsic"))
2944       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2945 
2946     if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2947         Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2948         Operator->getName() != "tglobaltlsaddr" &&
2949         Operator->getName() != "tconstpool" &&
2950         Operator->getName() != "tjumptable" &&
2951         Operator->getName() != "tframeindex" &&
2952         Operator->getName() != "texternalsym" &&
2953         Operator->getName() != "tblockaddress" &&
2954         Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2955         Operator->getName() != "vt" && Operator->getName() != "mcsym")
2956       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2957   }
2958 
2959   std::vector<TreePatternNodePtr> Children;
2960 
2961   // Parse all the operands.
2962   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2963     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2964 
2965   // Get the actual number of results before Operator is converted to an
2966   // intrinsic node (which is hard-coded to have either zero or one result).
2967   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2968 
2969   // If the operator is an intrinsic, then this is just syntactic sugar for
2970   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2971   // convert the intrinsic name to a number.
2972   if (Operator->isSubClassOf("Intrinsic")) {
2973     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2974     unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2975 
2976     // If this intrinsic returns void, it must have side-effects and thus a
2977     // chain.
2978     if (Int.IS.RetTys.empty())
2979       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2980     else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2981       // Has side-effects, requires chain.
2982       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2983     else // Otherwise, no chain.
2984       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2985 
2986     Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
2987                                           IntInit::get(RK, IID), 1));
2988   }
2989 
2990   if (Operator->isSubClassOf("ComplexPattern")) {
2991     for (unsigned i = 0; i < Children.size(); ++i) {
2992       TreePatternNodePtr Child = Children[i];
2993 
2994       if (Child->getName().empty())
2995         error("All arguments to a ComplexPattern must be named");
2996 
2997       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2998       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2999       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3000       auto OperandId = std::pair(Operator, i);
3001       auto PrevOp = ComplexPatternOperands.find(Child->getName());
3002       if (PrevOp != ComplexPatternOperands.end()) {
3003         if (PrevOp->getValue() != OperandId)
3004           error("All ComplexPattern operands must appear consistently: "
3005                 "in the same order in just one ComplexPattern instance.");
3006       } else
3007         ComplexPatternOperands[Child->getName()] = OperandId;
3008     }
3009   }
3010 
3011   TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3012       Operator, std::move(Children), NumResults);
3013   Result->setName(OpName);
3014 
3015   if (Dag->getName()) {
3016     assert(Result->getName().empty());
3017     Result->setName(Dag->getNameStr());
3018   }
3019   return Result;
3020 }
3021 
3022 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3023 /// will never match in favor of something obvious that will.  This is here
3024 /// strictly as a convenience to target authors because it allows them to write
3025 /// more type generic things and have useless type casts fold away.
3026 ///
3027 /// This returns true if any change is made.
3028 static bool SimplifyTree(TreePatternNodePtr &N) {
3029   if (N->isLeaf())
3030     return false;
3031 
3032   // If we have a bitconvert with a resolved type and if the source and
3033   // destination types are the same, then the bitconvert is useless, remove it.
3034   //
3035   // We make an exception if the types are completely empty. This can come up
3036   // when the pattern being simplified is in the Fragments list of a PatFrags,
3037   // so that the operand is just an untyped "node". In that situation we leave
3038   // bitconverts unsimplified, and simplify them later once the fragment is
3039   // expanded into its true context.
3040   if (N->getOperator()->getName() == "bitconvert" &&
3041       N->getExtType(0).isValueTypeByHwMode(false) &&
3042       !N->getExtType(0).empty() &&
3043       N->getExtType(0) == N->getChild(0).getExtType(0) &&
3044       N->getName().empty()) {
3045     N = N->getChildShared(0);
3046     SimplifyTree(N);
3047     return true;
3048   }
3049 
3050   // Walk all children.
3051   bool MadeChange = false;
3052   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3053     MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3054 
3055   return MadeChange;
3056 }
3057 
3058 /// InferAllTypes - Infer/propagate as many types throughout the expression
3059 /// patterns as possible.  Return true if all types are inferred, false
3060 /// otherwise.  Flags an error if a type contradiction is found.
3061 bool TreePattern::InferAllTypes(
3062     const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3063   if (NamedNodes.empty())
3064     ComputeNamedNodes();
3065 
3066   bool MadeChange = true;
3067   while (MadeChange) {
3068     MadeChange = false;
3069     for (TreePatternNodePtr &Tree : Trees) {
3070       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3071       MadeChange |= SimplifyTree(Tree);
3072     }
3073 
3074     // If there are constraints on our named nodes, apply them.
3075     for (auto &Entry : NamedNodes) {
3076       SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3077 
3078       // If we have input named node types, propagate their types to the named
3079       // values here.
3080       if (InNamedTypes) {
3081         if (!InNamedTypes->count(Entry.getKey())) {
3082           error("Node '" + std::string(Entry.getKey()) +
3083                 "' in output pattern but not input pattern");
3084           return true;
3085         }
3086 
3087         const SmallVectorImpl<TreePatternNode *> &InNodes =
3088             InNamedTypes->find(Entry.getKey())->second;
3089 
3090         // The input types should be fully resolved by now.
3091         for (TreePatternNode *Node : Nodes) {
3092           // If this node is a register class, and it is the root of the pattern
3093           // then we're mapping something onto an input register.  We allow
3094           // changing the type of the input register in this case.  This allows
3095           // us to match things like:
3096           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3097           if (Node == Trees[0].get() && Node->isLeaf()) {
3098             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3099             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3100                        DI->getDef()->isSubClassOf("RegisterOperand")))
3101               continue;
3102           }
3103 
3104           assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3105                  "FIXME: cannot name multiple result nodes yet");
3106           MadeChange |=
3107               Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3108         }
3109       }
3110 
3111       // If there are multiple nodes with the same name, they must all have the
3112       // same type.
3113       if (Entry.second.size() > 1) {
3114         for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3115           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3116           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3117                  "FIXME: cannot name multiple result nodes yet");
3118 
3119           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3120           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3121         }
3122       }
3123     }
3124   }
3125 
3126   bool HasUnresolvedTypes = false;
3127   for (const TreePatternNodePtr &Tree : Trees)
3128     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3129   return !HasUnresolvedTypes;
3130 }
3131 
3132 void TreePattern::print(raw_ostream &OS) const {
3133   OS << getRecord()->getName();
3134   if (!Args.empty()) {
3135     OS << "(";
3136     ListSeparator LS;
3137     for (const std::string &Arg : Args)
3138       OS << LS << Arg;
3139     OS << ")";
3140   }
3141   OS << ": ";
3142 
3143   if (Trees.size() > 1)
3144     OS << "[\n";
3145   for (const TreePatternNodePtr &Tree : Trees) {
3146     OS << "\t";
3147     Tree->print(OS);
3148     OS << "\n";
3149   }
3150 
3151   if (Trees.size() > 1)
3152     OS << "]\n";
3153 }
3154 
3155 void TreePattern::dump() const { print(errs()); }
3156 
3157 //===----------------------------------------------------------------------===//
3158 // CodeGenDAGPatterns implementation
3159 //
3160 
3161 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3162                                        PatternRewriterFn PatternRewriter)
3163     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3164       PatternRewriter(PatternRewriter) {
3165 
3166   Intrinsics = CodeGenIntrinsicTable(Records);
3167   ParseNodeInfo();
3168   ParseNodeTransforms();
3169   ParseComplexPatterns();
3170   ParsePatternFragments();
3171   ParseDefaultOperands();
3172   ParseInstructions();
3173   ParsePatternFragments(/*OutFrags*/ true);
3174   ParsePatterns();
3175 
3176   // Generate variants.  For example, commutative patterns can match
3177   // multiple ways.  Add them to PatternsToMatch as well.
3178   GenerateVariants();
3179 
3180   // Break patterns with parameterized types into a series of patterns,
3181   // where each one has a fixed type and is predicated on the conditions
3182   // of the associated HW mode.
3183   ExpandHwModeBasedTypes();
3184 
3185   // Infer instruction flags.  For example, we can detect loads,
3186   // stores, and side effects in many cases by examining an
3187   // instruction's pattern.
3188   InferInstructionFlags();
3189 
3190   // Verify that instruction flags match the patterns.
3191   VerifyInstructionFlags();
3192 }
3193 
3194 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3195   Record *N = Records.getDef(Name);
3196   if (!N || !N->isSubClassOf("SDNode"))
3197     PrintFatalError("Error getting SDNode '" + Name + "'!");
3198 
3199   return N;
3200 }
3201 
3202 // Parse all of the SDNode definitions for the target, populating SDNodes.
3203 void CodeGenDAGPatterns::ParseNodeInfo() {
3204   std::vector<Record *> Nodes = Records.getAllDerivedDefinitions("SDNode");
3205   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3206 
3207   while (!Nodes.empty()) {
3208     Record *R = Nodes.back();
3209     SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH)));
3210     Nodes.pop_back();
3211   }
3212 
3213   // Get the builtin intrinsic nodes.
3214   intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3215   intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3216   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3217 }
3218 
3219 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3220 /// map, and emit them to the file as functions.
3221 void CodeGenDAGPatterns::ParseNodeTransforms() {
3222   std::vector<Record *> Xforms =
3223       Records.getAllDerivedDefinitions("SDNodeXForm");
3224   while (!Xforms.empty()) {
3225     Record *XFormNode = Xforms.back();
3226     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3227     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3228     SDNodeXForms.insert(
3229         std::pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3230 
3231     Xforms.pop_back();
3232   }
3233 }
3234 
3235 void CodeGenDAGPatterns::ParseComplexPatterns() {
3236   std::vector<Record *> AMs =
3237       Records.getAllDerivedDefinitions("ComplexPattern");
3238   while (!AMs.empty()) {
3239     ComplexPatterns.insert(std::pair(AMs.back(), AMs.back()));
3240     AMs.pop_back();
3241   }
3242 }
3243 
3244 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3245 /// file, building up the PatternFragments map.  After we've collected them all,
3246 /// inline fragments together as necessary, so that there are no references left
3247 /// inside a pattern fragment to a pattern fragment.
3248 ///
3249 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3250   std::vector<Record *> Fragments =
3251       Records.getAllDerivedDefinitions("PatFrags");
3252 
3253   // First step, parse all of the fragments.
3254   for (Record *Frag : Fragments) {
3255     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3256       continue;
3257 
3258     ListInit *LI = Frag->getValueAsListInit("Fragments");
3259     TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3260                           Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3261                          .get();
3262 
3263     // Validate the argument list, converting it to set, to discard duplicates.
3264     std::vector<std::string> &Args = P->getArgList();
3265     // Copy the args so we can take StringRefs to them.
3266     auto ArgsCopy = Args;
3267     SmallDenseSet<StringRef, 4> OperandsSet;
3268     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3269 
3270     if (OperandsSet.count(""))
3271       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3272 
3273     // Parse the operands list.
3274     DagInit *OpsList = Frag->getValueAsDag("Operands");
3275     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3276     // Special cases: ops == outs == ins. Different names are used to
3277     // improve readability.
3278     if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3279                    OpsOp->getDef()->getName() != "outs" &&
3280                    OpsOp->getDef()->getName() != "ins"))
3281       P->error("Operands list should start with '(ops ... '!");
3282 
3283     // Copy over the arguments.
3284     Args.clear();
3285     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3286       if (!isa<DefInit>(OpsList->getArg(j)) ||
3287           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3288         P->error("Operands list should all be 'node' values.");
3289       if (!OpsList->getArgName(j))
3290         P->error("Operands list should have names for each operand!");
3291       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3292       if (!OperandsSet.count(ArgNameStr))
3293         P->error("'" + ArgNameStr +
3294                  "' does not occur in pattern or was multiply specified!");
3295       OperandsSet.erase(ArgNameStr);
3296       Args.push_back(std::string(ArgNameStr));
3297     }
3298 
3299     if (!OperandsSet.empty())
3300       P->error("Operands list does not contain an entry for operand '" +
3301                *OperandsSet.begin() + "'!");
3302 
3303     // If there is a node transformation corresponding to this, keep track of
3304     // it.
3305     Record *Transform = Frag->getValueAsDef("OperandTransform");
3306     if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3307       for (const auto &T : P->getTrees())
3308         T->setTransformFn(Transform);
3309   }
3310 
3311   // Now that we've parsed all of the tree fragments, do a closure on them so
3312   // that there are not references to PatFrags left inside of them.
3313   for (Record *Frag : Fragments) {
3314     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3315       continue;
3316 
3317     TreePattern &ThePat = *PatternFragments[Frag];
3318     ThePat.InlinePatternFragments();
3319 
3320     // Infer as many types as possible.  Don't worry about it if we don't infer
3321     // all of them, some may depend on the inputs of the pattern.  Also, don't
3322     // validate type sets; validation may cause spurious failures e.g. if a
3323     // fragment needs floating-point types but the current target does not have
3324     // any (this is only an error if that fragment is ever used!).
3325     {
3326       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3327       ThePat.InferAllTypes();
3328       ThePat.resetError();
3329     }
3330 
3331     // If debugging, print out the pattern fragment result.
3332     LLVM_DEBUG(ThePat.dump());
3333   }
3334 }
3335 
3336 void CodeGenDAGPatterns::ParseDefaultOperands() {
3337   std::vector<Record *> DefaultOps;
3338   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3339 
3340   // Find some SDNode.
3341   assert(!SDNodes.empty() && "No SDNodes parsed?");
3342   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3343 
3344   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3345     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3346 
3347     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3348     // SomeSDnode so that we can parse this.
3349     std::vector<std::pair<Init *, StringInit *>> Ops;
3350     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3351       Ops.push_back(
3352           std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)));
3353     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3354 
3355     // Create a TreePattern to parse this.
3356     TreePattern P(DefaultOps[i], DI, false, *this);
3357     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3358 
3359     // Copy the operands over into a DAGDefaultOperand.
3360     DAGDefaultOperand DefaultOpInfo;
3361 
3362     const TreePatternNodePtr &T = P.getTree(0);
3363     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3364       TreePatternNodePtr TPN = T->getChildShared(op);
3365       while (TPN->ApplyTypeConstraints(P, false))
3366         /* Resolve all types */;
3367 
3368       if (TPN->ContainsUnresolvedType(P)) {
3369         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3370                         DefaultOps[i]->getName() +
3371                         "' doesn't have a concrete type!");
3372       }
3373       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3374     }
3375 
3376     // Insert it into the DefaultOperands map so we can find it later.
3377     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3378   }
3379 }
3380 
3381 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3382 /// instruction input.  Return true if this is a real use.
3383 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3384                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3385   // No name -> not interesting.
3386   if (Pat->getName().empty()) {
3387     if (Pat->isLeaf()) {
3388       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3389       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3390                  DI->getDef()->isSubClassOf("RegisterOperand")))
3391         I.error("Input " + DI->getDef()->getName() + " must be named!");
3392     }
3393     return false;
3394   }
3395 
3396   Record *Rec;
3397   if (Pat->isLeaf()) {
3398     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3399     if (!DI)
3400       I.error("Input $" + Pat->getName() + " must be an identifier!");
3401     Rec = DI->getDef();
3402   } else {
3403     Rec = Pat->getOperator();
3404   }
3405 
3406   // SRCVALUE nodes are ignored.
3407   if (Rec->getName() == "srcvalue")
3408     return false;
3409 
3410   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3411   if (!Slot) {
3412     Slot = Pat;
3413     return true;
3414   }
3415   Record *SlotRec;
3416   if (Slot->isLeaf()) {
3417     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3418   } else {
3419     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3420     SlotRec = Slot->getOperator();
3421   }
3422 
3423   // Ensure that the inputs agree if we've already seen this input.
3424   if (Rec != SlotRec)
3425     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3426   // Ensure that the types can agree as well.
3427   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3428   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3429   if (Slot->getExtTypes() != Pat->getExtTypes())
3430     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3431   return true;
3432 }
3433 
3434 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3435 /// part of "I", the instruction), computing the set of inputs and outputs of
3436 /// the pattern.  Report errors if we see anything naughty.
3437 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3438     TreePattern &I, TreePatternNodePtr Pat,
3439     std::map<std::string, TreePatternNodePtr> &InstInputs,
3440     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3441         &InstResults,
3442     std::vector<Record *> &InstImpResults) {
3443 
3444   // The instruction pattern still has unresolved fragments.  For *named*
3445   // nodes we must resolve those here.  This may not result in multiple
3446   // alternatives.
3447   if (!Pat->getName().empty()) {
3448     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3449     SrcPattern.InlinePatternFragments();
3450     SrcPattern.InferAllTypes();
3451     Pat = SrcPattern.getOnlyTree();
3452   }
3453 
3454   if (Pat->isLeaf()) {
3455     bool isUse = HandleUse(I, Pat, InstInputs);
3456     if (!isUse && Pat->getTransformFn())
3457       I.error("Cannot specify a transform function for a non-input value!");
3458     return;
3459   }
3460 
3461   if (Pat->getOperator()->getName() == "implicit") {
3462     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3463       TreePatternNode &Dest = Pat->getChild(i);
3464       if (!Dest.isLeaf())
3465         I.error("implicitly defined value should be a register!");
3466 
3467       DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue());
3468       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3469         I.error("implicitly defined value should be a register!");
3470       if (Val)
3471         InstImpResults.push_back(Val->getDef());
3472     }
3473     return;
3474   }
3475 
3476   if (Pat->getOperator()->getName() != "set") {
3477     // If this is not a set, verify that the children nodes are not void typed,
3478     // and recurse.
3479     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3480       if (Pat->getChild(i).getNumTypes() == 0)
3481         I.error("Cannot have void nodes inside of patterns!");
3482       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3483                                   InstResults, InstImpResults);
3484     }
3485 
3486     // If this is a non-leaf node with no children, treat it basically as if
3487     // it were a leaf.  This handles nodes like (imm).
3488     bool isUse = HandleUse(I, Pat, InstInputs);
3489 
3490     if (!isUse && Pat->getTransformFn())
3491       I.error("Cannot specify a transform function for a non-input value!");
3492     return;
3493   }
3494 
3495   // Otherwise, this is a set, validate and collect instruction results.
3496   if (Pat->getNumChildren() == 0)
3497     I.error("set requires operands!");
3498 
3499   if (Pat->getTransformFn())
3500     I.error("Cannot specify a transform function on a set node!");
3501 
3502   // Check the set destinations.
3503   unsigned NumDests = Pat->getNumChildren() - 1;
3504   for (unsigned i = 0; i != NumDests; ++i) {
3505     TreePatternNodePtr Dest = Pat->getChildShared(i);
3506     // For set destinations we also must resolve fragments here.
3507     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3508     DestPattern.InlinePatternFragments();
3509     DestPattern.InferAllTypes();
3510     Dest = DestPattern.getOnlyTree();
3511 
3512     if (!Dest->isLeaf())
3513       I.error("set destination should be a register!");
3514 
3515     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3516     if (!Val) {
3517       I.error("set destination should be a register!");
3518       continue;
3519     }
3520 
3521     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3522         Val->getDef()->isSubClassOf("ValueType") ||
3523         Val->getDef()->isSubClassOf("RegisterOperand") ||
3524         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3525       if (Dest->getName().empty())
3526         I.error("set destination must have a name!");
3527       if (InstResults.count(Dest->getName()))
3528         I.error("cannot set '" + Dest->getName() + "' multiple times");
3529       InstResults[Dest->getName()] = Dest;
3530     } else if (Val->getDef()->isSubClassOf("Register")) {
3531       InstImpResults.push_back(Val->getDef());
3532     } else {
3533       I.error("set destination should be a register!");
3534     }
3535   }
3536 
3537   // Verify and collect info from the computation.
3538   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3539                               InstResults, InstImpResults);
3540 }
3541 
3542 //===----------------------------------------------------------------------===//
3543 // Instruction Analysis
3544 //===----------------------------------------------------------------------===//
3545 
3546 class InstAnalyzer {
3547   const CodeGenDAGPatterns &CDP;
3548 
3549 public:
3550   bool hasSideEffects;
3551   bool mayStore;
3552   bool mayLoad;
3553   bool isBitcast;
3554   bool isVariadic;
3555   bool hasChain;
3556 
3557   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3558       : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3559         isBitcast(false), isVariadic(false), hasChain(false) {}
3560 
3561   void Analyze(const PatternToMatch &Pat) {
3562     const TreePatternNode &N = Pat.getSrcPattern();
3563     AnalyzeNode(N);
3564     // These properties are detected only on the root node.
3565     isBitcast = IsNodeBitcast(N);
3566   }
3567 
3568 private:
3569   bool IsNodeBitcast(const TreePatternNode &N) const {
3570     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3571       return false;
3572 
3573     if (N.isLeaf())
3574       return false;
3575     if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3576       return false;
3577 
3578     if (N.getOperator()->isSubClassOf("ComplexPattern"))
3579       return false;
3580 
3581     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3582     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3583       return false;
3584     return OpInfo.getEnumName() == "ISD::BITCAST";
3585   }
3586 
3587 public:
3588   void AnalyzeNode(const TreePatternNode &N) {
3589     if (N.isLeaf()) {
3590       if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3591         Record *LeafRec = DI->getDef();
3592         // Handle ComplexPattern leaves.
3593         if (LeafRec->isSubClassOf("ComplexPattern")) {
3594           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3595           if (CP.hasProperty(SDNPMayStore))
3596             mayStore = true;
3597           if (CP.hasProperty(SDNPMayLoad))
3598             mayLoad = true;
3599           if (CP.hasProperty(SDNPSideEffect))
3600             hasSideEffects = true;
3601         }
3602       }
3603       return;
3604     }
3605 
3606     // Analyze children.
3607     for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
3608       AnalyzeNode(N.getChild(i));
3609 
3610     // Notice properties of the node.
3611     if (N.NodeHasProperty(SDNPMayStore, CDP))
3612       mayStore = true;
3613     if (N.NodeHasProperty(SDNPMayLoad, CDP))
3614       mayLoad = true;
3615     if (N.NodeHasProperty(SDNPSideEffect, CDP))
3616       hasSideEffects = true;
3617     if (N.NodeHasProperty(SDNPVariadic, CDP))
3618       isVariadic = true;
3619     if (N.NodeHasProperty(SDNPHasChain, CDP))
3620       hasChain = true;
3621 
3622     if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3623       ModRefInfo MR = IntInfo->ME.getModRef();
3624       // If this is an intrinsic, analyze it.
3625       if (isRefSet(MR))
3626         mayLoad = true; // These may load memory.
3627 
3628       if (isModSet(MR))
3629         mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3630 
3631       // Consider intrinsics that don't specify any restrictions on memory
3632       // effects as having a side-effect.
3633       if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3634         hasSideEffects = true;
3635     }
3636   }
3637 };
3638 
3639 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3640                              const InstAnalyzer &PatInfo, Record *PatDef) {
3641   bool Error = false;
3642 
3643   // Remember where InstInfo got its flags.
3644   if (InstInfo.hasUndefFlags())
3645     InstInfo.InferredFrom = PatDef;
3646 
3647   // Check explicitly set flags for consistency.
3648   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3649       !InstInfo.hasSideEffects_Unset) {
3650     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3651     // the pattern has no side effects. That could be useful for div/rem
3652     // instructions that may trap.
3653     if (!InstInfo.hasSideEffects) {
3654       Error = true;
3655       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3656                                        Twine(InstInfo.hasSideEffects));
3657     }
3658   }
3659 
3660   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3661     Error = true;
3662     PrintError(PatDef->getLoc(),
3663                "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3664   }
3665 
3666   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3667     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3668     // Some targets translate immediates to loads.
3669     if (!InstInfo.mayLoad) {
3670       Error = true;
3671       PrintError(PatDef->getLoc(),
3672                  "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3673     }
3674   }
3675 
3676   // Transfer inferred flags.
3677   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3678   InstInfo.mayStore |= PatInfo.mayStore;
3679   InstInfo.mayLoad |= PatInfo.mayLoad;
3680 
3681   // These flags are silently added without any verification.
3682   // FIXME: To match historical behavior of TableGen, for now add those flags
3683   // only when we're inferring from the primary instruction pattern.
3684   if (PatDef->isSubClassOf("Instruction")) {
3685     InstInfo.isBitcast |= PatInfo.isBitcast;
3686     InstInfo.hasChain |= PatInfo.hasChain;
3687     InstInfo.hasChain_Inferred = true;
3688   }
3689 
3690   // Don't infer isVariadic. This flag means something different on SDNodes and
3691   // instructions. For example, a CALL SDNode is variadic because it has the
3692   // call arguments as operands, but a CALL instruction is not variadic - it
3693   // has argument registers as implicit, not explicit uses.
3694 
3695   return Error;
3696 }
3697 
3698 /// hasNullFragReference - Return true if the DAG has any reference to the
3699 /// null_frag operator.
3700 static bool hasNullFragReference(DagInit *DI) {
3701   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3702   if (!OpDef)
3703     return false;
3704   Record *Operator = OpDef->getDef();
3705 
3706   // If this is the null fragment, return true.
3707   if (Operator->getName() == "null_frag")
3708     return true;
3709   // If any of the arguments reference the null fragment, return true.
3710   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3711     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3712       if (Arg->getDef()->getName() == "null_frag")
3713         return true;
3714     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3715     if (Arg && hasNullFragReference(Arg))
3716       return true;
3717   }
3718 
3719   return false;
3720 }
3721 
3722 /// hasNullFragReference - Return true if any DAG in the list references
3723 /// the null_frag operator.
3724 static bool hasNullFragReference(ListInit *LI) {
3725   for (Init *I : LI->getValues()) {
3726     DagInit *DI = dyn_cast<DagInit>(I);
3727     assert(DI && "non-dag in an instruction Pattern list?!");
3728     if (hasNullFragReference(DI))
3729       return true;
3730   }
3731   return false;
3732 }
3733 
3734 /// Get all the instructions in a tree.
3735 static void getInstructionsInTree(TreePatternNode &Tree,
3736                                   SmallVectorImpl<Record *> &Instrs) {
3737   if (Tree.isLeaf())
3738     return;
3739   if (Tree.getOperator()->isSubClassOf("Instruction"))
3740     Instrs.push_back(Tree.getOperator());
3741   for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i)
3742     getInstructionsInTree(Tree.getChild(i), Instrs);
3743 }
3744 
3745 /// Check the class of a pattern leaf node against the instruction operand it
3746 /// represents.
3747 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) {
3748   if (OI.Rec == Leaf)
3749     return true;
3750 
3751   // Allow direct value types to be used in instruction set patterns.
3752   // The type will be checked later.
3753   if (Leaf->isSubClassOf("ValueType"))
3754     return true;
3755 
3756   // Patterns can also be ComplexPattern instances.
3757   if (Leaf->isSubClassOf("ComplexPattern"))
3758     return true;
3759 
3760   return false;
3761 }
3762 
3763 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3764                                                  ListInit *Pat,
3765                                                  DAGInstMap &DAGInsts) {
3766 
3767   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3768 
3769   // Parse the instruction.
3770   TreePattern I(CGI.TheDef, Pat, true, *this);
3771 
3772   // InstInputs - Keep track of all of the inputs of the instruction, along
3773   // with the record they are declared as.
3774   std::map<std::string, TreePatternNodePtr> InstInputs;
3775 
3776   // InstResults - Keep track of all the virtual registers that are 'set'
3777   // in the instruction, including what reg class they are.
3778   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3779       InstResults;
3780 
3781   std::vector<Record *> InstImpResults;
3782 
3783   // Verify that the top-level forms in the instruction are of void type, and
3784   // fill in the InstResults map.
3785   SmallString<32> TypesString;
3786   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3787     TypesString.clear();
3788     TreePatternNodePtr Pat = I.getTree(j);
3789     if (Pat->getNumTypes() != 0) {
3790       raw_svector_ostream OS(TypesString);
3791       ListSeparator LS;
3792       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3793         OS << LS;
3794         Pat->getExtType(k).writeToStream(OS);
3795       }
3796       I.error("Top-level forms in instruction pattern should have"
3797               " void types, has types " +
3798               OS.str());
3799     }
3800 
3801     // Find inputs and outputs, and verify the structure of the uses/defs.
3802     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3803                                 InstImpResults);
3804   }
3805 
3806   // Now that we have inputs and outputs of the pattern, inspect the operands
3807   // list for the instruction.  This determines the order that operands are
3808   // added to the machine instruction the node corresponds to.
3809   unsigned NumResults = InstResults.size();
3810 
3811   // Parse the operands list from the (ops) list, validating it.
3812   assert(I.getArgList().empty() && "Args list should still be empty here!");
3813 
3814   // Check that all of the results occur first in the list.
3815   std::vector<Record *> Results;
3816   std::vector<unsigned> ResultIndices;
3817   SmallVector<TreePatternNodePtr, 2> ResNodes;
3818   for (unsigned i = 0; i != NumResults; ++i) {
3819     if (i == CGI.Operands.size()) {
3820       const std::string &OpName =
3821           llvm::find_if(
3822               InstResults,
3823               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3824                 return P.second;
3825               })
3826               ->first;
3827 
3828       I.error("'" + OpName + "' set but does not appear in operand list!");
3829     }
3830 
3831     const std::string &OpName = CGI.Operands[i].Name;
3832 
3833     // Check that it exists in InstResults.
3834     auto InstResultIter = InstResults.find(OpName);
3835     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3836       I.error("Operand $" + OpName + " does not exist in operand list!");
3837 
3838     TreePatternNodePtr RNode = InstResultIter->second;
3839     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3840     ResNodes.push_back(std::move(RNode));
3841     if (!R)
3842       I.error("Operand $" + OpName +
3843               " should be a set destination: all "
3844               "outputs must occur before inputs in operand list!");
3845 
3846     if (!checkOperandClass(CGI.Operands[i], R))
3847       I.error("Operand $" + OpName + " class mismatch!");
3848 
3849     // Remember the return type.
3850     Results.push_back(CGI.Operands[i].Rec);
3851 
3852     // Remember the result index.
3853     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3854 
3855     // Okay, this one checks out.
3856     InstResultIter->second = nullptr;
3857   }
3858 
3859   // Loop over the inputs next.
3860   std::vector<TreePatternNodePtr> ResultNodeOperands;
3861   std::vector<Record *> Operands;
3862   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3863     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3864     const std::string &OpName = Op.Name;
3865     if (OpName.empty()) {
3866       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3867       continue;
3868     }
3869 
3870     if (!InstInputs.count(OpName)) {
3871       // If this is an operand with a DefaultOps set filled in, we can ignore
3872       // this.  When we codegen it, we will do so as always executed.
3873       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3874         // Does it have a non-empty DefaultOps field?  If so, ignore this
3875         // operand.
3876         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3877           continue;
3878       }
3879       I.error("Operand $" + OpName +
3880               " does not appear in the instruction pattern");
3881       continue;
3882     }
3883     TreePatternNodePtr InVal = InstInputs[OpName];
3884     InstInputs.erase(OpName); // It occurred, remove from map.
3885 
3886     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3887       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3888       if (!checkOperandClass(Op, InRec)) {
3889         I.error("Operand $" + OpName +
3890                 "'s register class disagrees"
3891                 " between the operand and pattern");
3892         continue;
3893       }
3894     }
3895     Operands.push_back(Op.Rec);
3896 
3897     // Construct the result for the dest-pattern operand list.
3898     TreePatternNodePtr OpNode = InVal->clone();
3899 
3900     // No predicate is useful on the result.
3901     OpNode->clearPredicateCalls();
3902 
3903     // Promote the xform function to be an explicit node if set.
3904     if (Record *Xform = OpNode->getTransformFn()) {
3905       OpNode->setTransformFn(nullptr);
3906       std::vector<TreePatternNodePtr> Children;
3907       Children.push_back(OpNode);
3908       OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3909                                                     OpNode->getNumTypes());
3910     }
3911 
3912     ResultNodeOperands.push_back(std::move(OpNode));
3913   }
3914 
3915   if (!InstInputs.empty())
3916     I.error("Input operand $" + InstInputs.begin()->first +
3917             " occurs in pattern but not in operands list!");
3918 
3919   TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3920       I.getRecord(), std::move(ResultNodeOperands),
3921       GetNumNodeResults(I.getRecord(), *this));
3922   // Copy fully inferred output node types to instruction result pattern.
3923   for (unsigned i = 0; i != NumResults; ++i) {
3924     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3925     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3926     ResultPattern->setResultIndex(i, ResultIndices[i]);
3927   }
3928 
3929   // FIXME: Assume only the first tree is the pattern. The others are clobber
3930   // nodes.
3931   TreePatternNodePtr Pattern = I.getTree(0);
3932   TreePatternNodePtr SrcPattern;
3933   if (Pattern->getOperator()->getName() == "set") {
3934     SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3935   } else {
3936     // Not a set (store or something?)
3937     SrcPattern = Pattern;
3938   }
3939 
3940   // Create and insert the instruction.
3941   // FIXME: InstImpResults should not be part of DAGInstruction.
3942   Record *R = I.getRecord();
3943   DAGInsts.try_emplace(R, std::move(Results), std::move(Operands),
3944                        std::move(InstImpResults), SrcPattern, ResultPattern);
3945 
3946   LLVM_DEBUG(I.dump());
3947 }
3948 
3949 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3950 /// any fragments involved.  This populates the Instructions list with fully
3951 /// resolved instructions.
3952 void CodeGenDAGPatterns::ParseInstructions() {
3953   std::vector<Record *> Instrs =
3954       Records.getAllDerivedDefinitions("Instruction");
3955 
3956   for (Record *Instr : Instrs) {
3957     ListInit *LI = nullptr;
3958 
3959     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3960       LI = Instr->getValueAsListInit("Pattern");
3961 
3962     // If there is no pattern, only collect minimal information about the
3963     // instruction for its operand list.  We have to assume that there is one
3964     // result, as we have no detailed info. A pattern which references the
3965     // null_frag operator is as-if no pattern were specified. Normally this
3966     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3967     // null_frag.
3968     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3969       std::vector<Record *> Results;
3970       std::vector<Record *> Operands;
3971 
3972       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3973 
3974       if (InstInfo.Operands.size() != 0) {
3975         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3976           Results.push_back(InstInfo.Operands[j].Rec);
3977 
3978         // The rest are inputs.
3979         for (unsigned j = InstInfo.Operands.NumDefs,
3980                       e = InstInfo.Operands.size();
3981              j < e; ++j)
3982           Operands.push_back(InstInfo.Operands[j].Rec);
3983       }
3984 
3985       // Create and insert the instruction.
3986       Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3987                                std::vector<Record *>());
3988       continue; // no pattern.
3989     }
3990 
3991     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3992     parseInstructionPattern(CGI, LI, Instructions);
3993   }
3994 
3995   // If we can, convert the instructions to be patterns that are matched!
3996   for (auto &Entry : Instructions) {
3997     Record *Instr = Entry.first;
3998     DAGInstruction &TheInst = Entry.second;
3999     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4000     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4001 
4002     if (SrcPattern && ResultPattern) {
4003       TreePattern Pattern(Instr, SrcPattern, true, *this);
4004       TreePattern Result(Instr, ResultPattern, false, *this);
4005       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4006     }
4007   }
4008 }
4009 
4010 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4011 
4012 static void FindNames(TreePatternNode &P,
4013                       std::map<std::string, NameRecord> &Names,
4014                       TreePattern *PatternTop) {
4015   if (!P.getName().empty()) {
4016     NameRecord &Rec = Names[P.getName()];
4017     // If this is the first instance of the name, remember the node.
4018     if (Rec.second++ == 0)
4019       Rec.first = &P;
4020     else if (Rec.first->getExtTypes() != P.getExtTypes())
4021       PatternTop->error("repetition of value: $" + P.getName() +
4022                         " where different uses have different types!");
4023   }
4024 
4025   if (!P.isLeaf()) {
4026     for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i)
4027       FindNames(P.getChild(i), Names, PatternTop);
4028   }
4029 }
4030 
4031 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4032                                            PatternToMatch &&PTM) {
4033   // Do some sanity checking on the pattern we're about to match.
4034   std::string Reason;
4035   if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4036     PrintWarning(Pattern->getRecord()->getLoc(),
4037                  Twine("Pattern can never match: ") + Reason);
4038     return;
4039   }
4040 
4041   // If the source pattern's root is a complex pattern, that complex pattern
4042   // must specify the nodes it can potentially match.
4043   if (const ComplexPattern *CP =
4044           PTM.getSrcPattern().getComplexPatternInfo(*this))
4045     if (CP->getRootNodes().empty())
4046       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4047                      " could match");
4048 
4049   // Find all of the named values in the input and output, ensure they have the
4050   // same type.
4051   std::map<std::string, NameRecord> SrcNames, DstNames;
4052   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4053   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4054 
4055   // Scan all of the named values in the destination pattern, rejecting them if
4056   // they don't exist in the input pattern.
4057   for (const auto &Entry : DstNames) {
4058     if (SrcNames[Entry.first].first == nullptr)
4059       Pattern->error("Pattern has input without matching name in output: $" +
4060                      Entry.first);
4061   }
4062 
4063   // Scan all of the named values in the source pattern, rejecting them if the
4064   // name isn't used in the dest, and isn't used to tie two values together.
4065   for (const auto &Entry : SrcNames)
4066     if (DstNames[Entry.first].first == nullptr &&
4067         SrcNames[Entry.first].second == 1)
4068       Pattern->error("Pattern has dead named input: $" + Entry.first);
4069 
4070   PatternsToMatch.push_back(std::move(PTM));
4071 }
4072 
4073 void CodeGenDAGPatterns::InferInstructionFlags() {
4074   ArrayRef<const CodeGenInstruction *> Instructions =
4075       Target.getInstructionsByEnumValue();
4076 
4077   unsigned Errors = 0;
4078 
4079   // Try to infer flags from all patterns in PatternToMatch.  These include
4080   // both the primary instruction patterns (which always come first) and
4081   // patterns defined outside the instruction.
4082   for (const PatternToMatch &PTM : ptms()) {
4083     // We can only infer from single-instruction patterns, otherwise we won't
4084     // know which instruction should get the flags.
4085     SmallVector<Record *, 8> PatInstrs;
4086     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4087     if (PatInstrs.size() != 1)
4088       continue;
4089 
4090     // Get the single instruction.
4091     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4092 
4093     // Only infer properties from the first pattern. We'll verify the others.
4094     if (InstInfo.InferredFrom)
4095       continue;
4096 
4097     InstAnalyzer PatInfo(*this);
4098     PatInfo.Analyze(PTM);
4099     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4100   }
4101 
4102   if (Errors)
4103     PrintFatalError("pattern conflicts");
4104 
4105   // If requested by the target, guess any undefined properties.
4106   if (Target.guessInstructionProperties()) {
4107     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4108       CodeGenInstruction *InstInfo =
4109           const_cast<CodeGenInstruction *>(Instructions[i]);
4110       if (InstInfo->InferredFrom)
4111         continue;
4112       // The mayLoad and mayStore flags default to false.
4113       // Conservatively assume hasSideEffects if it wasn't explicit.
4114       if (InstInfo->hasSideEffects_Unset)
4115         InstInfo->hasSideEffects = true;
4116     }
4117     return;
4118   }
4119 
4120   // Complain about any flags that are still undefined.
4121   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4122     CodeGenInstruction *InstInfo =
4123         const_cast<CodeGenInstruction *>(Instructions[i]);
4124     if (InstInfo->InferredFrom)
4125       continue;
4126     if (InstInfo->hasSideEffects_Unset)
4127       PrintError(InstInfo->TheDef->getLoc(),
4128                  "Can't infer hasSideEffects from patterns");
4129     if (InstInfo->mayStore_Unset)
4130       PrintError(InstInfo->TheDef->getLoc(),
4131                  "Can't infer mayStore from patterns");
4132     if (InstInfo->mayLoad_Unset)
4133       PrintError(InstInfo->TheDef->getLoc(),
4134                  "Can't infer mayLoad from patterns");
4135   }
4136 }
4137 
4138 /// Verify instruction flags against pattern node properties.
4139 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4140   unsigned Errors = 0;
4141   for (const PatternToMatch &PTM : ptms()) {
4142     SmallVector<Record *, 8> Instrs;
4143     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4144     if (Instrs.empty())
4145       continue;
4146 
4147     // Count the number of instructions with each flag set.
4148     unsigned NumSideEffects = 0;
4149     unsigned NumStores = 0;
4150     unsigned NumLoads = 0;
4151     for (const Record *Instr : Instrs) {
4152       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4153       NumSideEffects += InstInfo.hasSideEffects;
4154       NumStores += InstInfo.mayStore;
4155       NumLoads += InstInfo.mayLoad;
4156     }
4157 
4158     // Analyze the source pattern.
4159     InstAnalyzer PatInfo(*this);
4160     PatInfo.Analyze(PTM);
4161 
4162     // Collect error messages.
4163     SmallVector<std::string, 4> Msgs;
4164 
4165     // Check for missing flags in the output.
4166     // Permit extra flags for now at least.
4167     if (PatInfo.hasSideEffects && !NumSideEffects)
4168       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4169 
4170     // Don't verify store flags on instructions with side effects. At least for
4171     // intrinsics, side effects implies mayStore.
4172     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4173       Msgs.push_back("pattern may store, but mayStore isn't set");
4174 
4175     // Similarly, mayStore implies mayLoad on intrinsics.
4176     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4177       Msgs.push_back("pattern may load, but mayLoad isn't set");
4178 
4179     // Print error messages.
4180     if (Msgs.empty())
4181       continue;
4182     ++Errors;
4183 
4184     for (const std::string &Msg : Msgs)
4185       PrintError(
4186           PTM.getSrcRecord()->getLoc(),
4187           Twine(Msg) + " on the " +
4188               (Instrs.size() == 1 ? "instruction" : "output instructions"));
4189     // Provide the location of the relevant instruction definitions.
4190     for (const Record *Instr : Instrs) {
4191       if (Instr != PTM.getSrcRecord())
4192         PrintError(Instr->getLoc(), "defined here");
4193       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4194       if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4195           InstInfo.InferredFrom != PTM.getSrcRecord())
4196         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4197     }
4198   }
4199   if (Errors)
4200     PrintFatalError("Errors in DAG patterns");
4201 }
4202 
4203 /// Given a pattern result with an unresolved type, see if we can find one
4204 /// instruction with an unresolved result type.  Force this result type to an
4205 /// arbitrary element if it's possible types to converge results.
4206 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4207   if (N.isLeaf())
4208     return false;
4209 
4210   // Analyze children.
4211   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4212     if (ForceArbitraryInstResultType(N.getChild(i), TP))
4213       return true;
4214 
4215   if (!N.getOperator()->isSubClassOf("Instruction"))
4216     return false;
4217 
4218   // If this type is already concrete or completely unknown we can't do
4219   // anything.
4220   TypeInfer &TI = TP.getInfer();
4221   for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4222     if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4223       continue;
4224 
4225     // Otherwise, force its type to an arbitrary choice.
4226     if (TI.forceArbitrary(N.getExtType(i)))
4227       return true;
4228   }
4229 
4230   return false;
4231 }
4232 
4233 // Promote xform function to be an explicit node wherever set.
4234 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4235   if (Record *Xform = N->getTransformFn()) {
4236     N->setTransformFn(nullptr);
4237     std::vector<TreePatternNodePtr> Children;
4238     Children.push_back(PromoteXForms(N));
4239     return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4240                                                 N->getNumTypes());
4241   }
4242 
4243   if (!N->isLeaf())
4244     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4245       TreePatternNodePtr Child = N->getChildShared(i);
4246       N->setChild(i, PromoteXForms(Child));
4247     }
4248   return N;
4249 }
4250 
4251 void CodeGenDAGPatterns::ParseOnePattern(
4252     Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4253     const std::vector<Record *> &InstImpResults, bool ShouldIgnore) {
4254 
4255   // Inline pattern fragments and expand multiple alternatives.
4256   Pattern.InlinePatternFragments();
4257   Result.InlinePatternFragments();
4258 
4259   if (Result.getNumTrees() != 1)
4260     Result.error("Cannot use multi-alternative fragments in result pattern!");
4261 
4262   // Infer types.
4263   bool IterateInference;
4264   bool InferredAllPatternTypes, InferredAllResultTypes;
4265   do {
4266     // Infer as many types as possible.  If we cannot infer all of them, we
4267     // can never do anything with this pattern: report it to the user.
4268     InferredAllPatternTypes =
4269         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4270 
4271     // Infer as many types as possible.  If we cannot infer all of them, we
4272     // can never do anything with this pattern: report it to the user.
4273     InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4274 
4275     IterateInference = false;
4276 
4277     // Apply the type of the result to the source pattern.  This helps us
4278     // resolve cases where the input type is known to be a pointer type (which
4279     // is considered resolved), but the result knows it needs to be 32- or
4280     // 64-bits.  Infer the other way for good measure.
4281     for (const auto &T : Pattern.getTrees())
4282       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4283                                         T->getNumTypes());
4284            i != e; ++i) {
4285         IterateInference |=
4286             T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4287         IterateInference |=
4288             Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4289       }
4290 
4291     // If our iteration has converged and the input pattern's types are fully
4292     // resolved but the result pattern is not fully resolved, we may have a
4293     // situation where we have two instructions in the result pattern and
4294     // the instructions require a common register class, but don't care about
4295     // what actual MVT is used.  This is actually a bug in our modelling:
4296     // output patterns should have register classes, not MVTs.
4297     //
4298     // In any case, to handle this, we just go through and disambiguate some
4299     // arbitrary types to the result pattern's nodes.
4300     if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4301       IterateInference =
4302           ForceArbitraryInstResultType(*Result.getTree(0), Result);
4303   } while (IterateInference);
4304 
4305   // Verify that we inferred enough types that we can do something with the
4306   // pattern and result.  If these fire the user has to add type casts.
4307   if (!InferredAllPatternTypes)
4308     Pattern.error("Could not infer all types in pattern!");
4309   if (!InferredAllResultTypes) {
4310     Pattern.dump();
4311     Result.error("Could not infer all types in pattern result!");
4312   }
4313 
4314   // Promote xform function to be an explicit node wherever set.
4315   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4316 
4317   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4318   Temp.InferAllTypes();
4319 
4320   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4321   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4322 
4323   if (PatternRewriter)
4324     PatternRewriter(&Pattern);
4325 
4326   // A pattern may end up with an "impossible" type, i.e. a situation
4327   // where all types have been eliminated for some node in this pattern.
4328   // This could occur for intrinsics that only make sense for a specific
4329   // value type, and use a specific register class. If, for some mode,
4330   // that register class does not accept that type, the type inference
4331   // will lead to a contradiction, which is not an error however, but
4332   // a sign that this pattern will simply never match.
4333   if (Temp.getOnlyTree()->hasPossibleType()) {
4334     for (const auto &T : Pattern.getTrees()) {
4335       if (T->hasPossibleType())
4336         AddPatternToMatch(&Pattern,
4337                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4338                                          InstImpResults, Complexity,
4339                                          TheDef->getID(), ShouldIgnore));
4340     }
4341   } else {
4342     // Show a message about a dropped pattern with some info to make it
4343     // easier to identify it in the .td files.
4344     LLVM_DEBUG({
4345       dbgs() << "Dropping: ";
4346       Pattern.dump();
4347       Temp.getOnlyTree()->dump();
4348       dbgs() << "\n";
4349     });
4350   }
4351 }
4352 
4353 void CodeGenDAGPatterns::ParsePatterns() {
4354   std::vector<Record *> Patterns = Records.getAllDerivedDefinitions("Pattern");
4355 
4356   for (Record *CurPattern : Patterns) {
4357     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4358 
4359     // If the pattern references the null_frag, there's nothing to do.
4360     if (hasNullFragReference(Tree))
4361       continue;
4362 
4363     TreePattern Pattern(CurPattern, Tree, true, *this);
4364 
4365     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4366     if (LI->empty())
4367       continue; // no pattern.
4368 
4369     // Parse the instruction.
4370     TreePattern Result(CurPattern, LI, false, *this);
4371 
4372     if (Result.getNumTrees() != 1)
4373       Result.error("Cannot handle instructions producing instructions "
4374                    "with temporaries yet!");
4375 
4376     // Validate that the input pattern is correct.
4377     std::map<std::string, TreePatternNodePtr> InstInputs;
4378     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4379         InstResults;
4380     std::vector<Record *> InstImpResults;
4381     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4382       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4383                                   InstResults, InstImpResults);
4384 
4385     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4386                     CurPattern->getValueAsBit("GISelShouldIgnore"));
4387   }
4388 }
4389 
4390 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4391   for (const TypeSetByHwMode &VTS : N.getExtTypes())
4392     for (const auto &I : VTS)
4393       Modes.insert(I.first);
4394 
4395   for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4396     collectModes(Modes, N.getChild(i));
4397 }
4398 
4399 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4400   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4401   if (CGH.getNumModeIds() == 1)
4402     return;
4403 
4404   std::vector<PatternToMatch> Copy;
4405   PatternsToMatch.swap(Copy);
4406 
4407   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4408                               StringRef Check) {
4409     TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4410     TreePatternNodePtr NewDst = P.getDstPattern().clone();
4411     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4412       return;
4413     }
4414 
4415     PatternsToMatch.emplace_back(
4416         P.getSrcRecord(), P.getPredicates(), std::move(NewSrc),
4417         std::move(NewDst), P.getDstRegs(), P.getAddedComplexity(),
4418         Record::getNewUID(Records), P.getGISelShouldIgnore(), Check);
4419   };
4420 
4421   for (PatternToMatch &P : Copy) {
4422     const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4423     if (P.getSrcPattern().hasProperTypeByHwMode())
4424       SrcP = &P.getSrcPattern();
4425     if (P.getDstPattern().hasProperTypeByHwMode())
4426       DstP = &P.getDstPattern();
4427     if (!SrcP && !DstP) {
4428       PatternsToMatch.push_back(P);
4429       continue;
4430     }
4431 
4432     std::set<unsigned> Modes;
4433     if (SrcP)
4434       collectModes(Modes, *SrcP);
4435     if (DstP)
4436       collectModes(Modes, *DstP);
4437 
4438     // The predicate for the default mode needs to be constructed for each
4439     // pattern separately.
4440     // Since not all modes must be present in each pattern, if a mode m is
4441     // absent, then there is no point in constructing a check for m. If such
4442     // a check was created, it would be equivalent to checking the default
4443     // mode, except not all modes' predicates would be a part of the checking
4444     // code. The subsequently generated check for the default mode would then
4445     // have the exact same patterns, but a different predicate code. To avoid
4446     // duplicated patterns with different predicate checks, construct the
4447     // default check as a negation of all predicates that are actually present
4448     // in the source/destination patterns.
4449     SmallString<128> DefaultCheck;
4450 
4451     for (unsigned M : Modes) {
4452       if (M == DefaultMode)
4453         continue;
4454 
4455       // Fill the map entry for this mode.
4456       const HwMode &HM = CGH.getMode(M);
4457       AppendPattern(P, M, HM.Predicates);
4458 
4459       // Add negations of the HM's predicates to the default predicate.
4460       if (!DefaultCheck.empty())
4461         DefaultCheck += " && ";
4462       DefaultCheck += "!(";
4463       DefaultCheck += HM.Predicates;
4464       DefaultCheck += ")";
4465     }
4466 
4467     bool HasDefault = Modes.count(DefaultMode);
4468     if (HasDefault)
4469       AppendPattern(P, DefaultMode, DefaultCheck);
4470   }
4471 }
4472 
4473 /// Dependent variable map for CodeGenDAGPattern variant generation
4474 typedef StringMap<int> DepVarMap;
4475 
4476 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4477   if (N.isLeaf()) {
4478     if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4479       DepMap[N.getName()]++;
4480   } else {
4481     for (size_t i = 0, e = N.getNumChildren(); i != e; ++i)
4482       FindDepVarsOf(N.getChild(i), DepMap);
4483   }
4484 }
4485 
4486 /// Find dependent variables within child patterns
4487 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4488   DepVarMap depcounts;
4489   FindDepVarsOf(N, depcounts);
4490   for (const auto &Pair : depcounts) {
4491     if (Pair.getValue() > 1)
4492       DepVars.insert(Pair.getKey());
4493   }
4494 }
4495 
4496 #ifndef NDEBUG
4497 /// Dump the dependent variable set:
4498 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4499   if (DepVars.empty()) {
4500     LLVM_DEBUG(errs() << "<empty set>");
4501   } else {
4502     LLVM_DEBUG(errs() << "[ ");
4503     for (const auto &DepVar : DepVars) {
4504       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4505     }
4506     LLVM_DEBUG(errs() << "]");
4507   }
4508 }
4509 #endif
4510 
4511 /// CombineChildVariants - Given a bunch of permutations of each child of the
4512 /// 'operator' node, put them together in all possible ways.
4513 static void CombineChildVariants(
4514     TreePatternNodePtr Orig,
4515     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4516     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4517     const MultipleUseVarSet &DepVars) {
4518   // Make sure that each operand has at least one variant to choose from.
4519   for (const auto &Variants : ChildVariants)
4520     if (Variants.empty())
4521       return;
4522 
4523   // The end result is an all-pairs construction of the resultant pattern.
4524   std::vector<unsigned> Idxs(ChildVariants.size());
4525   bool NotDone;
4526   do {
4527 #ifndef NDEBUG
4528     LLVM_DEBUG(if (!Idxs.empty()) {
4529       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4530       for (unsigned Idx : Idxs) {
4531         errs() << Idx << " ";
4532       }
4533       errs() << "]\n";
4534     });
4535 #endif
4536     // Create the variant and add it to the output list.
4537     std::vector<TreePatternNodePtr> NewChildren;
4538     NewChildren.reserve(ChildVariants.size());
4539     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4540       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4541     TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4542         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4543 
4544     // Copy over properties.
4545     R->setName(Orig->getName());
4546     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4547     R->setPredicateCalls(Orig->getPredicateCalls());
4548     R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4549     R->setTransformFn(Orig->getTransformFn());
4550     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4551       R->setType(i, Orig->getExtType(i));
4552 
4553     // If this pattern cannot match, do not include it as a variant.
4554     std::string ErrString;
4555     // Scan to see if this pattern has already been emitted.  We can get
4556     // duplication due to things like commuting:
4557     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4558     // which are the same pattern.  Ignore the dups.
4559     if (R->canPatternMatch(ErrString, CDP) &&
4560         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4561           return R->isIsomorphicTo(*Variant, DepVars);
4562         }))
4563       OutVariants.push_back(R);
4564 
4565     // Increment indices to the next permutation by incrementing the
4566     // indices from last index backward, e.g., generate the sequence
4567     // [0, 0], [0, 1], [1, 0], [1, 1].
4568     int IdxsIdx;
4569     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4570       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4571         Idxs[IdxsIdx] = 0;
4572       else
4573         break;
4574     }
4575     NotDone = (IdxsIdx >= 0);
4576   } while (NotDone);
4577 }
4578 
4579 /// CombineChildVariants - A helper function for binary operators.
4580 ///
4581 static void CombineChildVariants(TreePatternNodePtr Orig,
4582                                  const std::vector<TreePatternNodePtr> &LHS,
4583                                  const std::vector<TreePatternNodePtr> &RHS,
4584                                  std::vector<TreePatternNodePtr> &OutVariants,
4585                                  CodeGenDAGPatterns &CDP,
4586                                  const MultipleUseVarSet &DepVars) {
4587   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4588   ChildVariants.push_back(LHS);
4589   ChildVariants.push_back(RHS);
4590   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4591 }
4592 
4593 static void
4594 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4595                                   std::vector<TreePatternNodePtr> &Children) {
4596   assert(N->getNumChildren() == 2 &&
4597          "Associative but doesn't have 2 children!");
4598   Record *Operator = N->getOperator();
4599 
4600   // Only permit raw nodes.
4601   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4602       N->getTransformFn()) {
4603     Children.push_back(N);
4604     return;
4605   }
4606 
4607   if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4608     Children.push_back(N->getChildShared(0));
4609   else
4610     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4611 
4612   if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4613     Children.push_back(N->getChildShared(1));
4614   else
4615     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4616 }
4617 
4618 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4619 /// the (potentially recursive) pattern by using algebraic laws.
4620 ///
4621 static void GenerateVariantsOf(TreePatternNodePtr N,
4622                                std::vector<TreePatternNodePtr> &OutVariants,
4623                                CodeGenDAGPatterns &CDP,
4624                                const MultipleUseVarSet &DepVars) {
4625   // We cannot permute leaves or ComplexPattern uses.
4626   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4627     OutVariants.push_back(N);
4628     return;
4629   }
4630 
4631   // Look up interesting info about the node.
4632   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4633 
4634   // If this node is associative, re-associate.
4635   if (NodeInfo.hasProperty(SDNPAssociative)) {
4636     // Re-associate by pulling together all of the linked operators
4637     std::vector<TreePatternNodePtr> MaximalChildren;
4638     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4639 
4640     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4641     // permutations.
4642     if (MaximalChildren.size() == 3) {
4643       // Find the variants of all of our maximal children.
4644       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4645       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4646       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4647       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4648 
4649       // There are only two ways we can permute the tree:
4650       //   (A op B) op C    and    A op (B op C)
4651       // Within these forms, we can also permute A/B/C.
4652 
4653       // Generate legal pair permutations of A/B/C.
4654       std::vector<TreePatternNodePtr> ABVariants;
4655       std::vector<TreePatternNodePtr> BAVariants;
4656       std::vector<TreePatternNodePtr> ACVariants;
4657       std::vector<TreePatternNodePtr> CAVariants;
4658       std::vector<TreePatternNodePtr> BCVariants;
4659       std::vector<TreePatternNodePtr> CBVariants;
4660       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4661       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4662       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4663       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4664       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4665       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4666 
4667       // Combine those into the result: (x op x) op x
4668       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4669       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4670       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4671       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4672       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4673       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4674 
4675       // Combine those into the result: x op (x op x)
4676       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4677       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4678       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4679       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4680       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4681       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4682       return;
4683     }
4684   }
4685 
4686   // Compute permutations of all children.
4687   std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4688       N->getNumChildren());
4689   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4690     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4691 
4692   // Build all permutations based on how the children were formed.
4693   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4694 
4695   // If this node is commutative, consider the commuted order.
4696   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4697   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4698     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4699     assert(N->getNumChildren() >= (2 + Skip) &&
4700            "Commutative but doesn't have 2 children!");
4701     // Don't allow commuting children which are actually register references.
4702     bool NoRegisters = true;
4703     unsigned i = 0 + Skip;
4704     unsigned e = 2 + Skip;
4705     for (; i != e; ++i) {
4706       TreePatternNode &Child = N->getChild(i);
4707       if (Child.isLeaf())
4708         if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4709           Record *RR = DI->getDef();
4710           if (RR->isSubClassOf("Register"))
4711             NoRegisters = false;
4712         }
4713     }
4714     // Consider the commuted order.
4715     if (NoRegisters) {
4716       // Swap the first two operands after the intrinsic id, if present.
4717       unsigned i = isCommIntrinsic ? 1 : 0;
4718       std::swap(ChildVariants[i], ChildVariants[i + 1]);
4719       CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4720     }
4721   }
4722 }
4723 
4724 // GenerateVariants - Generate variants.  For example, commutative patterns can
4725 // match multiple ways.  Add them to PatternsToMatch as well.
4726 void CodeGenDAGPatterns::GenerateVariants() {
4727   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4728 
4729   // Loop over all of the patterns we've collected, checking to see if we can
4730   // generate variants of the instruction, through the exploitation of
4731   // identities.  This permits the target to provide aggressive matching without
4732   // the .td file having to contain tons of variants of instructions.
4733   //
4734   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4735   // intentionally do not reconsider these.  Any variants of added patterns have
4736   // already been added.
4737   //
4738   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4739     MultipleUseVarSet DepVars;
4740     std::vector<TreePatternNodePtr> Variants;
4741     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4742     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4743     LLVM_DEBUG(DumpDepVars(DepVars));
4744     LLVM_DEBUG(errs() << "\n");
4745     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4746                        *this, DepVars);
4747 
4748     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4749            "HwModes should not have been expanded yet!");
4750 
4751     assert(!Variants.empty() && "Must create at least original variant!");
4752     if (Variants.size() == 1) // No additional variants for this pattern.
4753       continue;
4754 
4755     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4756                PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4757 
4758     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4759       TreePatternNodePtr Variant = Variants[v];
4760 
4761       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4762                  errs() << "\n");
4763 
4764       // Scan to see if an instruction or explicit pattern already matches this.
4765       bool AlreadyExists = false;
4766       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4767         // Skip if the top level predicates do not match.
4768         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4769                          PatternsToMatch[p].getPredicates()))
4770           continue;
4771         // Check to see if this variant already exists.
4772         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4773                                     DepVars)) {
4774           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4775           AlreadyExists = true;
4776           break;
4777         }
4778       }
4779       // If we already have it, ignore the variant.
4780       if (AlreadyExists)
4781         continue;
4782 
4783       // Otherwise, add it to the list of patterns we have.
4784       PatternsToMatch.emplace_back(
4785           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4786           Variant, PatternsToMatch[i].getDstPatternShared(),
4787           PatternsToMatch[i].getDstRegs(),
4788           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4789           PatternsToMatch[i].getGISelShouldIgnore(),
4790           PatternsToMatch[i].getHwModeFeatures());
4791     }
4792 
4793     LLVM_DEBUG(errs() << "\n");
4794   }
4795 }
4796