1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "CodeGenRegisters.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/TypeSize.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cstdio> 32 #include <iterator> 33 #include <set> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "dag-patterns" 37 38 static inline bool isIntegerOrPtr(MVT VT) { 39 return VT.isInteger() || VT == MVT::iPTR; 40 } 41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); } 42 static inline bool isVector(MVT VT) { return VT.isVector(); } 43 static inline bool isScalar(MVT VT) { return !VT.isVector(); } 44 45 template <typename Predicate> 46 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 47 bool Erased = false; 48 // It is ok to iterate over MachineValueTypeSet and remove elements from it 49 // at the same time. 50 for (MVT T : S) { 51 if (!P(T)) 52 continue; 53 Erased = true; 54 S.erase(T); 55 } 56 return Erased; 57 } 58 59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 60 SmallVector<MVT, 4> Types(begin(), end()); 61 array_pod_sort(Types.begin(), Types.end()); 62 63 OS << '['; 64 ListSeparator LS(" "); 65 for (const MVT &T : Types) 66 OS << LS << ValueTypeByHwMode::getMVTName(T); 67 OS << ']'; 68 } 69 70 // --- TypeSetByHwMode 71 72 // This is a parameterized type-set class. For each mode there is a list 73 // of types that are currently possible for a given tree node. Type 74 // inference will apply to each mode separately. 75 76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 77 // Take the address space from the first type in the list. 78 if (!VTList.empty()) 79 AddrSpace = VTList[0].PtrAddrSpace; 80 81 for (const ValueTypeByHwMode &VVT : VTList) 82 insert(VVT); 83 } 84 85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 86 for (const auto &I : *this) { 87 if (I.second.size() > 1) 88 return false; 89 if (!AllowEmpty && I.second.empty()) 90 return false; 91 } 92 return true; 93 } 94 95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 96 assert(isValueTypeByHwMode(true) && 97 "The type set has multiple types for at least one HW mode"); 98 ValueTypeByHwMode VVT; 99 VVT.PtrAddrSpace = AddrSpace; 100 101 for (const auto &I : *this) { 102 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 103 VVT.getOrCreateTypeForMode(I.first, T); 104 } 105 return VVT; 106 } 107 108 bool TypeSetByHwMode::isPossible() const { 109 for (const auto &I : *this) 110 if (!I.second.empty()) 111 return true; 112 return false; 113 } 114 115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 116 bool Changed = false; 117 bool ContainsDefault = false; 118 MVT DT = MVT::Other; 119 120 for (const auto &P : VVT) { 121 unsigned M = P.first; 122 // Make sure there exists a set for each specific mode from VVT. 123 Changed |= getOrCreate(M).insert(P.second).second; 124 // Cache VVT's default mode. 125 if (DefaultMode == M) { 126 ContainsDefault = true; 127 DT = P.second; 128 } 129 } 130 131 // If VVT has a default mode, add the corresponding type to all 132 // modes in "this" that do not exist in VVT. 133 if (ContainsDefault) 134 for (auto &I : *this) 135 if (!VVT.hasMode(I.first)) 136 Changed |= I.second.insert(DT).second; 137 138 return Changed; 139 } 140 141 // Constrain the type set to be the intersection with VTS. 142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 143 bool Changed = false; 144 if (hasDefault()) { 145 for (const auto &I : VTS) { 146 unsigned M = I.first; 147 if (M == DefaultMode || hasMode(M)) 148 continue; 149 Map.insert({M, Map.at(DefaultMode)}); 150 Changed = true; 151 } 152 } 153 154 for (auto &I : *this) { 155 unsigned M = I.first; 156 SetType &S = I.second; 157 if (VTS.hasMode(M) || VTS.hasDefault()) { 158 Changed |= intersect(I.second, VTS.get(M)); 159 } else if (!S.empty()) { 160 S.clear(); 161 Changed = true; 162 } 163 } 164 return Changed; 165 } 166 167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) { 168 bool Changed = false; 169 for (auto &I : *this) 170 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 171 return Changed; 172 } 173 174 template <typename Predicate> 175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 176 assert(empty()); 177 for (const auto &I : VTS) { 178 SetType &S = getOrCreate(I.first); 179 for (auto J : I.second) 180 if (P(J)) 181 S.insert(J); 182 } 183 return !empty(); 184 } 185 186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 187 SmallVector<unsigned, 4> Modes; 188 Modes.reserve(Map.size()); 189 190 for (const auto &I : *this) 191 Modes.push_back(I.first); 192 if (Modes.empty()) { 193 OS << "{}"; 194 return; 195 } 196 array_pod_sort(Modes.begin(), Modes.end()); 197 198 OS << '{'; 199 for (unsigned M : Modes) { 200 OS << ' ' << getModeName(M) << ':'; 201 get(M).writeToStream(OS); 202 } 203 OS << " }"; 204 } 205 206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 207 // The isSimple call is much quicker than hasDefault - check this first. 208 bool IsSimple = isSimple(); 209 bool VTSIsSimple = VTS.isSimple(); 210 if (IsSimple && VTSIsSimple) 211 return getSimple() == VTS.getSimple(); 212 213 // Speedup: We have a default if the set is simple. 214 bool HaveDefault = IsSimple || hasDefault(); 215 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 216 if (HaveDefault != VTSHaveDefault) 217 return false; 218 219 SmallSet<unsigned, 4> Modes; 220 for (auto &I : *this) 221 Modes.insert(I.first); 222 for (const auto &I : VTS) 223 Modes.insert(I.first); 224 225 if (HaveDefault) { 226 // Both sets have default mode. 227 for (unsigned M : Modes) { 228 if (get(M) != VTS.get(M)) 229 return false; 230 } 231 } else { 232 // Neither set has default mode. 233 for (unsigned M : Modes) { 234 // If there is no default mode, an empty set is equivalent to not having 235 // the corresponding mode. 236 bool NoModeThis = !hasMode(M) || get(M).empty(); 237 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 238 if (NoModeThis != NoModeVTS) 239 return false; 240 if (!NoModeThis) 241 if (get(M) != VTS.get(M)) 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 namespace llvm { 250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 251 T.writeToStream(OS); 252 return OS; 253 } 254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 255 T.writeToStream(OS); 256 return OS; 257 } 258 } // namespace llvm 259 260 LLVM_DUMP_METHOD 261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; } 262 263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 264 auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) { 265 // Complement of In within this partition. 266 auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); }; 267 268 if (!WildVT) 269 return berase_if(Out, CompIn); 270 271 bool OutW = Out.count(*WildVT), InW = In.count(*WildVT); 272 if (OutW == InW) 273 return berase_if(Out, CompIn); 274 275 // Compute the intersection of scalars separately to account for only one 276 // set containing WildVT. 277 // The intersection of WildVT with a set of corresponding types that does 278 // not include WildVT will result in the most specific type: 279 // - WildVT is more specific than any set with two elements or more 280 // - WildVT is less specific than any single type. 281 // For example, for iPTR and scalar integer types 282 // { iPTR } * { i32 } -> { i32 } 283 // { iPTR } * { i32 i64 } -> { iPTR } 284 // and 285 // { iPTR i32 } * { i32 } -> { i32 } 286 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 287 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 288 289 // Looking at just this partition, let In' = elements only in In, 290 // Out' = elements only in Out, and IO = elements common to both. Normally 291 // IO would be returned as the result of the intersection, but we need to 292 // account for WildVT being a "wildcard" of sorts. Since elements in IO are 293 // those that match both sets exactly, they will all belong to the output. 294 // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means 295 // that the other set doesn't have it, but it could have (1) a more 296 // specific type, or (2) a set of types that is less specific. The 297 // "leftovers" from the other set is what we want to examine more closely. 298 299 auto Leftovers = [&](const SetType &A, const SetType &B) { 300 SetType Diff = A; 301 berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); }); 302 return Diff; 303 }; 304 305 if (InW) { 306 SetType OutLeftovers = Leftovers(Out, In); 307 if (OutLeftovers.size() < 2) { 308 // WildVT not added to Out. Keep the possible single leftover. 309 return false; 310 } 311 // WildVT replaces the leftovers. 312 berase_if(Out, CompIn); 313 Out.insert(*WildVT); 314 return true; 315 } 316 317 // OutW == true 318 SetType InLeftovers = Leftovers(In, Out); 319 unsigned SizeOut = Out.size(); 320 berase_if(Out, CompIn); // This will remove at least the WildVT. 321 if (InLeftovers.size() < 2) { 322 // WildVT deleted from Out. Add back the possible single leftover. 323 Out.insert(InLeftovers); 324 return true; 325 } 326 327 // Keep the WildVT in Out. 328 Out.insert(*WildVT); 329 // If WildVT was the only element initially removed from Out, then Out 330 // has not changed. 331 return SizeOut != Out.size(); 332 }; 333 334 // Note: must be non-overlapping 335 using WildPartT = std::pair<MVT, std::function<bool(MVT)>>; 336 static const WildPartT WildParts[] = { 337 {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }}, 338 }; 339 340 bool Changed = false; 341 for (const auto &I : WildParts) 342 Changed |= IntersectP(I.first, I.second); 343 344 Changed |= IntersectP(std::nullopt, [&](MVT T) { 345 return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); }); 346 }); 347 348 return Changed; 349 } 350 351 bool TypeSetByHwMode::validate() const { 352 if (empty()) 353 return true; 354 bool AllEmpty = true; 355 for (const auto &I : *this) 356 AllEmpty &= I.second.empty(); 357 return !AllEmpty; 358 } 359 360 // --- TypeInfer 361 362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 363 const TypeSetByHwMode &In) const { 364 ValidateOnExit _1(Out, *this); 365 In.validate(); 366 if (In.empty() || Out == In || TP.hasError()) 367 return false; 368 if (Out.empty()) { 369 Out = In; 370 return true; 371 } 372 373 bool Changed = Out.constrain(In); 374 if (Changed && Out.empty()) 375 TP.error("Type contradiction"); 376 377 return Changed; 378 } 379 380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 assert(!Out.empty() && "cannot pick from an empty set"); 385 386 bool Changed = false; 387 for (auto &I : Out) { 388 TypeSetByHwMode::SetType &S = I.second; 389 if (S.size() <= 1) 390 continue; 391 MVT T = *S.begin(); // Pick the first element. 392 S.clear(); 393 S.insert(T); 394 Changed = true; 395 } 396 return Changed; 397 } 398 399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isIntegerOrPtr); 405 406 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 407 } 408 409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isFloatingPoint); 415 416 return Out.assign_if(getLegalTypes(), isFloatingPoint); 417 } 418 419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError()) 422 return false; 423 if (!Out.empty()) 424 return Out.constrain(isScalar); 425 426 return Out.assign_if(getLegalTypes(), isScalar); 427 } 428 429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 430 ValidateOnExit _1(Out, *this); 431 if (TP.hasError()) 432 return false; 433 if (!Out.empty()) 434 return Out.constrain(isVector); 435 436 return Out.assign_if(getLegalTypes(), isVector); 437 } 438 439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 440 ValidateOnExit _1(Out, *this); 441 if (TP.hasError() || !Out.empty()) 442 return false; 443 444 Out = getLegalTypes(); 445 return true; 446 } 447 448 template <typename Iter, typename Pred, typename Less> 449 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 450 if (B == E) 451 return E; 452 Iter Min = E; 453 for (Iter I = B; I != E; ++I) { 454 if (!P(*I)) 455 continue; 456 if (Min == E || L(*I, *Min)) 457 Min = I; 458 } 459 return Min; 460 } 461 462 template <typename Iter, typename Pred, typename Less> 463 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 464 if (B == E) 465 return E; 466 Iter Max = E; 467 for (Iter I = B; I != E; ++I) { 468 if (!P(*I)) 469 continue; 470 if (Max == E || L(*Max, *I)) 471 Max = I; 472 } 473 return Max; 474 } 475 476 /// Make sure that for each type in Small, there exists a larger type in Big. 477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 478 bool SmallIsVT) { 479 ValidateOnExit _1(Small, *this), _2(Big, *this); 480 if (TP.hasError()) 481 return false; 482 bool Changed = false; 483 484 assert((!SmallIsVT || !Small.empty()) && 485 "Small should not be empty for SDTCisVTSmallerThanOp"); 486 487 if (Small.empty()) 488 Changed |= EnforceAny(Small); 489 if (Big.empty()) 490 Changed |= EnforceAny(Big); 491 492 assert(Small.hasDefault() && Big.hasDefault()); 493 494 SmallVector<unsigned, 4> Modes; 495 union_modes(Small, Big, Modes); 496 497 // 1. Only allow integer or floating point types and make sure that 498 // both sides are both integer or both floating point. 499 // 2. Make sure that either both sides have vector types, or neither 500 // of them does. 501 for (unsigned M : Modes) { 502 TypeSetByHwMode::SetType &S = Small.get(M); 503 TypeSetByHwMode::SetType &B = Big.get(M); 504 505 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 506 507 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 508 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 509 Changed |= berase_if(S, NotInt); 510 Changed |= berase_if(B, NotInt); 511 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 512 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 513 Changed |= berase_if(S, NotFP); 514 Changed |= berase_if(B, NotFP); 515 } else if (SmallIsVT && B.empty()) { 516 // B is empty and since S is a specific VT, it will never be empty. Don't 517 // report this as a change, just clear S and continue. This prevents an 518 // infinite loop. 519 S.clear(); 520 } else if (S.empty() || B.empty()) { 521 Changed = !S.empty() || !B.empty(); 522 S.clear(); 523 B.clear(); 524 } else { 525 TP.error("Incompatible types"); 526 return Changed; 527 } 528 529 if (none_of(S, isVector) || none_of(B, isVector)) { 530 Changed |= berase_if(S, isVector); 531 Changed |= berase_if(B, isVector); 532 } 533 } 534 535 auto LT = [](MVT A, MVT B) -> bool { 536 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 537 // purposes of ordering. 538 auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(), 539 A.getSizeInBits().getKnownMinValue()); 540 auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(), 541 B.getSizeInBits().getKnownMinValue()); 542 return ASize < BSize; 543 }; 544 auto SameKindLE = [](MVT A, MVT B) -> bool { 545 // This function is used when removing elements: when a vector is compared 546 // to a non-vector or a scalable vector to any non-scalable MVT, it should 547 // return false (to avoid removal). 548 if (std::tuple(A.isVector(), A.isScalableVector()) != 549 std::tuple(B.isVector(), B.isScalableVector())) 550 return false; 551 552 return std::tuple(A.getScalarSizeInBits(), 553 A.getSizeInBits().getKnownMinValue()) <= 554 std::tuple(B.getScalarSizeInBits(), 555 B.getSizeInBits().getKnownMinValue()); 556 }; 557 558 for (unsigned M : Modes) { 559 TypeSetByHwMode::SetType &S = Small.get(M); 560 TypeSetByHwMode::SetType &B = Big.get(M); 561 // MinS = min scalar in Small, remove all scalars from Big that are 562 // smaller-or-equal than MinS. 563 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 564 if (MinS != S.end()) 565 Changed |= 566 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS)); 567 568 // MaxS = max scalar in Big, remove all scalars from Small that are 569 // larger than MaxS. 570 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 571 if (MaxS != B.end()) 572 Changed |= 573 berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1)); 574 575 // MinV = min vector in Small, remove all vectors from Big that are 576 // smaller-or-equal than MinV. 577 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 578 if (MinV != S.end()) 579 Changed |= 580 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV)); 581 582 // MaxV = max vector in Big, remove all vectors from Small that are 583 // larger than MaxV. 584 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 585 if (MaxV != B.end()) 586 Changed |= 587 berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1)); 588 } 589 590 return Changed; 591 } 592 593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 594 /// for each type U in Elem, U is a scalar type. 595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 596 /// type T in Vec, such that U is the element type of T. 597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 598 TypeSetByHwMode &Elem) { 599 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 600 if (TP.hasError()) 601 return false; 602 bool Changed = false; 603 604 if (Vec.empty()) 605 Changed |= EnforceVector(Vec); 606 if (Elem.empty()) 607 Changed |= EnforceScalar(Elem); 608 609 SmallVector<unsigned, 4> Modes; 610 union_modes(Vec, Elem, Modes); 611 for (unsigned M : Modes) { 612 TypeSetByHwMode::SetType &V = Vec.get(M); 613 TypeSetByHwMode::SetType &E = Elem.get(M); 614 615 Changed |= berase_if(V, isScalar); // Scalar = !vector 616 Changed |= berase_if(E, isVector); // Vector = !scalar 617 assert(!V.empty() && !E.empty()); 618 619 MachineValueTypeSet VT, ST; 620 // Collect element types from the "vector" set. 621 for (MVT T : V) 622 VT.insert(T.getVectorElementType()); 623 // Collect scalar types from the "element" set. 624 for (MVT T : E) 625 ST.insert(T); 626 627 // Remove from V all (vector) types whose element type is not in S. 628 Changed |= berase_if(V, [&ST](MVT T) -> bool { 629 return !ST.count(T.getVectorElementType()); 630 }); 631 // Remove from E all (scalar) types, for which there is no corresponding 632 // type in V. 633 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 634 } 635 636 return Changed; 637 } 638 639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 640 const ValueTypeByHwMode &VVT) { 641 TypeSetByHwMode Tmp(VVT); 642 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 643 return EnforceVectorEltTypeIs(Vec, Tmp); 644 } 645 646 /// Ensure that for each type T in Sub, T is a vector type, and there 647 /// exists a type U in Vec such that U is a vector type with the same 648 /// element type as T and at least as many elements as T. 649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 650 TypeSetByHwMode &Sub) { 651 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 652 if (TP.hasError()) 653 return false; 654 655 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 656 auto IsSubVec = [](MVT B, MVT P) -> bool { 657 if (!B.isVector() || !P.isVector()) 658 return false; 659 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 660 // but until there are obvious use-cases for this, keep the 661 // types separate. 662 if (B.isScalableVector() != P.isScalableVector()) 663 return false; 664 if (B.getVectorElementType() != P.getVectorElementType()) 665 return false; 666 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 667 }; 668 669 /// Return true if S has no element (vector type) that T is a sub-vector of, 670 /// i.e. has the same element type as T and more elements. 671 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 672 for (auto I : S) 673 if (IsSubVec(T, I)) 674 return false; 675 return true; 676 }; 677 678 /// Return true if S has no element (vector type) that T is a super-vector 679 /// of, i.e. has the same element type as T and fewer elements. 680 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 681 for (auto I : S) 682 if (IsSubVec(I, T)) 683 return false; 684 return true; 685 }; 686 687 bool Changed = false; 688 689 if (Vec.empty()) 690 Changed |= EnforceVector(Vec); 691 if (Sub.empty()) 692 Changed |= EnforceVector(Sub); 693 694 SmallVector<unsigned, 4> Modes; 695 union_modes(Vec, Sub, Modes); 696 for (unsigned M : Modes) { 697 TypeSetByHwMode::SetType &S = Sub.get(M); 698 TypeSetByHwMode::SetType &V = Vec.get(M); 699 700 Changed |= berase_if(S, isScalar); 701 702 // Erase all types from S that are not sub-vectors of a type in V. 703 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 704 705 // Erase all types from V that are not super-vectors of a type in S. 706 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 707 } 708 709 return Changed; 710 } 711 712 /// 1. Ensure that V has a scalar type iff W has a scalar type. 713 /// 2. Ensure that for each vector type T in V, there exists a vector 714 /// type U in W, such that T and U have the same number of elements. 715 /// 3. Ensure that for each vector type U in W, there exists a vector 716 /// type T in V, such that T and U have the same number of elements 717 /// (reverse of 2). 718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 719 ValidateOnExit _1(V, *this), _2(W, *this); 720 if (TP.hasError()) 721 return false; 722 723 bool Changed = false; 724 if (V.empty()) 725 Changed |= EnforceAny(V); 726 if (W.empty()) 727 Changed |= EnforceAny(W); 728 729 // An actual vector type cannot have 0 elements, so we can treat scalars 730 // as zero-length vectors. This way both vectors and scalars can be 731 // processed identically. 732 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 733 MVT T) -> bool { 734 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 735 : ElementCount()); 736 }; 737 738 SmallVector<unsigned, 4> Modes; 739 union_modes(V, W, Modes); 740 for (unsigned M : Modes) { 741 TypeSetByHwMode::SetType &VS = V.get(M); 742 TypeSetByHwMode::SetType &WS = W.get(M); 743 744 SmallDenseSet<ElementCount> VN, WN; 745 for (MVT T : VS) 746 VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 747 for (MVT T : WS) 748 WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 749 750 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 751 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 752 } 753 return Changed; 754 } 755 756 namespace { 757 struct TypeSizeComparator { 758 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 759 return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 760 std::tuple(RHS.isScalable(), RHS.getKnownMinValue()); 761 } 762 }; 763 } // end anonymous namespace 764 765 /// 1. Ensure that for each type T in A, there exists a type U in B, 766 /// such that T and U have equal size in bits. 767 /// 2. Ensure that for each type U in B, there exists a type T in A 768 /// such that T and U have equal size in bits (reverse of 1). 769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 770 ValidateOnExit _1(A, *this), _2(B, *this); 771 if (TP.hasError()) 772 return false; 773 bool Changed = false; 774 if (A.empty()) 775 Changed |= EnforceAny(A); 776 if (B.empty()) 777 Changed |= EnforceAny(B); 778 779 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 780 781 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 782 return !Sizes.count(T.getSizeInBits()); 783 }; 784 785 SmallVector<unsigned, 4> Modes; 786 union_modes(A, B, Modes); 787 for (unsigned M : Modes) { 788 TypeSetByHwMode::SetType &AS = A.get(M); 789 TypeSetByHwMode::SetType &BS = B.get(M); 790 TypeSizeSet AN, BN; 791 792 for (MVT T : AS) 793 AN.insert(T.getSizeInBits()); 794 for (MVT T : BS) 795 BN.insert(T.getSizeInBits()); 796 797 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 798 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 799 } 800 801 return Changed; 802 } 803 804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const { 805 ValidateOnExit _1(VTS, *this); 806 const TypeSetByHwMode &Legal = getLegalTypes(); 807 assert(Legal.isSimple() && "Default-mode only expected"); 808 const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple(); 809 810 for (auto &I : VTS) 811 expandOverloads(I.second, LegalTypes); 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 815 const TypeSetByHwMode::SetType &Legal) const { 816 if (Out.count(MVT::iPTRAny)) { 817 Out.erase(MVT::iPTRAny); 818 Out.insert(MVT::iPTR); 819 } else if (Out.count(MVT::iAny)) { 820 Out.erase(MVT::iAny); 821 for (MVT T : MVT::integer_valuetypes()) 822 if (Legal.count(T)) 823 Out.insert(T); 824 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 825 if (Legal.count(T)) 826 Out.insert(T); 827 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 828 if (Legal.count(T)) 829 Out.insert(T); 830 } else if (Out.count(MVT::fAny)) { 831 Out.erase(MVT::fAny); 832 for (MVT T : MVT::fp_valuetypes()) 833 if (Legal.count(T)) 834 Out.insert(T); 835 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 836 if (Legal.count(T)) 837 Out.insert(T); 838 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 } else if (Out.count(MVT::vAny)) { 842 Out.erase(MVT::vAny); 843 for (MVT T : MVT::vector_valuetypes()) 844 if (Legal.count(T)) 845 Out.insert(T); 846 } else if (Out.count(MVT::Any)) { 847 Out.erase(MVT::Any); 848 for (MVT T : MVT::all_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 } 852 } 853 854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const { 855 if (!LegalTypesCached) { 856 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 857 // Stuff all types from all modes into the default mode. 858 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 859 for (const auto &I : LTS) 860 LegalTypes.insert(I.second); 861 LegalTypesCached = true; 862 } 863 assert(LegalCache.isSimple() && "Default-mode only expected"); 864 return LegalCache; 865 } 866 867 TypeInfer::ValidateOnExit::~ValidateOnExit() { 868 if (Infer.Validate && !VTS.validate()) { 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 errs() << "Type set is empty for each HW mode:\n" 871 "possible type contradiction in the pattern below " 872 "(use -print-records with llvm-tblgen to see all " 873 "expanded records).\n"; 874 Infer.TP.dump(); 875 errs() << "Generated from record:\n"; 876 Infer.TP.getRecord()->dump(); 877 #endif 878 PrintFatalError(Infer.TP.getRecord()->getLoc(), 879 "Type set is empty for each HW mode in '" + 880 Infer.TP.getRecord()->getName() + "'"); 881 } 882 } 883 884 //===----------------------------------------------------------------------===// 885 // ScopedName Implementation 886 //===----------------------------------------------------------------------===// 887 888 bool ScopedName::operator==(const ScopedName &o) const { 889 return Scope == o.Scope && Identifier == o.Identifier; 890 } 891 892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); } 893 894 //===----------------------------------------------------------------------===// 895 // TreePredicateFn Implementation 896 //===----------------------------------------------------------------------===// 897 898 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 900 assert( 901 (!hasPredCode() || !hasImmCode()) && 902 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 903 } 904 905 bool TreePredicateFn::hasPredCode() const { 906 return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() || 907 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 908 } 909 910 std::string TreePredicateFn::getPredCode() const { 911 std::string Code; 912 913 if (!isLoad() && !isStore() && !isAtomic()) { 914 Record *MemoryVT = getMemoryVT(); 915 916 if (MemoryVT) 917 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 918 "MemoryVT requires IsLoad or IsStore"); 919 } 920 921 if (!isLoad() && !isStore()) { 922 if (isUnindexed()) 923 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 924 "IsUnindexed requires IsLoad or IsStore"); 925 926 Record *ScalarMemoryVT = getScalarMemoryVT(); 927 928 if (ScalarMemoryVT) 929 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 930 "ScalarMemoryVT requires IsLoad or IsStore"); 931 } 932 933 if (isLoad() + isStore() + isAtomic() > 1) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 936 937 if (isLoad()) { 938 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 939 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 940 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 941 getMinAlignment() < 1) 942 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 943 "IsLoad cannot be used by itself"); 944 } else { 945 if (isNonExtLoad()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsNonExtLoad requires IsLoad"); 948 if (isAnyExtLoad()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsAnyExtLoad requires IsLoad"); 951 952 if (!isAtomic()) { 953 if (isSignExtLoad()) 954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 955 "IsSignExtLoad requires IsLoad or IsAtomic"); 956 if (isZeroExtLoad()) 957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 958 "IsZeroExtLoad requires IsLoad or IsAtomic"); 959 } 960 } 961 962 if (isStore()) { 963 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 964 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 965 getAddressSpaces() == nullptr && getMinAlignment() < 1) 966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 967 "IsStore cannot be used by itself"); 968 } else { 969 if (isNonTruncStore()) 970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 971 "IsNonTruncStore requires IsStore"); 972 if (isTruncStore()) 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "IsTruncStore requires IsStore"); 975 } 976 977 if (isAtomic()) { 978 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 979 getAddressSpaces() == nullptr && 980 // FIXME: Should atomic loads be IsLoad, IsAtomic, or both? 981 !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() && 982 !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() && 983 !isAtomicOrderingSequentiallyConsistent() && 984 !isAtomicOrderingAcquireOrStronger() && 985 !isAtomicOrderingReleaseOrStronger() && 986 !isAtomicOrderingWeakerThanAcquire() && 987 !isAtomicOrderingWeakerThanRelease()) 988 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 989 "IsAtomic cannot be used by itself"); 990 } else { 991 if (isAtomicOrderingMonotonic()) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsAtomicOrderingMonotonic requires IsAtomic"); 994 if (isAtomicOrderingAcquire()) 995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 996 "IsAtomicOrderingAcquire requires IsAtomic"); 997 if (isAtomicOrderingRelease()) 998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 999 "IsAtomicOrderingRelease requires IsAtomic"); 1000 if (isAtomicOrderingAcquireRelease()) 1001 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1002 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 1003 if (isAtomicOrderingSequentiallyConsistent()) 1004 PrintFatalError( 1005 getOrigPatFragRecord()->getRecord()->getLoc(), 1006 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1007 if (isAtomicOrderingAcquireOrStronger()) 1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1009 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1010 if (isAtomicOrderingReleaseOrStronger()) 1011 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1012 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1013 if (isAtomicOrderingWeakerThanAcquire()) 1014 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1015 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1016 } 1017 1018 if (isLoad() || isStore() || isAtomic()) { 1019 if (ListInit *AddressSpaces = getAddressSpaces()) { 1020 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1021 " if ("; 1022 1023 ListSeparator LS(" && "); 1024 for (Init *Val : AddressSpaces->getValues()) { 1025 Code += LS; 1026 1027 IntInit *IntVal = dyn_cast<IntInit>(Val); 1028 if (!IntVal) { 1029 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1030 "AddressSpaces element must be integer"); 1031 } 1032 1033 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1034 } 1035 1036 Code += ")\nreturn false;\n"; 1037 } 1038 1039 int64_t MinAlign = getMinAlignment(); 1040 if (MinAlign > 0) { 1041 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1042 Code += utostr(MinAlign); 1043 Code += "))\nreturn false;\n"; 1044 } 1045 1046 Record *MemoryVT = getMemoryVT(); 1047 1048 if (MemoryVT) 1049 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1050 MemoryVT->getName() + ") return false;\n") 1051 .str(); 1052 } 1053 1054 if (isAtomic() && isAtomicOrderingMonotonic()) 1055 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1056 "AtomicOrdering::Monotonic) return false;\n"; 1057 if (isAtomic() && isAtomicOrderingAcquire()) 1058 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1059 "AtomicOrdering::Acquire) return false;\n"; 1060 if (isAtomic() && isAtomicOrderingRelease()) 1061 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1062 "AtomicOrdering::Release) return false;\n"; 1063 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1064 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1065 "AtomicOrdering::AcquireRelease) return false;\n"; 1066 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1067 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1068 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1069 1070 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1071 Code += 1072 "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1073 "return false;\n"; 1074 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1075 Code += 1076 "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1077 "return false;\n"; 1078 1079 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1080 Code += 1081 "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1082 "return false;\n"; 1083 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1084 Code += 1085 "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1086 "return false;\n"; 1087 1088 // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed. 1089 if (isAtomic() && (isZeroExtLoad() || isSignExtLoad())) 1090 Code += "return false;\n"; 1091 1092 if (isLoad() || isStore()) { 1093 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1094 1095 if (isUnindexed()) 1096 Code += ("if (cast<" + SDNodeName + 1097 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1098 "return false;\n") 1099 .str(); 1100 1101 if (isLoad()) { 1102 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1103 isZeroExtLoad()) > 1) 1104 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1105 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1106 "IsZeroExtLoad are mutually exclusive"); 1107 if (isNonExtLoad()) 1108 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1109 "ISD::NON_EXTLOAD) return false;\n"; 1110 if (isAnyExtLoad()) 1111 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1112 "return false;\n"; 1113 if (isSignExtLoad()) 1114 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1115 "return false;\n"; 1116 if (isZeroExtLoad()) 1117 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1118 "return false;\n"; 1119 } else { 1120 if ((isNonTruncStore() + isTruncStore()) > 1) 1121 PrintFatalError( 1122 getOrigPatFragRecord()->getRecord()->getLoc(), 1123 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1124 if (isNonTruncStore()) 1125 Code += 1126 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1127 if (isTruncStore()) 1128 Code += 1129 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1130 } 1131 1132 Record *ScalarMemoryVT = getScalarMemoryVT(); 1133 1134 if (ScalarMemoryVT) 1135 Code += ("if (cast<" + SDNodeName + 1136 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1137 ScalarMemoryVT->getName() + ") return false;\n") 1138 .str(); 1139 } 1140 1141 if (hasNoUse()) 1142 Code += "if (!SDValue(N, 0).use_empty()) return false;\n"; 1143 if (hasOneUse()) 1144 Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n"; 1145 1146 std::string PredicateCode = 1147 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1148 1149 Code += PredicateCode; 1150 1151 if (PredicateCode.empty() && !Code.empty()) 1152 Code += "return true;\n"; 1153 1154 return Code; 1155 } 1156 1157 bool TreePredicateFn::hasImmCode() const { 1158 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1159 } 1160 1161 std::string TreePredicateFn::getImmCode() const { 1162 return std::string( 1163 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1164 } 1165 1166 bool TreePredicateFn::immCodeUsesAPInt() const { 1167 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1168 } 1169 1170 bool TreePredicateFn::immCodeUsesAPFloat() const { 1171 bool Unset; 1172 // The return value will be false when IsAPFloat is unset. 1173 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1174 Unset); 1175 } 1176 1177 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1178 bool Value) const { 1179 bool Unset; 1180 bool Result = 1181 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1182 if (Unset) 1183 return false; 1184 return Result == Value; 1185 } 1186 bool TreePredicateFn::usesOperands() const { 1187 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1188 } 1189 bool TreePredicateFn::hasNoUse() const { 1190 return isPredefinedPredicateEqualTo("HasNoUse", true); 1191 } 1192 bool TreePredicateFn::hasOneUse() const { 1193 return isPredefinedPredicateEqualTo("HasOneUse", true); 1194 } 1195 bool TreePredicateFn::isLoad() const { 1196 return isPredefinedPredicateEqualTo("IsLoad", true); 1197 } 1198 bool TreePredicateFn::isStore() const { 1199 return isPredefinedPredicateEqualTo("IsStore", true); 1200 } 1201 bool TreePredicateFn::isAtomic() const { 1202 return isPredefinedPredicateEqualTo("IsAtomic", true); 1203 } 1204 bool TreePredicateFn::isUnindexed() const { 1205 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1206 } 1207 bool TreePredicateFn::isNonExtLoad() const { 1208 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1209 } 1210 bool TreePredicateFn::isAnyExtLoad() const { 1211 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1212 } 1213 bool TreePredicateFn::isSignExtLoad() const { 1214 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1215 } 1216 bool TreePredicateFn::isZeroExtLoad() const { 1217 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1218 } 1219 bool TreePredicateFn::isNonTruncStore() const { 1220 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1221 } 1222 bool TreePredicateFn::isTruncStore() const { 1223 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1224 } 1225 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1226 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1227 } 1228 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1229 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1230 } 1231 bool TreePredicateFn::isAtomicOrderingRelease() const { 1232 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1233 } 1234 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1235 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1236 } 1237 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1238 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1239 true); 1240 } 1241 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1242 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1243 true); 1244 } 1245 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1246 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1247 false); 1248 } 1249 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1250 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1251 true); 1252 } 1253 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1254 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1255 false); 1256 } 1257 Record *TreePredicateFn::getMemoryVT() const { 1258 Record *R = getOrigPatFragRecord()->getRecord(); 1259 if (R->isValueUnset("MemoryVT")) 1260 return nullptr; 1261 return R->getValueAsDef("MemoryVT"); 1262 } 1263 1264 ListInit *TreePredicateFn::getAddressSpaces() const { 1265 Record *R = getOrigPatFragRecord()->getRecord(); 1266 if (R->isValueUnset("AddressSpaces")) 1267 return nullptr; 1268 return R->getValueAsListInit("AddressSpaces"); 1269 } 1270 1271 int64_t TreePredicateFn::getMinAlignment() const { 1272 Record *R = getOrigPatFragRecord()->getRecord(); 1273 if (R->isValueUnset("MinAlignment")) 1274 return 0; 1275 return R->getValueAsInt("MinAlignment"); 1276 } 1277 1278 Record *TreePredicateFn::getScalarMemoryVT() const { 1279 Record *R = getOrigPatFragRecord()->getRecord(); 1280 if (R->isValueUnset("ScalarMemoryVT")) 1281 return nullptr; 1282 return R->getValueAsDef("ScalarMemoryVT"); 1283 } 1284 bool TreePredicateFn::hasGISelPredicateCode() const { 1285 return !PatFragRec->getRecord() 1286 ->getValueAsString("GISelPredicateCode") 1287 .empty(); 1288 } 1289 std::string TreePredicateFn::getGISelPredicateCode() const { 1290 return std::string( 1291 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1292 } 1293 1294 StringRef TreePredicateFn::getImmType() const { 1295 if (immCodeUsesAPInt()) 1296 return "const APInt &"; 1297 if (immCodeUsesAPFloat()) 1298 return "const APFloat &"; 1299 return "int64_t"; 1300 } 1301 1302 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1303 if (immCodeUsesAPInt()) 1304 return "APInt"; 1305 if (immCodeUsesAPFloat()) 1306 return "APFloat"; 1307 return "I64"; 1308 } 1309 1310 /// isAlwaysTrue - Return true if this is a noop predicate. 1311 bool TreePredicateFn::isAlwaysTrue() const { 1312 return !hasPredCode() && !hasImmCode(); 1313 } 1314 1315 /// Return the name to use in the generated code to reference this, this is 1316 /// "Predicate_foo" if from a pattern fragment "foo". 1317 std::string TreePredicateFn::getFnName() const { 1318 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1319 } 1320 1321 /// getCodeToRunOnSDNode - Return the code for the function body that 1322 /// evaluates this predicate. The argument is expected to be in "Node", 1323 /// not N. This handles casting and conversion to a concrete node type as 1324 /// appropriate. 1325 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1326 // Handle immediate predicates first. 1327 std::string ImmCode = getImmCode(); 1328 if (!ImmCode.empty()) { 1329 if (isLoad()) 1330 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1331 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1332 if (isStore()) 1333 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1334 "IsStore cannot be used with ImmLeaf or its subclasses"); 1335 if (isUnindexed()) 1336 PrintFatalError( 1337 getOrigPatFragRecord()->getRecord()->getLoc(), 1338 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1339 if (isNonExtLoad()) 1340 PrintFatalError( 1341 getOrigPatFragRecord()->getRecord()->getLoc(), 1342 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1343 if (isAnyExtLoad()) 1344 PrintFatalError( 1345 getOrigPatFragRecord()->getRecord()->getLoc(), 1346 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1347 if (isSignExtLoad()) 1348 PrintFatalError( 1349 getOrigPatFragRecord()->getRecord()->getLoc(), 1350 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1351 if (isZeroExtLoad()) 1352 PrintFatalError( 1353 getOrigPatFragRecord()->getRecord()->getLoc(), 1354 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1355 if (isNonTruncStore()) 1356 PrintFatalError( 1357 getOrigPatFragRecord()->getRecord()->getLoc(), 1358 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1359 if (isTruncStore()) 1360 PrintFatalError( 1361 getOrigPatFragRecord()->getRecord()->getLoc(), 1362 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1363 if (getMemoryVT()) 1364 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1365 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1366 if (getScalarMemoryVT()) 1367 PrintFatalError( 1368 getOrigPatFragRecord()->getRecord()->getLoc(), 1369 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1370 1371 std::string Result = (" " + getImmType() + " Imm = ").str(); 1372 if (immCodeUsesAPFloat()) 1373 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1374 else if (immCodeUsesAPInt()) 1375 Result += "Node->getAsAPIntVal();\n"; 1376 else 1377 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1378 return Result + ImmCode; 1379 } 1380 1381 // Handle arbitrary node predicates. 1382 assert(hasPredCode() && "Don't have any predicate code!"); 1383 1384 // If this is using PatFrags, there are multiple trees to search. They should 1385 // all have the same class. FIXME: Is there a way to find a common 1386 // superclass? 1387 StringRef ClassName; 1388 for (const auto &Tree : PatFragRec->getTrees()) { 1389 StringRef TreeClassName; 1390 if (Tree->isLeaf()) 1391 TreeClassName = "SDNode"; 1392 else { 1393 Record *Op = Tree->getOperator(); 1394 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1395 TreeClassName = Info.getSDClassName(); 1396 } 1397 1398 if (ClassName.empty()) 1399 ClassName = TreeClassName; 1400 else if (ClassName != TreeClassName) { 1401 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1402 "PatFrags trees do not have consistent class"); 1403 } 1404 } 1405 1406 std::string Result; 1407 if (ClassName == "SDNode") 1408 Result = " SDNode *N = Node;\n"; 1409 else 1410 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1411 1412 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1413 } 1414 1415 //===----------------------------------------------------------------------===// 1416 // PatternToMatch implementation 1417 // 1418 1419 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) { 1420 if (!P.isLeaf()) 1421 return false; 1422 DefInit *DI = dyn_cast<DefInit>(P.getLeafValue()); 1423 if (!DI) 1424 return false; 1425 1426 Record *R = DI->getDef(); 1427 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1428 } 1429 1430 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1431 /// patterns before small ones. This is used to determine the size of a 1432 /// pattern. 1433 static unsigned getPatternSize(const TreePatternNode &P, 1434 const CodeGenDAGPatterns &CGP) { 1435 unsigned Size = 3; // The node itself. 1436 // If the root node is a ConstantSDNode, increases its size. 1437 // e.g. (set R32:$dst, 0). 1438 if (P.isLeaf() && isa<IntInit>(P.getLeafValue())) 1439 Size += 2; 1440 1441 if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) { 1442 Size += AM->getComplexity(); 1443 // We don't want to count any children twice, so return early. 1444 return Size; 1445 } 1446 1447 // If this node has some predicate function that must match, it adds to the 1448 // complexity of this node. 1449 if (!P.getPredicateCalls().empty()) 1450 ++Size; 1451 1452 // Count children in the count if they are also nodes. 1453 for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) { 1454 const TreePatternNode &Child = P.getChild(i); 1455 if (!Child.isLeaf() && Child.getNumTypes()) { 1456 const TypeSetByHwMode &T0 = Child.getExtType(0); 1457 // At this point, all variable type sets should be simple, i.e. only 1458 // have a default mode. 1459 if (T0.getMachineValueType() != MVT::Other) { 1460 Size += getPatternSize(Child, CGP); 1461 continue; 1462 } 1463 } 1464 if (Child.isLeaf()) { 1465 if (isa<IntInit>(Child.getLeafValue())) 1466 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1467 else if (Child.getComplexPatternInfo(CGP)) 1468 Size += getPatternSize(Child, CGP); 1469 else if (isImmAllOnesAllZerosMatch(Child)) 1470 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1471 else if (!Child.getPredicateCalls().empty()) 1472 ++Size; 1473 } 1474 } 1475 1476 return Size; 1477 } 1478 1479 /// Compute the complexity metric for the input pattern. This roughly 1480 /// corresponds to the number of nodes that are covered. 1481 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1482 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1483 } 1484 1485 void PatternToMatch::getPredicateRecords( 1486 SmallVectorImpl<Record *> &PredicateRecs) const { 1487 for (Init *I : Predicates->getValues()) { 1488 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1489 Record *Def = Pred->getDef(); 1490 if (!Def->isSubClassOf("Predicate")) { 1491 #ifndef NDEBUG 1492 Def->dump(); 1493 #endif 1494 llvm_unreachable("Unknown predicate type!"); 1495 } 1496 PredicateRecs.push_back(Def); 1497 } 1498 } 1499 // Sort so that different orders get canonicalized to the same string. 1500 llvm::sort(PredicateRecs, LessRecord()); 1501 // Remove duplicate predicates. 1502 PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end()); 1503 } 1504 1505 /// getPredicateCheck - Return a single string containing all of this 1506 /// pattern's predicates concatenated with "&&" operators. 1507 /// 1508 std::string PatternToMatch::getPredicateCheck() const { 1509 SmallVector<Record *, 4> PredicateRecs; 1510 getPredicateRecords(PredicateRecs); 1511 1512 SmallString<128> PredicateCheck; 1513 raw_svector_ostream OS(PredicateCheck); 1514 ListSeparator LS(" && "); 1515 for (Record *Pred : PredicateRecs) { 1516 StringRef CondString = Pred->getValueAsString("CondString"); 1517 if (CondString.empty()) 1518 continue; 1519 OS << LS << '(' << CondString << ')'; 1520 } 1521 1522 if (!HwModeFeatures.empty()) 1523 OS << LS << HwModeFeatures; 1524 1525 return std::string(PredicateCheck); 1526 } 1527 1528 //===----------------------------------------------------------------------===// 1529 // SDTypeConstraint implementation 1530 // 1531 1532 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1533 OperandNo = R->getValueAsInt("OperandNum"); 1534 1535 if (R->isSubClassOf("SDTCisVT")) { 1536 ConstraintType = SDTCisVT; 1537 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1538 for (const auto &P : VVT) 1539 if (P.second == MVT::isVoid) 1540 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1541 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1542 ConstraintType = SDTCisPtrTy; 1543 } else if (R->isSubClassOf("SDTCisInt")) { 1544 ConstraintType = SDTCisInt; 1545 } else if (R->isSubClassOf("SDTCisFP")) { 1546 ConstraintType = SDTCisFP; 1547 } else if (R->isSubClassOf("SDTCisVec")) { 1548 ConstraintType = SDTCisVec; 1549 } else if (R->isSubClassOf("SDTCisSameAs")) { 1550 ConstraintType = SDTCisSameAs; 1551 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1552 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1553 ConstraintType = SDTCisVTSmallerThanOp; 1554 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1555 R->getValueAsInt("OtherOperandNum"); 1556 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1557 ConstraintType = SDTCisOpSmallerThanOp; 1558 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1559 R->getValueAsInt("BigOperandNum"); 1560 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1561 ConstraintType = SDTCisEltOfVec; 1562 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1563 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1564 ConstraintType = SDTCisSubVecOfVec; 1565 x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1566 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1567 ConstraintType = SDTCVecEltisVT; 1568 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1569 for (const auto &P : VVT) { 1570 MVT T = P.second; 1571 if (T.isVector()) 1572 PrintFatalError(R->getLoc(), 1573 "Cannot use vector type as SDTCVecEltisVT"); 1574 if (!T.isInteger() && !T.isFloatingPoint()) 1575 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1576 "as SDTCVecEltisVT"); 1577 } 1578 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1579 ConstraintType = SDTCisSameNumEltsAs; 1580 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1581 R->getValueAsInt("OtherOperandNum"); 1582 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1583 ConstraintType = SDTCisSameSizeAs; 1584 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1585 R->getValueAsInt("OtherOperandNum"); 1586 } else { 1587 PrintFatalError(R->getLoc(), 1588 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1589 } 1590 } 1591 1592 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1593 /// N, and the result number in ResNo. 1594 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N, 1595 const SDNodeInfo &NodeInfo, 1596 unsigned &ResNo) { 1597 unsigned NumResults = NodeInfo.getNumResults(); 1598 if (OpNo < NumResults) { 1599 ResNo = OpNo; 1600 return N; 1601 } 1602 1603 OpNo -= NumResults; 1604 1605 if (OpNo >= N.getNumChildren()) { 1606 std::string S; 1607 raw_string_ostream OS(S); 1608 OS << "Invalid operand number in type constraint " << (OpNo + NumResults) 1609 << " "; 1610 N.print(OS); 1611 PrintFatalError(S); 1612 } 1613 1614 return N.getChild(OpNo); 1615 } 1616 1617 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1618 /// constraint to the nodes operands. This returns true if it makes a 1619 /// change, false otherwise. If a type contradiction is found, flag an error. 1620 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N, 1621 const SDNodeInfo &NodeInfo, 1622 TreePattern &TP) const { 1623 if (TP.hasError()) 1624 return false; 1625 1626 unsigned ResNo = 0; // The result number being referenced. 1627 TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1628 TypeInfer &TI = TP.getInfer(); 1629 1630 switch (ConstraintType) { 1631 case SDTCisVT: 1632 // Operand must be a particular type. 1633 return NodeToApply.UpdateNodeType(ResNo, VVT, TP); 1634 case SDTCisPtrTy: 1635 // Operand must be same as target pointer type. 1636 return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP); 1637 case SDTCisInt: 1638 // Require it to be one of the legal integer VTs. 1639 return TI.EnforceInteger(NodeToApply.getExtType(ResNo)); 1640 case SDTCisFP: 1641 // Require it to be one of the legal fp VTs. 1642 return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo)); 1643 case SDTCisVec: 1644 // Require it to be one of the legal vector VTs. 1645 return TI.EnforceVector(NodeToApply.getExtType(ResNo)); 1646 case SDTCisSameAs: { 1647 unsigned OResNo = 0; 1648 TreePatternNode &OtherNode = 1649 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1650 return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo), 1651 TP) | 1652 (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo), 1653 TP); 1654 } 1655 case SDTCisVTSmallerThanOp: { 1656 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1657 // have an integer type that is smaller than the VT. 1658 if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) || 1659 !cast<DefInit>(NodeToApply.getLeafValue()) 1660 ->getDef() 1661 ->isSubClassOf("ValueType")) { 1662 TP.error(N.getOperator()->getName() + " expects a VT operand!"); 1663 return false; 1664 } 1665 DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue()); 1666 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1667 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1668 TypeSetByHwMode TypeListTmp(VVT); 1669 1670 unsigned OResNo = 0; 1671 TreePatternNode &OtherNode = getOperandNum( 1672 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo); 1673 1674 return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo), 1675 /*SmallIsVT*/ true); 1676 } 1677 case SDTCisOpSmallerThanOp: { 1678 unsigned BResNo = 0; 1679 TreePatternNode &BigOperand = getOperandNum( 1680 x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo); 1681 return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo), 1682 BigOperand.getExtType(BResNo)); 1683 } 1684 case SDTCisEltOfVec: { 1685 unsigned VResNo = 0; 1686 TreePatternNode &VecOperand = getOperandNum( 1687 x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1688 // Filter vector types out of VecOperand that don't have the right element 1689 // type. 1690 return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo), 1691 NodeToApply.getExtType(ResNo)); 1692 } 1693 case SDTCisSubVecOfVec: { 1694 unsigned VResNo = 0; 1695 TreePatternNode &BigVecOperand = getOperandNum( 1696 x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); 1697 1698 // Filter vector types out of BigVecOperand that don't have the 1699 // right subvector type. 1700 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo), 1701 NodeToApply.getExtType(ResNo)); 1702 } 1703 case SDTCVecEltisVT: { 1704 return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT); 1705 } 1706 case SDTCisSameNumEltsAs: { 1707 unsigned OResNo = 0; 1708 TreePatternNode &OtherNode = getOperandNum( 1709 x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1710 return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo), 1711 NodeToApply.getExtType(ResNo)); 1712 } 1713 case SDTCisSameSizeAs: { 1714 unsigned OResNo = 0; 1715 TreePatternNode &OtherNode = getOperandNum( 1716 x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1717 return TI.EnforceSameSize(OtherNode.getExtType(OResNo), 1718 NodeToApply.getExtType(ResNo)); 1719 } 1720 } 1721 llvm_unreachable("Invalid ConstraintType!"); 1722 } 1723 1724 // Update the node type to match an instruction operand or result as specified 1725 // in the ins or outs lists on the instruction definition. Return true if the 1726 // type was actually changed. 1727 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, 1728 TreePattern &TP) { 1729 // The 'unknown' operand indicates that types should be inferred from the 1730 // context. 1731 if (Operand->isSubClassOf("unknown_class")) 1732 return false; 1733 1734 // The Operand class specifies a type directly. 1735 if (Operand->isSubClassOf("Operand")) { 1736 Record *R = Operand->getValueAsDef("Type"); 1737 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1738 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1739 } 1740 1741 // PointerLikeRegClass has a type that is determined at runtime. 1742 if (Operand->isSubClassOf("PointerLikeRegClass")) 1743 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1744 1745 // Both RegisterClass and RegisterOperand operands derive their types from a 1746 // register class def. 1747 Record *RC = nullptr; 1748 if (Operand->isSubClassOf("RegisterClass")) 1749 RC = Operand; 1750 else if (Operand->isSubClassOf("RegisterOperand")) 1751 RC = Operand->getValueAsDef("RegClass"); 1752 1753 assert(RC && "Unknown operand type"); 1754 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1755 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1756 } 1757 1758 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1759 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1760 if (!TP.getInfer().isConcrete(Types[i], true)) 1761 return true; 1762 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1763 if (getChild(i).ContainsUnresolvedType(TP)) 1764 return true; 1765 return false; 1766 } 1767 1768 bool TreePatternNode::hasProperTypeByHwMode() const { 1769 for (const TypeSetByHwMode &S : Types) 1770 if (!S.isSimple()) 1771 return true; 1772 for (const TreePatternNodePtr &C : Children) 1773 if (C->hasProperTypeByHwMode()) 1774 return true; 1775 return false; 1776 } 1777 1778 bool TreePatternNode::hasPossibleType() const { 1779 for (const TypeSetByHwMode &S : Types) 1780 if (!S.isPossible()) 1781 return false; 1782 for (const TreePatternNodePtr &C : Children) 1783 if (!C->hasPossibleType()) 1784 return false; 1785 return true; 1786 } 1787 1788 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1789 for (TypeSetByHwMode &S : Types) { 1790 S.makeSimple(Mode); 1791 // Check if the selected mode had a type conflict. 1792 if (S.get(DefaultMode).empty()) 1793 return false; 1794 } 1795 for (const TreePatternNodePtr &C : Children) 1796 if (!C->setDefaultMode(Mode)) 1797 return false; 1798 return true; 1799 } 1800 1801 //===----------------------------------------------------------------------===// 1802 // SDNodeInfo implementation 1803 // 1804 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1805 EnumName = R->getValueAsString("Opcode"); 1806 SDClassName = R->getValueAsString("SDClass"); 1807 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1808 NumResults = TypeProfile->getValueAsInt("NumResults"); 1809 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1810 1811 // Parse the properties. 1812 Properties = parseSDPatternOperatorProperties(R); 1813 1814 // Parse the type constraints. 1815 std::vector<Record *> ConstraintList = 1816 TypeProfile->getValueAsListOfDefs("Constraints"); 1817 for (Record *R : ConstraintList) 1818 TypeConstraints.emplace_back(R, CGH); 1819 } 1820 1821 /// getKnownType - If the type constraints on this node imply a fixed type 1822 /// (e.g. all stores return void, etc), then return it as an 1823 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1824 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1825 unsigned NumResults = getNumResults(); 1826 assert(NumResults <= 1 && 1827 "We only work with nodes with zero or one result so far!"); 1828 assert(ResNo == 0 && "Only handles single result nodes so far"); 1829 1830 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1831 // Make sure that this applies to the correct node result. 1832 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1833 continue; 1834 1835 switch (Constraint.ConstraintType) { 1836 default: 1837 break; 1838 case SDTypeConstraint::SDTCisVT: 1839 if (Constraint.VVT.isSimple()) 1840 return Constraint.VVT.getSimple().SimpleTy; 1841 break; 1842 case SDTypeConstraint::SDTCisPtrTy: 1843 return MVT::iPTR; 1844 } 1845 } 1846 return MVT::Other; 1847 } 1848 1849 //===----------------------------------------------------------------------===// 1850 // TreePatternNode implementation 1851 // 1852 1853 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1854 if (Operator->getName() == "set" || Operator->getName() == "implicit") 1855 return 0; // All return nothing. 1856 1857 if (Operator->isSubClassOf("Intrinsic")) 1858 return CDP.getIntrinsic(Operator).IS.RetTys.size(); 1859 1860 if (Operator->isSubClassOf("SDNode")) 1861 return CDP.getSDNodeInfo(Operator).getNumResults(); 1862 1863 if (Operator->isSubClassOf("PatFrags")) { 1864 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1865 // the forward reference case where one pattern fragment references another 1866 // before it is processed. 1867 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1868 // The number of results of a fragment with alternative records is the 1869 // maximum number of results across all alternatives. 1870 unsigned NumResults = 0; 1871 for (const auto &T : PFRec->getTrees()) 1872 NumResults = std::max(NumResults, T->getNumTypes()); 1873 return NumResults; 1874 } 1875 1876 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1877 assert(LI && "Invalid Fragment"); 1878 unsigned NumResults = 0; 1879 for (Init *I : LI->getValues()) { 1880 Record *Op = nullptr; 1881 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1882 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1883 Op = DI->getDef(); 1884 assert(Op && "Invalid Fragment"); 1885 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1886 } 1887 return NumResults; 1888 } 1889 1890 if (Operator->isSubClassOf("Instruction")) { 1891 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1892 1893 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1894 1895 // Subtract any defaulted outputs. 1896 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1897 Record *OperandNode = InstInfo.Operands[i].Rec; 1898 1899 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1900 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1901 --NumDefsToAdd; 1902 } 1903 1904 // Add on one implicit def if it has a resolvable type. 1905 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) != 1906 MVT::Other) 1907 ++NumDefsToAdd; 1908 return NumDefsToAdd; 1909 } 1910 1911 if (Operator->isSubClassOf("SDNodeXForm")) 1912 return 1; // FIXME: Generalize SDNodeXForm 1913 1914 if (Operator->isSubClassOf("ValueType")) 1915 return 1; // A type-cast of one result. 1916 1917 if (Operator->isSubClassOf("ComplexPattern")) 1918 return 1; 1919 1920 errs() << *Operator; 1921 PrintFatalError("Unhandled node in GetNumNodeResults"); 1922 } 1923 1924 void TreePatternNode::print(raw_ostream &OS) const { 1925 if (isLeaf()) 1926 OS << *getLeafValue(); 1927 else 1928 OS << '(' << getOperator()->getName(); 1929 1930 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1931 OS << ':'; 1932 getExtType(i).writeToStream(OS); 1933 } 1934 1935 if (!isLeaf()) { 1936 if (getNumChildren() != 0) { 1937 OS << " "; 1938 ListSeparator LS; 1939 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1940 OS << LS; 1941 getChild(i).print(OS); 1942 } 1943 } 1944 OS << ")"; 1945 } 1946 1947 for (const TreePredicateCall &Pred : PredicateCalls) { 1948 OS << "<<P:"; 1949 if (Pred.Scope) 1950 OS << Pred.Scope << ":"; 1951 OS << Pred.Fn.getFnName() << ">>"; 1952 } 1953 if (TransformFn) 1954 OS << "<<X:" << TransformFn->getName() << ">>"; 1955 if (!getName().empty()) 1956 OS << ":$" << getName(); 1957 1958 for (const ScopedName &Name : NamesAsPredicateArg) 1959 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1960 } 1961 void TreePatternNode::dump() const { print(errs()); } 1962 1963 /// isIsomorphicTo - Return true if this node is recursively 1964 /// isomorphic to the specified node. For this comparison, the node's 1965 /// entire state is considered. The assigned name is ignored, since 1966 /// nodes with differing names are considered isomorphic. However, if 1967 /// the assigned name is present in the dependent variable set, then 1968 /// the assigned name is considered significant and the node is 1969 /// isomorphic if the names match. 1970 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N, 1971 const MultipleUseVarSet &DepVars) const { 1972 if (&N == this) 1973 return true; 1974 if (N.isLeaf() != isLeaf()) 1975 return false; 1976 1977 // Check operator of non-leaves early since it can be cheaper than checking 1978 // types. 1979 if (!isLeaf()) 1980 if (N.getOperator() != getOperator() || 1981 N.getNumChildren() != getNumChildren()) 1982 return false; 1983 1984 if (getExtTypes() != N.getExtTypes() || 1985 getPredicateCalls() != N.getPredicateCalls() || 1986 getTransformFn() != N.getTransformFn()) 1987 return false; 1988 1989 if (isLeaf()) { 1990 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1991 if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) { 1992 return ((DI->getDef() == NDI->getDef()) && 1993 (!DepVars.contains(getName()) || getName() == N.getName())); 1994 } 1995 } 1996 return getLeafValue() == N.getLeafValue(); 1997 } 1998 1999 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2000 if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars)) 2001 return false; 2002 return true; 2003 } 2004 2005 /// clone - Make a copy of this tree and all of its children. 2006 /// 2007 TreePatternNodePtr TreePatternNode::clone() const { 2008 TreePatternNodePtr New; 2009 if (isLeaf()) { 2010 New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes()); 2011 } else { 2012 std::vector<TreePatternNodePtr> CChildren; 2013 CChildren.reserve(Children.size()); 2014 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2015 CChildren.push_back(getChild(i).clone()); 2016 New = makeIntrusiveRefCnt<TreePatternNode>( 2017 getOperator(), std::move(CChildren), getNumTypes()); 2018 } 2019 New->setName(getName()); 2020 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2021 New->Types = Types; 2022 New->setPredicateCalls(getPredicateCalls()); 2023 New->setGISelFlagsRecord(getGISelFlagsRecord()); 2024 New->setTransformFn(getTransformFn()); 2025 return New; 2026 } 2027 2028 /// RemoveAllTypes - Recursively strip all the types of this tree. 2029 void TreePatternNode::RemoveAllTypes() { 2030 // Reset to unknown type. 2031 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2032 if (isLeaf()) 2033 return; 2034 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2035 getChild(i).RemoveAllTypes(); 2036 } 2037 2038 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2039 /// with actual values specified by ArgMap. 2040 void TreePatternNode::SubstituteFormalArguments( 2041 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2042 if (isLeaf()) 2043 return; 2044 2045 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2046 TreePatternNode &Child = getChild(i); 2047 if (Child.isLeaf()) { 2048 Init *Val = Child.getLeafValue(); 2049 // Note that, when substituting into an output pattern, Val might be an 2050 // UnsetInit. 2051 if (isa<UnsetInit>(Val) || 2052 (isa<DefInit>(Val) && 2053 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2054 // We found a use of a formal argument, replace it with its value. 2055 TreePatternNodePtr NewChild = ArgMap[Child.getName()]; 2056 assert(NewChild && "Couldn't find formal argument!"); 2057 assert((Child.getPredicateCalls().empty() || 2058 NewChild->getPredicateCalls() == Child.getPredicateCalls()) && 2059 "Non-empty child predicate clobbered!"); 2060 setChild(i, std::move(NewChild)); 2061 } 2062 } else { 2063 getChild(i).SubstituteFormalArguments(ArgMap); 2064 } 2065 } 2066 } 2067 2068 /// InlinePatternFragments - If this pattern refers to any pattern 2069 /// fragments, return the set of inlined versions (this can be more than 2070 /// one if a PatFrags record has multiple alternatives). 2071 void TreePatternNode::InlinePatternFragments( 2072 TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) { 2073 2074 if (TP.hasError()) 2075 return; 2076 2077 if (isLeaf()) { 2078 OutAlternatives.push_back(this); // nothing to do. 2079 return; 2080 } 2081 2082 Record *Op = getOperator(); 2083 2084 if (!Op->isSubClassOf("PatFrags")) { 2085 if (getNumChildren() == 0) { 2086 OutAlternatives.push_back(this); 2087 return; 2088 } 2089 2090 // Recursively inline children nodes. 2091 std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives( 2092 getNumChildren()); 2093 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2094 TreePatternNodePtr Child = getChildShared(i); 2095 Child->InlinePatternFragments(TP, ChildAlternatives[i]); 2096 // If there are no alternatives for any child, there are no 2097 // alternatives for this expression as whole. 2098 if (ChildAlternatives[i].empty()) 2099 return; 2100 2101 assert((Child->getPredicateCalls().empty() || 2102 llvm::all_of(ChildAlternatives[i], 2103 [&](const TreePatternNodePtr &NewChild) { 2104 return NewChild->getPredicateCalls() == 2105 Child->getPredicateCalls(); 2106 })) && 2107 "Non-empty child predicate clobbered!"); 2108 } 2109 2110 // The end result is an all-pairs construction of the resultant pattern. 2111 std::vector<unsigned> Idxs(ChildAlternatives.size()); 2112 bool NotDone; 2113 do { 2114 // Create the variant and add it to the output list. 2115 std::vector<TreePatternNodePtr> NewChildren; 2116 NewChildren.reserve(ChildAlternatives.size()); 2117 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2118 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2119 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 2120 getOperator(), std::move(NewChildren), getNumTypes()); 2121 2122 // Copy over properties. 2123 R->setName(getName()); 2124 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2125 R->setPredicateCalls(getPredicateCalls()); 2126 R->setGISelFlagsRecord(getGISelFlagsRecord()); 2127 R->setTransformFn(getTransformFn()); 2128 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2129 R->setType(i, getExtType(i)); 2130 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2131 R->setResultIndex(i, getResultIndex(i)); 2132 2133 // Register alternative. 2134 OutAlternatives.push_back(R); 2135 2136 // Increment indices to the next permutation by incrementing the 2137 // indices from last index backward, e.g., generate the sequence 2138 // [0, 0], [0, 1], [1, 0], [1, 1]. 2139 int IdxsIdx; 2140 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2141 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2142 Idxs[IdxsIdx] = 0; 2143 else 2144 break; 2145 } 2146 NotDone = (IdxsIdx >= 0); 2147 } while (NotDone); 2148 2149 return; 2150 } 2151 2152 // Otherwise, we found a reference to a fragment. First, look up its 2153 // TreePattern record. 2154 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2155 2156 // Verify that we are passing the right number of operands. 2157 if (Frag->getNumArgs() != getNumChildren()) { 2158 TP.error("'" + Op->getName() + "' fragment requires " + 2159 Twine(Frag->getNumArgs()) + " operands!"); 2160 return; 2161 } 2162 2163 TreePredicateFn PredFn(Frag); 2164 unsigned Scope = 0; 2165 if (TreePredicateFn(Frag).usesOperands()) 2166 Scope = TP.getDAGPatterns().allocateScope(); 2167 2168 // Compute the map of formal to actual arguments. 2169 std::map<std::string, TreePatternNodePtr> ArgMap; 2170 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2171 TreePatternNodePtr Child = getChildShared(i); 2172 if (Scope != 0) { 2173 Child = Child->clone(); 2174 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2175 } 2176 ArgMap[Frag->getArgName(i)] = Child; 2177 } 2178 2179 // Loop over all fragment alternatives. 2180 for (const auto &Alternative : Frag->getTrees()) { 2181 TreePatternNodePtr FragTree = Alternative->clone(); 2182 2183 if (!PredFn.isAlwaysTrue()) 2184 FragTree->addPredicateCall(PredFn, Scope); 2185 2186 // Resolve formal arguments to their actual value. 2187 if (Frag->getNumArgs()) 2188 FragTree->SubstituteFormalArguments(ArgMap); 2189 2190 // Transfer types. Note that the resolved alternative may have fewer 2191 // (but not more) results than the PatFrags node. 2192 FragTree->setName(getName()); 2193 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2194 FragTree->UpdateNodeType(i, getExtType(i), TP); 2195 2196 if (Op->isSubClassOf("GISelFlags")) 2197 FragTree->setGISelFlagsRecord(Op); 2198 2199 // Transfer in the old predicates. 2200 for (const TreePredicateCall &Pred : getPredicateCalls()) 2201 FragTree->addPredicateCall(Pred); 2202 2203 // The fragment we inlined could have recursive inlining that is needed. See 2204 // if there are any pattern fragments in it and inline them as needed. 2205 FragTree->InlinePatternFragments(TP, OutAlternatives); 2206 } 2207 } 2208 2209 /// getImplicitType - Check to see if the specified record has an implicit 2210 /// type which should be applied to it. This will infer the type of register 2211 /// references from the register file information, for example. 2212 /// 2213 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2214 /// the F8RC register class argument in: 2215 /// 2216 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2217 /// 2218 /// When Unnamed is false, return the type of a named DAG operand such as the 2219 /// GPR:$src operand above. 2220 /// 2221 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2222 bool NotRegisters, bool Unnamed, 2223 TreePattern &TP) { 2224 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2225 2226 // Check to see if this is a register operand. 2227 if (R->isSubClassOf("RegisterOperand")) { 2228 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2229 if (NotRegisters) 2230 return TypeSetByHwMode(); // Unknown. 2231 Record *RegClass = R->getValueAsDef("RegClass"); 2232 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2233 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2234 } 2235 2236 // Check to see if this is a register or a register class. 2237 if (R->isSubClassOf("RegisterClass")) { 2238 assert(ResNo == 0 && "Regclass ref only has one result!"); 2239 // An unnamed register class represents itself as an i32 immediate, for 2240 // example on a COPY_TO_REGCLASS instruction. 2241 if (Unnamed) 2242 return TypeSetByHwMode(MVT::i32); 2243 2244 // In a named operand, the register class provides the possible set of 2245 // types. 2246 if (NotRegisters) 2247 return TypeSetByHwMode(); // Unknown. 2248 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2249 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2250 } 2251 2252 if (R->isSubClassOf("PatFrags")) { 2253 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2254 // Pattern fragment types will be resolved when they are inlined. 2255 return TypeSetByHwMode(); // Unknown. 2256 } 2257 2258 if (R->isSubClassOf("Register")) { 2259 assert(ResNo == 0 && "Registers only produce one result!"); 2260 if (NotRegisters) 2261 return TypeSetByHwMode(); // Unknown. 2262 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2263 return TypeSetByHwMode(T.getRegisterVTs(R)); 2264 } 2265 2266 if (R->isSubClassOf("SubRegIndex")) { 2267 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2268 return TypeSetByHwMode(MVT::i32); 2269 } 2270 2271 if (R->isSubClassOf("ValueType")) { 2272 assert(ResNo == 0 && "This node only has one result!"); 2273 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2274 // 2275 // (sext_inreg GPR:$src, i16) 2276 // ~~~ 2277 if (Unnamed) 2278 return TypeSetByHwMode(MVT::Other); 2279 // With a name, the ValueType simply provides the type of the named 2280 // variable. 2281 // 2282 // (sext_inreg i32:$src, i16) 2283 // ~~~~~~~~ 2284 if (NotRegisters) 2285 return TypeSetByHwMode(); // Unknown. 2286 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2287 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2288 } 2289 2290 if (R->isSubClassOf("CondCode")) { 2291 assert(ResNo == 0 && "This node only has one result!"); 2292 // Using a CondCodeSDNode. 2293 return TypeSetByHwMode(MVT::Other); 2294 } 2295 2296 if (R->isSubClassOf("ComplexPattern")) { 2297 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2298 if (NotRegisters) 2299 return TypeSetByHwMode(); // Unknown. 2300 Record *T = CDP.getComplexPattern(R).getValueType(); 2301 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2302 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2303 } 2304 if (R->isSubClassOf("PointerLikeRegClass")) { 2305 assert(ResNo == 0 && "Regclass can only have one result!"); 2306 TypeSetByHwMode VTS(MVT::iPTR); 2307 TP.getInfer().expandOverloads(VTS); 2308 return VTS; 2309 } 2310 2311 if (R->getName() == "node" || R->getName() == "srcvalue" || 2312 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2313 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2314 // Placeholder. 2315 return TypeSetByHwMode(); // Unknown. 2316 } 2317 2318 if (R->isSubClassOf("Operand")) { 2319 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2320 Record *T = R->getValueAsDef("Type"); 2321 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2322 } 2323 2324 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2325 return TypeSetByHwMode(MVT::Other); 2326 } 2327 2328 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2329 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2330 const CodeGenIntrinsic * 2331 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2332 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2333 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2334 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2335 return nullptr; 2336 2337 unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue(); 2338 return &CDP.getIntrinsicInfo(IID); 2339 } 2340 2341 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2342 /// return the ComplexPattern information, otherwise return null. 2343 const ComplexPattern * 2344 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2345 Record *Rec; 2346 if (isLeaf()) { 2347 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2348 if (!DI) 2349 return nullptr; 2350 Rec = DI->getDef(); 2351 } else 2352 Rec = getOperator(); 2353 2354 if (!Rec->isSubClassOf("ComplexPattern")) 2355 return nullptr; 2356 return &CGP.getComplexPattern(Rec); 2357 } 2358 2359 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2360 // A ComplexPattern specifically declares how many results it fills in. 2361 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2362 return CP->getNumOperands(); 2363 2364 // If MIOperandInfo is specified, that gives the count. 2365 if (isLeaf()) { 2366 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2367 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2368 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2369 if (MIOps->getNumArgs()) 2370 return MIOps->getNumArgs(); 2371 } 2372 } 2373 2374 // Otherwise there is just one result. 2375 return 1; 2376 } 2377 2378 /// NodeHasProperty - Return true if this node has the specified property. 2379 bool TreePatternNode::NodeHasProperty(SDNP Property, 2380 const CodeGenDAGPatterns &CGP) const { 2381 if (isLeaf()) { 2382 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2383 return CP->hasProperty(Property); 2384 2385 return false; 2386 } 2387 2388 if (Property != SDNPHasChain) { 2389 // The chain proprety is already present on the different intrinsic node 2390 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2391 // on the intrinsic. Anything else is specific to the individual intrinsic. 2392 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2393 return Int->hasProperty(Property); 2394 } 2395 2396 if (!getOperator()->isSubClassOf("SDPatternOperator")) 2397 return false; 2398 2399 return CGP.getSDNodeInfo(getOperator()).hasProperty(Property); 2400 } 2401 2402 /// TreeHasProperty - Return true if any node in this tree has the specified 2403 /// property. 2404 bool TreePatternNode::TreeHasProperty(SDNP Property, 2405 const CodeGenDAGPatterns &CGP) const { 2406 if (NodeHasProperty(Property, CGP)) 2407 return true; 2408 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2409 if (getChild(i).TreeHasProperty(Property, CGP)) 2410 return true; 2411 return false; 2412 } 2413 2414 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2415 /// commutative intrinsic. 2416 bool TreePatternNode::isCommutativeIntrinsic( 2417 const CodeGenDAGPatterns &CDP) const { 2418 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2419 return Int->isCommutative; 2420 return false; 2421 } 2422 2423 static bool isOperandClass(const TreePatternNode &N, StringRef Class) { 2424 if (!N.isLeaf()) 2425 return N.getOperator()->isSubClassOf(Class); 2426 2427 DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); 2428 if (DI && DI->getDef()->isSubClassOf(Class)) 2429 return true; 2430 2431 return false; 2432 } 2433 2434 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, 2435 unsigned Expected, unsigned Actual) { 2436 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2437 " operands but expected only " + Twine(Expected) + "!"); 2438 } 2439 2440 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, 2441 unsigned Actual) { 2442 TP.error("Instruction '" + InstName + "' expects more than the provided " + 2443 Twine(Actual) + " operands!"); 2444 } 2445 2446 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2447 /// this node and its children in the tree. This returns true if it makes a 2448 /// change, false otherwise. If a type contradiction is found, flag an error. 2449 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2450 if (TP.hasError()) 2451 return false; 2452 2453 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2454 if (isLeaf()) { 2455 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2456 // If it's a regclass or something else known, include the type. 2457 bool MadeChange = false; 2458 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2459 MadeChange |= UpdateNodeType( 2460 i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP), 2461 TP); 2462 return MadeChange; 2463 } 2464 2465 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2466 assert(Types.size() == 1 && "Invalid IntInit"); 2467 2468 // Int inits are always integers. :) 2469 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2470 2471 if (!TP.getInfer().isConcrete(Types[0], false)) 2472 return MadeChange; 2473 2474 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2475 for (auto &P : VVT) { 2476 MVT::SimpleValueType VT = P.second.SimpleTy; 2477 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2478 continue; 2479 unsigned Size = MVT(VT).getFixedSizeInBits(); 2480 // Make sure that the value is representable for this type. 2481 if (Size >= 32) 2482 continue; 2483 // Check that the value doesn't use more bits than we have. It must 2484 // either be a sign- or zero-extended equivalent of the original. 2485 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2486 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2487 SignBitAndAbove == 1) 2488 continue; 2489 2490 TP.error("Integer value '" + Twine(II->getValue()) + 2491 "' is out of range for type '" + getEnumName(VT) + "'!"); 2492 break; 2493 } 2494 return MadeChange; 2495 } 2496 2497 return false; 2498 } 2499 2500 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2501 bool MadeChange = false; 2502 2503 // Apply the result type to the node. 2504 unsigned NumRetVTs = Int->IS.RetTys.size(); 2505 unsigned NumParamVTs = Int->IS.ParamTys.size(); 2506 2507 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2508 MadeChange |= UpdateNodeType( 2509 i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP); 2510 2511 if (getNumChildren() != NumParamVTs + 1) { 2512 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2513 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2514 return false; 2515 } 2516 2517 // Apply type info to the intrinsic ID. 2518 MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP); 2519 2520 for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) { 2521 MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters); 2522 2523 MVT::SimpleValueType OpVT = 2524 getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT")); 2525 assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case"); 2526 MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP); 2527 } 2528 return MadeChange; 2529 } 2530 2531 if (getOperator()->isSubClassOf("SDNode")) { 2532 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2533 2534 // Check that the number of operands is sane. Negative operands -> varargs. 2535 if (NI.getNumOperands() >= 0 && 2536 getNumChildren() != (unsigned)NI.getNumOperands()) { 2537 TP.error(getOperator()->getName() + " node requires exactly " + 2538 Twine(NI.getNumOperands()) + " operands!"); 2539 return false; 2540 } 2541 2542 bool MadeChange = false; 2543 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2544 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2545 MadeChange |= NI.ApplyTypeConstraints(*this, TP); 2546 return MadeChange; 2547 } 2548 2549 if (getOperator()->isSubClassOf("Instruction")) { 2550 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2551 CodeGenInstruction &InstInfo = 2552 CDP.getTargetInfo().getInstruction(getOperator()); 2553 2554 bool MadeChange = false; 2555 2556 // Apply the result types to the node, these come from the things in the 2557 // (outs) list of the instruction. 2558 unsigned NumResultsToAdd = 2559 std::min(InstInfo.Operands.NumDefs, Inst.getNumResults()); 2560 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2561 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2562 2563 // If the instruction has implicit defs, we apply the first one as a result. 2564 // FIXME: This sucks, it should apply all implicit defs. 2565 if (!InstInfo.ImplicitDefs.empty()) { 2566 unsigned ResNo = NumResultsToAdd; 2567 2568 // FIXME: Generalize to multiple possible types and multiple possible 2569 // ImplicitDefs. 2570 MVT::SimpleValueType VT = 2571 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2572 2573 if (VT != MVT::Other) 2574 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2575 } 2576 2577 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2578 // be the same. 2579 if (getOperator()->getName() == "INSERT_SUBREG") { 2580 assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled"); 2581 MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP); 2582 MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP); 2583 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2584 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2585 // variadic. 2586 2587 unsigned NChild = getNumChildren(); 2588 if (NChild < 3) { 2589 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2590 return false; 2591 } 2592 2593 if (NChild % 2 == 0) { 2594 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2595 return false; 2596 } 2597 2598 if (!isOperandClass(getChild(0), "RegisterClass")) { 2599 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2600 return false; 2601 } 2602 2603 for (unsigned I = 1; I < NChild; I += 2) { 2604 TreePatternNode &SubIdxChild = getChild(I + 1); 2605 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2606 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2607 Twine(I + 1) + "!"); 2608 return false; 2609 } 2610 } 2611 } 2612 2613 unsigned NumResults = Inst.getNumResults(); 2614 unsigned NumFixedOperands = InstInfo.Operands.size(); 2615 2616 // If one or more operands with a default value appear at the end of the 2617 // formal operand list for an instruction, we allow them to be overridden 2618 // by optional operands provided in the pattern. 2619 // 2620 // But if an operand B without a default appears at any point after an 2621 // operand A with a default, then we don't allow A to be overridden, 2622 // because there would be no way to specify whether the next operand in 2623 // the pattern was intended to override A or skip it. 2624 unsigned NonOverridableOperands = NumFixedOperands; 2625 while (NonOverridableOperands > NumResults && 2626 CDP.operandHasDefault( 2627 InstInfo.Operands[NonOverridableOperands - 1].Rec)) 2628 --NonOverridableOperands; 2629 2630 unsigned ChildNo = 0; 2631 assert(NumResults <= NumFixedOperands); 2632 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2633 Record *OperandNode = InstInfo.Operands[i].Rec; 2634 2635 // If the operand has a default value, do we use it? We must use the 2636 // default if we've run out of children of the pattern DAG to consume, 2637 // or if the operand is followed by a non-defaulted one. 2638 if (CDP.operandHasDefault(OperandNode) && 2639 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2640 continue; 2641 2642 // If we have run out of child nodes and there _isn't_ a default 2643 // value we can use for the next operand, give an error. 2644 if (ChildNo >= getNumChildren()) { 2645 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2646 return false; 2647 } 2648 2649 TreePatternNode *Child = &getChild(ChildNo++); 2650 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2651 2652 // If the operand has sub-operands, they may be provided by distinct 2653 // child patterns, so attempt to match each sub-operand separately. 2654 if (OperandNode->isSubClassOf("Operand")) { 2655 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2656 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2657 // But don't do that if the whole operand is being provided by 2658 // a single ComplexPattern-related Operand. 2659 2660 if (Child->getNumMIResults(CDP) < NumArgs) { 2661 // Match first sub-operand against the child we already have. 2662 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2663 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2664 2665 // And the remaining sub-operands against subsequent children. 2666 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2667 if (ChildNo >= getNumChildren()) { 2668 emitTooFewOperandsError(TP, getOperator()->getName(), 2669 getNumChildren()); 2670 return false; 2671 } 2672 Child = &getChild(ChildNo++); 2673 2674 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2675 MadeChange |= 2676 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2677 } 2678 continue; 2679 } 2680 } 2681 } 2682 2683 // If we didn't match by pieces above, attempt to match the whole 2684 // operand now. 2685 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2686 } 2687 2688 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2689 emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo, 2690 getNumChildren()); 2691 return false; 2692 } 2693 2694 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2695 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2696 return MadeChange; 2697 } 2698 2699 if (getOperator()->isSubClassOf("ComplexPattern")) { 2700 bool MadeChange = false; 2701 2702 if (!NotRegisters) { 2703 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2704 Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2705 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2706 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2707 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2708 // exclusively use those as non-leaf nodes with explicit type casts, so 2709 // for backwards compatibility we do no inference in that case. This is 2710 // not supported when the ComplexPattern is used as a leaf value, 2711 // however; this inconsistency should be resolved, either by adding this 2712 // case there or by altering the backends to not do this (e.g. using Any 2713 // instead may work). 2714 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2715 MadeChange |= UpdateNodeType(0, VVT, TP); 2716 } 2717 2718 for (unsigned i = 0; i < getNumChildren(); ++i) 2719 MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters); 2720 2721 return MadeChange; 2722 } 2723 2724 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2725 2726 // Node transforms always take one operand. 2727 if (getNumChildren() != 1) { 2728 TP.error("Node transform '" + getOperator()->getName() + 2729 "' requires one operand!"); 2730 return false; 2731 } 2732 2733 bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters); 2734 return MadeChange; 2735 } 2736 2737 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2738 /// RHS of a commutative operation, not the on LHS. 2739 static bool OnlyOnRHSOfCommutative(TreePatternNode &N) { 2740 if (!N.isLeaf() && N.getOperator()->getName() == "imm") 2741 return true; 2742 if (N.isLeaf() && isa<IntInit>(N.getLeafValue())) 2743 return true; 2744 if (isImmAllOnesAllZerosMatch(N)) 2745 return true; 2746 return false; 2747 } 2748 2749 /// canPatternMatch - If it is impossible for this pattern to match on this 2750 /// target, fill in Reason and return false. Otherwise, return true. This is 2751 /// used as a sanity check for .td files (to prevent people from writing stuff 2752 /// that can never possibly work), and to prevent the pattern permuter from 2753 /// generating stuff that is useless. 2754 bool TreePatternNode::canPatternMatch(std::string &Reason, 2755 const CodeGenDAGPatterns &CDP) { 2756 if (isLeaf()) 2757 return true; 2758 2759 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2760 if (!getChild(i).canPatternMatch(Reason, CDP)) 2761 return false; 2762 2763 // If this is an intrinsic, handle cases that would make it not match. For 2764 // example, if an operand is required to be an immediate. 2765 if (getOperator()->isSubClassOf("Intrinsic")) { 2766 // TODO: 2767 return true; 2768 } 2769 2770 if (getOperator()->isSubClassOf("ComplexPattern")) 2771 return true; 2772 2773 // If this node is a commutative operator, check that the LHS isn't an 2774 // immediate. 2775 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2776 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2777 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2778 // Scan all of the operands of the node and make sure that only the last one 2779 // is a constant node, unless the RHS also is. 2780 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) { 2781 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2782 for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i) 2783 if (OnlyOnRHSOfCommutative(getChild(i))) { 2784 Reason = 2785 "Immediate value must be on the RHS of commutative operators!"; 2786 return false; 2787 } 2788 } 2789 } 2790 2791 return true; 2792 } 2793 2794 //===----------------------------------------------------------------------===// 2795 // TreePattern implementation 2796 // 2797 2798 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2799 CodeGenDAGPatterns &cdp) 2800 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2801 Infer(*this) { 2802 for (Init *I : RawPat->getValues()) 2803 Trees.push_back(ParseTreePattern(I, "")); 2804 } 2805 2806 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2807 CodeGenDAGPatterns &cdp) 2808 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2809 Infer(*this) { 2810 Trees.push_back(ParseTreePattern(Pat, "")); 2811 } 2812 2813 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2814 CodeGenDAGPatterns &cdp) 2815 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2816 Infer(*this) { 2817 Trees.push_back(Pat); 2818 } 2819 2820 void TreePattern::error(const Twine &Msg) { 2821 if (HasError) 2822 return; 2823 dump(); 2824 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2825 HasError = true; 2826 } 2827 2828 void TreePattern::ComputeNamedNodes() { 2829 for (TreePatternNodePtr &Tree : Trees) 2830 ComputeNamedNodes(*Tree); 2831 } 2832 2833 void TreePattern::ComputeNamedNodes(TreePatternNode &N) { 2834 if (!N.getName().empty()) 2835 NamedNodes[N.getName()].push_back(&N); 2836 2837 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 2838 ComputeNamedNodes(N.getChild(i)); 2839 } 2840 2841 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2842 StringRef OpName) { 2843 RecordKeeper &RK = TheInit->getRecordKeeper(); 2844 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2845 Record *R = DI->getDef(); 2846 2847 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2848 // TreePatternNode of its own. For example: 2849 /// (foo GPR, imm) -> (foo GPR, (imm)) 2850 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2851 return ParseTreePattern( 2852 DagInit::get(DI, nullptr, 2853 std::vector<std::pair<Init *, StringInit *>>()), 2854 OpName); 2855 2856 // Input argument? 2857 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1); 2858 if (R->getName() == "node" && !OpName.empty()) { 2859 if (OpName.empty()) 2860 error("'node' argument requires a name to match with operand list"); 2861 Args.push_back(std::string(OpName)); 2862 } 2863 2864 Res->setName(OpName); 2865 return Res; 2866 } 2867 2868 // ?:$name or just $name. 2869 if (isa<UnsetInit>(TheInit)) { 2870 if (OpName.empty()) 2871 error("'?' argument requires a name to match with operand list"); 2872 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2873 Args.push_back(std::string(OpName)); 2874 Res->setName(OpName); 2875 return Res; 2876 } 2877 2878 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2879 if (!OpName.empty()) 2880 error("Constant int or bit argument should not have a name!"); 2881 if (isa<BitInit>(TheInit)) 2882 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2883 return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2884 } 2885 2886 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2887 // Turn this into an IntInit. 2888 Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2889 if (!II || !isa<IntInit>(II)) 2890 error("Bits value must be constants!"); 2891 return II ? ParseTreePattern(II, OpName) : nullptr; 2892 } 2893 2894 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2895 if (!Dag) { 2896 TheInit->print(errs()); 2897 error("Pattern has unexpected init kind!"); 2898 return nullptr; 2899 } 2900 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2901 if (!OpDef) { 2902 error("Pattern has unexpected operator type!"); 2903 return nullptr; 2904 } 2905 Record *Operator = OpDef->getDef(); 2906 2907 if (Operator->isSubClassOf("ValueType")) { 2908 // If the operator is a ValueType, then this must be "type cast" of a leaf 2909 // node. 2910 if (Dag->getNumArgs() != 1) 2911 error("Type cast only takes one operand!"); 2912 2913 TreePatternNodePtr New = 2914 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2915 2916 // Apply the type cast. 2917 if (New->getNumTypes() != 1) 2918 error("Type cast can only have one type!"); 2919 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2920 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2921 2922 if (!OpName.empty()) 2923 error("ValueType cast should not have a name!"); 2924 return New; 2925 } 2926 2927 // Verify that this is something that makes sense for an operator. 2928 if (!Operator->isSubClassOf("PatFrags") && 2929 !Operator->isSubClassOf("SDNode") && 2930 !Operator->isSubClassOf("Instruction") && 2931 !Operator->isSubClassOf("SDNodeXForm") && 2932 !Operator->isSubClassOf("Intrinsic") && 2933 !Operator->isSubClassOf("ComplexPattern") && 2934 Operator->getName() != "set" && Operator->getName() != "implicit") 2935 error("Unrecognized node '" + Operator->getName() + "'!"); 2936 2937 // Check to see if this is something that is illegal in an input pattern. 2938 if (isInputPattern) { 2939 if (Operator->isSubClassOf("Instruction") || 2940 Operator->isSubClassOf("SDNodeXForm")) 2941 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2942 } else { 2943 if (Operator->isSubClassOf("Intrinsic")) 2944 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2945 2946 if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && 2947 Operator->getName() != "timm" && Operator->getName() != "fpimm" && 2948 Operator->getName() != "tglobaltlsaddr" && 2949 Operator->getName() != "tconstpool" && 2950 Operator->getName() != "tjumptable" && 2951 Operator->getName() != "tframeindex" && 2952 Operator->getName() != "texternalsym" && 2953 Operator->getName() != "tblockaddress" && 2954 Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && 2955 Operator->getName() != "vt" && Operator->getName() != "mcsym") 2956 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2957 } 2958 2959 std::vector<TreePatternNodePtr> Children; 2960 2961 // Parse all the operands. 2962 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2963 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2964 2965 // Get the actual number of results before Operator is converted to an 2966 // intrinsic node (which is hard-coded to have either zero or one result). 2967 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2968 2969 // If the operator is an intrinsic, then this is just syntactic sugar for 2970 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2971 // convert the intrinsic name to a number. 2972 if (Operator->isSubClassOf("Intrinsic")) { 2973 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2974 unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1; 2975 2976 // If this intrinsic returns void, it must have side-effects and thus a 2977 // chain. 2978 if (Int.IS.RetTys.empty()) 2979 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2980 else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects) 2981 // Has side-effects, requires chain. 2982 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2983 else // Otherwise, no chain. 2984 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2985 2986 Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>( 2987 IntInit::get(RK, IID), 1)); 2988 } 2989 2990 if (Operator->isSubClassOf("ComplexPattern")) { 2991 for (unsigned i = 0; i < Children.size(); ++i) { 2992 TreePatternNodePtr Child = Children[i]; 2993 2994 if (Child->getName().empty()) 2995 error("All arguments to a ComplexPattern must be named"); 2996 2997 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2998 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2999 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 3000 auto OperandId = std::pair(Operator, i); 3001 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 3002 if (PrevOp != ComplexPatternOperands.end()) { 3003 if (PrevOp->getValue() != OperandId) 3004 error("All ComplexPattern operands must appear consistently: " 3005 "in the same order in just one ComplexPattern instance."); 3006 } else 3007 ComplexPatternOperands[Child->getName()] = OperandId; 3008 } 3009 } 3010 3011 TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>( 3012 Operator, std::move(Children), NumResults); 3013 Result->setName(OpName); 3014 3015 if (Dag->getName()) { 3016 assert(Result->getName().empty()); 3017 Result->setName(Dag->getNameStr()); 3018 } 3019 return Result; 3020 } 3021 3022 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3023 /// will never match in favor of something obvious that will. This is here 3024 /// strictly as a convenience to target authors because it allows them to write 3025 /// more type generic things and have useless type casts fold away. 3026 /// 3027 /// This returns true if any change is made. 3028 static bool SimplifyTree(TreePatternNodePtr &N) { 3029 if (N->isLeaf()) 3030 return false; 3031 3032 // If we have a bitconvert with a resolved type and if the source and 3033 // destination types are the same, then the bitconvert is useless, remove it. 3034 // 3035 // We make an exception if the types are completely empty. This can come up 3036 // when the pattern being simplified is in the Fragments list of a PatFrags, 3037 // so that the operand is just an untyped "node". In that situation we leave 3038 // bitconverts unsimplified, and simplify them later once the fragment is 3039 // expanded into its true context. 3040 if (N->getOperator()->getName() == "bitconvert" && 3041 N->getExtType(0).isValueTypeByHwMode(false) && 3042 !N->getExtType(0).empty() && 3043 N->getExtType(0) == N->getChild(0).getExtType(0) && 3044 N->getName().empty()) { 3045 N = N->getChildShared(0); 3046 SimplifyTree(N); 3047 return true; 3048 } 3049 3050 // Walk all children. 3051 bool MadeChange = false; 3052 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3053 MadeChange |= SimplifyTree(N->getChildSharedPtr(i)); 3054 3055 return MadeChange; 3056 } 3057 3058 /// InferAllTypes - Infer/propagate as many types throughout the expression 3059 /// patterns as possible. Return true if all types are inferred, false 3060 /// otherwise. Flags an error if a type contradiction is found. 3061 bool TreePattern::InferAllTypes( 3062 const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) { 3063 if (NamedNodes.empty()) 3064 ComputeNamedNodes(); 3065 3066 bool MadeChange = true; 3067 while (MadeChange) { 3068 MadeChange = false; 3069 for (TreePatternNodePtr &Tree : Trees) { 3070 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3071 MadeChange |= SimplifyTree(Tree); 3072 } 3073 3074 // If there are constraints on our named nodes, apply them. 3075 for (auto &Entry : NamedNodes) { 3076 SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second; 3077 3078 // If we have input named node types, propagate their types to the named 3079 // values here. 3080 if (InNamedTypes) { 3081 if (!InNamedTypes->count(Entry.getKey())) { 3082 error("Node '" + std::string(Entry.getKey()) + 3083 "' in output pattern but not input pattern"); 3084 return true; 3085 } 3086 3087 const SmallVectorImpl<TreePatternNode *> &InNodes = 3088 InNamedTypes->find(Entry.getKey())->second; 3089 3090 // The input types should be fully resolved by now. 3091 for (TreePatternNode *Node : Nodes) { 3092 // If this node is a register class, and it is the root of the pattern 3093 // then we're mapping something onto an input register. We allow 3094 // changing the type of the input register in this case. This allows 3095 // us to match things like: 3096 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3097 if (Node == Trees[0].get() && Node->isLeaf()) { 3098 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3099 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3100 DI->getDef()->isSubClassOf("RegisterOperand"))) 3101 continue; 3102 } 3103 3104 assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && 3105 "FIXME: cannot name multiple result nodes yet"); 3106 MadeChange |= 3107 Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); 3108 } 3109 } 3110 3111 // If there are multiple nodes with the same name, they must all have the 3112 // same type. 3113 if (Entry.second.size() > 1) { 3114 for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) { 3115 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1]; 3116 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3117 "FIXME: cannot name multiple result nodes yet"); 3118 3119 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3120 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3121 } 3122 } 3123 } 3124 } 3125 3126 bool HasUnresolvedTypes = false; 3127 for (const TreePatternNodePtr &Tree : Trees) 3128 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3129 return !HasUnresolvedTypes; 3130 } 3131 3132 void TreePattern::print(raw_ostream &OS) const { 3133 OS << getRecord()->getName(); 3134 if (!Args.empty()) { 3135 OS << "("; 3136 ListSeparator LS; 3137 for (const std::string &Arg : Args) 3138 OS << LS << Arg; 3139 OS << ")"; 3140 } 3141 OS << ": "; 3142 3143 if (Trees.size() > 1) 3144 OS << "[\n"; 3145 for (const TreePatternNodePtr &Tree : Trees) { 3146 OS << "\t"; 3147 Tree->print(OS); 3148 OS << "\n"; 3149 } 3150 3151 if (Trees.size() > 1) 3152 OS << "]\n"; 3153 } 3154 3155 void TreePattern::dump() const { print(errs()); } 3156 3157 //===----------------------------------------------------------------------===// 3158 // CodeGenDAGPatterns implementation 3159 // 3160 3161 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3162 PatternRewriterFn PatternRewriter) 3163 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3164 PatternRewriter(PatternRewriter) { 3165 3166 Intrinsics = CodeGenIntrinsicTable(Records); 3167 ParseNodeInfo(); 3168 ParseNodeTransforms(); 3169 ParseComplexPatterns(); 3170 ParsePatternFragments(); 3171 ParseDefaultOperands(); 3172 ParseInstructions(); 3173 ParsePatternFragments(/*OutFrags*/ true); 3174 ParsePatterns(); 3175 3176 // Generate variants. For example, commutative patterns can match 3177 // multiple ways. Add them to PatternsToMatch as well. 3178 GenerateVariants(); 3179 3180 // Break patterns with parameterized types into a series of patterns, 3181 // where each one has a fixed type and is predicated on the conditions 3182 // of the associated HW mode. 3183 ExpandHwModeBasedTypes(); 3184 3185 // Infer instruction flags. For example, we can detect loads, 3186 // stores, and side effects in many cases by examining an 3187 // instruction's pattern. 3188 InferInstructionFlags(); 3189 3190 // Verify that instruction flags match the patterns. 3191 VerifyInstructionFlags(); 3192 } 3193 3194 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3195 Record *N = Records.getDef(Name); 3196 if (!N || !N->isSubClassOf("SDNode")) 3197 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3198 3199 return N; 3200 } 3201 3202 // Parse all of the SDNode definitions for the target, populating SDNodes. 3203 void CodeGenDAGPatterns::ParseNodeInfo() { 3204 std::vector<Record *> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3205 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3206 3207 while (!Nodes.empty()) { 3208 Record *R = Nodes.back(); 3209 SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH))); 3210 Nodes.pop_back(); 3211 } 3212 3213 // Get the builtin intrinsic nodes. 3214 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3215 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3216 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3217 } 3218 3219 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3220 /// map, and emit them to the file as functions. 3221 void CodeGenDAGPatterns::ParseNodeTransforms() { 3222 std::vector<Record *> Xforms = 3223 Records.getAllDerivedDefinitions("SDNodeXForm"); 3224 while (!Xforms.empty()) { 3225 Record *XFormNode = Xforms.back(); 3226 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3227 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3228 SDNodeXForms.insert( 3229 std::pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3230 3231 Xforms.pop_back(); 3232 } 3233 } 3234 3235 void CodeGenDAGPatterns::ParseComplexPatterns() { 3236 std::vector<Record *> AMs = 3237 Records.getAllDerivedDefinitions("ComplexPattern"); 3238 while (!AMs.empty()) { 3239 ComplexPatterns.insert(std::pair(AMs.back(), AMs.back())); 3240 AMs.pop_back(); 3241 } 3242 } 3243 3244 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3245 /// file, building up the PatternFragments map. After we've collected them all, 3246 /// inline fragments together as necessary, so that there are no references left 3247 /// inside a pattern fragment to a pattern fragment. 3248 /// 3249 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3250 std::vector<Record *> Fragments = 3251 Records.getAllDerivedDefinitions("PatFrags"); 3252 3253 // First step, parse all of the fragments. 3254 for (Record *Frag : Fragments) { 3255 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3256 continue; 3257 3258 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3259 TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>( 3260 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this)) 3261 .get(); 3262 3263 // Validate the argument list, converting it to set, to discard duplicates. 3264 std::vector<std::string> &Args = P->getArgList(); 3265 // Copy the args so we can take StringRefs to them. 3266 auto ArgsCopy = Args; 3267 SmallDenseSet<StringRef, 4> OperandsSet; 3268 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3269 3270 if (OperandsSet.count("")) 3271 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3272 3273 // Parse the operands list. 3274 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3275 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3276 // Special cases: ops == outs == ins. Different names are used to 3277 // improve readability. 3278 if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && 3279 OpsOp->getDef()->getName() != "outs" && 3280 OpsOp->getDef()->getName() != "ins")) 3281 P->error("Operands list should start with '(ops ... '!"); 3282 3283 // Copy over the arguments. 3284 Args.clear(); 3285 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3286 if (!isa<DefInit>(OpsList->getArg(j)) || 3287 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3288 P->error("Operands list should all be 'node' values."); 3289 if (!OpsList->getArgName(j)) 3290 P->error("Operands list should have names for each operand!"); 3291 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3292 if (!OperandsSet.count(ArgNameStr)) 3293 P->error("'" + ArgNameStr + 3294 "' does not occur in pattern or was multiply specified!"); 3295 OperandsSet.erase(ArgNameStr); 3296 Args.push_back(std::string(ArgNameStr)); 3297 } 3298 3299 if (!OperandsSet.empty()) 3300 P->error("Operands list does not contain an entry for operand '" + 3301 *OperandsSet.begin() + "'!"); 3302 3303 // If there is a node transformation corresponding to this, keep track of 3304 // it. 3305 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3306 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3307 for (const auto &T : P->getTrees()) 3308 T->setTransformFn(Transform); 3309 } 3310 3311 // Now that we've parsed all of the tree fragments, do a closure on them so 3312 // that there are not references to PatFrags left inside of them. 3313 for (Record *Frag : Fragments) { 3314 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3315 continue; 3316 3317 TreePattern &ThePat = *PatternFragments[Frag]; 3318 ThePat.InlinePatternFragments(); 3319 3320 // Infer as many types as possible. Don't worry about it if we don't infer 3321 // all of them, some may depend on the inputs of the pattern. Also, don't 3322 // validate type sets; validation may cause spurious failures e.g. if a 3323 // fragment needs floating-point types but the current target does not have 3324 // any (this is only an error if that fragment is ever used!). 3325 { 3326 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3327 ThePat.InferAllTypes(); 3328 ThePat.resetError(); 3329 } 3330 3331 // If debugging, print out the pattern fragment result. 3332 LLVM_DEBUG(ThePat.dump()); 3333 } 3334 } 3335 3336 void CodeGenDAGPatterns::ParseDefaultOperands() { 3337 std::vector<Record *> DefaultOps; 3338 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3339 3340 // Find some SDNode. 3341 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3342 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3343 3344 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3345 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3346 3347 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3348 // SomeSDnode so that we can parse this. 3349 std::vector<std::pair<Init *, StringInit *>> Ops; 3350 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3351 Ops.push_back( 3352 std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); 3353 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3354 3355 // Create a TreePattern to parse this. 3356 TreePattern P(DefaultOps[i], DI, false, *this); 3357 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3358 3359 // Copy the operands over into a DAGDefaultOperand. 3360 DAGDefaultOperand DefaultOpInfo; 3361 3362 const TreePatternNodePtr &T = P.getTree(0); 3363 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3364 TreePatternNodePtr TPN = T->getChildShared(op); 3365 while (TPN->ApplyTypeConstraints(P, false)) 3366 /* Resolve all types */; 3367 3368 if (TPN->ContainsUnresolvedType(P)) { 3369 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3370 DefaultOps[i]->getName() + 3371 "' doesn't have a concrete type!"); 3372 } 3373 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3374 } 3375 3376 // Insert it into the DefaultOperands map so we can find it later. 3377 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3378 } 3379 } 3380 3381 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3382 /// instruction input. Return true if this is a real use. 3383 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3384 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3385 // No name -> not interesting. 3386 if (Pat->getName().empty()) { 3387 if (Pat->isLeaf()) { 3388 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3389 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3390 DI->getDef()->isSubClassOf("RegisterOperand"))) 3391 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3392 } 3393 return false; 3394 } 3395 3396 Record *Rec; 3397 if (Pat->isLeaf()) { 3398 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3399 if (!DI) 3400 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3401 Rec = DI->getDef(); 3402 } else { 3403 Rec = Pat->getOperator(); 3404 } 3405 3406 // SRCVALUE nodes are ignored. 3407 if (Rec->getName() == "srcvalue") 3408 return false; 3409 3410 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3411 if (!Slot) { 3412 Slot = Pat; 3413 return true; 3414 } 3415 Record *SlotRec; 3416 if (Slot->isLeaf()) { 3417 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3418 } else { 3419 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3420 SlotRec = Slot->getOperator(); 3421 } 3422 3423 // Ensure that the inputs agree if we've already seen this input. 3424 if (Rec != SlotRec) 3425 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3426 // Ensure that the types can agree as well. 3427 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3428 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3429 if (Slot->getExtTypes() != Pat->getExtTypes()) 3430 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3431 return true; 3432 } 3433 3434 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3435 /// part of "I", the instruction), computing the set of inputs and outputs of 3436 /// the pattern. Report errors if we see anything naughty. 3437 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3438 TreePattern &I, TreePatternNodePtr Pat, 3439 std::map<std::string, TreePatternNodePtr> &InstInputs, 3440 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3441 &InstResults, 3442 std::vector<Record *> &InstImpResults) { 3443 3444 // The instruction pattern still has unresolved fragments. For *named* 3445 // nodes we must resolve those here. This may not result in multiple 3446 // alternatives. 3447 if (!Pat->getName().empty()) { 3448 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3449 SrcPattern.InlinePatternFragments(); 3450 SrcPattern.InferAllTypes(); 3451 Pat = SrcPattern.getOnlyTree(); 3452 } 3453 3454 if (Pat->isLeaf()) { 3455 bool isUse = HandleUse(I, Pat, InstInputs); 3456 if (!isUse && Pat->getTransformFn()) 3457 I.error("Cannot specify a transform function for a non-input value!"); 3458 return; 3459 } 3460 3461 if (Pat->getOperator()->getName() == "implicit") { 3462 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3463 TreePatternNode &Dest = Pat->getChild(i); 3464 if (!Dest.isLeaf()) 3465 I.error("implicitly defined value should be a register!"); 3466 3467 DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue()); 3468 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3469 I.error("implicitly defined value should be a register!"); 3470 if (Val) 3471 InstImpResults.push_back(Val->getDef()); 3472 } 3473 return; 3474 } 3475 3476 if (Pat->getOperator()->getName() != "set") { 3477 // If this is not a set, verify that the children nodes are not void typed, 3478 // and recurse. 3479 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3480 if (Pat->getChild(i).getNumTypes() == 0) 3481 I.error("Cannot have void nodes inside of patterns!"); 3482 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3483 InstResults, InstImpResults); 3484 } 3485 3486 // If this is a non-leaf node with no children, treat it basically as if 3487 // it were a leaf. This handles nodes like (imm). 3488 bool isUse = HandleUse(I, Pat, InstInputs); 3489 3490 if (!isUse && Pat->getTransformFn()) 3491 I.error("Cannot specify a transform function for a non-input value!"); 3492 return; 3493 } 3494 3495 // Otherwise, this is a set, validate and collect instruction results. 3496 if (Pat->getNumChildren() == 0) 3497 I.error("set requires operands!"); 3498 3499 if (Pat->getTransformFn()) 3500 I.error("Cannot specify a transform function on a set node!"); 3501 3502 // Check the set destinations. 3503 unsigned NumDests = Pat->getNumChildren() - 1; 3504 for (unsigned i = 0; i != NumDests; ++i) { 3505 TreePatternNodePtr Dest = Pat->getChildShared(i); 3506 // For set destinations we also must resolve fragments here. 3507 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3508 DestPattern.InlinePatternFragments(); 3509 DestPattern.InferAllTypes(); 3510 Dest = DestPattern.getOnlyTree(); 3511 3512 if (!Dest->isLeaf()) 3513 I.error("set destination should be a register!"); 3514 3515 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3516 if (!Val) { 3517 I.error("set destination should be a register!"); 3518 continue; 3519 } 3520 3521 if (Val->getDef()->isSubClassOf("RegisterClass") || 3522 Val->getDef()->isSubClassOf("ValueType") || 3523 Val->getDef()->isSubClassOf("RegisterOperand") || 3524 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3525 if (Dest->getName().empty()) 3526 I.error("set destination must have a name!"); 3527 if (InstResults.count(Dest->getName())) 3528 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3529 InstResults[Dest->getName()] = Dest; 3530 } else if (Val->getDef()->isSubClassOf("Register")) { 3531 InstImpResults.push_back(Val->getDef()); 3532 } else { 3533 I.error("set destination should be a register!"); 3534 } 3535 } 3536 3537 // Verify and collect info from the computation. 3538 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3539 InstResults, InstImpResults); 3540 } 3541 3542 //===----------------------------------------------------------------------===// 3543 // Instruction Analysis 3544 //===----------------------------------------------------------------------===// 3545 3546 class InstAnalyzer { 3547 const CodeGenDAGPatterns &CDP; 3548 3549 public: 3550 bool hasSideEffects; 3551 bool mayStore; 3552 bool mayLoad; 3553 bool isBitcast; 3554 bool isVariadic; 3555 bool hasChain; 3556 3557 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3558 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3559 isBitcast(false), isVariadic(false), hasChain(false) {} 3560 3561 void Analyze(const PatternToMatch &Pat) { 3562 const TreePatternNode &N = Pat.getSrcPattern(); 3563 AnalyzeNode(N); 3564 // These properties are detected only on the root node. 3565 isBitcast = IsNodeBitcast(N); 3566 } 3567 3568 private: 3569 bool IsNodeBitcast(const TreePatternNode &N) const { 3570 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3571 return false; 3572 3573 if (N.isLeaf()) 3574 return false; 3575 if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf()) 3576 return false; 3577 3578 if (N.getOperator()->isSubClassOf("ComplexPattern")) 3579 return false; 3580 3581 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator()); 3582 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3583 return false; 3584 return OpInfo.getEnumName() == "ISD::BITCAST"; 3585 } 3586 3587 public: 3588 void AnalyzeNode(const TreePatternNode &N) { 3589 if (N.isLeaf()) { 3590 if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { 3591 Record *LeafRec = DI->getDef(); 3592 // Handle ComplexPattern leaves. 3593 if (LeafRec->isSubClassOf("ComplexPattern")) { 3594 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3595 if (CP.hasProperty(SDNPMayStore)) 3596 mayStore = true; 3597 if (CP.hasProperty(SDNPMayLoad)) 3598 mayLoad = true; 3599 if (CP.hasProperty(SDNPSideEffect)) 3600 hasSideEffects = true; 3601 } 3602 } 3603 return; 3604 } 3605 3606 // Analyze children. 3607 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 3608 AnalyzeNode(N.getChild(i)); 3609 3610 // Notice properties of the node. 3611 if (N.NodeHasProperty(SDNPMayStore, CDP)) 3612 mayStore = true; 3613 if (N.NodeHasProperty(SDNPMayLoad, CDP)) 3614 mayLoad = true; 3615 if (N.NodeHasProperty(SDNPSideEffect, CDP)) 3616 hasSideEffects = true; 3617 if (N.NodeHasProperty(SDNPVariadic, CDP)) 3618 isVariadic = true; 3619 if (N.NodeHasProperty(SDNPHasChain, CDP)) 3620 hasChain = true; 3621 3622 if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) { 3623 ModRefInfo MR = IntInfo->ME.getModRef(); 3624 // If this is an intrinsic, analyze it. 3625 if (isRefSet(MR)) 3626 mayLoad = true; // These may load memory. 3627 3628 if (isModSet(MR)) 3629 mayStore = true; // Intrinsics that can write to memory are 'mayStore'. 3630 3631 // Consider intrinsics that don't specify any restrictions on memory 3632 // effects as having a side-effect. 3633 if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects) 3634 hasSideEffects = true; 3635 } 3636 } 3637 }; 3638 3639 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3640 const InstAnalyzer &PatInfo, Record *PatDef) { 3641 bool Error = false; 3642 3643 // Remember where InstInfo got its flags. 3644 if (InstInfo.hasUndefFlags()) 3645 InstInfo.InferredFrom = PatDef; 3646 3647 // Check explicitly set flags for consistency. 3648 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3649 !InstInfo.hasSideEffects_Unset) { 3650 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3651 // the pattern has no side effects. That could be useful for div/rem 3652 // instructions that may trap. 3653 if (!InstInfo.hasSideEffects) { 3654 Error = true; 3655 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3656 Twine(InstInfo.hasSideEffects)); 3657 } 3658 } 3659 3660 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3661 Error = true; 3662 PrintError(PatDef->getLoc(), 3663 "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); 3664 } 3665 3666 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3667 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3668 // Some targets translate immediates to loads. 3669 if (!InstInfo.mayLoad) { 3670 Error = true; 3671 PrintError(PatDef->getLoc(), 3672 "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); 3673 } 3674 } 3675 3676 // Transfer inferred flags. 3677 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3678 InstInfo.mayStore |= PatInfo.mayStore; 3679 InstInfo.mayLoad |= PatInfo.mayLoad; 3680 3681 // These flags are silently added without any verification. 3682 // FIXME: To match historical behavior of TableGen, for now add those flags 3683 // only when we're inferring from the primary instruction pattern. 3684 if (PatDef->isSubClassOf("Instruction")) { 3685 InstInfo.isBitcast |= PatInfo.isBitcast; 3686 InstInfo.hasChain |= PatInfo.hasChain; 3687 InstInfo.hasChain_Inferred = true; 3688 } 3689 3690 // Don't infer isVariadic. This flag means something different on SDNodes and 3691 // instructions. For example, a CALL SDNode is variadic because it has the 3692 // call arguments as operands, but a CALL instruction is not variadic - it 3693 // has argument registers as implicit, not explicit uses. 3694 3695 return Error; 3696 } 3697 3698 /// hasNullFragReference - Return true if the DAG has any reference to the 3699 /// null_frag operator. 3700 static bool hasNullFragReference(DagInit *DI) { 3701 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3702 if (!OpDef) 3703 return false; 3704 Record *Operator = OpDef->getDef(); 3705 3706 // If this is the null fragment, return true. 3707 if (Operator->getName() == "null_frag") 3708 return true; 3709 // If any of the arguments reference the null fragment, return true. 3710 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3711 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3712 if (Arg->getDef()->getName() == "null_frag") 3713 return true; 3714 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3715 if (Arg && hasNullFragReference(Arg)) 3716 return true; 3717 } 3718 3719 return false; 3720 } 3721 3722 /// hasNullFragReference - Return true if any DAG in the list references 3723 /// the null_frag operator. 3724 static bool hasNullFragReference(ListInit *LI) { 3725 for (Init *I : LI->getValues()) { 3726 DagInit *DI = dyn_cast<DagInit>(I); 3727 assert(DI && "non-dag in an instruction Pattern list?!"); 3728 if (hasNullFragReference(DI)) 3729 return true; 3730 } 3731 return false; 3732 } 3733 3734 /// Get all the instructions in a tree. 3735 static void getInstructionsInTree(TreePatternNode &Tree, 3736 SmallVectorImpl<Record *> &Instrs) { 3737 if (Tree.isLeaf()) 3738 return; 3739 if (Tree.getOperator()->isSubClassOf("Instruction")) 3740 Instrs.push_back(Tree.getOperator()); 3741 for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i) 3742 getInstructionsInTree(Tree.getChild(i), Instrs); 3743 } 3744 3745 /// Check the class of a pattern leaf node against the instruction operand it 3746 /// represents. 3747 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) { 3748 if (OI.Rec == Leaf) 3749 return true; 3750 3751 // Allow direct value types to be used in instruction set patterns. 3752 // The type will be checked later. 3753 if (Leaf->isSubClassOf("ValueType")) 3754 return true; 3755 3756 // Patterns can also be ComplexPattern instances. 3757 if (Leaf->isSubClassOf("ComplexPattern")) 3758 return true; 3759 3760 return false; 3761 } 3762 3763 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI, 3764 ListInit *Pat, 3765 DAGInstMap &DAGInsts) { 3766 3767 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3768 3769 // Parse the instruction. 3770 TreePattern I(CGI.TheDef, Pat, true, *this); 3771 3772 // InstInputs - Keep track of all of the inputs of the instruction, along 3773 // with the record they are declared as. 3774 std::map<std::string, TreePatternNodePtr> InstInputs; 3775 3776 // InstResults - Keep track of all the virtual registers that are 'set' 3777 // in the instruction, including what reg class they are. 3778 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3779 InstResults; 3780 3781 std::vector<Record *> InstImpResults; 3782 3783 // Verify that the top-level forms in the instruction are of void type, and 3784 // fill in the InstResults map. 3785 SmallString<32> TypesString; 3786 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3787 TypesString.clear(); 3788 TreePatternNodePtr Pat = I.getTree(j); 3789 if (Pat->getNumTypes() != 0) { 3790 raw_svector_ostream OS(TypesString); 3791 ListSeparator LS; 3792 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3793 OS << LS; 3794 Pat->getExtType(k).writeToStream(OS); 3795 } 3796 I.error("Top-level forms in instruction pattern should have" 3797 " void types, has types " + 3798 OS.str()); 3799 } 3800 3801 // Find inputs and outputs, and verify the structure of the uses/defs. 3802 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3803 InstImpResults); 3804 } 3805 3806 // Now that we have inputs and outputs of the pattern, inspect the operands 3807 // list for the instruction. This determines the order that operands are 3808 // added to the machine instruction the node corresponds to. 3809 unsigned NumResults = InstResults.size(); 3810 3811 // Parse the operands list from the (ops) list, validating it. 3812 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3813 3814 // Check that all of the results occur first in the list. 3815 std::vector<Record *> Results; 3816 std::vector<unsigned> ResultIndices; 3817 SmallVector<TreePatternNodePtr, 2> ResNodes; 3818 for (unsigned i = 0; i != NumResults; ++i) { 3819 if (i == CGI.Operands.size()) { 3820 const std::string &OpName = 3821 llvm::find_if( 3822 InstResults, 3823 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3824 return P.second; 3825 }) 3826 ->first; 3827 3828 I.error("'" + OpName + "' set but does not appear in operand list!"); 3829 } 3830 3831 const std::string &OpName = CGI.Operands[i].Name; 3832 3833 // Check that it exists in InstResults. 3834 auto InstResultIter = InstResults.find(OpName); 3835 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3836 I.error("Operand $" + OpName + " does not exist in operand list!"); 3837 3838 TreePatternNodePtr RNode = InstResultIter->second; 3839 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3840 ResNodes.push_back(std::move(RNode)); 3841 if (!R) 3842 I.error("Operand $" + OpName + 3843 " should be a set destination: all " 3844 "outputs must occur before inputs in operand list!"); 3845 3846 if (!checkOperandClass(CGI.Operands[i], R)) 3847 I.error("Operand $" + OpName + " class mismatch!"); 3848 3849 // Remember the return type. 3850 Results.push_back(CGI.Operands[i].Rec); 3851 3852 // Remember the result index. 3853 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3854 3855 // Okay, this one checks out. 3856 InstResultIter->second = nullptr; 3857 } 3858 3859 // Loop over the inputs next. 3860 std::vector<TreePatternNodePtr> ResultNodeOperands; 3861 std::vector<Record *> Operands; 3862 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3863 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3864 const std::string &OpName = Op.Name; 3865 if (OpName.empty()) { 3866 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3867 continue; 3868 } 3869 3870 if (!InstInputs.count(OpName)) { 3871 // If this is an operand with a DefaultOps set filled in, we can ignore 3872 // this. When we codegen it, we will do so as always executed. 3873 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3874 // Does it have a non-empty DefaultOps field? If so, ignore this 3875 // operand. 3876 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3877 continue; 3878 } 3879 I.error("Operand $" + OpName + 3880 " does not appear in the instruction pattern"); 3881 continue; 3882 } 3883 TreePatternNodePtr InVal = InstInputs[OpName]; 3884 InstInputs.erase(OpName); // It occurred, remove from map. 3885 3886 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3887 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3888 if (!checkOperandClass(Op, InRec)) { 3889 I.error("Operand $" + OpName + 3890 "'s register class disagrees" 3891 " between the operand and pattern"); 3892 continue; 3893 } 3894 } 3895 Operands.push_back(Op.Rec); 3896 3897 // Construct the result for the dest-pattern operand list. 3898 TreePatternNodePtr OpNode = InVal->clone(); 3899 3900 // No predicate is useful on the result. 3901 OpNode->clearPredicateCalls(); 3902 3903 // Promote the xform function to be an explicit node if set. 3904 if (Record *Xform = OpNode->getTransformFn()) { 3905 OpNode->setTransformFn(nullptr); 3906 std::vector<TreePatternNodePtr> Children; 3907 Children.push_back(OpNode); 3908 OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 3909 OpNode->getNumTypes()); 3910 } 3911 3912 ResultNodeOperands.push_back(std::move(OpNode)); 3913 } 3914 3915 if (!InstInputs.empty()) 3916 I.error("Input operand $" + InstInputs.begin()->first + 3917 " occurs in pattern but not in operands list!"); 3918 3919 TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>( 3920 I.getRecord(), std::move(ResultNodeOperands), 3921 GetNumNodeResults(I.getRecord(), *this)); 3922 // Copy fully inferred output node types to instruction result pattern. 3923 for (unsigned i = 0; i != NumResults; ++i) { 3924 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3925 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3926 ResultPattern->setResultIndex(i, ResultIndices[i]); 3927 } 3928 3929 // FIXME: Assume only the first tree is the pattern. The others are clobber 3930 // nodes. 3931 TreePatternNodePtr Pattern = I.getTree(0); 3932 TreePatternNodePtr SrcPattern; 3933 if (Pattern->getOperator()->getName() == "set") { 3934 SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone(); 3935 } else { 3936 // Not a set (store or something?) 3937 SrcPattern = Pattern; 3938 } 3939 3940 // Create and insert the instruction. 3941 // FIXME: InstImpResults should not be part of DAGInstruction. 3942 Record *R = I.getRecord(); 3943 DAGInsts.try_emplace(R, std::move(Results), std::move(Operands), 3944 std::move(InstImpResults), SrcPattern, ResultPattern); 3945 3946 LLVM_DEBUG(I.dump()); 3947 } 3948 3949 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3950 /// any fragments involved. This populates the Instructions list with fully 3951 /// resolved instructions. 3952 void CodeGenDAGPatterns::ParseInstructions() { 3953 std::vector<Record *> Instrs = 3954 Records.getAllDerivedDefinitions("Instruction"); 3955 3956 for (Record *Instr : Instrs) { 3957 ListInit *LI = nullptr; 3958 3959 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3960 LI = Instr->getValueAsListInit("Pattern"); 3961 3962 // If there is no pattern, only collect minimal information about the 3963 // instruction for its operand list. We have to assume that there is one 3964 // result, as we have no detailed info. A pattern which references the 3965 // null_frag operator is as-if no pattern were specified. Normally this 3966 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3967 // null_frag. 3968 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3969 std::vector<Record *> Results; 3970 std::vector<Record *> Operands; 3971 3972 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3973 3974 if (InstInfo.Operands.size() != 0) { 3975 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3976 Results.push_back(InstInfo.Operands[j].Rec); 3977 3978 // The rest are inputs. 3979 for (unsigned j = InstInfo.Operands.NumDefs, 3980 e = InstInfo.Operands.size(); 3981 j < e; ++j) 3982 Operands.push_back(InstInfo.Operands[j].Rec); 3983 } 3984 3985 // Create and insert the instruction. 3986 Instructions.try_emplace(Instr, std::move(Results), std::move(Operands), 3987 std::vector<Record *>()); 3988 continue; // no pattern. 3989 } 3990 3991 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3992 parseInstructionPattern(CGI, LI, Instructions); 3993 } 3994 3995 // If we can, convert the instructions to be patterns that are matched! 3996 for (auto &Entry : Instructions) { 3997 Record *Instr = Entry.first; 3998 DAGInstruction &TheInst = Entry.second; 3999 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 4000 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 4001 4002 if (SrcPattern && ResultPattern) { 4003 TreePattern Pattern(Instr, SrcPattern, true, *this); 4004 TreePattern Result(Instr, ResultPattern, false, *this); 4005 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 4006 } 4007 } 4008 } 4009 4010 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 4011 4012 static void FindNames(TreePatternNode &P, 4013 std::map<std::string, NameRecord> &Names, 4014 TreePattern *PatternTop) { 4015 if (!P.getName().empty()) { 4016 NameRecord &Rec = Names[P.getName()]; 4017 // If this is the first instance of the name, remember the node. 4018 if (Rec.second++ == 0) 4019 Rec.first = &P; 4020 else if (Rec.first->getExtTypes() != P.getExtTypes()) 4021 PatternTop->error("repetition of value: $" + P.getName() + 4022 " where different uses have different types!"); 4023 } 4024 4025 if (!P.isLeaf()) { 4026 for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) 4027 FindNames(P.getChild(i), Names, PatternTop); 4028 } 4029 } 4030 4031 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4032 PatternToMatch &&PTM) { 4033 // Do some sanity checking on the pattern we're about to match. 4034 std::string Reason; 4035 if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) { 4036 PrintWarning(Pattern->getRecord()->getLoc(), 4037 Twine("Pattern can never match: ") + Reason); 4038 return; 4039 } 4040 4041 // If the source pattern's root is a complex pattern, that complex pattern 4042 // must specify the nodes it can potentially match. 4043 if (const ComplexPattern *CP = 4044 PTM.getSrcPattern().getComplexPatternInfo(*this)) 4045 if (CP->getRootNodes().empty()) 4046 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4047 " could match"); 4048 4049 // Find all of the named values in the input and output, ensure they have the 4050 // same type. 4051 std::map<std::string, NameRecord> SrcNames, DstNames; 4052 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4053 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4054 4055 // Scan all of the named values in the destination pattern, rejecting them if 4056 // they don't exist in the input pattern. 4057 for (const auto &Entry : DstNames) { 4058 if (SrcNames[Entry.first].first == nullptr) 4059 Pattern->error("Pattern has input without matching name in output: $" + 4060 Entry.first); 4061 } 4062 4063 // Scan all of the named values in the source pattern, rejecting them if the 4064 // name isn't used in the dest, and isn't used to tie two values together. 4065 for (const auto &Entry : SrcNames) 4066 if (DstNames[Entry.first].first == nullptr && 4067 SrcNames[Entry.first].second == 1) 4068 Pattern->error("Pattern has dead named input: $" + Entry.first); 4069 4070 PatternsToMatch.push_back(std::move(PTM)); 4071 } 4072 4073 void CodeGenDAGPatterns::InferInstructionFlags() { 4074 ArrayRef<const CodeGenInstruction *> Instructions = 4075 Target.getInstructionsByEnumValue(); 4076 4077 unsigned Errors = 0; 4078 4079 // Try to infer flags from all patterns in PatternToMatch. These include 4080 // both the primary instruction patterns (which always come first) and 4081 // patterns defined outside the instruction. 4082 for (const PatternToMatch &PTM : ptms()) { 4083 // We can only infer from single-instruction patterns, otherwise we won't 4084 // know which instruction should get the flags. 4085 SmallVector<Record *, 8> PatInstrs; 4086 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4087 if (PatInstrs.size() != 1) 4088 continue; 4089 4090 // Get the single instruction. 4091 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4092 4093 // Only infer properties from the first pattern. We'll verify the others. 4094 if (InstInfo.InferredFrom) 4095 continue; 4096 4097 InstAnalyzer PatInfo(*this); 4098 PatInfo.Analyze(PTM); 4099 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4100 } 4101 4102 if (Errors) 4103 PrintFatalError("pattern conflicts"); 4104 4105 // If requested by the target, guess any undefined properties. 4106 if (Target.guessInstructionProperties()) { 4107 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4108 CodeGenInstruction *InstInfo = 4109 const_cast<CodeGenInstruction *>(Instructions[i]); 4110 if (InstInfo->InferredFrom) 4111 continue; 4112 // The mayLoad and mayStore flags default to false. 4113 // Conservatively assume hasSideEffects if it wasn't explicit. 4114 if (InstInfo->hasSideEffects_Unset) 4115 InstInfo->hasSideEffects = true; 4116 } 4117 return; 4118 } 4119 4120 // Complain about any flags that are still undefined. 4121 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4122 CodeGenInstruction *InstInfo = 4123 const_cast<CodeGenInstruction *>(Instructions[i]); 4124 if (InstInfo->InferredFrom) 4125 continue; 4126 if (InstInfo->hasSideEffects_Unset) 4127 PrintError(InstInfo->TheDef->getLoc(), 4128 "Can't infer hasSideEffects from patterns"); 4129 if (InstInfo->mayStore_Unset) 4130 PrintError(InstInfo->TheDef->getLoc(), 4131 "Can't infer mayStore from patterns"); 4132 if (InstInfo->mayLoad_Unset) 4133 PrintError(InstInfo->TheDef->getLoc(), 4134 "Can't infer mayLoad from patterns"); 4135 } 4136 } 4137 4138 /// Verify instruction flags against pattern node properties. 4139 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4140 unsigned Errors = 0; 4141 for (const PatternToMatch &PTM : ptms()) { 4142 SmallVector<Record *, 8> Instrs; 4143 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4144 if (Instrs.empty()) 4145 continue; 4146 4147 // Count the number of instructions with each flag set. 4148 unsigned NumSideEffects = 0; 4149 unsigned NumStores = 0; 4150 unsigned NumLoads = 0; 4151 for (const Record *Instr : Instrs) { 4152 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4153 NumSideEffects += InstInfo.hasSideEffects; 4154 NumStores += InstInfo.mayStore; 4155 NumLoads += InstInfo.mayLoad; 4156 } 4157 4158 // Analyze the source pattern. 4159 InstAnalyzer PatInfo(*this); 4160 PatInfo.Analyze(PTM); 4161 4162 // Collect error messages. 4163 SmallVector<std::string, 4> Msgs; 4164 4165 // Check for missing flags in the output. 4166 // Permit extra flags for now at least. 4167 if (PatInfo.hasSideEffects && !NumSideEffects) 4168 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4169 4170 // Don't verify store flags on instructions with side effects. At least for 4171 // intrinsics, side effects implies mayStore. 4172 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4173 Msgs.push_back("pattern may store, but mayStore isn't set"); 4174 4175 // Similarly, mayStore implies mayLoad on intrinsics. 4176 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4177 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4178 4179 // Print error messages. 4180 if (Msgs.empty()) 4181 continue; 4182 ++Errors; 4183 4184 for (const std::string &Msg : Msgs) 4185 PrintError( 4186 PTM.getSrcRecord()->getLoc(), 4187 Twine(Msg) + " on the " + 4188 (Instrs.size() == 1 ? "instruction" : "output instructions")); 4189 // Provide the location of the relevant instruction definitions. 4190 for (const Record *Instr : Instrs) { 4191 if (Instr != PTM.getSrcRecord()) 4192 PrintError(Instr->getLoc(), "defined here"); 4193 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4194 if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && 4195 InstInfo.InferredFrom != PTM.getSrcRecord()) 4196 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4197 } 4198 } 4199 if (Errors) 4200 PrintFatalError("Errors in DAG patterns"); 4201 } 4202 4203 /// Given a pattern result with an unresolved type, see if we can find one 4204 /// instruction with an unresolved result type. Force this result type to an 4205 /// arbitrary element if it's possible types to converge results. 4206 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) { 4207 if (N.isLeaf()) 4208 return false; 4209 4210 // Analyze children. 4211 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 4212 if (ForceArbitraryInstResultType(N.getChild(i), TP)) 4213 return true; 4214 4215 if (!N.getOperator()->isSubClassOf("Instruction")) 4216 return false; 4217 4218 // If this type is already concrete or completely unknown we can't do 4219 // anything. 4220 TypeInfer &TI = TP.getInfer(); 4221 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) { 4222 if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false)) 4223 continue; 4224 4225 // Otherwise, force its type to an arbitrary choice. 4226 if (TI.forceArbitrary(N.getExtType(i))) 4227 return true; 4228 } 4229 4230 return false; 4231 } 4232 4233 // Promote xform function to be an explicit node wherever set. 4234 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4235 if (Record *Xform = N->getTransformFn()) { 4236 N->setTransformFn(nullptr); 4237 std::vector<TreePatternNodePtr> Children; 4238 Children.push_back(PromoteXForms(N)); 4239 return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 4240 N->getNumTypes()); 4241 } 4242 4243 if (!N->isLeaf()) 4244 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4245 TreePatternNodePtr Child = N->getChildShared(i); 4246 N->setChild(i, PromoteXForms(Child)); 4247 } 4248 return N; 4249 } 4250 4251 void CodeGenDAGPatterns::ParseOnePattern( 4252 Record *TheDef, TreePattern &Pattern, TreePattern &Result, 4253 const std::vector<Record *> &InstImpResults, bool ShouldIgnore) { 4254 4255 // Inline pattern fragments and expand multiple alternatives. 4256 Pattern.InlinePatternFragments(); 4257 Result.InlinePatternFragments(); 4258 4259 if (Result.getNumTrees() != 1) 4260 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4261 4262 // Infer types. 4263 bool IterateInference; 4264 bool InferredAllPatternTypes, InferredAllResultTypes; 4265 do { 4266 // Infer as many types as possible. If we cannot infer all of them, we 4267 // can never do anything with this pattern: report it to the user. 4268 InferredAllPatternTypes = 4269 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4270 4271 // Infer as many types as possible. If we cannot infer all of them, we 4272 // can never do anything with this pattern: report it to the user. 4273 InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4274 4275 IterateInference = false; 4276 4277 // Apply the type of the result to the source pattern. This helps us 4278 // resolve cases where the input type is known to be a pointer type (which 4279 // is considered resolved), but the result knows it needs to be 32- or 4280 // 64-bits. Infer the other way for good measure. 4281 for (const auto &T : Pattern.getTrees()) 4282 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4283 T->getNumTypes()); 4284 i != e; ++i) { 4285 IterateInference |= 4286 T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result); 4287 IterateInference |= 4288 Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result); 4289 } 4290 4291 // If our iteration has converged and the input pattern's types are fully 4292 // resolved but the result pattern is not fully resolved, we may have a 4293 // situation where we have two instructions in the result pattern and 4294 // the instructions require a common register class, but don't care about 4295 // what actual MVT is used. This is actually a bug in our modelling: 4296 // output patterns should have register classes, not MVTs. 4297 // 4298 // In any case, to handle this, we just go through and disambiguate some 4299 // arbitrary types to the result pattern's nodes. 4300 if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) 4301 IterateInference = 4302 ForceArbitraryInstResultType(*Result.getTree(0), Result); 4303 } while (IterateInference); 4304 4305 // Verify that we inferred enough types that we can do something with the 4306 // pattern and result. If these fire the user has to add type casts. 4307 if (!InferredAllPatternTypes) 4308 Pattern.error("Could not infer all types in pattern!"); 4309 if (!InferredAllResultTypes) { 4310 Pattern.dump(); 4311 Result.error("Could not infer all types in pattern result!"); 4312 } 4313 4314 // Promote xform function to be an explicit node wherever set. 4315 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4316 4317 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4318 Temp.InferAllTypes(); 4319 4320 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4321 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4322 4323 if (PatternRewriter) 4324 PatternRewriter(&Pattern); 4325 4326 // A pattern may end up with an "impossible" type, i.e. a situation 4327 // where all types have been eliminated for some node in this pattern. 4328 // This could occur for intrinsics that only make sense for a specific 4329 // value type, and use a specific register class. If, for some mode, 4330 // that register class does not accept that type, the type inference 4331 // will lead to a contradiction, which is not an error however, but 4332 // a sign that this pattern will simply never match. 4333 if (Temp.getOnlyTree()->hasPossibleType()) { 4334 for (const auto &T : Pattern.getTrees()) { 4335 if (T->hasPossibleType()) 4336 AddPatternToMatch(&Pattern, 4337 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4338 InstImpResults, Complexity, 4339 TheDef->getID(), ShouldIgnore)); 4340 } 4341 } else { 4342 // Show a message about a dropped pattern with some info to make it 4343 // easier to identify it in the .td files. 4344 LLVM_DEBUG({ 4345 dbgs() << "Dropping: "; 4346 Pattern.dump(); 4347 Temp.getOnlyTree()->dump(); 4348 dbgs() << "\n"; 4349 }); 4350 } 4351 } 4352 4353 void CodeGenDAGPatterns::ParsePatterns() { 4354 std::vector<Record *> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4355 4356 for (Record *CurPattern : Patterns) { 4357 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4358 4359 // If the pattern references the null_frag, there's nothing to do. 4360 if (hasNullFragReference(Tree)) 4361 continue; 4362 4363 TreePattern Pattern(CurPattern, Tree, true, *this); 4364 4365 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4366 if (LI->empty()) 4367 continue; // no pattern. 4368 4369 // Parse the instruction. 4370 TreePattern Result(CurPattern, LI, false, *this); 4371 4372 if (Result.getNumTrees() != 1) 4373 Result.error("Cannot handle instructions producing instructions " 4374 "with temporaries yet!"); 4375 4376 // Validate that the input pattern is correct. 4377 std::map<std::string, TreePatternNodePtr> InstInputs; 4378 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4379 InstResults; 4380 std::vector<Record *> InstImpResults; 4381 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4382 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4383 InstResults, InstImpResults); 4384 4385 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults, 4386 CurPattern->getValueAsBit("GISelShouldIgnore")); 4387 } 4388 } 4389 4390 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) { 4391 for (const TypeSetByHwMode &VTS : N.getExtTypes()) 4392 for (const auto &I : VTS) 4393 Modes.insert(I.first); 4394 4395 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i) 4396 collectModes(Modes, N.getChild(i)); 4397 } 4398 4399 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4400 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4401 if (CGH.getNumModeIds() == 1) 4402 return; 4403 4404 std::vector<PatternToMatch> Copy; 4405 PatternsToMatch.swap(Copy); 4406 4407 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4408 StringRef Check) { 4409 TreePatternNodePtr NewSrc = P.getSrcPattern().clone(); 4410 TreePatternNodePtr NewDst = P.getDstPattern().clone(); 4411 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4412 return; 4413 } 4414 4415 PatternsToMatch.emplace_back( 4416 P.getSrcRecord(), P.getPredicates(), std::move(NewSrc), 4417 std::move(NewDst), P.getDstRegs(), P.getAddedComplexity(), 4418 Record::getNewUID(Records), P.getGISelShouldIgnore(), Check); 4419 }; 4420 4421 for (PatternToMatch &P : Copy) { 4422 const TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4423 if (P.getSrcPattern().hasProperTypeByHwMode()) 4424 SrcP = &P.getSrcPattern(); 4425 if (P.getDstPattern().hasProperTypeByHwMode()) 4426 DstP = &P.getDstPattern(); 4427 if (!SrcP && !DstP) { 4428 PatternsToMatch.push_back(P); 4429 continue; 4430 } 4431 4432 std::set<unsigned> Modes; 4433 if (SrcP) 4434 collectModes(Modes, *SrcP); 4435 if (DstP) 4436 collectModes(Modes, *DstP); 4437 4438 // The predicate for the default mode needs to be constructed for each 4439 // pattern separately. 4440 // Since not all modes must be present in each pattern, if a mode m is 4441 // absent, then there is no point in constructing a check for m. If such 4442 // a check was created, it would be equivalent to checking the default 4443 // mode, except not all modes' predicates would be a part of the checking 4444 // code. The subsequently generated check for the default mode would then 4445 // have the exact same patterns, but a different predicate code. To avoid 4446 // duplicated patterns with different predicate checks, construct the 4447 // default check as a negation of all predicates that are actually present 4448 // in the source/destination patterns. 4449 SmallString<128> DefaultCheck; 4450 4451 for (unsigned M : Modes) { 4452 if (M == DefaultMode) 4453 continue; 4454 4455 // Fill the map entry for this mode. 4456 const HwMode &HM = CGH.getMode(M); 4457 AppendPattern(P, M, HM.Predicates); 4458 4459 // Add negations of the HM's predicates to the default predicate. 4460 if (!DefaultCheck.empty()) 4461 DefaultCheck += " && "; 4462 DefaultCheck += "!("; 4463 DefaultCheck += HM.Predicates; 4464 DefaultCheck += ")"; 4465 } 4466 4467 bool HasDefault = Modes.count(DefaultMode); 4468 if (HasDefault) 4469 AppendPattern(P, DefaultMode, DefaultCheck); 4470 } 4471 } 4472 4473 /// Dependent variable map for CodeGenDAGPattern variant generation 4474 typedef StringMap<int> DepVarMap; 4475 4476 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) { 4477 if (N.isLeaf()) { 4478 if (N.hasName() && isa<DefInit>(N.getLeafValue())) 4479 DepMap[N.getName()]++; 4480 } else { 4481 for (size_t i = 0, e = N.getNumChildren(); i != e; ++i) 4482 FindDepVarsOf(N.getChild(i), DepMap); 4483 } 4484 } 4485 4486 /// Find dependent variables within child patterns 4487 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) { 4488 DepVarMap depcounts; 4489 FindDepVarsOf(N, depcounts); 4490 for (const auto &Pair : depcounts) { 4491 if (Pair.getValue() > 1) 4492 DepVars.insert(Pair.getKey()); 4493 } 4494 } 4495 4496 #ifndef NDEBUG 4497 /// Dump the dependent variable set: 4498 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4499 if (DepVars.empty()) { 4500 LLVM_DEBUG(errs() << "<empty set>"); 4501 } else { 4502 LLVM_DEBUG(errs() << "[ "); 4503 for (const auto &DepVar : DepVars) { 4504 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4505 } 4506 LLVM_DEBUG(errs() << "]"); 4507 } 4508 } 4509 #endif 4510 4511 /// CombineChildVariants - Given a bunch of permutations of each child of the 4512 /// 'operator' node, put them together in all possible ways. 4513 static void CombineChildVariants( 4514 TreePatternNodePtr Orig, 4515 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4516 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4517 const MultipleUseVarSet &DepVars) { 4518 // Make sure that each operand has at least one variant to choose from. 4519 for (const auto &Variants : ChildVariants) 4520 if (Variants.empty()) 4521 return; 4522 4523 // The end result is an all-pairs construction of the resultant pattern. 4524 std::vector<unsigned> Idxs(ChildVariants.size()); 4525 bool NotDone; 4526 do { 4527 #ifndef NDEBUG 4528 LLVM_DEBUG(if (!Idxs.empty()) { 4529 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4530 for (unsigned Idx : Idxs) { 4531 errs() << Idx << " "; 4532 } 4533 errs() << "]\n"; 4534 }); 4535 #endif 4536 // Create the variant and add it to the output list. 4537 std::vector<TreePatternNodePtr> NewChildren; 4538 NewChildren.reserve(ChildVariants.size()); 4539 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4540 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4541 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 4542 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4543 4544 // Copy over properties. 4545 R->setName(Orig->getName()); 4546 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4547 R->setPredicateCalls(Orig->getPredicateCalls()); 4548 R->setGISelFlagsRecord(Orig->getGISelFlagsRecord()); 4549 R->setTransformFn(Orig->getTransformFn()); 4550 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4551 R->setType(i, Orig->getExtType(i)); 4552 4553 // If this pattern cannot match, do not include it as a variant. 4554 std::string ErrString; 4555 // Scan to see if this pattern has already been emitted. We can get 4556 // duplication due to things like commuting: 4557 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4558 // which are the same pattern. Ignore the dups. 4559 if (R->canPatternMatch(ErrString, CDP) && 4560 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4561 return R->isIsomorphicTo(*Variant, DepVars); 4562 })) 4563 OutVariants.push_back(R); 4564 4565 // Increment indices to the next permutation by incrementing the 4566 // indices from last index backward, e.g., generate the sequence 4567 // [0, 0], [0, 1], [1, 0], [1, 1]. 4568 int IdxsIdx; 4569 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4570 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4571 Idxs[IdxsIdx] = 0; 4572 else 4573 break; 4574 } 4575 NotDone = (IdxsIdx >= 0); 4576 } while (NotDone); 4577 } 4578 4579 /// CombineChildVariants - A helper function for binary operators. 4580 /// 4581 static void CombineChildVariants(TreePatternNodePtr Orig, 4582 const std::vector<TreePatternNodePtr> &LHS, 4583 const std::vector<TreePatternNodePtr> &RHS, 4584 std::vector<TreePatternNodePtr> &OutVariants, 4585 CodeGenDAGPatterns &CDP, 4586 const MultipleUseVarSet &DepVars) { 4587 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4588 ChildVariants.push_back(LHS); 4589 ChildVariants.push_back(RHS); 4590 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4591 } 4592 4593 static void 4594 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4595 std::vector<TreePatternNodePtr> &Children) { 4596 assert(N->getNumChildren() == 2 && 4597 "Associative but doesn't have 2 children!"); 4598 Record *Operator = N->getOperator(); 4599 4600 // Only permit raw nodes. 4601 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4602 N->getTransformFn()) { 4603 Children.push_back(N); 4604 return; 4605 } 4606 4607 if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator) 4608 Children.push_back(N->getChildShared(0)); 4609 else 4610 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4611 4612 if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator) 4613 Children.push_back(N->getChildShared(1)); 4614 else 4615 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4616 } 4617 4618 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4619 /// the (potentially recursive) pattern by using algebraic laws. 4620 /// 4621 static void GenerateVariantsOf(TreePatternNodePtr N, 4622 std::vector<TreePatternNodePtr> &OutVariants, 4623 CodeGenDAGPatterns &CDP, 4624 const MultipleUseVarSet &DepVars) { 4625 // We cannot permute leaves or ComplexPattern uses. 4626 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4627 OutVariants.push_back(N); 4628 return; 4629 } 4630 4631 // Look up interesting info about the node. 4632 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4633 4634 // If this node is associative, re-associate. 4635 if (NodeInfo.hasProperty(SDNPAssociative)) { 4636 // Re-associate by pulling together all of the linked operators 4637 std::vector<TreePatternNodePtr> MaximalChildren; 4638 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4639 4640 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4641 // permutations. 4642 if (MaximalChildren.size() == 3) { 4643 // Find the variants of all of our maximal children. 4644 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4645 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4646 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4647 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4648 4649 // There are only two ways we can permute the tree: 4650 // (A op B) op C and A op (B op C) 4651 // Within these forms, we can also permute A/B/C. 4652 4653 // Generate legal pair permutations of A/B/C. 4654 std::vector<TreePatternNodePtr> ABVariants; 4655 std::vector<TreePatternNodePtr> BAVariants; 4656 std::vector<TreePatternNodePtr> ACVariants; 4657 std::vector<TreePatternNodePtr> CAVariants; 4658 std::vector<TreePatternNodePtr> BCVariants; 4659 std::vector<TreePatternNodePtr> CBVariants; 4660 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4661 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4662 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4663 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4664 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4665 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4666 4667 // Combine those into the result: (x op x) op x 4668 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4669 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4670 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4671 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4672 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4673 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4674 4675 // Combine those into the result: x op (x op x) 4676 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4677 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4678 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4679 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4680 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4681 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4682 return; 4683 } 4684 } 4685 4686 // Compute permutations of all children. 4687 std::vector<std::vector<TreePatternNodePtr>> ChildVariants( 4688 N->getNumChildren()); 4689 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4690 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4691 4692 // Build all permutations based on how the children were formed. 4693 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4694 4695 // If this node is commutative, consider the commuted order. 4696 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4697 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4698 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4699 assert(N->getNumChildren() >= (2 + Skip) && 4700 "Commutative but doesn't have 2 children!"); 4701 // Don't allow commuting children which are actually register references. 4702 bool NoRegisters = true; 4703 unsigned i = 0 + Skip; 4704 unsigned e = 2 + Skip; 4705 for (; i != e; ++i) { 4706 TreePatternNode &Child = N->getChild(i); 4707 if (Child.isLeaf()) 4708 if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) { 4709 Record *RR = DI->getDef(); 4710 if (RR->isSubClassOf("Register")) 4711 NoRegisters = false; 4712 } 4713 } 4714 // Consider the commuted order. 4715 if (NoRegisters) { 4716 // Swap the first two operands after the intrinsic id, if present. 4717 unsigned i = isCommIntrinsic ? 1 : 0; 4718 std::swap(ChildVariants[i], ChildVariants[i + 1]); 4719 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4720 } 4721 } 4722 } 4723 4724 // GenerateVariants - Generate variants. For example, commutative patterns can 4725 // match multiple ways. Add them to PatternsToMatch as well. 4726 void CodeGenDAGPatterns::GenerateVariants() { 4727 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4728 4729 // Loop over all of the patterns we've collected, checking to see if we can 4730 // generate variants of the instruction, through the exploitation of 4731 // identities. This permits the target to provide aggressive matching without 4732 // the .td file having to contain tons of variants of instructions. 4733 // 4734 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4735 // intentionally do not reconsider these. Any variants of added patterns have 4736 // already been added. 4737 // 4738 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4739 MultipleUseVarSet DepVars; 4740 std::vector<TreePatternNodePtr> Variants; 4741 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4742 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4743 LLVM_DEBUG(DumpDepVars(DepVars)); 4744 LLVM_DEBUG(errs() << "\n"); 4745 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4746 *this, DepVars); 4747 4748 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4749 "HwModes should not have been expanded yet!"); 4750 4751 assert(!Variants.empty() && "Must create at least original variant!"); 4752 if (Variants.size() == 1) // No additional variants for this pattern. 4753 continue; 4754 4755 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4756 PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n"); 4757 4758 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4759 TreePatternNodePtr Variant = Variants[v]; 4760 4761 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4762 errs() << "\n"); 4763 4764 // Scan to see if an instruction or explicit pattern already matches this. 4765 bool AlreadyExists = false; 4766 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4767 // Skip if the top level predicates do not match. 4768 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4769 PatternsToMatch[p].getPredicates())) 4770 continue; 4771 // Check to see if this variant already exists. 4772 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4773 DepVars)) { 4774 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4775 AlreadyExists = true; 4776 break; 4777 } 4778 } 4779 // If we already have it, ignore the variant. 4780 if (AlreadyExists) 4781 continue; 4782 4783 // Otherwise, add it to the list of patterns we have. 4784 PatternsToMatch.emplace_back( 4785 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4786 Variant, PatternsToMatch[i].getDstPatternShared(), 4787 PatternsToMatch[i].getDstRegs(), 4788 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records), 4789 PatternsToMatch[i].getGISelShouldIgnore(), 4790 PatternsToMatch[i].getHwModeFeatures()); 4791 } 4792 4793 LLVM_DEBUG(errs() << "\n"); 4794 } 4795 } 4796