1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/PointerIntPair.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 33 #include "llvm/BinaryFormat/ELF.h" 34 #include "llvm/BinaryFormat/MsgPackDocument.h" 35 #include "llvm/Demangle/Demangle.h" 36 #include "llvm/Object/Archive.h" 37 #include "llvm/Object/ELF.h" 38 #include "llvm/Object/ELFObjectFile.h" 39 #include "llvm/Object/ELFTypes.h" 40 #include "llvm/Object/Error.h" 41 #include "llvm/Object/ObjectFile.h" 42 #include "llvm/Object/RelocationResolver.h" 43 #include "llvm/Object/StackMapParser.h" 44 #include "llvm/Support/AMDGPUMetadata.h" 45 #include "llvm/Support/ARMAttributeParser.h" 46 #include "llvm/Support/ARMBuildAttributes.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Endian.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/Format.h" 52 #include "llvm/Support/FormatVariadic.h" 53 #include "llvm/Support/FormattedStream.h" 54 #include "llvm/Support/LEB128.h" 55 #include "llvm/Support/MSP430AttributeParser.h" 56 #include "llvm/Support/MSP430Attributes.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/MipsABIFlags.h" 59 #include "llvm/Support/RISCVAttributeParser.h" 60 #include "llvm/Support/RISCVAttributes.h" 61 #include "llvm/Support/ScopedPrinter.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <algorithm> 64 #include <cinttypes> 65 #include <cstddef> 66 #include <cstdint> 67 #include <cstdlib> 68 #include <iterator> 69 #include <memory> 70 #include <string> 71 #include <system_error> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::object; 76 using namespace ELF; 77 78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 79 case ns::enum: \ 80 return #enum; 81 82 #define ENUM_ENT(enum, altName) \ 83 { #enum, altName, ELF::enum } 84 85 #define ENUM_ENT_1(enum) \ 86 { #enum, #enum, ELF::enum } 87 88 namespace { 89 90 template <class ELFT> struct RelSymbol { 91 RelSymbol(const typename ELFT::Sym *S, StringRef N) 92 : Sym(S), Name(N.str()) {} 93 const typename ELFT::Sym *Sym; 94 std::string Name; 95 }; 96 97 /// Represents a contiguous uniform range in the file. We cannot just create a 98 /// range directly because when creating one of these from the .dynamic table 99 /// the size, entity size and virtual address are different entries in arbitrary 100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 101 struct DynRegionInfo { 102 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 103 : Obj(&Owner), Dumper(&D) {} 104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 105 uint64_t S, uint64_t ES) 106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 107 108 /// Address in current address space. 109 const uint8_t *Addr = nullptr; 110 /// Size in bytes of the region. 111 uint64_t Size = 0; 112 /// Size of each entity in the region. 113 uint64_t EntSize = 0; 114 115 /// Owner object. Used for error reporting. 116 const Binary *Obj; 117 /// Dumper used for error reporting. 118 const ObjDumper *Dumper; 119 /// Error prefix. Used for error reporting to provide more information. 120 std::string Context; 121 /// Region size name. Used for error reporting. 122 StringRef SizePrintName = "size"; 123 /// Entry size name. Used for error reporting. If this field is empty, errors 124 /// will not mention the entry size. 125 StringRef EntSizePrintName = "entry size"; 126 127 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 128 const Type *Start = reinterpret_cast<const Type *>(Addr); 129 if (!Start) 130 return {Start, Start}; 131 132 const uint64_t Offset = 133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 135 136 if (Size > ObjSize - Offset) { 137 Dumper->reportUniqueWarning( 138 "unable to read data at 0x" + Twine::utohexstr(Offset) + 139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 140 "): it goes past the end of the file of size 0x" + 141 Twine::utohexstr(ObjSize)); 142 return {Start, Start}; 143 } 144 145 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 146 return {Start, Start + (Size / EntSize)}; 147 148 std::string Msg; 149 if (!Context.empty()) 150 Msg += Context + " has "; 151 152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 153 .str(); 154 if (!EntSizePrintName.empty()) 155 Msg += 156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 157 .str(); 158 159 Dumper->reportUniqueWarning(Msg); 160 return {Start, Start}; 161 } 162 }; 163 164 struct GroupMember { 165 StringRef Name; 166 uint64_t Index; 167 }; 168 169 struct GroupSection { 170 StringRef Name; 171 std::string Signature; 172 uint64_t ShName; 173 uint64_t Index; 174 uint32_t Link; 175 uint32_t Info; 176 uint32_t Type; 177 std::vector<GroupMember> Members; 178 }; 179 180 namespace { 181 182 struct NoteType { 183 uint32_t ID; 184 StringRef Name; 185 }; 186 187 } // namespace 188 189 template <class ELFT> class Relocation { 190 public: 191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 193 Offset(R.r_offset), Info(R.r_info) {} 194 195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 197 Addend = R.r_addend; 198 } 199 200 uint32_t Type; 201 uint32_t Symbol; 202 typename ELFT::uint Offset; 203 typename ELFT::uint Info; 204 Optional<int64_t> Addend; 205 }; 206 207 template <class ELFT> class MipsGOTParser; 208 209 template <typename ELFT> class ELFDumper : public ObjDumper { 210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 211 212 public: 213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 214 215 void printUnwindInfo() override; 216 void printNeededLibraries() override; 217 void printHashTable() override; 218 void printGnuHashTable() override; 219 void printLoadName() override; 220 void printVersionInfo() override; 221 void printArchSpecificInfo() override; 222 void printStackMap() const override; 223 224 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 225 226 std::string describe(const Elf_Shdr &Sec) const; 227 228 unsigned getHashTableEntSize() const { 229 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 230 // sections. This violates the ELF specification. 231 if (Obj.getHeader().e_machine == ELF::EM_S390 || 232 Obj.getHeader().e_machine == ELF::EM_ALPHA) 233 return 8; 234 return 4; 235 } 236 237 Elf_Dyn_Range dynamic_table() const { 238 // A valid .dynamic section contains an array of entries terminated 239 // with a DT_NULL entry. However, sometimes the section content may 240 // continue past the DT_NULL entry, so to dump the section correctly, 241 // we first find the end of the entries by iterating over them. 242 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 243 244 size_t Size = 0; 245 while (Size < Table.size()) 246 if (Table[Size++].getTag() == DT_NULL) 247 break; 248 249 return Table.slice(0, Size); 250 } 251 252 Elf_Sym_Range dynamic_symbols() const { 253 if (!DynSymRegion) 254 return Elf_Sym_Range(); 255 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 256 } 257 258 const Elf_Shdr *findSectionByName(StringRef Name) const; 259 260 StringRef getDynamicStringTable() const { return DynamicStringTable; } 261 262 protected: 263 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 264 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 265 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 266 267 void 268 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 269 function_ref<void(StringRef, uint64_t)> OnLibEntry); 270 271 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 272 const RelSymbol<ELFT> &RelSym) = 0; 273 virtual void printRelrReloc(const Elf_Relr &R) = 0; 274 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 275 const DynRegionInfo &Reg) {} 276 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 277 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 278 void printDynamicReloc(const Relocation<ELFT> &R); 279 void printDynamicRelocationsHelper(); 280 void printRelocationsHelper(const Elf_Shdr &Sec); 281 void forEachRelocationDo( 282 const Elf_Shdr &Sec, bool RawRelr, 283 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 284 const Elf_Shdr &, const Elf_Shdr *)> 285 RelRelaFn, 286 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 287 288 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 289 bool NonVisibilityBitsUsed) const {}; 290 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 291 DataRegion<Elf_Word> ShndxTable, 292 Optional<StringRef> StrTable, bool IsDynamic, 293 bool NonVisibilityBitsUsed) const = 0; 294 295 virtual void printMipsABIFlags() = 0; 296 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 297 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 298 299 Expected<ArrayRef<Elf_Versym>> 300 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 301 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 302 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 303 304 std::vector<GroupSection> getGroups(); 305 306 // Returns the function symbol index for the given address. Matches the 307 // symbol's section with FunctionSec when specified. 308 // Returns None if no function symbol can be found for the address or in case 309 // it is not defined in the specified section. 310 SmallVector<uint32_t> 311 getSymbolIndexesForFunctionAddress(uint64_t SymValue, 312 Optional<const Elf_Shdr *> FunctionSec); 313 bool printFunctionStackSize(uint64_t SymValue, 314 Optional<const Elf_Shdr *> FunctionSec, 315 const Elf_Shdr &StackSizeSec, DataExtractor Data, 316 uint64_t *Offset); 317 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 318 unsigned Ndx, const Elf_Shdr *SymTab, 319 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 320 const RelocationResolver &Resolver, DataExtractor Data); 321 virtual void printStackSizeEntry(uint64_t Size, 322 ArrayRef<std::string> FuncNames) = 0; 323 324 void printRelocatableStackSizes(std::function<void()> PrintHeader); 325 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 326 327 /// Retrieves sections with corresponding relocation sections based on 328 /// IsMatch. 329 void getSectionAndRelocations( 330 std::function<bool(const Elf_Shdr &)> IsMatch, 331 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap); 332 333 const object::ELFObjectFile<ELFT> &ObjF; 334 const ELFFile<ELFT> &Obj; 335 StringRef FileName; 336 337 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 338 uint64_t EntSize) { 339 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 340 return createError("offset (0x" + Twine::utohexstr(Offset) + 341 ") + size (0x" + Twine::utohexstr(Size) + 342 ") is greater than the file size (0x" + 343 Twine::utohexstr(Obj.getBufSize()) + ")"); 344 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 345 } 346 347 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 348 support::endianness); 349 void printMipsReginfo(); 350 void printMipsOptions(); 351 352 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 353 void loadDynamicTable(); 354 void parseDynamicTable(); 355 356 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 357 bool &IsDefault) const; 358 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const; 359 360 DynRegionInfo DynRelRegion; 361 DynRegionInfo DynRelaRegion; 362 DynRegionInfo DynRelrRegion; 363 DynRegionInfo DynPLTRelRegion; 364 Optional<DynRegionInfo> DynSymRegion; 365 DynRegionInfo DynSymTabShndxRegion; 366 DynRegionInfo DynamicTable; 367 StringRef DynamicStringTable; 368 const Elf_Hash *HashTable = nullptr; 369 const Elf_GnuHash *GnuHashTable = nullptr; 370 const Elf_Shdr *DotSymtabSec = nullptr; 371 const Elf_Shdr *DotDynsymSec = nullptr; 372 const Elf_Shdr *DotAddrsigSec = nullptr; 373 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 374 Optional<uint64_t> SONameOffset; 375 Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 376 377 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 378 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 379 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 380 381 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 382 DataRegion<Elf_Word> ShndxTable, 383 Optional<StringRef> StrTable, 384 bool IsDynamic) const; 385 Expected<unsigned> 386 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 387 DataRegion<Elf_Word> ShndxTable) const; 388 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 389 unsigned SectionIndex) const; 390 std::string getStaticSymbolName(uint32_t Index) const; 391 StringRef getDynamicString(uint64_t Value) const; 392 393 void printSymbolsHelper(bool IsDynamic) const; 394 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 395 396 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 397 const Elf_Shdr *SymTab) const; 398 399 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 400 401 private: 402 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap; 403 }; 404 405 template <class ELFT> 406 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 407 return ::describe(Obj, Sec); 408 } 409 410 namespace { 411 412 template <class ELFT> struct SymtabLink { 413 typename ELFT::SymRange Symbols; 414 StringRef StringTable; 415 const typename ELFT::Shdr *SymTab; 416 }; 417 418 // Returns the linked symbol table, symbols and associated string table for a 419 // given section. 420 template <class ELFT> 421 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 422 const typename ELFT::Shdr &Sec, 423 unsigned ExpectedType) { 424 Expected<const typename ELFT::Shdr *> SymtabOrErr = 425 Obj.getSection(Sec.sh_link); 426 if (!SymtabOrErr) 427 return createError("invalid section linked to " + describe(Obj, Sec) + 428 ": " + toString(SymtabOrErr.takeError())); 429 430 if ((*SymtabOrErr)->sh_type != ExpectedType) 431 return createError( 432 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 433 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 434 ", but got " + 435 object::getELFSectionTypeName(Obj.getHeader().e_machine, 436 (*SymtabOrErr)->sh_type)); 437 438 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 439 if (!StrTabOrErr) 440 return createError( 441 "can't get a string table for the symbol table linked to " + 442 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 443 444 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 445 if (!SymsOrErr) 446 return createError("unable to read symbols from the " + describe(Obj, Sec) + 447 ": " + toString(SymsOrErr.takeError())); 448 449 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 450 } 451 452 } // namespace 453 454 template <class ELFT> 455 Expected<ArrayRef<typename ELFT::Versym>> 456 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 457 StringRef *StrTab, 458 const Elf_Shdr **SymTabSec) const { 459 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 460 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 461 sizeof(uint16_t) != 462 0) 463 return createError("the " + describe(Sec) + " is misaligned"); 464 465 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 466 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 467 if (!VersionsOrErr) 468 return createError("cannot read content of " + describe(Sec) + ": " + 469 toString(VersionsOrErr.takeError())); 470 471 Expected<SymtabLink<ELFT>> SymTabOrErr = 472 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 473 if (!SymTabOrErr) { 474 reportUniqueWarning(SymTabOrErr.takeError()); 475 return *VersionsOrErr; 476 } 477 478 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 479 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 480 Twine(VersionsOrErr->size()) + 481 ") does not match the number of symbols (" + 482 Twine(SymTabOrErr->Symbols.size()) + 483 ") in the symbol table with index " + 484 Twine(Sec.sh_link)); 485 486 if (SymTab) { 487 *SymTab = SymTabOrErr->Symbols; 488 *StrTab = SymTabOrErr->StringTable; 489 *SymTabSec = SymTabOrErr->SymTab; 490 } 491 return *VersionsOrErr; 492 } 493 494 template <class ELFT> 495 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { 496 Optional<StringRef> StrTable; 497 size_t Entries = 0; 498 Elf_Sym_Range Syms(nullptr, nullptr); 499 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 500 501 if (IsDynamic) { 502 StrTable = DynamicStringTable; 503 Syms = dynamic_symbols(); 504 Entries = Syms.size(); 505 } else if (DotSymtabSec) { 506 if (Expected<StringRef> StrTableOrErr = 507 Obj.getStringTableForSymtab(*DotSymtabSec)) 508 StrTable = *StrTableOrErr; 509 else 510 reportUniqueWarning( 511 "unable to get the string table for the SHT_SYMTAB section: " + 512 toString(StrTableOrErr.takeError())); 513 514 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 515 Syms = *SymsOrErr; 516 else 517 reportUniqueWarning( 518 "unable to read symbols from the SHT_SYMTAB section: " + 519 toString(SymsOrErr.takeError())); 520 Entries = DotSymtabSec->getEntityCount(); 521 } 522 if (Syms.empty()) 523 return; 524 525 // The st_other field has 2 logical parts. The first two bits hold the symbol 526 // visibility (STV_*) and the remainder hold other platform-specific values. 527 bool NonVisibilityBitsUsed = 528 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 529 530 DataRegion<Elf_Word> ShndxTable = 531 IsDynamic ? DataRegion<Elf_Word>( 532 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 533 this->getElfObject().getELFFile().end()) 534 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 535 536 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed); 537 for (const Elf_Sym &Sym : Syms) 538 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 539 NonVisibilityBitsUsed); 540 } 541 542 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 543 formatted_raw_ostream &OS; 544 545 public: 546 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 547 548 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 549 : ELFDumper<ELFT>(ObjF, Writer), 550 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 551 assert(&this->W.getOStream() == &llvm::fouts()); 552 } 553 554 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 555 ArrayRef<std::string> InputFilenames, 556 const Archive *A) override; 557 void printFileHeaders() override; 558 void printGroupSections() override; 559 void printRelocations() override; 560 void printSectionHeaders() override; 561 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 562 void printHashSymbols() override; 563 void printSectionDetails() override; 564 void printDependentLibs() override; 565 void printDynamicTable() override; 566 void printDynamicRelocations() override; 567 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 568 bool NonVisibilityBitsUsed) const override; 569 void printProgramHeaders(bool PrintProgramHeaders, 570 cl::boolOrDefault PrintSectionMapping) override; 571 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 572 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 573 void printVersionDependencySection(const Elf_Shdr *Sec) override; 574 void printHashHistograms() override; 575 void printCGProfile() override; 576 void printBBAddrMaps() override; 577 void printAddrsig() override; 578 void printNotes() override; 579 void printELFLinkerOptions() override; 580 void printStackSizes() override; 581 582 private: 583 void printHashHistogram(const Elf_Hash &HashTable); 584 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable); 585 void printHashTableSymbols(const Elf_Hash &HashTable); 586 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 587 588 struct Field { 589 std::string Str; 590 unsigned Column; 591 592 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 593 Field(unsigned Col) : Column(Col) {} 594 }; 595 596 template <typename T, typename TEnum> 597 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 598 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 599 TEnum EnumMask3 = {}) const { 600 std::string Str; 601 for (const EnumEntry<TEnum> &Flag : EnumValues) { 602 if (Flag.Value == 0) 603 continue; 604 605 TEnum EnumMask{}; 606 if (Flag.Value & EnumMask1) 607 EnumMask = EnumMask1; 608 else if (Flag.Value & EnumMask2) 609 EnumMask = EnumMask2; 610 else if (Flag.Value & EnumMask3) 611 EnumMask = EnumMask3; 612 bool IsEnum = (Flag.Value & EnumMask) != 0; 613 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 614 (IsEnum && (Value & EnumMask) == Flag.Value)) { 615 if (!Str.empty()) 616 Str += ", "; 617 Str += Flag.AltName; 618 } 619 } 620 return Str; 621 } 622 623 formatted_raw_ostream &printField(struct Field F) const { 624 if (F.Column != 0) 625 OS.PadToColumn(F.Column); 626 OS << F.Str; 627 OS.flush(); 628 return OS; 629 } 630 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 631 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 632 uint32_t Bucket); 633 void printRelrReloc(const Elf_Relr &R) override; 634 void printRelRelaReloc(const Relocation<ELFT> &R, 635 const RelSymbol<ELFT> &RelSym) override; 636 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 637 DataRegion<Elf_Word> ShndxTable, 638 Optional<StringRef> StrTable, bool IsDynamic, 639 bool NonVisibilityBitsUsed) const override; 640 void printDynamicRelocHeader(unsigned Type, StringRef Name, 641 const DynRegionInfo &Reg) override; 642 643 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 644 DataRegion<Elf_Word> ShndxTable) const; 645 void printProgramHeaders() override; 646 void printSectionMapping() override; 647 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 648 const Twine &Label, unsigned EntriesNum); 649 650 void printStackSizeEntry(uint64_t Size, 651 ArrayRef<std::string> FuncNames) override; 652 653 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 654 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 655 void printMipsABIFlags() override; 656 }; 657 658 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 659 public: 660 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 661 662 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 663 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 664 665 void printFileHeaders() override; 666 void printGroupSections() override; 667 void printRelocations() override; 668 void printSectionHeaders() override; 669 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 670 void printDependentLibs() override; 671 void printDynamicTable() override; 672 void printDynamicRelocations() override; 673 void printProgramHeaders(bool PrintProgramHeaders, 674 cl::boolOrDefault PrintSectionMapping) override; 675 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 676 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 677 void printVersionDependencySection(const Elf_Shdr *Sec) override; 678 void printHashHistograms() override; 679 void printCGProfile() override; 680 void printBBAddrMaps() override; 681 void printAddrsig() override; 682 void printNotes() override; 683 void printELFLinkerOptions() override; 684 void printStackSizes() override; 685 686 private: 687 void printRelrReloc(const Elf_Relr &R) override; 688 void printRelRelaReloc(const Relocation<ELFT> &R, 689 const RelSymbol<ELFT> &RelSym) override; 690 691 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 692 DataRegion<Elf_Word> ShndxTable) const; 693 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 694 DataRegion<Elf_Word> ShndxTable, 695 Optional<StringRef> StrTable, bool IsDynamic, 696 bool /*NonVisibilityBitsUsed*/) const override; 697 void printProgramHeaders() override; 698 void printSectionMapping() override {} 699 void printStackSizeEntry(uint64_t Size, 700 ArrayRef<std::string> FuncNames) override; 701 702 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 703 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 704 void printMipsABIFlags() override; 705 706 protected: 707 ScopedPrinter &W; 708 }; 709 710 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except 711 // it uses a JSONScopedPrinter. 712 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { 713 public: 714 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 715 716 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 717 : LLVMELFDumper<ELFT>(ObjF, Writer) {} 718 719 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 720 ArrayRef<std::string> InputFilenames, 721 const Archive *A) override; 722 723 private: 724 std::unique_ptr<DictScope> FileScope; 725 }; 726 727 } // end anonymous namespace 728 729 namespace llvm { 730 731 template <class ELFT> 732 static std::unique_ptr<ObjDumper> 733 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 734 if (opts::Output == opts::GNU) 735 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 736 else if (opts::Output == opts::JSON) 737 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); 738 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 739 } 740 741 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 742 ScopedPrinter &Writer) { 743 // Little-endian 32-bit 744 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 745 return createELFDumper(*ELFObj, Writer); 746 747 // Big-endian 32-bit 748 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 749 return createELFDumper(*ELFObj, Writer); 750 751 // Little-endian 64-bit 752 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 753 return createELFDumper(*ELFObj, Writer); 754 755 // Big-endian 64-bit 756 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 757 } 758 759 } // end namespace llvm 760 761 template <class ELFT> 762 Expected<SmallVector<Optional<VersionEntry>, 0> *> 763 ELFDumper<ELFT>::getVersionMap() const { 764 // If the VersionMap has already been loaded or if there is no dynamic symtab 765 // or version table, there is nothing to do. 766 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 767 return &VersionMap; 768 769 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr = 770 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 771 if (MapOrErr) 772 VersionMap = *MapOrErr; 773 else 774 return MapOrErr.takeError(); 775 776 return &VersionMap; 777 } 778 779 template <typename ELFT> 780 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 781 bool &IsDefault) const { 782 // This is a dynamic symbol. Look in the GNU symbol version table. 783 if (!SymbolVersionSection) { 784 // No version table. 785 IsDefault = false; 786 return ""; 787 } 788 789 assert(DynSymRegion && "DynSymRegion has not been initialised"); 790 // Determine the position in the symbol table of this entry. 791 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 792 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 793 sizeof(Elf_Sym); 794 795 // Get the corresponding version index entry. 796 Expected<const Elf_Versym *> EntryOrErr = 797 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 798 if (!EntryOrErr) 799 return EntryOrErr.takeError(); 800 801 unsigned Version = (*EntryOrErr)->vs_index; 802 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 803 IsDefault = false; 804 return ""; 805 } 806 807 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 808 getVersionMap(); 809 if (!MapOrErr) 810 return MapOrErr.takeError(); 811 812 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 813 Sym.st_shndx == ELF::SHN_UNDEF); 814 } 815 816 template <typename ELFT> 817 Expected<RelSymbol<ELFT>> 818 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 819 const Elf_Shdr *SymTab) const { 820 if (R.Symbol == 0) 821 return RelSymbol<ELFT>(nullptr, ""); 822 823 Expected<const Elf_Sym *> SymOrErr = 824 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 825 if (!SymOrErr) 826 return createError("unable to read an entry with index " + Twine(R.Symbol) + 827 " from " + describe(*SymTab) + ": " + 828 toString(SymOrErr.takeError())); 829 const Elf_Sym *Sym = *SymOrErr; 830 if (!Sym) 831 return RelSymbol<ELFT>(nullptr, ""); 832 833 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 834 if (!StrTableOrErr) 835 return StrTableOrErr.takeError(); 836 837 const Elf_Sym *FirstSym = 838 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 839 std::string SymbolName = 840 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 841 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 842 return RelSymbol<ELFT>(Sym, SymbolName); 843 } 844 845 template <typename ELFT> 846 ArrayRef<typename ELFT::Word> 847 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 848 if (Symtab) { 849 auto It = ShndxTables.find(Symtab); 850 if (It != ShndxTables.end()) 851 return It->second; 852 } 853 return {}; 854 } 855 856 static std::string maybeDemangle(StringRef Name) { 857 return opts::Demangle ? demangle(std::string(Name)) : Name.str(); 858 } 859 860 template <typename ELFT> 861 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 862 auto Warn = [&](Error E) -> std::string { 863 reportUniqueWarning("unable to read the name of symbol with index " + 864 Twine(Index) + ": " + toString(std::move(E))); 865 return "<?>"; 866 }; 867 868 Expected<const typename ELFT::Sym *> SymOrErr = 869 Obj.getSymbol(DotSymtabSec, Index); 870 if (!SymOrErr) 871 return Warn(SymOrErr.takeError()); 872 873 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 874 if (!StrTabOrErr) 875 return Warn(StrTabOrErr.takeError()); 876 877 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 878 if (!NameOrErr) 879 return Warn(NameOrErr.takeError()); 880 return maybeDemangle(*NameOrErr); 881 } 882 883 template <typename ELFT> 884 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol, 885 unsigned SymIndex, 886 DataRegion<Elf_Word> ShndxTable, 887 Optional<StringRef> StrTable, 888 bool IsDynamic) const { 889 if (!StrTable) 890 return "<?>"; 891 892 std::string SymbolName; 893 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 894 SymbolName = maybeDemangle(*NameOrErr); 895 } else { 896 reportUniqueWarning(NameOrErr.takeError()); 897 return "<?>"; 898 } 899 900 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 901 Expected<unsigned> SectionIndex = 902 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 903 if (!SectionIndex) { 904 reportUniqueWarning(SectionIndex.takeError()); 905 return "<?>"; 906 } 907 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 908 if (!NameOrErr) { 909 reportUniqueWarning(NameOrErr.takeError()); 910 return ("<section " + Twine(*SectionIndex) + ">").str(); 911 } 912 return std::string(*NameOrErr); 913 } 914 915 if (!IsDynamic) 916 return SymbolName; 917 918 bool IsDefault; 919 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 920 if (!VersionOrErr) { 921 reportUniqueWarning(VersionOrErr.takeError()); 922 return SymbolName + "@<corrupt>"; 923 } 924 925 if (!VersionOrErr->empty()) { 926 SymbolName += (IsDefault ? "@@" : "@"); 927 SymbolName += *VersionOrErr; 928 } 929 return SymbolName; 930 } 931 932 template <typename ELFT> 933 Expected<unsigned> 934 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 935 DataRegion<Elf_Word> ShndxTable) const { 936 unsigned Ndx = Symbol.st_shndx; 937 if (Ndx == SHN_XINDEX) 938 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 939 ShndxTable); 940 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 941 return Ndx; 942 943 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) { 944 std::string Desc; 945 if (Offset) 946 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 947 else 948 Desc = Name.str(); 949 return createError( 950 "unable to get section index for symbol with st_shndx = 0x" + 951 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 952 }; 953 954 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 955 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 956 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 957 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 958 if (Ndx == ELF::SHN_UNDEF) 959 return CreateErr("SHN_UNDEF"); 960 if (Ndx == ELF::SHN_ABS) 961 return CreateErr("SHN_ABS"); 962 if (Ndx == ELF::SHN_COMMON) 963 return CreateErr("SHN_COMMON"); 964 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 965 } 966 967 template <typename ELFT> 968 Expected<StringRef> 969 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 970 unsigned SectionIndex) const { 971 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 972 if (!SecOrErr) 973 return SecOrErr.takeError(); 974 return Obj.getSectionName(**SecOrErr); 975 } 976 977 template <class ELFO> 978 static const typename ELFO::Elf_Shdr * 979 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 980 uint64_t Addr) { 981 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 982 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 983 return &Shdr; 984 return nullptr; 985 } 986 987 const EnumEntry<unsigned> ElfClass[] = { 988 {"None", "none", ELF::ELFCLASSNONE}, 989 {"32-bit", "ELF32", ELF::ELFCLASS32}, 990 {"64-bit", "ELF64", ELF::ELFCLASS64}, 991 }; 992 993 const EnumEntry<unsigned> ElfDataEncoding[] = { 994 {"None", "none", ELF::ELFDATANONE}, 995 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 996 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 997 }; 998 999 const EnumEntry<unsigned> ElfObjectFileType[] = { 1000 {"None", "NONE (none)", ELF::ET_NONE}, 1001 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 1002 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 1003 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 1004 {"Core", "CORE (Core file)", ELF::ET_CORE}, 1005 }; 1006 1007 const EnumEntry<unsigned> ElfOSABI[] = { 1008 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 1009 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 1010 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 1011 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 1012 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 1013 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 1014 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 1015 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 1016 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 1017 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1018 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1019 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1020 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1021 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1022 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1023 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1024 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1025 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1026 }; 1027 1028 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1029 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1030 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1031 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1032 }; 1033 1034 const EnumEntry<unsigned> ARMElfOSABI[] = { 1035 {"ARM", "ARM", ELF::ELFOSABI_ARM} 1036 }; 1037 1038 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1039 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1040 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1041 }; 1042 1043 const EnumEntry<unsigned> ElfMachineType[] = { 1044 ENUM_ENT(EM_NONE, "None"), 1045 ENUM_ENT(EM_M32, "WE32100"), 1046 ENUM_ENT(EM_SPARC, "Sparc"), 1047 ENUM_ENT(EM_386, "Intel 80386"), 1048 ENUM_ENT(EM_68K, "MC68000"), 1049 ENUM_ENT(EM_88K, "MC88000"), 1050 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1051 ENUM_ENT(EM_860, "Intel 80860"), 1052 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1053 ENUM_ENT(EM_S370, "IBM System/370"), 1054 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1055 ENUM_ENT(EM_PARISC, "HPPA"), 1056 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1057 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1058 ENUM_ENT(EM_960, "Intel 80960"), 1059 ENUM_ENT(EM_PPC, "PowerPC"), 1060 ENUM_ENT(EM_PPC64, "PowerPC64"), 1061 ENUM_ENT(EM_S390, "IBM S/390"), 1062 ENUM_ENT(EM_SPU, "SPU"), 1063 ENUM_ENT(EM_V800, "NEC V800 series"), 1064 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1065 ENUM_ENT(EM_RH32, "TRW RH-32"), 1066 ENUM_ENT(EM_RCE, "Motorola RCE"), 1067 ENUM_ENT(EM_ARM, "ARM"), 1068 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1069 ENUM_ENT(EM_SH, "Hitachi SH"), 1070 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1071 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1072 ENUM_ENT(EM_ARC, "ARC"), 1073 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1074 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1075 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1076 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1077 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1078 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1079 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1080 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1081 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1082 ENUM_ENT(EM_PCP, "Siemens PCP"), 1083 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1084 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1085 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1086 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1087 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1088 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1089 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1090 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1091 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1092 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1093 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1094 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1095 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1096 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1097 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1098 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1099 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1100 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1101 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1102 ENUM_ENT(EM_VAX, "Digital VAX"), 1103 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1104 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1105 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1106 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1107 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1108 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1109 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1110 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1111 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1112 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1113 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1114 ENUM_ENT(EM_V850, "NEC v850"), 1115 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1116 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1117 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1118 ENUM_ENT(EM_PJ, "picoJava"), 1119 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1120 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1121 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1122 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1123 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1124 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1125 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1126 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1127 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1128 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1129 ENUM_ENT(EM_MAX, "MAX Processor"), 1130 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1131 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1132 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1133 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1134 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1135 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1136 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1137 ENUM_ENT(EM_UNICORE, "Unicore"), 1138 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1139 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1140 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1141 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1142 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1143 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1144 ENUM_ENT(EM_M16C, "Renesas M16C"), 1145 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1146 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1147 ENUM_ENT(EM_M32C, "Renesas M32C"), 1148 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1149 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1150 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1151 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1152 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1153 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1154 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1155 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1156 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1157 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1158 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1159 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1160 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1161 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1162 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1163 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1164 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1165 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1166 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1167 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1168 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1169 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1170 // an identical number to EM_ECOG1. 1171 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1172 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1173 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1174 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1175 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1176 ENUM_ENT(EM_RX, "Renesas RX"), 1177 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1178 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1179 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1180 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1181 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1182 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1183 ENUM_ENT(EM_L10M, "EM_L10M"), 1184 ENUM_ENT(EM_K10M, "EM_K10M"), 1185 ENUM_ENT(EM_AARCH64, "AArch64"), 1186 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1187 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1188 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1189 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1190 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1191 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1192 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1193 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1194 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1195 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1196 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1197 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1198 ENUM_ENT(EM_RL78, "Renesas RL78"), 1199 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1200 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1201 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1202 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1203 ENUM_ENT(EM_RISCV, "RISC-V"), 1204 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1205 ENUM_ENT(EM_BPF, "EM_BPF"), 1206 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1207 }; 1208 1209 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1210 {"Local", "LOCAL", ELF::STB_LOCAL}, 1211 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1212 {"Weak", "WEAK", ELF::STB_WEAK}, 1213 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1214 1215 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1216 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1217 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1218 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1219 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1220 1221 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1222 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1223 }; 1224 1225 static const char *getGroupType(uint32_t Flag) { 1226 if (Flag & ELF::GRP_COMDAT) 1227 return "COMDAT"; 1228 else 1229 return "(unknown)"; 1230 } 1231 1232 const EnumEntry<unsigned> ElfSectionFlags[] = { 1233 ENUM_ENT(SHF_WRITE, "W"), 1234 ENUM_ENT(SHF_ALLOC, "A"), 1235 ENUM_ENT(SHF_EXECINSTR, "X"), 1236 ENUM_ENT(SHF_MERGE, "M"), 1237 ENUM_ENT(SHF_STRINGS, "S"), 1238 ENUM_ENT(SHF_INFO_LINK, "I"), 1239 ENUM_ENT(SHF_LINK_ORDER, "L"), 1240 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1241 ENUM_ENT(SHF_GROUP, "G"), 1242 ENUM_ENT(SHF_TLS, "T"), 1243 ENUM_ENT(SHF_COMPRESSED, "C"), 1244 ENUM_ENT(SHF_GNU_RETAIN, "R"), 1245 ENUM_ENT(SHF_EXCLUDE, "E"), 1246 }; 1247 1248 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1249 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1250 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1251 }; 1252 1253 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1254 ENUM_ENT(SHF_ARM_PURECODE, "y") 1255 }; 1256 1257 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1258 ENUM_ENT(SHF_HEX_GPREL, "") 1259 }; 1260 1261 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1262 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1263 ENUM_ENT(SHF_MIPS_NAMES, ""), 1264 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1265 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1266 ENUM_ENT(SHF_MIPS_GPREL, ""), 1267 ENUM_ENT(SHF_MIPS_MERGE, ""), 1268 ENUM_ENT(SHF_MIPS_ADDR, ""), 1269 ENUM_ENT(SHF_MIPS_STRING, "") 1270 }; 1271 1272 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1273 ENUM_ENT(SHF_X86_64_LARGE, "l") 1274 }; 1275 1276 static std::vector<EnumEntry<unsigned>> 1277 getSectionFlagsForTarget(unsigned EMachine) { 1278 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1279 std::end(ElfSectionFlags)); 1280 switch (EMachine) { 1281 case EM_ARM: 1282 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1283 std::end(ElfARMSectionFlags)); 1284 break; 1285 case EM_HEXAGON: 1286 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1287 std::end(ElfHexagonSectionFlags)); 1288 break; 1289 case EM_MIPS: 1290 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1291 std::end(ElfMipsSectionFlags)); 1292 break; 1293 case EM_X86_64: 1294 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1295 std::end(ElfX86_64SectionFlags)); 1296 break; 1297 case EM_XCORE: 1298 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1299 std::end(ElfXCoreSectionFlags)); 1300 break; 1301 default: 1302 break; 1303 } 1304 return Ret; 1305 } 1306 1307 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) { 1308 // Here we are trying to build the flags string in the same way as GNU does. 1309 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1310 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1311 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1312 // "p". It only will print "E" when no other processor flag is set. 1313 std::string Str; 1314 bool HasUnknownFlag = false; 1315 bool HasOSFlag = false; 1316 bool HasProcFlag = false; 1317 std::vector<EnumEntry<unsigned>> FlagsList = 1318 getSectionFlagsForTarget(EMachine); 1319 while (Flags) { 1320 // Take the least significant bit as a flag. 1321 uint64_t Flag = Flags & -Flags; 1322 Flags -= Flag; 1323 1324 // Find the flag in the known flags list. 1325 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1326 // Flags with empty names are not printed in GNU style output. 1327 return E.Value == Flag && !E.AltName.empty(); 1328 }); 1329 if (I != FlagsList.end()) { 1330 Str += I->AltName; 1331 continue; 1332 } 1333 1334 // If we did not find a matching regular flag, then we deal with an OS 1335 // specific flag, processor specific flag or an unknown flag. 1336 if (Flag & ELF::SHF_MASKOS) { 1337 HasOSFlag = true; 1338 Flags &= ~ELF::SHF_MASKOS; 1339 } else if (Flag & ELF::SHF_MASKPROC) { 1340 HasProcFlag = true; 1341 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1342 // bit if set so that it doesn't also get printed. 1343 Flags &= ~ELF::SHF_MASKPROC; 1344 } else { 1345 HasUnknownFlag = true; 1346 } 1347 } 1348 1349 // "o", "p" and "x" are printed last. 1350 if (HasOSFlag) 1351 Str += "o"; 1352 if (HasProcFlag) 1353 Str += "p"; 1354 if (HasUnknownFlag) 1355 Str += "x"; 1356 return Str; 1357 } 1358 1359 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1360 // Check potentially overlapped processor-specific program header type. 1361 switch (Arch) { 1362 case ELF::EM_ARM: 1363 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1364 break; 1365 case ELF::EM_MIPS: 1366 case ELF::EM_MIPS_RS3_LE: 1367 switch (Type) { 1368 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1369 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1370 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1371 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1372 } 1373 break; 1374 } 1375 1376 switch (Type) { 1377 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1378 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1379 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1380 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1381 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1382 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1383 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1384 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1385 1386 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1387 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1388 1389 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1390 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1391 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1392 1393 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1394 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1395 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1396 default: 1397 return ""; 1398 } 1399 } 1400 1401 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1402 StringRef Seg = segmentTypeToString(Arch, Type); 1403 if (Seg.empty()) 1404 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1405 1406 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1407 if (Seg.startswith("PT_ARM_")) 1408 return Seg.drop_front(7).str(); 1409 1410 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1411 if (Seg.startswith("PT_MIPS_")) 1412 return Seg.drop_front(8).str(); 1413 1414 // E.g. "PT_LOAD" -> "LOAD". 1415 assert(Seg.startswith("PT_")); 1416 return Seg.drop_front(3).str(); 1417 } 1418 1419 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1420 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1421 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1422 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1423 }; 1424 1425 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1426 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1427 ENUM_ENT(EF_MIPS_PIC, "pic"), 1428 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1429 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1430 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1431 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1432 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1433 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1434 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1435 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1436 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1437 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1438 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1439 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1440 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1441 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1442 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1443 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1444 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1445 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1446 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1447 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1448 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1449 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1450 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1451 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1452 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1453 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1454 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1455 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1456 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1457 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1458 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1459 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1460 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1461 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1462 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1463 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1464 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1465 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1466 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1467 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1468 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1469 }; 1470 1471 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1472 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1473 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1474 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1475 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1476 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1477 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1478 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1479 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1480 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1481 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1482 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1483 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1484 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1485 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1486 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1487 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1488 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1489 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1490 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1491 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1492 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1493 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1494 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1495 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3), 1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3) 1523 }; 1524 1525 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4), 1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4), 1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4), 1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4), 1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4), 1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4) 1581 }; 1582 1583 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1584 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1585 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1586 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1587 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1588 ENUM_ENT(EF_RISCV_RVE, "RVE"), 1589 ENUM_ENT(EF_RISCV_TSO, "TSO"), 1590 }; 1591 1592 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1611 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1612 }; 1613 1614 1615 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1616 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1617 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1618 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1619 }; 1620 1621 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1622 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1623 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1624 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1625 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1626 }; 1627 1628 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1629 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1630 }; 1631 1632 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1633 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1634 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1635 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1636 }; 1637 1638 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1639 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1640 1641 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1642 switch (Odk) { 1643 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1644 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1645 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1646 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1647 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1648 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1649 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1650 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1651 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1652 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1653 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1654 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1655 default: 1656 return "Unknown"; 1657 } 1658 } 1659 1660 template <typename ELFT> 1661 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1662 ELFDumper<ELFT>::findDynamic() { 1663 // Try to locate the PT_DYNAMIC header. 1664 const Elf_Phdr *DynamicPhdr = nullptr; 1665 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1666 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1667 if (Phdr.p_type != ELF::PT_DYNAMIC) 1668 continue; 1669 DynamicPhdr = &Phdr; 1670 break; 1671 } 1672 } else { 1673 reportUniqueWarning( 1674 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1675 toString(PhdrsOrErr.takeError())); 1676 } 1677 1678 // Try to locate the .dynamic section in the sections header table. 1679 const Elf_Shdr *DynamicSec = nullptr; 1680 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1681 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1682 continue; 1683 DynamicSec = &Sec; 1684 break; 1685 } 1686 1687 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1688 ObjF.getMemoryBufferRef().getBufferSize()) || 1689 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1690 DynamicPhdr->p_offset))) { 1691 reportUniqueWarning( 1692 "PT_DYNAMIC segment offset (0x" + 1693 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1694 Twine::utohexstr(DynamicPhdr->p_filesz) + 1695 ") exceeds the size of the file (0x" + 1696 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1697 // Don't use the broken dynamic header. 1698 DynamicPhdr = nullptr; 1699 } 1700 1701 if (DynamicPhdr && DynamicSec) { 1702 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1703 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1704 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1705 reportUniqueWarning(describe(*DynamicSec) + 1706 " is not contained within the " 1707 "PT_DYNAMIC segment"); 1708 1709 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1710 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1711 "PT_DYNAMIC segment"); 1712 } 1713 1714 return std::make_pair(DynamicPhdr, DynamicSec); 1715 } 1716 1717 template <typename ELFT> 1718 void ELFDumper<ELFT>::loadDynamicTable() { 1719 const Elf_Phdr *DynamicPhdr; 1720 const Elf_Shdr *DynamicSec; 1721 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1722 if (!DynamicPhdr && !DynamicSec) 1723 return; 1724 1725 DynRegionInfo FromPhdr(ObjF, *this); 1726 bool IsPhdrTableValid = false; 1727 if (DynamicPhdr) { 1728 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1729 // validated in findDynamic() and so createDRI() is not expected to fail. 1730 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1731 sizeof(Elf_Dyn))); 1732 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1733 FromPhdr.EntSizePrintName = ""; 1734 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1735 } 1736 1737 // Locate the dynamic table described in a section header. 1738 // Ignore sh_entsize and use the expected value for entry size explicitly. 1739 // This allows us to dump dynamic sections with a broken sh_entsize 1740 // field. 1741 DynRegionInfo FromSec(ObjF, *this); 1742 bool IsSecTableValid = false; 1743 if (DynamicSec) { 1744 Expected<DynRegionInfo> RegOrErr = 1745 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1746 if (RegOrErr) { 1747 FromSec = *RegOrErr; 1748 FromSec.Context = describe(*DynamicSec); 1749 FromSec.EntSizePrintName = ""; 1750 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1751 } else { 1752 reportUniqueWarning("unable to read the dynamic table from " + 1753 describe(*DynamicSec) + ": " + 1754 toString(RegOrErr.takeError())); 1755 } 1756 } 1757 1758 // When we only have information from one of the SHT_DYNAMIC section header or 1759 // PT_DYNAMIC program header, just use that. 1760 if (!DynamicPhdr || !DynamicSec) { 1761 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1762 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1763 parseDynamicTable(); 1764 } else { 1765 reportUniqueWarning("no valid dynamic table was found"); 1766 } 1767 return; 1768 } 1769 1770 // At this point we have tables found from the section header and from the 1771 // dynamic segment. Usually they match, but we have to do sanity checks to 1772 // verify that. 1773 1774 if (FromPhdr.Addr != FromSec.Addr) 1775 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1776 "program header disagree about " 1777 "the location of the dynamic table"); 1778 1779 if (!IsPhdrTableValid && !IsSecTableValid) { 1780 reportUniqueWarning("no valid dynamic table was found"); 1781 return; 1782 } 1783 1784 // Information in the PT_DYNAMIC program header has priority over the 1785 // information in a section header. 1786 if (IsPhdrTableValid) { 1787 if (!IsSecTableValid) 1788 reportUniqueWarning( 1789 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1790 DynamicTable = FromPhdr; 1791 } else { 1792 reportUniqueWarning( 1793 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1794 DynamicTable = FromSec; 1795 } 1796 1797 parseDynamicTable(); 1798 } 1799 1800 template <typename ELFT> 1801 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1802 ScopedPrinter &Writer) 1803 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1804 FileName(O.getFileName()), DynRelRegion(O, *this), 1805 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1806 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1807 DynamicTable(O, *this) { 1808 if (!O.IsContentValid()) 1809 return; 1810 1811 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1812 for (const Elf_Shdr &Sec : Sections) { 1813 switch (Sec.sh_type) { 1814 case ELF::SHT_SYMTAB: 1815 if (!DotSymtabSec) 1816 DotSymtabSec = &Sec; 1817 break; 1818 case ELF::SHT_DYNSYM: 1819 if (!DotDynsymSec) 1820 DotDynsymSec = &Sec; 1821 1822 if (!DynSymRegion) { 1823 Expected<DynRegionInfo> RegOrErr = 1824 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1825 if (RegOrErr) { 1826 DynSymRegion = *RegOrErr; 1827 DynSymRegion->Context = describe(Sec); 1828 1829 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1830 DynamicStringTable = *E; 1831 else 1832 reportUniqueWarning("unable to get the string table for the " + 1833 describe(Sec) + ": " + toString(E.takeError())); 1834 } else { 1835 reportUniqueWarning("unable to read dynamic symbols from " + 1836 describe(Sec) + ": " + 1837 toString(RegOrErr.takeError())); 1838 } 1839 } 1840 break; 1841 case ELF::SHT_SYMTAB_SHNDX: { 1842 uint32_t SymtabNdx = Sec.sh_link; 1843 if (SymtabNdx >= Sections.size()) { 1844 reportUniqueWarning( 1845 "unable to get the associated symbol table for " + describe(Sec) + 1846 ": sh_link (" + Twine(SymtabNdx) + 1847 ") is greater than or equal to the total number of sections (" + 1848 Twine(Sections.size()) + ")"); 1849 continue; 1850 } 1851 1852 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1853 Obj.getSHNDXTable(Sec)) { 1854 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1855 .second) 1856 reportUniqueWarning( 1857 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1858 describe(Sec)); 1859 } else { 1860 reportUniqueWarning(ShndxTableOrErr.takeError()); 1861 } 1862 break; 1863 } 1864 case ELF::SHT_GNU_versym: 1865 if (!SymbolVersionSection) 1866 SymbolVersionSection = &Sec; 1867 break; 1868 case ELF::SHT_GNU_verdef: 1869 if (!SymbolVersionDefSection) 1870 SymbolVersionDefSection = &Sec; 1871 break; 1872 case ELF::SHT_GNU_verneed: 1873 if (!SymbolVersionNeedSection) 1874 SymbolVersionNeedSection = &Sec; 1875 break; 1876 case ELF::SHT_LLVM_ADDRSIG: 1877 if (!DotAddrsigSec) 1878 DotAddrsigSec = &Sec; 1879 break; 1880 } 1881 } 1882 1883 loadDynamicTable(); 1884 } 1885 1886 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1887 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 1888 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 1889 this->reportUniqueWarning(Msg); 1890 return Error::success(); 1891 }); 1892 if (!MappedAddrOrError) { 1893 this->reportUniqueWarning("unable to parse DT_" + 1894 Obj.getDynamicTagAsString(Tag) + ": " + 1895 llvm::toString(MappedAddrOrError.takeError())); 1896 return nullptr; 1897 } 1898 return MappedAddrOrError.get(); 1899 }; 1900 1901 const char *StringTableBegin = nullptr; 1902 uint64_t StringTableSize = 0; 1903 Optional<DynRegionInfo> DynSymFromTable; 1904 for (const Elf_Dyn &Dyn : dynamic_table()) { 1905 switch (Dyn.d_tag) { 1906 case ELF::DT_HASH: 1907 HashTable = reinterpret_cast<const Elf_Hash *>( 1908 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1909 break; 1910 case ELF::DT_GNU_HASH: 1911 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 1912 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1913 break; 1914 case ELF::DT_STRTAB: 1915 StringTableBegin = reinterpret_cast<const char *>( 1916 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1917 break; 1918 case ELF::DT_STRSZ: 1919 StringTableSize = Dyn.getVal(); 1920 break; 1921 case ELF::DT_SYMTAB: { 1922 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 1923 // no program headers), we ignore its value. 1924 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 1925 DynSymFromTable.emplace(ObjF, *this); 1926 DynSymFromTable->Addr = VA; 1927 DynSymFromTable->EntSize = sizeof(Elf_Sym); 1928 DynSymFromTable->EntSizePrintName = ""; 1929 } 1930 break; 1931 } 1932 case ELF::DT_SYMENT: { 1933 uint64_t Val = Dyn.getVal(); 1934 if (Val != sizeof(Elf_Sym)) 1935 this->reportUniqueWarning("DT_SYMENT value of 0x" + 1936 Twine::utohexstr(Val) + 1937 " is not the size of a symbol (0x" + 1938 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 1939 break; 1940 } 1941 case ELF::DT_RELA: 1942 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1943 break; 1944 case ELF::DT_RELASZ: 1945 DynRelaRegion.Size = Dyn.getVal(); 1946 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 1947 break; 1948 case ELF::DT_RELAENT: 1949 DynRelaRegion.EntSize = Dyn.getVal(); 1950 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 1951 break; 1952 case ELF::DT_SONAME: 1953 SONameOffset = Dyn.getVal(); 1954 break; 1955 case ELF::DT_REL: 1956 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1957 break; 1958 case ELF::DT_RELSZ: 1959 DynRelRegion.Size = Dyn.getVal(); 1960 DynRelRegion.SizePrintName = "DT_RELSZ value"; 1961 break; 1962 case ELF::DT_RELENT: 1963 DynRelRegion.EntSize = Dyn.getVal(); 1964 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 1965 break; 1966 case ELF::DT_RELR: 1967 case ELF::DT_ANDROID_RELR: 1968 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1969 break; 1970 case ELF::DT_RELRSZ: 1971 case ELF::DT_ANDROID_RELRSZ: 1972 DynRelrRegion.Size = Dyn.getVal(); 1973 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 1974 ? "DT_RELRSZ value" 1975 : "DT_ANDROID_RELRSZ value"; 1976 break; 1977 case ELF::DT_RELRENT: 1978 case ELF::DT_ANDROID_RELRENT: 1979 DynRelrRegion.EntSize = Dyn.getVal(); 1980 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 1981 ? "DT_RELRENT value" 1982 : "DT_ANDROID_RELRENT value"; 1983 break; 1984 case ELF::DT_PLTREL: 1985 if (Dyn.getVal() == DT_REL) 1986 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 1987 else if (Dyn.getVal() == DT_RELA) 1988 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 1989 else 1990 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 1991 Twine((uint64_t)Dyn.getVal())); 1992 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 1993 break; 1994 case ELF::DT_JMPREL: 1995 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1996 break; 1997 case ELF::DT_PLTRELSZ: 1998 DynPLTRelRegion.Size = Dyn.getVal(); 1999 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 2000 break; 2001 case ELF::DT_SYMTAB_SHNDX: 2002 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2003 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 2004 break; 2005 } 2006 } 2007 2008 if (StringTableBegin) { 2009 const uint64_t FileSize = Obj.getBufSize(); 2010 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 2011 if (StringTableSize > FileSize - Offset) 2012 reportUniqueWarning( 2013 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 2014 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 2015 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 2016 else 2017 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 2018 } 2019 2020 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2021 if (DynSymRegion) { 2022 // Often we find the information about the dynamic symbol table 2023 // location in the SHT_DYNSYM section header. However, the value in 2024 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2025 // locate .dynsym at runtime. The location we find in the section header 2026 // and the location we find here should match. 2027 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2028 reportUniqueWarning( 2029 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2030 "the location of the dynamic symbol table")); 2031 2032 // According to the ELF gABI: "The number of symbol table entries should 2033 // equal nchain". Check to see if the DT_HASH hash table nchain value 2034 // conflicts with the number of symbols in the dynamic symbol table 2035 // according to the section header. 2036 if (HashTable && IsHashTableSupported) { 2037 if (DynSymRegion->EntSize == 0) 2038 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2039 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2040 reportUniqueWarning( 2041 "hash table nchain (" + Twine(HashTable->nchain) + 2042 ") differs from symbol count derived from SHT_DYNSYM section " 2043 "header (" + 2044 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2045 } 2046 } 2047 2048 // Delay the creation of the actual dynamic symbol table until now, so that 2049 // checks can always be made against the section header-based properties, 2050 // without worrying about tag order. 2051 if (DynSymFromTable) { 2052 if (!DynSymRegion) { 2053 DynSymRegion = DynSymFromTable; 2054 } else { 2055 DynSymRegion->Addr = DynSymFromTable->Addr; 2056 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2057 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2058 } 2059 } 2060 2061 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2062 // present. 2063 if (HashTable && IsHashTableSupported && DynSymRegion) { 2064 const uint64_t FileSize = Obj.getBufSize(); 2065 const uint64_t DerivedSize = 2066 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2067 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2068 if (DerivedSize > FileSize - Offset) 2069 reportUniqueWarning( 2070 "the size (0x" + Twine::utohexstr(DerivedSize) + 2071 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2072 ", derived from the hash table, goes past the end of the file (0x" + 2073 Twine::utohexstr(FileSize) + ") and will be ignored"); 2074 else 2075 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2076 } 2077 } 2078 2079 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2080 // Dump version symbol section. 2081 printVersionSymbolSection(SymbolVersionSection); 2082 2083 // Dump version definition section. 2084 printVersionDefinitionSection(SymbolVersionDefSection); 2085 2086 // Dump version dependency section. 2087 printVersionDependencySection(SymbolVersionNeedSection); 2088 } 2089 2090 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2091 { #enum, prefix##_##enum } 2092 2093 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2094 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2095 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2096 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2097 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2098 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2099 }; 2100 2101 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2102 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2103 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2104 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2105 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2106 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2107 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2108 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2109 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2110 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2111 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2112 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2113 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2114 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2115 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2116 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2117 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2118 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2119 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2120 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2121 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2122 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2123 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2124 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2125 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2126 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2127 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2128 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2129 }; 2130 2131 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2132 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2133 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2134 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2135 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2136 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2137 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2138 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2139 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2140 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2141 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2142 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2143 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2144 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2145 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2146 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2147 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2148 }; 2149 2150 #undef LLVM_READOBJ_DT_FLAG_ENT 2151 2152 template <typename T, typename TFlag> 2153 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2154 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2155 for (const EnumEntry<TFlag> &Flag : Flags) 2156 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2157 SetFlags.push_back(Flag); 2158 2159 for (const EnumEntry<TFlag> &Flag : SetFlags) 2160 OS << Flag.Name << " "; 2161 } 2162 2163 template <class ELFT> 2164 const typename ELFT::Shdr * 2165 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2166 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2167 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2168 if (*NameOrErr == Name) 2169 return &Shdr; 2170 } else { 2171 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2172 ": " + toString(NameOrErr.takeError())); 2173 } 2174 } 2175 return nullptr; 2176 } 2177 2178 template <class ELFT> 2179 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2180 uint64_t Value) const { 2181 auto FormatHexValue = [](uint64_t V) { 2182 std::string Str; 2183 raw_string_ostream OS(Str); 2184 const char *ConvChar = 2185 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2186 OS << format(ConvChar, V); 2187 return OS.str(); 2188 }; 2189 2190 auto FormatFlags = [](uint64_t V, 2191 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2192 std::string Str; 2193 raw_string_ostream OS(Str); 2194 printFlags(V, Array, OS); 2195 return OS.str(); 2196 }; 2197 2198 // Handle custom printing of architecture specific tags 2199 switch (Obj.getHeader().e_machine) { 2200 case EM_AARCH64: 2201 switch (Type) { 2202 case DT_AARCH64_BTI_PLT: 2203 case DT_AARCH64_PAC_PLT: 2204 case DT_AARCH64_VARIANT_PCS: 2205 return std::to_string(Value); 2206 default: 2207 break; 2208 } 2209 break; 2210 case EM_HEXAGON: 2211 switch (Type) { 2212 case DT_HEXAGON_VER: 2213 return std::to_string(Value); 2214 case DT_HEXAGON_SYMSZ: 2215 case DT_HEXAGON_PLT: 2216 return FormatHexValue(Value); 2217 default: 2218 break; 2219 } 2220 break; 2221 case EM_MIPS: 2222 switch (Type) { 2223 case DT_MIPS_RLD_VERSION: 2224 case DT_MIPS_LOCAL_GOTNO: 2225 case DT_MIPS_SYMTABNO: 2226 case DT_MIPS_UNREFEXTNO: 2227 return std::to_string(Value); 2228 case DT_MIPS_TIME_STAMP: 2229 case DT_MIPS_ICHECKSUM: 2230 case DT_MIPS_IVERSION: 2231 case DT_MIPS_BASE_ADDRESS: 2232 case DT_MIPS_MSYM: 2233 case DT_MIPS_CONFLICT: 2234 case DT_MIPS_LIBLIST: 2235 case DT_MIPS_CONFLICTNO: 2236 case DT_MIPS_LIBLISTNO: 2237 case DT_MIPS_GOTSYM: 2238 case DT_MIPS_HIPAGENO: 2239 case DT_MIPS_RLD_MAP: 2240 case DT_MIPS_DELTA_CLASS: 2241 case DT_MIPS_DELTA_CLASS_NO: 2242 case DT_MIPS_DELTA_INSTANCE: 2243 case DT_MIPS_DELTA_RELOC: 2244 case DT_MIPS_DELTA_RELOC_NO: 2245 case DT_MIPS_DELTA_SYM: 2246 case DT_MIPS_DELTA_SYM_NO: 2247 case DT_MIPS_DELTA_CLASSSYM: 2248 case DT_MIPS_DELTA_CLASSSYM_NO: 2249 case DT_MIPS_CXX_FLAGS: 2250 case DT_MIPS_PIXIE_INIT: 2251 case DT_MIPS_SYMBOL_LIB: 2252 case DT_MIPS_LOCALPAGE_GOTIDX: 2253 case DT_MIPS_LOCAL_GOTIDX: 2254 case DT_MIPS_HIDDEN_GOTIDX: 2255 case DT_MIPS_PROTECTED_GOTIDX: 2256 case DT_MIPS_OPTIONS: 2257 case DT_MIPS_INTERFACE: 2258 case DT_MIPS_DYNSTR_ALIGN: 2259 case DT_MIPS_INTERFACE_SIZE: 2260 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2261 case DT_MIPS_PERF_SUFFIX: 2262 case DT_MIPS_COMPACT_SIZE: 2263 case DT_MIPS_GP_VALUE: 2264 case DT_MIPS_AUX_DYNAMIC: 2265 case DT_MIPS_PLTGOT: 2266 case DT_MIPS_RWPLT: 2267 case DT_MIPS_RLD_MAP_REL: 2268 case DT_MIPS_XHASH: 2269 return FormatHexValue(Value); 2270 case DT_MIPS_FLAGS: 2271 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags)); 2272 default: 2273 break; 2274 } 2275 break; 2276 default: 2277 break; 2278 } 2279 2280 switch (Type) { 2281 case DT_PLTREL: 2282 if (Value == DT_REL) 2283 return "REL"; 2284 if (Value == DT_RELA) 2285 return "RELA"; 2286 LLVM_FALLTHROUGH; 2287 case DT_PLTGOT: 2288 case DT_HASH: 2289 case DT_STRTAB: 2290 case DT_SYMTAB: 2291 case DT_RELA: 2292 case DT_INIT: 2293 case DT_FINI: 2294 case DT_REL: 2295 case DT_JMPREL: 2296 case DT_INIT_ARRAY: 2297 case DT_FINI_ARRAY: 2298 case DT_PREINIT_ARRAY: 2299 case DT_DEBUG: 2300 case DT_VERDEF: 2301 case DT_VERNEED: 2302 case DT_VERSYM: 2303 case DT_GNU_HASH: 2304 case DT_NULL: 2305 return FormatHexValue(Value); 2306 case DT_RELACOUNT: 2307 case DT_RELCOUNT: 2308 case DT_VERDEFNUM: 2309 case DT_VERNEEDNUM: 2310 return std::to_string(Value); 2311 case DT_PLTRELSZ: 2312 case DT_RELASZ: 2313 case DT_RELAENT: 2314 case DT_STRSZ: 2315 case DT_SYMENT: 2316 case DT_RELSZ: 2317 case DT_RELENT: 2318 case DT_INIT_ARRAYSZ: 2319 case DT_FINI_ARRAYSZ: 2320 case DT_PREINIT_ARRAYSZ: 2321 case DT_RELRSZ: 2322 case DT_RELRENT: 2323 case DT_ANDROID_RELSZ: 2324 case DT_ANDROID_RELASZ: 2325 return std::to_string(Value) + " (bytes)"; 2326 case DT_NEEDED: 2327 case DT_SONAME: 2328 case DT_AUXILIARY: 2329 case DT_USED: 2330 case DT_FILTER: 2331 case DT_RPATH: 2332 case DT_RUNPATH: { 2333 const std::map<uint64_t, const char *> TagNames = { 2334 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2335 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2336 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2337 {DT_RUNPATH, "Library runpath"}, 2338 }; 2339 2340 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2341 .str(); 2342 } 2343 case DT_FLAGS: 2344 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags)); 2345 case DT_FLAGS_1: 2346 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1)); 2347 default: 2348 return FormatHexValue(Value); 2349 } 2350 } 2351 2352 template <class ELFT> 2353 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2354 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2355 reportUniqueWarning("string table was not found"); 2356 return "<?>"; 2357 } 2358 2359 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2360 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2361 Msg); 2362 return "<?>"; 2363 }; 2364 2365 const uint64_t FileSize = Obj.getBufSize(); 2366 const uint64_t Offset = 2367 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2368 if (DynamicStringTable.size() > FileSize - Offset) 2369 return WarnAndReturn(" with size 0x" + 2370 Twine::utohexstr(DynamicStringTable.size()) + 2371 " goes past the end of the file (0x" + 2372 Twine::utohexstr(FileSize) + ")", 2373 Offset); 2374 2375 if (Value >= DynamicStringTable.size()) 2376 return WarnAndReturn( 2377 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2378 ": it goes past the end of the table (0x" + 2379 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2380 Offset); 2381 2382 if (DynamicStringTable.back() != '\0') 2383 return WarnAndReturn(": unable to read the string at 0x" + 2384 Twine::utohexstr(Offset + Value) + 2385 ": the string table is not null-terminated", 2386 Offset); 2387 2388 return DynamicStringTable.data() + Value; 2389 } 2390 2391 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2392 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2393 Ctx.printUnwindInformation(); 2394 } 2395 2396 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2397 namespace { 2398 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2399 if (Obj.getHeader().e_machine == EM_ARM) { 2400 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2401 DotSymtabSec); 2402 Ctx.PrintUnwindInformation(); 2403 } 2404 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2405 Ctx.printUnwindInformation(); 2406 } 2407 } // namespace 2408 2409 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2410 ListScope D(W, "NeededLibraries"); 2411 2412 std::vector<StringRef> Libs; 2413 for (const auto &Entry : dynamic_table()) 2414 if (Entry.d_tag == ELF::DT_NEEDED) 2415 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2416 2417 llvm::sort(Libs); 2418 2419 for (StringRef L : Libs) 2420 W.startLine() << L << "\n"; 2421 } 2422 2423 template <class ELFT> 2424 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2425 const typename ELFT::Hash *H, 2426 bool *IsHeaderValid = nullptr) { 2427 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2428 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2429 if (Dumper.getHashTableEntSize() == 8) { 2430 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2431 return E.Value == Obj.getHeader().e_machine; 2432 }); 2433 if (IsHeaderValid) 2434 *IsHeaderValid = false; 2435 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2436 " is not supported: it contains non-standard 8 " 2437 "byte entries on " + 2438 It->AltName + " platform"); 2439 } 2440 2441 auto MakeError = [&](const Twine &Msg = "") { 2442 return createError("the hash table at offset 0x" + 2443 Twine::utohexstr(SecOffset) + 2444 " goes past the end of the file (0x" + 2445 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2446 }; 2447 2448 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2449 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2450 2451 if (IsHeaderValid) 2452 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2453 2454 if (Obj.getBufSize() - SecOffset < HeaderSize) 2455 return MakeError(); 2456 2457 if (Obj.getBufSize() - SecOffset - HeaderSize < 2458 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2459 return MakeError(", nbucket = " + Twine(H->nbucket) + 2460 ", nchain = " + Twine(H->nchain)); 2461 return Error::success(); 2462 } 2463 2464 template <class ELFT> 2465 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2466 const typename ELFT::GnuHash *GnuHashTable, 2467 bool *IsHeaderValid = nullptr) { 2468 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2469 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2470 "GnuHashTable must always point to a location inside the file"); 2471 2472 uint64_t TableOffset = TableData - Obj.base(); 2473 if (IsHeaderValid) 2474 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2475 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2476 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2477 Obj.getBufSize()) 2478 return createError("unable to dump the SHT_GNU_HASH " 2479 "section at 0x" + 2480 Twine::utohexstr(TableOffset) + 2481 ": it goes past the end of the file"); 2482 return Error::success(); 2483 } 2484 2485 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2486 DictScope D(W, "HashTable"); 2487 if (!HashTable) 2488 return; 2489 2490 bool IsHeaderValid; 2491 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2492 if (IsHeaderValid) { 2493 W.printNumber("Num Buckets", HashTable->nbucket); 2494 W.printNumber("Num Chains", HashTable->nchain); 2495 } 2496 2497 if (Err) { 2498 reportUniqueWarning(std::move(Err)); 2499 return; 2500 } 2501 2502 W.printList("Buckets", HashTable->buckets()); 2503 W.printList("Chains", HashTable->chains()); 2504 } 2505 2506 template <class ELFT> 2507 static Expected<ArrayRef<typename ELFT::Word>> 2508 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion, 2509 const typename ELFT::GnuHash *GnuHashTable) { 2510 if (!DynSymRegion) 2511 return createError("no dynamic symbol table found"); 2512 2513 ArrayRef<typename ELFT::Sym> DynSymTable = 2514 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2515 size_t NumSyms = DynSymTable.size(); 2516 if (!NumSyms) 2517 return createError("the dynamic symbol table is empty"); 2518 2519 if (GnuHashTable->symndx < NumSyms) 2520 return GnuHashTable->values(NumSyms); 2521 2522 // A normal empty GNU hash table section produced by linker might have 2523 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2524 // and have dummy null values in the Bloom filter and in the buckets 2525 // vector (or no values at all). It happens because the value of symndx is not 2526 // important for dynamic loaders when the GNU hash table is empty. They just 2527 // skip the whole object during symbol lookup. In such cases, the symndx value 2528 // is irrelevant and we should not report a warning. 2529 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2530 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2531 return createError( 2532 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2533 ") is greater than or equal to the number of dynamic symbols (" + 2534 Twine(NumSyms) + ")"); 2535 // There is no way to represent an array of (dynamic symbols count - symndx) 2536 // length. 2537 return ArrayRef<typename ELFT::Word>(); 2538 } 2539 2540 template <typename ELFT> 2541 void ELFDumper<ELFT>::printGnuHashTable() { 2542 DictScope D(W, "GnuHashTable"); 2543 if (!GnuHashTable) 2544 return; 2545 2546 bool IsHeaderValid; 2547 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2548 if (IsHeaderValid) { 2549 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2550 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2551 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2552 W.printNumber("Shift Count", GnuHashTable->shift2); 2553 } 2554 2555 if (Err) { 2556 reportUniqueWarning(std::move(Err)); 2557 return; 2558 } 2559 2560 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2561 W.printHexList("Bloom Filter", BloomFilter); 2562 2563 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2564 W.printList("Buckets", Buckets); 2565 2566 Expected<ArrayRef<Elf_Word>> Chains = 2567 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2568 if (!Chains) { 2569 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2570 "section: " + 2571 toString(Chains.takeError())); 2572 return; 2573 } 2574 2575 W.printHexList("Values", *Chains); 2576 } 2577 2578 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2579 StringRef SOName = "<Not found>"; 2580 if (SONameOffset) 2581 SOName = getDynamicString(*SONameOffset); 2582 W.printString("LoadName", SOName); 2583 } 2584 2585 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2586 switch (Obj.getHeader().e_machine) { 2587 case EM_ARM: 2588 if (Obj.isLE()) 2589 printAttributes(ELF::SHT_ARM_ATTRIBUTES, 2590 std::make_unique<ARMAttributeParser>(&W), 2591 support::little); 2592 else 2593 reportUniqueWarning("attribute printing not implemented for big-endian " 2594 "ARM objects"); 2595 break; 2596 case EM_RISCV: 2597 if (Obj.isLE()) 2598 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2599 std::make_unique<RISCVAttributeParser>(&W), 2600 support::little); 2601 else 2602 reportUniqueWarning("attribute printing not implemented for big-endian " 2603 "RISC-V objects"); 2604 break; 2605 case EM_MSP430: 2606 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2607 std::make_unique<MSP430AttributeParser>(&W), 2608 support::little); 2609 break; 2610 case EM_MIPS: { 2611 printMipsABIFlags(); 2612 printMipsOptions(); 2613 printMipsReginfo(); 2614 MipsGOTParser<ELFT> Parser(*this); 2615 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2616 reportUniqueWarning(std::move(E)); 2617 else if (!Parser.isGotEmpty()) 2618 printMipsGOT(Parser); 2619 2620 if (Error E = Parser.findPLT(dynamic_table())) 2621 reportUniqueWarning(std::move(E)); 2622 else if (!Parser.isPltEmpty()) 2623 printMipsPLT(Parser); 2624 break; 2625 } 2626 default: 2627 break; 2628 } 2629 } 2630 2631 template <class ELFT> 2632 void ELFDumper<ELFT>::printAttributes( 2633 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2634 support::endianness Endianness) { 2635 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2636 "Incomplete ELF attribute implementation"); 2637 DictScope BA(W, "BuildAttributes"); 2638 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2639 if (Sec.sh_type != AttrShType) 2640 continue; 2641 2642 ArrayRef<uint8_t> Contents; 2643 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2644 Obj.getSectionContents(Sec)) { 2645 Contents = *ContentOrErr; 2646 if (Contents.empty()) { 2647 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2648 continue; 2649 } 2650 } else { 2651 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2652 ": " + toString(ContentOrErr.takeError())); 2653 continue; 2654 } 2655 2656 W.printHex("FormatVersion", Contents[0]); 2657 2658 if (Error E = AttrParser->parse(Contents, Endianness)) 2659 reportUniqueWarning("unable to dump attributes from the " + 2660 describe(Sec) + ": " + toString(std::move(E))); 2661 } 2662 } 2663 2664 namespace { 2665 2666 template <class ELFT> class MipsGOTParser { 2667 public: 2668 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2669 using Entry = typename ELFT::Addr; 2670 using Entries = ArrayRef<Entry>; 2671 2672 const bool IsStatic; 2673 const ELFFile<ELFT> &Obj; 2674 const ELFDumper<ELFT> &Dumper; 2675 2676 MipsGOTParser(const ELFDumper<ELFT> &D); 2677 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2678 Error findPLT(Elf_Dyn_Range DynTable); 2679 2680 bool isGotEmpty() const { return GotEntries.empty(); } 2681 bool isPltEmpty() const { return PltEntries.empty(); } 2682 2683 uint64_t getGp() const; 2684 2685 const Entry *getGotLazyResolver() const; 2686 const Entry *getGotModulePointer() const; 2687 const Entry *getPltLazyResolver() const; 2688 const Entry *getPltModulePointer() const; 2689 2690 Entries getLocalEntries() const; 2691 Entries getGlobalEntries() const; 2692 Entries getOtherEntries() const; 2693 Entries getPltEntries() const; 2694 2695 uint64_t getGotAddress(const Entry * E) const; 2696 int64_t getGotOffset(const Entry * E) const; 2697 const Elf_Sym *getGotSym(const Entry *E) const; 2698 2699 uint64_t getPltAddress(const Entry * E) const; 2700 const Elf_Sym *getPltSym(const Entry *E) const; 2701 2702 StringRef getPltStrTable() const { return PltStrTable; } 2703 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2704 2705 private: 2706 const Elf_Shdr *GotSec; 2707 size_t LocalNum; 2708 size_t GlobalNum; 2709 2710 const Elf_Shdr *PltSec; 2711 const Elf_Shdr *PltRelSec; 2712 const Elf_Shdr *PltSymTable; 2713 StringRef FileName; 2714 2715 Elf_Sym_Range GotDynSyms; 2716 StringRef PltStrTable; 2717 2718 Entries GotEntries; 2719 Entries PltEntries; 2720 }; 2721 2722 } // end anonymous namespace 2723 2724 template <class ELFT> 2725 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 2726 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 2727 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 2728 PltRelSec(nullptr), PltSymTable(nullptr), 2729 FileName(D.getElfObject().getFileName()) {} 2730 2731 template <class ELFT> 2732 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 2733 Elf_Sym_Range DynSyms) { 2734 // See "Global Offset Table" in Chapter 5 in the following document 2735 // for detailed GOT description. 2736 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2737 2738 // Find static GOT secton. 2739 if (IsStatic) { 2740 GotSec = Dumper.findSectionByName(".got"); 2741 if (!GotSec) 2742 return Error::success(); 2743 2744 ArrayRef<uint8_t> Content = 2745 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2746 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2747 Content.size() / sizeof(Entry)); 2748 LocalNum = GotEntries.size(); 2749 return Error::success(); 2750 } 2751 2752 // Lookup dynamic table tags which define the GOT layout. 2753 Optional<uint64_t> DtPltGot; 2754 Optional<uint64_t> DtLocalGotNum; 2755 Optional<uint64_t> DtGotSym; 2756 for (const auto &Entry : DynTable) { 2757 switch (Entry.getTag()) { 2758 case ELF::DT_PLTGOT: 2759 DtPltGot = Entry.getVal(); 2760 break; 2761 case ELF::DT_MIPS_LOCAL_GOTNO: 2762 DtLocalGotNum = Entry.getVal(); 2763 break; 2764 case ELF::DT_MIPS_GOTSYM: 2765 DtGotSym = Entry.getVal(); 2766 break; 2767 } 2768 } 2769 2770 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 2771 return Error::success(); 2772 2773 if (!DtPltGot) 2774 return createError("cannot find PLTGOT dynamic tag"); 2775 if (!DtLocalGotNum) 2776 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 2777 if (!DtGotSym) 2778 return createError("cannot find MIPS_GOTSYM dynamic tag"); 2779 2780 size_t DynSymTotal = DynSyms.size(); 2781 if (*DtGotSym > DynSymTotal) 2782 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 2783 ") exceeds the number of dynamic symbols (" + 2784 Twine(DynSymTotal) + ")"); 2785 2786 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 2787 if (!GotSec) 2788 return createError("there is no non-empty GOT section at 0x" + 2789 Twine::utohexstr(*DtPltGot)); 2790 2791 LocalNum = *DtLocalGotNum; 2792 GlobalNum = DynSymTotal - *DtGotSym; 2793 2794 ArrayRef<uint8_t> Content = 2795 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2796 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2797 Content.size() / sizeof(Entry)); 2798 GotDynSyms = DynSyms.drop_front(*DtGotSym); 2799 2800 return Error::success(); 2801 } 2802 2803 template <class ELFT> 2804 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 2805 // Lookup dynamic table tags which define the PLT layout. 2806 Optional<uint64_t> DtMipsPltGot; 2807 Optional<uint64_t> DtJmpRel; 2808 for (const auto &Entry : DynTable) { 2809 switch (Entry.getTag()) { 2810 case ELF::DT_MIPS_PLTGOT: 2811 DtMipsPltGot = Entry.getVal(); 2812 break; 2813 case ELF::DT_JMPREL: 2814 DtJmpRel = Entry.getVal(); 2815 break; 2816 } 2817 } 2818 2819 if (!DtMipsPltGot && !DtJmpRel) 2820 return Error::success(); 2821 2822 // Find PLT section. 2823 if (!DtMipsPltGot) 2824 return createError("cannot find MIPS_PLTGOT dynamic tag"); 2825 if (!DtJmpRel) 2826 return createError("cannot find JMPREL dynamic tag"); 2827 2828 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 2829 if (!PltSec) 2830 return createError("there is no non-empty PLTGOT section at 0x" + 2831 Twine::utohexstr(*DtMipsPltGot)); 2832 2833 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 2834 if (!PltRelSec) 2835 return createError("there is no non-empty RELPLT section at 0x" + 2836 Twine::utohexstr(*DtJmpRel)); 2837 2838 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 2839 Obj.getSectionContents(*PltSec)) 2840 PltEntries = 2841 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 2842 PltContentOrErr->size() / sizeof(Entry)); 2843 else 2844 return createError("unable to read PLTGOT section content: " + 2845 toString(PltContentOrErr.takeError())); 2846 2847 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 2848 Obj.getSection(PltRelSec->sh_link)) 2849 PltSymTable = *PltSymTableOrErr; 2850 else 2851 return createError("unable to get a symbol table linked to the " + 2852 describe(Obj, *PltRelSec) + ": " + 2853 toString(PltSymTableOrErr.takeError())); 2854 2855 if (Expected<StringRef> StrTabOrErr = 2856 Obj.getStringTableForSymtab(*PltSymTable)) 2857 PltStrTable = *StrTabOrErr; 2858 else 2859 return createError("unable to get a string table for the " + 2860 describe(Obj, *PltSymTable) + ": " + 2861 toString(StrTabOrErr.takeError())); 2862 2863 return Error::success(); 2864 } 2865 2866 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 2867 return GotSec->sh_addr + 0x7ff0; 2868 } 2869 2870 template <class ELFT> 2871 const typename MipsGOTParser<ELFT>::Entry * 2872 MipsGOTParser<ELFT>::getGotLazyResolver() const { 2873 return LocalNum > 0 ? &GotEntries[0] : nullptr; 2874 } 2875 2876 template <class ELFT> 2877 const typename MipsGOTParser<ELFT>::Entry * 2878 MipsGOTParser<ELFT>::getGotModulePointer() const { 2879 if (LocalNum < 2) 2880 return nullptr; 2881 const Entry &E = GotEntries[1]; 2882 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 2883 return nullptr; 2884 return &E; 2885 } 2886 2887 template <class ELFT> 2888 typename MipsGOTParser<ELFT>::Entries 2889 MipsGOTParser<ELFT>::getLocalEntries() const { 2890 size_t Skip = getGotModulePointer() ? 2 : 1; 2891 if (LocalNum - Skip <= 0) 2892 return Entries(); 2893 return GotEntries.slice(Skip, LocalNum - Skip); 2894 } 2895 2896 template <class ELFT> 2897 typename MipsGOTParser<ELFT>::Entries 2898 MipsGOTParser<ELFT>::getGlobalEntries() const { 2899 if (GlobalNum == 0) 2900 return Entries(); 2901 return GotEntries.slice(LocalNum, GlobalNum); 2902 } 2903 2904 template <class ELFT> 2905 typename MipsGOTParser<ELFT>::Entries 2906 MipsGOTParser<ELFT>::getOtherEntries() const { 2907 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 2908 if (OtherNum == 0) 2909 return Entries(); 2910 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 2911 } 2912 2913 template <class ELFT> 2914 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 2915 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2916 return GotSec->sh_addr + Offset; 2917 } 2918 2919 template <class ELFT> 2920 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 2921 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2922 return Offset - 0x7ff0; 2923 } 2924 2925 template <class ELFT> 2926 const typename MipsGOTParser<ELFT>::Elf_Sym * 2927 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 2928 int64_t Offset = std::distance(GotEntries.data(), E); 2929 return &GotDynSyms[Offset - LocalNum]; 2930 } 2931 2932 template <class ELFT> 2933 const typename MipsGOTParser<ELFT>::Entry * 2934 MipsGOTParser<ELFT>::getPltLazyResolver() const { 2935 return PltEntries.empty() ? nullptr : &PltEntries[0]; 2936 } 2937 2938 template <class ELFT> 2939 const typename MipsGOTParser<ELFT>::Entry * 2940 MipsGOTParser<ELFT>::getPltModulePointer() const { 2941 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 2942 } 2943 2944 template <class ELFT> 2945 typename MipsGOTParser<ELFT>::Entries 2946 MipsGOTParser<ELFT>::getPltEntries() const { 2947 if (PltEntries.size() <= 2) 2948 return Entries(); 2949 return PltEntries.slice(2, PltEntries.size() - 2); 2950 } 2951 2952 template <class ELFT> 2953 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 2954 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 2955 return PltSec->sh_addr + Offset; 2956 } 2957 2958 template <class ELFT> 2959 const typename MipsGOTParser<ELFT>::Elf_Sym * 2960 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 2961 int64_t Offset = std::distance(getPltEntries().data(), E); 2962 if (PltRelSec->sh_type == ELF::SHT_REL) { 2963 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 2964 return unwrapOrError(FileName, 2965 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2966 } else { 2967 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 2968 return unwrapOrError(FileName, 2969 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2970 } 2971 } 2972 2973 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 2974 {"None", Mips::AFL_EXT_NONE}, 2975 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 2976 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 2977 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 2978 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 2979 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 2980 {"LSI R4010", Mips::AFL_EXT_4010}, 2981 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 2982 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 2983 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 2984 {"MIPS R4650", Mips::AFL_EXT_4650}, 2985 {"MIPS R5900", Mips::AFL_EXT_5900}, 2986 {"MIPS R10000", Mips::AFL_EXT_10000}, 2987 {"NEC VR4100", Mips::AFL_EXT_4100}, 2988 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 2989 {"NEC VR4120", Mips::AFL_EXT_4120}, 2990 {"NEC VR5400", Mips::AFL_EXT_5400}, 2991 {"NEC VR5500", Mips::AFL_EXT_5500}, 2992 {"RMI Xlr", Mips::AFL_EXT_XLR}, 2993 {"Toshiba R3900", Mips::AFL_EXT_3900} 2994 }; 2995 2996 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 2997 {"DSP", Mips::AFL_ASE_DSP}, 2998 {"DSPR2", Mips::AFL_ASE_DSPR2}, 2999 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 3000 {"MCU", Mips::AFL_ASE_MCU}, 3001 {"MDMX", Mips::AFL_ASE_MDMX}, 3002 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 3003 {"MT", Mips::AFL_ASE_MT}, 3004 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 3005 {"VZ", Mips::AFL_ASE_VIRT}, 3006 {"MSA", Mips::AFL_ASE_MSA}, 3007 {"MIPS16", Mips::AFL_ASE_MIPS16}, 3008 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 3009 {"XPA", Mips::AFL_ASE_XPA}, 3010 {"CRC", Mips::AFL_ASE_CRC}, 3011 {"GINV", Mips::AFL_ASE_GINV}, 3012 }; 3013 3014 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 3015 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 3016 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 3017 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 3018 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 3019 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3020 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3021 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3022 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3023 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3024 Mips::Val_GNU_MIPS_ABI_FP_64A} 3025 }; 3026 3027 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3028 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3029 }; 3030 3031 static int getMipsRegisterSize(uint8_t Flag) { 3032 switch (Flag) { 3033 case Mips::AFL_REG_NONE: 3034 return 0; 3035 case Mips::AFL_REG_32: 3036 return 32; 3037 case Mips::AFL_REG_64: 3038 return 64; 3039 case Mips::AFL_REG_128: 3040 return 128; 3041 default: 3042 return -1; 3043 } 3044 } 3045 3046 template <class ELFT> 3047 static void printMipsReginfoData(ScopedPrinter &W, 3048 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3049 W.printHex("GP", Reginfo.ri_gp_value); 3050 W.printHex("General Mask", Reginfo.ri_gprmask); 3051 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3052 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3053 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3054 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3055 } 3056 3057 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3058 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3059 if (!RegInfoSec) { 3060 W.startLine() << "There is no .reginfo section in the file.\n"; 3061 return; 3062 } 3063 3064 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3065 Obj.getSectionContents(*RegInfoSec); 3066 if (!ContentsOrErr) { 3067 this->reportUniqueWarning( 3068 "unable to read the content of the .reginfo section (" + 3069 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3070 return; 3071 } 3072 3073 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3074 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3075 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3076 return; 3077 } 3078 3079 DictScope GS(W, "MIPS RegInfo"); 3080 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3081 ContentsOrErr->data())); 3082 } 3083 3084 template <class ELFT> 3085 static Expected<const Elf_Mips_Options<ELFT> *> 3086 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3087 bool &IsSupported) { 3088 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3089 return createError("the .MIPS.options section has an invalid size (0x" + 3090 Twine::utohexstr(SecData.size()) + ")"); 3091 3092 const Elf_Mips_Options<ELFT> *O = 3093 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3094 const uint8_t Size = O->size; 3095 if (Size > SecData.size()) { 3096 const uint64_t Offset = SecData.data() - SecBegin; 3097 const uint64_t SecSize = Offset + SecData.size(); 3098 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3099 " at offset 0x" + Twine::utohexstr(Offset) + 3100 " goes past the end of the .MIPS.options " 3101 "section of size 0x" + 3102 Twine::utohexstr(SecSize)); 3103 } 3104 3105 IsSupported = O->kind == ODK_REGINFO; 3106 const size_t ExpectedSize = 3107 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3108 3109 if (IsSupported) 3110 if (Size < ExpectedSize) 3111 return createError( 3112 "a .MIPS.options entry of kind " + 3113 Twine(getElfMipsOptionsOdkType(O->kind)) + 3114 " has an invalid size (0x" + Twine::utohexstr(Size) + 3115 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3116 3117 SecData = SecData.drop_front(Size); 3118 return O; 3119 } 3120 3121 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3122 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3123 if (!MipsOpts) { 3124 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3125 return; 3126 } 3127 3128 DictScope GS(W, "MIPS Options"); 3129 3130 ArrayRef<uint8_t> Data = 3131 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3132 const uint8_t *const SecBegin = Data.begin(); 3133 while (!Data.empty()) { 3134 bool IsSupported; 3135 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3136 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3137 if (!OptsOrErr) { 3138 reportUniqueWarning(OptsOrErr.takeError()); 3139 break; 3140 } 3141 3142 unsigned Kind = (*OptsOrErr)->kind; 3143 const char *Type = getElfMipsOptionsOdkType(Kind); 3144 if (!IsSupported) { 3145 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3146 << ")\n"; 3147 continue; 3148 } 3149 3150 DictScope GS(W, Type); 3151 if (Kind == ODK_REGINFO) 3152 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3153 else 3154 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3155 } 3156 } 3157 3158 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3159 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3160 if (!StackMapSection) 3161 return; 3162 3163 auto Warn = [&](Error &&E) { 3164 this->reportUniqueWarning("unable to read the stack map from " + 3165 describe(*StackMapSection) + ": " + 3166 toString(std::move(E))); 3167 }; 3168 3169 Expected<ArrayRef<uint8_t>> ContentOrErr = 3170 Obj.getSectionContents(*StackMapSection); 3171 if (!ContentOrErr) { 3172 Warn(ContentOrErr.takeError()); 3173 return; 3174 } 3175 3176 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3177 *ContentOrErr)) { 3178 Warn(std::move(E)); 3179 return; 3180 } 3181 3182 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3183 } 3184 3185 template <class ELFT> 3186 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3187 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3188 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3189 if (!Target) 3190 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3191 " in " + describe(Sec) + ": " + 3192 toString(Target.takeError())); 3193 else 3194 printRelRelaReloc(R, *Target); 3195 } 3196 3197 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3198 StringRef Str2) { 3199 OS.PadToColumn(2u); 3200 OS << Str1; 3201 OS.PadToColumn(37u); 3202 OS << Str2 << "\n"; 3203 OS.flush(); 3204 } 3205 3206 template <class ELFT> 3207 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3208 StringRef FileName) { 3209 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3210 if (ElfHeader.e_shnum != 0) 3211 return to_string(ElfHeader.e_shnum); 3212 3213 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3214 if (!ArrOrErr) { 3215 // In this case we can ignore an error, because we have already reported a 3216 // warning about the broken section header table earlier. 3217 consumeError(ArrOrErr.takeError()); 3218 return "<?>"; 3219 } 3220 3221 if (ArrOrErr->empty()) 3222 return "0"; 3223 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3224 } 3225 3226 template <class ELFT> 3227 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3228 StringRef FileName) { 3229 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3230 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3231 return to_string(ElfHeader.e_shstrndx); 3232 3233 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3234 if (!ArrOrErr) { 3235 // In this case we can ignore an error, because we have already reported a 3236 // warning about the broken section header table earlier. 3237 consumeError(ArrOrErr.takeError()); 3238 return "<?>"; 3239 } 3240 3241 if (ArrOrErr->empty()) 3242 return "65535 (corrupt: out of range)"; 3243 return to_string(ElfHeader.e_shstrndx) + " (" + 3244 to_string((*ArrOrErr)[0].sh_link) + ")"; 3245 } 3246 3247 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3248 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3249 return E.Value == Type; 3250 }); 3251 if (It != makeArrayRef(ElfObjectFileType).end()) 3252 return It; 3253 return nullptr; 3254 } 3255 3256 template <class ELFT> 3257 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 3258 ArrayRef<std::string> InputFilenames, 3259 const Archive *A) { 3260 if (InputFilenames.size() > 1 || A) { 3261 this->W.startLine() << "\n"; 3262 this->W.printString("File", FileStr); 3263 } 3264 } 3265 3266 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3267 const Elf_Ehdr &e = this->Obj.getHeader(); 3268 OS << "ELF Header:\n"; 3269 OS << " Magic: "; 3270 std::string Str; 3271 for (int i = 0; i < ELF::EI_NIDENT; i++) 3272 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3273 OS << "\n"; 3274 Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 3275 printFields(OS, "Class:", Str); 3276 Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); 3277 printFields(OS, "Data:", Str); 3278 OS.PadToColumn(2u); 3279 OS << "Version:"; 3280 OS.PadToColumn(37u); 3281 OS << to_hexString(e.e_ident[ELF::EI_VERSION]); 3282 if (e.e_version == ELF::EV_CURRENT) 3283 OS << " (current)"; 3284 OS << "\n"; 3285 Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); 3286 printFields(OS, "OS/ABI:", Str); 3287 printFields(OS, 3288 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3289 3290 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3291 Str = E->AltName.str(); 3292 } else { 3293 if (e.e_type >= ET_LOPROC) 3294 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")"; 3295 else if (e.e_type >= ET_LOOS) 3296 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")"; 3297 else 3298 Str = "<unknown>: " + to_hexString(e.e_type, false); 3299 } 3300 printFields(OS, "Type:", Str); 3301 3302 Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType)); 3303 printFields(OS, "Machine:", Str); 3304 Str = "0x" + to_hexString(e.e_version); 3305 printFields(OS, "Version:", Str); 3306 Str = "0x" + to_hexString(e.e_entry); 3307 printFields(OS, "Entry point address:", Str); 3308 Str = to_string(e.e_phoff) + " (bytes into file)"; 3309 printFields(OS, "Start of program headers:", Str); 3310 Str = to_string(e.e_shoff) + " (bytes into file)"; 3311 printFields(OS, "Start of section headers:", Str); 3312 std::string ElfFlags; 3313 if (e.e_machine == EM_MIPS) 3314 ElfFlags = 3315 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags), 3316 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 3317 unsigned(ELF::EF_MIPS_MACH)); 3318 else if (e.e_machine == EM_RISCV) 3319 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 3320 else if (e.e_machine == EM_AVR) 3321 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags), 3322 unsigned(ELF::EF_AVR_ARCH_MASK)); 3323 Str = "0x" + to_hexString(e.e_flags); 3324 if (!ElfFlags.empty()) 3325 Str = Str + ", " + ElfFlags; 3326 printFields(OS, "Flags:", Str); 3327 Str = to_string(e.e_ehsize) + " (bytes)"; 3328 printFields(OS, "Size of this header:", Str); 3329 Str = to_string(e.e_phentsize) + " (bytes)"; 3330 printFields(OS, "Size of program headers:", Str); 3331 Str = to_string(e.e_phnum); 3332 printFields(OS, "Number of program headers:", Str); 3333 Str = to_string(e.e_shentsize) + " (bytes)"; 3334 printFields(OS, "Size of section headers:", Str); 3335 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3336 printFields(OS, "Number of section headers:", Str); 3337 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3338 printFields(OS, "Section header string table index:", Str); 3339 } 3340 3341 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3342 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3343 const Elf_Shdr &Symtab) -> StringRef { 3344 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3345 if (!StrTableOrErr) { 3346 reportUniqueWarning("unable to get the string table for " + 3347 describe(Symtab) + ": " + 3348 toString(StrTableOrErr.takeError())); 3349 return "<?>"; 3350 } 3351 3352 StringRef Strings = *StrTableOrErr; 3353 if (Sym.st_name >= Strings.size()) { 3354 reportUniqueWarning("unable to get the name of the symbol with index " + 3355 Twine(SymNdx) + ": st_name (0x" + 3356 Twine::utohexstr(Sym.st_name) + 3357 ") is past the end of the string table of size 0x" + 3358 Twine::utohexstr(Strings.size())); 3359 return "<?>"; 3360 } 3361 3362 return StrTableOrErr->data() + Sym.st_name; 3363 }; 3364 3365 std::vector<GroupSection> Ret; 3366 uint64_t I = 0; 3367 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3368 ++I; 3369 if (Sec.sh_type != ELF::SHT_GROUP) 3370 continue; 3371 3372 StringRef Signature = "<?>"; 3373 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3374 if (Expected<const Elf_Sym *> SymOrErr = 3375 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3376 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3377 else 3378 reportUniqueWarning("unable to get the signature symbol for " + 3379 describe(Sec) + ": " + 3380 toString(SymOrErr.takeError())); 3381 } else { 3382 reportUniqueWarning("unable to get the symbol table for " + 3383 describe(Sec) + ": " + 3384 toString(SymtabOrErr.takeError())); 3385 } 3386 3387 ArrayRef<Elf_Word> Data; 3388 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3389 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3390 if (ContentsOrErr->empty()) 3391 reportUniqueWarning("unable to read the section group flag from the " + 3392 describe(Sec) + ": the section is empty"); 3393 else 3394 Data = *ContentsOrErr; 3395 } else { 3396 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3397 ": " + toString(ContentsOrErr.takeError())); 3398 } 3399 3400 Ret.push_back({getPrintableSectionName(Sec), 3401 maybeDemangle(Signature), 3402 Sec.sh_name, 3403 I - 1, 3404 Sec.sh_link, 3405 Sec.sh_info, 3406 Data.empty() ? Elf_Word(0) : Data[0], 3407 {}}); 3408 3409 if (Data.empty()) 3410 continue; 3411 3412 std::vector<GroupMember> &GM = Ret.back().Members; 3413 for (uint32_t Ndx : Data.slice(1)) { 3414 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3415 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3416 } else { 3417 reportUniqueWarning("unable to get the section with index " + 3418 Twine(Ndx) + " when dumping the " + describe(Sec) + 3419 ": " + toString(SecOrErr.takeError())); 3420 GM.push_back({"<?>", Ndx}); 3421 } 3422 } 3423 } 3424 return Ret; 3425 } 3426 3427 static DenseMap<uint64_t, const GroupSection *> 3428 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3429 DenseMap<uint64_t, const GroupSection *> Ret; 3430 for (const GroupSection &G : Groups) 3431 for (const GroupMember &GM : G.Members) 3432 Ret.insert({GM.Index, &G}); 3433 return Ret; 3434 } 3435 3436 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3437 std::vector<GroupSection> V = this->getGroups(); 3438 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3439 for (const GroupSection &G : V) { 3440 OS << "\n" 3441 << getGroupType(G.Type) << " group section [" 3442 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3443 << "] contains " << G.Members.size() << " sections:\n" 3444 << " [Index] Name\n"; 3445 for (const GroupMember &GM : G.Members) { 3446 const GroupSection *MainGroup = Map[GM.Index]; 3447 if (MainGroup != &G) 3448 this->reportUniqueWarning( 3449 "section with index " + Twine(GM.Index) + 3450 ", included in the group section with index " + 3451 Twine(MainGroup->Index) + 3452 ", was also found in the group section with index " + 3453 Twine(G.Index)); 3454 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3455 } 3456 } 3457 3458 if (V.empty()) 3459 OS << "There are no section groups in this file.\n"; 3460 } 3461 3462 template <class ELFT> 3463 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3464 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3465 } 3466 3467 template <class ELFT> 3468 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3469 const RelSymbol<ELFT> &RelSym) { 3470 // First two fields are bit width dependent. The rest of them are fixed width. 3471 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3472 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3473 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3474 3475 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3476 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3477 3478 SmallString<32> RelocName; 3479 this->Obj.getRelocationTypeName(R.Type, RelocName); 3480 Fields[2].Str = RelocName.c_str(); 3481 3482 if (RelSym.Sym) 3483 Fields[3].Str = 3484 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3485 3486 Fields[4].Str = std::string(RelSym.Name); 3487 for (const Field &F : Fields) 3488 printField(F); 3489 3490 std::string Addend; 3491 if (Optional<int64_t> A = R.Addend) { 3492 int64_t RelAddend = *A; 3493 if (!RelSym.Name.empty()) { 3494 if (RelAddend < 0) { 3495 Addend = " - "; 3496 RelAddend = std::abs(RelAddend); 3497 } else { 3498 Addend = " + "; 3499 } 3500 } 3501 Addend += to_hexString(RelAddend, false); 3502 } 3503 OS << Addend << "\n"; 3504 } 3505 3506 template <class ELFT> 3507 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) { 3508 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3509 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; 3510 if (ELFT::Is64Bits) 3511 OS << " "; 3512 else 3513 OS << " "; 3514 if (IsRelr && opts::RawRelr) 3515 OS << "Data "; 3516 else 3517 OS << "Offset"; 3518 if (ELFT::Is64Bits) 3519 OS << " Info Type" 3520 << " Symbol's Value Symbol's Name"; 3521 else 3522 OS << " Info Type Sym. Value Symbol's Name"; 3523 if (IsRela) 3524 OS << " + Addend"; 3525 OS << "\n"; 3526 } 3527 3528 template <class ELFT> 3529 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3530 const DynRegionInfo &Reg) { 3531 uint64_t Offset = Reg.Addr - this->Obj.base(); 3532 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3533 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n"; 3534 printRelocHeaderFields<ELFT>(OS, Type); 3535 } 3536 3537 template <class ELFT> 3538 static bool isRelocationSec(const typename ELFT::Shdr &Sec) { 3539 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3540 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3541 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3542 Sec.sh_type == ELF::SHT_ANDROID_RELR; 3543 } 3544 3545 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3546 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3547 // Android's packed relocation section needs to be unpacked first 3548 // to get the actual number of entries. 3549 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3550 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3551 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3552 this->Obj.android_relas(Sec); 3553 if (!RelasOrErr) 3554 return RelasOrErr.takeError(); 3555 return RelasOrErr->size(); 3556 } 3557 3558 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || 3559 Sec.sh_type == ELF::SHT_ANDROID_RELR)) { 3560 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3561 if (!RelrsOrErr) 3562 return RelrsOrErr.takeError(); 3563 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3564 } 3565 3566 return Sec.getEntityCount(); 3567 }; 3568 3569 bool HasRelocSections = false; 3570 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3571 if (!isRelocationSec<ELFT>(Sec)) 3572 continue; 3573 HasRelocSections = true; 3574 3575 std::string EntriesNum = "<?>"; 3576 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3577 EntriesNum = std::to_string(*NumOrErr); 3578 else 3579 this->reportUniqueWarning("unable to get the number of relocations in " + 3580 this->describe(Sec) + ": " + 3581 toString(NumOrErr.takeError())); 3582 3583 uintX_t Offset = Sec.sh_offset; 3584 StringRef Name = this->getPrintableSectionName(Sec); 3585 OS << "\nRelocation section '" << Name << "' at offset 0x" 3586 << to_hexString(Offset, false) << " contains " << EntriesNum 3587 << " entries:\n"; 3588 printRelocHeaderFields<ELFT>(OS, Sec.sh_type); 3589 this->printRelocationsHelper(Sec); 3590 } 3591 if (!HasRelocSections) 3592 OS << "\nThere are no relocations in this file.\n"; 3593 } 3594 3595 // Print the offset of a particular section from anyone of the ranges: 3596 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3597 // If 'Type' does not fall within any of those ranges, then a string is 3598 // returned as '<unknown>' followed by the type value. 3599 static std::string getSectionTypeOffsetString(unsigned Type) { 3600 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3601 return "LOOS+0x" + to_hexString(Type - SHT_LOOS); 3602 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3603 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); 3604 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3605 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); 3606 return "0x" + to_hexString(Type) + ": <unknown>"; 3607 } 3608 3609 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3610 StringRef Name = getELFSectionTypeName(Machine, Type); 3611 3612 // Handle SHT_GNU_* type names. 3613 if (Name.startswith("SHT_GNU_")) { 3614 if (Name == "SHT_GNU_HASH") 3615 return "GNU_HASH"; 3616 // E.g. SHT_GNU_verneed -> VERNEED. 3617 return Name.drop_front(8).upper(); 3618 } 3619 3620 if (Name == "SHT_SYMTAB_SHNDX") 3621 return "SYMTAB SECTION INDICES"; 3622 3623 if (Name.startswith("SHT_")) 3624 return Name.drop_front(4).str(); 3625 return getSectionTypeOffsetString(Type); 3626 } 3627 3628 static void printSectionDescription(formatted_raw_ostream &OS, 3629 unsigned EMachine) { 3630 OS << "Key to Flags:\n"; 3631 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 3632 "(info),\n"; 3633 OS << " L (link order), O (extra OS processing required), G (group), T " 3634 "(TLS),\n"; 3635 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 3636 OS << " R (retain)"; 3637 3638 if (EMachine == EM_X86_64) 3639 OS << ", l (large)"; 3640 else if (EMachine == EM_ARM) 3641 OS << ", y (purecode)"; 3642 3643 OS << ", p (processor specific)\n"; 3644 } 3645 3646 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 3647 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 3648 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3649 OS << "There are " << to_string(Sections.size()) 3650 << " section headers, starting at offset " 3651 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 3652 OS << "Section Headers:\n"; 3653 Field Fields[11] = { 3654 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 3655 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 3656 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 3657 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 3658 for (const Field &F : Fields) 3659 printField(F); 3660 OS << "\n"; 3661 3662 StringRef SecStrTable; 3663 if (Expected<StringRef> SecStrTableOrErr = 3664 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 3665 SecStrTable = *SecStrTableOrErr; 3666 else 3667 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3668 3669 size_t SectionIndex = 0; 3670 for (const Elf_Shdr &Sec : Sections) { 3671 Fields[0].Str = to_string(SectionIndex); 3672 if (SecStrTable.empty()) 3673 Fields[1].Str = "<no-strings>"; 3674 else 3675 Fields[1].Str = std::string(unwrapOrError<StringRef>( 3676 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 3677 Fields[2].Str = 3678 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 3679 Fields[3].Str = 3680 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 3681 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 3682 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 3683 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 3684 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags); 3685 Fields[8].Str = to_string(Sec.sh_link); 3686 Fields[9].Str = to_string(Sec.sh_info); 3687 Fields[10].Str = to_string(Sec.sh_addralign); 3688 3689 OS.PadToColumn(Fields[0].Column); 3690 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 3691 for (int i = 1; i < 7; i++) 3692 printField(Fields[i]); 3693 OS.PadToColumn(Fields[7].Column); 3694 OS << right_justify(Fields[7].Str, 3); 3695 OS.PadToColumn(Fields[8].Column); 3696 OS << right_justify(Fields[8].Str, 2); 3697 OS.PadToColumn(Fields[9].Column); 3698 OS << right_justify(Fields[9].Str, 3); 3699 OS.PadToColumn(Fields[10].Column); 3700 OS << right_justify(Fields[10].Str, 2); 3701 OS << "\n"; 3702 ++SectionIndex; 3703 } 3704 printSectionDescription(OS, this->Obj.getHeader().e_machine); 3705 } 3706 3707 template <class ELFT> 3708 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 3709 size_t Entries, 3710 bool NonVisibilityBitsUsed) const { 3711 StringRef Name; 3712 if (Symtab) 3713 Name = this->getPrintableSectionName(*Symtab); 3714 if (!Name.empty()) 3715 OS << "\nSymbol table '" << Name << "'"; 3716 else 3717 OS << "\nSymbol table for image"; 3718 OS << " contains " << Entries << " entries:\n"; 3719 3720 if (ELFT::Is64Bits) 3721 OS << " Num: Value Size Type Bind Vis"; 3722 else 3723 OS << " Num: Value Size Type Bind Vis"; 3724 3725 if (NonVisibilityBitsUsed) 3726 OS << " "; 3727 OS << " Ndx Name\n"; 3728 } 3729 3730 template <class ELFT> 3731 std::string 3732 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol, 3733 unsigned SymIndex, 3734 DataRegion<Elf_Word> ShndxTable) const { 3735 unsigned SectionIndex = Symbol.st_shndx; 3736 switch (SectionIndex) { 3737 case ELF::SHN_UNDEF: 3738 return "UND"; 3739 case ELF::SHN_ABS: 3740 return "ABS"; 3741 case ELF::SHN_COMMON: 3742 return "COM"; 3743 case ELF::SHN_XINDEX: { 3744 Expected<uint32_t> IndexOrErr = 3745 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 3746 if (!IndexOrErr) { 3747 assert(Symbol.st_shndx == SHN_XINDEX && 3748 "getExtendedSymbolTableIndex should only fail due to an invalid " 3749 "SHT_SYMTAB_SHNDX table/reference"); 3750 this->reportUniqueWarning(IndexOrErr.takeError()); 3751 return "RSV[0xffff]"; 3752 } 3753 return to_string(format_decimal(*IndexOrErr, 3)); 3754 } 3755 default: 3756 // Find if: 3757 // Processor specific 3758 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 3759 return std::string("PRC[0x") + 3760 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3761 // OS specific 3762 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 3763 return std::string("OS[0x") + 3764 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3765 // Architecture reserved: 3766 if (SectionIndex >= ELF::SHN_LORESERVE && 3767 SectionIndex <= ELF::SHN_HIRESERVE) 3768 return std::string("RSV[0x") + 3769 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3770 // A normal section with an index 3771 return to_string(format_decimal(SectionIndex, 3)); 3772 } 3773 } 3774 3775 template <class ELFT> 3776 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 3777 DataRegion<Elf_Word> ShndxTable, 3778 Optional<StringRef> StrTable, 3779 bool IsDynamic, 3780 bool NonVisibilityBitsUsed) const { 3781 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3782 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 3783 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 3784 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 3785 Fields[1].Str = 3786 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 3787 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 3788 3789 unsigned char SymbolType = Symbol.getType(); 3790 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3791 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3792 Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3793 else 3794 Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes)); 3795 3796 Fields[4].Str = 3797 enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 3798 Fields[5].Str = 3799 enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3800 3801 if (Symbol.st_other & ~0x3) { 3802 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 3803 uint8_t Other = Symbol.st_other & ~0x3; 3804 if (Other & STO_AARCH64_VARIANT_PCS) { 3805 Other &= ~STO_AARCH64_VARIANT_PCS; 3806 Fields[5].Str += " [VARIANT_PCS"; 3807 if (Other != 0) 3808 Fields[5].Str.append(" | " + to_hexString(Other, false)); 3809 Fields[5].Str.append("]"); 3810 } 3811 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 3812 uint8_t Other = Symbol.st_other & ~0x3; 3813 if (Other & STO_RISCV_VARIANT_CC) { 3814 Other &= ~STO_RISCV_VARIANT_CC; 3815 Fields[5].Str += " [VARIANT_CC"; 3816 if (Other != 0) 3817 Fields[5].Str.append(" | " + to_hexString(Other, false)); 3818 Fields[5].Str.append("]"); 3819 } 3820 } else { 3821 Fields[5].Str += 3822 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 3823 } 3824 } 3825 3826 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 3827 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable); 3828 3829 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 3830 StrTable, IsDynamic); 3831 for (const Field &Entry : Fields) 3832 printField(Entry); 3833 OS << "\n"; 3834 } 3835 3836 template <class ELFT> 3837 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 3838 unsigned SymIndex, 3839 DataRegion<Elf_Word> ShndxTable, 3840 StringRef StrTable, 3841 uint32_t Bucket) { 3842 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3843 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 3844 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 3845 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 3846 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 3847 3848 Fields[2].Str = to_string( 3849 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 3850 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 3851 3852 unsigned char SymbolType = Symbol->getType(); 3853 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3854 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3855 Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3856 else 3857 Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes)); 3858 3859 Fields[5].Str = 3860 enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 3861 Fields[6].Str = enumToString(Symbol->getVisibility(), 3862 makeArrayRef(ElfSymbolVisibilities)); 3863 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 3864 Fields[8].Str = 3865 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 3866 3867 for (const Field &Entry : Fields) 3868 printField(Entry); 3869 OS << "\n"; 3870 } 3871 3872 template <class ELFT> 3873 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 3874 bool PrintDynamicSymbols) { 3875 if (!PrintSymbols && !PrintDynamicSymbols) 3876 return; 3877 // GNU readelf prints both the .dynsym and .symtab with --symbols. 3878 this->printSymbolsHelper(true); 3879 if (PrintSymbols) 3880 this->printSymbolsHelper(false); 3881 } 3882 3883 template <class ELFT> 3884 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 3885 if (this->DynamicStringTable.empty()) 3886 return; 3887 3888 if (ELFT::Is64Bits) 3889 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3890 else 3891 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3892 OS << "\n"; 3893 3894 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3895 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3896 if (!FirstSym) { 3897 this->reportUniqueWarning( 3898 Twine("unable to print symbols for the .hash table: the " 3899 "dynamic symbol table ") + 3900 (this->DynSymRegion ? "is empty" : "was not found")); 3901 return; 3902 } 3903 3904 DataRegion<Elf_Word> ShndxTable( 3905 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3906 auto Buckets = SysVHash.buckets(); 3907 auto Chains = SysVHash.chains(); 3908 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 3909 if (Buckets[Buc] == ELF::STN_UNDEF) 3910 continue; 3911 BitVector Visited(SysVHash.nchain); 3912 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 3913 if (Ch == ELF::STN_UNDEF) 3914 break; 3915 3916 if (Visited[Ch]) { 3917 this->reportUniqueWarning(".hash section is invalid: bucket " + 3918 Twine(Ch) + 3919 ": a cycle was detected in the linked chain"); 3920 break; 3921 } 3922 3923 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 3924 Buc); 3925 Visited[Ch] = true; 3926 } 3927 } 3928 } 3929 3930 template <class ELFT> 3931 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 3932 if (this->DynamicStringTable.empty()) 3933 return; 3934 3935 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3936 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3937 if (!FirstSym) { 3938 this->reportUniqueWarning( 3939 Twine("unable to print symbols for the .gnu.hash table: the " 3940 "dynamic symbol table ") + 3941 (this->DynSymRegion ? "is empty" : "was not found")); 3942 return; 3943 } 3944 3945 auto GetSymbol = [&](uint64_t SymIndex, 3946 uint64_t SymsTotal) -> const Elf_Sym * { 3947 if (SymIndex >= SymsTotal) { 3948 this->reportUniqueWarning( 3949 "unable to print hashed symbol with index " + Twine(SymIndex) + 3950 ", which is greater than or equal to the number of dynamic symbols " 3951 "(" + 3952 Twine::utohexstr(SymsTotal) + ")"); 3953 return nullptr; 3954 } 3955 return FirstSym + SymIndex; 3956 }; 3957 3958 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 3959 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 3960 ArrayRef<Elf_Word> Values; 3961 if (!ValuesOrErr) 3962 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 3963 "section: " + 3964 toString(ValuesOrErr.takeError())); 3965 else 3966 Values = *ValuesOrErr; 3967 3968 DataRegion<Elf_Word> ShndxTable( 3969 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3970 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 3971 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 3972 if (Buckets[Buc] == ELF::STN_UNDEF) 3973 continue; 3974 uint32_t Index = Buckets[Buc]; 3975 // Print whole chain. 3976 while (true) { 3977 uint32_t SymIndex = Index++; 3978 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 3979 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 3980 Buc); 3981 else 3982 break; 3983 3984 if (SymIndex < GnuHash.symndx) { 3985 this->reportUniqueWarning( 3986 "unable to read the hash value for symbol with index " + 3987 Twine(SymIndex) + 3988 ", which is less than the index of the first hashed symbol (" + 3989 Twine(GnuHash.symndx) + ")"); 3990 break; 3991 } 3992 3993 // Chain ends at symbol with stopper bit. 3994 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 3995 break; 3996 } 3997 } 3998 } 3999 4000 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 4001 if (this->HashTable) { 4002 OS << "\n Symbol table of .hash for image:\n"; 4003 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4004 this->reportUniqueWarning(std::move(E)); 4005 else 4006 printHashTableSymbols(*this->HashTable); 4007 } 4008 4009 // Try printing the .gnu.hash table. 4010 if (this->GnuHashTable) { 4011 OS << "\n Symbol table of .gnu.hash for image:\n"; 4012 if (ELFT::Is64Bits) 4013 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4014 else 4015 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4016 OS << "\n"; 4017 4018 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4019 this->reportUniqueWarning(std::move(E)); 4020 else 4021 printGnuHashTableSymbols(*this->GnuHashTable); 4022 } 4023 } 4024 4025 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 4026 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4027 OS << "There are " << to_string(Sections.size()) 4028 << " section headers, starting at offset " 4029 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 4030 4031 OS << "Section Headers:\n"; 4032 4033 auto PrintFields = [&](ArrayRef<Field> V) { 4034 for (const Field &F : V) 4035 printField(F); 4036 OS << "\n"; 4037 }; 4038 4039 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4040 4041 constexpr bool Is64 = ELFT::Is64Bits; 4042 PrintFields({{"Type", 7}, 4043 {Is64 ? "Address" : "Addr", 23}, 4044 {"Off", Is64 ? 40 : 32}, 4045 {"Size", Is64 ? 47 : 39}, 4046 {"ES", Is64 ? 54 : 46}, 4047 {"Lk", Is64 ? 59 : 51}, 4048 {"Inf", Is64 ? 62 : 54}, 4049 {"Al", Is64 ? 66 : 57}}); 4050 PrintFields({{"Flags", 7}}); 4051 4052 StringRef SecStrTable; 4053 if (Expected<StringRef> SecStrTableOrErr = 4054 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4055 SecStrTable = *SecStrTableOrErr; 4056 else 4057 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4058 4059 size_t SectionIndex = 0; 4060 const unsigned AddrSize = Is64 ? 16 : 8; 4061 for (const Elf_Shdr &S : Sections) { 4062 StringRef Name = "<?>"; 4063 if (Expected<StringRef> NameOrErr = 4064 this->Obj.getSectionName(S, SecStrTable)) 4065 Name = *NameOrErr; 4066 else 4067 this->reportUniqueWarning(NameOrErr.takeError()); 4068 4069 OS.PadToColumn(2); 4070 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4071 PrintFields({{Name, 7}}); 4072 PrintFields( 4073 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4074 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4075 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4076 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4077 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4078 {to_string(S.sh_link), Is64 ? 59 : 51}, 4079 {to_string(S.sh_info), Is64 ? 63 : 55}, 4080 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4081 4082 OS.PadToColumn(7); 4083 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4084 4085 DenseMap<unsigned, StringRef> FlagToName = { 4086 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4087 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4088 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4089 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4090 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4091 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4092 4093 uint64_t Flags = S.sh_flags; 4094 uint64_t UnknownFlags = 0; 4095 ListSeparator LS; 4096 while (Flags) { 4097 // Take the least significant bit as a flag. 4098 uint64_t Flag = Flags & -Flags; 4099 Flags -= Flag; 4100 4101 auto It = FlagToName.find(Flag); 4102 if (It != FlagToName.end()) 4103 OS << LS << It->second; 4104 else 4105 UnknownFlags |= Flag; 4106 } 4107 4108 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4109 uint64_t FlagsToPrint = UnknownFlags & Mask; 4110 if (!FlagsToPrint) 4111 return; 4112 4113 OS << LS << Name << " (" 4114 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4115 UnknownFlags &= ~Mask; 4116 }; 4117 4118 PrintUnknownFlags(SHF_MASKOS, "OS"); 4119 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4120 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4121 4122 OS << "\n"; 4123 ++SectionIndex; 4124 } 4125 } 4126 4127 static inline std::string printPhdrFlags(unsigned Flag) { 4128 std::string Str; 4129 Str = (Flag & PF_R) ? "R" : " "; 4130 Str += (Flag & PF_W) ? "W" : " "; 4131 Str += (Flag & PF_X) ? "E" : " "; 4132 return Str; 4133 } 4134 4135 template <class ELFT> 4136 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4137 const typename ELFT::Shdr &Sec) { 4138 if (Sec.sh_flags & ELF::SHF_TLS) { 4139 // .tbss must only be shown in the PT_TLS segment. 4140 if (Sec.sh_type == ELF::SHT_NOBITS) 4141 return Phdr.p_type == ELF::PT_TLS; 4142 4143 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4144 // segments. 4145 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4146 (Phdr.p_type == ELF::PT_GNU_RELRO); 4147 } 4148 4149 // PT_TLS must only have SHF_TLS sections. 4150 return Phdr.p_type != ELF::PT_TLS; 4151 } 4152 4153 template <class ELFT> 4154 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 4155 const typename ELFT::Shdr &Sec) { 4156 // SHT_NOBITS sections don't need to have an offset inside the segment. 4157 if (Sec.sh_type == ELF::SHT_NOBITS) 4158 return true; 4159 4160 if (Sec.sh_offset < Phdr.p_offset) 4161 return false; 4162 4163 // Only non-empty sections can be at the end of a segment. 4164 if (Sec.sh_size == 0) 4165 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz); 4166 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz; 4167 } 4168 4169 // Check that an allocatable section belongs to a virtual address 4170 // space of a segment. 4171 template <class ELFT> 4172 static bool checkVMA(const typename ELFT::Phdr &Phdr, 4173 const typename ELFT::Shdr &Sec) { 4174 if (!(Sec.sh_flags & ELF::SHF_ALLOC)) 4175 return true; 4176 4177 if (Sec.sh_addr < Phdr.p_vaddr) 4178 return false; 4179 4180 bool IsTbss = 4181 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 4182 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties. 4183 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS; 4184 // Only non-empty sections can be at the end of a segment. 4185 if (Sec.sh_size == 0 || IsTbssInNonTLS) 4186 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz; 4187 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz; 4188 } 4189 4190 template <class ELFT> 4191 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4192 const typename ELFT::Shdr &Sec) { 4193 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4194 return true; 4195 4196 // We get here when we have an empty section. Only non-empty sections can be 4197 // at the start or at the end of PT_DYNAMIC. 4198 // Is section within the phdr both based on offset and VMA? 4199 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4200 (Sec.sh_offset > Phdr.p_offset && 4201 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4202 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4203 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4204 return CheckOffset && CheckVA; 4205 } 4206 4207 template <class ELFT> 4208 void GNUELFDumper<ELFT>::printProgramHeaders( 4209 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4210 if (PrintProgramHeaders) 4211 printProgramHeaders(); 4212 4213 // Display the section mapping along with the program headers, unless 4214 // -section-mapping is explicitly set to false. 4215 if (PrintSectionMapping != cl::BOU_FALSE) 4216 printSectionMapping(); 4217 } 4218 4219 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4220 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4221 const Elf_Ehdr &Header = this->Obj.getHeader(); 4222 Field Fields[8] = {2, 17, 26, 37 + Bias, 4223 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4224 OS << "\nElf file type is " 4225 << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n" 4226 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4227 << "There are " << Header.e_phnum << " program headers," 4228 << " starting at offset " << Header.e_phoff << "\n\n" 4229 << "Program Headers:\n"; 4230 if (ELFT::Is64Bits) 4231 OS << " Type Offset VirtAddr PhysAddr " 4232 << " FileSiz MemSiz Flg Align\n"; 4233 else 4234 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4235 << "MemSiz Flg Align\n"; 4236 4237 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4238 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4239 4240 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4241 if (!PhdrsOrErr) { 4242 this->reportUniqueWarning("unable to dump program headers: " + 4243 toString(PhdrsOrErr.takeError())); 4244 return; 4245 } 4246 4247 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4248 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4249 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4250 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4251 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4252 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4253 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4254 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4255 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4256 for (const Field &F : Fields) 4257 printField(F); 4258 if (Phdr.p_type == ELF::PT_INTERP) { 4259 OS << "\n"; 4260 auto ReportBadInterp = [&](const Twine &Msg) { 4261 this->reportUniqueWarning( 4262 "unable to read program interpreter name at offset 0x" + 4263 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4264 }; 4265 4266 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4267 ReportBadInterp("it goes past the end of the file (0x" + 4268 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4269 continue; 4270 } 4271 4272 const char *Data = 4273 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4274 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4275 size_t Len = strnlen(Data, MaxSize); 4276 if (Len == MaxSize) { 4277 ReportBadInterp("it is not null-terminated"); 4278 continue; 4279 } 4280 4281 OS << " [Requesting program interpreter: "; 4282 OS << StringRef(Data, Len) << "]"; 4283 } 4284 OS << "\n"; 4285 } 4286 } 4287 4288 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4289 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4290 DenseSet<const Elf_Shdr *> BelongsToSegment; 4291 int Phnum = 0; 4292 4293 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4294 if (!PhdrsOrErr) { 4295 this->reportUniqueWarning( 4296 "can't read program headers to build section to segment mapping: " + 4297 toString(PhdrsOrErr.takeError())); 4298 return; 4299 } 4300 4301 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4302 std::string Sections; 4303 OS << format(" %2.2d ", Phnum++); 4304 // Check if each section is in a segment and then print mapping. 4305 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4306 if (Sec.sh_type == ELF::SHT_NULL) 4307 continue; 4308 4309 // readelf additionally makes sure it does not print zero sized sections 4310 // at end of segments and for PT_DYNAMIC both start and end of section 4311 // .tbss must only be shown in PT_TLS section. 4312 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) && 4313 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) { 4314 Sections += 4315 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4316 " "; 4317 BelongsToSegment.insert(&Sec); 4318 } 4319 } 4320 OS << Sections << "\n"; 4321 OS.flush(); 4322 } 4323 4324 // Display sections that do not belong to a segment. 4325 std::string Sections; 4326 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4327 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4328 Sections += 4329 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4330 ' '; 4331 } 4332 if (!Sections.empty()) { 4333 OS << " None " << Sections << '\n'; 4334 OS.flush(); 4335 } 4336 } 4337 4338 namespace { 4339 4340 template <class ELFT> 4341 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4342 const Relocation<ELFT> &Reloc) { 4343 using Elf_Sym = typename ELFT::Sym; 4344 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4345 const Twine &Reason) -> RelSymbol<ELFT> { 4346 Dumper.reportUniqueWarning( 4347 "unable to get name of the dynamic symbol with index " + 4348 Twine(Reloc.Symbol) + ": " + Reason); 4349 return {Sym, "<corrupt>"}; 4350 }; 4351 4352 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4353 const Elf_Sym *FirstSym = Symbols.begin(); 4354 if (!FirstSym) 4355 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4356 4357 // We might have an object without a section header. In this case the size of 4358 // Symbols is zero, because there is no way to know the size of the dynamic 4359 // table. We should allow this case and not print a warning. 4360 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4361 return WarnAndReturn( 4362 nullptr, 4363 "index is greater than or equal to the number of dynamic symbols (" + 4364 Twine(Symbols.size()) + ")"); 4365 4366 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4367 const uint64_t FileSize = Obj.getBufSize(); 4368 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4369 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4370 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4371 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4372 " goes past the end of the file (0x" + 4373 Twine::utohexstr(FileSize) + ")"); 4374 4375 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4376 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4377 if (!ErrOrName) 4378 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4379 4380 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4381 } 4382 } // namespace 4383 4384 template <class ELFT> 4385 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4386 typename ELFT::DynRange Tags) { 4387 size_t Max = 0; 4388 for (const typename ELFT::Dyn &Dyn : Tags) 4389 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4390 return Max; 4391 } 4392 4393 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4394 Elf_Dyn_Range Table = this->dynamic_table(); 4395 if (Table.empty()) 4396 return; 4397 4398 OS << "Dynamic section at offset " 4399 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4400 this->Obj.base(), 4401 1) 4402 << " contains " << Table.size() << " entries:\n"; 4403 4404 // The type name is surrounded with round brackets, hence add 2. 4405 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4406 // The "Name/Value" column should be indented from the "Type" column by N 4407 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4408 // space (1) = 3. 4409 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4410 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4411 4412 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4413 for (auto Entry : Table) { 4414 uintX_t Tag = Entry.getTag(); 4415 std::string Type = 4416 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4417 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4418 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4419 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4420 } 4421 } 4422 4423 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4424 this->printDynamicRelocationsHelper(); 4425 } 4426 4427 template <class ELFT> 4428 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4429 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4430 } 4431 4432 template <class ELFT> 4433 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4434 this->forEachRelocationDo( 4435 Sec, opts::RawRelr, 4436 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4437 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4438 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4439 } 4440 4441 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4442 const bool IsMips64EL = this->Obj.isMips64EL(); 4443 if (this->DynRelaRegion.Size > 0) { 4444 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4445 for (const Elf_Rela &Rela : 4446 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4447 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4448 } 4449 4450 if (this->DynRelRegion.Size > 0) { 4451 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4452 for (const Elf_Rel &Rel : 4453 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4454 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4455 } 4456 4457 if (this->DynRelrRegion.Size > 0) { 4458 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4459 Elf_Relr_Range Relrs = 4460 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4461 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4462 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4463 } 4464 4465 if (this->DynPLTRelRegion.Size) { 4466 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4467 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4468 for (const Elf_Rela &Rela : 4469 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4470 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4471 } else { 4472 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4473 for (const Elf_Rel &Rel : 4474 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4475 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4476 } 4477 } 4478 } 4479 4480 template <class ELFT> 4481 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4482 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4483 // Don't inline the SecName, because it might report a warning to stderr and 4484 // corrupt the output. 4485 StringRef SecName = this->getPrintableSectionName(Sec); 4486 OS << Label << " section '" << SecName << "' " 4487 << "contains " << EntriesNum << " entries:\n"; 4488 4489 StringRef LinkedSecName = "<corrupt>"; 4490 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4491 this->Obj.getSection(Sec.sh_link)) 4492 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4493 else 4494 this->reportUniqueWarning("invalid section linked to " + 4495 this->describe(Sec) + ": " + 4496 toString(LinkedSecOrErr.takeError())); 4497 4498 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4499 << " Offset: " << format_hex(Sec.sh_offset, 8) 4500 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4501 } 4502 4503 template <class ELFT> 4504 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4505 if (!Sec) 4506 return; 4507 4508 printGNUVersionSectionProlog(*Sec, "Version symbols", 4509 Sec->sh_size / sizeof(Elf_Versym)); 4510 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4511 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4512 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4513 if (!VerTableOrErr) { 4514 this->reportUniqueWarning(VerTableOrErr.takeError()); 4515 return; 4516 } 4517 4518 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr; 4519 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 4520 this->getVersionMap()) 4521 VersionMap = *MapOrErr; 4522 else 4523 this->reportUniqueWarning(MapOrErr.takeError()); 4524 4525 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4526 std::vector<StringRef> Versions; 4527 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4528 unsigned Ndx = VerTable[I].vs_index; 4529 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4530 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4531 continue; 4532 } 4533 4534 if (!VersionMap) { 4535 Versions.emplace_back("<corrupt>"); 4536 continue; 4537 } 4538 4539 bool IsDefault; 4540 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4541 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None); 4542 if (!NameOrErr) { 4543 this->reportUniqueWarning("unable to get a version for entry " + 4544 Twine(I) + " of " + this->describe(*Sec) + 4545 ": " + toString(NameOrErr.takeError())); 4546 Versions.emplace_back("<corrupt>"); 4547 continue; 4548 } 4549 Versions.emplace_back(*NameOrErr); 4550 } 4551 4552 // readelf prints 4 entries per line. 4553 uint64_t Entries = VerTable.size(); 4554 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4555 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4556 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4557 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4558 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4559 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4560 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4561 } 4562 OS << '\n'; 4563 } 4564 OS << '\n'; 4565 } 4566 4567 static std::string versionFlagToString(unsigned Flags) { 4568 if (Flags == 0) 4569 return "none"; 4570 4571 std::string Ret; 4572 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4573 if (!(Flags & Flag)) 4574 return; 4575 if (!Ret.empty()) 4576 Ret += " | "; 4577 Ret += Name; 4578 Flags &= ~Flag; 4579 }; 4580 4581 AddFlag(VER_FLG_BASE, "BASE"); 4582 AddFlag(VER_FLG_WEAK, "WEAK"); 4583 AddFlag(VER_FLG_INFO, "INFO"); 4584 AddFlag(~0, "<unknown>"); 4585 return Ret; 4586 } 4587 4588 template <class ELFT> 4589 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 4590 if (!Sec) 4591 return; 4592 4593 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 4594 4595 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 4596 if (!V) { 4597 this->reportUniqueWarning(V.takeError()); 4598 return; 4599 } 4600 4601 for (const VerDef &Def : *V) { 4602 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 4603 Def.Offset, Def.Version, 4604 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 4605 Def.Name.data()); 4606 unsigned I = 0; 4607 for (const VerdAux &Aux : Def.AuxV) 4608 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 4609 Aux.Name.data()); 4610 } 4611 4612 OS << '\n'; 4613 } 4614 4615 template <class ELFT> 4616 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 4617 if (!Sec) 4618 return; 4619 4620 unsigned VerneedNum = Sec->sh_info; 4621 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 4622 4623 Expected<std::vector<VerNeed>> V = 4624 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 4625 if (!V) { 4626 this->reportUniqueWarning(V.takeError()); 4627 return; 4628 } 4629 4630 for (const VerNeed &VN : *V) { 4631 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 4632 VN.Version, VN.File.data(), VN.Cnt); 4633 for (const VernAux &Aux : VN.AuxV) 4634 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 4635 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 4636 Aux.Other); 4637 } 4638 OS << '\n'; 4639 } 4640 4641 template <class ELFT> 4642 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) { 4643 size_t NBucket = HashTable.nbucket; 4644 size_t NChain = HashTable.nchain; 4645 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 4646 ArrayRef<Elf_Word> Chains = HashTable.chains(); 4647 size_t TotalSyms = 0; 4648 // If hash table is correct, we have at least chains with 0 length 4649 size_t MaxChain = 1; 4650 size_t CumulativeNonZero = 0; 4651 4652 if (NChain == 0 || NBucket == 0) 4653 return; 4654 4655 std::vector<size_t> ChainLen(NBucket, 0); 4656 // Go over all buckets and and note chain lengths of each bucket (total 4657 // unique chain lengths). 4658 for (size_t B = 0; B < NBucket; B++) { 4659 BitVector Visited(NChain); 4660 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 4661 if (C == ELF::STN_UNDEF) 4662 break; 4663 if (Visited[C]) { 4664 this->reportUniqueWarning(".hash section is invalid: bucket " + 4665 Twine(C) + 4666 ": a cycle was detected in the linked chain"); 4667 break; 4668 } 4669 Visited[C] = true; 4670 if (MaxChain <= ++ChainLen[B]) 4671 MaxChain++; 4672 } 4673 TotalSyms += ChainLen[B]; 4674 } 4675 4676 if (!TotalSyms) 4677 return; 4678 4679 std::vector<size_t> Count(MaxChain, 0); 4680 // Count how long is the chain for each bucket 4681 for (size_t B = 0; B < NBucket; B++) 4682 ++Count[ChainLen[B]]; 4683 // Print Number of buckets with each chain lengths and their cumulative 4684 // coverage of the symbols 4685 OS << "Histogram for bucket list length (total of " << NBucket 4686 << " buckets)\n" 4687 << " Length Number % of total Coverage\n"; 4688 for (size_t I = 0; I < MaxChain; I++) { 4689 CumulativeNonZero += Count[I] * I; 4690 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4691 (Count[I] * 100.0) / NBucket, 4692 (CumulativeNonZero * 100.0) / TotalSyms); 4693 } 4694 } 4695 4696 template <class ELFT> 4697 void GNUELFDumper<ELFT>::printGnuHashHistogram( 4698 const Elf_GnuHash &GnuHashTable) { 4699 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 4700 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 4701 if (!ChainsOrErr) { 4702 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 4703 toString(ChainsOrErr.takeError())); 4704 return; 4705 } 4706 4707 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 4708 size_t Symndx = GnuHashTable.symndx; 4709 size_t TotalSyms = 0; 4710 size_t MaxChain = 1; 4711 size_t CumulativeNonZero = 0; 4712 4713 size_t NBucket = GnuHashTable.nbuckets; 4714 if (Chains.empty() || NBucket == 0) 4715 return; 4716 4717 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 4718 std::vector<size_t> ChainLen(NBucket, 0); 4719 for (size_t B = 0; B < NBucket; B++) { 4720 if (!Buckets[B]) 4721 continue; 4722 size_t Len = 1; 4723 for (size_t C = Buckets[B] - Symndx; 4724 C < Chains.size() && (Chains[C] & 1) == 0; C++) 4725 if (MaxChain < ++Len) 4726 MaxChain++; 4727 ChainLen[B] = Len; 4728 TotalSyms += Len; 4729 } 4730 MaxChain++; 4731 4732 if (!TotalSyms) 4733 return; 4734 4735 std::vector<size_t> Count(MaxChain, 0); 4736 for (size_t B = 0; B < NBucket; B++) 4737 ++Count[ChainLen[B]]; 4738 // Print Number of buckets with each chain lengths and their cumulative 4739 // coverage of the symbols 4740 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket 4741 << " buckets)\n" 4742 << " Length Number % of total Coverage\n"; 4743 for (size_t I = 0; I < MaxChain; I++) { 4744 CumulativeNonZero += Count[I] * I; 4745 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4746 (Count[I] * 100.0) / NBucket, 4747 (CumulativeNonZero * 100.0) / TotalSyms); 4748 } 4749 } 4750 4751 // Hash histogram shows statistics of how efficient the hash was for the 4752 // dynamic symbol table. The table shows the number of hash buckets for 4753 // different lengths of chains as an absolute number and percentage of the total 4754 // buckets, and the cumulative coverage of symbols for each set of buckets. 4755 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() { 4756 // Print histogram for the .hash section. 4757 if (this->HashTable) { 4758 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4759 this->reportUniqueWarning(std::move(E)); 4760 else 4761 printHashHistogram(*this->HashTable); 4762 } 4763 4764 // Print histogram for the .gnu.hash section. 4765 if (this->GnuHashTable) { 4766 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4767 this->reportUniqueWarning(std::move(E)); 4768 else 4769 printGnuHashHistogram(*this->GnuHashTable); 4770 } 4771 } 4772 4773 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 4774 OS << "GNUStyle::printCGProfile not implemented\n"; 4775 } 4776 4777 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() { 4778 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 4779 } 4780 4781 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 4782 std::vector<uint64_t> Ret; 4783 const uint8_t *Cur = Data.begin(); 4784 const uint8_t *End = Data.end(); 4785 while (Cur != End) { 4786 unsigned Size; 4787 const char *Err; 4788 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 4789 if (Err) 4790 return createError(Err); 4791 Cur += Size; 4792 } 4793 return Ret; 4794 } 4795 4796 template <class ELFT> 4797 static Expected<std::vector<uint64_t>> 4798 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 4799 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 4800 if (!ContentsOrErr) 4801 return ContentsOrErr.takeError(); 4802 4803 if (Expected<std::vector<uint64_t>> SymsOrErr = 4804 toULEB128Array(*ContentsOrErr)) 4805 return *SymsOrErr; 4806 else 4807 return createError("unable to decode " + describe(Obj, Sec) + ": " + 4808 toString(SymsOrErr.takeError())); 4809 } 4810 4811 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 4812 if (!this->DotAddrsigSec) 4813 return; 4814 4815 Expected<std::vector<uint64_t>> SymsOrErr = 4816 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 4817 if (!SymsOrErr) { 4818 this->reportUniqueWarning(SymsOrErr.takeError()); 4819 return; 4820 } 4821 4822 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 4823 OS << "\nAddress-significant symbols section '" << Name << "'" 4824 << " contains " << SymsOrErr->size() << " entries:\n"; 4825 OS << " Num: Name\n"; 4826 4827 Field Fields[2] = {0, 8}; 4828 size_t SymIndex = 0; 4829 for (uint64_t Sym : *SymsOrErr) { 4830 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 4831 Fields[1].Str = this->getStaticSymbolName(Sym); 4832 for (const Field &Entry : Fields) 4833 printField(Entry); 4834 OS << "\n"; 4835 } 4836 } 4837 4838 template <typename ELFT> 4839 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 4840 ArrayRef<uint8_t> Data) { 4841 std::string str; 4842 raw_string_ostream OS(str); 4843 uint32_t PrData; 4844 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 4845 if (PrData & Flag) { 4846 PrData &= ~Flag; 4847 OS << Name; 4848 if (PrData) 4849 OS << ", "; 4850 } 4851 }; 4852 4853 switch (Type) { 4854 default: 4855 OS << format("<application-specific type 0x%x>", Type); 4856 return OS.str(); 4857 case GNU_PROPERTY_STACK_SIZE: { 4858 OS << "stack size: "; 4859 if (DataSize == sizeof(typename ELFT::uint)) 4860 OS << formatv("{0:x}", 4861 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 4862 else 4863 OS << format("<corrupt length: 0x%x>", DataSize); 4864 return OS.str(); 4865 } 4866 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 4867 OS << "no copy on protected"; 4868 if (DataSize) 4869 OS << format(" <corrupt length: 0x%x>", DataSize); 4870 return OS.str(); 4871 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 4872 case GNU_PROPERTY_X86_FEATURE_1_AND: 4873 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 4874 : "x86 feature: "); 4875 if (DataSize != 4) { 4876 OS << format("<corrupt length: 0x%x>", DataSize); 4877 return OS.str(); 4878 } 4879 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4880 if (PrData == 0) { 4881 OS << "<None>"; 4882 return OS.str(); 4883 } 4884 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 4885 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 4886 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 4887 } else { 4888 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 4889 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 4890 } 4891 if (PrData) 4892 OS << format("<unknown flags: 0x%x>", PrData); 4893 return OS.str(); 4894 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 4895 case GNU_PROPERTY_X86_FEATURE_2_USED: 4896 OS << "x86 feature " 4897 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 4898 if (DataSize != 4) { 4899 OS << format("<corrupt length: 0x%x>", DataSize); 4900 return OS.str(); 4901 } 4902 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4903 if (PrData == 0) { 4904 OS << "<None>"; 4905 return OS.str(); 4906 } 4907 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 4908 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 4909 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 4910 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 4911 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 4912 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 4913 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 4914 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 4915 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 4916 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 4917 if (PrData) 4918 OS << format("<unknown flags: 0x%x>", PrData); 4919 return OS.str(); 4920 case GNU_PROPERTY_X86_ISA_1_NEEDED: 4921 case GNU_PROPERTY_X86_ISA_1_USED: 4922 OS << "x86 ISA " 4923 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 4924 if (DataSize != 4) { 4925 OS << format("<corrupt length: 0x%x>", DataSize); 4926 return OS.str(); 4927 } 4928 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4929 if (PrData == 0) { 4930 OS << "<None>"; 4931 return OS.str(); 4932 } 4933 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 4934 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 4935 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 4936 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 4937 if (PrData) 4938 OS << format("<unknown flags: 0x%x>", PrData); 4939 return OS.str(); 4940 } 4941 } 4942 4943 template <typename ELFT> 4944 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 4945 using Elf_Word = typename ELFT::Word; 4946 4947 SmallVector<std::string, 4> Properties; 4948 while (Arr.size() >= 8) { 4949 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 4950 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 4951 Arr = Arr.drop_front(8); 4952 4953 // Take padding size into account if present. 4954 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 4955 std::string str; 4956 raw_string_ostream OS(str); 4957 if (Arr.size() < PaddedSize) { 4958 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 4959 Properties.push_back(OS.str()); 4960 break; 4961 } 4962 Properties.push_back( 4963 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 4964 Arr = Arr.drop_front(PaddedSize); 4965 } 4966 4967 if (!Arr.empty()) 4968 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 4969 4970 return Properties; 4971 } 4972 4973 struct GNUAbiTag { 4974 std::string OSName; 4975 std::string ABI; 4976 bool IsValid; 4977 }; 4978 4979 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 4980 typedef typename ELFT::Word Elf_Word; 4981 4982 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 4983 reinterpret_cast<const Elf_Word *>(Desc.end())); 4984 4985 if (Words.size() < 4) 4986 return {"", "", /*IsValid=*/false}; 4987 4988 static const char *OSNames[] = { 4989 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 4990 }; 4991 StringRef OSName = "Unknown"; 4992 if (Words[0] < array_lengthof(OSNames)) 4993 OSName = OSNames[Words[0]]; 4994 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 4995 std::string str; 4996 raw_string_ostream ABI(str); 4997 ABI << Major << "." << Minor << "." << Patch; 4998 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 4999 } 5000 5001 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 5002 std::string str; 5003 raw_string_ostream OS(str); 5004 for (uint8_t B : Desc) 5005 OS << format_hex_no_prefix(B, 2); 5006 return OS.str(); 5007 } 5008 5009 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 5010 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5011 } 5012 5013 template <typename ELFT> 5014 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 5015 ArrayRef<uint8_t> Desc) { 5016 // Return true if we were able to pretty-print the note, false otherwise. 5017 switch (NoteType) { 5018 default: 5019 return false; 5020 case ELF::NT_GNU_ABI_TAG: { 5021 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5022 if (!AbiTag.IsValid) 5023 OS << " <corrupt GNU_ABI_TAG>"; 5024 else 5025 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 5026 break; 5027 } 5028 case ELF::NT_GNU_BUILD_ID: { 5029 OS << " Build ID: " << getGNUBuildId(Desc); 5030 break; 5031 } 5032 case ELF::NT_GNU_GOLD_VERSION: 5033 OS << " Version: " << getDescAsStringRef(Desc); 5034 break; 5035 case ELF::NT_GNU_PROPERTY_TYPE_0: 5036 OS << " Properties:"; 5037 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5038 OS << " " << Property << "\n"; 5039 break; 5040 } 5041 OS << '\n'; 5042 return true; 5043 } 5044 5045 template <typename ELFT> 5046 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5047 ArrayRef<uint8_t> Desc) { 5048 switch (NoteType) { 5049 default: 5050 return false; 5051 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5052 OS << " Version: " << getDescAsStringRef(Desc); 5053 break; 5054 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5055 OS << " Producer: " << getDescAsStringRef(Desc); 5056 break; 5057 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5058 OS << " Producer version: " << getDescAsStringRef(Desc); 5059 break; 5060 } 5061 OS << '\n'; 5062 return true; 5063 } 5064 5065 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5066 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5067 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5068 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5069 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5070 {"LA48", NT_FREEBSD_FCTL_LA48}, 5071 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5072 }; 5073 5074 struct FreeBSDNote { 5075 std::string Type; 5076 std::string Value; 5077 }; 5078 5079 template <typename ELFT> 5080 static Optional<FreeBSDNote> 5081 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5082 if (IsCore) 5083 return None; // No pretty-printing yet. 5084 switch (NoteType) { 5085 case ELF::NT_FREEBSD_ABI_TAG: 5086 if (Desc.size() != 4) 5087 return None; 5088 return FreeBSDNote{ 5089 "ABI tag", 5090 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))}; 5091 case ELF::NT_FREEBSD_ARCH_TAG: 5092 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5093 case ELF::NT_FREEBSD_FEATURE_CTL: { 5094 if (Desc.size() != 4) 5095 return None; 5096 unsigned Value = 5097 support::endian::read32<ELFT::TargetEndianness>(Desc.data()); 5098 std::string FlagsStr; 5099 raw_string_ostream OS(FlagsStr); 5100 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS); 5101 if (OS.str().empty()) 5102 OS << "0x" << utohexstr(Value); 5103 else 5104 OS << "(0x" << utohexstr(Value) << ")"; 5105 return FreeBSDNote{"Feature flags", OS.str()}; 5106 } 5107 default: 5108 return None; 5109 } 5110 } 5111 5112 struct AMDNote { 5113 std::string Type; 5114 std::string Value; 5115 }; 5116 5117 template <typename ELFT> 5118 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5119 switch (NoteType) { 5120 default: 5121 return {"", ""}; 5122 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5123 struct CodeObjectVersion { 5124 uint32_t MajorVersion; 5125 uint32_t MinorVersion; 5126 }; 5127 if (Desc.size() != sizeof(CodeObjectVersion)) 5128 return {"AMD HSA Code Object Version", 5129 "Invalid AMD HSA Code Object Version"}; 5130 std::string VersionString; 5131 raw_string_ostream StrOS(VersionString); 5132 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5133 StrOS << "[Major: " << Version->MajorVersion 5134 << ", Minor: " << Version->MinorVersion << "]"; 5135 return {"AMD HSA Code Object Version", VersionString}; 5136 } 5137 case ELF::NT_AMD_HSA_HSAIL: { 5138 struct HSAILProperties { 5139 uint32_t HSAILMajorVersion; 5140 uint32_t HSAILMinorVersion; 5141 uint8_t Profile; 5142 uint8_t MachineModel; 5143 uint8_t DefaultFloatRound; 5144 }; 5145 if (Desc.size() != sizeof(HSAILProperties)) 5146 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5147 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5148 std::string HSAILPropetiesString; 5149 raw_string_ostream StrOS(HSAILPropetiesString); 5150 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5151 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5152 << ", Profile: " << uint32_t(Properties->Profile) 5153 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5154 << ", Default Float Round: " 5155 << uint32_t(Properties->DefaultFloatRound) << "]"; 5156 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5157 } 5158 case ELF::NT_AMD_HSA_ISA_VERSION: { 5159 struct IsaVersion { 5160 uint16_t VendorNameSize; 5161 uint16_t ArchitectureNameSize; 5162 uint32_t Major; 5163 uint32_t Minor; 5164 uint32_t Stepping; 5165 }; 5166 if (Desc.size() < sizeof(IsaVersion)) 5167 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5168 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5169 if (Desc.size() < sizeof(IsaVersion) + 5170 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5171 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5172 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5173 std::string IsaString; 5174 raw_string_ostream StrOS(IsaString); 5175 StrOS << "[Vendor: " 5176 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5177 << ", Architecture: " 5178 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5179 Isa->ArchitectureNameSize - 1) 5180 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5181 << ", Stepping: " << Isa->Stepping << "]"; 5182 return {"AMD HSA ISA Version", IsaString}; 5183 } 5184 case ELF::NT_AMD_HSA_METADATA: { 5185 if (Desc.size() == 0) 5186 return {"AMD HSA Metadata", ""}; 5187 return { 5188 "AMD HSA Metadata", 5189 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5190 } 5191 case ELF::NT_AMD_HSA_ISA_NAME: { 5192 if (Desc.size() == 0) 5193 return {"AMD HSA ISA Name", ""}; 5194 return { 5195 "AMD HSA ISA Name", 5196 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5197 } 5198 case ELF::NT_AMD_PAL_METADATA: { 5199 struct PALMetadata { 5200 uint32_t Key; 5201 uint32_t Value; 5202 }; 5203 if (Desc.size() % sizeof(PALMetadata) != 0) 5204 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5205 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5206 std::string MetadataString; 5207 raw_string_ostream StrOS(MetadataString); 5208 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5209 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5210 } 5211 return {"AMD PAL Metadata", MetadataString}; 5212 } 5213 } 5214 } 5215 5216 struct AMDGPUNote { 5217 std::string Type; 5218 std::string Value; 5219 }; 5220 5221 template <typename ELFT> 5222 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5223 switch (NoteType) { 5224 default: 5225 return {"", ""}; 5226 case ELF::NT_AMDGPU_METADATA: { 5227 StringRef MsgPackString = 5228 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5229 msgpack::Document MsgPackDoc; 5230 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5231 return {"", ""}; 5232 5233 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5234 std::string MetadataString; 5235 if (!Verifier.verify(MsgPackDoc.getRoot())) 5236 MetadataString = "Invalid AMDGPU Metadata\n"; 5237 5238 raw_string_ostream StrOS(MetadataString); 5239 if (MsgPackDoc.getRoot().isScalar()) { 5240 // TODO: passing a scalar root to toYAML() asserts: 5241 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5242 // "plain scalar documents are not supported") 5243 // To avoid this crash we print the raw data instead. 5244 return {"", ""}; 5245 } 5246 MsgPackDoc.toYAML(StrOS); 5247 return {"AMDGPU Metadata", StrOS.str()}; 5248 } 5249 } 5250 } 5251 5252 struct CoreFileMapping { 5253 uint64_t Start, End, Offset; 5254 StringRef Filename; 5255 }; 5256 5257 struct CoreNote { 5258 uint64_t PageSize; 5259 std::vector<CoreFileMapping> Mappings; 5260 }; 5261 5262 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5263 // Expected format of the NT_FILE note description: 5264 // 1. # of file mappings (call it N) 5265 // 2. Page size 5266 // 3. N (start, end, offset) triples 5267 // 4. N packed filenames (null delimited) 5268 // Each field is an Elf_Addr, except for filenames which are char* strings. 5269 5270 CoreNote Ret; 5271 const int Bytes = Desc.getAddressSize(); 5272 5273 if (!Desc.isValidOffsetForAddress(2)) 5274 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5275 " is too short, expected at least 0x" + 5276 Twine::utohexstr(Bytes * 2)); 5277 if (Desc.getData().back() != 0) 5278 return createError("the note is not NUL terminated"); 5279 5280 uint64_t DescOffset = 0; 5281 uint64_t FileCount = Desc.getAddress(&DescOffset); 5282 Ret.PageSize = Desc.getAddress(&DescOffset); 5283 5284 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5285 return createError("unable to read file mappings (found " + 5286 Twine(FileCount) + "): the note of size 0x" + 5287 Twine::utohexstr(Desc.size()) + " is too short"); 5288 5289 uint64_t FilenamesOffset = 0; 5290 DataExtractor Filenames( 5291 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5292 Desc.isLittleEndian(), Desc.getAddressSize()); 5293 5294 Ret.Mappings.resize(FileCount); 5295 size_t I = 0; 5296 for (CoreFileMapping &Mapping : Ret.Mappings) { 5297 ++I; 5298 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5299 return createError( 5300 "unable to read the file name for the mapping with index " + 5301 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5302 " is truncated"); 5303 Mapping.Start = Desc.getAddress(&DescOffset); 5304 Mapping.End = Desc.getAddress(&DescOffset); 5305 Mapping.Offset = Desc.getAddress(&DescOffset); 5306 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5307 } 5308 5309 return Ret; 5310 } 5311 5312 template <typename ELFT> 5313 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5314 // Length of "0x<address>" string. 5315 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5316 5317 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5318 OS << " " << right_justify("Start", FieldWidth) << " " 5319 << right_justify("End", FieldWidth) << " " 5320 << right_justify("Page Offset", FieldWidth) << '\n'; 5321 for (const CoreFileMapping &Mapping : Note.Mappings) { 5322 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5323 << format_hex(Mapping.End, FieldWidth) << " " 5324 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5325 << Mapping.Filename << '\n'; 5326 } 5327 } 5328 5329 const NoteType GenericNoteTypes[] = { 5330 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5331 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5332 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5333 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5334 }; 5335 5336 const NoteType GNUNoteTypes[] = { 5337 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5338 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5339 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5340 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5341 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5342 }; 5343 5344 const NoteType FreeBSDCoreNoteTypes[] = { 5345 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5346 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5347 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5348 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5349 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5350 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5351 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5352 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5353 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5354 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5355 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5356 }; 5357 5358 const NoteType FreeBSDNoteTypes[] = { 5359 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5360 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5361 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5362 {ELF::NT_FREEBSD_FEATURE_CTL, 5363 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5364 }; 5365 5366 const NoteType NetBSDCoreNoteTypes[] = { 5367 {ELF::NT_NETBSDCORE_PROCINFO, 5368 "NT_NETBSDCORE_PROCINFO (procinfo structure)"}, 5369 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"}, 5370 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"}, 5371 }; 5372 5373 const NoteType OpenBSDCoreNoteTypes[] = { 5374 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5375 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5376 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5377 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5378 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5379 }; 5380 5381 const NoteType AMDNoteTypes[] = { 5382 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5383 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5384 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5385 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5386 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5387 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5388 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5389 }; 5390 5391 const NoteType AMDGPUNoteTypes[] = { 5392 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5393 }; 5394 5395 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5396 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5397 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5398 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5399 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5400 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5401 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5402 }; 5403 5404 const NoteType CoreNoteTypes[] = { 5405 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5406 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5407 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5408 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5409 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5410 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5411 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5412 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5413 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5414 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5415 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5416 5417 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5418 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5419 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5420 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5421 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5422 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5423 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5424 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5425 {ELF::NT_PPC_TM_CFPR, 5426 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5427 {ELF::NT_PPC_TM_CVMX, 5428 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5429 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5430 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5431 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5432 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5433 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5434 5435 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5436 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5437 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5438 5439 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5440 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5441 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5442 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5443 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5444 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5445 {ELF::NT_S390_LAST_BREAK, 5446 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5447 {ELF::NT_S390_SYSTEM_CALL, 5448 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5449 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5450 {ELF::NT_S390_VXRS_LOW, 5451 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5452 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5453 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5454 {ELF::NT_S390_GS_BC, 5455 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5456 5457 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5458 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5459 {ELF::NT_ARM_HW_BREAK, 5460 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5461 {ELF::NT_ARM_HW_WATCH, 5462 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5463 5464 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5465 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5466 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5467 }; 5468 5469 template <class ELFT> 5470 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 5471 uint32_t Type = Note.getType(); 5472 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5473 for (const NoteType &N : V) 5474 if (N.ID == Type) 5475 return N.Name; 5476 return ""; 5477 }; 5478 5479 StringRef Name = Note.getName(); 5480 if (Name == "GNU") 5481 return FindNote(GNUNoteTypes); 5482 if (Name == "FreeBSD") { 5483 if (ELFType == ELF::ET_CORE) { 5484 // FreeBSD also places the generic core notes in the FreeBSD namespace. 5485 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 5486 if (!Result.empty()) 5487 return Result; 5488 return FindNote(CoreNoteTypes); 5489 } else { 5490 return FindNote(FreeBSDNoteTypes); 5491 } 5492 } 5493 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) { 5494 StringRef Result = FindNote(NetBSDCoreNoteTypes); 5495 if (!Result.empty()) 5496 return Result; 5497 return FindNote(CoreNoteTypes); 5498 } 5499 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) { 5500 // OpenBSD also places the generic core notes in the OpenBSD namespace. 5501 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 5502 if (!Result.empty()) 5503 return Result; 5504 return FindNote(CoreNoteTypes); 5505 } 5506 if (Name == "AMD") 5507 return FindNote(AMDNoteTypes); 5508 if (Name == "AMDGPU") 5509 return FindNote(AMDGPUNoteTypes); 5510 if (Name == "LLVMOMPOFFLOAD") 5511 return FindNote(LLVMOMPOFFLOADNoteTypes); 5512 5513 if (ELFType == ELF::ET_CORE) 5514 return FindNote(CoreNoteTypes); 5515 return FindNote(GenericNoteTypes); 5516 } 5517 5518 template <class ELFT> 5519 static void printNotesHelper( 5520 const ELFDumper<ELFT> &Dumper, 5521 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off, 5522 typename ELFT::Addr)> 5523 StartNotesFn, 5524 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 5525 llvm::function_ref<void()> FinishNotesFn) { 5526 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5527 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 5528 5529 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5530 if (!IsCoreFile && !Sections.empty()) { 5531 for (const typename ELFT::Shdr &S : Sections) { 5532 if (S.sh_type != SHT_NOTE) 5533 continue; 5534 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset, 5535 S.sh_size); 5536 Error Err = Error::success(); 5537 size_t I = 0; 5538 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5539 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5540 Dumper.reportUniqueWarning( 5541 "unable to read note with index " + Twine(I) + " from the " + 5542 describe(Obj, S) + ": " + toString(std::move(E))); 5543 ++I; 5544 } 5545 if (Err) 5546 Dumper.reportUniqueWarning("unable to read notes from the " + 5547 describe(Obj, S) + ": " + 5548 toString(std::move(Err))); 5549 FinishNotesFn(); 5550 } 5551 return; 5552 } 5553 5554 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5555 if (!PhdrsOrErr) { 5556 Dumper.reportUniqueWarning( 5557 "unable to read program headers to locate the PT_NOTE segment: " + 5558 toString(PhdrsOrErr.takeError())); 5559 return; 5560 } 5561 5562 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5563 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5564 if (P.p_type != PT_NOTE) 5565 continue; 5566 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz); 5567 Error Err = Error::success(); 5568 size_t Index = 0; 5569 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5570 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5571 Dumper.reportUniqueWarning("unable to read note with index " + 5572 Twine(Index) + 5573 " from the PT_NOTE segment with index " + 5574 Twine(I) + ": " + toString(std::move(E))); 5575 ++Index; 5576 } 5577 if (Err) 5578 Dumper.reportUniqueWarning( 5579 "unable to read notes from the PT_NOTE segment with index " + 5580 Twine(I) + ": " + toString(std::move(Err))); 5581 FinishNotesFn(); 5582 } 5583 } 5584 5585 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 5586 bool IsFirstHeader = true; 5587 auto PrintHeader = [&](Optional<StringRef> SecName, 5588 const typename ELFT::Off Offset, 5589 const typename ELFT::Addr Size) { 5590 // Print a newline between notes sections to match GNU readelf. 5591 if (!IsFirstHeader) { 5592 OS << '\n'; 5593 } else { 5594 IsFirstHeader = false; 5595 } 5596 5597 OS << "Displaying notes found "; 5598 5599 if (SecName) 5600 OS << "in: " << *SecName << "\n"; 5601 else 5602 OS << "at file offset " << format_hex(Offset, 10) << " with length " 5603 << format_hex(Size, 10) << ":\n"; 5604 5605 OS << " Owner Data size \tDescription\n"; 5606 }; 5607 5608 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 5609 StringRef Name = Note.getName(); 5610 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 5611 Elf_Word Type = Note.getType(); 5612 5613 // Print the note owner/type. 5614 OS << " " << left_justify(Name, 20) << ' ' 5615 << format_hex(Descriptor.size(), 10) << '\t'; 5616 5617 StringRef NoteType = 5618 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 5619 if (!NoteType.empty()) 5620 OS << NoteType << '\n'; 5621 else 5622 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 5623 5624 // Print the description, or fallback to printing raw bytes for unknown 5625 // owners/if we fail to pretty-print the contents. 5626 if (Name == "GNU") { 5627 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 5628 return Error::success(); 5629 } else if (Name == "FreeBSD") { 5630 if (Optional<FreeBSDNote> N = 5631 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 5632 OS << " " << N->Type << ": " << N->Value << '\n'; 5633 return Error::success(); 5634 } 5635 } else if (Name == "AMD") { 5636 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 5637 if (!N.Type.empty()) { 5638 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5639 return Error::success(); 5640 } 5641 } else if (Name == "AMDGPU") { 5642 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 5643 if (!N.Type.empty()) { 5644 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5645 return Error::success(); 5646 } 5647 } else if (Name == "LLVMOMPOFFLOAD") { 5648 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 5649 return Error::success(); 5650 } else if (Name == "CORE") { 5651 if (Type == ELF::NT_FILE) { 5652 DataExtractor DescExtractor(Descriptor, 5653 ELFT::TargetEndianness == support::little, 5654 sizeof(Elf_Addr)); 5655 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 5656 printCoreNote<ELFT>(OS, *NoteOrErr); 5657 return Error::success(); 5658 } else { 5659 return NoteOrErr.takeError(); 5660 } 5661 } 5662 } 5663 if (!Descriptor.empty()) { 5664 OS << " description data:"; 5665 for (uint8_t B : Descriptor) 5666 OS << " " << format("%02x", B); 5667 OS << '\n'; 5668 } 5669 return Error::success(); 5670 }; 5671 5672 printNotesHelper(*this, PrintHeader, ProcessNote, []() {}); 5673 } 5674 5675 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 5676 OS << "printELFLinkerOptions not implemented!\n"; 5677 } 5678 5679 template <class ELFT> 5680 void ELFDumper<ELFT>::printDependentLibsHelper( 5681 function_ref<void(const Elf_Shdr &)> OnSectionStart, 5682 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 5683 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 5684 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 5685 Twine(SecNdx) + " is broken: " + Msg); 5686 }; 5687 5688 unsigned I = -1; 5689 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 5690 ++I; 5691 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 5692 continue; 5693 5694 OnSectionStart(Shdr); 5695 5696 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 5697 if (!ContentsOrErr) { 5698 Warn(I, toString(ContentsOrErr.takeError())); 5699 continue; 5700 } 5701 5702 ArrayRef<uint8_t> Contents = *ContentsOrErr; 5703 if (!Contents.empty() && Contents.back() != 0) { 5704 Warn(I, "the content is not null-terminated"); 5705 continue; 5706 } 5707 5708 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 5709 StringRef Lib((const char *)I); 5710 OnLibEntry(Lib, I - Contents.begin()); 5711 I += Lib.size() + 1; 5712 } 5713 } 5714 } 5715 5716 template <class ELFT> 5717 void ELFDumper<ELFT>::forEachRelocationDo( 5718 const Elf_Shdr &Sec, bool RawRelr, 5719 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 5720 const Elf_Shdr &, const Elf_Shdr *)> 5721 RelRelaFn, 5722 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 5723 auto Warn = [&](Error &&E, 5724 const Twine &Prefix = "unable to read relocations from") { 5725 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 5726 toString(std::move(E))); 5727 }; 5728 5729 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table. 5730 // For them we should not treat the value of the sh_link field as an index of 5731 // a symbol table. 5732 const Elf_Shdr *SymTab; 5733 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) { 5734 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 5735 if (!SymTabOrErr) { 5736 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 5737 return; 5738 } 5739 SymTab = *SymTabOrErr; 5740 } 5741 5742 unsigned RelNdx = 0; 5743 const bool IsMips64EL = this->Obj.isMips64EL(); 5744 switch (Sec.sh_type) { 5745 case ELF::SHT_REL: 5746 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 5747 for (const Elf_Rel &R : *RangeOrErr) 5748 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5749 } else { 5750 Warn(RangeOrErr.takeError()); 5751 } 5752 break; 5753 case ELF::SHT_RELA: 5754 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 5755 for (const Elf_Rela &R : *RangeOrErr) 5756 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5757 } else { 5758 Warn(RangeOrErr.takeError()); 5759 } 5760 break; 5761 case ELF::SHT_RELR: 5762 case ELF::SHT_ANDROID_RELR: { 5763 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 5764 if (!RangeOrErr) { 5765 Warn(RangeOrErr.takeError()); 5766 break; 5767 } 5768 if (RawRelr) { 5769 for (const Elf_Relr &R : *RangeOrErr) 5770 RelrFn(R); 5771 break; 5772 } 5773 5774 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 5775 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 5776 /*SymTab=*/nullptr); 5777 break; 5778 } 5779 case ELF::SHT_ANDROID_REL: 5780 case ELF::SHT_ANDROID_RELA: 5781 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 5782 for (const Elf_Rela &R : *RelasOrErr) 5783 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5784 } else { 5785 Warn(RelasOrErr.takeError()); 5786 } 5787 break; 5788 } 5789 } 5790 5791 template <class ELFT> 5792 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 5793 StringRef Name = "<?>"; 5794 if (Expected<StringRef> SecNameOrErr = 5795 Obj.getSectionName(Sec, this->WarningHandler)) 5796 Name = *SecNameOrErr; 5797 else 5798 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 5799 ": " + toString(SecNameOrErr.takeError())); 5800 return Name; 5801 } 5802 5803 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 5804 bool SectionStarted = false; 5805 struct NameOffset { 5806 StringRef Name; 5807 uint64_t Offset; 5808 }; 5809 std::vector<NameOffset> SecEntries; 5810 NameOffset Current; 5811 auto PrintSection = [&]() { 5812 OS << "Dependent libraries section " << Current.Name << " at offset " 5813 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 5814 << " entries:\n"; 5815 for (NameOffset Entry : SecEntries) 5816 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 5817 << "\n"; 5818 OS << "\n"; 5819 SecEntries.clear(); 5820 }; 5821 5822 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 5823 if (SectionStarted) 5824 PrintSection(); 5825 SectionStarted = true; 5826 Current.Offset = Shdr.sh_offset; 5827 Current.Name = this->getPrintableSectionName(Shdr); 5828 }; 5829 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 5830 SecEntries.push_back(NameOffset{Lib, Offset}); 5831 }; 5832 5833 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 5834 if (SectionStarted) 5835 PrintSection(); 5836 } 5837 5838 template <class ELFT> 5839 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 5840 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) { 5841 SmallVector<uint32_t> SymbolIndexes; 5842 if (!this->AddressToIndexMap.hasValue()) { 5843 // Populate the address to index map upon the first invocation of this 5844 // function. 5845 this->AddressToIndexMap.emplace(); 5846 if (this->DotSymtabSec) { 5847 if (Expected<Elf_Sym_Range> SymsOrError = 5848 Obj.symbols(this->DotSymtabSec)) { 5849 uint32_t Index = (uint32_t)-1; 5850 for (const Elf_Sym &Sym : *SymsOrError) { 5851 ++Index; 5852 5853 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 5854 continue; 5855 5856 Expected<uint64_t> SymAddrOrErr = 5857 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 5858 if (!SymAddrOrErr) { 5859 std::string Name = this->getStaticSymbolName(Index); 5860 reportUniqueWarning("unable to get address of symbol '" + Name + 5861 "': " + toString(SymAddrOrErr.takeError())); 5862 return SymbolIndexes; 5863 } 5864 5865 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 5866 } 5867 } else { 5868 reportUniqueWarning("unable to read the symbol table: " + 5869 toString(SymsOrError.takeError())); 5870 } 5871 } 5872 } 5873 5874 auto Symbols = this->AddressToIndexMap->find(SymValue); 5875 if (Symbols == this->AddressToIndexMap->end()) 5876 return SymbolIndexes; 5877 5878 for (uint32_t Index : Symbols->second) { 5879 // Check if the symbol is in the right section. FunctionSec == None 5880 // means "any section". 5881 if (FunctionSec) { 5882 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 5883 if (Expected<const Elf_Shdr *> SecOrErr = 5884 Obj.getSection(Sym, this->DotSymtabSec, 5885 this->getShndxTable(this->DotSymtabSec))) { 5886 if (*FunctionSec != *SecOrErr) 5887 continue; 5888 } else { 5889 std::string Name = this->getStaticSymbolName(Index); 5890 // Note: it is impossible to trigger this error currently, it is 5891 // untested. 5892 reportUniqueWarning("unable to get section of symbol '" + Name + 5893 "': " + toString(SecOrErr.takeError())); 5894 return SymbolIndexes; 5895 } 5896 } 5897 5898 SymbolIndexes.push_back(Index); 5899 } 5900 5901 return SymbolIndexes; 5902 } 5903 5904 template <class ELFT> 5905 bool ELFDumper<ELFT>::printFunctionStackSize( 5906 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec, 5907 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 5908 SmallVector<uint32_t> FuncSymIndexes = 5909 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 5910 if (FuncSymIndexes.empty()) 5911 reportUniqueWarning( 5912 "could not identify function symbol for stack size entry in " + 5913 describe(StackSizeSec)); 5914 5915 // Extract the size. The expectation is that Offset is pointing to the right 5916 // place, i.e. past the function address. 5917 Error Err = Error::success(); 5918 uint64_t StackSize = Data.getULEB128(Offset, &Err); 5919 if (Err) { 5920 reportUniqueWarning("could not extract a valid stack size from " + 5921 describe(StackSizeSec) + ": " + 5922 toString(std::move(Err))); 5923 return false; 5924 } 5925 5926 if (FuncSymIndexes.empty()) { 5927 printStackSizeEntry(StackSize, {"?"}); 5928 } else { 5929 SmallVector<std::string> FuncSymNames; 5930 for (uint32_t Index : FuncSymIndexes) 5931 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 5932 printStackSizeEntry(StackSize, FuncSymNames); 5933 } 5934 5935 return true; 5936 } 5937 5938 template <class ELFT> 5939 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 5940 ArrayRef<std::string> FuncNames) { 5941 OS.PadToColumn(2); 5942 OS << format_decimal(Size, 11); 5943 OS.PadToColumn(18); 5944 5945 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 5946 } 5947 5948 template <class ELFT> 5949 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 5950 const Elf_Shdr &RelocSec, unsigned Ndx, 5951 const Elf_Shdr *SymTab, 5952 const Elf_Shdr *FunctionSec, 5953 const Elf_Shdr &StackSizeSec, 5954 const RelocationResolver &Resolver, 5955 DataExtractor Data) { 5956 // This function ignores potentially erroneous input, unless it is directly 5957 // related to stack size reporting. 5958 const Elf_Sym *Sym = nullptr; 5959 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 5960 if (!TargetOrErr) 5961 reportUniqueWarning("unable to get the target of relocation with index " + 5962 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 5963 toString(TargetOrErr.takeError())); 5964 else 5965 Sym = TargetOrErr->Sym; 5966 5967 uint64_t RelocSymValue = 0; 5968 if (Sym) { 5969 Expected<const Elf_Shdr *> SectionOrErr = 5970 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 5971 if (!SectionOrErr) { 5972 reportUniqueWarning( 5973 "cannot identify the section for relocation symbol '" + 5974 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 5975 } else if (*SectionOrErr != FunctionSec) { 5976 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 5977 "' is not in the expected section"); 5978 // Pretend that the symbol is in the correct section and report its 5979 // stack size anyway. 5980 FunctionSec = *SectionOrErr; 5981 } 5982 5983 RelocSymValue = Sym->st_value; 5984 } 5985 5986 uint64_t Offset = R.Offset; 5987 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 5988 reportUniqueWarning("found invalid relocation offset (0x" + 5989 Twine::utohexstr(Offset) + ") into " + 5990 describe(StackSizeSec) + 5991 " while trying to extract a stack size entry"); 5992 return; 5993 } 5994 5995 uint64_t SymValue = 5996 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset), 5997 R.Addend.getValueOr(0)); 5998 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 5999 &Offset); 6000 } 6001 6002 template <class ELFT> 6003 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 6004 std::function<void()> PrintHeader) { 6005 // This function ignores potentially erroneous input, unless it is directly 6006 // related to stack size reporting. 6007 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6008 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 6009 continue; 6010 PrintHeader(); 6011 ArrayRef<uint8_t> Contents = 6012 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 6013 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6014 uint64_t Offset = 0; 6015 while (Offset < Contents.size()) { 6016 // The function address is followed by a ULEB representing the stack 6017 // size. Check for an extra byte before we try to process the entry. 6018 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6019 reportUniqueWarning( 6020 describe(Sec) + 6021 " ended while trying to extract a stack size entry"); 6022 break; 6023 } 6024 uint64_t SymValue = Data.getAddress(&Offset); 6025 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data, 6026 &Offset)) 6027 break; 6028 } 6029 } 6030 } 6031 6032 template <class ELFT> 6033 void ELFDumper<ELFT>::getSectionAndRelocations( 6034 std::function<bool(const Elf_Shdr &)> IsMatch, 6035 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) { 6036 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6037 if (IsMatch(Sec)) 6038 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr)) 6039 .second) 6040 continue; 6041 6042 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL) 6043 continue; 6044 6045 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info); 6046 if (!RelSecOrErr) { 6047 reportUniqueWarning(describe(Sec) + 6048 ": failed to get a relocated section: " + 6049 toString(RelSecOrErr.takeError())); 6050 continue; 6051 } 6052 const Elf_Shdr *ContentsSec = *RelSecOrErr; 6053 if (IsMatch(*ContentsSec)) 6054 SecToRelocMap[ContentsSec] = &Sec; 6055 } 6056 } 6057 6058 template <class ELFT> 6059 void ELFDumper<ELFT>::printRelocatableStackSizes( 6060 std::function<void()> PrintHeader) { 6061 // Build a map between stack size sections and their corresponding relocation 6062 // sections. 6063 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap; 6064 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6065 StringRef SectionName; 6066 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6067 SectionName = *NameOrErr; 6068 else 6069 consumeError(NameOrErr.takeError()); 6070 6071 return SectionName == ".stack_sizes"; 6072 }; 6073 getSectionAndRelocations(IsMatch, StackSizeRelocMap); 6074 6075 for (const auto &StackSizeMapEntry : StackSizeRelocMap) { 6076 PrintHeader(); 6077 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6078 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6079 6080 // Warn about stack size sections without a relocation section. 6081 if (!RelocSec) { 6082 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6083 ") does not have a corresponding " 6084 "relocation section"), 6085 FileName); 6086 continue; 6087 } 6088 6089 // A .stack_sizes section header's sh_link field is supposed to point 6090 // to the section that contains the functions whose stack sizes are 6091 // described in it. 6092 const Elf_Shdr *FunctionSec = unwrapOrError( 6093 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6094 6095 SupportsRelocation IsSupportedFn; 6096 RelocationResolver Resolver; 6097 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6098 ArrayRef<uint8_t> Contents = 6099 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6100 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6101 6102 forEachRelocationDo( 6103 *RelocSec, /*RawRelr=*/false, 6104 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 6105 const Elf_Shdr *SymTab) { 6106 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6107 reportUniqueWarning( 6108 describe(*RelocSec) + 6109 " contains an unsupported relocation with index " + Twine(Ndx) + 6110 ": " + Obj.getRelocationTypeName(R.Type)); 6111 return; 6112 } 6113 6114 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6115 *StackSizesELFSec, Resolver, Data); 6116 }, 6117 [](const Elf_Relr &) { 6118 llvm_unreachable("can't get here, because we only support " 6119 "SHT_REL/SHT_RELA sections"); 6120 }); 6121 } 6122 } 6123 6124 template <class ELFT> 6125 void GNUELFDumper<ELFT>::printStackSizes() { 6126 bool HeaderHasBeenPrinted = false; 6127 auto PrintHeader = [&]() { 6128 if (HeaderHasBeenPrinted) 6129 return; 6130 OS << "\nStack Sizes:\n"; 6131 OS.PadToColumn(9); 6132 OS << "Size"; 6133 OS.PadToColumn(18); 6134 OS << "Functions\n"; 6135 HeaderHasBeenPrinted = true; 6136 }; 6137 6138 // For non-relocatable objects, look directly for sections whose name starts 6139 // with .stack_sizes and process the contents. 6140 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6141 this->printRelocatableStackSizes(PrintHeader); 6142 else 6143 this->printNonRelocatableStackSizes(PrintHeader); 6144 } 6145 6146 template <class ELFT> 6147 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6148 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6149 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6150 OS.PadToColumn(2); 6151 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6152 OS.PadToColumn(11 + Bias); 6153 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6154 OS.PadToColumn(22 + Bias); 6155 OS << format_hex_no_prefix(*E, 8 + Bias); 6156 OS.PadToColumn(31 + 2 * Bias); 6157 OS << Purpose << "\n"; 6158 }; 6159 6160 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6161 OS << " Canonical gp value: " 6162 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6163 6164 OS << " Reserved entries:\n"; 6165 if (ELFT::Is64Bits) 6166 OS << " Address Access Initial Purpose\n"; 6167 else 6168 OS << " Address Access Initial Purpose\n"; 6169 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6170 if (Parser.getGotModulePointer()) 6171 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6172 6173 if (!Parser.getLocalEntries().empty()) { 6174 OS << "\n"; 6175 OS << " Local entries:\n"; 6176 if (ELFT::Is64Bits) 6177 OS << " Address Access Initial\n"; 6178 else 6179 OS << " Address Access Initial\n"; 6180 for (auto &E : Parser.getLocalEntries()) 6181 PrintEntry(&E, ""); 6182 } 6183 6184 if (Parser.IsStatic) 6185 return; 6186 6187 if (!Parser.getGlobalEntries().empty()) { 6188 OS << "\n"; 6189 OS << " Global entries:\n"; 6190 if (ELFT::Is64Bits) 6191 OS << " Address Access Initial Sym.Val." 6192 << " Type Ndx Name\n"; 6193 else 6194 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6195 6196 DataRegion<Elf_Word> ShndxTable( 6197 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6198 for (auto &E : Parser.getGlobalEntries()) { 6199 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6200 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6201 std::string SymName = this->getFullSymbolName( 6202 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6203 6204 OS.PadToColumn(2); 6205 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6206 OS.PadToColumn(11 + Bias); 6207 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6208 OS.PadToColumn(22 + Bias); 6209 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6210 OS.PadToColumn(31 + 2 * Bias); 6211 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6212 OS.PadToColumn(40 + 3 * Bias); 6213 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6214 OS.PadToColumn(48 + 3 * Bias); 6215 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6216 ShndxTable); 6217 OS.PadToColumn(52 + 3 * Bias); 6218 OS << SymName << "\n"; 6219 } 6220 } 6221 6222 if (!Parser.getOtherEntries().empty()) 6223 OS << "\n Number of TLS and multi-GOT entries " 6224 << Parser.getOtherEntries().size() << "\n"; 6225 } 6226 6227 template <class ELFT> 6228 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6229 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6230 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6231 OS.PadToColumn(2); 6232 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6233 OS.PadToColumn(11 + Bias); 6234 OS << format_hex_no_prefix(*E, 8 + Bias); 6235 OS.PadToColumn(20 + 2 * Bias); 6236 OS << Purpose << "\n"; 6237 }; 6238 6239 OS << "PLT GOT:\n\n"; 6240 6241 OS << " Reserved entries:\n"; 6242 OS << " Address Initial Purpose\n"; 6243 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6244 if (Parser.getPltModulePointer()) 6245 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6246 6247 if (!Parser.getPltEntries().empty()) { 6248 OS << "\n"; 6249 OS << " Entries:\n"; 6250 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6251 DataRegion<Elf_Word> ShndxTable( 6252 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6253 for (auto &E : Parser.getPltEntries()) { 6254 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6255 const Elf_Sym &FirstSym = *cantFail( 6256 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6257 std::string SymName = this->getFullSymbolName( 6258 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6259 6260 OS.PadToColumn(2); 6261 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6262 OS.PadToColumn(11 + Bias); 6263 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6264 OS.PadToColumn(20 + 2 * Bias); 6265 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6266 OS.PadToColumn(29 + 3 * Bias); 6267 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6268 OS.PadToColumn(37 + 3 * Bias); 6269 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6270 ShndxTable); 6271 OS.PadToColumn(41 + 3 * Bias); 6272 OS << SymName << "\n"; 6273 } 6274 } 6275 } 6276 6277 template <class ELFT> 6278 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6279 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6280 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6281 if (Sec == nullptr) 6282 return nullptr; 6283 6284 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6285 Expected<ArrayRef<uint8_t>> DataOrErr = 6286 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6287 if (!DataOrErr) 6288 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6289 6290 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6291 return createError(ErrPrefix + "it has a wrong size (" + 6292 Twine(DataOrErr->size()) + ")"); 6293 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6294 } 6295 6296 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6297 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6298 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6299 getMipsAbiFlagsSection(*this)) 6300 Flags = *SecOrErr; 6301 else 6302 this->reportUniqueWarning(SecOrErr.takeError()); 6303 if (!Flags) 6304 return; 6305 6306 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6307 OS << "ISA: MIPS" << int(Flags->isa_level); 6308 if (Flags->isa_rev > 1) 6309 OS << "r" << int(Flags->isa_rev); 6310 OS << "\n"; 6311 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 6312 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 6313 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 6314 OS << "FP ABI: " 6315 << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n"; 6316 OS << "ISA Extension: " 6317 << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; 6318 if (Flags->ases == 0) 6319 OS << "ASEs: None\n"; 6320 else 6321 // FIXME: Print each flag on a separate line. 6322 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) 6323 << "\n"; 6324 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 6325 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 6326 OS << "\n"; 6327 } 6328 6329 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 6330 const Elf_Ehdr &E = this->Obj.getHeader(); 6331 { 6332 DictScope D(W, "ElfHeader"); 6333 { 6334 DictScope D(W, "Ident"); 6335 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4)); 6336 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 6337 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 6338 makeArrayRef(ElfDataEncoding)); 6339 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 6340 6341 auto OSABI = makeArrayRef(ElfOSABI); 6342 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 6343 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 6344 switch (E.e_machine) { 6345 case ELF::EM_AMDGPU: 6346 OSABI = makeArrayRef(AMDGPUElfOSABI); 6347 break; 6348 case ELF::EM_ARM: 6349 OSABI = makeArrayRef(ARMElfOSABI); 6350 break; 6351 case ELF::EM_TI_C6000: 6352 OSABI = makeArrayRef(C6000ElfOSABI); 6353 break; 6354 } 6355 } 6356 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 6357 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 6358 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD)); 6359 } 6360 6361 std::string TypeStr; 6362 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 6363 TypeStr = Ent->Name.str(); 6364 } else { 6365 if (E.e_type >= ET_LOPROC) 6366 TypeStr = "Processor Specific"; 6367 else if (E.e_type >= ET_LOOS) 6368 TypeStr = "OS Specific"; 6369 else 6370 TypeStr = "Unknown"; 6371 } 6372 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")"); 6373 6374 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType)); 6375 W.printNumber("Version", E.e_version); 6376 W.printHex("Entry", E.e_entry); 6377 W.printHex("ProgramHeaderOffset", E.e_phoff); 6378 W.printHex("SectionHeaderOffset", E.e_shoff); 6379 if (E.e_machine == EM_MIPS) 6380 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags), 6381 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 6382 unsigned(ELF::EF_MIPS_MACH)); 6383 else if (E.e_machine == EM_AMDGPU) { 6384 switch (E.e_ident[ELF::EI_ABIVERSION]) { 6385 default: 6386 W.printHex("Flags", E.e_flags); 6387 break; 6388 case 0: 6389 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 6390 LLVM_FALLTHROUGH; 6391 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 6392 W.printFlags("Flags", E.e_flags, 6393 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 6394 unsigned(ELF::EF_AMDGPU_MACH)); 6395 break; 6396 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 6397 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 6398 W.printFlags("Flags", E.e_flags, 6399 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 6400 unsigned(ELF::EF_AMDGPU_MACH), 6401 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 6402 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 6403 break; 6404 } 6405 } else if (E.e_machine == EM_RISCV) 6406 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 6407 else if (E.e_machine == EM_AVR) 6408 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags), 6409 unsigned(ELF::EF_AVR_ARCH_MASK)); 6410 else 6411 W.printFlags("Flags", E.e_flags); 6412 W.printNumber("HeaderSize", E.e_ehsize); 6413 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 6414 W.printNumber("ProgramHeaderCount", E.e_phnum); 6415 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 6416 W.printString("SectionHeaderCount", 6417 getSectionHeadersNumString(this->Obj, this->FileName)); 6418 W.printString("StringTableSectionIndex", 6419 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 6420 } 6421 } 6422 6423 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 6424 DictScope Lists(W, "Groups"); 6425 std::vector<GroupSection> V = this->getGroups(); 6426 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6427 for (const GroupSection &G : V) { 6428 DictScope D(W, "Group"); 6429 W.printNumber("Name", G.Name, G.ShName); 6430 W.printNumber("Index", G.Index); 6431 W.printNumber("Link", G.Link); 6432 W.printNumber("Info", G.Info); 6433 W.printHex("Type", getGroupType(G.Type), G.Type); 6434 W.startLine() << "Signature: " << G.Signature << "\n"; 6435 6436 ListScope L(W, "Section(s) in group"); 6437 for (const GroupMember &GM : G.Members) { 6438 const GroupSection *MainGroup = Map[GM.Index]; 6439 if (MainGroup != &G) 6440 this->reportUniqueWarning( 6441 "section with index " + Twine(GM.Index) + 6442 ", included in the group section with index " + 6443 Twine(MainGroup->Index) + 6444 ", was also found in the group section with index " + 6445 Twine(G.Index)); 6446 W.startLine() << GM.Name << " (" << GM.Index << ")\n"; 6447 } 6448 } 6449 6450 if (V.empty()) 6451 W.startLine() << "There are no group sections in the file.\n"; 6452 } 6453 6454 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 6455 ListScope D(W, "Relocations"); 6456 6457 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6458 if (!isRelocationSec<ELFT>(Sec)) 6459 continue; 6460 6461 StringRef Name = this->getPrintableSectionName(Sec); 6462 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 6463 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n"; 6464 W.indent(); 6465 this->printRelocationsHelper(Sec); 6466 W.unindent(); 6467 W.startLine() << "}\n"; 6468 } 6469 } 6470 6471 template <class ELFT> 6472 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 6473 W.startLine() << W.hex(R) << "\n"; 6474 } 6475 6476 template <class ELFT> 6477 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 6478 const RelSymbol<ELFT> &RelSym) { 6479 StringRef SymbolName = RelSym.Name; 6480 SmallString<32> RelocName; 6481 this->Obj.getRelocationTypeName(R.Type, RelocName); 6482 6483 if (opts::ExpandRelocs) { 6484 DictScope Group(W, "Relocation"); 6485 W.printHex("Offset", R.Offset); 6486 W.printNumber("Type", RelocName, R.Type); 6487 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 6488 if (R.Addend) 6489 W.printHex("Addend", (uintX_t)*R.Addend); 6490 } else { 6491 raw_ostream &OS = W.startLine(); 6492 OS << W.hex(R.Offset) << " " << RelocName << " " 6493 << (!SymbolName.empty() ? SymbolName : "-"); 6494 if (R.Addend) 6495 OS << " " << W.hex((uintX_t)*R.Addend); 6496 OS << "\n"; 6497 } 6498 } 6499 6500 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 6501 ListScope SectionsD(W, "Sections"); 6502 6503 int SectionIndex = -1; 6504 std::vector<EnumEntry<unsigned>> FlagsList = 6505 getSectionFlagsForTarget(this->Obj.getHeader().e_machine); 6506 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6507 DictScope SectionD(W, "Section"); 6508 W.printNumber("Index", ++SectionIndex); 6509 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 6510 W.printHex("Type", 6511 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 6512 Sec.sh_type), 6513 Sec.sh_type); 6514 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList)); 6515 W.printHex("Address", Sec.sh_addr); 6516 W.printHex("Offset", Sec.sh_offset); 6517 W.printNumber("Size", Sec.sh_size); 6518 W.printNumber("Link", Sec.sh_link); 6519 W.printNumber("Info", Sec.sh_info); 6520 W.printNumber("AddressAlignment", Sec.sh_addralign); 6521 W.printNumber("EntrySize", Sec.sh_entsize); 6522 6523 if (opts::SectionRelocations) { 6524 ListScope D(W, "Relocations"); 6525 this->printRelocationsHelper(Sec); 6526 } 6527 6528 if (opts::SectionSymbols) { 6529 ListScope D(W, "Symbols"); 6530 if (this->DotSymtabSec) { 6531 StringRef StrTable = unwrapOrError( 6532 this->FileName, 6533 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 6534 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 6535 6536 typename ELFT::SymRange Symbols = unwrapOrError( 6537 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 6538 for (const Elf_Sym &Sym : Symbols) { 6539 const Elf_Shdr *SymSec = unwrapOrError( 6540 this->FileName, 6541 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 6542 if (SymSec == &Sec) 6543 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 6544 false); 6545 } 6546 } 6547 } 6548 6549 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 6550 ArrayRef<uint8_t> Data = 6551 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 6552 W.printBinaryBlock( 6553 "SectionData", 6554 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 6555 } 6556 } 6557 } 6558 6559 template <class ELFT> 6560 void LLVMELFDumper<ELFT>::printSymbolSection( 6561 const Elf_Sym &Symbol, unsigned SymIndex, 6562 DataRegion<Elf_Word> ShndxTable) const { 6563 auto GetSectionSpecialType = [&]() -> Optional<StringRef> { 6564 if (Symbol.isUndefined()) 6565 return StringRef("Undefined"); 6566 if (Symbol.isProcessorSpecific()) 6567 return StringRef("Processor Specific"); 6568 if (Symbol.isOSSpecific()) 6569 return StringRef("Operating System Specific"); 6570 if (Symbol.isAbsolute()) 6571 return StringRef("Absolute"); 6572 if (Symbol.isCommon()) 6573 return StringRef("Common"); 6574 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 6575 return StringRef("Reserved"); 6576 return None; 6577 }; 6578 6579 if (Optional<StringRef> Type = GetSectionSpecialType()) { 6580 W.printHex("Section", *Type, Symbol.st_shndx); 6581 return; 6582 } 6583 6584 Expected<unsigned> SectionIndex = 6585 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 6586 if (!SectionIndex) { 6587 assert(Symbol.st_shndx == SHN_XINDEX && 6588 "getSymbolSectionIndex should only fail due to an invalid " 6589 "SHT_SYMTAB_SHNDX table/reference"); 6590 this->reportUniqueWarning(SectionIndex.takeError()); 6591 W.printHex("Section", "Reserved", SHN_XINDEX); 6592 return; 6593 } 6594 6595 Expected<StringRef> SectionName = 6596 this->getSymbolSectionName(Symbol, *SectionIndex); 6597 if (!SectionName) { 6598 // Don't report an invalid section name if the section headers are missing. 6599 // In such situations, all sections will be "invalid". 6600 if (!this->ObjF.sections().empty()) 6601 this->reportUniqueWarning(SectionName.takeError()); 6602 else 6603 consumeError(SectionName.takeError()); 6604 W.printHex("Section", "<?>", *SectionIndex); 6605 } else { 6606 W.printHex("Section", *SectionName, *SectionIndex); 6607 } 6608 } 6609 6610 template <class ELFT> 6611 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 6612 DataRegion<Elf_Word> ShndxTable, 6613 Optional<StringRef> StrTable, 6614 bool IsDynamic, 6615 bool /*NonVisibilityBitsUsed*/) const { 6616 std::string FullSymbolName = this->getFullSymbolName( 6617 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 6618 unsigned char SymbolType = Symbol.getType(); 6619 6620 DictScope D(W, "Symbol"); 6621 W.printNumber("Name", FullSymbolName, Symbol.st_name); 6622 W.printHex("Value", Symbol.st_value); 6623 W.printNumber("Size", Symbol.st_size); 6624 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 6625 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 6626 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 6627 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 6628 else 6629 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); 6630 if (Symbol.st_other == 0) 6631 // Usually st_other flag is zero. Do not pollute the output 6632 // by flags enumeration in that case. 6633 W.printNumber("Other", 0); 6634 else { 6635 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 6636 std::end(ElfSymOtherFlags)); 6637 if (this->Obj.getHeader().e_machine == EM_MIPS) { 6638 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 6639 // flag overlapped with other ST_MIPS_xxx flags. So consider both 6640 // cases separately. 6641 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 6642 SymOtherFlags.insert(SymOtherFlags.end(), 6643 std::begin(ElfMips16SymOtherFlags), 6644 std::end(ElfMips16SymOtherFlags)); 6645 else 6646 SymOtherFlags.insert(SymOtherFlags.end(), 6647 std::begin(ElfMipsSymOtherFlags), 6648 std::end(ElfMipsSymOtherFlags)); 6649 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) { 6650 SymOtherFlags.insert(SymOtherFlags.end(), 6651 std::begin(ElfAArch64SymOtherFlags), 6652 std::end(ElfAArch64SymOtherFlags)); 6653 } else if (this->Obj.getHeader().e_machine == EM_RISCV) { 6654 SymOtherFlags.insert(SymOtherFlags.end(), 6655 std::begin(ElfRISCVSymOtherFlags), 6656 std::end(ElfRISCVSymOtherFlags)); 6657 } 6658 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u); 6659 } 6660 printSymbolSection(Symbol, SymIndex, ShndxTable); 6661 } 6662 6663 template <class ELFT> 6664 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 6665 bool PrintDynamicSymbols) { 6666 if (PrintSymbols) { 6667 ListScope Group(W, "Symbols"); 6668 this->printSymbolsHelper(false); 6669 } 6670 if (PrintDynamicSymbols) { 6671 ListScope Group(W, "DynamicSymbols"); 6672 this->printSymbolsHelper(true); 6673 } 6674 } 6675 6676 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 6677 Elf_Dyn_Range Table = this->dynamic_table(); 6678 if (Table.empty()) 6679 return; 6680 6681 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 6682 6683 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 6684 // The "Name/Value" column should be indented from the "Type" column by N 6685 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 6686 // space (1) = -3. 6687 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 6688 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 6689 6690 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 6691 for (auto Entry : Table) { 6692 uintX_t Tag = Entry.getTag(); 6693 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 6694 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 6695 << " " 6696 << format(ValueFmt.c_str(), 6697 this->Obj.getDynamicTagAsString(Tag).c_str()) 6698 << Value << "\n"; 6699 } 6700 W.startLine() << "]\n"; 6701 } 6702 6703 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 6704 W.startLine() << "Dynamic Relocations {\n"; 6705 W.indent(); 6706 this->printDynamicRelocationsHelper(); 6707 W.unindent(); 6708 W.startLine() << "}\n"; 6709 } 6710 6711 template <class ELFT> 6712 void LLVMELFDumper<ELFT>::printProgramHeaders( 6713 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 6714 if (PrintProgramHeaders) 6715 printProgramHeaders(); 6716 if (PrintSectionMapping == cl::BOU_TRUE) 6717 printSectionMapping(); 6718 } 6719 6720 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 6721 ListScope L(W, "ProgramHeaders"); 6722 6723 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 6724 if (!PhdrsOrErr) { 6725 this->reportUniqueWarning("unable to dump program headers: " + 6726 toString(PhdrsOrErr.takeError())); 6727 return; 6728 } 6729 6730 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 6731 DictScope P(W, "ProgramHeader"); 6732 StringRef Type = 6733 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 6734 6735 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 6736 W.printHex("Offset", Phdr.p_offset); 6737 W.printHex("VirtualAddress", Phdr.p_vaddr); 6738 W.printHex("PhysicalAddress", Phdr.p_paddr); 6739 W.printNumber("FileSize", Phdr.p_filesz); 6740 W.printNumber("MemSize", Phdr.p_memsz); 6741 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); 6742 W.printNumber("Alignment", Phdr.p_align); 6743 } 6744 } 6745 6746 template <class ELFT> 6747 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 6748 ListScope SS(W, "VersionSymbols"); 6749 if (!Sec) 6750 return; 6751 6752 StringRef StrTable; 6753 ArrayRef<Elf_Sym> Syms; 6754 const Elf_Shdr *SymTabSec; 6755 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 6756 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 6757 if (!VerTableOrErr) { 6758 this->reportUniqueWarning(VerTableOrErr.takeError()); 6759 return; 6760 } 6761 6762 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 6763 return; 6764 6765 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 6766 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 6767 DictScope S(W, "Symbol"); 6768 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 6769 W.printString("Name", 6770 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 6771 /*IsDynamic=*/true)); 6772 } 6773 } 6774 6775 const EnumEntry<unsigned> SymVersionFlags[] = { 6776 {"Base", "BASE", VER_FLG_BASE}, 6777 {"Weak", "WEAK", VER_FLG_WEAK}, 6778 {"Info", "INFO", VER_FLG_INFO}}; 6779 6780 template <class ELFT> 6781 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 6782 ListScope SD(W, "VersionDefinitions"); 6783 if (!Sec) 6784 return; 6785 6786 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 6787 if (!V) { 6788 this->reportUniqueWarning(V.takeError()); 6789 return; 6790 } 6791 6792 for (const VerDef &D : *V) { 6793 DictScope Def(W, "Definition"); 6794 W.printNumber("Version", D.Version); 6795 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags)); 6796 W.printNumber("Index", D.Ndx); 6797 W.printNumber("Hash", D.Hash); 6798 W.printString("Name", D.Name.c_str()); 6799 W.printList( 6800 "Predecessors", D.AuxV, 6801 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 6802 } 6803 } 6804 6805 template <class ELFT> 6806 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 6807 ListScope SD(W, "VersionRequirements"); 6808 if (!Sec) 6809 return; 6810 6811 Expected<std::vector<VerNeed>> V = 6812 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 6813 if (!V) { 6814 this->reportUniqueWarning(V.takeError()); 6815 return; 6816 } 6817 6818 for (const VerNeed &VN : *V) { 6819 DictScope Entry(W, "Dependency"); 6820 W.printNumber("Version", VN.Version); 6821 W.printNumber("Count", VN.Cnt); 6822 W.printString("FileName", VN.File.c_str()); 6823 6824 ListScope L(W, "Entries"); 6825 for (const VernAux &Aux : VN.AuxV) { 6826 DictScope Entry(W, "Entry"); 6827 W.printNumber("Hash", Aux.Hash); 6828 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags)); 6829 W.printNumber("Index", Aux.Other); 6830 W.printString("Name", Aux.Name.c_str()); 6831 } 6832 } 6833 } 6834 6835 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() { 6836 W.startLine() << "Hash Histogram not implemented!\n"; 6837 } 6838 6839 // Returns true if rel/rela section exists, and populates SymbolIndices. 6840 // Otherwise returns false. 6841 template <class ELFT> 6842 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 6843 const ELFFile<ELFT> &Obj, 6844 const LLVMELFDumper<ELFT> *Dumper, 6845 SmallVector<uint32_t, 128> &SymbolIndices) { 6846 if (!CGRelSection) { 6847 Dumper->reportUniqueWarning( 6848 "relocation section for a call graph section doesn't exist"); 6849 return false; 6850 } 6851 6852 if (CGRelSection->sh_type == SHT_REL) { 6853 typename ELFT::RelRange CGProfileRel; 6854 Expected<typename ELFT::RelRange> CGProfileRelOrError = 6855 Obj.rels(*CGRelSection); 6856 if (!CGProfileRelOrError) { 6857 Dumper->reportUniqueWarning("unable to load relocations for " 6858 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6859 toString(CGProfileRelOrError.takeError())); 6860 return false; 6861 } 6862 6863 CGProfileRel = *CGProfileRelOrError; 6864 for (const typename ELFT::Rel &Rel : CGProfileRel) 6865 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 6866 } else { 6867 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 6868 // the format to SHT_RELA 6869 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 6870 typename ELFT::RelaRange CGProfileRela; 6871 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 6872 Obj.relas(*CGRelSection); 6873 if (!CGProfileRelaOrError) { 6874 Dumper->reportUniqueWarning("unable to load relocations for " 6875 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6876 toString(CGProfileRelaOrError.takeError())); 6877 return false; 6878 } 6879 6880 CGProfileRela = *CGProfileRelaOrError; 6881 for (const typename ELFT::Rela &Rela : CGProfileRela) 6882 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 6883 } 6884 6885 return true; 6886 } 6887 6888 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 6889 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap; 6890 6891 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 6892 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 6893 }; 6894 this->getSectionAndRelocations(IsMatch, SecToRelocMap); 6895 6896 for (const auto &CGMapEntry : SecToRelocMap) { 6897 const Elf_Shdr *CGSection = CGMapEntry.first; 6898 const Elf_Shdr *CGRelSection = CGMapEntry.second; 6899 6900 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 6901 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 6902 if (!CGProfileOrErr) { 6903 this->reportUniqueWarning( 6904 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6905 toString(CGProfileOrErr.takeError())); 6906 return; 6907 } 6908 6909 SmallVector<uint32_t, 128> SymbolIndices; 6910 bool UseReloc = 6911 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 6912 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 6913 this->reportUniqueWarning( 6914 "number of from/to pairs does not match number of frequencies"); 6915 UseReloc = false; 6916 } 6917 6918 ListScope L(W, "CGProfile"); 6919 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 6920 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 6921 DictScope D(W, "CGProfileEntry"); 6922 if (UseReloc) { 6923 uint32_t From = SymbolIndices[I * 2]; 6924 uint32_t To = SymbolIndices[I * 2 + 1]; 6925 W.printNumber("From", this->getStaticSymbolName(From), From); 6926 W.printNumber("To", this->getStaticSymbolName(To), To); 6927 } 6928 W.printNumber("Weight", CGPE.cgp_weight); 6929 } 6930 } 6931 } 6932 6933 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() { 6934 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 6935 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6936 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP) 6937 continue; 6938 Optional<const Elf_Shdr *> FunctionSec = None; 6939 if (IsRelocatable) 6940 FunctionSec = 6941 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link)); 6942 ListScope L(W, "BBAddrMap"); 6943 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 6944 this->Obj.decodeBBAddrMap(Sec); 6945 if (!BBAddrMapOrErr) { 6946 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " + 6947 toString(BBAddrMapOrErr.takeError())); 6948 continue; 6949 } 6950 for (const BBAddrMap &AM : *BBAddrMapOrErr) { 6951 DictScope D(W, "Function"); 6952 W.printHex("At", AM.Addr); 6953 SmallVector<uint32_t> FuncSymIndex = 6954 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec); 6955 std::string FuncName = "<?>"; 6956 if (FuncSymIndex.empty()) 6957 this->reportUniqueWarning( 6958 "could not identify function symbol for address (0x" + 6959 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec)); 6960 else 6961 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 6962 W.printString("Name", FuncName); 6963 6964 ListScope L(W, "BB entries"); 6965 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) { 6966 DictScope L(W); 6967 W.printHex("Offset", BBE.Offset); 6968 W.printHex("Size", BBE.Size); 6969 W.printBoolean("HasReturn", BBE.HasReturn); 6970 W.printBoolean("HasTailCall", BBE.HasTailCall); 6971 W.printBoolean("IsEHPad", BBE.IsEHPad); 6972 W.printBoolean("CanFallThrough", BBE.CanFallThrough); 6973 } 6974 } 6975 } 6976 } 6977 6978 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 6979 ListScope L(W, "Addrsig"); 6980 if (!this->DotAddrsigSec) 6981 return; 6982 6983 Expected<std::vector<uint64_t>> SymsOrErr = 6984 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 6985 if (!SymsOrErr) { 6986 this->reportUniqueWarning(SymsOrErr.takeError()); 6987 return; 6988 } 6989 6990 for (uint64_t Sym : *SymsOrErr) 6991 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 6992 } 6993 6994 template <typename ELFT> 6995 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 6996 ScopedPrinter &W) { 6997 // Return true if we were able to pretty-print the note, false otherwise. 6998 switch (NoteType) { 6999 default: 7000 return false; 7001 case ELF::NT_GNU_ABI_TAG: { 7002 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 7003 if (!AbiTag.IsValid) { 7004 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 7005 return false; 7006 } else { 7007 W.printString("OS", AbiTag.OSName); 7008 W.printString("ABI", AbiTag.ABI); 7009 } 7010 break; 7011 } 7012 case ELF::NT_GNU_BUILD_ID: { 7013 W.printString("Build ID", getGNUBuildId(Desc)); 7014 break; 7015 } 7016 case ELF::NT_GNU_GOLD_VERSION: 7017 W.printString("Version", getDescAsStringRef(Desc)); 7018 break; 7019 case ELF::NT_GNU_PROPERTY_TYPE_0: 7020 ListScope D(W, "Property"); 7021 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 7022 W.printString(Property); 7023 break; 7024 } 7025 return true; 7026 } 7027 7028 template <typename ELFT> 7029 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 7030 ArrayRef<uint8_t> Desc, 7031 ScopedPrinter &W) { 7032 switch (NoteType) { 7033 default: 7034 return false; 7035 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 7036 W.printString("Version", getDescAsStringRef(Desc)); 7037 break; 7038 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 7039 W.printString("Producer", getDescAsStringRef(Desc)); 7040 break; 7041 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 7042 W.printString("Producer version", getDescAsStringRef(Desc)); 7043 break; 7044 } 7045 return true; 7046 } 7047 7048 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7049 W.printNumber("Page Size", Note.PageSize); 7050 for (const CoreFileMapping &Mapping : Note.Mappings) { 7051 ListScope D(W, "Mapping"); 7052 W.printHex("Start", Mapping.Start); 7053 W.printHex("End", Mapping.End); 7054 W.printHex("Offset", Mapping.Offset); 7055 W.printString("Filename", Mapping.Filename); 7056 } 7057 } 7058 7059 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7060 ListScope L(W, "Notes"); 7061 7062 std::unique_ptr<DictScope> NoteScope; 7063 auto StartNotes = [&](Optional<StringRef> SecName, 7064 const typename ELFT::Off Offset, 7065 const typename ELFT::Addr Size) { 7066 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 7067 W.printString("Name", SecName ? *SecName : "<?>"); 7068 W.printHex("Offset", Offset); 7069 W.printHex("Size", Size); 7070 }; 7071 7072 auto EndNotes = [&] { NoteScope.reset(); }; 7073 7074 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 7075 DictScope D2(W, "Note"); 7076 StringRef Name = Note.getName(); 7077 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 7078 Elf_Word Type = Note.getType(); 7079 7080 // Print the note owner/type. 7081 W.printString("Owner", Name); 7082 W.printHex("Data size", Descriptor.size()); 7083 7084 StringRef NoteType = 7085 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 7086 if (!NoteType.empty()) 7087 W.printString("Type", NoteType); 7088 else 7089 W.printString("Type", 7090 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 7091 7092 // Print the description, or fallback to printing raw bytes for unknown 7093 // owners/if we fail to pretty-print the contents. 7094 if (Name == "GNU") { 7095 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7096 return Error::success(); 7097 } else if (Name == "FreeBSD") { 7098 if (Optional<FreeBSDNote> N = 7099 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 7100 W.printString(N->Type, N->Value); 7101 return Error::success(); 7102 } 7103 } else if (Name == "AMD") { 7104 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 7105 if (!N.Type.empty()) { 7106 W.printString(N.Type, N.Value); 7107 return Error::success(); 7108 } 7109 } else if (Name == "AMDGPU") { 7110 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 7111 if (!N.Type.empty()) { 7112 W.printString(N.Type, N.Value); 7113 return Error::success(); 7114 } 7115 } else if (Name == "LLVMOMPOFFLOAD") { 7116 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7117 return Error::success(); 7118 } else if (Name == "CORE") { 7119 if (Type == ELF::NT_FILE) { 7120 DataExtractor DescExtractor(Descriptor, 7121 ELFT::TargetEndianness == support::little, 7122 sizeof(Elf_Addr)); 7123 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 7124 printCoreNoteLLVMStyle(*N, W); 7125 return Error::success(); 7126 } else { 7127 return N.takeError(); 7128 } 7129 } 7130 } 7131 if (!Descriptor.empty()) { 7132 W.printBinaryBlock("Description data", Descriptor); 7133 } 7134 return Error::success(); 7135 }; 7136 7137 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes); 7138 } 7139 7140 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 7141 ListScope L(W, "LinkerOptions"); 7142 7143 unsigned I = -1; 7144 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 7145 ++I; 7146 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 7147 continue; 7148 7149 Expected<ArrayRef<uint8_t>> ContentsOrErr = 7150 this->Obj.getSectionContents(Shdr); 7151 if (!ContentsOrErr) { 7152 this->reportUniqueWarning("unable to read the content of the " 7153 "SHT_LLVM_LINKER_OPTIONS section: " + 7154 toString(ContentsOrErr.takeError())); 7155 continue; 7156 } 7157 if (ContentsOrErr->empty()) 7158 continue; 7159 7160 if (ContentsOrErr->back() != 0) { 7161 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 7162 Twine(I) + 7163 " is broken: the " 7164 "content is not null-terminated"); 7165 continue; 7166 } 7167 7168 SmallVector<StringRef, 16> Strings; 7169 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 7170 if (Strings.size() % 2 != 0) { 7171 this->reportUniqueWarning( 7172 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 7173 " is broken: an incomplete " 7174 "key-value pair was found. The last possible key was: \"" + 7175 Strings.back() + "\""); 7176 continue; 7177 } 7178 7179 for (size_t I = 0; I < Strings.size(); I += 2) 7180 W.printString(Strings[I], Strings[I + 1]); 7181 } 7182 } 7183 7184 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 7185 ListScope L(W, "DependentLibs"); 7186 this->printDependentLibsHelper( 7187 [](const Elf_Shdr &) {}, 7188 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 7189 } 7190 7191 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 7192 ListScope L(W, "StackSizes"); 7193 if (this->Obj.getHeader().e_type == ELF::ET_REL) 7194 this->printRelocatableStackSizes([]() {}); 7195 else 7196 this->printNonRelocatableStackSizes([]() {}); 7197 } 7198 7199 template <class ELFT> 7200 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 7201 ArrayRef<std::string> FuncNames) { 7202 DictScope D(W, "Entry"); 7203 W.printList("Functions", FuncNames); 7204 W.printHex("Size", Size); 7205 } 7206 7207 template <class ELFT> 7208 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 7209 auto PrintEntry = [&](const Elf_Addr *E) { 7210 W.printHex("Address", Parser.getGotAddress(E)); 7211 W.printNumber("Access", Parser.getGotOffset(E)); 7212 W.printHex("Initial", *E); 7213 }; 7214 7215 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 7216 7217 W.printHex("Canonical gp value", Parser.getGp()); 7218 { 7219 ListScope RS(W, "Reserved entries"); 7220 { 7221 DictScope D(W, "Entry"); 7222 PrintEntry(Parser.getGotLazyResolver()); 7223 W.printString("Purpose", StringRef("Lazy resolver")); 7224 } 7225 7226 if (Parser.getGotModulePointer()) { 7227 DictScope D(W, "Entry"); 7228 PrintEntry(Parser.getGotModulePointer()); 7229 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 7230 } 7231 } 7232 { 7233 ListScope LS(W, "Local entries"); 7234 for (auto &E : Parser.getLocalEntries()) { 7235 DictScope D(W, "Entry"); 7236 PrintEntry(&E); 7237 } 7238 } 7239 7240 if (Parser.IsStatic) 7241 return; 7242 7243 { 7244 ListScope GS(W, "Global entries"); 7245 for (auto &E : Parser.getGlobalEntries()) { 7246 DictScope D(W, "Entry"); 7247 7248 PrintEntry(&E); 7249 7250 const Elf_Sym &Sym = *Parser.getGotSym(&E); 7251 W.printHex("Value", Sym.st_value); 7252 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 7253 7254 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 7255 DataRegion<Elf_Word> ShndxTable( 7256 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7257 printSymbolSection(Sym, SymIndex, ShndxTable); 7258 7259 std::string SymName = this->getFullSymbolName( 7260 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 7261 W.printNumber("Name", SymName, Sym.st_name); 7262 } 7263 } 7264 7265 W.printNumber("Number of TLS and multi-GOT entries", 7266 uint64_t(Parser.getOtherEntries().size())); 7267 } 7268 7269 template <class ELFT> 7270 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 7271 auto PrintEntry = [&](const Elf_Addr *E) { 7272 W.printHex("Address", Parser.getPltAddress(E)); 7273 W.printHex("Initial", *E); 7274 }; 7275 7276 DictScope GS(W, "PLT GOT"); 7277 7278 { 7279 ListScope RS(W, "Reserved entries"); 7280 { 7281 DictScope D(W, "Entry"); 7282 PrintEntry(Parser.getPltLazyResolver()); 7283 W.printString("Purpose", StringRef("PLT lazy resolver")); 7284 } 7285 7286 if (auto E = Parser.getPltModulePointer()) { 7287 DictScope D(W, "Entry"); 7288 PrintEntry(E); 7289 W.printString("Purpose", StringRef("Module pointer")); 7290 } 7291 } 7292 { 7293 ListScope LS(W, "Entries"); 7294 DataRegion<Elf_Word> ShndxTable( 7295 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7296 for (auto &E : Parser.getPltEntries()) { 7297 DictScope D(W, "Entry"); 7298 PrintEntry(&E); 7299 7300 const Elf_Sym &Sym = *Parser.getPltSym(&E); 7301 W.printHex("Value", Sym.st_value); 7302 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 7303 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 7304 ShndxTable); 7305 7306 const Elf_Sym *FirstSym = cantFail( 7307 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 7308 std::string SymName = this->getFullSymbolName( 7309 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 7310 W.printNumber("Name", SymName, Sym.st_name); 7311 } 7312 } 7313 } 7314 7315 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 7316 const Elf_Mips_ABIFlags<ELFT> *Flags; 7317 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 7318 getMipsAbiFlagsSection(*this)) { 7319 Flags = *SecOrErr; 7320 if (!Flags) { 7321 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 7322 return; 7323 } 7324 } else { 7325 this->reportUniqueWarning(SecOrErr.takeError()); 7326 return; 7327 } 7328 7329 raw_ostream &OS = W.getOStream(); 7330 DictScope GS(W, "MIPS ABI Flags"); 7331 7332 W.printNumber("Version", Flags->version); 7333 W.startLine() << "ISA: "; 7334 if (Flags->isa_rev <= 1) 7335 OS << format("MIPS%u", Flags->isa_level); 7336 else 7337 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 7338 OS << "\n"; 7339 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); 7340 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); 7341 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); 7342 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 7343 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 7344 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 7345 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); 7346 W.printHex("Flags 2", Flags->flags2); 7347 } 7348 7349 template <class ELFT> 7350 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 7351 ArrayRef<std::string> InputFilenames, 7352 const Archive *A) { 7353 FileScope = std::make_unique<DictScope>(this->W, FileStr); 7354 DictScope D(this->W, "FileSummary"); 7355 this->W.printString("File", FileStr); 7356 this->W.printString("Format", Obj.getFileFormatName()); 7357 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch())); 7358 this->W.printString( 7359 "AddressSize", 7360 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress()))); 7361 this->printLoadName(); 7362 } 7363