1 #include "llvm/Transforms/Utils/VNCoercion.h" 2 #include "llvm/Analysis/ConstantFolding.h" 3 #include "llvm/Analysis/ValueTracking.h" 4 #include "llvm/IR/IRBuilder.h" 5 #include "llvm/IR/IntrinsicInst.h" 6 #include "llvm/Support/Debug.h" 7 8 #define DEBUG_TYPE "vncoerce" 9 10 namespace llvm { 11 namespace VNCoercion { 12 13 static bool isFirstClassAggregateOrScalableType(Type *Ty) { 14 return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty); 15 } 16 17 /// Return true if coerceAvailableValueToLoadType will succeed. 18 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, 19 const DataLayout &DL) { 20 Type *StoredTy = StoredVal->getType(); 21 22 if (StoredTy == LoadTy) 23 return true; 24 25 // If the loaded/stored value is a first class array/struct, or scalable type, 26 // don't try to transform them. We need to be able to bitcast to integer. 27 if (isFirstClassAggregateOrScalableType(LoadTy) || 28 isFirstClassAggregateOrScalableType(StoredTy)) 29 return false; 30 31 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize(); 32 33 // The store size must be byte-aligned to support future type casts. 34 if (llvm::alignTo(StoreSize, 8) != StoreSize) 35 return false; 36 37 // The store has to be at least as big as the load. 38 if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize()) 39 return false; 40 41 bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType()); 42 bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType()); 43 // Don't coerce non-integral pointers to integers or vice versa. 44 if (StoredNI != LoadNI) { 45 // As a special case, allow coercion of memset used to initialize 46 // an array w/null. Despite non-integral pointers not generally having a 47 // specific bit pattern, we do assume null is zero. 48 if (auto *CI = dyn_cast<Constant>(StoredVal)) 49 return CI->isNullValue(); 50 return false; 51 } else if (StoredNI && LoadNI && 52 StoredTy->getPointerAddressSpace() != 53 LoadTy->getPointerAddressSpace()) { 54 return false; 55 } 56 57 58 // The implementation below uses inttoptr for vectors of unequal size; we 59 // can't allow this for non integral pointers. We could teach it to extract 60 // exact subvectors if desired. 61 if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize()) 62 return false; 63 64 return true; 65 } 66 67 template <class T, class HelperClass> 68 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, 69 HelperClass &Helper, 70 const DataLayout &DL) { 71 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && 72 "precondition violation - materialization can't fail"); 73 if (auto *C = dyn_cast<Constant>(StoredVal)) 74 StoredVal = ConstantFoldConstant(C, DL); 75 76 // If this is already the right type, just return it. 77 Type *StoredValTy = StoredVal->getType(); 78 79 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize(); 80 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize(); 81 82 // If the store and reload are the same size, we can always reuse it. 83 if (StoredValSize == LoadedValSize) { 84 // Pointer to Pointer -> use bitcast. 85 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) { 86 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 87 } else { 88 // Convert source pointers to integers, which can be bitcast. 89 if (StoredValTy->isPtrOrPtrVectorTy()) { 90 StoredValTy = DL.getIntPtrType(StoredValTy); 91 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 92 } 93 94 Type *TypeToCastTo = LoadedTy; 95 if (TypeToCastTo->isPtrOrPtrVectorTy()) 96 TypeToCastTo = DL.getIntPtrType(TypeToCastTo); 97 98 if (StoredValTy != TypeToCastTo) 99 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); 100 101 // Cast to pointer if the load needs a pointer type. 102 if (LoadedTy->isPtrOrPtrVectorTy()) 103 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 104 } 105 106 if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) 107 StoredVal = ConstantFoldConstant(C, DL); 108 109 return StoredVal; 110 } 111 // If the loaded value is smaller than the available value, then we can 112 // extract out a piece from it. If the available value is too small, then we 113 // can't do anything. 114 assert(StoredValSize >= LoadedValSize && 115 "canCoerceMustAliasedValueToLoad fail"); 116 117 // Convert source pointers to integers, which can be manipulated. 118 if (StoredValTy->isPtrOrPtrVectorTy()) { 119 StoredValTy = DL.getIntPtrType(StoredValTy); 120 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); 121 } 122 123 // Convert vectors and fp to integer, which can be manipulated. 124 if (!StoredValTy->isIntegerTy()) { 125 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); 126 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); 127 } 128 129 // If this is a big-endian system, we need to shift the value down to the low 130 // bits so that a truncate will work. 131 if (DL.isBigEndian()) { 132 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() - 133 DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize(); 134 StoredVal = Helper.CreateLShr( 135 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); 136 } 137 138 // Truncate the integer to the right size now. 139 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); 140 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); 141 142 if (LoadedTy != NewIntTy) { 143 // If the result is a pointer, inttoptr. 144 if (LoadedTy->isPtrOrPtrVectorTy()) 145 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); 146 else 147 // Otherwise, bitcast. 148 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); 149 } 150 151 if (auto *C = dyn_cast<Constant>(StoredVal)) 152 StoredVal = ConstantFoldConstant(C, DL); 153 154 return StoredVal; 155 } 156 157 /// If we saw a store of a value to memory, and 158 /// then a load from a must-aliased pointer of a different type, try to coerce 159 /// the stored value. LoadedTy is the type of the load we want to replace. 160 /// IRB is IRBuilder used to insert new instructions. 161 /// 162 /// If we can't do it, return null. 163 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, 164 IRBuilderBase &IRB, 165 const DataLayout &DL) { 166 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); 167 } 168 169 /// This function is called when we have a memdep query of a load that ends up 170 /// being a clobbering memory write (store, memset, memcpy, memmove). This 171 /// means that the write *may* provide bits used by the load but we can't be 172 /// sure because the pointers don't must-alias. 173 /// 174 /// Check this case to see if there is anything more we can do before we give 175 /// up. This returns -1 if we have to give up, or a byte number in the stored 176 /// value of the piece that feeds the load. 177 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 178 Value *WritePtr, 179 uint64_t WriteSizeInBits, 180 const DataLayout &DL) { 181 // If the loaded/stored value is a first class array/struct, or scalable type, 182 // don't try to transform them. We need to be able to bitcast to integer. 183 if (isFirstClassAggregateOrScalableType(LoadTy)) 184 return -1; 185 186 int64_t StoreOffset = 0, LoadOffset = 0; 187 Value *StoreBase = 188 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); 189 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); 190 if (StoreBase != LoadBase) 191 return -1; 192 193 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize(); 194 195 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 196 return -1; 197 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. 198 LoadSize /= 8; 199 200 // If the Load isn't completely contained within the stored bits, we don't 201 // have all the bits to feed it. We could do something crazy in the future 202 // (issue a smaller load then merge the bits in) but this seems unlikely to be 203 // valuable. 204 if (StoreOffset > LoadOffset || 205 StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize)) 206 return -1; 207 208 // Okay, we can do this transformation. Return the number of bytes into the 209 // store that the load is. 210 return LoadOffset - StoreOffset; 211 } 212 213 /// This function is called when we have a 214 /// memdep query of a load that ends up being a clobbering store. 215 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 216 StoreInst *DepSI, const DataLayout &DL) { 217 auto *StoredVal = DepSI->getValueOperand(); 218 219 // Cannot handle reading from store of first-class aggregate or scalable type. 220 if (isFirstClassAggregateOrScalableType(StoredVal->getType())) 221 return -1; 222 223 if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL)) 224 return -1; 225 226 Value *StorePtr = DepSI->getPointerOperand(); 227 uint64_t StoreSize = 228 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize(); 229 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, 230 DL); 231 } 232 233 /// Looks at a memory location for a load (specified by MemLocBase, Offs, and 234 /// Size) and compares it against a load. 235 /// 236 /// If the specified load could be safely widened to a larger integer load 237 /// that is 1) still efficient, 2) safe for the target, and 3) would provide 238 /// the specified memory location value, then this function returns the size 239 /// in bytes of the load width to use. If not, this returns zero. 240 static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, 241 int64_t MemLocOffs, 242 unsigned MemLocSize, 243 const LoadInst *LI) { 244 // We can only extend simple integer loads. 245 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 246 return 0; 247 248 // Load widening is hostile to ThreadSanitizer: it may cause false positives 249 // or make the reports more cryptic (access sizes are wrong). 250 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 251 return 0; 252 253 const DataLayout &DL = LI->getModule()->getDataLayout(); 254 255 // Get the base of this load. 256 int64_t LIOffs = 0; 257 const Value *LIBase = 258 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 259 260 // If the two pointers are not based on the same pointer, we can't tell that 261 // they are related. 262 if (LIBase != MemLocBase) 263 return 0; 264 265 // Okay, the two values are based on the same pointer, but returned as 266 // no-alias. This happens when we have things like two byte loads at "P+1" 267 // and "P+3". Check to see if increasing the size of the "LI" load up to its 268 // alignment (or the largest native integer type) will allow us to load all 269 // the bits required by MemLoc. 270 271 // If MemLoc is before LI, then no widening of LI will help us out. 272 if (MemLocOffs < LIOffs) 273 return 0; 274 275 // Get the alignment of the load in bytes. We assume that it is safe to load 276 // any legal integer up to this size without a problem. For example, if we're 277 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 278 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 279 // to i16. 280 unsigned LoadAlign = LI->getAlignment(); 281 282 int64_t MemLocEnd = MemLocOffs + MemLocSize; 283 284 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 285 if (LIOffs + LoadAlign < MemLocEnd) 286 return 0; 287 288 // This is the size of the load to try. Start with the next larger power of 289 // two. 290 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 291 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 292 293 while (true) { 294 // If this load size is bigger than our known alignment or would not fit 295 // into a native integer register, then we fail. 296 if (NewLoadByteSize > LoadAlign || 297 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 298 return 0; 299 300 if (LIOffs + NewLoadByteSize > MemLocEnd && 301 (LI->getParent()->getParent()->hasFnAttribute( 302 Attribute::SanitizeAddress) || 303 LI->getParent()->getParent()->hasFnAttribute( 304 Attribute::SanitizeHWAddress))) 305 // We will be reading past the location accessed by the original program. 306 // While this is safe in a regular build, Address Safety analysis tools 307 // may start reporting false warnings. So, don't do widening. 308 return 0; 309 310 // If a load of this width would include all of MemLoc, then we succeed. 311 if (LIOffs + NewLoadByteSize >= MemLocEnd) 312 return NewLoadByteSize; 313 314 NewLoadByteSize <<= 1; 315 } 316 } 317 318 /// This function is called when we have a 319 /// memdep query of a load that ends up being clobbered by another load. See if 320 /// the other load can feed into the second load. 321 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, 322 const DataLayout &DL) { 323 // Cannot handle reading from store of first-class aggregate yet. 324 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 325 return -1; 326 327 if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL)) 328 return -1; 329 330 Value *DepPtr = DepLI->getPointerOperand(); 331 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize(); 332 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); 333 if (R != -1) 334 return R; 335 336 // If we have a load/load clobber an DepLI can be widened to cover this load, 337 // then we should widen it! 338 int64_t LoadOffs = 0; 339 const Value *LoadBase = 340 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); 341 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 342 343 unsigned Size = 344 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI); 345 if (Size == 0) 346 return -1; 347 348 // Check non-obvious conditions enforced by MDA which we rely on for being 349 // able to materialize this potentially available value 350 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); 351 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); 352 353 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); 354 } 355 356 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 357 MemIntrinsic *MI, const DataLayout &DL) { 358 // If the mem operation is a non-constant size, we can't handle it. 359 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 360 if (!SizeCst) 361 return -1; 362 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; 363 364 // If this is memset, we just need to see if the offset is valid in the size 365 // of the memset.. 366 if (MI->getIntrinsicID() == Intrinsic::memset) { 367 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) { 368 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue()); 369 if (!CI || !CI->isZero()) 370 return -1; 371 } 372 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 373 MemSizeInBits, DL); 374 } 375 376 // If we have a memcpy/memmove, the only case we can handle is if this is a 377 // copy from constant memory. In that case, we can read directly from the 378 // constant memory. 379 MemTransferInst *MTI = cast<MemTransferInst>(MI); 380 381 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 382 if (!Src) 383 return -1; 384 385 GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src)); 386 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 387 return -1; 388 389 // See if the access is within the bounds of the transfer. 390 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 391 MemSizeInBits, DL); 392 if (Offset == -1) 393 return Offset; 394 395 // Otherwise, see if we can constant fold a load from the constant with the 396 // offset applied as appropriate. 397 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType()); 398 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL)) 399 return Offset; 400 return -1; 401 } 402 403 template <class T, class HelperClass> 404 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, 405 HelperClass &Helper, 406 const DataLayout &DL) { 407 LLVMContext &Ctx = SrcVal->getType()->getContext(); 408 409 // If two pointers are in the same address space, they have the same size, 410 // so we don't need to do any truncation, etc. This avoids introducing 411 // ptrtoint instructions for pointers that may be non-integral. 412 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() && 413 cast<PointerType>(SrcVal->getType())->getAddressSpace() == 414 cast<PointerType>(LoadTy)->getAddressSpace()) { 415 return SrcVal; 416 } 417 418 uint64_t StoreSize = 419 (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8; 420 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8; 421 // Compute which bits of the stored value are being used by the load. Convert 422 // to an integer type to start with. 423 if (SrcVal->getType()->isPtrOrPtrVectorTy()) 424 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); 425 if (!SrcVal->getType()->isIntegerTy()) 426 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); 427 428 // Shift the bits to the least significant depending on endianness. 429 unsigned ShiftAmt; 430 if (DL.isLittleEndian()) 431 ShiftAmt = Offset * 8; 432 else 433 ShiftAmt = (StoreSize - LoadSize - Offset) * 8; 434 if (ShiftAmt) 435 SrcVal = Helper.CreateLShr(SrcVal, 436 ConstantInt::get(SrcVal->getType(), ShiftAmt)); 437 438 if (LoadSize != StoreSize) 439 SrcVal = Helper.CreateTruncOrBitCast(SrcVal, 440 IntegerType::get(Ctx, LoadSize * 8)); 441 return SrcVal; 442 } 443 444 /// This function is called when we have a memdep query of a load that ends up 445 /// being a clobbering store. This means that the store provides bits used by 446 /// the load but the pointers don't must-alias. Check this case to see if 447 /// there is anything more we can do before we give up. 448 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, 449 Instruction *InsertPt, const DataLayout &DL) { 450 451 IRBuilder<> Builder(InsertPt); 452 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); 453 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); 454 } 455 456 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, 457 Type *LoadTy, const DataLayout &DL) { 458 ConstantFolder F; 459 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); 460 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); 461 } 462 463 /// This function is called when we have a memdep query of a load that ends up 464 /// being a clobbering load. This means that the load *may* provide bits used 465 /// by the load but we can't be sure because the pointers don't must-alias. 466 /// Check this case to see if there is anything more we can do before we give 467 /// up. 468 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, 469 Instruction *InsertPt, const DataLayout &DL) { 470 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 471 // widen SrcVal out to a larger load. 472 unsigned SrcValStoreSize = 473 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 474 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 475 if (Offset + LoadSize > SrcValStoreSize) { 476 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 477 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 478 // If we have a load/load clobber an DepLI can be widened to cover this 479 // load, then we should widen it to the next power of 2 size big enough! 480 unsigned NewLoadSize = Offset + LoadSize; 481 if (!isPowerOf2_32(NewLoadSize)) 482 NewLoadSize = NextPowerOf2(NewLoadSize); 483 484 Value *PtrVal = SrcVal->getPointerOperand(); 485 // Insert the new load after the old load. This ensures that subsequent 486 // memdep queries will find the new load. We can't easily remove the old 487 // load completely because it is already in the value numbering table. 488 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 489 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); 490 Type *DestPTy = 491 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace()); 492 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 493 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 494 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal); 495 NewLoad->takeName(SrcVal); 496 NewLoad->setAlignment(SrcVal->getAlign()); 497 498 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 499 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 500 501 // Replace uses of the original load with the wider load. On a big endian 502 // system, we need to shift down to get the relevant bits. 503 Value *RV = NewLoad; 504 if (DL.isBigEndian()) 505 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); 506 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 507 SrcVal->replaceAllUsesWith(RV); 508 509 SrcVal = NewLoad; 510 } 511 512 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); 513 } 514 515 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, 516 Type *LoadTy, const DataLayout &DL) { 517 unsigned SrcValStoreSize = 518 DL.getTypeStoreSize(SrcVal->getType()).getFixedSize(); 519 unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize(); 520 if (Offset + LoadSize > SrcValStoreSize) 521 return nullptr; 522 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); 523 } 524 525 template <class T, class HelperClass> 526 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, 527 Type *LoadTy, HelperClass &Helper, 528 const DataLayout &DL) { 529 LLVMContext &Ctx = LoadTy->getContext(); 530 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8; 531 532 // We know that this method is only called when the mem transfer fully 533 // provides the bits for the load. 534 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 535 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 536 // independently of what the offset is. 537 T *Val = cast<T>(MSI->getValue()); 538 if (LoadSize != 1) 539 Val = 540 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); 541 T *OneElt = Val; 542 543 // Splat the value out to the right number of bits. 544 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { 545 // If we can double the number of bytes set, do it. 546 if (NumBytesSet * 2 <= LoadSize) { 547 T *ShVal = Helper.CreateShl( 548 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); 549 Val = Helper.CreateOr(Val, ShVal); 550 NumBytesSet <<= 1; 551 continue; 552 } 553 554 // Otherwise insert one byte at a time. 555 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); 556 Val = Helper.CreateOr(OneElt, ShVal); 557 ++NumBytesSet; 558 } 559 560 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); 561 } 562 563 // Otherwise, this is a memcpy/memmove from a constant global. 564 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 565 Constant *Src = cast<Constant>(MTI->getSource()); 566 567 // Otherwise, see if we can constant fold a load from the constant with the 568 // offset applied as appropriate. 569 unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType()); 570 return ConstantFoldLoadFromConstPtr( 571 Src, LoadTy, APInt(IndexSize, Offset), DL); 572 } 573 574 /// This function is called when we have a 575 /// memdep query of a load that ends up being a clobbering mem intrinsic. 576 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 577 Type *LoadTy, Instruction *InsertPt, 578 const DataLayout &DL) { 579 IRBuilder<> Builder(InsertPt); 580 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, 581 LoadTy, Builder, DL); 582 } 583 584 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 585 Type *LoadTy, const DataLayout &DL) { 586 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a 587 // constant is when it's a memset of a non-constant. 588 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) 589 if (!isa<Constant>(MSI->getValue())) 590 return nullptr; 591 ConstantFolder F; 592 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, 593 LoadTy, F, DL); 594 } 595 } // namespace VNCoercion 596 } // namespace llvm 597