1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 174 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 175 "alloc size of i8 must by 1 byte for the GEP to be correct"); 176 return Builder.CreateGEP( 177 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "scevgep"); 178 } 179 } 180 // Short-circuit unnecessary bitcasts. 181 if (Op == Instruction::BitCast) { 182 if (V->getType() == Ty) 183 return V; 184 if (CastInst *CI = dyn_cast<CastInst>(V)) { 185 if (CI->getOperand(0)->getType() == Ty) 186 return CI->getOperand(0); 187 } 188 } 189 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 190 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 192 if (CastInst *CI = dyn_cast<CastInst>(V)) 193 if ((CI->getOpcode() == Instruction::PtrToInt || 194 CI->getOpcode() == Instruction::IntToPtr) && 195 SE.getTypeSizeInBits(CI->getType()) == 196 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 197 return CI->getOperand(0); 198 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 199 if ((CE->getOpcode() == Instruction::PtrToInt || 200 CE->getOpcode() == Instruction::IntToPtr) && 201 SE.getTypeSizeInBits(CE->getType()) == 202 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 203 return CE->getOperand(0); 204 } 205 206 // Fold a cast of a constant. 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return ConstantExpr::getCast(Op, C, Ty); 209 210 // Try to reuse existing cast, or insert one. 211 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 212 } 213 214 /// InsertBinop - Insert the specified binary operator, doing a small amount 215 /// of work to avoid inserting an obviously redundant operation, and hoisting 216 /// to an outer loop when the opportunity is there and it is safe. 217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 218 Value *LHS, Value *RHS, 219 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 220 // Fold a binop with constant operands. 221 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 222 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 224 return Res; 225 226 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 227 unsigned ScanLimit = 6; 228 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 229 // Scanning starts from the last instruction before the insertion point. 230 BasicBlock::iterator IP = Builder.GetInsertPoint(); 231 if (IP != BlockBegin) { 232 --IP; 233 for (; ScanLimit; --IP, --ScanLimit) { 234 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 235 // generated code. 236 if (isa<DbgInfoIntrinsic>(IP)) 237 ScanLimit++; 238 239 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 240 // Ensure that no-wrap flags match. 241 if (isa<OverflowingBinaryOperator>(I)) { 242 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 243 return true; 244 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 245 return true; 246 } 247 // Conservatively, do not use any instruction which has any of exact 248 // flags installed. 249 if (isa<PossiblyExactOperator>(I) && I->isExact()) 250 return true; 251 return false; 252 }; 253 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 254 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 255 return &*IP; 256 if (IP == BlockBegin) break; 257 } 258 } 259 260 // Save the original insertion point so we can restore it when we're done. 261 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 262 SCEVInsertPointGuard Guard(Builder, this); 263 264 if (IsSafeToHoist) { 265 // Move the insertion point out of as many loops as we can. 266 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 267 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 268 BasicBlock *Preheader = L->getLoopPreheader(); 269 if (!Preheader) break; 270 271 // Ok, move up a level. 272 Builder.SetInsertPoint(Preheader->getTerminator()); 273 } 274 } 275 276 // If we haven't found this binop, insert it. 277 // TODO: Use the Builder, which will make CreateBinOp below fold with 278 // InstSimplifyFolder. 279 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 280 BO->setDebugLoc(Loc); 281 if (Flags & SCEV::FlagNUW) 282 BO->setHasNoUnsignedWrap(); 283 if (Flags & SCEV::FlagNSW) 284 BO->setHasNoSignedWrap(); 285 286 return BO; 287 } 288 289 /// expandAddToGEP - Expand an addition expression with a pointer type into 290 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 291 /// BasicAliasAnalysis and other passes analyze the result. See the rules 292 /// for getelementptr vs. inttoptr in 293 /// http://llvm.org/docs/LangRef.html#pointeraliasing 294 /// for details. 295 /// 296 /// Design note: The correctness of using getelementptr here depends on 297 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 298 /// they may introduce pointer arithmetic which may not be safely converted 299 /// into getelementptr. 300 /// 301 /// Design note: It might seem desirable for this function to be more 302 /// loop-aware. If some of the indices are loop-invariant while others 303 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 304 /// loop-invariant portions of the overall computation outside the loop. 305 /// However, there are a few reasons this is not done here. Hoisting simple 306 /// arithmetic is a low-level optimization that often isn't very 307 /// important until late in the optimization process. In fact, passes 308 /// like InstructionCombining will combine GEPs, even if it means 309 /// pushing loop-invariant computation down into loops, so even if the 310 /// GEPs were split here, the work would quickly be undone. The 311 /// LoopStrengthReduction pass, which is usually run quite late (and 312 /// after the last InstructionCombining pass), takes care of hoisting 313 /// loop-invariant portions of expressions, after considering what 314 /// can be folded using target addressing modes. 315 /// 316 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) { 317 assert(!isa<Instruction>(V) || 318 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 319 320 Value *Idx = expandCodeForImpl(Offset, Ty); 321 322 // Fold a GEP with constant operands. 323 if (Constant *CLHS = dyn_cast<Constant>(V)) 324 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 325 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 326 327 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 328 unsigned ScanLimit = 6; 329 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 330 // Scanning starts from the last instruction before the insertion point. 331 BasicBlock::iterator IP = Builder.GetInsertPoint(); 332 if (IP != BlockBegin) { 333 --IP; 334 for (; ScanLimit; --IP, --ScanLimit) { 335 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 336 // generated code. 337 if (isa<DbgInfoIntrinsic>(IP)) 338 ScanLimit++; 339 if (IP->getOpcode() == Instruction::GetElementPtr && 340 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 341 cast<GEPOperator>(&*IP)->getSourceElementType() == 342 Type::getInt8Ty(Ty->getContext())) 343 return &*IP; 344 if (IP == BlockBegin) break; 345 } 346 } 347 348 // Save the original insertion point so we can restore it when we're done. 349 SCEVInsertPointGuard Guard(Builder, this); 350 351 // Move the insertion point out of as many loops as we can. 352 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 353 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 354 BasicBlock *Preheader = L->getLoopPreheader(); 355 if (!Preheader) break; 356 357 // Ok, move up a level. 358 Builder.SetInsertPoint(Preheader->getTerminator()); 359 } 360 361 // Emit a GEP. 362 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 363 } 364 365 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 366 /// SCEV expansion. If they are nested, this is the most nested. If they are 367 /// neighboring, pick the later. 368 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 369 DominatorTree &DT) { 370 if (!A) return B; 371 if (!B) return A; 372 if (A->contains(B)) return B; 373 if (B->contains(A)) return A; 374 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 375 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 376 return A; // Arbitrarily break the tie. 377 } 378 379 /// getRelevantLoop - Get the most relevant loop associated with the given 380 /// expression, according to PickMostRelevantLoop. 381 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 382 // Test whether we've already computed the most relevant loop for this SCEV. 383 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 384 if (!Pair.second) 385 return Pair.first->second; 386 387 switch (S->getSCEVType()) { 388 case scConstant: 389 case scVScale: 390 return nullptr; // A constant has no relevant loops. 391 case scTruncate: 392 case scZeroExtend: 393 case scSignExtend: 394 case scPtrToInt: 395 case scAddExpr: 396 case scMulExpr: 397 case scUDivExpr: 398 case scAddRecExpr: 399 case scUMaxExpr: 400 case scSMaxExpr: 401 case scUMinExpr: 402 case scSMinExpr: 403 case scSequentialUMinExpr: { 404 const Loop *L = nullptr; 405 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 406 L = AR->getLoop(); 407 for (const SCEV *Op : S->operands()) 408 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 409 return RelevantLoops[S] = L; 410 } 411 case scUnknown: { 412 const SCEVUnknown *U = cast<SCEVUnknown>(S); 413 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 414 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 415 // A non-instruction has no relevant loops. 416 return nullptr; 417 } 418 case scCouldNotCompute: 419 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 420 } 421 llvm_unreachable("Unexpected SCEV type!"); 422 } 423 424 namespace { 425 426 /// LoopCompare - Compare loops by PickMostRelevantLoop. 427 class LoopCompare { 428 DominatorTree &DT; 429 public: 430 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 431 432 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 433 std::pair<const Loop *, const SCEV *> RHS) const { 434 // Keep pointer operands sorted at the end. 435 if (LHS.second->getType()->isPointerTy() != 436 RHS.second->getType()->isPointerTy()) 437 return LHS.second->getType()->isPointerTy(); 438 439 // Compare loops with PickMostRelevantLoop. 440 if (LHS.first != RHS.first) 441 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 442 443 // If one operand is a non-constant negative and the other is not, 444 // put the non-constant negative on the right so that a sub can 445 // be used instead of a negate and add. 446 if (LHS.second->isNonConstantNegative()) { 447 if (!RHS.second->isNonConstantNegative()) 448 return false; 449 } else if (RHS.second->isNonConstantNegative()) 450 return true; 451 452 // Otherwise they are equivalent according to this comparison. 453 return false; 454 } 455 }; 456 457 } 458 459 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 460 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 461 462 // Collect all the add operands in a loop, along with their associated loops. 463 // Iterate in reverse so that constants are emitted last, all else equal, and 464 // so that pointer operands are inserted first, which the code below relies on 465 // to form more involved GEPs. 466 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 467 for (const SCEV *Op : reverse(S->operands())) 468 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 469 470 // Sort by loop. Use a stable sort so that constants follow non-constants and 471 // pointer operands precede non-pointer operands. 472 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 473 474 // Emit instructions to add all the operands. Hoist as much as possible 475 // out of loops, and form meaningful getelementptrs where possible. 476 Value *Sum = nullptr; 477 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 478 const Loop *CurLoop = I->first; 479 const SCEV *Op = I->second; 480 if (!Sum) { 481 // This is the first operand. Just expand it. 482 Sum = expand(Op); 483 ++I; 484 continue; 485 } 486 487 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 488 if (isa<PointerType>(Sum->getType())) { 489 // The running sum expression is a pointer. Try to form a getelementptr 490 // at this level with that as the base. 491 SmallVector<const SCEV *, 4> NewOps; 492 for (; I != E && I->first == CurLoop; ++I) { 493 // If the operand is SCEVUnknown and not instructions, peek through 494 // it, to enable more of it to be folded into the GEP. 495 const SCEV *X = I->second; 496 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 497 if (!isa<Instruction>(U->getValue())) 498 X = SE.getSCEV(U->getValue()); 499 NewOps.push_back(X); 500 } 501 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum); 502 } else if (Op->isNonConstantNegative()) { 503 // Instead of doing a negate and add, just do a subtract. 504 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty); 505 Sum = InsertNoopCastOfTo(Sum, Ty); 506 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 507 /*IsSafeToHoist*/ true); 508 ++I; 509 } else { 510 // A simple add. 511 Value *W = expandCodeForImpl(Op, Ty); 512 Sum = InsertNoopCastOfTo(Sum, Ty); 513 // Canonicalize a constant to the RHS. 514 if (isa<Constant>(Sum)) std::swap(Sum, W); 515 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 516 /*IsSafeToHoist*/ true); 517 ++I; 518 } 519 } 520 521 return Sum; 522 } 523 524 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 525 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 526 527 // Collect all the mul operands in a loop, along with their associated loops. 528 // Iterate in reverse so that constants are emitted last, all else equal. 529 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 530 for (const SCEV *Op : reverse(S->operands())) 531 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 532 533 // Sort by loop. Use a stable sort so that constants follow non-constants. 534 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 535 536 // Emit instructions to mul all the operands. Hoist as much as possible 537 // out of loops. 538 Value *Prod = nullptr; 539 auto I = OpsAndLoops.begin(); 540 541 // Expand the calculation of X pow N in the following manner: 542 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 543 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 544 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 545 auto E = I; 546 // Calculate how many times the same operand from the same loop is included 547 // into this power. 548 uint64_t Exponent = 0; 549 const uint64_t MaxExponent = UINT64_MAX >> 1; 550 // No one sane will ever try to calculate such huge exponents, but if we 551 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 552 // below when the power of 2 exceeds our Exponent, and we want it to be 553 // 1u << 31 at most to not deal with unsigned overflow. 554 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 555 ++Exponent; 556 ++E; 557 } 558 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 559 560 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 561 // that are needed into the result. 562 Value *P = expandCodeForImpl(I->second, Ty); 563 Value *Result = nullptr; 564 if (Exponent & 1) 565 Result = P; 566 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 567 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 568 /*IsSafeToHoist*/ true); 569 if (Exponent & BinExp) 570 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 571 SCEV::FlagAnyWrap, 572 /*IsSafeToHoist*/ true) 573 : P; 574 } 575 576 I = E; 577 assert(Result && "Nothing was expanded?"); 578 return Result; 579 }; 580 581 while (I != OpsAndLoops.end()) { 582 if (!Prod) { 583 // This is the first operand. Just expand it. 584 Prod = ExpandOpBinPowN(); 585 } else if (I->second->isAllOnesValue()) { 586 // Instead of doing a multiply by negative one, just do a negate. 587 Prod = InsertNoopCastOfTo(Prod, Ty); 588 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 589 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 590 ++I; 591 } else { 592 // A simple mul. 593 Value *W = ExpandOpBinPowN(); 594 Prod = InsertNoopCastOfTo(Prod, Ty); 595 // Canonicalize a constant to the RHS. 596 if (isa<Constant>(Prod)) std::swap(Prod, W); 597 const APInt *RHS; 598 if (match(W, m_Power2(RHS))) { 599 // Canonicalize Prod*(1<<C) to Prod<<C. 600 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 601 auto NWFlags = S->getNoWrapFlags(); 602 // clear nsw flag if shl will produce poison value. 603 if (RHS->logBase2() == RHS->getBitWidth() - 1) 604 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 605 Prod = InsertBinop(Instruction::Shl, Prod, 606 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 607 /*IsSafeToHoist*/ true); 608 } else { 609 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 610 /*IsSafeToHoist*/ true); 611 } 612 } 613 } 614 615 return Prod; 616 } 617 618 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 619 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 620 621 Value *LHS = expandCodeForImpl(S->getLHS(), Ty); 622 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 623 const APInt &RHS = SC->getAPInt(); 624 if (RHS.isPowerOf2()) 625 return InsertBinop(Instruction::LShr, LHS, 626 ConstantInt::get(Ty, RHS.logBase2()), 627 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 628 } 629 630 Value *RHS = expandCodeForImpl(S->getRHS(), Ty); 631 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 632 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 633 } 634 635 /// Determine if this is a well-behaved chain of instructions leading back to 636 /// the PHI. If so, it may be reused by expanded expressions. 637 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 638 const Loop *L) { 639 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 640 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 641 return false; 642 // If any of the operands don't dominate the insert position, bail. 643 // Addrec operands are always loop-invariant, so this can only happen 644 // if there are instructions which haven't been hoisted. 645 if (L == IVIncInsertLoop) { 646 for (Use &Op : llvm::drop_begin(IncV->operands())) 647 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 648 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 649 return false; 650 } 651 // Advance to the next instruction. 652 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 653 if (!IncV) 654 return false; 655 656 if (IncV->mayHaveSideEffects()) 657 return false; 658 659 if (IncV == PN) 660 return true; 661 662 return isNormalAddRecExprPHI(PN, IncV, L); 663 } 664 665 /// getIVIncOperand returns an induction variable increment's induction 666 /// variable operand. 667 /// 668 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 669 /// operands dominate InsertPos. 670 /// 671 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 672 /// simple patterns generated by getAddRecExprPHILiterally and 673 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 674 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 675 Instruction *InsertPos, 676 bool allowScale) { 677 if (IncV == InsertPos) 678 return nullptr; 679 680 switch (IncV->getOpcode()) { 681 default: 682 return nullptr; 683 // Check for a simple Add/Sub or GEP of a loop invariant step. 684 case Instruction::Add: 685 case Instruction::Sub: { 686 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 687 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 688 return dyn_cast<Instruction>(IncV->getOperand(0)); 689 return nullptr; 690 } 691 case Instruction::BitCast: 692 return dyn_cast<Instruction>(IncV->getOperand(0)); 693 case Instruction::GetElementPtr: 694 for (Use &U : llvm::drop_begin(IncV->operands())) { 695 if (isa<Constant>(U)) 696 continue; 697 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 698 if (!SE.DT.dominates(OInst, InsertPos)) 699 return nullptr; 700 } 701 if (allowScale) { 702 // allow any kind of GEP as long as it can be hoisted. 703 continue; 704 } 705 // GEPs produced by SCEVExpander use i8 element type. 706 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 707 return nullptr; 708 break; 709 } 710 return dyn_cast<Instruction>(IncV->getOperand(0)); 711 } 712 } 713 714 /// If the insert point of the current builder or any of the builders on the 715 /// stack of saved builders has 'I' as its insert point, update it to point to 716 /// the instruction after 'I'. This is intended to be used when the instruction 717 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 718 /// different block, the inconsistent insert point (with a mismatched 719 /// Instruction and Block) can lead to an instruction being inserted in a block 720 /// other than its parent. 721 void SCEVExpander::fixupInsertPoints(Instruction *I) { 722 BasicBlock::iterator It(*I); 723 BasicBlock::iterator NewInsertPt = std::next(It); 724 if (Builder.GetInsertPoint() == It) 725 Builder.SetInsertPoint(&*NewInsertPt); 726 for (auto *InsertPtGuard : InsertPointGuards) 727 if (InsertPtGuard->GetInsertPoint() == It) 728 InsertPtGuard->SetInsertPoint(NewInsertPt); 729 } 730 731 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 732 /// it available to other uses in this loop. Recursively hoist any operands, 733 /// until we reach a value that dominates InsertPos. 734 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 735 bool RecomputePoisonFlags) { 736 auto FixupPoisonFlags = [this](Instruction *I) { 737 // Drop flags that are potentially inferred from old context and infer flags 738 // in new context. 739 I->dropPoisonGeneratingFlags(); 740 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 741 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 742 auto *BO = cast<BinaryOperator>(I); 743 BO->setHasNoUnsignedWrap( 744 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 745 BO->setHasNoSignedWrap( 746 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 747 } 748 }; 749 750 if (SE.DT.dominates(IncV, InsertPos)) { 751 if (RecomputePoisonFlags) 752 FixupPoisonFlags(IncV); 753 return true; 754 } 755 756 // InsertPos must itself dominate IncV so that IncV's new position satisfies 757 // its existing users. 758 if (isa<PHINode>(InsertPos) || 759 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 760 return false; 761 762 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 763 return false; 764 765 // Check that the chain of IV operands leading back to Phi can be hoisted. 766 SmallVector<Instruction*, 4> IVIncs; 767 for(;;) { 768 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 769 if (!Oper) 770 return false; 771 // IncV is safe to hoist. 772 IVIncs.push_back(IncV); 773 IncV = Oper; 774 if (SE.DT.dominates(IncV, InsertPos)) 775 break; 776 } 777 for (Instruction *I : llvm::reverse(IVIncs)) { 778 fixupInsertPoints(I); 779 I->moveBefore(InsertPos); 780 if (RecomputePoisonFlags) 781 FixupPoisonFlags(I); 782 } 783 return true; 784 } 785 786 /// Determine if this cyclic phi is in a form that would have been generated by 787 /// LSR. We don't care if the phi was actually expanded in this pass, as long 788 /// as it is in a low-cost form, for example, no implied multiplication. This 789 /// should match any patterns generated by getAddRecExprPHILiterally and 790 /// expandAddtoGEP. 791 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 792 const Loop *L) { 793 for(Instruction *IVOper = IncV; 794 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 795 /*allowScale=*/false));) { 796 if (IVOper == PN) 797 return true; 798 } 799 return false; 800 } 801 802 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 803 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 804 /// need to materialize IV increments elsewhere to handle difficult situations. 805 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 806 Type *ExpandTy, Type *IntTy, 807 bool useSubtract) { 808 Value *IncV; 809 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 810 if (ExpandTy->isPointerTy()) { 811 IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN); 812 } else { 813 IncV = useSubtract ? 814 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 815 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 816 } 817 return IncV; 818 } 819 820 /// Check whether we can cheaply express the requested SCEV in terms of 821 /// the available PHI SCEV by truncation and/or inversion of the step. 822 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 823 const SCEVAddRecExpr *Phi, 824 const SCEVAddRecExpr *Requested, 825 bool &InvertStep) { 826 // We can't transform to match a pointer PHI. 827 if (Phi->getType()->isPointerTy()) 828 return false; 829 830 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 831 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 832 833 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 834 return false; 835 836 // Try truncate it if necessary. 837 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 838 if (!Phi) 839 return false; 840 841 // Check whether truncation will help. 842 if (Phi == Requested) { 843 InvertStep = false; 844 return true; 845 } 846 847 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 848 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 849 InvertStep = true; 850 return true; 851 } 852 853 return false; 854 } 855 856 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 857 if (!isa<IntegerType>(AR->getType())) 858 return false; 859 860 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 861 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 862 const SCEV *Step = AR->getStepRecurrence(SE); 863 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 864 SE.getSignExtendExpr(AR, WideTy)); 865 const SCEV *ExtendAfterOp = 866 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 867 return ExtendAfterOp == OpAfterExtend; 868 } 869 870 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 871 if (!isa<IntegerType>(AR->getType())) 872 return false; 873 874 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 875 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 876 const SCEV *Step = AR->getStepRecurrence(SE); 877 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 878 SE.getZeroExtendExpr(AR, WideTy)); 879 const SCEV *ExtendAfterOp = 880 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 881 return ExtendAfterOp == OpAfterExtend; 882 } 883 884 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 885 /// the base addrec, which is the addrec without any non-loop-dominating 886 /// values, and return the PHI. 887 PHINode * 888 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 889 const Loop *L, 890 Type *ExpandTy, 891 Type *IntTy, 892 Type *&TruncTy, 893 bool &InvertStep) { 894 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 895 896 // Reuse a previously-inserted PHI, if present. 897 BasicBlock *LatchBlock = L->getLoopLatch(); 898 if (LatchBlock) { 899 PHINode *AddRecPhiMatch = nullptr; 900 Instruction *IncV = nullptr; 901 TruncTy = nullptr; 902 InvertStep = false; 903 904 // Only try partially matching scevs that need truncation and/or 905 // step-inversion if we know this loop is outside the current loop. 906 bool TryNonMatchingSCEV = 907 IVIncInsertLoop && 908 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 909 910 for (PHINode &PN : L->getHeader()->phis()) { 911 if (!SE.isSCEVable(PN.getType())) 912 continue; 913 914 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 915 // PHI has no meaning at all. 916 if (!PN.isComplete()) { 917 SCEV_DEBUG_WITH_TYPE( 918 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 919 continue; 920 } 921 922 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 923 if (!PhiSCEV) 924 continue; 925 926 bool IsMatchingSCEV = PhiSCEV == Normalized; 927 // We only handle truncation and inversion of phi recurrences for the 928 // expanded expression if the expanded expression's loop dominates the 929 // loop we insert to. Check now, so we can bail out early. 930 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 931 continue; 932 933 // TODO: this possibly can be reworked to avoid this cast at all. 934 Instruction *TempIncV = 935 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 936 if (!TempIncV) 937 continue; 938 939 // Check whether we can reuse this PHI node. 940 if (LSRMode) { 941 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 942 continue; 943 } else { 944 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 945 continue; 946 } 947 948 // Stop if we have found an exact match SCEV. 949 if (IsMatchingSCEV) { 950 IncV = TempIncV; 951 TruncTy = nullptr; 952 InvertStep = false; 953 AddRecPhiMatch = &PN; 954 break; 955 } 956 957 // Try whether the phi can be translated into the requested form 958 // (truncated and/or offset by a constant). 959 if ((!TruncTy || InvertStep) && 960 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 961 // Record the phi node. But don't stop we might find an exact match 962 // later. 963 AddRecPhiMatch = &PN; 964 IncV = TempIncV; 965 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 966 } 967 } 968 969 if (AddRecPhiMatch) { 970 // Ok, the add recurrence looks usable. 971 // Remember this PHI, even in post-inc mode. 972 InsertedValues.insert(AddRecPhiMatch); 973 // Remember the increment. 974 rememberInstruction(IncV); 975 // Those values were not actually inserted but re-used. 976 ReusedValues.insert(AddRecPhiMatch); 977 ReusedValues.insert(IncV); 978 return AddRecPhiMatch; 979 } 980 } 981 982 // Save the original insertion point so we can restore it when we're done. 983 SCEVInsertPointGuard Guard(Builder, this); 984 985 // Another AddRec may need to be recursively expanded below. For example, if 986 // this AddRec is quadratic, the StepV may itself be an AddRec in this 987 // loop. Remove this loop from the PostIncLoops set before expanding such 988 // AddRecs. Otherwise, we cannot find a valid position for the step 989 // (i.e. StepV can never dominate its loop header). Ideally, we could do 990 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 991 // so it's not worth implementing SmallPtrSet::swap. 992 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 993 PostIncLoops.clear(); 994 995 // Expand code for the start value into the loop preheader. 996 assert(L->getLoopPreheader() && 997 "Can't expand add recurrences without a loop preheader!"); 998 Value *StartV = 999 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1000 L->getLoopPreheader()->getTerminator()); 1001 1002 // StartV must have been be inserted into L's preheader to dominate the new 1003 // phi. 1004 assert(!isa<Instruction>(StartV) || 1005 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1006 L->getHeader())); 1007 1008 // Expand code for the step value. Do this before creating the PHI so that PHI 1009 // reuse code doesn't see an incomplete PHI. 1010 const SCEV *Step = Normalized->getStepRecurrence(SE); 1011 // If the stride is negative, insert a sub instead of an add for the increment 1012 // (unless it's a constant, because subtracts of constants are canonicalized 1013 // to adds). 1014 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1015 if (useSubtract) 1016 Step = SE.getNegativeSCEV(Step); 1017 // Expand the step somewhere that dominates the loop header. 1018 Value *StepV = expandCodeForImpl( 1019 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1020 1021 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1022 // we actually do emit an addition. It does not apply if we emit a 1023 // subtraction. 1024 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1025 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1026 1027 // Create the PHI. 1028 BasicBlock *Header = L->getHeader(); 1029 Builder.SetInsertPoint(Header, Header->begin()); 1030 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1031 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1032 Twine(IVName) + ".iv"); 1033 1034 // Create the step instructions and populate the PHI. 1035 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1036 BasicBlock *Pred = *HPI; 1037 1038 // Add a start value. 1039 if (!L->contains(Pred)) { 1040 PN->addIncoming(StartV, Pred); 1041 continue; 1042 } 1043 1044 // Create a step value and add it to the PHI. 1045 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1046 // instructions at IVIncInsertPos. 1047 Instruction *InsertPos = L == IVIncInsertLoop ? 1048 IVIncInsertPos : Pred->getTerminator(); 1049 Builder.SetInsertPoint(InsertPos); 1050 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1051 1052 if (isa<OverflowingBinaryOperator>(IncV)) { 1053 if (IncrementIsNUW) 1054 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1055 if (IncrementIsNSW) 1056 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1057 } 1058 PN->addIncoming(IncV, Pred); 1059 } 1060 1061 // After expanding subexpressions, restore the PostIncLoops set so the caller 1062 // can ensure that IVIncrement dominates the current uses. 1063 PostIncLoops = SavedPostIncLoops; 1064 1065 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1066 // effective when we are able to use an IV inserted here, so record it. 1067 InsertedValues.insert(PN); 1068 InsertedIVs.push_back(PN); 1069 return PN; 1070 } 1071 1072 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1073 Type *STy = S->getType(); 1074 Type *IntTy = SE.getEffectiveSCEVType(STy); 1075 const Loop *L = S->getLoop(); 1076 1077 // Determine a normalized form of this expression, which is the expression 1078 // before any post-inc adjustment is made. 1079 const SCEVAddRecExpr *Normalized = S; 1080 if (PostIncLoops.count(L)) { 1081 PostIncLoopSet Loops; 1082 Loops.insert(L); 1083 Normalized = cast<SCEVAddRecExpr>( 1084 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1085 } 1086 1087 // Strip off any non-loop-dominating component from the addrec start. 1088 const SCEV *Start = Normalized->getStart(); 1089 const SCEV *PostLoopOffset = nullptr; 1090 if (!SE.properlyDominates(Start, L->getHeader())) { 1091 PostLoopOffset = Start; 1092 Start = SE.getConstant(Normalized->getType(), 0); 1093 Normalized = cast<SCEVAddRecExpr>( 1094 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1095 Normalized->getLoop(), 1096 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1097 } 1098 1099 // Strip off any non-loop-dominating component from the addrec step. 1100 const SCEV *Step = Normalized->getStepRecurrence(SE); 1101 const SCEV *PostLoopScale = nullptr; 1102 if (!SE.dominates(Step, L->getHeader())) { 1103 PostLoopScale = Step; 1104 Step = SE.getConstant(Normalized->getType(), 1); 1105 if (!Start->isZero()) { 1106 // The normalization below assumes that Start is constant zero, so if 1107 // it isn't re-associate Start to PostLoopOffset. 1108 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1109 PostLoopOffset = Start; 1110 Start = SE.getConstant(Normalized->getType(), 0); 1111 } 1112 Normalized = 1113 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1114 Start, Step, Normalized->getLoop(), 1115 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1116 } 1117 1118 // Expand the core addrec. If we need post-loop scaling, force it to 1119 // expand to an integer type to avoid the need for additional casting. 1120 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1121 // We can't use a pointer type for the addrec if the pointer type is 1122 // non-integral. 1123 Type *AddRecPHIExpandTy = 1124 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1125 1126 // In some cases, we decide to reuse an existing phi node but need to truncate 1127 // it and/or invert the step. 1128 Type *TruncTy = nullptr; 1129 bool InvertStep = false; 1130 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1131 IntTy, TruncTy, InvertStep); 1132 1133 // Accommodate post-inc mode, if necessary. 1134 Value *Result; 1135 if (!PostIncLoops.count(L)) 1136 Result = PN; 1137 else { 1138 // In PostInc mode, use the post-incremented value. 1139 BasicBlock *LatchBlock = L->getLoopLatch(); 1140 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1141 Result = PN->getIncomingValueForBlock(LatchBlock); 1142 1143 // We might be introducing a new use of the post-inc IV that is not poison 1144 // safe, in which case we should drop poison generating flags. Only keep 1145 // those flags for which SCEV has proven that they always hold. 1146 if (isa<OverflowingBinaryOperator>(Result)) { 1147 auto *I = cast<Instruction>(Result); 1148 if (!S->hasNoUnsignedWrap()) 1149 I->setHasNoUnsignedWrap(false); 1150 if (!S->hasNoSignedWrap()) 1151 I->setHasNoSignedWrap(false); 1152 } 1153 1154 // For an expansion to use the postinc form, the client must call 1155 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1156 // or dominated by IVIncInsertPos. 1157 if (isa<Instruction>(Result) && 1158 !SE.DT.dominates(cast<Instruction>(Result), 1159 &*Builder.GetInsertPoint())) { 1160 // The induction variable's postinc expansion does not dominate this use. 1161 // IVUsers tries to prevent this case, so it is rare. However, it can 1162 // happen when an IVUser outside the loop is not dominated by the latch 1163 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1164 // all cases. Consider a phi outside whose operand is replaced during 1165 // expansion with the value of the postinc user. Without fundamentally 1166 // changing the way postinc users are tracked, the only remedy is 1167 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1168 // but hopefully expandCodeFor handles that. 1169 bool useSubtract = 1170 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1171 if (useSubtract) 1172 Step = SE.getNegativeSCEV(Step); 1173 Value *StepV; 1174 { 1175 // Expand the step somewhere that dominates the loop header. 1176 SCEVInsertPointGuard Guard(Builder, this); 1177 StepV = expandCodeForImpl( 1178 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1179 } 1180 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1181 } 1182 } 1183 1184 // We have decided to reuse an induction variable of a dominating loop. Apply 1185 // truncation and/or inversion of the step. 1186 if (TruncTy) { 1187 Type *ResTy = Result->getType(); 1188 // Normalize the result type. 1189 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1190 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1191 // Truncate the result. 1192 if (TruncTy != Result->getType()) 1193 Result = Builder.CreateTrunc(Result, TruncTy); 1194 1195 // Invert the result. 1196 if (InvertStep) 1197 Result = Builder.CreateSub( 1198 expandCodeForImpl(Normalized->getStart(), TruncTy), Result); 1199 } 1200 1201 // Re-apply any non-loop-dominating scale. 1202 if (PostLoopScale) { 1203 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1204 Result = InsertNoopCastOfTo(Result, IntTy); 1205 Result = Builder.CreateMul(Result, 1206 expandCodeForImpl(PostLoopScale, IntTy)); 1207 } 1208 1209 // Re-apply any non-loop-dominating offset. 1210 if (PostLoopOffset) { 1211 if (isa<PointerType>(ExpandTy)) { 1212 if (Result->getType()->isIntegerTy()) { 1213 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy); 1214 Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base); 1215 } else { 1216 Result = expandAddToGEP(PostLoopOffset, IntTy, Result); 1217 } 1218 } else { 1219 Result = InsertNoopCastOfTo(Result, IntTy); 1220 Result = Builder.CreateAdd( 1221 Result, expandCodeForImpl(PostLoopOffset, IntTy)); 1222 } 1223 } 1224 1225 return Result; 1226 } 1227 1228 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1229 // In canonical mode we compute the addrec as an expression of a canonical IV 1230 // using evaluateAtIteration and expand the resulting SCEV expression. This 1231 // way we avoid introducing new IVs to carry on the computation of the addrec 1232 // throughout the loop. 1233 // 1234 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1235 // type wider than the addrec itself. Emitting a canonical IV of the 1236 // proper type might produce non-legal types, for example expanding an i64 1237 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1238 // back to non-canonical mode for nested addrecs. 1239 if (!CanonicalMode || (S->getNumOperands() > 2)) 1240 return expandAddRecExprLiterally(S); 1241 1242 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1243 const Loop *L = S->getLoop(); 1244 1245 // First check for an existing canonical IV in a suitable type. 1246 PHINode *CanonicalIV = nullptr; 1247 if (PHINode *PN = L->getCanonicalInductionVariable()) 1248 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1249 CanonicalIV = PN; 1250 1251 // Rewrite an AddRec in terms of the canonical induction variable, if 1252 // its type is more narrow. 1253 if (CanonicalIV && 1254 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1255 !S->getType()->isPointerTy()) { 1256 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1257 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1258 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1259 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1260 S->getNoWrapFlags(SCEV::FlagNW))); 1261 BasicBlock::iterator NewInsertPt = 1262 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1263 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1264 &*NewInsertPt); 1265 return V; 1266 } 1267 1268 // {X,+,F} --> X + {0,+,F} 1269 if (!S->getStart()->isZero()) { 1270 if (isa<PointerType>(S->getType())) { 1271 Value *StartV = expand(SE.getPointerBase(S)); 1272 return expandAddToGEP(SE.removePointerBase(S), Ty, StartV); 1273 } 1274 1275 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1276 NewOps[0] = SE.getConstant(Ty, 0); 1277 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1278 S->getNoWrapFlags(SCEV::FlagNW)); 1279 1280 // Just do a normal add. Pre-expand the operands to suppress folding. 1281 // 1282 // The LHS and RHS values are factored out of the expand call to make the 1283 // output independent of the argument evaluation order. 1284 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1285 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1286 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1287 } 1288 1289 // If we don't yet have a canonical IV, create one. 1290 if (!CanonicalIV) { 1291 // Create and insert the PHI node for the induction variable in the 1292 // specified loop. 1293 BasicBlock *Header = L->getHeader(); 1294 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1295 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1296 &Header->front()); 1297 rememberInstruction(CanonicalIV); 1298 1299 SmallSet<BasicBlock *, 4> PredSeen; 1300 Constant *One = ConstantInt::get(Ty, 1); 1301 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1302 BasicBlock *HP = *HPI; 1303 if (!PredSeen.insert(HP).second) { 1304 // There must be an incoming value for each predecessor, even the 1305 // duplicates! 1306 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1307 continue; 1308 } 1309 1310 if (L->contains(HP)) { 1311 // Insert a unit add instruction right before the terminator 1312 // corresponding to the back-edge. 1313 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1314 "indvar.next", 1315 HP->getTerminator()); 1316 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1317 rememberInstruction(Add); 1318 CanonicalIV->addIncoming(Add, HP); 1319 } else { 1320 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1321 } 1322 } 1323 } 1324 1325 // {0,+,1} --> Insert a canonical induction variable into the loop! 1326 if (S->isAffine() && S->getOperand(1)->isOne()) { 1327 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1328 "IVs with types different from the canonical IV should " 1329 "already have been handled!"); 1330 return CanonicalIV; 1331 } 1332 1333 // {0,+,F} --> {0,+,1} * F 1334 1335 // If this is a simple linear addrec, emit it now as a special case. 1336 if (S->isAffine()) // {0,+,F} --> i*F 1337 return 1338 expand(SE.getTruncateOrNoop( 1339 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1340 SE.getNoopOrAnyExtend(S->getOperand(1), 1341 CanonicalIV->getType())), 1342 Ty)); 1343 1344 // If this is a chain of recurrences, turn it into a closed form, using the 1345 // folders, then expandCodeFor the closed form. This allows the folders to 1346 // simplify the expression without having to build a bunch of special code 1347 // into this folder. 1348 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1349 1350 // Promote S up to the canonical IV type, if the cast is foldable. 1351 const SCEV *NewS = S; 1352 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1353 if (isa<SCEVAddRecExpr>(Ext)) 1354 NewS = Ext; 1355 1356 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1357 1358 // Truncate the result down to the original type, if needed. 1359 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1360 return expand(T); 1361 } 1362 1363 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1364 Value *V = 1365 expandCodeForImpl(S->getOperand(), S->getOperand()->getType()); 1366 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1367 GetOptimalInsertionPointForCastOf(V)); 1368 } 1369 1370 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1371 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1372 Value *V = expandCodeForImpl( 1373 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1374 ); 1375 return Builder.CreateTrunc(V, Ty); 1376 } 1377 1378 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1379 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1380 Value *V = expandCodeForImpl( 1381 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1382 ); 1383 return Builder.CreateZExt(V, Ty); 1384 } 1385 1386 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1387 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1388 Value *V = expandCodeForImpl( 1389 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1390 ); 1391 return Builder.CreateSExt(V, Ty); 1392 } 1393 1394 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1395 Intrinsic::ID IntrinID, Twine Name, 1396 bool IsSequential) { 1397 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1398 Type *Ty = LHS->getType(); 1399 if (IsSequential) 1400 LHS = Builder.CreateFreeze(LHS); 1401 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1402 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty); 1403 if (IsSequential && i != 0) 1404 RHS = Builder.CreateFreeze(RHS); 1405 Value *Sel; 1406 if (Ty->isIntegerTy()) 1407 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1408 /*FMFSource=*/nullptr, Name); 1409 else { 1410 Value *ICmp = 1411 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1412 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1413 } 1414 LHS = Sel; 1415 } 1416 return LHS; 1417 } 1418 1419 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1420 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1421 } 1422 1423 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1424 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1425 } 1426 1427 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1428 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1429 } 1430 1431 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1432 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1433 } 1434 1435 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1436 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1437 } 1438 1439 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1440 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1441 } 1442 1443 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1444 Instruction *IP) { 1445 setInsertPoint(IP); 1446 Value *V = expandCodeForImpl(SH, Ty); 1447 return V; 1448 } 1449 1450 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) { 1451 // Expand the code for this SCEV. 1452 Value *V = expand(SH); 1453 1454 if (Ty) { 1455 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1456 "non-trivial casts should be done with the SCEVs directly!"); 1457 V = InsertNoopCastOfTo(V, Ty); 1458 } 1459 return V; 1460 } 1461 1462 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1463 const Instruction *InsertPt) { 1464 // If the expansion is not in CanonicalMode, and the SCEV contains any 1465 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1466 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1467 return nullptr; 1468 1469 // If S is a constant, it may be worse to reuse an existing Value. 1470 if (isa<SCEVConstant>(S)) 1471 return nullptr; 1472 1473 // Choose a Value from the set which dominates the InsertPt. 1474 // InsertPt should be inside the Value's parent loop so as not to break 1475 // the LCSSA form. 1476 for (Value *V : SE.getSCEVValues(S)) { 1477 Instruction *EntInst = dyn_cast<Instruction>(V); 1478 if (!EntInst) 1479 continue; 1480 1481 assert(EntInst->getFunction() == InsertPt->getFunction()); 1482 if (S->getType() == V->getType() && 1483 SE.DT.dominates(EntInst, InsertPt) && 1484 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1485 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1486 return V; 1487 } 1488 return nullptr; 1489 } 1490 1491 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1492 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1493 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1494 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1495 // the expansion will try to reuse Value from ExprValueMap, and only when it 1496 // fails, expand the SCEV literally. 1497 Value *SCEVExpander::expand(const SCEV *S) { 1498 // Compute an insertion point for this SCEV object. Hoist the instructions 1499 // as far out in the loop nest as possible. 1500 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1501 1502 // We can move insertion point only if there is no div or rem operations 1503 // otherwise we are risky to move it over the check for zero denominator. 1504 auto SafeToHoist = [](const SCEV *S) { 1505 return !SCEVExprContains(S, [](const SCEV *S) { 1506 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1507 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1508 // Division by non-zero constants can be hoisted. 1509 return SC->getValue()->isZero(); 1510 // All other divisions should not be moved as they may be 1511 // divisions by zero and should be kept within the 1512 // conditions of the surrounding loops that guard their 1513 // execution (see PR35406). 1514 return true; 1515 } 1516 return false; 1517 }); 1518 }; 1519 if (SafeToHoist(S)) { 1520 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1521 L = L->getParentLoop()) { 1522 if (SE.isLoopInvariant(S, L)) { 1523 if (!L) break; 1524 if (BasicBlock *Preheader = L->getLoopPreheader()) 1525 InsertPt = Preheader->getTerminator(); 1526 else 1527 // LSR sets the insertion point for AddRec start/step values to the 1528 // block start to simplify value reuse, even though it's an invalid 1529 // position. SCEVExpander must correct for this in all cases. 1530 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1531 } else { 1532 // If the SCEV is computable at this level, insert it into the header 1533 // after the PHIs (and after any other instructions that we've inserted 1534 // there) so that it is guaranteed to dominate any user inside the loop. 1535 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1536 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1537 1538 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1539 (isInsertedInstruction(InsertPt) || 1540 isa<DbgInfoIntrinsic>(InsertPt))) { 1541 InsertPt = &*std::next(InsertPt->getIterator()); 1542 } 1543 break; 1544 } 1545 } 1546 } 1547 1548 // Check to see if we already expanded this here. 1549 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1550 if (I != InsertedExpressions.end()) 1551 return I->second; 1552 1553 SCEVInsertPointGuard Guard(Builder, this); 1554 Builder.SetInsertPoint(InsertPt); 1555 1556 // Expand the expression into instructions. 1557 Value *V = FindValueInExprValueMap(S, InsertPt); 1558 if (!V) { 1559 V = visit(S); 1560 V = fixupLCSSAFormFor(V); 1561 } else { 1562 // If we're reusing an existing instruction, we are effectively CSEing two 1563 // copies of the instruction (with potentially different flags). As such, 1564 // we need to drop any poison generating flags unless we can prove that 1565 // said flags must be valid for all new users. 1566 if (auto *I = dyn_cast<Instruction>(V)) 1567 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1568 I->dropPoisonGeneratingFlags(); 1569 } 1570 // Remember the expanded value for this SCEV at this location. 1571 // 1572 // This is independent of PostIncLoops. The mapped value simply materializes 1573 // the expression at this insertion point. If the mapped value happened to be 1574 // a postinc expansion, it could be reused by a non-postinc user, but only if 1575 // its insertion point was already at the head of the loop. 1576 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1577 return V; 1578 } 1579 1580 void SCEVExpander::rememberInstruction(Value *I) { 1581 auto DoInsert = [this](Value *V) { 1582 if (!PostIncLoops.empty()) 1583 InsertedPostIncValues.insert(V); 1584 else 1585 InsertedValues.insert(V); 1586 }; 1587 DoInsert(I); 1588 } 1589 1590 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1591 /// replace them with their most canonical representative. Return the number of 1592 /// phis eliminated. 1593 /// 1594 /// This does not depend on any SCEVExpander state but should be used in 1595 /// the same context that SCEVExpander is used. 1596 unsigned 1597 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1598 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1599 const TargetTransformInfo *TTI) { 1600 // Find integer phis in order of increasing width. 1601 SmallVector<PHINode*, 8> Phis; 1602 for (PHINode &PN : L->getHeader()->phis()) 1603 Phis.push_back(&PN); 1604 1605 if (TTI) 1606 // Use stable_sort to preserve order of equivalent PHIs, so the order 1607 // of the sorted Phis is the same from run to run on the same loop. 1608 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1609 // Put pointers at the back and make sure pointer < pointer = false. 1610 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1611 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1612 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1613 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1614 }); 1615 1616 unsigned NumElim = 0; 1617 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1618 // Process phis from wide to narrow. Map wide phis to their truncation 1619 // so narrow phis can reuse them. 1620 for (PHINode *Phi : Phis) { 1621 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1622 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1623 return V; 1624 if (!SE.isSCEVable(PN->getType())) 1625 return nullptr; 1626 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1627 if (!Const) 1628 return nullptr; 1629 return Const->getValue(); 1630 }; 1631 1632 // Fold constant phis. They may be congruent to other constant phis and 1633 // would confuse the logic below that expects proper IVs. 1634 if (Value *V = SimplifyPHINode(Phi)) { 1635 if (V->getType() != Phi->getType()) 1636 continue; 1637 SE.forgetValue(Phi); 1638 Phi->replaceAllUsesWith(V); 1639 DeadInsts.emplace_back(Phi); 1640 ++NumElim; 1641 SCEV_DEBUG_WITH_TYPE(DebugType, 1642 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1643 << '\n'); 1644 continue; 1645 } 1646 1647 if (!SE.isSCEVable(Phi->getType())) 1648 continue; 1649 1650 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1651 if (!OrigPhiRef) { 1652 OrigPhiRef = Phi; 1653 if (Phi->getType()->isIntegerTy() && TTI && 1654 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1655 // Make sure we only rewrite using simple induction variables; 1656 // otherwise, we can make the trip count of a loop unanalyzable 1657 // to SCEV. 1658 const SCEV *PhiExpr = SE.getSCEV(Phi); 1659 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1660 // This phi can be freely truncated to the narrowest phi type. Map the 1661 // truncated expression to it so it will be reused for narrow types. 1662 const SCEV *TruncExpr = 1663 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1664 ExprToIVMap[TruncExpr] = Phi; 1665 } 1666 } 1667 continue; 1668 } 1669 1670 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1671 // sense. 1672 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1673 continue; 1674 1675 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1676 Instruction *OrigInc = dyn_cast<Instruction>( 1677 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1678 Instruction *IsomorphicInc = 1679 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1680 1681 if (OrigInc && IsomorphicInc) { 1682 // If this phi has the same width but is more canonical, replace the 1683 // original with it. As part of the "more canonical" determination, 1684 // respect a prior decision to use an IV chain. 1685 if (OrigPhiRef->getType() == Phi->getType() && 1686 !(ChainedPhis.count(Phi) || 1687 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1688 (ChainedPhis.count(Phi) || 1689 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1690 std::swap(OrigPhiRef, Phi); 1691 std::swap(OrigInc, IsomorphicInc); 1692 } 1693 // Replacing the congruent phi is sufficient because acyclic 1694 // redundancy elimination, CSE/GVN, should handle the 1695 // rest. However, once SCEV proves that a phi is congruent, 1696 // it's often the head of an IV user cycle that is isomorphic 1697 // with the original phi. It's worth eagerly cleaning up the 1698 // common case of a single IV increment so that DeleteDeadPHIs 1699 // can remove cycles that had postinc uses. 1700 // Because we may potentially introduce a new use of OrigIV that didn't 1701 // exist before at this point, its poison flags need readjustment. 1702 const SCEV *TruncExpr = 1703 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1704 if (OrigInc != IsomorphicInc && 1705 TruncExpr == SE.getSCEV(IsomorphicInc) && 1706 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1707 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1708 SCEV_DEBUG_WITH_TYPE( 1709 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1710 << *IsomorphicInc << '\n'); 1711 Value *NewInc = OrigInc; 1712 if (OrigInc->getType() != IsomorphicInc->getType()) { 1713 Instruction *IP = nullptr; 1714 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1715 IP = &*PN->getParent()->getFirstInsertionPt(); 1716 else 1717 IP = OrigInc->getNextNode(); 1718 1719 IRBuilder<> Builder(IP); 1720 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1721 NewInc = Builder.CreateTruncOrBitCast( 1722 OrigInc, IsomorphicInc->getType(), IVName); 1723 } 1724 IsomorphicInc->replaceAllUsesWith(NewInc); 1725 DeadInsts.emplace_back(IsomorphicInc); 1726 } 1727 } 1728 } 1729 SCEV_DEBUG_WITH_TYPE(DebugType, 1730 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1731 << '\n'); 1732 SCEV_DEBUG_WITH_TYPE( 1733 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1734 ++NumElim; 1735 Value *NewIV = OrigPhiRef; 1736 if (OrigPhiRef->getType() != Phi->getType()) { 1737 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 1738 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1739 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1740 } 1741 Phi->replaceAllUsesWith(NewIV); 1742 DeadInsts.emplace_back(Phi); 1743 } 1744 return NumElim; 1745 } 1746 1747 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 1748 const Instruction *At, 1749 Loop *L) { 1750 using namespace llvm::PatternMatch; 1751 1752 SmallVector<BasicBlock *, 4> ExitingBlocks; 1753 L->getExitingBlocks(ExitingBlocks); 1754 1755 // Look for suitable value in simple conditions at the loop exits. 1756 for (BasicBlock *BB : ExitingBlocks) { 1757 ICmpInst::Predicate Pred; 1758 Instruction *LHS, *RHS; 1759 1760 if (!match(BB->getTerminator(), 1761 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1762 m_BasicBlock(), m_BasicBlock()))) 1763 continue; 1764 1765 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1766 return LHS; 1767 1768 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1769 return RHS; 1770 } 1771 1772 // Use expand's logic which is used for reusing a previous Value in 1773 // ExprValueMap. Note that we don't currently model the cost of 1774 // needing to drop poison generating flags on the instruction if we 1775 // want to reuse it. We effectively assume that has zero cost. 1776 return FindValueInExprValueMap(S, At); 1777 } 1778 1779 template<typename T> static InstructionCost costAndCollectOperands( 1780 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1781 TargetTransformInfo::TargetCostKind CostKind, 1782 SmallVectorImpl<SCEVOperand> &Worklist) { 1783 1784 const T *S = cast<T>(WorkItem.S); 1785 InstructionCost Cost = 0; 1786 // Object to help map SCEV operands to expanded IR instructions. 1787 struct OperationIndices { 1788 OperationIndices(unsigned Opc, size_t min, size_t max) : 1789 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1790 unsigned Opcode; 1791 size_t MinIdx; 1792 size_t MaxIdx; 1793 }; 1794 1795 // Collect the operations of all the instructions that will be needed to 1796 // expand the SCEVExpr. This is so that when we come to cost the operands, 1797 // we know what the generated user(s) will be. 1798 SmallVector<OperationIndices, 2> Operations; 1799 1800 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1801 Operations.emplace_back(Opcode, 0, 0); 1802 return TTI.getCastInstrCost(Opcode, S->getType(), 1803 S->getOperand(0)->getType(), 1804 TTI::CastContextHint::None, CostKind); 1805 }; 1806 1807 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1808 unsigned MinIdx = 0, 1809 unsigned MaxIdx = 1) -> InstructionCost { 1810 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1811 return NumRequired * 1812 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1813 }; 1814 1815 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1816 unsigned MaxIdx) -> InstructionCost { 1817 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1818 Type *OpType = S->getType(); 1819 return NumRequired * TTI.getCmpSelInstrCost( 1820 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1821 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1822 }; 1823 1824 switch (S->getSCEVType()) { 1825 case scCouldNotCompute: 1826 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1827 case scUnknown: 1828 case scConstant: 1829 case scVScale: 1830 return 0; 1831 case scPtrToInt: 1832 Cost = CastCost(Instruction::PtrToInt); 1833 break; 1834 case scTruncate: 1835 Cost = CastCost(Instruction::Trunc); 1836 break; 1837 case scZeroExtend: 1838 Cost = CastCost(Instruction::ZExt); 1839 break; 1840 case scSignExtend: 1841 Cost = CastCost(Instruction::SExt); 1842 break; 1843 case scUDivExpr: { 1844 unsigned Opcode = Instruction::UDiv; 1845 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1846 if (SC->getAPInt().isPowerOf2()) 1847 Opcode = Instruction::LShr; 1848 Cost = ArithCost(Opcode, 1); 1849 break; 1850 } 1851 case scAddExpr: 1852 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1853 break; 1854 case scMulExpr: 1855 // TODO: this is a very pessimistic cost modelling for Mul, 1856 // because of Bin Pow algorithm actually used by the expander, 1857 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1858 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1859 break; 1860 case scSMaxExpr: 1861 case scUMaxExpr: 1862 case scSMinExpr: 1863 case scUMinExpr: 1864 case scSequentialUMinExpr: { 1865 // FIXME: should this ask the cost for Intrinsic's? 1866 // The reduction tree. 1867 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1868 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1869 switch (S->getSCEVType()) { 1870 case scSequentialUMinExpr: { 1871 // The safety net against poison. 1872 // FIXME: this is broken. 1873 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1874 Cost += ArithCost(Instruction::Or, 1875 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1876 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1877 break; 1878 } 1879 default: 1880 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1881 "Unhandled SCEV expression type?"); 1882 break; 1883 } 1884 break; 1885 } 1886 case scAddRecExpr: { 1887 // In this polynominal, we may have some zero operands, and we shouldn't 1888 // really charge for those. So how many non-zero coefficients are there? 1889 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1890 return !Op->isZero(); 1891 }); 1892 1893 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1894 assert(!(*std::prev(S->operands().end()))->isZero() && 1895 "Last operand should not be zero"); 1896 1897 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1898 int NumNonZeroDegreeNonOneTerms = 1899 llvm::count_if(S->operands(), [](const SCEV *Op) { 1900 auto *SConst = dyn_cast<SCEVConstant>(Op); 1901 return !SConst || SConst->getAPInt().ugt(1); 1902 }); 1903 1904 // Much like with normal add expr, the polynominal will require 1905 // one less addition than the number of it's terms. 1906 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1907 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1908 // Here, *each* one of those will require a multiplication. 1909 InstructionCost MulCost = 1910 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1911 Cost = AddCost + MulCost; 1912 1913 // What is the degree of this polynominal? 1914 int PolyDegree = S->getNumOperands() - 1; 1915 assert(PolyDegree >= 1 && "Should be at least affine."); 1916 1917 // The final term will be: 1918 // Op_{PolyDegree} * x ^ {PolyDegree} 1919 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1920 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1921 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1922 // FIXME: this is conservatively correct, but might be overly pessimistic. 1923 Cost += MulCost * (PolyDegree - 1); 1924 break; 1925 } 1926 } 1927 1928 for (auto &CostOp : Operations) { 1929 for (auto SCEVOp : enumerate(S->operands())) { 1930 // Clamp the index to account for multiple IR operations being chained. 1931 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1932 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1933 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1934 } 1935 } 1936 return Cost; 1937 } 1938 1939 bool SCEVExpander::isHighCostExpansionHelper( 1940 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1941 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1942 SmallPtrSetImpl<const SCEV *> &Processed, 1943 SmallVectorImpl<SCEVOperand> &Worklist) { 1944 if (Cost > Budget) 1945 return true; // Already run out of budget, give up. 1946 1947 const SCEV *S = WorkItem.S; 1948 // Was the cost of expansion of this expression already accounted for? 1949 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1950 return false; // We have already accounted for this expression. 1951 1952 // If we can find an existing value for this scev available at the point "At" 1953 // then consider the expression cheap. 1954 if (getRelatedExistingExpansion(S, &At, L)) 1955 return false; // Consider the expression to be free. 1956 1957 TargetTransformInfo::TargetCostKind CostKind = 1958 L->getHeader()->getParent()->hasMinSize() 1959 ? TargetTransformInfo::TCK_CodeSize 1960 : TargetTransformInfo::TCK_RecipThroughput; 1961 1962 switch (S->getSCEVType()) { 1963 case scCouldNotCompute: 1964 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1965 case scUnknown: 1966 case scVScale: 1967 // Assume to be zero-cost. 1968 return false; 1969 case scConstant: { 1970 // Only evalulate the costs of constants when optimizing for size. 1971 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1972 return false; 1973 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1974 Type *Ty = S->getType(); 1975 Cost += TTI.getIntImmCostInst( 1976 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1977 return Cost > Budget; 1978 } 1979 case scTruncate: 1980 case scPtrToInt: 1981 case scZeroExtend: 1982 case scSignExtend: { 1983 Cost += 1984 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 1985 return false; // Will answer upon next entry into this function. 1986 } 1987 case scUDivExpr: { 1988 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 1989 // HowManyLessThans produced to compute a precise expression, rather than a 1990 // UDiv from the user's code. If we can't find a UDiv in the code with some 1991 // simple searching, we need to account for it's cost. 1992 1993 // At the beginning of this function we already tried to find existing 1994 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 1995 // pattern involving division. This is just a simple search heuristic. 1996 if (getRelatedExistingExpansion( 1997 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 1998 return false; // Consider it to be free. 1999 2000 Cost += 2001 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2002 return false; // Will answer upon next entry into this function. 2003 } 2004 case scAddExpr: 2005 case scMulExpr: 2006 case scUMaxExpr: 2007 case scSMaxExpr: 2008 case scUMinExpr: 2009 case scSMinExpr: 2010 case scSequentialUMinExpr: { 2011 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2012 "Nary expr should have more than 1 operand."); 2013 // The simple nary expr will require one less op (or pair of ops) 2014 // than the number of it's terms. 2015 Cost += 2016 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2017 return Cost > Budget; 2018 } 2019 case scAddRecExpr: { 2020 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2021 "Polynomial should be at least linear"); 2022 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2023 WorkItem, TTI, CostKind, Worklist); 2024 return Cost > Budget; 2025 } 2026 } 2027 llvm_unreachable("Unknown SCEV kind!"); 2028 } 2029 2030 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2031 Instruction *IP) { 2032 assert(IP); 2033 switch (Pred->getKind()) { 2034 case SCEVPredicate::P_Union: 2035 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2036 case SCEVPredicate::P_Compare: 2037 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2038 case SCEVPredicate::P_Wrap: { 2039 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2040 return expandWrapPredicate(AddRecPred, IP); 2041 } 2042 } 2043 llvm_unreachable("Unknown SCEV predicate type"); 2044 } 2045 2046 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2047 Instruction *IP) { 2048 Value *Expr0 = 2049 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2050 Value *Expr1 = 2051 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2052 2053 Builder.SetInsertPoint(IP); 2054 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2055 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2056 return I; 2057 } 2058 2059 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2060 Instruction *Loc, bool Signed) { 2061 assert(AR->isAffine() && "Cannot generate RT check for " 2062 "non-affine expression"); 2063 2064 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2065 SmallVector<const SCEVPredicate *, 4> Pred; 2066 const SCEV *ExitCount = 2067 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2068 2069 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2070 2071 const SCEV *Step = AR->getStepRecurrence(SE); 2072 const SCEV *Start = AR->getStart(); 2073 2074 Type *ARTy = AR->getType(); 2075 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2076 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2077 2078 // The expression {Start,+,Step} has nusw/nssw if 2079 // Step < 0, Start - |Step| * Backedge <= Start 2080 // Step >= 0, Start + |Step| * Backedge > Start 2081 // and |Step| * Backedge doesn't unsigned overflow. 2082 2083 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2084 Builder.SetInsertPoint(Loc); 2085 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc); 2086 2087 IntegerType *Ty = 2088 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2089 2090 Value *StepValue = expandCodeForImpl(Step, Ty, Loc); 2091 Value *NegStepValue = 2092 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc); 2093 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc); 2094 2095 ConstantInt *Zero = 2096 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2097 2098 Builder.SetInsertPoint(Loc); 2099 // Compute |Step| 2100 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2101 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2102 2103 // Compute |Step| * Backedge 2104 // Compute: 2105 // 1. Start + |Step| * Backedge < Start 2106 // 2. Start - |Step| * Backedge > Start 2107 // 2108 // And select either 1. or 2. depending on whether step is positive or 2109 // negative. If Step is known to be positive or negative, only create 2110 // either 1. or 2. 2111 auto ComputeEndCheck = [&]() -> Value * { 2112 // Checking <u 0 is always false. 2113 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2114 return ConstantInt::getFalse(Loc->getContext()); 2115 2116 // Get the backedge taken count and truncate or extended to the AR type. 2117 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2118 2119 Value *MulV, *OfMul; 2120 if (Step->isOne()) { 2121 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2122 // needed, there is never an overflow, so to avoid artificially inflating 2123 // the cost of the check, directly emit the optimized IR. 2124 MulV = TruncTripCount; 2125 OfMul = ConstantInt::getFalse(MulV->getContext()); 2126 } else { 2127 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2128 Intrinsic::umul_with_overflow, Ty); 2129 CallInst *Mul = 2130 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2131 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2132 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2133 } 2134 2135 Value *Add = nullptr, *Sub = nullptr; 2136 bool NeedPosCheck = !SE.isKnownNegative(Step); 2137 bool NeedNegCheck = !SE.isKnownPositive(Step); 2138 2139 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2140 StartValue = InsertNoopCastOfTo( 2141 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2142 Value *NegMulV = Builder.CreateNeg(MulV); 2143 if (NeedPosCheck) 2144 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2145 if (NeedNegCheck) 2146 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2147 } else { 2148 if (NeedPosCheck) 2149 Add = Builder.CreateAdd(StartValue, MulV); 2150 if (NeedNegCheck) 2151 Sub = Builder.CreateSub(StartValue, MulV); 2152 } 2153 2154 Value *EndCompareLT = nullptr; 2155 Value *EndCompareGT = nullptr; 2156 Value *EndCheck = nullptr; 2157 if (NeedPosCheck) 2158 EndCheck = EndCompareLT = Builder.CreateICmp( 2159 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2160 if (NeedNegCheck) 2161 EndCheck = EndCompareGT = Builder.CreateICmp( 2162 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2163 if (NeedPosCheck && NeedNegCheck) { 2164 // Select the answer based on the sign of Step. 2165 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2166 } 2167 return Builder.CreateOr(EndCheck, OfMul); 2168 }; 2169 Value *EndCheck = ComputeEndCheck(); 2170 2171 // If the backedge taken count type is larger than the AR type, 2172 // check that we don't drop any bits by truncating it. If we are 2173 // dropping bits, then we have overflow (unless the step is zero). 2174 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2175 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2176 auto *BackedgeCheck = 2177 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2178 ConstantInt::get(Loc->getContext(), MaxVal)); 2179 BackedgeCheck = Builder.CreateAnd( 2180 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2181 2182 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2183 } 2184 2185 return EndCheck; 2186 } 2187 2188 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2189 Instruction *IP) { 2190 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2191 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2192 2193 // Add a check for NUSW 2194 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2195 NUSWCheck = generateOverflowCheck(A, IP, false); 2196 2197 // Add a check for NSSW 2198 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2199 NSSWCheck = generateOverflowCheck(A, IP, true); 2200 2201 if (NUSWCheck && NSSWCheck) 2202 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2203 2204 if (NUSWCheck) 2205 return NUSWCheck; 2206 2207 if (NSSWCheck) 2208 return NSSWCheck; 2209 2210 return ConstantInt::getFalse(IP->getContext()); 2211 } 2212 2213 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2214 Instruction *IP) { 2215 // Loop over all checks in this set. 2216 SmallVector<Value *> Checks; 2217 for (const auto *Pred : Union->getPredicates()) { 2218 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2219 Builder.SetInsertPoint(IP); 2220 } 2221 2222 if (Checks.empty()) 2223 return ConstantInt::getFalse(IP->getContext()); 2224 return Builder.CreateOr(Checks); 2225 } 2226 2227 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2228 auto *DefI = dyn_cast<Instruction>(V); 2229 if (!PreserveLCSSA || !DefI) 2230 return V; 2231 2232 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2233 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2234 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2235 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2236 return V; 2237 2238 // Create a temporary instruction to at the current insertion point, so we 2239 // can hand it off to the helper to create LCSSA PHIs if required for the 2240 // new use. 2241 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2242 // would accept a insertion point and return an LCSSA phi for that 2243 // insertion point, so there is no need to insert & remove the temporary 2244 // instruction. 2245 Type *ToTy; 2246 if (DefI->getType()->isIntegerTy()) 2247 ToTy = DefI->getType()->getPointerTo(); 2248 else 2249 ToTy = Type::getInt32Ty(DefI->getContext()); 2250 Instruction *User = 2251 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2252 auto RemoveUserOnExit = 2253 make_scope_exit([User]() { User->eraseFromParent(); }); 2254 2255 SmallVector<Instruction *, 1> ToUpdate; 2256 ToUpdate.push_back(DefI); 2257 SmallVector<PHINode *, 16> PHIsToRemove; 2258 SmallVector<PHINode *, 16> InsertedPHIs; 2259 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2260 &InsertedPHIs); 2261 for (PHINode *PN : InsertedPHIs) 2262 rememberInstruction(PN); 2263 for (PHINode *PN : PHIsToRemove) { 2264 if (!PN->use_empty()) 2265 continue; 2266 InsertedValues.erase(PN); 2267 InsertedPostIncValues.erase(PN); 2268 PN->eraseFromParent(); 2269 } 2270 2271 return User->getOperand(0); 2272 } 2273 2274 namespace { 2275 // Search for a SCEV subexpression that is not safe to expand. Any expression 2276 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2277 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2278 // instruction, but the important thing is that we prove the denominator is 2279 // nonzero before expansion. 2280 // 2281 // IVUsers already checks that IV-derived expressions are safe. So this check is 2282 // only needed when the expression includes some subexpression that is not IV 2283 // derived. 2284 // 2285 // Currently, we only allow division by a value provably non-zero here. 2286 // 2287 // We cannot generally expand recurrences unless the step dominates the loop 2288 // header. The expander handles the special case of affine recurrences by 2289 // scaling the recurrence outside the loop, but this technique isn't generally 2290 // applicable. Expanding a nested recurrence outside a loop requires computing 2291 // binomial coefficients. This could be done, but the recurrence has to be in a 2292 // perfectly reduced form, which can't be guaranteed. 2293 struct SCEVFindUnsafe { 2294 ScalarEvolution &SE; 2295 bool CanonicalMode; 2296 bool IsUnsafe = false; 2297 2298 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2299 : SE(SE), CanonicalMode(CanonicalMode) {} 2300 2301 bool follow(const SCEV *S) { 2302 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2303 if (!SE.isKnownNonZero(D->getRHS())) { 2304 IsUnsafe = true; 2305 return false; 2306 } 2307 } 2308 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2309 const SCEV *Step = AR->getStepRecurrence(SE); 2310 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2311 IsUnsafe = true; 2312 return false; 2313 } 2314 2315 // For non-affine addrecs or in non-canonical mode we need a preheader 2316 // to insert into. 2317 if (!AR->getLoop()->getLoopPreheader() && 2318 (!CanonicalMode || !AR->isAffine())) { 2319 IsUnsafe = true; 2320 return false; 2321 } 2322 } 2323 return true; 2324 } 2325 bool isDone() const { return IsUnsafe; } 2326 }; 2327 } // namespace 2328 2329 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2330 SCEVFindUnsafe Search(SE, CanonicalMode); 2331 visitAll(S, Search); 2332 return !Search.IsUnsafe; 2333 } 2334 2335 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2336 const Instruction *InsertionPoint) const { 2337 if (!isSafeToExpand(S)) 2338 return false; 2339 // We have to prove that the expanded site of S dominates InsertionPoint. 2340 // This is easy when not in the same block, but hard when S is an instruction 2341 // to be expanded somewhere inside the same block as our insertion point. 2342 // What we really need here is something analogous to an OrderedBasicBlock, 2343 // but for the moment, we paper over the problem by handling two common and 2344 // cheap to check cases. 2345 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2346 return true; 2347 if (SE.dominates(S, InsertionPoint->getParent())) { 2348 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2349 return true; 2350 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2351 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2352 return true; 2353 } 2354 return false; 2355 } 2356 2357 void SCEVExpanderCleaner::cleanup() { 2358 // Result is used, nothing to remove. 2359 if (ResultUsed) 2360 return; 2361 2362 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2363 #ifndef NDEBUG 2364 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2365 InsertedInstructions.end()); 2366 (void)InsertedSet; 2367 #endif 2368 // Remove sets with value handles. 2369 Expander.clear(); 2370 2371 // Remove all inserted instructions. 2372 for (Instruction *I : reverse(InsertedInstructions)) { 2373 #ifndef NDEBUG 2374 assert(all_of(I->users(), 2375 [&InsertedSet](Value *U) { 2376 return InsertedSet.contains(cast<Instruction>(U)); 2377 }) && 2378 "removed instruction should only be used by instructions inserted " 2379 "during expansion"); 2380 #endif 2381 assert(!I->getType()->isVoidTy() && 2382 "inserted instruction should have non-void types"); 2383 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2384 I->eraseFromParent(); 2385 } 2386 } 2387