1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 STATISTIC(NumNotRotatedDueToHeaderSize, 48 "Number of loops not rotated due to the header size"); 49 STATISTIC(NumRotated, "Number of loops rotated"); 50 51 static cl::opt<bool> 52 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 53 cl::desc("Allow loop rotation multiple times in order to reach " 54 "a better latch exit")); 55 56 namespace { 57 /// A simple loop rotation transformation. 58 class LoopRotate { 59 const unsigned MaxHeaderSize; 60 LoopInfo *LI; 61 const TargetTransformInfo *TTI; 62 AssumptionCache *AC; 63 DominatorTree *DT; 64 ScalarEvolution *SE; 65 MemorySSAUpdater *MSSAU; 66 const SimplifyQuery &SQ; 67 bool RotationOnly; 68 bool IsUtilMode; 69 bool PrepareForLTO; 70 71 public: 72 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 73 const TargetTransformInfo *TTI, AssumptionCache *AC, 74 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 75 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, 76 bool PrepareForLTO) 77 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 78 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 79 IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} 80 bool processLoop(Loop *L); 81 82 private: 83 bool rotateLoop(Loop *L, bool SimplifiedLatch); 84 bool simplifyLoopLatch(Loop *L); 85 }; 86 } // end anonymous namespace 87 88 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 89 /// previously exist in the map, and the value was inserted. 90 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 91 bool Inserted = VM.insert({K, V}).second; 92 assert(Inserted); 93 (void)Inserted; 94 } 95 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 96 /// old header into the preheader. If there were uses of the values produced by 97 /// these instruction that were outside of the loop, we have to insert PHI nodes 98 /// to merge the two values. Do this now. 99 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 100 BasicBlock *OrigPreheader, 101 ValueToValueMapTy &ValueMap, 102 SmallVectorImpl<PHINode*> *InsertedPHIs) { 103 // Remove PHI node entries that are no longer live. 104 BasicBlock::iterator I, E = OrigHeader->end(); 105 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 106 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 107 108 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 109 // as necessary. 110 SSAUpdater SSA(InsertedPHIs); 111 for (I = OrigHeader->begin(); I != E; ++I) { 112 Value *OrigHeaderVal = &*I; 113 114 // If there are no uses of the value (e.g. because it returns void), there 115 // is nothing to rewrite. 116 if (OrigHeaderVal->use_empty()) 117 continue; 118 119 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 120 121 // The value now exits in two versions: the initial value in the preheader 122 // and the loop "next" value in the original header. 123 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 124 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 125 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 126 127 // Visit each use of the OrigHeader instruction. 128 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 129 UE = OrigHeaderVal->use_end(); 130 UI != UE;) { 131 // Grab the use before incrementing the iterator. 132 Use &U = *UI; 133 134 // Increment the iterator before removing the use from the list. 135 ++UI; 136 137 // SSAUpdater can't handle a non-PHI use in the same block as an 138 // earlier def. We can easily handle those cases manually. 139 Instruction *UserInst = cast<Instruction>(U.getUser()); 140 if (!isa<PHINode>(UserInst)) { 141 BasicBlock *UserBB = UserInst->getParent(); 142 143 // The original users in the OrigHeader are already using the 144 // original definitions. 145 if (UserBB == OrigHeader) 146 continue; 147 148 // Users in the OrigPreHeader need to use the value to which the 149 // original definitions are mapped. 150 if (UserBB == OrigPreheader) { 151 U = OrigPreHeaderVal; 152 continue; 153 } 154 } 155 156 // Anything else can be handled by SSAUpdater. 157 SSA.RewriteUse(U); 158 } 159 160 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 161 // intrinsics. 162 SmallVector<DbgValueInst *, 1> DbgValues; 163 llvm::findDbgValues(DbgValues, OrigHeaderVal); 164 for (auto &DbgValue : DbgValues) { 165 // The original users in the OrigHeader are already using the original 166 // definitions. 167 BasicBlock *UserBB = DbgValue->getParent(); 168 if (UserBB == OrigHeader) 169 continue; 170 171 // Users in the OrigPreHeader need to use the value to which the 172 // original definitions are mapped and anything else can be handled by 173 // the SSAUpdater. To avoid adding PHINodes, check if the value is 174 // available in UserBB, if not substitute undef. 175 Value *NewVal; 176 if (UserBB == OrigPreheader) 177 NewVal = OrigPreHeaderVal; 178 else if (SSA.HasValueForBlock(UserBB)) 179 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 180 else 181 NewVal = UndefValue::get(OrigHeaderVal->getType()); 182 DbgValue->setOperand(0, 183 MetadataAsValue::get(OrigHeaderVal->getContext(), 184 ValueAsMetadata::get(NewVal))); 185 } 186 } 187 } 188 189 // Assuming both header and latch are exiting, look for a phi which is only 190 // used outside the loop (via a LCSSA phi) in the exit from the header. 191 // This means that rotating the loop can remove the phi. 192 static bool profitableToRotateLoopExitingLatch(Loop *L) { 193 BasicBlock *Header = L->getHeader(); 194 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 195 assert(BI && BI->isConditional() && "need header with conditional exit"); 196 BasicBlock *HeaderExit = BI->getSuccessor(0); 197 if (L->contains(HeaderExit)) 198 HeaderExit = BI->getSuccessor(1); 199 200 for (auto &Phi : Header->phis()) { 201 // Look for uses of this phi in the loop/via exits other than the header. 202 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 203 return cast<Instruction>(U)->getParent() != HeaderExit; 204 })) 205 continue; 206 return true; 207 } 208 return false; 209 } 210 211 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 212 // and there is another exit from the loop which is non-deoptimizing. 213 // If we rotate latch to that exit our loop has a better chance of being fully 214 // canonical. 215 // 216 // It can give false positives in some rare cases. 217 static bool canRotateDeoptimizingLatchExit(Loop *L) { 218 BasicBlock *Latch = L->getLoopLatch(); 219 assert(Latch && "need latch"); 220 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 221 // Need normal exiting latch. 222 if (!BI || !BI->isConditional()) 223 return false; 224 225 BasicBlock *Exit = BI->getSuccessor(1); 226 if (L->contains(Exit)) 227 Exit = BI->getSuccessor(0); 228 229 // Latch exit is non-deoptimizing, no need to rotate. 230 if (!Exit->getPostdominatingDeoptimizeCall()) 231 return false; 232 233 SmallVector<BasicBlock *, 4> Exits; 234 L->getUniqueExitBlocks(Exits); 235 if (!Exits.empty()) { 236 // There is at least one non-deoptimizing exit. 237 // 238 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 239 // as it can conservatively return false for deoptimizing exits with 240 // complex enough control flow down to deoptimize call. 241 // 242 // That means here we can report success for a case where 243 // all exits are deoptimizing but one of them has complex enough 244 // control flow (e.g. with loops). 245 // 246 // That should be a very rare case and false positives for this function 247 // have compile-time effect only. 248 return any_of(Exits, [](const BasicBlock *BB) { 249 return !BB->getPostdominatingDeoptimizeCall(); 250 }); 251 } 252 return false; 253 } 254 255 /// Rotate loop LP. Return true if the loop is rotated. 256 /// 257 /// \param SimplifiedLatch is true if the latch was just folded into the final 258 /// loop exit. In this case we may want to rotate even though the new latch is 259 /// now an exiting branch. This rotation would have happened had the latch not 260 /// been simplified. However, if SimplifiedLatch is false, then we avoid 261 /// rotating loops in which the latch exits to avoid excessive or endless 262 /// rotation. LoopRotate should be repeatable and converge to a canonical 263 /// form. This property is satisfied because simplifying the loop latch can only 264 /// happen once across multiple invocations of the LoopRotate pass. 265 /// 266 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 267 /// so to reach a suitable (non-deoptimizing) exit. 268 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 269 // If the loop has only one block then there is not much to rotate. 270 if (L->getBlocks().size() == 1) 271 return false; 272 273 bool Rotated = false; 274 do { 275 BasicBlock *OrigHeader = L->getHeader(); 276 BasicBlock *OrigLatch = L->getLoopLatch(); 277 278 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 279 if (!BI || BI->isUnconditional()) 280 return Rotated; 281 282 // If the loop header is not one of the loop exiting blocks then 283 // either this loop is already rotated or it is not 284 // suitable for loop rotation transformations. 285 if (!L->isLoopExiting(OrigHeader)) 286 return Rotated; 287 288 // If the loop latch already contains a branch that leaves the loop then the 289 // loop is already rotated. 290 if (!OrigLatch) 291 return Rotated; 292 293 // Rotate if either the loop latch does *not* exit the loop, or if the loop 294 // latch was just simplified. Or if we think it will be profitable. 295 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 296 !profitableToRotateLoopExitingLatch(L) && 297 !canRotateDeoptimizingLatchExit(L)) 298 return Rotated; 299 300 // Check size of original header and reject loop if it is very big or we can't 301 // duplicate blocks inside it. 302 { 303 SmallPtrSet<const Value *, 32> EphValues; 304 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 305 306 CodeMetrics Metrics; 307 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); 308 if (Metrics.notDuplicatable) { 309 LLVM_DEBUG( 310 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 311 << " instructions: "; 312 L->dump()); 313 return Rotated; 314 } 315 if (Metrics.convergent) { 316 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 317 "instructions: "; 318 L->dump()); 319 return Rotated; 320 } 321 if (Metrics.NumInsts > MaxHeaderSize) { 322 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 323 << Metrics.NumInsts 324 << " instructions, which is more than the threshold (" 325 << MaxHeaderSize << " instructions): "; 326 L->dump()); 327 ++NumNotRotatedDueToHeaderSize; 328 return Rotated; 329 } 330 331 // When preparing for LTO, avoid rotating loops with calls that could be 332 // inlined during the LTO stage. 333 if (PrepareForLTO && Metrics.NumInlineCandidates > 0) 334 return Rotated; 335 } 336 337 // Now, this loop is suitable for rotation. 338 BasicBlock *OrigPreheader = L->getLoopPreheader(); 339 340 // If the loop could not be converted to canonical form, it must have an 341 // indirectbr in it, just give up. 342 if (!OrigPreheader || !L->hasDedicatedExits()) 343 return Rotated; 344 345 // Anything ScalarEvolution may know about this loop or the PHI nodes 346 // in its header will soon be invalidated. We should also invalidate 347 // all outer loops because insertion and deletion of blocks that happens 348 // during the rotation may violate invariants related to backedge taken 349 // infos in them. 350 if (SE) 351 SE->forgetTopmostLoop(L); 352 353 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 354 if (MSSAU && VerifyMemorySSA) 355 MSSAU->getMemorySSA()->verifyMemorySSA(); 356 357 // Find new Loop header. NewHeader is a Header's one and only successor 358 // that is inside loop. Header's other successor is outside the 359 // loop. Otherwise loop is not suitable for rotation. 360 BasicBlock *Exit = BI->getSuccessor(0); 361 BasicBlock *NewHeader = BI->getSuccessor(1); 362 if (L->contains(Exit)) 363 std::swap(Exit, NewHeader); 364 assert(NewHeader && "Unable to determine new loop header"); 365 assert(L->contains(NewHeader) && !L->contains(Exit) && 366 "Unable to determine loop header and exit blocks"); 367 368 // This code assumes that the new header has exactly one predecessor. 369 // Remove any single-entry PHI nodes in it. 370 assert(NewHeader->getSinglePredecessor() && 371 "New header doesn't have one pred!"); 372 FoldSingleEntryPHINodes(NewHeader); 373 374 // Begin by walking OrigHeader and populating ValueMap with an entry for 375 // each Instruction. 376 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 377 ValueToValueMapTy ValueMap, ValueMapMSSA; 378 379 // For PHI nodes, the value available in OldPreHeader is just the 380 // incoming value from OldPreHeader. 381 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 382 InsertNewValueIntoMap(ValueMap, PN, 383 PN->getIncomingValueForBlock(OrigPreheader)); 384 385 // For the rest of the instructions, either hoist to the OrigPreheader if 386 // possible or create a clone in the OldPreHeader if not. 387 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 388 389 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication. 390 using DbgIntrinsicHash = 391 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>; 392 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 393 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()}; 394 }; 395 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 396 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 397 I != E; ++I) { 398 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 399 DbgIntrinsics.insert(makeHash(DII)); 400 else 401 break; 402 } 403 404 // Remember the local noalias scope declarations in the header. After the 405 // rotation, they must be duplicated and the scope must be cloned. This 406 // avoids unwanted interaction across iterations. 407 SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; 408 for (Instruction &I : *OrigHeader) 409 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 410 NoAliasDeclInstructions.push_back(Decl); 411 412 while (I != E) { 413 Instruction *Inst = &*I++; 414 415 // If the instruction's operands are invariant and it doesn't read or write 416 // memory, then it is safe to hoist. Doing this doesn't change the order of 417 // execution in the preheader, but does prevent the instruction from 418 // executing in each iteration of the loop. This means it is safe to hoist 419 // something that might trap, but isn't safe to hoist something that reads 420 // memory (without proving that the loop doesn't write). 421 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 422 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 423 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 424 Inst->moveBefore(LoopEntryBranch); 425 continue; 426 } 427 428 // Otherwise, create a duplicate of the instruction. 429 Instruction *C = Inst->clone(); 430 431 // Eagerly remap the operands of the instruction. 432 RemapInstruction(C, ValueMap, 433 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 434 435 // Avoid inserting the same intrinsic twice. 436 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 437 if (DbgIntrinsics.count(makeHash(DII))) { 438 C->deleteValue(); 439 continue; 440 } 441 442 // With the operands remapped, see if the instruction constant folds or is 443 // otherwise simplifyable. This commonly occurs because the entry from PHI 444 // nodes allows icmps and other instructions to fold. 445 Value *V = SimplifyInstruction(C, SQ); 446 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 447 // If so, then delete the temporary instruction and stick the folded value 448 // in the map. 449 InsertNewValueIntoMap(ValueMap, Inst, V); 450 if (!C->mayHaveSideEffects()) { 451 C->deleteValue(); 452 C = nullptr; 453 } 454 } else { 455 InsertNewValueIntoMap(ValueMap, Inst, C); 456 } 457 if (C) { 458 // Otherwise, stick the new instruction into the new block! 459 C->setName(Inst->getName()); 460 C->insertBefore(LoopEntryBranch); 461 462 if (auto *II = dyn_cast<IntrinsicInst>(C)) 463 if (II->getIntrinsicID() == Intrinsic::assume) 464 AC->registerAssumption(II); 465 // MemorySSA cares whether the cloned instruction was inserted or not, and 466 // not whether it can be remapped to a simplified value. 467 if (MSSAU) 468 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 469 } 470 } 471 472 if (!NoAliasDeclInstructions.empty()) { 473 // There are noalias scope declarations: 474 // (general): 475 // Original: OrigPre { OrigHeader NewHeader ... Latch } 476 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } 477 // 478 // with D: llvm.experimental.noalias.scope.decl, 479 // U: !noalias or !alias.scope depending on D 480 // ... { D U1 U2 } can transform into: 481 // (0) : ... { D U1 U2 } // no relevant rotation for this part 482 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader 483 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader 484 // 485 // We now want to transform: 486 // (1) -> : ... D' { D U1 U2 D'' } 487 // (2) -> : ... D' U1' { D U2 D'' U1'' } 488 // D: original llvm.experimental.noalias.scope.decl 489 // D', U1': duplicate with replaced scopes 490 // D'', U1'': different duplicate with replaced scopes 491 // This ensures a safe fallback to 'may_alias' introduced by the rotate, 492 // as U1'' and U1' scopes will not be compatible wrt to the local restrict 493 494 // Clone the llvm.experimental.noalias.decl again for the NewHeader. 495 Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); 496 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { 497 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" 498 << *NAD << "\n"); 499 Instruction *NewNAD = NAD->clone(); 500 NewNAD->insertBefore(NewHeaderInsertionPoint); 501 } 502 503 // Scopes must now be duplicated, once for OrigHeader and once for 504 // OrigPreHeader'. 505 { 506 auto &Context = NewHeader->getContext(); 507 508 SmallVector<MDNode *, 8> NoAliasDeclScopes; 509 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) 510 NoAliasDeclScopes.push_back(NAD->getScopeList()); 511 512 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n"); 513 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, 514 "h.rot"); 515 LLVM_DEBUG(OrigHeader->dump()); 516 517 // Keep the compile time impact low by only adapting the inserted block 518 // of instructions in the OrigPreHeader. This might result in slightly 519 // more aliasing between these instructions and those that were already 520 // present, but it will be much faster when the original PreHeader is 521 // large. 522 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n"); 523 auto *FirstDecl = 524 cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); 525 auto *LastInst = &OrigPreheader->back(); 526 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, 527 Context, "pre.rot"); 528 LLVM_DEBUG(OrigPreheader->dump()); 529 530 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n"); 531 LLVM_DEBUG(NewHeader->dump()); 532 } 533 } 534 535 // Along with all the other instructions, we just cloned OrigHeader's 536 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 537 // successors by duplicating their incoming values for OrigHeader. 538 for (BasicBlock *SuccBB : successors(OrigHeader)) 539 for (BasicBlock::iterator BI = SuccBB->begin(); 540 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 541 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 542 543 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 544 // OrigPreHeader's old terminator (the original branch into the loop), and 545 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 546 LoopEntryBranch->eraseFromParent(); 547 548 // Update MemorySSA before the rewrite call below changes the 1:1 549 // instruction:cloned_instruction_or_value mapping. 550 if (MSSAU) { 551 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 552 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 553 ValueMapMSSA); 554 } 555 556 SmallVector<PHINode*, 2> InsertedPHIs; 557 // If there were any uses of instructions in the duplicated block outside the 558 // loop, update them, inserting PHI nodes as required 559 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 560 &InsertedPHIs); 561 562 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 563 // previously had debug metadata attached. This keeps the debug info 564 // up-to-date in the loop body. 565 if (!InsertedPHIs.empty()) 566 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 567 568 // NewHeader is now the header of the loop. 569 L->moveToHeader(NewHeader); 570 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 571 572 // Inform DT about changes to the CFG. 573 if (DT) { 574 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 575 // the DT about the removed edge to the OrigHeader (that got removed). 576 SmallVector<DominatorTree::UpdateType, 3> Updates; 577 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 578 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 579 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 580 581 if (MSSAU) { 582 MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); 583 if (VerifyMemorySSA) 584 MSSAU->getMemorySSA()->verifyMemorySSA(); 585 } else { 586 DT->applyUpdates(Updates); 587 } 588 } 589 590 // At this point, we've finished our major CFG changes. As part of cloning 591 // the loop into the preheader we've simplified instructions and the 592 // duplicated conditional branch may now be branching on a constant. If it is 593 // branching on a constant and if that constant means that we enter the loop, 594 // then we fold away the cond branch to an uncond branch. This simplifies the 595 // loop in cases important for nested loops, and it also means we don't have 596 // to split as many edges. 597 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 598 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 599 if (!isa<ConstantInt>(PHBI->getCondition()) || 600 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 601 NewHeader) { 602 // The conditional branch can't be folded, handle the general case. 603 // Split edges as necessary to preserve LoopSimplify form. 604 605 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 606 // thus is not a preheader anymore. 607 // Split the edge to form a real preheader. 608 BasicBlock *NewPH = SplitCriticalEdge( 609 OrigPreheader, NewHeader, 610 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 611 NewPH->setName(NewHeader->getName() + ".lr.ph"); 612 613 // Preserve canonical loop form, which means that 'Exit' should have only 614 // one predecessor. Note that Exit could be an exit block for multiple 615 // nested loops, causing both of the edges to now be critical and need to 616 // be split. 617 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 618 bool SplitLatchEdge = false; 619 for (BasicBlock *ExitPred : ExitPreds) { 620 // We only need to split loop exit edges. 621 Loop *PredLoop = LI->getLoopFor(ExitPred); 622 if (!PredLoop || PredLoop->contains(Exit) || 623 ExitPred->getTerminator()->isIndirectTerminator()) 624 continue; 625 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 626 BasicBlock *ExitSplit = SplitCriticalEdge( 627 ExitPred, Exit, 628 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 629 ExitSplit->moveBefore(Exit); 630 } 631 assert(SplitLatchEdge && 632 "Despite splitting all preds, failed to split latch exit?"); 633 } else { 634 // We can fold the conditional branch in the preheader, this makes things 635 // simpler. The first step is to remove the extra edge to the Exit block. 636 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 637 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 638 NewBI->setDebugLoc(PHBI->getDebugLoc()); 639 PHBI->eraseFromParent(); 640 641 // With our CFG finalized, update DomTree if it is available. 642 if (DT) DT->deleteEdge(OrigPreheader, Exit); 643 644 // Update MSSA too, if available. 645 if (MSSAU) 646 MSSAU->removeEdge(OrigPreheader, Exit); 647 } 648 649 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 650 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 651 652 if (MSSAU && VerifyMemorySSA) 653 MSSAU->getMemorySSA()->verifyMemorySSA(); 654 655 // Now that the CFG and DomTree are in a consistent state again, try to merge 656 // the OrigHeader block into OrigLatch. This will succeed if they are 657 // connected by an unconditional branch. This is just a cleanup so the 658 // emitted code isn't too gross in this common case. 659 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 660 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 661 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 662 if (DidMerge) 663 RemoveRedundantDbgInstrs(PredBB); 664 665 if (MSSAU && VerifyMemorySSA) 666 MSSAU->getMemorySSA()->verifyMemorySSA(); 667 668 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 669 670 ++NumRotated; 671 672 Rotated = true; 673 SimplifiedLatch = false; 674 675 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 676 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 677 // TODO: if it becomes a performance bottleneck extend rotation algorithm 678 // to handle multiple rotations in one go. 679 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 680 681 682 return true; 683 } 684 685 /// Determine whether the instructions in this range may be safely and cheaply 686 /// speculated. This is not an important enough situation to develop complex 687 /// heuristics. We handle a single arithmetic instruction along with any type 688 /// conversions. 689 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 690 BasicBlock::iterator End, Loop *L) { 691 bool seenIncrement = false; 692 bool MultiExitLoop = false; 693 694 if (!L->getExitingBlock()) 695 MultiExitLoop = true; 696 697 for (BasicBlock::iterator I = Begin; I != End; ++I) { 698 699 if (!isSafeToSpeculativelyExecute(&*I)) 700 return false; 701 702 if (isa<DbgInfoIntrinsic>(I)) 703 continue; 704 705 switch (I->getOpcode()) { 706 default: 707 return false; 708 case Instruction::GetElementPtr: 709 // GEPs are cheap if all indices are constant. 710 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 711 return false; 712 // fall-thru to increment case 713 LLVM_FALLTHROUGH; 714 case Instruction::Add: 715 case Instruction::Sub: 716 case Instruction::And: 717 case Instruction::Or: 718 case Instruction::Xor: 719 case Instruction::Shl: 720 case Instruction::LShr: 721 case Instruction::AShr: { 722 Value *IVOpnd = 723 !isa<Constant>(I->getOperand(0)) 724 ? I->getOperand(0) 725 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 726 if (!IVOpnd) 727 return false; 728 729 // If increment operand is used outside of the loop, this speculation 730 // could cause extra live range interference. 731 if (MultiExitLoop) { 732 for (User *UseI : IVOpnd->users()) { 733 auto *UserInst = cast<Instruction>(UseI); 734 if (!L->contains(UserInst)) 735 return false; 736 } 737 } 738 739 if (seenIncrement) 740 return false; 741 seenIncrement = true; 742 break; 743 } 744 case Instruction::Trunc: 745 case Instruction::ZExt: 746 case Instruction::SExt: 747 // ignore type conversions 748 break; 749 } 750 } 751 return true; 752 } 753 754 /// Fold the loop tail into the loop exit by speculating the loop tail 755 /// instructions. Typically, this is a single post-increment. In the case of a 756 /// simple 2-block loop, hoisting the increment can be much better than 757 /// duplicating the entire loop header. In the case of loops with early exits, 758 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 759 /// canonical form so downstream passes can handle it. 760 /// 761 /// I don't believe this invalidates SCEV. 762 bool LoopRotate::simplifyLoopLatch(Loop *L) { 763 BasicBlock *Latch = L->getLoopLatch(); 764 if (!Latch || Latch->hasAddressTaken()) 765 return false; 766 767 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 768 if (!Jmp || !Jmp->isUnconditional()) 769 return false; 770 771 BasicBlock *LastExit = Latch->getSinglePredecessor(); 772 if (!LastExit || !L->isLoopExiting(LastExit)) 773 return false; 774 775 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 776 if (!BI) 777 return false; 778 779 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 780 return false; 781 782 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 783 << LastExit->getName() << "\n"); 784 785 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 786 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 787 /*PredecessorWithTwoSuccessors=*/true); 788 789 if (MSSAU && VerifyMemorySSA) 790 MSSAU->getMemorySSA()->verifyMemorySSA(); 791 792 return true; 793 } 794 795 /// Rotate \c L, and return true if any modification was made. 796 bool LoopRotate::processLoop(Loop *L) { 797 // Save the loop metadata. 798 MDNode *LoopMD = L->getLoopID(); 799 800 bool SimplifiedLatch = false; 801 802 // Simplify the loop latch before attempting to rotate the header 803 // upward. Rotation may not be needed if the loop tail can be folded into the 804 // loop exit. 805 if (!RotationOnly) 806 SimplifiedLatch = simplifyLoopLatch(L); 807 808 bool MadeChange = rotateLoop(L, SimplifiedLatch); 809 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 810 "Loop latch should be exiting after loop-rotate."); 811 812 // Restore the loop metadata. 813 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 814 if ((MadeChange || SimplifiedLatch) && LoopMD) 815 L->setLoopID(LoopMD); 816 817 return MadeChange || SimplifiedLatch; 818 } 819 820 821 /// The utility to convert a loop into a loop with bottom test. 822 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 823 AssumptionCache *AC, DominatorTree *DT, 824 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 825 const SimplifyQuery &SQ, bool RotationOnly = true, 826 unsigned Threshold = unsigned(-1), 827 bool IsUtilMode = true, bool PrepareForLTO) { 828 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 829 IsUtilMode, PrepareForLTO); 830 return LR.processLoop(L); 831 } 832