1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 92 93 static cl::opt<bool> PHICSEDebugHash( 94 "phicse-debug-hash", 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true), 97 #else 98 cl::init(false), 99 #endif 100 cl::Hidden, 101 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 102 "function is well-behaved w.r.t. its isEqual predicate")); 103 104 static cl::opt<unsigned> PHICSENumPHISmallSize( 105 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 106 cl::desc( 107 "When the basic block contains not more than this number of PHI nodes, " 108 "perform a (faster!) exhaustive search instead of set-driven one.")); 109 110 // Max recursion depth for collectBitParts used when detecting bswap and 111 // bitreverse idioms. 112 static const unsigned BitPartRecursionMaxDepth = 48; 113 114 //===----------------------------------------------------------------------===// 115 // Local constant propagation. 116 // 117 118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 119 /// constant value, convert it into an unconditional branch to the constant 120 /// destination. This is a nontrivial operation because the successors of this 121 /// basic block must have their PHI nodes updated. 122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 123 /// conditions and indirectbr addresses this might make dead if 124 /// DeleteDeadConditions is true. 125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 126 const TargetLibraryInfo *TLI, 127 DomTreeUpdater *DTU) { 128 Instruction *T = BB->getTerminator(); 129 IRBuilder<> Builder(T); 130 131 // Branch - See if we are conditional jumping on constant 132 if (auto *BI = dyn_cast<BranchInst>(T)) { 133 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 134 135 BasicBlock *Dest1 = BI->getSuccessor(0); 136 BasicBlock *Dest2 = BI->getSuccessor(1); 137 138 if (Dest2 == Dest1) { // Conditional branch to same location? 139 // This branch matches something like this: 140 // br bool %cond, label %Dest, label %Dest 141 // and changes it into: br label %Dest 142 143 // Let the basic block know that we are letting go of one copy of it. 144 assert(BI->getParent() && "Terminator not inserted in block!"); 145 Dest1->removePredecessor(BI->getParent()); 146 147 // Replace the conditional branch with an unconditional one. 148 BranchInst *NewBI = Builder.CreateBr(Dest1); 149 150 // Transfer the metadata to the new branch instruction. 151 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 152 LLVMContext::MD_annotation}); 153 154 Value *Cond = BI->getCondition(); 155 BI->eraseFromParent(); 156 if (DeleteDeadConditions) 157 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 158 return true; 159 } 160 161 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 162 // Are we branching on constant? 163 // YES. Change to unconditional branch... 164 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 165 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 166 167 // Let the basic block know that we are letting go of it. Based on this, 168 // it will adjust it's PHI nodes. 169 OldDest->removePredecessor(BB); 170 171 // Replace the conditional branch with an unconditional one. 172 BranchInst *NewBI = Builder.CreateBr(Destination); 173 174 // Transfer the metadata to the new branch instruction. 175 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 176 LLVMContext::MD_annotation}); 177 178 BI->eraseFromParent(); 179 if (DTU) 180 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 181 return true; 182 } 183 184 return false; 185 } 186 187 if (auto *SI = dyn_cast<SwitchInst>(T)) { 188 // If we are switching on a constant, we can convert the switch to an 189 // unconditional branch. 190 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 191 BasicBlock *DefaultDest = SI->getDefaultDest(); 192 BasicBlock *TheOnlyDest = DefaultDest; 193 194 // If the default is unreachable, ignore it when searching for TheOnlyDest. 195 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 196 SI->getNumCases() > 0) { 197 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 198 } 199 200 bool Changed = false; 201 202 // Figure out which case it goes to. 203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 204 // Found case matching a constant operand? 205 if (i->getCaseValue() == CI) { 206 TheOnlyDest = i->getCaseSuccessor(); 207 break; 208 } 209 210 // Check to see if this branch is going to the same place as the default 211 // dest. If so, eliminate it as an explicit compare. 212 if (i->getCaseSuccessor() == DefaultDest) { 213 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 214 unsigned NCases = SI->getNumCases(); 215 // Fold the case metadata into the default if there will be any branches 216 // left, unless the metadata doesn't match the switch. 217 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 218 // Collect branch weights into a vector. 219 SmallVector<uint32_t, 8> Weights; 220 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 221 ++MD_i) { 222 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 223 Weights.push_back(CI->getValue().getZExtValue()); 224 } 225 // Merge weight of this case to the default weight. 226 unsigned idx = i->getCaseIndex(); 227 Weights[0] += Weights[idx+1]; 228 // Remove weight for this case. 229 std::swap(Weights[idx+1], Weights.back()); 230 Weights.pop_back(); 231 SI->setMetadata(LLVMContext::MD_prof, 232 MDBuilder(BB->getContext()). 233 createBranchWeights(Weights)); 234 } 235 // Remove this entry. 236 BasicBlock *ParentBB = SI->getParent(); 237 DefaultDest->removePredecessor(ParentBB); 238 i = SI->removeCase(i); 239 e = SI->case_end(); 240 Changed = true; 241 continue; 242 } 243 244 // Otherwise, check to see if the switch only branches to one destination. 245 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 246 // destinations. 247 if (i->getCaseSuccessor() != TheOnlyDest) 248 TheOnlyDest = nullptr; 249 250 // Increment this iterator as we haven't removed the case. 251 ++i; 252 } 253 254 if (CI && !TheOnlyDest) { 255 // Branching on a constant, but not any of the cases, go to the default 256 // successor. 257 TheOnlyDest = SI->getDefaultDest(); 258 } 259 260 // If we found a single destination that we can fold the switch into, do so 261 // now. 262 if (TheOnlyDest) { 263 // Insert the new branch. 264 Builder.CreateBr(TheOnlyDest); 265 BasicBlock *BB = SI->getParent(); 266 267 SmallSet<BasicBlock *, 8> RemovedSuccessors; 268 269 // Remove entries from PHI nodes which we no longer branch to... 270 BasicBlock *SuccToKeep = TheOnlyDest; 271 for (BasicBlock *Succ : successors(SI)) { 272 if (DTU && Succ != TheOnlyDest) 273 RemovedSuccessors.insert(Succ); 274 // Found case matching a constant operand? 275 if (Succ == SuccToKeep) { 276 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 277 } else { 278 Succ->removePredecessor(BB); 279 } 280 } 281 282 // Delete the old switch. 283 Value *Cond = SI->getCondition(); 284 SI->eraseFromParent(); 285 if (DeleteDeadConditions) 286 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 287 if (DTU) { 288 std::vector<DominatorTree::UpdateType> Updates; 289 Updates.reserve(RemovedSuccessors.size()); 290 for (auto *RemovedSuccessor : RemovedSuccessors) 291 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 292 DTU->applyUpdates(Updates); 293 } 294 return true; 295 } 296 297 if (SI->getNumCases() == 1) { 298 // Otherwise, we can fold this switch into a conditional branch 299 // instruction if it has only one non-default destination. 300 auto FirstCase = *SI->case_begin(); 301 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 302 FirstCase.getCaseValue(), "cond"); 303 304 // Insert the new branch. 305 BranchInst *NewBr = Builder.CreateCondBr(Cond, 306 FirstCase.getCaseSuccessor(), 307 SI->getDefaultDest()); 308 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 309 if (MD && MD->getNumOperands() == 3) { 310 ConstantInt *SICase = 311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 312 ConstantInt *SIDef = 313 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 314 assert(SICase && SIDef); 315 // The TrueWeight should be the weight for the single case of SI. 316 NewBr->setMetadata(LLVMContext::MD_prof, 317 MDBuilder(BB->getContext()). 318 createBranchWeights(SICase->getValue().getZExtValue(), 319 SIDef->getValue().getZExtValue())); 320 } 321 322 // Update make.implicit metadata to the newly-created conditional branch. 323 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 324 if (MakeImplicitMD) 325 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 326 327 // Delete the old switch. 328 SI->eraseFromParent(); 329 return true; 330 } 331 return Changed; 332 } 333 334 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 335 // indirectbr blockaddress(@F, @BB) -> br label @BB 336 if (auto *BA = 337 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 338 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 339 SmallSet<BasicBlock *, 8> RemovedSuccessors; 340 341 // Insert the new branch. 342 Builder.CreateBr(TheOnlyDest); 343 344 BasicBlock *SuccToKeep = TheOnlyDest; 345 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 346 BasicBlock *DestBB = IBI->getDestination(i); 347 if (DTU && DestBB != TheOnlyDest) 348 RemovedSuccessors.insert(DestBB); 349 if (IBI->getDestination(i) == SuccToKeep) { 350 SuccToKeep = nullptr; 351 } else { 352 DestBB->removePredecessor(BB); 353 } 354 } 355 Value *Address = IBI->getAddress(); 356 IBI->eraseFromParent(); 357 if (DeleteDeadConditions) 358 // Delete pointer cast instructions. 359 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 360 361 // Also zap the blockaddress constant if there are no users remaining, 362 // otherwise the destination is still marked as having its address taken. 363 if (BA->use_empty()) 364 BA->destroyConstant(); 365 366 // If we didn't find our destination in the IBI successor list, then we 367 // have undefined behavior. Replace the unconditional branch with an 368 // 'unreachable' instruction. 369 if (SuccToKeep) { 370 BB->getTerminator()->eraseFromParent(); 371 new UnreachableInst(BB->getContext(), BB); 372 } 373 374 if (DTU) { 375 std::vector<DominatorTree::UpdateType> Updates; 376 Updates.reserve(RemovedSuccessors.size()); 377 for (auto *RemovedSuccessor : RemovedSuccessors) 378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 379 DTU->applyUpdates(Updates); 380 } 381 return true; 382 } 383 } 384 385 return false; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Local dead code elimination. 390 // 391 392 /// isInstructionTriviallyDead - Return true if the result produced by the 393 /// instruction is not used, and the instruction has no side effects. 394 /// 395 bool llvm::isInstructionTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (!I->use_empty()) 398 return false; 399 return wouldInstructionBeTriviallyDead(I, TLI); 400 } 401 402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 403 Instruction *I, const TargetLibraryInfo *TLI) { 404 // Instructions that are "markers" and have implied meaning on code around 405 // them (without explicit uses), are not dead on unused paths. 406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 407 if (II->getIntrinsicID() == Intrinsic::stacksave || 408 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 409 II->isLifetimeStartOrEnd()) 410 return false; 411 return wouldInstructionBeTriviallyDead(I, TLI); 412 } 413 414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 415 const TargetLibraryInfo *TLI) { 416 if (I->isTerminator()) 417 return false; 418 419 // We don't want the landingpad-like instructions removed by anything this 420 // general. 421 if (I->isEHPad()) 422 return false; 423 424 // We don't want debug info removed by anything this general, unless 425 // debug info is empty. 426 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 427 if (DDI->getAddress()) 428 return false; 429 return true; 430 } 431 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 432 if (DVI->hasArgList() || DVI->getValue(0)) 433 return false; 434 return true; 435 } 436 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 437 if (DLI->getLabel()) 438 return false; 439 return true; 440 } 441 442 if (auto *CB = dyn_cast<CallBase>(I)) 443 if (isRemovableAlloc(CB, TLI)) 444 return true; 445 446 if (!I->willReturn()) 447 return false; 448 449 if (!I->mayHaveSideEffects()) 450 return true; 451 452 // Special case intrinsics that "may have side effects" but can be deleted 453 // when dead. 454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 455 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 456 if (II->getIntrinsicID() == Intrinsic::stacksave || 457 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 458 return true; 459 460 if (II->isLifetimeStartOrEnd()) { 461 auto *Arg = II->getArgOperand(1); 462 // Lifetime intrinsics are dead when their right-hand is undef. 463 if (isa<UndefValue>(Arg)) 464 return true; 465 // If the right-hand is an alloc, global, or argument and the only uses 466 // are lifetime intrinsics then the intrinsics are dead. 467 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 468 return llvm::all_of(Arg->uses(), [](Use &Use) { 469 if (IntrinsicInst *IntrinsicUse = 470 dyn_cast<IntrinsicInst>(Use.getUser())) 471 return IntrinsicUse->isLifetimeStartOrEnd(); 472 return false; 473 }); 474 return false; 475 } 476 477 // Assumptions are dead if their condition is trivially true. Guards on 478 // true are operationally no-ops. In the future we can consider more 479 // sophisticated tradeoffs for guards considering potential for check 480 // widening, but for now we keep things simple. 481 if ((II->getIntrinsicID() == Intrinsic::assume && 482 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 483 II->getIntrinsicID() == Intrinsic::experimental_guard) { 484 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 485 return !Cond->isZero(); 486 487 return false; 488 } 489 490 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 491 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 492 return *ExBehavior != fp::ebStrict; 493 } 494 } 495 496 if (auto *Call = dyn_cast<CallBase>(I)) { 497 if (Value *FreedOp = getFreedOperand(Call, TLI)) 498 if (Constant *C = dyn_cast<Constant>(FreedOp)) 499 return C->isNullValue() || isa<UndefValue>(C); 500 if (isMathLibCallNoop(Call, TLI)) 501 return true; 502 } 503 504 // Non-volatile atomic loads from constants can be removed. 505 if (auto *LI = dyn_cast<LoadInst>(I)) 506 if (auto *GV = dyn_cast<GlobalVariable>( 507 LI->getPointerOperand()->stripPointerCasts())) 508 if (!LI->isVolatile() && GV->isConstant()) 509 return true; 510 511 return false; 512 } 513 514 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 515 /// trivially dead instruction, delete it. If that makes any of its operands 516 /// trivially dead, delete them too, recursively. Return true if any 517 /// instructions were deleted. 518 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 519 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 520 std::function<void(Value *)> AboutToDeleteCallback) { 521 Instruction *I = dyn_cast<Instruction>(V); 522 if (!I || !isInstructionTriviallyDead(I, TLI)) 523 return false; 524 525 SmallVector<WeakTrackingVH, 16> DeadInsts; 526 DeadInsts.push_back(I); 527 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 528 AboutToDeleteCallback); 529 530 return true; 531 } 532 533 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 534 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 535 MemorySSAUpdater *MSSAU, 536 std::function<void(Value *)> AboutToDeleteCallback) { 537 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 538 for (; S != E; ++S) { 539 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 540 if (!I || !isInstructionTriviallyDead(I)) { 541 DeadInsts[S] = nullptr; 542 ++Alive; 543 } 544 } 545 if (Alive == E) 546 return false; 547 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 548 AboutToDeleteCallback); 549 return true; 550 } 551 552 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 553 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 554 MemorySSAUpdater *MSSAU, 555 std::function<void(Value *)> AboutToDeleteCallback) { 556 // Process the dead instruction list until empty. 557 while (!DeadInsts.empty()) { 558 Value *V = DeadInsts.pop_back_val(); 559 Instruction *I = cast_or_null<Instruction>(V); 560 if (!I) 561 continue; 562 assert(isInstructionTriviallyDead(I, TLI) && 563 "Live instruction found in dead worklist!"); 564 assert(I->use_empty() && "Instructions with uses are not dead."); 565 566 // Don't lose the debug info while deleting the instructions. 567 salvageDebugInfo(*I); 568 569 if (AboutToDeleteCallback) 570 AboutToDeleteCallback(I); 571 572 // Null out all of the instruction's operands to see if any operand becomes 573 // dead as we go. 574 for (Use &OpU : I->operands()) { 575 Value *OpV = OpU.get(); 576 OpU.set(nullptr); 577 578 if (!OpV->use_empty()) 579 continue; 580 581 // If the operand is an instruction that became dead as we nulled out the 582 // operand, and if it is 'trivially' dead, delete it in a future loop 583 // iteration. 584 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 585 if (isInstructionTriviallyDead(OpI, TLI)) 586 DeadInsts.push_back(OpI); 587 } 588 if (MSSAU) 589 MSSAU->removeMemoryAccess(I); 590 591 I->eraseFromParent(); 592 } 593 } 594 595 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 596 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 597 findDbgUsers(DbgUsers, I); 598 for (auto *DII : DbgUsers) { 599 Value *Undef = UndefValue::get(I->getType()); 600 DII->replaceVariableLocationOp(I, Undef); 601 } 602 return !DbgUsers.empty(); 603 } 604 605 /// areAllUsesEqual - Check whether the uses of a value are all the same. 606 /// This is similar to Instruction::hasOneUse() except this will also return 607 /// true when there are no uses or multiple uses that all refer to the same 608 /// value. 609 static bool areAllUsesEqual(Instruction *I) { 610 Value::user_iterator UI = I->user_begin(); 611 Value::user_iterator UE = I->user_end(); 612 if (UI == UE) 613 return true; 614 615 User *TheUse = *UI; 616 for (++UI; UI != UE; ++UI) { 617 if (*UI != TheUse) 618 return false; 619 } 620 return true; 621 } 622 623 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 624 /// dead PHI node, due to being a def-use chain of single-use nodes that 625 /// either forms a cycle or is terminated by a trivially dead instruction, 626 /// delete it. If that makes any of its operands trivially dead, delete them 627 /// too, recursively. Return true if a change was made. 628 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 629 const TargetLibraryInfo *TLI, 630 llvm::MemorySSAUpdater *MSSAU) { 631 SmallPtrSet<Instruction*, 4> Visited; 632 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 633 I = cast<Instruction>(*I->user_begin())) { 634 if (I->use_empty()) 635 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 636 637 // If we find an instruction more than once, we're on a cycle that 638 // won't prove fruitful. 639 if (!Visited.insert(I).second) { 640 // Break the cycle and delete the instruction and its operands. 641 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 642 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 643 return true; 644 } 645 } 646 return false; 647 } 648 649 static bool 650 simplifyAndDCEInstruction(Instruction *I, 651 SmallSetVector<Instruction *, 16> &WorkList, 652 const DataLayout &DL, 653 const TargetLibraryInfo *TLI) { 654 if (isInstructionTriviallyDead(I, TLI)) { 655 salvageDebugInfo(*I); 656 657 // Null out all of the instruction's operands to see if any operand becomes 658 // dead as we go. 659 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 660 Value *OpV = I->getOperand(i); 661 I->setOperand(i, nullptr); 662 663 if (!OpV->use_empty() || I == OpV) 664 continue; 665 666 // If the operand is an instruction that became dead as we nulled out the 667 // operand, and if it is 'trivially' dead, delete it in a future loop 668 // iteration. 669 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 670 if (isInstructionTriviallyDead(OpI, TLI)) 671 WorkList.insert(OpI); 672 } 673 674 I->eraseFromParent(); 675 676 return true; 677 } 678 679 if (Value *SimpleV = simplifyInstruction(I, DL)) { 680 // Add the users to the worklist. CAREFUL: an instruction can use itself, 681 // in the case of a phi node. 682 for (User *U : I->users()) { 683 if (U != I) { 684 WorkList.insert(cast<Instruction>(U)); 685 } 686 } 687 688 // Replace the instruction with its simplified value. 689 bool Changed = false; 690 if (!I->use_empty()) { 691 I->replaceAllUsesWith(SimpleV); 692 Changed = true; 693 } 694 if (isInstructionTriviallyDead(I, TLI)) { 695 I->eraseFromParent(); 696 Changed = true; 697 } 698 return Changed; 699 } 700 return false; 701 } 702 703 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 704 /// simplify any instructions in it and recursively delete dead instructions. 705 /// 706 /// This returns true if it changed the code, note that it can delete 707 /// instructions in other blocks as well in this block. 708 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 709 const TargetLibraryInfo *TLI) { 710 bool MadeChange = false; 711 const DataLayout &DL = BB->getModule()->getDataLayout(); 712 713 #ifndef NDEBUG 714 // In debug builds, ensure that the terminator of the block is never replaced 715 // or deleted by these simplifications. The idea of simplification is that it 716 // cannot introduce new instructions, and there is no way to replace the 717 // terminator of a block without introducing a new instruction. 718 AssertingVH<Instruction> TerminatorVH(&BB->back()); 719 #endif 720 721 SmallSetVector<Instruction *, 16> WorkList; 722 // Iterate over the original function, only adding insts to the worklist 723 // if they actually need to be revisited. This avoids having to pre-init 724 // the worklist with the entire function's worth of instructions. 725 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 726 BI != E;) { 727 assert(!BI->isTerminator()); 728 Instruction *I = &*BI; 729 ++BI; 730 731 // We're visiting this instruction now, so make sure it's not in the 732 // worklist from an earlier visit. 733 if (!WorkList.count(I)) 734 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 735 } 736 737 while (!WorkList.empty()) { 738 Instruction *I = WorkList.pop_back_val(); 739 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 740 } 741 return MadeChange; 742 } 743 744 //===----------------------------------------------------------------------===// 745 // Control Flow Graph Restructuring. 746 // 747 748 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 749 DomTreeUpdater *DTU) { 750 751 // If BB has single-entry PHI nodes, fold them. 752 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 753 Value *NewVal = PN->getIncomingValue(0); 754 // Replace self referencing PHI with poison, it must be dead. 755 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 756 PN->replaceAllUsesWith(NewVal); 757 PN->eraseFromParent(); 758 } 759 760 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 761 assert(PredBB && "Block doesn't have a single predecessor!"); 762 763 bool ReplaceEntryBB = PredBB->isEntryBlock(); 764 765 // DTU updates: Collect all the edges that enter 766 // PredBB. These dominator edges will be redirected to DestBB. 767 SmallVector<DominatorTree::UpdateType, 32> Updates; 768 769 if (DTU) { 770 // To avoid processing the same predecessor more than once. 771 SmallPtrSet<BasicBlock *, 2> SeenPreds; 772 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 773 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 774 // This predecessor of PredBB may already have DestBB as a successor. 775 if (PredOfPredBB != PredBB) 776 if (SeenPreds.insert(PredOfPredBB).second) 777 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 778 SeenPreds.clear(); 779 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 780 if (SeenPreds.insert(PredOfPredBB).second) 781 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 782 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 783 } 784 785 // Zap anything that took the address of DestBB. Not doing this will give the 786 // address an invalid value. 787 if (DestBB->hasAddressTaken()) { 788 BlockAddress *BA = BlockAddress::get(DestBB); 789 Constant *Replacement = 790 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 791 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 792 BA->getType())); 793 BA->destroyConstant(); 794 } 795 796 // Anything that branched to PredBB now branches to DestBB. 797 PredBB->replaceAllUsesWith(DestBB); 798 799 // Splice all the instructions from PredBB to DestBB. 800 PredBB->getTerminator()->eraseFromParent(); 801 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 802 new UnreachableInst(PredBB->getContext(), PredBB); 803 804 // If the PredBB is the entry block of the function, move DestBB up to 805 // become the entry block after we erase PredBB. 806 if (ReplaceEntryBB) 807 DestBB->moveAfter(PredBB); 808 809 if (DTU) { 810 assert(PredBB->getInstList().size() == 1 && 811 isa<UnreachableInst>(PredBB->getTerminator()) && 812 "The successor list of PredBB isn't empty before " 813 "applying corresponding DTU updates."); 814 DTU->applyUpdatesPermissive(Updates); 815 DTU->deleteBB(PredBB); 816 // Recalculation of DomTree is needed when updating a forward DomTree and 817 // the Entry BB is replaced. 818 if (ReplaceEntryBB && DTU->hasDomTree()) { 819 // The entry block was removed and there is no external interface for 820 // the dominator tree to be notified of this change. In this corner-case 821 // we recalculate the entire tree. 822 DTU->recalculate(*(DestBB->getParent())); 823 } 824 } 825 826 else { 827 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 828 } 829 } 830 831 /// Return true if we can choose one of these values to use in place of the 832 /// other. Note that we will always choose the non-undef value to keep. 833 static bool CanMergeValues(Value *First, Value *Second) { 834 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 835 } 836 837 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 838 /// branch to Succ, into Succ. 839 /// 840 /// Assumption: Succ is the single successor for BB. 841 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 842 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 843 844 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 845 << Succ->getName() << "\n"); 846 // Shortcut, if there is only a single predecessor it must be BB and merging 847 // is always safe 848 if (Succ->getSinglePredecessor()) return true; 849 850 // Make a list of the predecessors of BB 851 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 852 853 // Look at all the phi nodes in Succ, to see if they present a conflict when 854 // merging these blocks 855 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 856 PHINode *PN = cast<PHINode>(I); 857 858 // If the incoming value from BB is again a PHINode in 859 // BB which has the same incoming value for *PI as PN does, we can 860 // merge the phi nodes and then the blocks can still be merged 861 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 862 if (BBPN && BBPN->getParent() == BB) { 863 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 864 BasicBlock *IBB = PN->getIncomingBlock(PI); 865 if (BBPreds.count(IBB) && 866 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 867 PN->getIncomingValue(PI))) { 868 LLVM_DEBUG(dbgs() 869 << "Can't fold, phi node " << PN->getName() << " in " 870 << Succ->getName() << " is conflicting with " 871 << BBPN->getName() << " with regard to common predecessor " 872 << IBB->getName() << "\n"); 873 return false; 874 } 875 } 876 } else { 877 Value* Val = PN->getIncomingValueForBlock(BB); 878 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 879 // See if the incoming value for the common predecessor is equal to the 880 // one for BB, in which case this phi node will not prevent the merging 881 // of the block. 882 BasicBlock *IBB = PN->getIncomingBlock(PI); 883 if (BBPreds.count(IBB) && 884 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 885 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 886 << " in " << Succ->getName() 887 << " is conflicting with regard to common " 888 << "predecessor " << IBB->getName() << "\n"); 889 return false; 890 } 891 } 892 } 893 } 894 895 return true; 896 } 897 898 using PredBlockVector = SmallVector<BasicBlock *, 16>; 899 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 900 901 /// Determines the value to use as the phi node input for a block. 902 /// 903 /// Select between \p OldVal any value that we know flows from \p BB 904 /// to a particular phi on the basis of which one (if either) is not 905 /// undef. Update IncomingValues based on the selected value. 906 /// 907 /// \param OldVal The value we are considering selecting. 908 /// \param BB The block that the value flows in from. 909 /// \param IncomingValues A map from block-to-value for other phi inputs 910 /// that we have examined. 911 /// 912 /// \returns the selected value. 913 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 914 IncomingValueMap &IncomingValues) { 915 if (!isa<UndefValue>(OldVal)) { 916 assert((!IncomingValues.count(BB) || 917 IncomingValues.find(BB)->second == OldVal) && 918 "Expected OldVal to match incoming value from BB!"); 919 920 IncomingValues.insert(std::make_pair(BB, OldVal)); 921 return OldVal; 922 } 923 924 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 925 if (It != IncomingValues.end()) return It->second; 926 927 return OldVal; 928 } 929 930 /// Create a map from block to value for the operands of a 931 /// given phi. 932 /// 933 /// Create a map from block to value for each non-undef value flowing 934 /// into \p PN. 935 /// 936 /// \param PN The phi we are collecting the map for. 937 /// \param IncomingValues [out] The map from block to value for this phi. 938 static void gatherIncomingValuesToPhi(PHINode *PN, 939 IncomingValueMap &IncomingValues) { 940 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 941 BasicBlock *BB = PN->getIncomingBlock(i); 942 Value *V = PN->getIncomingValue(i); 943 944 if (!isa<UndefValue>(V)) 945 IncomingValues.insert(std::make_pair(BB, V)); 946 } 947 } 948 949 /// Replace the incoming undef values to a phi with the values 950 /// from a block-to-value map. 951 /// 952 /// \param PN The phi we are replacing the undefs in. 953 /// \param IncomingValues A map from block to value. 954 static void replaceUndefValuesInPhi(PHINode *PN, 955 const IncomingValueMap &IncomingValues) { 956 SmallVector<unsigned> TrueUndefOps; 957 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 958 Value *V = PN->getIncomingValue(i); 959 960 if (!isa<UndefValue>(V)) continue; 961 962 BasicBlock *BB = PN->getIncomingBlock(i); 963 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 964 965 // Keep track of undef/poison incoming values. Those must match, so we fix 966 // them up below if needed. 967 // Note: this is conservatively correct, but we could try harder and group 968 // the undef values per incoming basic block. 969 if (It == IncomingValues.end()) { 970 TrueUndefOps.push_back(i); 971 continue; 972 } 973 974 // There is a defined value for this incoming block, so map this undef 975 // incoming value to the defined value. 976 PN->setIncomingValue(i, It->second); 977 } 978 979 // If there are both undef and poison values incoming, then convert those 980 // values to undef. It is invalid to have different values for the same 981 // incoming block. 982 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 983 return isa<PoisonValue>(PN->getIncomingValue(i)); 984 }); 985 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 986 for (unsigned i : TrueUndefOps) 987 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 988 } 989 } 990 991 /// Replace a value flowing from a block to a phi with 992 /// potentially multiple instances of that value flowing from the 993 /// block's predecessors to the phi. 994 /// 995 /// \param BB The block with the value flowing into the phi. 996 /// \param BBPreds The predecessors of BB. 997 /// \param PN The phi that we are updating. 998 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 999 const PredBlockVector &BBPreds, 1000 PHINode *PN) { 1001 Value *OldVal = PN->removeIncomingValue(BB, false); 1002 assert(OldVal && "No entry in PHI for Pred BB!"); 1003 1004 IncomingValueMap IncomingValues; 1005 1006 // We are merging two blocks - BB, and the block containing PN - and 1007 // as a result we need to redirect edges from the predecessors of BB 1008 // to go to the block containing PN, and update PN 1009 // accordingly. Since we allow merging blocks in the case where the 1010 // predecessor and successor blocks both share some predecessors, 1011 // and where some of those common predecessors might have undef 1012 // values flowing into PN, we want to rewrite those values to be 1013 // consistent with the non-undef values. 1014 1015 gatherIncomingValuesToPhi(PN, IncomingValues); 1016 1017 // If this incoming value is one of the PHI nodes in BB, the new entries 1018 // in the PHI node are the entries from the old PHI. 1019 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1020 PHINode *OldValPN = cast<PHINode>(OldVal); 1021 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1022 // Note that, since we are merging phi nodes and BB and Succ might 1023 // have common predecessors, we could end up with a phi node with 1024 // identical incoming branches. This will be cleaned up later (and 1025 // will trigger asserts if we try to clean it up now, without also 1026 // simplifying the corresponding conditional branch). 1027 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1028 Value *PredVal = OldValPN->getIncomingValue(i); 1029 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1030 IncomingValues); 1031 1032 // And add a new incoming value for this predecessor for the 1033 // newly retargeted branch. 1034 PN->addIncoming(Selected, PredBB); 1035 } 1036 } else { 1037 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1038 // Update existing incoming values in PN for this 1039 // predecessor of BB. 1040 BasicBlock *PredBB = BBPreds[i]; 1041 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1042 IncomingValues); 1043 1044 // And add a new incoming value for this predecessor for the 1045 // newly retargeted branch. 1046 PN->addIncoming(Selected, PredBB); 1047 } 1048 } 1049 1050 replaceUndefValuesInPhi(PN, IncomingValues); 1051 } 1052 1053 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1054 DomTreeUpdater *DTU) { 1055 assert(BB != &BB->getParent()->getEntryBlock() && 1056 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1057 1058 // We can't eliminate infinite loops. 1059 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1060 if (BB == Succ) return false; 1061 1062 // Check to see if merging these blocks would cause conflicts for any of the 1063 // phi nodes in BB or Succ. If not, we can safely merge. 1064 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1065 1066 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1067 // has uses which will not disappear when the PHI nodes are merged. It is 1068 // possible to handle such cases, but difficult: it requires checking whether 1069 // BB dominates Succ, which is non-trivial to calculate in the case where 1070 // Succ has multiple predecessors. Also, it requires checking whether 1071 // constructing the necessary self-referential PHI node doesn't introduce any 1072 // conflicts; this isn't too difficult, but the previous code for doing this 1073 // was incorrect. 1074 // 1075 // Note that if this check finds a live use, BB dominates Succ, so BB is 1076 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1077 // folding the branch isn't profitable in that case anyway. 1078 if (!Succ->getSinglePredecessor()) { 1079 BasicBlock::iterator BBI = BB->begin(); 1080 while (isa<PHINode>(*BBI)) { 1081 for (Use &U : BBI->uses()) { 1082 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1083 if (PN->getIncomingBlock(U) != BB) 1084 return false; 1085 } else { 1086 return false; 1087 } 1088 } 1089 ++BBI; 1090 } 1091 } 1092 1093 // We cannot fold the block if it's a branch to an already present callbr 1094 // successor because that creates duplicate successors. 1095 for (BasicBlock *PredBB : predecessors(BB)) { 1096 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1097 if (Succ == CBI->getDefaultDest()) 1098 return false; 1099 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1100 if (Succ == CBI->getIndirectDest(i)) 1101 return false; 1102 } 1103 } 1104 1105 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1106 1107 SmallVector<DominatorTree::UpdateType, 32> Updates; 1108 if (DTU) { 1109 // To avoid processing the same predecessor more than once. 1110 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1111 // All predecessors of BB will be moved to Succ. 1112 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1113 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1114 for (auto *PredOfBB : predecessors(BB)) 1115 // This predecessor of BB may already have Succ as a successor. 1116 if (!PredsOfSucc.contains(PredOfBB)) 1117 if (SeenPreds.insert(PredOfBB).second) 1118 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1119 SeenPreds.clear(); 1120 for (auto *PredOfBB : predecessors(BB)) 1121 if (SeenPreds.insert(PredOfBB).second) 1122 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1123 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1124 } 1125 1126 if (isa<PHINode>(Succ->begin())) { 1127 // If there is more than one pred of succ, and there are PHI nodes in 1128 // the successor, then we need to add incoming edges for the PHI nodes 1129 // 1130 const PredBlockVector BBPreds(predecessors(BB)); 1131 1132 // Loop over all of the PHI nodes in the successor of BB. 1133 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1134 PHINode *PN = cast<PHINode>(I); 1135 1136 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1137 } 1138 } 1139 1140 if (Succ->getSinglePredecessor()) { 1141 // BB is the only predecessor of Succ, so Succ will end up with exactly 1142 // the same predecessors BB had. 1143 1144 // Copy over any phi, debug or lifetime instruction. 1145 BB->getTerminator()->eraseFromParent(); 1146 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1147 BB->getInstList()); 1148 } else { 1149 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1150 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1151 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1152 PN->eraseFromParent(); 1153 } 1154 } 1155 1156 // If the unconditional branch we replaced contains llvm.loop metadata, we 1157 // add the metadata to the branch instructions in the predecessors. 1158 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1159 Instruction *TI = BB->getTerminator(); 1160 if (TI) 1161 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1162 for (BasicBlock *Pred : predecessors(BB)) 1163 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1164 1165 // Everything that jumped to BB now goes to Succ. 1166 BB->replaceAllUsesWith(Succ); 1167 if (!Succ->hasName()) Succ->takeName(BB); 1168 1169 // Clear the successor list of BB to match updates applying to DTU later. 1170 if (BB->getTerminator()) 1171 BB->getInstList().pop_back(); 1172 new UnreachableInst(BB->getContext(), BB); 1173 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1174 "applying corresponding DTU updates."); 1175 1176 if (DTU) 1177 DTU->applyUpdates(Updates); 1178 1179 DeleteDeadBlock(BB, DTU); 1180 1181 return true; 1182 } 1183 1184 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1185 // This implementation doesn't currently consider undef operands 1186 // specially. Theoretically, two phis which are identical except for 1187 // one having an undef where the other doesn't could be collapsed. 1188 1189 bool Changed = false; 1190 1191 // Examine each PHI. 1192 // Note that increment of I must *NOT* be in the iteration_expression, since 1193 // we don't want to immediately advance when we restart from the beginning. 1194 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1195 ++I; 1196 // Is there an identical PHI node in this basic block? 1197 // Note that we only look in the upper square's triangle, 1198 // we already checked that the lower triangle PHI's aren't identical. 1199 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1200 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1201 continue; 1202 // A duplicate. Replace this PHI with the base PHI. 1203 ++NumPHICSEs; 1204 DuplicatePN->replaceAllUsesWith(PN); 1205 DuplicatePN->eraseFromParent(); 1206 Changed = true; 1207 1208 // The RAUW can change PHIs that we already visited. 1209 I = BB->begin(); 1210 break; // Start over from the beginning. 1211 } 1212 } 1213 return Changed; 1214 } 1215 1216 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1217 // This implementation doesn't currently consider undef operands 1218 // specially. Theoretically, two phis which are identical except for 1219 // one having an undef where the other doesn't could be collapsed. 1220 1221 struct PHIDenseMapInfo { 1222 static PHINode *getEmptyKey() { 1223 return DenseMapInfo<PHINode *>::getEmptyKey(); 1224 } 1225 1226 static PHINode *getTombstoneKey() { 1227 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1228 } 1229 1230 static bool isSentinel(PHINode *PN) { 1231 return PN == getEmptyKey() || PN == getTombstoneKey(); 1232 } 1233 1234 // WARNING: this logic must be kept in sync with 1235 // Instruction::isIdenticalToWhenDefined()! 1236 static unsigned getHashValueImpl(PHINode *PN) { 1237 // Compute a hash value on the operands. Instcombine will likely have 1238 // sorted them, which helps expose duplicates, but we have to check all 1239 // the operands to be safe in case instcombine hasn't run. 1240 return static_cast<unsigned>(hash_combine( 1241 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1242 hash_combine_range(PN->block_begin(), PN->block_end()))); 1243 } 1244 1245 static unsigned getHashValue(PHINode *PN) { 1246 #ifndef NDEBUG 1247 // If -phicse-debug-hash was specified, return a constant -- this 1248 // will force all hashing to collide, so we'll exhaustively search 1249 // the table for a match, and the assertion in isEqual will fire if 1250 // there's a bug causing equal keys to hash differently. 1251 if (PHICSEDebugHash) 1252 return 0; 1253 #endif 1254 return getHashValueImpl(PN); 1255 } 1256 1257 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1258 if (isSentinel(LHS) || isSentinel(RHS)) 1259 return LHS == RHS; 1260 return LHS->isIdenticalTo(RHS); 1261 } 1262 1263 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1264 // These comparisons are nontrivial, so assert that equality implies 1265 // hash equality (DenseMap demands this as an invariant). 1266 bool Result = isEqualImpl(LHS, RHS); 1267 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1268 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1269 return Result; 1270 } 1271 }; 1272 1273 // Set of unique PHINodes. 1274 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1275 PHISet.reserve(4 * PHICSENumPHISmallSize); 1276 1277 // Examine each PHI. 1278 bool Changed = false; 1279 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1280 auto Inserted = PHISet.insert(PN); 1281 if (!Inserted.second) { 1282 // A duplicate. Replace this PHI with its duplicate. 1283 ++NumPHICSEs; 1284 PN->replaceAllUsesWith(*Inserted.first); 1285 PN->eraseFromParent(); 1286 Changed = true; 1287 1288 // The RAUW can change PHIs that we already visited. Start over from the 1289 // beginning. 1290 PHISet.clear(); 1291 I = BB->begin(); 1292 } 1293 } 1294 1295 return Changed; 1296 } 1297 1298 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1299 if ( 1300 #ifndef NDEBUG 1301 !PHICSEDebugHash && 1302 #endif 1303 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1304 return EliminateDuplicatePHINodesNaiveImpl(BB); 1305 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1306 } 1307 1308 /// If the specified pointer points to an object that we control, try to modify 1309 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1310 /// the value after the operation, which may be lower than PrefAlign. 1311 /// 1312 /// Increating value alignment isn't often possible though. If alignment is 1313 /// important, a more reliable approach is to simply align all global variables 1314 /// and allocation instructions to their preferred alignment from the beginning. 1315 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1316 const DataLayout &DL) { 1317 V = V->stripPointerCasts(); 1318 1319 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1320 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1321 // than the current alignment, as the known bits calculation should have 1322 // already taken it into account. However, this is not always the case, 1323 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1324 // doesn't. 1325 Align CurrentAlign = AI->getAlign(); 1326 if (PrefAlign <= CurrentAlign) 1327 return CurrentAlign; 1328 1329 // If the preferred alignment is greater than the natural stack alignment 1330 // then don't round up. This avoids dynamic stack realignment. 1331 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1332 return CurrentAlign; 1333 AI->setAlignment(PrefAlign); 1334 return PrefAlign; 1335 } 1336 1337 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1338 // TODO: as above, this shouldn't be necessary. 1339 Align CurrentAlign = GO->getPointerAlignment(DL); 1340 if (PrefAlign <= CurrentAlign) 1341 return CurrentAlign; 1342 1343 // If there is a large requested alignment and we can, bump up the alignment 1344 // of the global. If the memory we set aside for the global may not be the 1345 // memory used by the final program then it is impossible for us to reliably 1346 // enforce the preferred alignment. 1347 if (!GO->canIncreaseAlignment()) 1348 return CurrentAlign; 1349 1350 GO->setAlignment(PrefAlign); 1351 return PrefAlign; 1352 } 1353 1354 return Align(1); 1355 } 1356 1357 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1358 const DataLayout &DL, 1359 const Instruction *CxtI, 1360 AssumptionCache *AC, 1361 const DominatorTree *DT) { 1362 assert(V->getType()->isPointerTy() && 1363 "getOrEnforceKnownAlignment expects a pointer!"); 1364 1365 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1366 unsigned TrailZ = Known.countMinTrailingZeros(); 1367 1368 // Avoid trouble with ridiculously large TrailZ values, such as 1369 // those computed from a null pointer. 1370 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1371 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1372 1373 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1374 1375 if (PrefAlign && *PrefAlign > Alignment) 1376 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1377 1378 // We don't need to make any adjustment. 1379 return Alignment; 1380 } 1381 1382 ///===---------------------------------------------------------------------===// 1383 /// Dbg Intrinsic utilities 1384 /// 1385 1386 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1387 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1388 DIExpression *DIExpr, 1389 PHINode *APN) { 1390 // Since we can't guarantee that the original dbg.declare intrinsic 1391 // is removed by LowerDbgDeclare(), we need to make sure that we are 1392 // not inserting the same dbg.value intrinsic over and over. 1393 SmallVector<DbgValueInst *, 1> DbgValues; 1394 findDbgValues(DbgValues, APN); 1395 for (auto *DVI : DbgValues) { 1396 assert(is_contained(DVI->getValues(), APN)); 1397 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1398 return true; 1399 } 1400 return false; 1401 } 1402 1403 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1404 /// (or fragment of the variable) described by \p DII. 1405 /// 1406 /// This is primarily intended as a helper for the different 1407 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1408 /// converted describes an alloca'd variable, so we need to use the 1409 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1410 /// identified as covering an n-bit fragment, if the store size of i1 is at 1411 /// least n bits. 1412 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1413 const DataLayout &DL = DII->getModule()->getDataLayout(); 1414 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1415 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1416 assert(!ValueSize.isScalable() && 1417 "Fragments don't work on scalable types."); 1418 return ValueSize.getFixedSize() >= *FragmentSize; 1419 } 1420 // We can't always calculate the size of the DI variable (e.g. if it is a 1421 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1422 // intead. 1423 if (DII->isAddressOfVariable()) { 1424 // DII should have exactly 1 location when it is an address. 1425 assert(DII->getNumVariableLocationOps() == 1 && 1426 "address of variable must have exactly 1 location operand."); 1427 if (auto *AI = 1428 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1429 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1430 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1431 } 1432 } 1433 } 1434 // Could not determine size of variable. Conservatively return false. 1435 return false; 1436 } 1437 1438 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1439 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1440 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1441 /// case this DebugLoc leaks into any adjacent instructions. 1442 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1443 // Original dbg.declare must have a location. 1444 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1445 MDNode *Scope = DeclareLoc.getScope(); 1446 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1447 // Produce an unknown location with the correct scope / inlinedAt fields. 1448 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1449 } 1450 1451 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1452 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1453 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1454 StoreInst *SI, DIBuilder &Builder) { 1455 assert(DII->isAddressOfVariable()); 1456 auto *DIVar = DII->getVariable(); 1457 assert(DIVar && "Missing variable"); 1458 auto *DIExpr = DII->getExpression(); 1459 Value *DV = SI->getValueOperand(); 1460 1461 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1462 1463 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1464 // FIXME: If storing to a part of the variable described by the dbg.declare, 1465 // then we want to insert a dbg.value for the corresponding fragment. 1466 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1467 << *DII << '\n'); 1468 // For now, when there is a store to parts of the variable (but we do not 1469 // know which part) we insert an dbg.value intrinsic to indicate that we 1470 // know nothing about the variable's content. 1471 DV = UndefValue::get(DV->getType()); 1472 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1473 return; 1474 } 1475 1476 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1477 } 1478 1479 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1480 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1481 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1482 LoadInst *LI, DIBuilder &Builder) { 1483 auto *DIVar = DII->getVariable(); 1484 auto *DIExpr = DII->getExpression(); 1485 assert(DIVar && "Missing variable"); 1486 1487 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1488 // FIXME: If only referring to a part of the variable described by the 1489 // dbg.declare, then we want to insert a dbg.value for the corresponding 1490 // fragment. 1491 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1492 << *DII << '\n'); 1493 return; 1494 } 1495 1496 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1497 1498 // We are now tracking the loaded value instead of the address. In the 1499 // future if multi-location support is added to the IR, it might be 1500 // preferable to keep tracking both the loaded value and the original 1501 // address in case the alloca can not be elided. 1502 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1503 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1504 DbgValue->insertAfter(LI); 1505 } 1506 1507 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1508 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1509 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1510 PHINode *APN, DIBuilder &Builder) { 1511 auto *DIVar = DII->getVariable(); 1512 auto *DIExpr = DII->getExpression(); 1513 assert(DIVar && "Missing variable"); 1514 1515 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1516 return; 1517 1518 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1519 // FIXME: If only referring to a part of the variable described by the 1520 // dbg.declare, then we want to insert a dbg.value for the corresponding 1521 // fragment. 1522 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1523 << *DII << '\n'); 1524 return; 1525 } 1526 1527 BasicBlock *BB = APN->getParent(); 1528 auto InsertionPt = BB->getFirstInsertionPt(); 1529 1530 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1531 1532 // The block may be a catchswitch block, which does not have a valid 1533 // insertion point. 1534 // FIXME: Insert dbg.value markers in the successors when appropriate. 1535 if (InsertionPt != BB->end()) 1536 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1537 } 1538 1539 /// Determine whether this alloca is either a VLA or an array. 1540 static bool isArray(AllocaInst *AI) { 1541 return AI->isArrayAllocation() || 1542 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1543 } 1544 1545 /// Determine whether this alloca is a structure. 1546 static bool isStructure(AllocaInst *AI) { 1547 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1548 } 1549 1550 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1551 /// of llvm.dbg.value intrinsics. 1552 bool llvm::LowerDbgDeclare(Function &F) { 1553 bool Changed = false; 1554 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1555 SmallVector<DbgDeclareInst *, 4> Dbgs; 1556 for (auto &FI : F) 1557 for (Instruction &BI : FI) 1558 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1559 Dbgs.push_back(DDI); 1560 1561 if (Dbgs.empty()) 1562 return Changed; 1563 1564 for (auto &I : Dbgs) { 1565 DbgDeclareInst *DDI = I; 1566 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1567 // If this is an alloca for a scalar variable, insert a dbg.value 1568 // at each load and store to the alloca and erase the dbg.declare. 1569 // The dbg.values allow tracking a variable even if it is not 1570 // stored on the stack, while the dbg.declare can only describe 1571 // the stack slot (and at a lexical-scope granularity). Later 1572 // passes will attempt to elide the stack slot. 1573 if (!AI || isArray(AI) || isStructure(AI)) 1574 continue; 1575 1576 // A volatile load/store means that the alloca can't be elided anyway. 1577 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1578 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1579 return LI->isVolatile(); 1580 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1581 return SI->isVolatile(); 1582 return false; 1583 })) 1584 continue; 1585 1586 SmallVector<const Value *, 8> WorkList; 1587 WorkList.push_back(AI); 1588 while (!WorkList.empty()) { 1589 const Value *V = WorkList.pop_back_val(); 1590 for (auto &AIUse : V->uses()) { 1591 User *U = AIUse.getUser(); 1592 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1593 if (AIUse.getOperandNo() == 1) 1594 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1595 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1596 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1597 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1598 // This is a call by-value or some other instruction that takes a 1599 // pointer to the variable. Insert a *value* intrinsic that describes 1600 // the variable by dereferencing the alloca. 1601 if (!CI->isLifetimeStartOrEnd()) { 1602 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1603 auto *DerefExpr = 1604 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1605 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1606 NewLoc, CI); 1607 } 1608 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1609 if (BI->getType()->isPointerTy()) 1610 WorkList.push_back(BI); 1611 } 1612 } 1613 } 1614 DDI->eraseFromParent(); 1615 Changed = true; 1616 } 1617 1618 if (Changed) 1619 for (BasicBlock &BB : F) 1620 RemoveRedundantDbgInstrs(&BB); 1621 1622 return Changed; 1623 } 1624 1625 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1626 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1627 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1628 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1629 if (InsertedPHIs.size() == 0) 1630 return; 1631 1632 // Map existing PHI nodes to their dbg.values. 1633 ValueToValueMapTy DbgValueMap; 1634 for (auto &I : *BB) { 1635 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1636 for (Value *V : DbgII->location_ops()) 1637 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1638 DbgValueMap.insert({Loc, DbgII}); 1639 } 1640 } 1641 if (DbgValueMap.size() == 0) 1642 return; 1643 1644 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1645 // so that if a dbg.value is being rewritten to use more than one of the 1646 // inserted PHIs in the same destination BB, we can update the same dbg.value 1647 // with all the new PHIs instead of creating one copy for each. 1648 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1649 DbgVariableIntrinsic *> 1650 NewDbgValueMap; 1651 // Then iterate through the new PHIs and look to see if they use one of the 1652 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1653 // propagate the info through the new PHI. If we use more than one new PHI in 1654 // a single destination BB with the same old dbg.value, merge the updates so 1655 // that we get a single new dbg.value with all the new PHIs. 1656 for (auto PHI : InsertedPHIs) { 1657 BasicBlock *Parent = PHI->getParent(); 1658 // Avoid inserting an intrinsic into an EH block. 1659 if (Parent->getFirstNonPHI()->isEHPad()) 1660 continue; 1661 for (auto VI : PHI->operand_values()) { 1662 auto V = DbgValueMap.find(VI); 1663 if (V != DbgValueMap.end()) { 1664 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1665 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1666 if (NewDI == NewDbgValueMap.end()) { 1667 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1668 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1669 } 1670 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1671 // If PHI contains VI as an operand more than once, we may 1672 // replaced it in NewDbgII; confirm that it is present. 1673 if (is_contained(NewDbgII->location_ops(), VI)) 1674 NewDbgII->replaceVariableLocationOp(VI, PHI); 1675 } 1676 } 1677 } 1678 // Insert thew new dbg.values into their destination blocks. 1679 for (auto DI : NewDbgValueMap) { 1680 BasicBlock *Parent = DI.first.first; 1681 auto *NewDbgII = DI.second; 1682 auto InsertionPt = Parent->getFirstInsertionPt(); 1683 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1684 NewDbgII->insertBefore(&*InsertionPt); 1685 } 1686 } 1687 1688 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1689 DIBuilder &Builder, uint8_t DIExprFlags, 1690 int Offset) { 1691 auto DbgAddrs = FindDbgAddrUses(Address); 1692 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1693 const DebugLoc &Loc = DII->getDebugLoc(); 1694 auto *DIVar = DII->getVariable(); 1695 auto *DIExpr = DII->getExpression(); 1696 assert(DIVar && "Missing variable"); 1697 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1698 // Insert llvm.dbg.declare immediately before DII, and remove old 1699 // llvm.dbg.declare. 1700 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1701 DII->eraseFromParent(); 1702 } 1703 return !DbgAddrs.empty(); 1704 } 1705 1706 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1707 DIBuilder &Builder, int Offset) { 1708 const DebugLoc &Loc = DVI->getDebugLoc(); 1709 auto *DIVar = DVI->getVariable(); 1710 auto *DIExpr = DVI->getExpression(); 1711 assert(DIVar && "Missing variable"); 1712 1713 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1714 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1715 // it and give up. 1716 if (!DIExpr || DIExpr->getNumElements() < 1 || 1717 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1718 return; 1719 1720 // Insert the offset before the first deref. 1721 // We could just change the offset argument of dbg.value, but it's unsigned... 1722 if (Offset) 1723 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1724 1725 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1726 DVI->eraseFromParent(); 1727 } 1728 1729 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1730 DIBuilder &Builder, int Offset) { 1731 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1732 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1733 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1734 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1735 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1736 } 1737 1738 /// Where possible to salvage debug information for \p I do so 1739 /// and return True. If not possible mark undef and return False. 1740 void llvm::salvageDebugInfo(Instruction &I) { 1741 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1742 findDbgUsers(DbgUsers, &I); 1743 salvageDebugInfoForDbgValues(I, DbgUsers); 1744 } 1745 1746 void llvm::salvageDebugInfoForDbgValues( 1747 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1748 // These are arbitrary chosen limits on the maximum number of values and the 1749 // maximum size of a debug expression we can salvage up to, used for 1750 // performance reasons. 1751 const unsigned MaxDebugArgs = 16; 1752 const unsigned MaxExpressionSize = 128; 1753 bool Salvaged = false; 1754 1755 for (auto *DII : DbgUsers) { 1756 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1757 // are implicitly pointing out the value as a DWARF memory location 1758 // description. 1759 bool StackValue = isa<DbgValueInst>(DII); 1760 auto DIILocation = DII->location_ops(); 1761 assert( 1762 is_contained(DIILocation, &I) && 1763 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1764 SmallVector<Value *, 4> AdditionalValues; 1765 // `I` may appear more than once in DII's location ops, and each use of `I` 1766 // must be updated in the DIExpression and potentially have additional 1767 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1768 // DIILocation. 1769 Value *Op0 = nullptr; 1770 DIExpression *SalvagedExpr = DII->getExpression(); 1771 auto LocItr = find(DIILocation, &I); 1772 while (SalvagedExpr && LocItr != DIILocation.end()) { 1773 SmallVector<uint64_t, 16> Ops; 1774 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1775 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1776 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1777 if (!Op0) 1778 break; 1779 SalvagedExpr = 1780 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1781 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1782 } 1783 // salvageDebugInfoImpl should fail on examining the first element of 1784 // DbgUsers, or none of them. 1785 if (!Op0) 1786 break; 1787 1788 DII->replaceVariableLocationOp(&I, Op0); 1789 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1790 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1791 DII->setExpression(SalvagedExpr); 1792 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1793 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1794 MaxDebugArgs) { 1795 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1796 } else { 1797 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1798 // currently only valid for stack value expressions. 1799 // Also do not salvage if the resulting DIArgList would contain an 1800 // unreasonably large number of values. 1801 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1802 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1803 } 1804 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1805 Salvaged = true; 1806 } 1807 1808 if (Salvaged) 1809 return; 1810 1811 for (auto *DII : DbgUsers) { 1812 Value *Undef = UndefValue::get(I.getType()); 1813 DII->replaceVariableLocationOp(&I, Undef); 1814 } 1815 } 1816 1817 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1818 uint64_t CurrentLocOps, 1819 SmallVectorImpl<uint64_t> &Opcodes, 1820 SmallVectorImpl<Value *> &AdditionalValues) { 1821 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1822 // Rewrite a GEP into a DIExpression. 1823 MapVector<Value *, APInt> VariableOffsets; 1824 APInt ConstantOffset(BitWidth, 0); 1825 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1826 return nullptr; 1827 if (!VariableOffsets.empty() && !CurrentLocOps) { 1828 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1829 CurrentLocOps = 1; 1830 } 1831 for (auto Offset : VariableOffsets) { 1832 AdditionalValues.push_back(Offset.first); 1833 assert(Offset.second.isStrictlyPositive() && 1834 "Expected strictly positive multiplier for offset."); 1835 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1836 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1837 dwarf::DW_OP_plus}); 1838 } 1839 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1840 return GEP->getOperand(0); 1841 } 1842 1843 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1844 switch (Opcode) { 1845 case Instruction::Add: 1846 return dwarf::DW_OP_plus; 1847 case Instruction::Sub: 1848 return dwarf::DW_OP_minus; 1849 case Instruction::Mul: 1850 return dwarf::DW_OP_mul; 1851 case Instruction::SDiv: 1852 return dwarf::DW_OP_div; 1853 case Instruction::SRem: 1854 return dwarf::DW_OP_mod; 1855 case Instruction::Or: 1856 return dwarf::DW_OP_or; 1857 case Instruction::And: 1858 return dwarf::DW_OP_and; 1859 case Instruction::Xor: 1860 return dwarf::DW_OP_xor; 1861 case Instruction::Shl: 1862 return dwarf::DW_OP_shl; 1863 case Instruction::LShr: 1864 return dwarf::DW_OP_shr; 1865 case Instruction::AShr: 1866 return dwarf::DW_OP_shra; 1867 default: 1868 // TODO: Salvage from each kind of binop we know about. 1869 return 0; 1870 } 1871 } 1872 1873 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1874 SmallVectorImpl<uint64_t> &Opcodes, 1875 SmallVectorImpl<Value *> &AdditionalValues) { 1876 // Handle binary operations with constant integer operands as a special case. 1877 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1878 // Values wider than 64 bits cannot be represented within a DIExpression. 1879 if (ConstInt && ConstInt->getBitWidth() > 64) 1880 return nullptr; 1881 1882 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1883 // Push any Constant Int operand onto the expression stack. 1884 if (ConstInt) { 1885 uint64_t Val = ConstInt->getSExtValue(); 1886 // Add or Sub Instructions with a constant operand can potentially be 1887 // simplified. 1888 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1889 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1890 DIExpression::appendOffset(Opcodes, Offset); 1891 return BI->getOperand(0); 1892 } 1893 Opcodes.append({dwarf::DW_OP_constu, Val}); 1894 } else { 1895 if (!CurrentLocOps) { 1896 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1897 CurrentLocOps = 1; 1898 } 1899 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1900 AdditionalValues.push_back(BI->getOperand(1)); 1901 } 1902 1903 // Add salvaged binary operator to expression stack, if it has a valid 1904 // representation in a DIExpression. 1905 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1906 if (!DwarfBinOp) 1907 return nullptr; 1908 Opcodes.push_back(DwarfBinOp); 1909 return BI->getOperand(0); 1910 } 1911 1912 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1913 SmallVectorImpl<uint64_t> &Ops, 1914 SmallVectorImpl<Value *> &AdditionalValues) { 1915 auto &M = *I.getModule(); 1916 auto &DL = M.getDataLayout(); 1917 1918 if (auto *CI = dyn_cast<CastInst>(&I)) { 1919 Value *FromValue = CI->getOperand(0); 1920 // No-op casts are irrelevant for debug info. 1921 if (CI->isNoopCast(DL)) { 1922 return FromValue; 1923 } 1924 1925 Type *Type = CI->getType(); 1926 if (Type->isPointerTy()) 1927 Type = DL.getIntPtrType(Type); 1928 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1929 if (Type->isVectorTy() || 1930 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1931 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1932 return nullptr; 1933 1934 llvm::Type *FromType = FromValue->getType(); 1935 if (FromType->isPointerTy()) 1936 FromType = DL.getIntPtrType(FromType); 1937 1938 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1939 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1940 1941 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1942 isa<SExtInst>(&I)); 1943 Ops.append(ExtOps.begin(), ExtOps.end()); 1944 return FromValue; 1945 } 1946 1947 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1948 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1949 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1950 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1951 1952 // *Not* to do: we should not attempt to salvage load instructions, 1953 // because the validity and lifetime of a dbg.value containing 1954 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1955 return nullptr; 1956 } 1957 1958 /// A replacement for a dbg.value expression. 1959 using DbgValReplacement = Optional<DIExpression *>; 1960 1961 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1962 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1963 /// changes are made. 1964 static bool rewriteDebugUsers( 1965 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1966 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1967 // Find debug users of From. 1968 SmallVector<DbgVariableIntrinsic *, 1> Users; 1969 findDbgUsers(Users, &From); 1970 if (Users.empty()) 1971 return false; 1972 1973 // Prevent use-before-def of To. 1974 bool Changed = false; 1975 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1976 if (isa<Instruction>(&To)) { 1977 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1978 1979 for (auto *DII : Users) { 1980 // It's common to see a debug user between From and DomPoint. Move it 1981 // after DomPoint to preserve the variable update without any reordering. 1982 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1983 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1984 DII->moveAfter(&DomPoint); 1985 Changed = true; 1986 1987 // Users which otherwise aren't dominated by the replacement value must 1988 // be salvaged or deleted. 1989 } else if (!DT.dominates(&DomPoint, DII)) { 1990 UndefOrSalvage.insert(DII); 1991 } 1992 } 1993 } 1994 1995 // Update debug users without use-before-def risk. 1996 for (auto *DII : Users) { 1997 if (UndefOrSalvage.count(DII)) 1998 continue; 1999 2000 DbgValReplacement DVR = RewriteExpr(*DII); 2001 if (!DVR) 2002 continue; 2003 2004 DII->replaceVariableLocationOp(&From, &To); 2005 DII->setExpression(*DVR); 2006 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2007 Changed = true; 2008 } 2009 2010 if (!UndefOrSalvage.empty()) { 2011 // Try to salvage the remaining debug users. 2012 salvageDebugInfo(From); 2013 Changed = true; 2014 } 2015 2016 return Changed; 2017 } 2018 2019 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2020 /// losslessly preserve the bits and semantics of the value. This predicate is 2021 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2022 /// 2023 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2024 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2025 /// and also does not allow lossless pointer <-> integer conversions. 2026 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2027 Type *ToTy) { 2028 // Trivially compatible types. 2029 if (FromTy == ToTy) 2030 return true; 2031 2032 // Handle compatible pointer <-> integer conversions. 2033 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2034 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2035 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2036 !DL.isNonIntegralPointerType(ToTy); 2037 return SameSize && LosslessConversion; 2038 } 2039 2040 // TODO: This is not exhaustive. 2041 return false; 2042 } 2043 2044 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2045 Instruction &DomPoint, DominatorTree &DT) { 2046 // Exit early if From has no debug users. 2047 if (!From.isUsedByMetadata()) 2048 return false; 2049 2050 assert(&From != &To && "Can't replace something with itself"); 2051 2052 Type *FromTy = From.getType(); 2053 Type *ToTy = To.getType(); 2054 2055 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2056 return DII.getExpression(); 2057 }; 2058 2059 // Handle no-op conversions. 2060 Module &M = *From.getModule(); 2061 const DataLayout &DL = M.getDataLayout(); 2062 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2063 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2064 2065 // Handle integer-to-integer widening and narrowing. 2066 // FIXME: Use DW_OP_convert when it's available everywhere. 2067 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2068 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2069 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2070 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2071 2072 // When the width of the result grows, assume that a debugger will only 2073 // access the low `FromBits` bits when inspecting the source variable. 2074 if (FromBits < ToBits) 2075 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2076 2077 // The width of the result has shrunk. Use sign/zero extension to describe 2078 // the source variable's high bits. 2079 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2080 DILocalVariable *Var = DII.getVariable(); 2081 2082 // Without knowing signedness, sign/zero extension isn't possible. 2083 auto Signedness = Var->getSignedness(); 2084 if (!Signedness) 2085 return None; 2086 2087 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2088 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2089 Signed); 2090 }; 2091 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2092 } 2093 2094 // TODO: Floating-point conversions, vectors. 2095 return false; 2096 } 2097 2098 std::pair<unsigned, unsigned> 2099 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2100 unsigned NumDeadInst = 0; 2101 unsigned NumDeadDbgInst = 0; 2102 // Delete the instructions backwards, as it has a reduced likelihood of 2103 // having to update as many def-use and use-def chains. 2104 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2105 while (EndInst != &BB->front()) { 2106 // Delete the next to last instruction. 2107 Instruction *Inst = &*--EndInst->getIterator(); 2108 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2109 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2110 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2111 EndInst = Inst; 2112 continue; 2113 } 2114 if (isa<DbgInfoIntrinsic>(Inst)) 2115 ++NumDeadDbgInst; 2116 else 2117 ++NumDeadInst; 2118 Inst->eraseFromParent(); 2119 } 2120 return {NumDeadInst, NumDeadDbgInst}; 2121 } 2122 2123 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2124 DomTreeUpdater *DTU, 2125 MemorySSAUpdater *MSSAU) { 2126 BasicBlock *BB = I->getParent(); 2127 2128 if (MSSAU) 2129 MSSAU->changeToUnreachable(I); 2130 2131 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2132 2133 // Loop over all of the successors, removing BB's entry from any PHI 2134 // nodes. 2135 for (BasicBlock *Successor : successors(BB)) { 2136 Successor->removePredecessor(BB, PreserveLCSSA); 2137 if (DTU) 2138 UniqueSuccessors.insert(Successor); 2139 } 2140 auto *UI = new UnreachableInst(I->getContext(), I); 2141 UI->setDebugLoc(I->getDebugLoc()); 2142 2143 // All instructions after this are dead. 2144 unsigned NumInstrsRemoved = 0; 2145 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2146 while (BBI != BBE) { 2147 if (!BBI->use_empty()) 2148 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2149 BB->getInstList().erase(BBI++); 2150 ++NumInstrsRemoved; 2151 } 2152 if (DTU) { 2153 SmallVector<DominatorTree::UpdateType, 8> Updates; 2154 Updates.reserve(UniqueSuccessors.size()); 2155 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2156 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2157 DTU->applyUpdates(Updates); 2158 } 2159 return NumInstrsRemoved; 2160 } 2161 2162 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2163 SmallVector<Value *, 8> Args(II->args()); 2164 SmallVector<OperandBundleDef, 1> OpBundles; 2165 II->getOperandBundlesAsDefs(OpBundles); 2166 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2167 II->getCalledOperand(), Args, OpBundles); 2168 NewCall->setCallingConv(II->getCallingConv()); 2169 NewCall->setAttributes(II->getAttributes()); 2170 NewCall->setDebugLoc(II->getDebugLoc()); 2171 NewCall->copyMetadata(*II); 2172 2173 // If the invoke had profile metadata, try converting them for CallInst. 2174 uint64_t TotalWeight; 2175 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2176 // Set the total weight if it fits into i32, otherwise reset. 2177 MDBuilder MDB(NewCall->getContext()); 2178 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2179 ? nullptr 2180 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2181 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2182 } 2183 2184 return NewCall; 2185 } 2186 2187 // changeToCall - Convert the specified invoke into a normal call. 2188 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2189 CallInst *NewCall = createCallMatchingInvoke(II); 2190 NewCall->takeName(II); 2191 NewCall->insertBefore(II); 2192 II->replaceAllUsesWith(NewCall); 2193 2194 // Follow the call by a branch to the normal destination. 2195 BasicBlock *NormalDestBB = II->getNormalDest(); 2196 BranchInst::Create(NormalDestBB, II); 2197 2198 // Update PHI nodes in the unwind destination 2199 BasicBlock *BB = II->getParent(); 2200 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2201 UnwindDestBB->removePredecessor(BB); 2202 II->eraseFromParent(); 2203 if (DTU) 2204 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2205 return NewCall; 2206 } 2207 2208 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2209 BasicBlock *UnwindEdge, 2210 DomTreeUpdater *DTU) { 2211 BasicBlock *BB = CI->getParent(); 2212 2213 // Convert this function call into an invoke instruction. First, split the 2214 // basic block. 2215 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2216 CI->getName() + ".noexc"); 2217 2218 // Delete the unconditional branch inserted by SplitBlock 2219 BB->getInstList().pop_back(); 2220 2221 // Create the new invoke instruction. 2222 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2223 SmallVector<OperandBundleDef, 1> OpBundles; 2224 2225 CI->getOperandBundlesAsDefs(OpBundles); 2226 2227 // Note: we're round tripping operand bundles through memory here, and that 2228 // can potentially be avoided with a cleverer API design that we do not have 2229 // as of this time. 2230 2231 InvokeInst *II = 2232 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2233 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2234 II->setDebugLoc(CI->getDebugLoc()); 2235 II->setCallingConv(CI->getCallingConv()); 2236 II->setAttributes(CI->getAttributes()); 2237 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2238 2239 if (DTU) 2240 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2241 2242 // Make sure that anything using the call now uses the invoke! This also 2243 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2244 CI->replaceAllUsesWith(II); 2245 2246 // Delete the original call 2247 Split->getInstList().pop_front(); 2248 return Split; 2249 } 2250 2251 static bool markAliveBlocks(Function &F, 2252 SmallPtrSetImpl<BasicBlock *> &Reachable, 2253 DomTreeUpdater *DTU = nullptr) { 2254 SmallVector<BasicBlock*, 128> Worklist; 2255 BasicBlock *BB = &F.front(); 2256 Worklist.push_back(BB); 2257 Reachable.insert(BB); 2258 bool Changed = false; 2259 do { 2260 BB = Worklist.pop_back_val(); 2261 2262 // Do a quick scan of the basic block, turning any obviously unreachable 2263 // instructions into LLVM unreachable insts. The instruction combining pass 2264 // canonicalizes unreachable insts into stores to null or undef. 2265 for (Instruction &I : *BB) { 2266 if (auto *CI = dyn_cast<CallInst>(&I)) { 2267 Value *Callee = CI->getCalledOperand(); 2268 // Handle intrinsic calls. 2269 if (Function *F = dyn_cast<Function>(Callee)) { 2270 auto IntrinsicID = F->getIntrinsicID(); 2271 // Assumptions that are known to be false are equivalent to 2272 // unreachable. Also, if the condition is undefined, then we make the 2273 // choice most beneficial to the optimizer, and choose that to also be 2274 // unreachable. 2275 if (IntrinsicID == Intrinsic::assume) { 2276 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2277 // Don't insert a call to llvm.trap right before the unreachable. 2278 changeToUnreachable(CI, false, DTU); 2279 Changed = true; 2280 break; 2281 } 2282 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2283 // A call to the guard intrinsic bails out of the current 2284 // compilation unit if the predicate passed to it is false. If the 2285 // predicate is a constant false, then we know the guard will bail 2286 // out of the current compile unconditionally, so all code following 2287 // it is dead. 2288 // 2289 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2290 // guards to treat `undef` as `false` since a guard on `undef` can 2291 // still be useful for widening. 2292 if (match(CI->getArgOperand(0), m_Zero())) 2293 if (!isa<UnreachableInst>(CI->getNextNode())) { 2294 changeToUnreachable(CI->getNextNode(), false, DTU); 2295 Changed = true; 2296 break; 2297 } 2298 } 2299 } else if ((isa<ConstantPointerNull>(Callee) && 2300 !NullPointerIsDefined(CI->getFunction())) || 2301 isa<UndefValue>(Callee)) { 2302 changeToUnreachable(CI, false, DTU); 2303 Changed = true; 2304 break; 2305 } 2306 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2307 // If we found a call to a no-return function, insert an unreachable 2308 // instruction after it. Make sure there isn't *already* one there 2309 // though. 2310 if (!isa<UnreachableInst>(CI->getNextNode())) { 2311 // Don't insert a call to llvm.trap right before the unreachable. 2312 changeToUnreachable(CI->getNextNode(), false, DTU); 2313 Changed = true; 2314 } 2315 break; 2316 } 2317 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2318 // Store to undef and store to null are undefined and used to signal 2319 // that they should be changed to unreachable by passes that can't 2320 // modify the CFG. 2321 2322 // Don't touch volatile stores. 2323 if (SI->isVolatile()) continue; 2324 2325 Value *Ptr = SI->getOperand(1); 2326 2327 if (isa<UndefValue>(Ptr) || 2328 (isa<ConstantPointerNull>(Ptr) && 2329 !NullPointerIsDefined(SI->getFunction(), 2330 SI->getPointerAddressSpace()))) { 2331 changeToUnreachable(SI, false, DTU); 2332 Changed = true; 2333 break; 2334 } 2335 } 2336 } 2337 2338 Instruction *Terminator = BB->getTerminator(); 2339 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2340 // Turn invokes that call 'nounwind' functions into ordinary calls. 2341 Value *Callee = II->getCalledOperand(); 2342 if ((isa<ConstantPointerNull>(Callee) && 2343 !NullPointerIsDefined(BB->getParent())) || 2344 isa<UndefValue>(Callee)) { 2345 changeToUnreachable(II, false, DTU); 2346 Changed = true; 2347 } else { 2348 if (II->doesNotReturn() && 2349 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2350 // If we found an invoke of a no-return function, 2351 // create a new empty basic block with an `unreachable` terminator, 2352 // and set it as the normal destination for the invoke, 2353 // unless that is already the case. 2354 // Note that the original normal destination could have other uses. 2355 BasicBlock *OrigNormalDest = II->getNormalDest(); 2356 OrigNormalDest->removePredecessor(II->getParent()); 2357 LLVMContext &Ctx = II->getContext(); 2358 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2359 Ctx, OrigNormalDest->getName() + ".unreachable", 2360 II->getFunction(), OrigNormalDest); 2361 new UnreachableInst(Ctx, UnreachableNormalDest); 2362 II->setNormalDest(UnreachableNormalDest); 2363 if (DTU) 2364 DTU->applyUpdates( 2365 {{DominatorTree::Delete, BB, OrigNormalDest}, 2366 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2367 Changed = true; 2368 } 2369 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2370 if (II->use_empty() && !II->mayHaveSideEffects()) { 2371 // jump to the normal destination branch. 2372 BasicBlock *NormalDestBB = II->getNormalDest(); 2373 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2374 BranchInst::Create(NormalDestBB, II); 2375 UnwindDestBB->removePredecessor(II->getParent()); 2376 II->eraseFromParent(); 2377 if (DTU) 2378 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2379 } else 2380 changeToCall(II, DTU); 2381 Changed = true; 2382 } 2383 } 2384 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2385 // Remove catchpads which cannot be reached. 2386 struct CatchPadDenseMapInfo { 2387 static CatchPadInst *getEmptyKey() { 2388 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2389 } 2390 2391 static CatchPadInst *getTombstoneKey() { 2392 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2393 } 2394 2395 static unsigned getHashValue(CatchPadInst *CatchPad) { 2396 return static_cast<unsigned>(hash_combine_range( 2397 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2398 } 2399 2400 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2401 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2402 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2403 return LHS == RHS; 2404 return LHS->isIdenticalTo(RHS); 2405 } 2406 }; 2407 2408 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2409 // Set of unique CatchPads. 2410 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2411 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2412 HandlerSet; 2413 detail::DenseSetEmpty Empty; 2414 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2415 E = CatchSwitch->handler_end(); 2416 I != E; ++I) { 2417 BasicBlock *HandlerBB = *I; 2418 if (DTU) 2419 ++NumPerSuccessorCases[HandlerBB]; 2420 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2421 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2422 if (DTU) 2423 --NumPerSuccessorCases[HandlerBB]; 2424 CatchSwitch->removeHandler(I); 2425 --I; 2426 --E; 2427 Changed = true; 2428 } 2429 } 2430 if (DTU) { 2431 std::vector<DominatorTree::UpdateType> Updates; 2432 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2433 if (I.second == 0) 2434 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2435 DTU->applyUpdates(Updates); 2436 } 2437 } 2438 2439 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2440 for (BasicBlock *Successor : successors(BB)) 2441 if (Reachable.insert(Successor).second) 2442 Worklist.push_back(Successor); 2443 } while (!Worklist.empty()); 2444 return Changed; 2445 } 2446 2447 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2448 Instruction *TI = BB->getTerminator(); 2449 2450 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2451 changeToCall(II, DTU); 2452 return; 2453 } 2454 2455 Instruction *NewTI; 2456 BasicBlock *UnwindDest; 2457 2458 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2459 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2460 UnwindDest = CRI->getUnwindDest(); 2461 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2462 auto *NewCatchSwitch = CatchSwitchInst::Create( 2463 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2464 CatchSwitch->getName(), CatchSwitch); 2465 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2466 NewCatchSwitch->addHandler(PadBB); 2467 2468 NewTI = NewCatchSwitch; 2469 UnwindDest = CatchSwitch->getUnwindDest(); 2470 } else { 2471 llvm_unreachable("Could not find unwind successor"); 2472 } 2473 2474 NewTI->takeName(TI); 2475 NewTI->setDebugLoc(TI->getDebugLoc()); 2476 UnwindDest->removePredecessor(BB); 2477 TI->replaceAllUsesWith(NewTI); 2478 TI->eraseFromParent(); 2479 if (DTU) 2480 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2481 } 2482 2483 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2484 /// if they are in a dead cycle. Return true if a change was made, false 2485 /// otherwise. 2486 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2487 MemorySSAUpdater *MSSAU) { 2488 SmallPtrSet<BasicBlock *, 16> Reachable; 2489 bool Changed = markAliveBlocks(F, Reachable, DTU); 2490 2491 // If there are unreachable blocks in the CFG... 2492 if (Reachable.size() == F.size()) 2493 return Changed; 2494 2495 assert(Reachable.size() < F.size()); 2496 2497 // Are there any blocks left to actually delete? 2498 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2499 for (BasicBlock &BB : F) { 2500 // Skip reachable basic blocks 2501 if (Reachable.count(&BB)) 2502 continue; 2503 // Skip already-deleted blocks 2504 if (DTU && DTU->isBBPendingDeletion(&BB)) 2505 continue; 2506 BlocksToRemove.insert(&BB); 2507 } 2508 2509 if (BlocksToRemove.empty()) 2510 return Changed; 2511 2512 Changed = true; 2513 NumRemoved += BlocksToRemove.size(); 2514 2515 if (MSSAU) 2516 MSSAU->removeBlocks(BlocksToRemove); 2517 2518 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2519 2520 return Changed; 2521 } 2522 2523 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2524 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2525 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2526 K->dropUnknownNonDebugMetadata(KnownIDs); 2527 K->getAllMetadataOtherThanDebugLoc(Metadata); 2528 for (const auto &MD : Metadata) { 2529 unsigned Kind = MD.first; 2530 MDNode *JMD = J->getMetadata(Kind); 2531 MDNode *KMD = MD.second; 2532 2533 switch (Kind) { 2534 default: 2535 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2536 break; 2537 case LLVMContext::MD_dbg: 2538 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2539 case LLVMContext::MD_tbaa: 2540 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2541 break; 2542 case LLVMContext::MD_alias_scope: 2543 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2544 break; 2545 case LLVMContext::MD_noalias: 2546 case LLVMContext::MD_mem_parallel_loop_access: 2547 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2548 break; 2549 case LLVMContext::MD_access_group: 2550 K->setMetadata(LLVMContext::MD_access_group, 2551 intersectAccessGroups(K, J)); 2552 break; 2553 case LLVMContext::MD_range: 2554 2555 // If K does move, use most generic range. Otherwise keep the range of 2556 // K. 2557 if (DoesKMove) 2558 // FIXME: If K does move, we should drop the range info and nonnull. 2559 // Currently this function is used with DoesKMove in passes 2560 // doing hoisting/sinking and the current behavior of using the 2561 // most generic range is correct in those cases. 2562 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2563 break; 2564 case LLVMContext::MD_fpmath: 2565 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2566 break; 2567 case LLVMContext::MD_invariant_load: 2568 // Only set the !invariant.load if it is present in both instructions. 2569 K->setMetadata(Kind, JMD); 2570 break; 2571 case LLVMContext::MD_nonnull: 2572 // If K does move, keep nonull if it is present in both instructions. 2573 if (DoesKMove) 2574 K->setMetadata(Kind, JMD); 2575 break; 2576 case LLVMContext::MD_invariant_group: 2577 // Preserve !invariant.group in K. 2578 break; 2579 case LLVMContext::MD_align: 2580 K->setMetadata(Kind, 2581 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2582 break; 2583 case LLVMContext::MD_dereferenceable: 2584 case LLVMContext::MD_dereferenceable_or_null: 2585 K->setMetadata(Kind, 2586 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2587 break; 2588 case LLVMContext::MD_preserve_access_index: 2589 // Preserve !preserve.access.index in K. 2590 break; 2591 } 2592 } 2593 // Set !invariant.group from J if J has it. If both instructions have it 2594 // then we will just pick it from J - even when they are different. 2595 // Also make sure that K is load or store - f.e. combining bitcast with load 2596 // could produce bitcast with invariant.group metadata, which is invalid. 2597 // FIXME: we should try to preserve both invariant.group md if they are 2598 // different, but right now instruction can only have one invariant.group. 2599 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2600 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2601 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2602 } 2603 2604 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2605 bool KDominatesJ) { 2606 unsigned KnownIDs[] = { 2607 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2608 LLVMContext::MD_noalias, LLVMContext::MD_range, 2609 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2610 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2611 LLVMContext::MD_dereferenceable, 2612 LLVMContext::MD_dereferenceable_or_null, 2613 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2614 combineMetadata(K, J, KnownIDs, KDominatesJ); 2615 } 2616 2617 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2618 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2619 Source.getAllMetadata(MD); 2620 MDBuilder MDB(Dest.getContext()); 2621 Type *NewType = Dest.getType(); 2622 const DataLayout &DL = Source.getModule()->getDataLayout(); 2623 for (const auto &MDPair : MD) { 2624 unsigned ID = MDPair.first; 2625 MDNode *N = MDPair.second; 2626 // Note, essentially every kind of metadata should be preserved here! This 2627 // routine is supposed to clone a load instruction changing *only its type*. 2628 // The only metadata it makes sense to drop is metadata which is invalidated 2629 // when the pointer type changes. This should essentially never be the case 2630 // in LLVM, but we explicitly switch over only known metadata to be 2631 // conservatively correct. If you are adding metadata to LLVM which pertains 2632 // to loads, you almost certainly want to add it here. 2633 switch (ID) { 2634 case LLVMContext::MD_dbg: 2635 case LLVMContext::MD_tbaa: 2636 case LLVMContext::MD_prof: 2637 case LLVMContext::MD_fpmath: 2638 case LLVMContext::MD_tbaa_struct: 2639 case LLVMContext::MD_invariant_load: 2640 case LLVMContext::MD_alias_scope: 2641 case LLVMContext::MD_noalias: 2642 case LLVMContext::MD_nontemporal: 2643 case LLVMContext::MD_mem_parallel_loop_access: 2644 case LLVMContext::MD_access_group: 2645 // All of these directly apply. 2646 Dest.setMetadata(ID, N); 2647 break; 2648 2649 case LLVMContext::MD_nonnull: 2650 copyNonnullMetadata(Source, N, Dest); 2651 break; 2652 2653 case LLVMContext::MD_align: 2654 case LLVMContext::MD_dereferenceable: 2655 case LLVMContext::MD_dereferenceable_or_null: 2656 // These only directly apply if the new type is also a pointer. 2657 if (NewType->isPointerTy()) 2658 Dest.setMetadata(ID, N); 2659 break; 2660 2661 case LLVMContext::MD_range: 2662 copyRangeMetadata(DL, Source, N, Dest); 2663 break; 2664 } 2665 } 2666 } 2667 2668 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2669 auto *ReplInst = dyn_cast<Instruction>(Repl); 2670 if (!ReplInst) 2671 return; 2672 2673 // Patch the replacement so that it is not more restrictive than the value 2674 // being replaced. 2675 // Note that if 'I' is a load being replaced by some operation, 2676 // for example, by an arithmetic operation, then andIRFlags() 2677 // would just erase all math flags from the original arithmetic 2678 // operation, which is clearly not wanted and not needed. 2679 if (!isa<LoadInst>(I)) 2680 ReplInst->andIRFlags(I); 2681 2682 // FIXME: If both the original and replacement value are part of the 2683 // same control-flow region (meaning that the execution of one 2684 // guarantees the execution of the other), then we can combine the 2685 // noalias scopes here and do better than the general conservative 2686 // answer used in combineMetadata(). 2687 2688 // In general, GVN unifies expressions over different control-flow 2689 // regions, and so we need a conservative combination of the noalias 2690 // scopes. 2691 static const unsigned KnownIDs[] = { 2692 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2693 LLVMContext::MD_noalias, LLVMContext::MD_range, 2694 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2695 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2696 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2697 combineMetadata(ReplInst, I, KnownIDs, false); 2698 } 2699 2700 template <typename RootType, typename DominatesFn> 2701 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2702 const RootType &Root, 2703 const DominatesFn &Dominates) { 2704 assert(From->getType() == To->getType()); 2705 2706 unsigned Count = 0; 2707 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2708 if (!Dominates(Root, U)) 2709 continue; 2710 U.set(To); 2711 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2712 << "' as " << *To << " in " << *U << "\n"); 2713 ++Count; 2714 } 2715 return Count; 2716 } 2717 2718 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2719 assert(From->getType() == To->getType()); 2720 auto *BB = From->getParent(); 2721 unsigned Count = 0; 2722 2723 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2724 auto *I = cast<Instruction>(U.getUser()); 2725 if (I->getParent() == BB) 2726 continue; 2727 U.set(To); 2728 ++Count; 2729 } 2730 return Count; 2731 } 2732 2733 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2734 DominatorTree &DT, 2735 const BasicBlockEdge &Root) { 2736 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2737 return DT.dominates(Root, U); 2738 }; 2739 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2740 } 2741 2742 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2743 DominatorTree &DT, 2744 const BasicBlock *BB) { 2745 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2746 return DT.dominates(BB, U); 2747 }; 2748 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2749 } 2750 2751 bool llvm::callsGCLeafFunction(const CallBase *Call, 2752 const TargetLibraryInfo &TLI) { 2753 // Check if the function is specifically marked as a gc leaf function. 2754 if (Call->hasFnAttr("gc-leaf-function")) 2755 return true; 2756 if (const Function *F = Call->getCalledFunction()) { 2757 if (F->hasFnAttribute("gc-leaf-function")) 2758 return true; 2759 2760 if (auto IID = F->getIntrinsicID()) { 2761 // Most LLVM intrinsics do not take safepoints. 2762 return IID != Intrinsic::experimental_gc_statepoint && 2763 IID != Intrinsic::experimental_deoptimize && 2764 IID != Intrinsic::memcpy_element_unordered_atomic && 2765 IID != Intrinsic::memmove_element_unordered_atomic; 2766 } 2767 } 2768 2769 // Lib calls can be materialized by some passes, and won't be 2770 // marked as 'gc-leaf-function.' All available Libcalls are 2771 // GC-leaf. 2772 LibFunc LF; 2773 if (TLI.getLibFunc(*Call, LF)) { 2774 return TLI.has(LF); 2775 } 2776 2777 return false; 2778 } 2779 2780 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2781 LoadInst &NewLI) { 2782 auto *NewTy = NewLI.getType(); 2783 2784 // This only directly applies if the new type is also a pointer. 2785 if (NewTy->isPointerTy()) { 2786 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2787 return; 2788 } 2789 2790 // The only other translation we can do is to integral loads with !range 2791 // metadata. 2792 if (!NewTy->isIntegerTy()) 2793 return; 2794 2795 MDBuilder MDB(NewLI.getContext()); 2796 const Value *Ptr = OldLI.getPointerOperand(); 2797 auto *ITy = cast<IntegerType>(NewTy); 2798 auto *NullInt = ConstantExpr::getPtrToInt( 2799 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2800 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2801 NewLI.setMetadata(LLVMContext::MD_range, 2802 MDB.createRange(NonNullInt, NullInt)); 2803 } 2804 2805 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2806 MDNode *N, LoadInst &NewLI) { 2807 auto *NewTy = NewLI.getType(); 2808 2809 // Give up unless it is converted to a pointer where there is a single very 2810 // valuable mapping we can do reliably. 2811 // FIXME: It would be nice to propagate this in more ways, but the type 2812 // conversions make it hard. 2813 if (!NewTy->isPointerTy()) 2814 return; 2815 2816 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2817 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2818 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2819 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2820 } 2821 } 2822 2823 void llvm::dropDebugUsers(Instruction &I) { 2824 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2825 findDbgUsers(DbgUsers, &I); 2826 for (auto *DII : DbgUsers) 2827 DII->eraseFromParent(); 2828 } 2829 2830 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2831 BasicBlock *BB) { 2832 // Since we are moving the instructions out of its basic block, we do not 2833 // retain their original debug locations (DILocations) and debug intrinsic 2834 // instructions. 2835 // 2836 // Doing so would degrade the debugging experience and adversely affect the 2837 // accuracy of profiling information. 2838 // 2839 // Currently, when hoisting the instructions, we take the following actions: 2840 // - Remove their debug intrinsic instructions. 2841 // - Set their debug locations to the values from the insertion point. 2842 // 2843 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2844 // need to be deleted, is because there will not be any instructions with a 2845 // DILocation in either branch left after performing the transformation. We 2846 // can only insert a dbg.value after the two branches are joined again. 2847 // 2848 // See PR38762, PR39243 for more details. 2849 // 2850 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2851 // encode predicated DIExpressions that yield different results on different 2852 // code paths. 2853 2854 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2855 Instruction *I = &*II; 2856 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2857 if (I->isUsedByMetadata()) 2858 dropDebugUsers(*I); 2859 if (I->isDebugOrPseudoInst()) { 2860 // Remove DbgInfo and pseudo probe Intrinsics. 2861 II = I->eraseFromParent(); 2862 continue; 2863 } 2864 I->setDebugLoc(InsertPt->getDebugLoc()); 2865 ++II; 2866 } 2867 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2868 BB->begin(), 2869 BB->getTerminator()->getIterator()); 2870 } 2871 2872 namespace { 2873 2874 /// A potential constituent of a bitreverse or bswap expression. See 2875 /// collectBitParts for a fuller explanation. 2876 struct BitPart { 2877 BitPart(Value *P, unsigned BW) : Provider(P) { 2878 Provenance.resize(BW); 2879 } 2880 2881 /// The Value that this is a bitreverse/bswap of. 2882 Value *Provider; 2883 2884 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2885 /// in Provider becomes bit B in the result of this expression. 2886 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2887 2888 enum { Unset = -1 }; 2889 }; 2890 2891 } // end anonymous namespace 2892 2893 /// Analyze the specified subexpression and see if it is capable of providing 2894 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2895 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2896 /// the output of the expression came from a corresponding bit in some other 2897 /// value. This function is recursive, and the end result is a mapping of 2898 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2899 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2900 /// 2901 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2902 /// that the expression deposits the low byte of %X into the high byte of the 2903 /// result and that all other bits are zero. This expression is accepted and a 2904 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2905 /// [0-7]. 2906 /// 2907 /// For vector types, all analysis is performed at the per-element level. No 2908 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2909 /// constant masks must be splatted across all elements. 2910 /// 2911 /// To avoid revisiting values, the BitPart results are memoized into the 2912 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2913 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2914 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2915 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2916 /// type instead to provide the same functionality. 2917 /// 2918 /// Because we pass around references into \c BPS, we must use a container that 2919 /// does not invalidate internal references (std::map instead of DenseMap). 2920 static const Optional<BitPart> & 2921 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2922 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2923 bool &FoundRoot) { 2924 auto I = BPS.find(V); 2925 if (I != BPS.end()) 2926 return I->second; 2927 2928 auto &Result = BPS[V] = None; 2929 auto BitWidth = V->getType()->getScalarSizeInBits(); 2930 2931 // Can't do integer/elements > 128 bits. 2932 if (BitWidth > 128) 2933 return Result; 2934 2935 // Prevent stack overflow by limiting the recursion depth 2936 if (Depth == BitPartRecursionMaxDepth) { 2937 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2938 return Result; 2939 } 2940 2941 if (auto *I = dyn_cast<Instruction>(V)) { 2942 Value *X, *Y; 2943 const APInt *C; 2944 2945 // If this is an or instruction, it may be an inner node of the bswap. 2946 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2947 // Check we have both sources and they are from the same provider. 2948 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2949 Depth + 1, FoundRoot); 2950 if (!A || !A->Provider) 2951 return Result; 2952 2953 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2954 Depth + 1, FoundRoot); 2955 if (!B || A->Provider != B->Provider) 2956 return Result; 2957 2958 // Try and merge the two together. 2959 Result = BitPart(A->Provider, BitWidth); 2960 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2961 if (A->Provenance[BitIdx] != BitPart::Unset && 2962 B->Provenance[BitIdx] != BitPart::Unset && 2963 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2964 return Result = None; 2965 2966 if (A->Provenance[BitIdx] == BitPart::Unset) 2967 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2968 else 2969 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2970 } 2971 2972 return Result; 2973 } 2974 2975 // If this is a logical shift by a constant, recurse then shift the result. 2976 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2977 const APInt &BitShift = *C; 2978 2979 // Ensure the shift amount is defined. 2980 if (BitShift.uge(BitWidth)) 2981 return Result; 2982 2983 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2984 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2985 return Result; 2986 2987 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2988 Depth + 1, FoundRoot); 2989 if (!Res) 2990 return Result; 2991 Result = Res; 2992 2993 // Perform the "shift" on BitProvenance. 2994 auto &P = Result->Provenance; 2995 if (I->getOpcode() == Instruction::Shl) { 2996 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2997 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2998 } else { 2999 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3000 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3001 } 3002 3003 return Result; 3004 } 3005 3006 // If this is a logical 'and' with a mask that clears bits, recurse then 3007 // unset the appropriate bits. 3008 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3009 const APInt &AndMask = *C; 3010 3011 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3012 // early exit. 3013 unsigned NumMaskedBits = AndMask.countPopulation(); 3014 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3015 return Result; 3016 3017 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3018 Depth + 1, FoundRoot); 3019 if (!Res) 3020 return Result; 3021 Result = Res; 3022 3023 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3024 // If the AndMask is zero for this bit, clear the bit. 3025 if (AndMask[BitIdx] == 0) 3026 Result->Provenance[BitIdx] = BitPart::Unset; 3027 return Result; 3028 } 3029 3030 // If this is a zext instruction zero extend the result. 3031 if (match(V, m_ZExt(m_Value(X)))) { 3032 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3033 Depth + 1, FoundRoot); 3034 if (!Res) 3035 return Result; 3036 3037 Result = BitPart(Res->Provider, BitWidth); 3038 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3039 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3040 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3041 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3042 Result->Provenance[BitIdx] = BitPart::Unset; 3043 return Result; 3044 } 3045 3046 // If this is a truncate instruction, extract the lower bits. 3047 if (match(V, m_Trunc(m_Value(X)))) { 3048 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3049 Depth + 1, FoundRoot); 3050 if (!Res) 3051 return Result; 3052 3053 Result = BitPart(Res->Provider, BitWidth); 3054 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3055 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3056 return Result; 3057 } 3058 3059 // BITREVERSE - most likely due to us previous matching a partial 3060 // bitreverse. 3061 if (match(V, m_BitReverse(m_Value(X)))) { 3062 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3063 Depth + 1, FoundRoot); 3064 if (!Res) 3065 return Result; 3066 3067 Result = BitPart(Res->Provider, BitWidth); 3068 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3069 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3070 return Result; 3071 } 3072 3073 // BSWAP - most likely due to us previous matching a partial bswap. 3074 if (match(V, m_BSwap(m_Value(X)))) { 3075 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3076 Depth + 1, FoundRoot); 3077 if (!Res) 3078 return Result; 3079 3080 unsigned ByteWidth = BitWidth / 8; 3081 Result = BitPart(Res->Provider, BitWidth); 3082 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3083 unsigned ByteBitOfs = ByteIdx * 8; 3084 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3085 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3086 Res->Provenance[ByteBitOfs + BitIdx]; 3087 } 3088 return Result; 3089 } 3090 3091 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3092 // amount (modulo). 3093 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3094 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3095 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3096 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3097 // We can treat fshr as a fshl by flipping the modulo amount. 3098 unsigned ModAmt = C->urem(BitWidth); 3099 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3100 ModAmt = BitWidth - ModAmt; 3101 3102 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3103 if (!MatchBitReversals && (ModAmt % 8) != 0) 3104 return Result; 3105 3106 // Check we have both sources and they are from the same provider. 3107 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3108 Depth + 1, FoundRoot); 3109 if (!LHS || !LHS->Provider) 3110 return Result; 3111 3112 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3113 Depth + 1, FoundRoot); 3114 if (!RHS || LHS->Provider != RHS->Provider) 3115 return Result; 3116 3117 unsigned StartBitRHS = BitWidth - ModAmt; 3118 Result = BitPart(LHS->Provider, BitWidth); 3119 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3120 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3121 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3122 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3123 return Result; 3124 } 3125 } 3126 3127 // If we've already found a root input value then we're never going to merge 3128 // these back together. 3129 if (FoundRoot) 3130 return Result; 3131 3132 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3133 // be the root input value to the bswap/bitreverse. 3134 FoundRoot = true; 3135 Result = BitPart(V, BitWidth); 3136 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3137 Result->Provenance[BitIdx] = BitIdx; 3138 return Result; 3139 } 3140 3141 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3142 unsigned BitWidth) { 3143 if (From % 8 != To % 8) 3144 return false; 3145 // Convert from bit indices to byte indices and check for a byte reversal. 3146 From >>= 3; 3147 To >>= 3; 3148 BitWidth >>= 3; 3149 return From == BitWidth - To - 1; 3150 } 3151 3152 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3153 unsigned BitWidth) { 3154 return From == BitWidth - To - 1; 3155 } 3156 3157 bool llvm::recognizeBSwapOrBitReverseIdiom( 3158 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3159 SmallVectorImpl<Instruction *> &InsertedInsts) { 3160 if (!match(I, m_Or(m_Value(), m_Value())) && 3161 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3162 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3163 return false; 3164 if (!MatchBSwaps && !MatchBitReversals) 3165 return false; 3166 Type *ITy = I->getType(); 3167 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3168 return false; // Can't do integer/elements > 128 bits. 3169 3170 // Try to find all the pieces corresponding to the bswap. 3171 bool FoundRoot = false; 3172 std::map<Value *, Optional<BitPart>> BPS; 3173 const auto &Res = 3174 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3175 if (!Res) 3176 return false; 3177 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3178 assert(all_of(BitProvenance, 3179 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3180 "Illegal bit provenance index"); 3181 3182 // If the upper bits are zero, then attempt to perform as a truncated op. 3183 Type *DemandedTy = ITy; 3184 if (BitProvenance.back() == BitPart::Unset) { 3185 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3186 BitProvenance = BitProvenance.drop_back(); 3187 if (BitProvenance.empty()) 3188 return false; // TODO - handle null value? 3189 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3190 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3191 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3192 } 3193 3194 // Check BitProvenance hasn't found a source larger than the result type. 3195 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3196 if (DemandedBW > ITy->getScalarSizeInBits()) 3197 return false; 3198 3199 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3200 // only byteswap values with an even number of bytes. 3201 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3202 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3203 bool OKForBitReverse = MatchBitReversals; 3204 for (unsigned BitIdx = 0; 3205 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3206 if (BitProvenance[BitIdx] == BitPart::Unset) { 3207 DemandedMask.clearBit(BitIdx); 3208 continue; 3209 } 3210 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3211 DemandedBW); 3212 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3213 BitIdx, DemandedBW); 3214 } 3215 3216 Intrinsic::ID Intrin; 3217 if (OKForBSwap) 3218 Intrin = Intrinsic::bswap; 3219 else if (OKForBitReverse) 3220 Intrin = Intrinsic::bitreverse; 3221 else 3222 return false; 3223 3224 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3225 Value *Provider = Res->Provider; 3226 3227 // We may need to truncate the provider. 3228 if (DemandedTy != Provider->getType()) { 3229 auto *Trunc = 3230 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3231 InsertedInsts.push_back(Trunc); 3232 Provider = Trunc; 3233 } 3234 3235 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3236 InsertedInsts.push_back(Result); 3237 3238 if (!DemandedMask.isAllOnes()) { 3239 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3240 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3241 InsertedInsts.push_back(Result); 3242 } 3243 3244 // We may need to zeroextend back to the result type. 3245 if (ITy != Result->getType()) { 3246 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3247 InsertedInsts.push_back(ExtInst); 3248 } 3249 3250 return true; 3251 } 3252 3253 // CodeGen has special handling for some string functions that may replace 3254 // them with target-specific intrinsics. Since that'd skip our interceptors 3255 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3256 // we mark affected calls as NoBuiltin, which will disable optimization 3257 // in CodeGen. 3258 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3259 CallInst *CI, const TargetLibraryInfo *TLI) { 3260 Function *F = CI->getCalledFunction(); 3261 LibFunc Func; 3262 if (F && !F->hasLocalLinkage() && F->hasName() && 3263 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3264 !F->doesNotAccessMemory()) 3265 CI->addFnAttr(Attribute::NoBuiltin); 3266 } 3267 3268 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3269 // We can't have a PHI with a metadata type. 3270 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3271 return false; 3272 3273 // Early exit. 3274 if (!isa<Constant>(I->getOperand(OpIdx))) 3275 return true; 3276 3277 switch (I->getOpcode()) { 3278 default: 3279 return true; 3280 case Instruction::Call: 3281 case Instruction::Invoke: { 3282 const auto &CB = cast<CallBase>(*I); 3283 3284 // Can't handle inline asm. Skip it. 3285 if (CB.isInlineAsm()) 3286 return false; 3287 3288 // Constant bundle operands may need to retain their constant-ness for 3289 // correctness. 3290 if (CB.isBundleOperand(OpIdx)) 3291 return false; 3292 3293 if (OpIdx < CB.arg_size()) { 3294 // Some variadic intrinsics require constants in the variadic arguments, 3295 // which currently aren't markable as immarg. 3296 if (isa<IntrinsicInst>(CB) && 3297 OpIdx >= CB.getFunctionType()->getNumParams()) { 3298 // This is known to be OK for stackmap. 3299 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3300 } 3301 3302 // gcroot is a special case, since it requires a constant argument which 3303 // isn't also required to be a simple ConstantInt. 3304 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3305 return false; 3306 3307 // Some intrinsic operands are required to be immediates. 3308 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3309 } 3310 3311 // It is never allowed to replace the call argument to an intrinsic, but it 3312 // may be possible for a call. 3313 return !isa<IntrinsicInst>(CB); 3314 } 3315 case Instruction::ShuffleVector: 3316 // Shufflevector masks are constant. 3317 return OpIdx != 2; 3318 case Instruction::Switch: 3319 case Instruction::ExtractValue: 3320 // All operands apart from the first are constant. 3321 return OpIdx == 0; 3322 case Instruction::InsertValue: 3323 // All operands apart from the first and the second are constant. 3324 return OpIdx < 2; 3325 case Instruction::Alloca: 3326 // Static allocas (constant size in the entry block) are handled by 3327 // prologue/epilogue insertion so they're free anyway. We definitely don't 3328 // want to make them non-constant. 3329 return !cast<AllocaInst>(I)->isStaticAlloca(); 3330 case Instruction::GetElementPtr: 3331 if (OpIdx == 0) 3332 return true; 3333 gep_type_iterator It = gep_type_begin(I); 3334 for (auto E = std::next(It, OpIdx); It != E; ++It) 3335 if (It.isStruct()) 3336 return false; 3337 return true; 3338 } 3339 } 3340 3341 Value *llvm::invertCondition(Value *Condition) { 3342 // First: Check if it's a constant 3343 if (Constant *C = dyn_cast<Constant>(Condition)) 3344 return ConstantExpr::getNot(C); 3345 3346 // Second: If the condition is already inverted, return the original value 3347 Value *NotCondition; 3348 if (match(Condition, m_Not(m_Value(NotCondition)))) 3349 return NotCondition; 3350 3351 BasicBlock *Parent = nullptr; 3352 Instruction *Inst = dyn_cast<Instruction>(Condition); 3353 if (Inst) 3354 Parent = Inst->getParent(); 3355 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3356 Parent = &Arg->getParent()->getEntryBlock(); 3357 assert(Parent && "Unsupported condition to invert"); 3358 3359 // Third: Check all the users for an invert 3360 for (User *U : Condition->users()) 3361 if (Instruction *I = dyn_cast<Instruction>(U)) 3362 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3363 return I; 3364 3365 // Last option: Create a new instruction 3366 auto *Inverted = 3367 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3368 if (Inst && !isa<PHINode>(Inst)) 3369 Inverted->insertAfter(Inst); 3370 else 3371 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3372 return Inverted; 3373 } 3374 3375 bool llvm::inferAttributesFromOthers(Function &F) { 3376 // Note: We explicitly check for attributes rather than using cover functions 3377 // because some of the cover functions include the logic being implemented. 3378 3379 bool Changed = false; 3380 // readnone + not convergent implies nosync 3381 if (!F.hasFnAttribute(Attribute::NoSync) && 3382 F.doesNotAccessMemory() && !F.isConvergent()) { 3383 F.setNoSync(); 3384 Changed = true; 3385 } 3386 3387 // readonly implies nofree 3388 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3389 F.setDoesNotFreeMemory(); 3390 Changed = true; 3391 } 3392 3393 // willreturn implies mustprogress 3394 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3395 F.setMustProgress(); 3396 Changed = true; 3397 } 3398 3399 // TODO: There are a bunch of cases of restrictive memory effects we 3400 // can infer by inspecting arguments of argmemonly-ish functions. 3401 3402 return Changed; 3403 } 3404