1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/ProfDataUtils.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <optional> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 extern cl::opt<bool> UseNewDbgInfoFormat; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 96 97 static cl::opt<bool> PHICSEDebugHash( 98 "phicse-debug-hash", 99 #ifdef EXPENSIVE_CHECKS 100 cl::init(true), 101 #else 102 cl::init(false), 103 #endif 104 cl::Hidden, 105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 106 "function is well-behaved w.r.t. its isEqual predicate")); 107 108 static cl::opt<unsigned> PHICSENumPHISmallSize( 109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 110 cl::desc( 111 "When the basic block contains not more than this number of PHI nodes, " 112 "perform a (faster!) exhaustive search instead of set-driven one.")); 113 114 // Max recursion depth for collectBitParts used when detecting bswap and 115 // bitreverse idioms. 116 static const unsigned BitPartRecursionMaxDepth = 48; 117 118 //===----------------------------------------------------------------------===// 119 // Local constant propagation. 120 // 121 122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 123 /// constant value, convert it into an unconditional branch to the constant 124 /// destination. This is a nontrivial operation because the successors of this 125 /// basic block must have their PHI nodes updated. 126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 127 /// conditions and indirectbr addresses this might make dead if 128 /// DeleteDeadConditions is true. 129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 130 const TargetLibraryInfo *TLI, 131 DomTreeUpdater *DTU) { 132 Instruction *T = BB->getTerminator(); 133 IRBuilder<> Builder(T); 134 135 // Branch - See if we are conditional jumping on constant 136 if (auto *BI = dyn_cast<BranchInst>(T)) { 137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 138 139 BasicBlock *Dest1 = BI->getSuccessor(0); 140 BasicBlock *Dest2 = BI->getSuccessor(1); 141 142 if (Dest2 == Dest1) { // Conditional branch to same location? 143 // This branch matches something like this: 144 // br bool %cond, label %Dest, label %Dest 145 // and changes it into: br label %Dest 146 147 // Let the basic block know that we are letting go of one copy of it. 148 assert(BI->getParent() && "Terminator not inserted in block!"); 149 Dest1->removePredecessor(BI->getParent()); 150 151 // Replace the conditional branch with an unconditional one. 152 BranchInst *NewBI = Builder.CreateBr(Dest1); 153 154 // Transfer the metadata to the new branch instruction. 155 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 156 LLVMContext::MD_annotation}); 157 158 Value *Cond = BI->getCondition(); 159 BI->eraseFromParent(); 160 if (DeleteDeadConditions) 161 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 162 return true; 163 } 164 165 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 166 // Are we branching on constant? 167 // YES. Change to unconditional branch... 168 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 169 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 170 171 // Let the basic block know that we are letting go of it. Based on this, 172 // it will adjust it's PHI nodes. 173 OldDest->removePredecessor(BB); 174 175 // Replace the conditional branch with an unconditional one. 176 BranchInst *NewBI = Builder.CreateBr(Destination); 177 178 // Transfer the metadata to the new branch instruction. 179 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 180 LLVMContext::MD_annotation}); 181 182 BI->eraseFromParent(); 183 if (DTU) 184 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 185 return true; 186 } 187 188 return false; 189 } 190 191 if (auto *SI = dyn_cast<SwitchInst>(T)) { 192 // If we are switching on a constant, we can convert the switch to an 193 // unconditional branch. 194 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 195 BasicBlock *DefaultDest = SI->getDefaultDest(); 196 BasicBlock *TheOnlyDest = DefaultDest; 197 198 // If the default is unreachable, ignore it when searching for TheOnlyDest. 199 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 200 SI->getNumCases() > 0) { 201 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 202 } 203 204 bool Changed = false; 205 206 // Figure out which case it goes to. 207 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 208 // Found case matching a constant operand? 209 if (It->getCaseValue() == CI) { 210 TheOnlyDest = It->getCaseSuccessor(); 211 break; 212 } 213 214 // Check to see if this branch is going to the same place as the default 215 // dest. If so, eliminate it as an explicit compare. 216 if (It->getCaseSuccessor() == DefaultDest) { 217 MDNode *MD = getValidBranchWeightMDNode(*SI); 218 unsigned NCases = SI->getNumCases(); 219 // Fold the case metadata into the default if there will be any branches 220 // left, unless the metadata doesn't match the switch. 221 if (NCases > 1 && MD) { 222 // Collect branch weights into a vector. 223 SmallVector<uint32_t, 8> Weights; 224 extractBranchWeights(MD, Weights); 225 226 // Merge weight of this case to the default weight. 227 unsigned Idx = It->getCaseIndex(); 228 // TODO: Add overflow check. 229 Weights[0] += Weights[Idx + 1]; 230 // Remove weight for this case. 231 std::swap(Weights[Idx + 1], Weights.back()); 232 Weights.pop_back(); 233 setBranchWeights(*SI, Weights); 234 } 235 // Remove this entry. 236 BasicBlock *ParentBB = SI->getParent(); 237 DefaultDest->removePredecessor(ParentBB); 238 It = SI->removeCase(It); 239 End = SI->case_end(); 240 241 // Removing this case may have made the condition constant. In that 242 // case, update CI and restart iteration through the cases. 243 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 244 CI = NewCI; 245 It = SI->case_begin(); 246 } 247 248 Changed = true; 249 continue; 250 } 251 252 // Otherwise, check to see if the switch only branches to one destination. 253 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 254 // destinations. 255 if (It->getCaseSuccessor() != TheOnlyDest) 256 TheOnlyDest = nullptr; 257 258 // Increment this iterator as we haven't removed the case. 259 ++It; 260 } 261 262 if (CI && !TheOnlyDest) { 263 // Branching on a constant, but not any of the cases, go to the default 264 // successor. 265 TheOnlyDest = SI->getDefaultDest(); 266 } 267 268 // If we found a single destination that we can fold the switch into, do so 269 // now. 270 if (TheOnlyDest) { 271 // Insert the new branch. 272 Builder.CreateBr(TheOnlyDest); 273 BasicBlock *BB = SI->getParent(); 274 275 SmallSet<BasicBlock *, 8> RemovedSuccessors; 276 277 // Remove entries from PHI nodes which we no longer branch to... 278 BasicBlock *SuccToKeep = TheOnlyDest; 279 for (BasicBlock *Succ : successors(SI)) { 280 if (DTU && Succ != TheOnlyDest) 281 RemovedSuccessors.insert(Succ); 282 // Found case matching a constant operand? 283 if (Succ == SuccToKeep) { 284 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 285 } else { 286 Succ->removePredecessor(BB); 287 } 288 } 289 290 // Delete the old switch. 291 Value *Cond = SI->getCondition(); 292 SI->eraseFromParent(); 293 if (DeleteDeadConditions) 294 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 295 if (DTU) { 296 std::vector<DominatorTree::UpdateType> Updates; 297 Updates.reserve(RemovedSuccessors.size()); 298 for (auto *RemovedSuccessor : RemovedSuccessors) 299 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 300 DTU->applyUpdates(Updates); 301 } 302 return true; 303 } 304 305 if (SI->getNumCases() == 1) { 306 // Otherwise, we can fold this switch into a conditional branch 307 // instruction if it has only one non-default destination. 308 auto FirstCase = *SI->case_begin(); 309 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 310 FirstCase.getCaseValue(), "cond"); 311 312 // Insert the new branch. 313 BranchInst *NewBr = Builder.CreateCondBr(Cond, 314 FirstCase.getCaseSuccessor(), 315 SI->getDefaultDest()); 316 SmallVector<uint32_t> Weights; 317 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 318 uint32_t DefWeight = Weights[0]; 319 uint32_t CaseWeight = Weights[1]; 320 // The TrueWeight should be the weight for the single case of SI. 321 NewBr->setMetadata(LLVMContext::MD_prof, 322 MDBuilder(BB->getContext()) 323 .createBranchWeights(CaseWeight, DefWeight)); 324 } 325 326 // Update make.implicit metadata to the newly-created conditional branch. 327 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 328 if (MakeImplicitMD) 329 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 330 331 // Delete the old switch. 332 SI->eraseFromParent(); 333 return true; 334 } 335 return Changed; 336 } 337 338 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 339 // indirectbr blockaddress(@F, @BB) -> br label @BB 340 if (auto *BA = 341 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 342 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 343 SmallSet<BasicBlock *, 8> RemovedSuccessors; 344 345 // Insert the new branch. 346 Builder.CreateBr(TheOnlyDest); 347 348 BasicBlock *SuccToKeep = TheOnlyDest; 349 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 350 BasicBlock *DestBB = IBI->getDestination(i); 351 if (DTU && DestBB != TheOnlyDest) 352 RemovedSuccessors.insert(DestBB); 353 if (IBI->getDestination(i) == SuccToKeep) { 354 SuccToKeep = nullptr; 355 } else { 356 DestBB->removePredecessor(BB); 357 } 358 } 359 Value *Address = IBI->getAddress(); 360 IBI->eraseFromParent(); 361 if (DeleteDeadConditions) 362 // Delete pointer cast instructions. 363 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 364 365 // Also zap the blockaddress constant if there are no users remaining, 366 // otherwise the destination is still marked as having its address taken. 367 if (BA->use_empty()) 368 BA->destroyConstant(); 369 370 // If we didn't find our destination in the IBI successor list, then we 371 // have undefined behavior. Replace the unconditional branch with an 372 // 'unreachable' instruction. 373 if (SuccToKeep) { 374 BB->getTerminator()->eraseFromParent(); 375 new UnreachableInst(BB->getContext(), BB); 376 } 377 378 if (DTU) { 379 std::vector<DominatorTree::UpdateType> Updates; 380 Updates.reserve(RemovedSuccessors.size()); 381 for (auto *RemovedSuccessor : RemovedSuccessors) 382 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 383 DTU->applyUpdates(Updates); 384 } 385 return true; 386 } 387 } 388 389 return false; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // Local dead code elimination. 394 // 395 396 /// isInstructionTriviallyDead - Return true if the result produced by the 397 /// instruction is not used, and the instruction has no side effects. 398 /// 399 bool llvm::isInstructionTriviallyDead(Instruction *I, 400 const TargetLibraryInfo *TLI) { 401 if (!I->use_empty()) 402 return false; 403 return wouldInstructionBeTriviallyDead(I, TLI); 404 } 405 406 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 407 Instruction *I, const TargetLibraryInfo *TLI) { 408 // Instructions that are "markers" and have implied meaning on code around 409 // them (without explicit uses), are not dead on unused paths. 410 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 411 if (II->getIntrinsicID() == Intrinsic::stacksave || 412 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 413 II->isLifetimeStartOrEnd()) 414 return false; 415 return wouldInstructionBeTriviallyDead(I, TLI); 416 } 417 418 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 419 const TargetLibraryInfo *TLI) { 420 if (I->isTerminator()) 421 return false; 422 423 // We don't want the landingpad-like instructions removed by anything this 424 // general. 425 if (I->isEHPad()) 426 return false; 427 428 // We don't want debug info removed by anything this general. 429 if (isa<DbgVariableIntrinsic>(I)) 430 return false; 431 432 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 433 if (DLI->getLabel()) 434 return false; 435 return true; 436 } 437 438 if (auto *CB = dyn_cast<CallBase>(I)) 439 if (isRemovableAlloc(CB, TLI)) 440 return true; 441 442 if (!I->willReturn()) { 443 auto *II = dyn_cast<IntrinsicInst>(I); 444 if (!II) 445 return false; 446 447 switch (II->getIntrinsicID()) { 448 case Intrinsic::experimental_guard: { 449 // Guards on true are operationally no-ops. In the future we can 450 // consider more sophisticated tradeoffs for guards considering potential 451 // for check widening, but for now we keep things simple. 452 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 453 return Cond && Cond->isOne(); 454 } 455 // TODO: These intrinsics are not safe to remove, because this may remove 456 // a well-defined trap. 457 case Intrinsic::wasm_trunc_signed: 458 case Intrinsic::wasm_trunc_unsigned: 459 case Intrinsic::ptrauth_auth: 460 case Intrinsic::ptrauth_resign: 461 return true; 462 default: 463 return false; 464 } 465 } 466 467 if (!I->mayHaveSideEffects()) 468 return true; 469 470 // Special case intrinsics that "may have side effects" but can be deleted 471 // when dead. 472 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 473 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 474 if (II->getIntrinsicID() == Intrinsic::stacksave || 475 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 476 return true; 477 478 if (II->isLifetimeStartOrEnd()) { 479 auto *Arg = II->getArgOperand(1); 480 // Lifetime intrinsics are dead when their right-hand is undef. 481 if (isa<UndefValue>(Arg)) 482 return true; 483 // If the right-hand is an alloc, global, or argument and the only uses 484 // are lifetime intrinsics then the intrinsics are dead. 485 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 486 return llvm::all_of(Arg->uses(), [](Use &Use) { 487 if (IntrinsicInst *IntrinsicUse = 488 dyn_cast<IntrinsicInst>(Use.getUser())) 489 return IntrinsicUse->isLifetimeStartOrEnd(); 490 return false; 491 }); 492 return false; 493 } 494 495 // Assumptions are dead if their condition is trivially true. 496 if (II->getIntrinsicID() == Intrinsic::assume && 497 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 498 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 499 return !Cond->isZero(); 500 501 return false; 502 } 503 504 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 505 std::optional<fp::ExceptionBehavior> ExBehavior = 506 FPI->getExceptionBehavior(); 507 return *ExBehavior != fp::ebStrict; 508 } 509 } 510 511 if (auto *Call = dyn_cast<CallBase>(I)) { 512 if (Value *FreedOp = getFreedOperand(Call, TLI)) 513 if (Constant *C = dyn_cast<Constant>(FreedOp)) 514 return C->isNullValue() || isa<UndefValue>(C); 515 if (isMathLibCallNoop(Call, TLI)) 516 return true; 517 } 518 519 // Non-volatile atomic loads from constants can be removed. 520 if (auto *LI = dyn_cast<LoadInst>(I)) 521 if (auto *GV = dyn_cast<GlobalVariable>( 522 LI->getPointerOperand()->stripPointerCasts())) 523 if (!LI->isVolatile() && GV->isConstant()) 524 return true; 525 526 return false; 527 } 528 529 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 530 /// trivially dead instruction, delete it. If that makes any of its operands 531 /// trivially dead, delete them too, recursively. Return true if any 532 /// instructions were deleted. 533 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 534 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 535 std::function<void(Value *)> AboutToDeleteCallback) { 536 Instruction *I = dyn_cast<Instruction>(V); 537 if (!I || !isInstructionTriviallyDead(I, TLI)) 538 return false; 539 540 SmallVector<WeakTrackingVH, 16> DeadInsts; 541 DeadInsts.push_back(I); 542 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 543 AboutToDeleteCallback); 544 545 return true; 546 } 547 548 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 549 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 550 MemorySSAUpdater *MSSAU, 551 std::function<void(Value *)> AboutToDeleteCallback) { 552 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 553 for (; S != E; ++S) { 554 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 555 if (!I || !isInstructionTriviallyDead(I)) { 556 DeadInsts[S] = nullptr; 557 ++Alive; 558 } 559 } 560 if (Alive == E) 561 return false; 562 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 563 AboutToDeleteCallback); 564 return true; 565 } 566 567 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 568 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 569 MemorySSAUpdater *MSSAU, 570 std::function<void(Value *)> AboutToDeleteCallback) { 571 // Process the dead instruction list until empty. 572 while (!DeadInsts.empty()) { 573 Value *V = DeadInsts.pop_back_val(); 574 Instruction *I = cast_or_null<Instruction>(V); 575 if (!I) 576 continue; 577 assert(isInstructionTriviallyDead(I, TLI) && 578 "Live instruction found in dead worklist!"); 579 assert(I->use_empty() && "Instructions with uses are not dead."); 580 581 // Don't lose the debug info while deleting the instructions. 582 salvageDebugInfo(*I); 583 584 if (AboutToDeleteCallback) 585 AboutToDeleteCallback(I); 586 587 // Null out all of the instruction's operands to see if any operand becomes 588 // dead as we go. 589 for (Use &OpU : I->operands()) { 590 Value *OpV = OpU.get(); 591 OpU.set(nullptr); 592 593 if (!OpV->use_empty()) 594 continue; 595 596 // If the operand is an instruction that became dead as we nulled out the 597 // operand, and if it is 'trivially' dead, delete it in a future loop 598 // iteration. 599 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 600 if (isInstructionTriviallyDead(OpI, TLI)) 601 DeadInsts.push_back(OpI); 602 } 603 if (MSSAU) 604 MSSAU->removeMemoryAccess(I); 605 606 I->eraseFromParent(); 607 } 608 } 609 610 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 611 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 612 SmallVector<DPValue *, 1> DPUsers; 613 findDbgUsers(DbgUsers, I, &DPUsers); 614 for (auto *DII : DbgUsers) 615 DII->setKillLocation(); 616 for (auto *DPV : DPUsers) 617 DPV->setKillLocation(); 618 return !DbgUsers.empty() || !DPUsers.empty(); 619 } 620 621 /// areAllUsesEqual - Check whether the uses of a value are all the same. 622 /// This is similar to Instruction::hasOneUse() except this will also return 623 /// true when there are no uses or multiple uses that all refer to the same 624 /// value. 625 static bool areAllUsesEqual(Instruction *I) { 626 Value::user_iterator UI = I->user_begin(); 627 Value::user_iterator UE = I->user_end(); 628 if (UI == UE) 629 return true; 630 631 User *TheUse = *UI; 632 for (++UI; UI != UE; ++UI) { 633 if (*UI != TheUse) 634 return false; 635 } 636 return true; 637 } 638 639 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 640 /// dead PHI node, due to being a def-use chain of single-use nodes that 641 /// either forms a cycle or is terminated by a trivially dead instruction, 642 /// delete it. If that makes any of its operands trivially dead, delete them 643 /// too, recursively. Return true if a change was made. 644 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 645 const TargetLibraryInfo *TLI, 646 llvm::MemorySSAUpdater *MSSAU) { 647 SmallPtrSet<Instruction*, 4> Visited; 648 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 649 I = cast<Instruction>(*I->user_begin())) { 650 if (I->use_empty()) 651 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 652 653 // If we find an instruction more than once, we're on a cycle that 654 // won't prove fruitful. 655 if (!Visited.insert(I).second) { 656 // Break the cycle and delete the instruction and its operands. 657 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 658 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 659 return true; 660 } 661 } 662 return false; 663 } 664 665 static bool 666 simplifyAndDCEInstruction(Instruction *I, 667 SmallSetVector<Instruction *, 16> &WorkList, 668 const DataLayout &DL, 669 const TargetLibraryInfo *TLI) { 670 if (isInstructionTriviallyDead(I, TLI)) { 671 salvageDebugInfo(*I); 672 673 // Null out all of the instruction's operands to see if any operand becomes 674 // dead as we go. 675 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 676 Value *OpV = I->getOperand(i); 677 I->setOperand(i, nullptr); 678 679 if (!OpV->use_empty() || I == OpV) 680 continue; 681 682 // If the operand is an instruction that became dead as we nulled out the 683 // operand, and if it is 'trivially' dead, delete it in a future loop 684 // iteration. 685 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 686 if (isInstructionTriviallyDead(OpI, TLI)) 687 WorkList.insert(OpI); 688 } 689 690 I->eraseFromParent(); 691 692 return true; 693 } 694 695 if (Value *SimpleV = simplifyInstruction(I, DL)) { 696 // Add the users to the worklist. CAREFUL: an instruction can use itself, 697 // in the case of a phi node. 698 for (User *U : I->users()) { 699 if (U != I) { 700 WorkList.insert(cast<Instruction>(U)); 701 } 702 } 703 704 // Replace the instruction with its simplified value. 705 bool Changed = false; 706 if (!I->use_empty()) { 707 I->replaceAllUsesWith(SimpleV); 708 Changed = true; 709 } 710 if (isInstructionTriviallyDead(I, TLI)) { 711 I->eraseFromParent(); 712 Changed = true; 713 } 714 return Changed; 715 } 716 return false; 717 } 718 719 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 720 /// simplify any instructions in it and recursively delete dead instructions. 721 /// 722 /// This returns true if it changed the code, note that it can delete 723 /// instructions in other blocks as well in this block. 724 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 725 const TargetLibraryInfo *TLI) { 726 bool MadeChange = false; 727 const DataLayout &DL = BB->getModule()->getDataLayout(); 728 729 #ifndef NDEBUG 730 // In debug builds, ensure that the terminator of the block is never replaced 731 // or deleted by these simplifications. The idea of simplification is that it 732 // cannot introduce new instructions, and there is no way to replace the 733 // terminator of a block without introducing a new instruction. 734 AssertingVH<Instruction> TerminatorVH(&BB->back()); 735 #endif 736 737 SmallSetVector<Instruction *, 16> WorkList; 738 // Iterate over the original function, only adding insts to the worklist 739 // if they actually need to be revisited. This avoids having to pre-init 740 // the worklist with the entire function's worth of instructions. 741 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 742 BI != E;) { 743 assert(!BI->isTerminator()); 744 Instruction *I = &*BI; 745 ++BI; 746 747 // We're visiting this instruction now, so make sure it's not in the 748 // worklist from an earlier visit. 749 if (!WorkList.count(I)) 750 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 751 } 752 753 while (!WorkList.empty()) { 754 Instruction *I = WorkList.pop_back_val(); 755 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 756 } 757 return MadeChange; 758 } 759 760 //===----------------------------------------------------------------------===// 761 // Control Flow Graph Restructuring. 762 // 763 764 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 765 DomTreeUpdater *DTU) { 766 767 // If BB has single-entry PHI nodes, fold them. 768 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 769 Value *NewVal = PN->getIncomingValue(0); 770 // Replace self referencing PHI with poison, it must be dead. 771 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 772 PN->replaceAllUsesWith(NewVal); 773 PN->eraseFromParent(); 774 } 775 776 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 777 assert(PredBB && "Block doesn't have a single predecessor!"); 778 779 bool ReplaceEntryBB = PredBB->isEntryBlock(); 780 781 // DTU updates: Collect all the edges that enter 782 // PredBB. These dominator edges will be redirected to DestBB. 783 SmallVector<DominatorTree::UpdateType, 32> Updates; 784 785 if (DTU) { 786 // To avoid processing the same predecessor more than once. 787 SmallPtrSet<BasicBlock *, 2> SeenPreds; 788 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 789 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 790 // This predecessor of PredBB may already have DestBB as a successor. 791 if (PredOfPredBB != PredBB) 792 if (SeenPreds.insert(PredOfPredBB).second) 793 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 794 SeenPreds.clear(); 795 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 796 if (SeenPreds.insert(PredOfPredBB).second) 797 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 798 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 799 } 800 801 // Zap anything that took the address of DestBB. Not doing this will give the 802 // address an invalid value. 803 if (DestBB->hasAddressTaken()) { 804 BlockAddress *BA = BlockAddress::get(DestBB); 805 Constant *Replacement = 806 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 807 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 808 BA->getType())); 809 BA->destroyConstant(); 810 } 811 812 // Anything that branched to PredBB now branches to DestBB. 813 PredBB->replaceAllUsesWith(DestBB); 814 815 // Splice all the instructions from PredBB to DestBB. 816 PredBB->getTerminator()->eraseFromParent(); 817 DestBB->splice(DestBB->begin(), PredBB); 818 new UnreachableInst(PredBB->getContext(), PredBB); 819 820 // If the PredBB is the entry block of the function, move DestBB up to 821 // become the entry block after we erase PredBB. 822 if (ReplaceEntryBB) 823 DestBB->moveAfter(PredBB); 824 825 if (DTU) { 826 assert(PredBB->size() == 1 && 827 isa<UnreachableInst>(PredBB->getTerminator()) && 828 "The successor list of PredBB isn't empty before " 829 "applying corresponding DTU updates."); 830 DTU->applyUpdatesPermissive(Updates); 831 DTU->deleteBB(PredBB); 832 // Recalculation of DomTree is needed when updating a forward DomTree and 833 // the Entry BB is replaced. 834 if (ReplaceEntryBB && DTU->hasDomTree()) { 835 // The entry block was removed and there is no external interface for 836 // the dominator tree to be notified of this change. In this corner-case 837 // we recalculate the entire tree. 838 DTU->recalculate(*(DestBB->getParent())); 839 } 840 } 841 842 else { 843 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 844 } 845 } 846 847 /// Return true if we can choose one of these values to use in place of the 848 /// other. Note that we will always choose the non-undef value to keep. 849 static bool CanMergeValues(Value *First, Value *Second) { 850 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 851 } 852 853 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 854 /// branch to Succ, into Succ. 855 /// 856 /// Assumption: Succ is the single successor for BB. 857 static bool 858 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 859 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 860 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 861 862 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 863 << Succ->getName() << "\n"); 864 // Shortcut, if there is only a single predecessor it must be BB and merging 865 // is always safe 866 if (Succ->getSinglePredecessor()) 867 return true; 868 869 // Look at all the phi nodes in Succ, to see if they present a conflict when 870 // merging these blocks 871 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 872 PHINode *PN = cast<PHINode>(I); 873 874 // If the incoming value from BB is again a PHINode in 875 // BB which has the same incoming value for *PI as PN does, we can 876 // merge the phi nodes and then the blocks can still be merged 877 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 878 if (BBPN && BBPN->getParent() == BB) { 879 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 880 BasicBlock *IBB = PN->getIncomingBlock(PI); 881 if (BBPreds.count(IBB) && 882 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 883 PN->getIncomingValue(PI))) { 884 LLVM_DEBUG(dbgs() 885 << "Can't fold, phi node " << PN->getName() << " in " 886 << Succ->getName() << " is conflicting with " 887 << BBPN->getName() << " with regard to common predecessor " 888 << IBB->getName() << "\n"); 889 return false; 890 } 891 } 892 } else { 893 Value* Val = PN->getIncomingValueForBlock(BB); 894 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 895 // See if the incoming value for the common predecessor is equal to the 896 // one for BB, in which case this phi node will not prevent the merging 897 // of the block. 898 BasicBlock *IBB = PN->getIncomingBlock(PI); 899 if (BBPreds.count(IBB) && 900 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 901 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 902 << " in " << Succ->getName() 903 << " is conflicting with regard to common " 904 << "predecessor " << IBB->getName() << "\n"); 905 return false; 906 } 907 } 908 } 909 } 910 911 return true; 912 } 913 914 using PredBlockVector = SmallVector<BasicBlock *, 16>; 915 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 916 917 /// Determines the value to use as the phi node input for a block. 918 /// 919 /// Select between \p OldVal any value that we know flows from \p BB 920 /// to a particular phi on the basis of which one (if either) is not 921 /// undef. Update IncomingValues based on the selected value. 922 /// 923 /// \param OldVal The value we are considering selecting. 924 /// \param BB The block that the value flows in from. 925 /// \param IncomingValues A map from block-to-value for other phi inputs 926 /// that we have examined. 927 /// 928 /// \returns the selected value. 929 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 930 IncomingValueMap &IncomingValues) { 931 if (!isa<UndefValue>(OldVal)) { 932 assert((!IncomingValues.count(BB) || 933 IncomingValues.find(BB)->second == OldVal) && 934 "Expected OldVal to match incoming value from BB!"); 935 936 IncomingValues.insert(std::make_pair(BB, OldVal)); 937 return OldVal; 938 } 939 940 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 941 if (It != IncomingValues.end()) return It->second; 942 943 return OldVal; 944 } 945 946 /// Create a map from block to value for the operands of a 947 /// given phi. 948 /// 949 /// Create a map from block to value for each non-undef value flowing 950 /// into \p PN. 951 /// 952 /// \param PN The phi we are collecting the map for. 953 /// \param IncomingValues [out] The map from block to value for this phi. 954 static void gatherIncomingValuesToPhi(PHINode *PN, 955 IncomingValueMap &IncomingValues) { 956 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 957 BasicBlock *BB = PN->getIncomingBlock(i); 958 Value *V = PN->getIncomingValue(i); 959 960 if (!isa<UndefValue>(V)) 961 IncomingValues.insert(std::make_pair(BB, V)); 962 } 963 } 964 965 /// Replace the incoming undef values to a phi with the values 966 /// from a block-to-value map. 967 /// 968 /// \param PN The phi we are replacing the undefs in. 969 /// \param IncomingValues A map from block to value. 970 static void replaceUndefValuesInPhi(PHINode *PN, 971 const IncomingValueMap &IncomingValues) { 972 SmallVector<unsigned> TrueUndefOps; 973 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 974 Value *V = PN->getIncomingValue(i); 975 976 if (!isa<UndefValue>(V)) continue; 977 978 BasicBlock *BB = PN->getIncomingBlock(i); 979 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 980 981 // Keep track of undef/poison incoming values. Those must match, so we fix 982 // them up below if needed. 983 // Note: this is conservatively correct, but we could try harder and group 984 // the undef values per incoming basic block. 985 if (It == IncomingValues.end()) { 986 TrueUndefOps.push_back(i); 987 continue; 988 } 989 990 // There is a defined value for this incoming block, so map this undef 991 // incoming value to the defined value. 992 PN->setIncomingValue(i, It->second); 993 } 994 995 // If there are both undef and poison values incoming, then convert those 996 // values to undef. It is invalid to have different values for the same 997 // incoming block. 998 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 999 return isa<PoisonValue>(PN->getIncomingValue(i)); 1000 }); 1001 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1002 for (unsigned i : TrueUndefOps) 1003 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1004 } 1005 } 1006 1007 // Only when they shares a single common predecessor, return true. 1008 // Only handles cases when BB can't be merged while its predecessors can be 1009 // redirected. 1010 static bool 1011 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1012 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1013 const SmallPtrSetImpl<BasicBlock *> &SuccPreds, 1014 BasicBlock *&CommonPred) { 1015 1016 // There must be phis in BB, otherwise BB will be merged into Succ directly 1017 if (BB->phis().empty() || Succ->phis().empty()) 1018 return false; 1019 1020 // BB must have predecessors not shared that can be redirected to Succ 1021 if (!BB->hasNPredecessorsOrMore(2)) 1022 return false; 1023 1024 // Get single common predecessors of both BB and Succ 1025 for (BasicBlock *SuccPred : SuccPreds) { 1026 if (BBPreds.count(SuccPred)) { 1027 if (CommonPred) 1028 return false; 1029 CommonPred = SuccPred; 1030 } 1031 } 1032 1033 return true; 1034 } 1035 1036 /// Replace a value flowing from a block to a phi with 1037 /// potentially multiple instances of that value flowing from the 1038 /// block's predecessors to the phi. 1039 /// 1040 /// \param BB The block with the value flowing into the phi. 1041 /// \param BBPreds The predecessors of BB. 1042 /// \param PN The phi that we are updating. 1043 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1044 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1045 const PredBlockVector &BBPreds, 1046 PHINode *PN, 1047 BasicBlock *CommonPred) { 1048 Value *OldVal = PN->removeIncomingValue(BB, false); 1049 assert(OldVal && "No entry in PHI for Pred BB!"); 1050 1051 IncomingValueMap IncomingValues; 1052 1053 // We are merging two blocks - BB, and the block containing PN - and 1054 // as a result we need to redirect edges from the predecessors of BB 1055 // to go to the block containing PN, and update PN 1056 // accordingly. Since we allow merging blocks in the case where the 1057 // predecessor and successor blocks both share some predecessors, 1058 // and where some of those common predecessors might have undef 1059 // values flowing into PN, we want to rewrite those values to be 1060 // consistent with the non-undef values. 1061 1062 gatherIncomingValuesToPhi(PN, IncomingValues); 1063 1064 // If this incoming value is one of the PHI nodes in BB, the new entries 1065 // in the PHI node are the entries from the old PHI. 1066 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1067 PHINode *OldValPN = cast<PHINode>(OldVal); 1068 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1069 // Note that, since we are merging phi nodes and BB and Succ might 1070 // have common predecessors, we could end up with a phi node with 1071 // identical incoming branches. This will be cleaned up later (and 1072 // will trigger asserts if we try to clean it up now, without also 1073 // simplifying the corresponding conditional branch). 1074 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1075 1076 if (PredBB == CommonPred) 1077 continue; 1078 1079 Value *PredVal = OldValPN->getIncomingValue(i); 1080 Value *Selected = 1081 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1082 1083 // And add a new incoming value for this predecessor for the 1084 // newly retargeted branch. 1085 PN->addIncoming(Selected, PredBB); 1086 } 1087 if (CommonPred) 1088 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1089 1090 } else { 1091 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1092 // Update existing incoming values in PN for this 1093 // predecessor of BB. 1094 BasicBlock *PredBB = BBPreds[i]; 1095 1096 if (PredBB == CommonPred) 1097 continue; 1098 1099 Value *Selected = 1100 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1101 1102 // And add a new incoming value for this predecessor for the 1103 // newly retargeted branch. 1104 PN->addIncoming(Selected, PredBB); 1105 } 1106 if (CommonPred) 1107 PN->addIncoming(OldVal, BB); 1108 } 1109 1110 replaceUndefValuesInPhi(PN, IncomingValues); 1111 } 1112 1113 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1114 DomTreeUpdater *DTU) { 1115 assert(BB != &BB->getParent()->getEntryBlock() && 1116 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1117 1118 // We can't simplify infinite loops. 1119 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1120 if (BB == Succ) 1121 return false; 1122 1123 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1124 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1125 1126 // The single common predecessor of BB and Succ when BB cannot be killed 1127 BasicBlock *CommonPred = nullptr; 1128 1129 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1130 1131 // Even if we can not fold bB into Succ, we may be able to redirect the 1132 // predecessors of BB to Succ. 1133 bool BBPhisMergeable = 1134 BBKillable || 1135 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); 1136 1137 if (!BBKillable && !BBPhisMergeable) 1138 return false; 1139 1140 // Check to see if merging these blocks/phis would cause conflicts for any of 1141 // the phi nodes in BB or Succ. If not, we can safely merge. 1142 1143 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1144 // has uses which will not disappear when the PHI nodes are merged. It is 1145 // possible to handle such cases, but difficult: it requires checking whether 1146 // BB dominates Succ, which is non-trivial to calculate in the case where 1147 // Succ has multiple predecessors. Also, it requires checking whether 1148 // constructing the necessary self-referential PHI node doesn't introduce any 1149 // conflicts; this isn't too difficult, but the previous code for doing this 1150 // was incorrect. 1151 // 1152 // Note that if this check finds a live use, BB dominates Succ, so BB is 1153 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1154 // folding the branch isn't profitable in that case anyway. 1155 if (!Succ->getSinglePredecessor()) { 1156 BasicBlock::iterator BBI = BB->begin(); 1157 while (isa<PHINode>(*BBI)) { 1158 for (Use &U : BBI->uses()) { 1159 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1160 if (PN->getIncomingBlock(U) != BB) 1161 return false; 1162 } else { 1163 return false; 1164 } 1165 } 1166 ++BBI; 1167 } 1168 } 1169 1170 if (BBPhisMergeable && CommonPred) 1171 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1172 << " and " << Succ->getName() << " : " 1173 << CommonPred->getName() << "\n"); 1174 1175 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1176 // metadata. 1177 // 1178 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1179 // current status (that loop metadata is implemented as metadata attached to 1180 // the branch instruction in the loop latch block). To quote from review 1181 // comments, "the current representation of loop metadata (using a loop latch 1182 // terminator attachment) is known to be fundamentally broken. Loop latches 1183 // are not uniquely associated with loops (both in that a latch can be part of 1184 // multiple loops and a loop may have multiple latches). Loop headers are. The 1185 // solution to this problem is also known: Add support for basic block 1186 // metadata, and attach loop metadata to the loop header." 1187 // 1188 // Why bail out: 1189 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1190 // the latch for inner-loop (see reason below), so bail out to prerserve 1191 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1192 // to this inner-loop. 1193 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1194 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1195 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1196 // one self-looping basic block, which is contradictory with the assumption. 1197 // 1198 // To illustrate how inner-loop metadata is dropped: 1199 // 1200 // CFG Before 1201 // 1202 // BB is while.cond.exit, attached with loop metdata md2. 1203 // BB->Pred is for.body, attached with loop metadata md1. 1204 // 1205 // entry 1206 // | 1207 // v 1208 // ---> while.cond -------------> while.end 1209 // | | 1210 // | v 1211 // | while.body 1212 // | | 1213 // | v 1214 // | for.body <---- (md1) 1215 // | | |______| 1216 // | v 1217 // | while.cond.exit (md2) 1218 // | | 1219 // |_______| 1220 // 1221 // CFG After 1222 // 1223 // while.cond1 is the merge of while.cond.exit and while.cond above. 1224 // for.body is attached with md2, and md1 is dropped. 1225 // If LoopSimplify runs later (as a part of loop pass), it could create 1226 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1227 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1228 // 1229 // entry 1230 // | 1231 // v 1232 // ---> while.cond1 -------------> while.end 1233 // | | 1234 // | v 1235 // | while.body 1236 // | | 1237 // | v 1238 // | for.body <---- (md2) 1239 // |_______| |______| 1240 if (Instruction *TI = BB->getTerminator()) 1241 if (TI->hasMetadata(LLVMContext::MD_loop)) 1242 for (BasicBlock *Pred : predecessors(BB)) 1243 if (Instruction *PredTI = Pred->getTerminator()) 1244 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1245 return false; 1246 1247 if (BBKillable) 1248 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1249 else if (BBPhisMergeable) 1250 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1251 1252 SmallVector<DominatorTree::UpdateType, 32> Updates; 1253 1254 if (DTU) { 1255 // To avoid processing the same predecessor more than once. 1256 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1257 // All predecessors of BB (except the common predecessor) will be moved to 1258 // Succ. 1259 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1260 1261 for (auto *PredOfBB : predecessors(BB)) { 1262 // Do not modify those common predecessors of BB and Succ 1263 if (!SuccPreds.contains(PredOfBB)) 1264 if (SeenPreds.insert(PredOfBB).second) 1265 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1266 } 1267 1268 SeenPreds.clear(); 1269 1270 for (auto *PredOfBB : predecessors(BB)) 1271 // When BB cannot be killed, do not remove the edge between BB and 1272 // CommonPred. 1273 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1274 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1275 1276 if (BBKillable) 1277 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1278 } 1279 1280 if (isa<PHINode>(Succ->begin())) { 1281 // If there is more than one pred of succ, and there are PHI nodes in 1282 // the successor, then we need to add incoming edges for the PHI nodes 1283 // 1284 const PredBlockVector BBPreds(predecessors(BB)); 1285 1286 // Loop over all of the PHI nodes in the successor of BB. 1287 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1288 PHINode *PN = cast<PHINode>(I); 1289 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1290 } 1291 } 1292 1293 if (Succ->getSinglePredecessor()) { 1294 // BB is the only predecessor of Succ, so Succ will end up with exactly 1295 // the same predecessors BB had. 1296 // Copy over any phi, debug or lifetime instruction. 1297 BB->getTerminator()->eraseFromParent(); 1298 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1299 } else { 1300 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1301 // We explicitly check for such uses for merging phis. 1302 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1303 PN->eraseFromParent(); 1304 } 1305 } 1306 1307 // If the unconditional branch we replaced contains llvm.loop metadata, we 1308 // add the metadata to the branch instructions in the predecessors. 1309 if (Instruction *TI = BB->getTerminator()) 1310 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1311 for (BasicBlock *Pred : predecessors(BB)) 1312 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1313 1314 if (BBKillable) { 1315 // Everything that jumped to BB now goes to Succ. 1316 BB->replaceAllUsesWith(Succ); 1317 1318 if (!Succ->hasName()) 1319 Succ->takeName(BB); 1320 1321 // Clear the successor list of BB to match updates applying to DTU later. 1322 if (BB->getTerminator()) 1323 BB->back().eraseFromParent(); 1324 1325 new UnreachableInst(BB->getContext(), BB); 1326 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1327 "applying corresponding DTU updates."); 1328 } else if (BBPhisMergeable) { 1329 // Everything except CommonPred that jumped to BB now goes to Succ. 1330 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1331 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1332 return UseInst->getParent() != CommonPred && 1333 BBPreds.contains(UseInst->getParent()); 1334 return false; 1335 }); 1336 } 1337 1338 if (DTU) 1339 DTU->applyUpdates(Updates); 1340 1341 if (BBKillable) 1342 DeleteDeadBlock(BB, DTU); 1343 1344 return true; 1345 } 1346 1347 static bool 1348 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1349 SmallPtrSetImpl<PHINode *> &ToRemove) { 1350 // This implementation doesn't currently consider undef operands 1351 // specially. Theoretically, two phis which are identical except for 1352 // one having an undef where the other doesn't could be collapsed. 1353 1354 bool Changed = false; 1355 1356 // Examine each PHI. 1357 // Note that increment of I must *NOT* be in the iteration_expression, since 1358 // we don't want to immediately advance when we restart from the beginning. 1359 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1360 ++I; 1361 // Is there an identical PHI node in this basic block? 1362 // Note that we only look in the upper square's triangle, 1363 // we already checked that the lower triangle PHI's aren't identical. 1364 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1365 if (ToRemove.contains(DuplicatePN)) 1366 continue; 1367 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1368 continue; 1369 // A duplicate. Replace this PHI with the base PHI. 1370 ++NumPHICSEs; 1371 DuplicatePN->replaceAllUsesWith(PN); 1372 ToRemove.insert(DuplicatePN); 1373 Changed = true; 1374 1375 // The RAUW can change PHIs that we already visited. 1376 I = BB->begin(); 1377 break; // Start over from the beginning. 1378 } 1379 } 1380 return Changed; 1381 } 1382 1383 static bool 1384 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1385 SmallPtrSetImpl<PHINode *> &ToRemove) { 1386 // This implementation doesn't currently consider undef operands 1387 // specially. Theoretically, two phis which are identical except for 1388 // one having an undef where the other doesn't could be collapsed. 1389 1390 struct PHIDenseMapInfo { 1391 static PHINode *getEmptyKey() { 1392 return DenseMapInfo<PHINode *>::getEmptyKey(); 1393 } 1394 1395 static PHINode *getTombstoneKey() { 1396 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1397 } 1398 1399 static bool isSentinel(PHINode *PN) { 1400 return PN == getEmptyKey() || PN == getTombstoneKey(); 1401 } 1402 1403 // WARNING: this logic must be kept in sync with 1404 // Instruction::isIdenticalToWhenDefined()! 1405 static unsigned getHashValueImpl(PHINode *PN) { 1406 // Compute a hash value on the operands. Instcombine will likely have 1407 // sorted them, which helps expose duplicates, but we have to check all 1408 // the operands to be safe in case instcombine hasn't run. 1409 return static_cast<unsigned>(hash_combine( 1410 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1411 hash_combine_range(PN->block_begin(), PN->block_end()))); 1412 } 1413 1414 static unsigned getHashValue(PHINode *PN) { 1415 #ifndef NDEBUG 1416 // If -phicse-debug-hash was specified, return a constant -- this 1417 // will force all hashing to collide, so we'll exhaustively search 1418 // the table for a match, and the assertion in isEqual will fire if 1419 // there's a bug causing equal keys to hash differently. 1420 if (PHICSEDebugHash) 1421 return 0; 1422 #endif 1423 return getHashValueImpl(PN); 1424 } 1425 1426 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1427 if (isSentinel(LHS) || isSentinel(RHS)) 1428 return LHS == RHS; 1429 return LHS->isIdenticalTo(RHS); 1430 } 1431 1432 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1433 // These comparisons are nontrivial, so assert that equality implies 1434 // hash equality (DenseMap demands this as an invariant). 1435 bool Result = isEqualImpl(LHS, RHS); 1436 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1437 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1438 return Result; 1439 } 1440 }; 1441 1442 // Set of unique PHINodes. 1443 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1444 PHISet.reserve(4 * PHICSENumPHISmallSize); 1445 1446 // Examine each PHI. 1447 bool Changed = false; 1448 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1449 if (ToRemove.contains(PN)) 1450 continue; 1451 auto Inserted = PHISet.insert(PN); 1452 if (!Inserted.second) { 1453 // A duplicate. Replace this PHI with its duplicate. 1454 ++NumPHICSEs; 1455 PN->replaceAllUsesWith(*Inserted.first); 1456 ToRemove.insert(PN); 1457 Changed = true; 1458 1459 // The RAUW can change PHIs that we already visited. Start over from the 1460 // beginning. 1461 PHISet.clear(); 1462 I = BB->begin(); 1463 } 1464 } 1465 1466 return Changed; 1467 } 1468 1469 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1470 SmallPtrSetImpl<PHINode *> &ToRemove) { 1471 if ( 1472 #ifndef NDEBUG 1473 !PHICSEDebugHash && 1474 #endif 1475 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1476 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1477 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1478 } 1479 1480 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1481 SmallPtrSet<PHINode *, 8> ToRemove; 1482 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1483 for (PHINode *PN : ToRemove) 1484 PN->eraseFromParent(); 1485 return Changed; 1486 } 1487 1488 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1489 const DataLayout &DL) { 1490 V = V->stripPointerCasts(); 1491 1492 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1493 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1494 // than the current alignment, as the known bits calculation should have 1495 // already taken it into account. However, this is not always the case, 1496 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1497 // doesn't. 1498 Align CurrentAlign = AI->getAlign(); 1499 if (PrefAlign <= CurrentAlign) 1500 return CurrentAlign; 1501 1502 // If the preferred alignment is greater than the natural stack alignment 1503 // then don't round up. This avoids dynamic stack realignment. 1504 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1505 return CurrentAlign; 1506 AI->setAlignment(PrefAlign); 1507 return PrefAlign; 1508 } 1509 1510 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1511 // TODO: as above, this shouldn't be necessary. 1512 Align CurrentAlign = GO->getPointerAlignment(DL); 1513 if (PrefAlign <= CurrentAlign) 1514 return CurrentAlign; 1515 1516 // If there is a large requested alignment and we can, bump up the alignment 1517 // of the global. If the memory we set aside for the global may not be the 1518 // memory used by the final program then it is impossible for us to reliably 1519 // enforce the preferred alignment. 1520 if (!GO->canIncreaseAlignment()) 1521 return CurrentAlign; 1522 1523 if (GO->isThreadLocal()) { 1524 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1525 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1526 PrefAlign = Align(MaxTLSAlign); 1527 } 1528 1529 GO->setAlignment(PrefAlign); 1530 return PrefAlign; 1531 } 1532 1533 return Align(1); 1534 } 1535 1536 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1537 const DataLayout &DL, 1538 const Instruction *CxtI, 1539 AssumptionCache *AC, 1540 const DominatorTree *DT) { 1541 assert(V->getType()->isPointerTy() && 1542 "getOrEnforceKnownAlignment expects a pointer!"); 1543 1544 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1545 unsigned TrailZ = Known.countMinTrailingZeros(); 1546 1547 // Avoid trouble with ridiculously large TrailZ values, such as 1548 // those computed from a null pointer. 1549 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1550 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1551 1552 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1553 1554 if (PrefAlign && *PrefAlign > Alignment) 1555 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1556 1557 // We don't need to make any adjustment. 1558 return Alignment; 1559 } 1560 1561 ///===---------------------------------------------------------------------===// 1562 /// Dbg Intrinsic utilities 1563 /// 1564 1565 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1566 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1567 DIExpression *DIExpr, 1568 PHINode *APN) { 1569 // Since we can't guarantee that the original dbg.declare intrinsic 1570 // is removed by LowerDbgDeclare(), we need to make sure that we are 1571 // not inserting the same dbg.value intrinsic over and over. 1572 SmallVector<DbgValueInst *, 1> DbgValues; 1573 SmallVector<DPValue *, 1> DPValues; 1574 findDbgValues(DbgValues, APN, &DPValues); 1575 for (auto *DVI : DbgValues) { 1576 assert(is_contained(DVI->getValues(), APN)); 1577 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1578 return true; 1579 } 1580 for (auto *DPV : DPValues) { 1581 assert(is_contained(DPV->location_ops(), APN)); 1582 if ((DPV->getVariable() == DIVar) && (DPV->getExpression() == DIExpr)) 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1589 /// (or fragment of the variable) described by \p DII. 1590 /// 1591 /// This is primarily intended as a helper for the different 1592 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1593 /// describes an alloca'd variable, so we need to use the alloc size of the 1594 /// value when doing the comparison. E.g. an i1 value will be identified as 1595 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1596 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1597 const DataLayout &DL = DII->getModule()->getDataLayout(); 1598 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1599 if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) 1600 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1601 1602 // We can't always calculate the size of the DI variable (e.g. if it is a 1603 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1604 // intead. 1605 if (DII->isAddressOfVariable()) { 1606 // DII should have exactly 1 location when it is an address. 1607 assert(DII->getNumVariableLocationOps() == 1 && 1608 "address of variable must have exactly 1 location operand."); 1609 if (auto *AI = 1610 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1611 if (std::optional<TypeSize> FragmentSize = 1612 AI->getAllocationSizeInBits(DL)) { 1613 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1614 } 1615 } 1616 } 1617 // Could not determine size of variable. Conservatively return false. 1618 return false; 1619 } 1620 // RemoveDIs: duplicate implementation of the above, using DPValues, the 1621 // replacement for dbg.values. 1622 static bool valueCoversEntireFragment(Type *ValTy, DPValue *DPV) { 1623 const DataLayout &DL = DPV->getModule()->getDataLayout(); 1624 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1625 if (std::optional<uint64_t> FragmentSize = DPV->getFragmentSizeInBits()) 1626 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1627 1628 // We can't always calculate the size of the DI variable (e.g. if it is a 1629 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1630 // intead. 1631 if (DPV->isAddressOfVariable()) { 1632 // DPV should have exactly 1 location when it is an address. 1633 assert(DPV->getNumVariableLocationOps() == 1 && 1634 "address of variable must have exactly 1 location operand."); 1635 if (auto *AI = 1636 dyn_cast_or_null<AllocaInst>(DPV->getVariableLocationOp(0))) { 1637 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1638 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1639 } 1640 } 1641 } 1642 // Could not determine size of variable. Conservatively return false. 1643 return false; 1644 } 1645 1646 static void insertDbgValueOrDPValue(DIBuilder &Builder, Value *DV, 1647 DILocalVariable *DIVar, 1648 DIExpression *DIExpr, 1649 const DebugLoc &NewLoc, 1650 BasicBlock::iterator Instr) { 1651 if (!UseNewDbgInfoFormat) { 1652 auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1653 (Instruction *)nullptr); 1654 DbgVal->insertBefore(Instr); 1655 } else { 1656 // RemoveDIs: if we're using the new debug-info format, allocate a 1657 // DPValue directly instead of a dbg.value intrinsic. 1658 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1659 DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); 1660 Instr->getParent()->insertDPValueBefore(DV, Instr); 1661 } 1662 } 1663 1664 static void insertDbgValueOrDPValueAfter(DIBuilder &Builder, Value *DV, 1665 DILocalVariable *DIVar, 1666 DIExpression *DIExpr, 1667 const DebugLoc &NewLoc, 1668 BasicBlock::iterator Instr) { 1669 if (!UseNewDbgInfoFormat) { 1670 auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1671 (Instruction *)nullptr); 1672 DbgVal->insertAfter(&*Instr); 1673 } else { 1674 // RemoveDIs: if we're using the new debug-info format, allocate a 1675 // DPValue directly instead of a dbg.value intrinsic. 1676 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1677 DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); 1678 Instr->getParent()->insertDPValueAfter(DV, &*Instr); 1679 } 1680 } 1681 1682 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1683 /// that has an associated llvm.dbg.declare intrinsic. 1684 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1685 StoreInst *SI, DIBuilder &Builder) { 1686 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1687 auto *DIVar = DII->getVariable(); 1688 assert(DIVar && "Missing variable"); 1689 auto *DIExpr = DII->getExpression(); 1690 Value *DV = SI->getValueOperand(); 1691 1692 DebugLoc NewLoc = getDebugValueLoc(DII); 1693 1694 // If the alloca describes the variable itself, i.e. the expression in the 1695 // dbg.declare doesn't start with a dereference, we can perform the 1696 // conversion if the value covers the entire fragment of DII. 1697 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1698 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1699 // We conservatively ignore other dereferences, because the following two are 1700 // not equivalent: 1701 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1702 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1703 // The former is adding 2 to the address of the variable, whereas the latter 1704 // is adding 2 to the value of the variable. As such, we insist on just a 1705 // deref expression. 1706 bool CanConvert = 1707 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1708 valueCoversEntireFragment(DV->getType(), DII)); 1709 if (CanConvert) { 1710 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, 1711 SI->getIterator()); 1712 return; 1713 } 1714 1715 // FIXME: If storing to a part of the variable described by the dbg.declare, 1716 // then we want to insert a dbg.value for the corresponding fragment. 1717 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1718 << '\n'); 1719 // For now, when there is a store to parts of the variable (but we do not 1720 // know which part) we insert an dbg.value intrinsic to indicate that we 1721 // know nothing about the variable's content. 1722 DV = UndefValue::get(DV->getType()); 1723 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, 1724 SI->getIterator()); 1725 } 1726 1727 namespace llvm { 1728 // RemoveDIs: duplicate the getDebugValueLoc method using DPValues instead of 1729 // dbg.value intrinsics. In llvm namespace so that it overloads the 1730 // DbgVariableIntrinsic version. 1731 static DebugLoc getDebugValueLoc(DPValue *DPV) { 1732 // Original dbg.declare must have a location. 1733 const DebugLoc &DeclareLoc = DPV->getDebugLoc(); 1734 MDNode *Scope = DeclareLoc.getScope(); 1735 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1736 // Produce an unknown location with the correct scope / inlinedAt fields. 1737 return DILocation::get(DPV->getContext(), 0, 0, Scope, InlinedAt); 1738 } 1739 } // namespace llvm 1740 1741 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1742 /// that has an associated llvm.dbg.declare intrinsic. 1743 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1744 LoadInst *LI, DIBuilder &Builder) { 1745 auto *DIVar = DII->getVariable(); 1746 auto *DIExpr = DII->getExpression(); 1747 assert(DIVar && "Missing variable"); 1748 1749 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1750 // FIXME: If only referring to a part of the variable described by the 1751 // dbg.declare, then we want to insert a dbg.value for the corresponding 1752 // fragment. 1753 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1754 << *DII << '\n'); 1755 return; 1756 } 1757 1758 DebugLoc NewLoc = getDebugValueLoc(DII); 1759 1760 // We are now tracking the loaded value instead of the address. In the 1761 // future if multi-location support is added to the IR, it might be 1762 // preferable to keep tracking both the loaded value and the original 1763 // address in case the alloca can not be elided. 1764 insertDbgValueOrDPValueAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1765 LI->getIterator()); 1766 } 1767 1768 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, StoreInst *SI, 1769 DIBuilder &Builder) { 1770 assert(DPV->isAddressOfVariable()); 1771 auto *DIVar = DPV->getVariable(); 1772 assert(DIVar && "Missing variable"); 1773 auto *DIExpr = DPV->getExpression(); 1774 Value *DV = SI->getValueOperand(); 1775 1776 DebugLoc NewLoc = getDebugValueLoc(DPV); 1777 1778 // If the alloca describes the variable itself, i.e. the expression in the 1779 // dbg.declare doesn't start with a dereference, we can perform the 1780 // conversion if the value covers the entire fragment of DII. 1781 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1782 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1783 // We conservatively ignore other dereferences, because the following two are 1784 // not equivalent: 1785 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1786 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1787 // The former is adding 2 to the address of the variable, whereas the latter 1788 // is adding 2 to the value of the variable. As such, we insist on just a 1789 // deref expression. 1790 bool CanConvert = 1791 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1792 valueCoversEntireFragment(DV->getType(), DPV)); 1793 if (CanConvert) { 1794 insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, 1795 SI->getIterator()); 1796 return; 1797 } 1798 1799 // FIXME: If storing to a part of the variable described by the dbg.declare, 1800 // then we want to insert a dbg.value for the corresponding fragment. 1801 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DPV 1802 << '\n'); 1803 assert(UseNewDbgInfoFormat); 1804 1805 // For now, when there is a store to parts of the variable (but we do not 1806 // know which part) we insert an dbg.value intrinsic to indicate that we 1807 // know nothing about the variable's content. 1808 DV = UndefValue::get(DV->getType()); 1809 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1810 DPValue *NewDPV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); 1811 SI->getParent()->insertDPValueBefore(NewDPV, SI->getIterator()); 1812 } 1813 1814 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1815 /// llvm.dbg.declare intrinsic. 1816 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1817 PHINode *APN, DIBuilder &Builder) { 1818 auto *DIVar = DII->getVariable(); 1819 auto *DIExpr = DII->getExpression(); 1820 assert(DIVar && "Missing variable"); 1821 1822 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1823 return; 1824 1825 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1826 // FIXME: If only referring to a part of the variable described by the 1827 // dbg.declare, then we want to insert a dbg.value for the corresponding 1828 // fragment. 1829 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1830 << *DII << '\n'); 1831 return; 1832 } 1833 1834 BasicBlock *BB = APN->getParent(); 1835 auto InsertionPt = BB->getFirstInsertionPt(); 1836 1837 DebugLoc NewLoc = getDebugValueLoc(DII); 1838 1839 // The block may be a catchswitch block, which does not have a valid 1840 // insertion point. 1841 // FIXME: Insert dbg.value markers in the successors when appropriate. 1842 if (InsertionPt != BB->end()) { 1843 insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt); 1844 } 1845 } 1846 1847 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, LoadInst *LI, 1848 DIBuilder &Builder) { 1849 auto *DIVar = DPV->getVariable(); 1850 auto *DIExpr = DPV->getExpression(); 1851 assert(DIVar && "Missing variable"); 1852 1853 if (!valueCoversEntireFragment(LI->getType(), DPV)) { 1854 // FIXME: If only referring to a part of the variable described by the 1855 // dbg.declare, then we want to insert a DPValue for the corresponding 1856 // fragment. 1857 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV 1858 << '\n'); 1859 return; 1860 } 1861 1862 DebugLoc NewLoc = getDebugValueLoc(DPV); 1863 1864 // We are now tracking the loaded value instead of the address. In the 1865 // future if multi-location support is added to the IR, it might be 1866 // preferable to keep tracking both the loaded value and the original 1867 // address in case the alloca can not be elided. 1868 assert(UseNewDbgInfoFormat); 1869 1870 // Create a DPValue directly and insert. 1871 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1872 DPValue *DV = new DPValue(LIVAM, DIVar, DIExpr, NewLoc.get()); 1873 LI->getParent()->insertDPValueAfter(DV, LI); 1874 } 1875 1876 /// Determine whether this alloca is either a VLA or an array. 1877 static bool isArray(AllocaInst *AI) { 1878 return AI->isArrayAllocation() || 1879 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1880 } 1881 1882 /// Determine whether this alloca is a structure. 1883 static bool isStructure(AllocaInst *AI) { 1884 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1885 } 1886 void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, PHINode *APN, 1887 DIBuilder &Builder) { 1888 auto *DIVar = DPV->getVariable(); 1889 auto *DIExpr = DPV->getExpression(); 1890 assert(DIVar && "Missing variable"); 1891 1892 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1893 return; 1894 1895 if (!valueCoversEntireFragment(APN->getType(), DPV)) { 1896 // FIXME: If only referring to a part of the variable described by the 1897 // dbg.declare, then we want to insert a DPValue for the corresponding 1898 // fragment. 1899 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV 1900 << '\n'); 1901 return; 1902 } 1903 1904 BasicBlock *BB = APN->getParent(); 1905 auto InsertionPt = BB->getFirstInsertionPt(); 1906 1907 DebugLoc NewLoc = getDebugValueLoc(DPV); 1908 1909 // The block may be a catchswitch block, which does not have a valid 1910 // insertion point. 1911 // FIXME: Insert DPValue markers in the successors when appropriate. 1912 if (InsertionPt != BB->end()) { 1913 insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt); 1914 } 1915 } 1916 1917 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1918 /// of llvm.dbg.value intrinsics. 1919 bool llvm::LowerDbgDeclare(Function &F) { 1920 bool Changed = false; 1921 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1922 SmallVector<DbgDeclareInst *, 4> Dbgs; 1923 SmallVector<DPValue *> DPVs; 1924 for (auto &FI : F) { 1925 for (Instruction &BI : FI) { 1926 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1927 Dbgs.push_back(DDI); 1928 for (DPValue &DPV : BI.getDbgValueRange()) { 1929 if (DPV.getType() == DPValue::LocationType::Declare) 1930 DPVs.push_back(&DPV); 1931 } 1932 } 1933 } 1934 1935 if (Dbgs.empty() && DPVs.empty()) 1936 return Changed; 1937 1938 auto LowerOne = [&](auto *DDI) { 1939 AllocaInst *AI = 1940 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 1941 // If this is an alloca for a scalar variable, insert a dbg.value 1942 // at each load and store to the alloca and erase the dbg.declare. 1943 // The dbg.values allow tracking a variable even if it is not 1944 // stored on the stack, while the dbg.declare can only describe 1945 // the stack slot (and at a lexical-scope granularity). Later 1946 // passes will attempt to elide the stack slot. 1947 if (!AI || isArray(AI) || isStructure(AI)) 1948 return; 1949 1950 // A volatile load/store means that the alloca can't be elided anyway. 1951 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1952 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1953 return LI->isVolatile(); 1954 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1955 return SI->isVolatile(); 1956 return false; 1957 })) 1958 return; 1959 1960 SmallVector<const Value *, 8> WorkList; 1961 WorkList.push_back(AI); 1962 while (!WorkList.empty()) { 1963 const Value *V = WorkList.pop_back_val(); 1964 for (const auto &AIUse : V->uses()) { 1965 User *U = AIUse.getUser(); 1966 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1967 if (AIUse.getOperandNo() == 1) 1968 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1969 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1970 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1971 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1972 // This is a call by-value or some other instruction that takes a 1973 // pointer to the variable. Insert a *value* intrinsic that describes 1974 // the variable by dereferencing the alloca. 1975 if (!CI->isLifetimeStartOrEnd()) { 1976 DebugLoc NewLoc = getDebugValueLoc(DDI); 1977 auto *DerefExpr = 1978 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1979 insertDbgValueOrDPValue(DIB, AI, DDI->getVariable(), DerefExpr, 1980 NewLoc, CI->getIterator()); 1981 } 1982 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1983 if (BI->getType()->isPointerTy()) 1984 WorkList.push_back(BI); 1985 } 1986 } 1987 } 1988 DDI->eraseFromParent(); 1989 Changed = true; 1990 }; 1991 1992 for_each(Dbgs, LowerOne); 1993 for_each(DPVs, LowerOne); 1994 1995 if (Changed) 1996 for (BasicBlock &BB : F) 1997 RemoveRedundantDbgInstrs(&BB); 1998 1999 return Changed; 2000 } 2001 2002 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2003 // debug-info out of the block's DPValues rather than dbg.value intrinsics. 2004 static void insertDPValuesForPHIs(BasicBlock *BB, 2005 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2006 assert(BB && "No BasicBlock to clone DPValue(s) from."); 2007 if (InsertedPHIs.size() == 0) 2008 return; 2009 2010 // Map existing PHI nodes to their DPValues. 2011 DenseMap<Value *, DPValue *> DbgValueMap; 2012 for (auto &I : *BB) { 2013 for (auto &DPV : I.getDbgValueRange()) { 2014 for (Value *V : DPV.location_ops()) 2015 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2016 DbgValueMap.insert({Loc, &DPV}); 2017 } 2018 } 2019 if (DbgValueMap.size() == 0) 2020 return; 2021 2022 // Map a pair of the destination BB and old DPValue to the new DPValue, 2023 // so that if a DPValue is being rewritten to use more than one of the 2024 // inserted PHIs in the same destination BB, we can update the same DPValue 2025 // with all the new PHIs instead of creating one copy for each. 2026 MapVector<std::pair<BasicBlock *, DPValue *>, DPValue *> NewDbgValueMap; 2027 // Then iterate through the new PHIs and look to see if they use one of the 2028 // previously mapped PHIs. If so, create a new DPValue that will propagate 2029 // the info through the new PHI. If we use more than one new PHI in a single 2030 // destination BB with the same old dbg.value, merge the updates so that we 2031 // get a single new DPValue with all the new PHIs. 2032 for (auto PHI : InsertedPHIs) { 2033 BasicBlock *Parent = PHI->getParent(); 2034 // Avoid inserting a debug-info record into an EH block. 2035 if (Parent->getFirstNonPHI()->isEHPad()) 2036 continue; 2037 for (auto VI : PHI->operand_values()) { 2038 auto V = DbgValueMap.find(VI); 2039 if (V != DbgValueMap.end()) { 2040 DPValue *DbgII = cast<DPValue>(V->second); 2041 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2042 if (NewDI == NewDbgValueMap.end()) { 2043 DPValue *NewDbgII = DbgII->clone(); 2044 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2045 } 2046 DPValue *NewDbgII = NewDI->second; 2047 // If PHI contains VI as an operand more than once, we may 2048 // replaced it in NewDbgII; confirm that it is present. 2049 if (is_contained(NewDbgII->location_ops(), VI)) 2050 NewDbgII->replaceVariableLocationOp(VI, PHI); 2051 } 2052 } 2053 } 2054 // Insert the new DPValues into their destination blocks. 2055 for (auto DI : NewDbgValueMap) { 2056 BasicBlock *Parent = DI.first.first; 2057 DPValue *NewDbgII = DI.second; 2058 auto InsertionPt = Parent->getFirstInsertionPt(); 2059 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2060 2061 InsertionPt->DbgMarker->insertDPValue(NewDbgII, true); 2062 } 2063 } 2064 2065 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2066 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2067 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2068 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2069 if (InsertedPHIs.size() == 0) 2070 return; 2071 2072 insertDPValuesForPHIs(BB, InsertedPHIs); 2073 2074 // Map existing PHI nodes to their dbg.values. 2075 ValueToValueMapTy DbgValueMap; 2076 for (auto &I : *BB) { 2077 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2078 for (Value *V : DbgII->location_ops()) 2079 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2080 DbgValueMap.insert({Loc, DbgII}); 2081 } 2082 } 2083 if (DbgValueMap.size() == 0) 2084 return; 2085 2086 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2087 // so that if a dbg.value is being rewritten to use more than one of the 2088 // inserted PHIs in the same destination BB, we can update the same dbg.value 2089 // with all the new PHIs instead of creating one copy for each. 2090 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2091 DbgVariableIntrinsic *> 2092 NewDbgValueMap; 2093 // Then iterate through the new PHIs and look to see if they use one of the 2094 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2095 // propagate the info through the new PHI. If we use more than one new PHI in 2096 // a single destination BB with the same old dbg.value, merge the updates so 2097 // that we get a single new dbg.value with all the new PHIs. 2098 for (auto *PHI : InsertedPHIs) { 2099 BasicBlock *Parent = PHI->getParent(); 2100 // Avoid inserting an intrinsic into an EH block. 2101 if (Parent->getFirstNonPHI()->isEHPad()) 2102 continue; 2103 for (auto *VI : PHI->operand_values()) { 2104 auto V = DbgValueMap.find(VI); 2105 if (V != DbgValueMap.end()) { 2106 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2107 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2108 if (NewDI == NewDbgValueMap.end()) { 2109 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2110 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2111 } 2112 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2113 // If PHI contains VI as an operand more than once, we may 2114 // replaced it in NewDbgII; confirm that it is present. 2115 if (is_contained(NewDbgII->location_ops(), VI)) 2116 NewDbgII->replaceVariableLocationOp(VI, PHI); 2117 } 2118 } 2119 } 2120 // Insert thew new dbg.values into their destination blocks. 2121 for (auto DI : NewDbgValueMap) { 2122 BasicBlock *Parent = DI.first.first; 2123 auto *NewDbgII = DI.second; 2124 auto InsertionPt = Parent->getFirstInsertionPt(); 2125 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2126 NewDbgII->insertBefore(&*InsertionPt); 2127 } 2128 } 2129 2130 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2131 DIBuilder &Builder, uint8_t DIExprFlags, 2132 int Offset) { 2133 SmallVector<DbgDeclareInst *, 1> DbgDeclares; 2134 SmallVector<DPValue *, 1> DPValues; 2135 findDbgDeclares(DbgDeclares, Address, &DPValues); 2136 2137 auto ReplaceOne = [&](auto *DII) { 2138 assert(DII->getVariable() && "Missing variable"); 2139 auto *DIExpr = DII->getExpression(); 2140 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2141 DII->setExpression(DIExpr); 2142 DII->replaceVariableLocationOp(Address, NewAddress); 2143 }; 2144 2145 for_each(DbgDeclares, ReplaceOne); 2146 for_each(DPValues, ReplaceOne); 2147 2148 return !DbgDeclares.empty() || !DPValues.empty(); 2149 } 2150 2151 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2152 DILocalVariable *DIVar, 2153 DIExpression *DIExpr, Value *NewAddress, 2154 DbgValueInst *DVI, DPValue *DPV, 2155 DIBuilder &Builder, int Offset) { 2156 assert(DIVar && "Missing variable"); 2157 2158 // This is an alloca-based dbg.value/DPValue. The first thing it should do 2159 // with the alloca pointer is dereference it. Otherwise we don't know how to 2160 // handle it and give up. 2161 if (!DIExpr || DIExpr->getNumElements() < 1 || 2162 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2163 return; 2164 2165 // Insert the offset before the first deref. 2166 if (Offset) 2167 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2168 2169 if (DVI) { 2170 DVI->setExpression(DIExpr); 2171 DVI->replaceVariableLocationOp(0u, NewAddress); 2172 } else { 2173 assert(DPV); 2174 DPV->setExpression(DIExpr); 2175 DPV->replaceVariableLocationOp(0u, NewAddress); 2176 } 2177 } 2178 2179 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2180 DIBuilder &Builder, int Offset) { 2181 SmallVector<DbgValueInst *, 1> DbgUsers; 2182 SmallVector<DPValue *, 1> DPUsers; 2183 findDbgValues(DbgUsers, AI, &DPUsers); 2184 2185 // Attempt to replace dbg.values that use this alloca. 2186 for (auto *DVI : DbgUsers) 2187 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2188 DVI->getExpression(), NewAllocaAddress, DVI, 2189 nullptr, Builder, Offset); 2190 2191 // Replace any DPValues that use this alloca. 2192 for (DPValue *DPV : DPUsers) 2193 updateOneDbgValueForAlloca(DPV->getDebugLoc(), DPV->getVariable(), 2194 DPV->getExpression(), NewAllocaAddress, nullptr, 2195 DPV, Builder, Offset); 2196 } 2197 2198 /// Where possible to salvage debug information for \p I do so. 2199 /// If not possible mark undef. 2200 void llvm::salvageDebugInfo(Instruction &I) { 2201 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2202 SmallVector<DPValue *, 1> DPUsers; 2203 findDbgUsers(DbgUsers, &I, &DPUsers); 2204 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2205 } 2206 2207 /// Salvage the address component of \p DAI. 2208 static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) { 2209 Instruction *I = dyn_cast<Instruction>(DAI->getAddress()); 2210 // Only instructions can be salvaged at the moment. 2211 if (!I) 2212 return; 2213 2214 assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() && 2215 "address-expression shouldn't have fragment info"); 2216 2217 // The address component of a dbg.assign cannot be variadic. 2218 uint64_t CurrentLocOps = 0; 2219 SmallVector<Value *, 4> AdditionalValues; 2220 SmallVector<uint64_t, 16> Ops; 2221 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2222 2223 // Check if the salvage failed. 2224 if (!NewV) 2225 return; 2226 2227 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2228 DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2229 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2230 "address-expression shouldn't have fragment info"); 2231 2232 // Salvage succeeds if no additional values are required. 2233 if (AdditionalValues.empty()) { 2234 DAI->setAddress(NewV); 2235 DAI->setAddressExpression(SalvagedExpr); 2236 } else { 2237 DAI->setKillAddress(); 2238 } 2239 } 2240 2241 void llvm::salvageDebugInfoForDbgValues( 2242 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2243 ArrayRef<DPValue *> DPUsers) { 2244 // These are arbitrary chosen limits on the maximum number of values and the 2245 // maximum size of a debug expression we can salvage up to, used for 2246 // performance reasons. 2247 const unsigned MaxDebugArgs = 16; 2248 const unsigned MaxExpressionSize = 128; 2249 bool Salvaged = false; 2250 2251 for (auto *DII : DbgUsers) { 2252 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2253 if (DAI->getAddress() == &I) { 2254 salvageDbgAssignAddress(DAI); 2255 Salvaged = true; 2256 } 2257 if (DAI->getValue() != &I) 2258 continue; 2259 } 2260 2261 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2262 // pointing out the value as a DWARF memory location description. 2263 bool StackValue = isa<DbgValueInst>(DII); 2264 auto DIILocation = DII->location_ops(); 2265 assert( 2266 is_contained(DIILocation, &I) && 2267 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2268 SmallVector<Value *, 4> AdditionalValues; 2269 // `I` may appear more than once in DII's location ops, and each use of `I` 2270 // must be updated in the DIExpression and potentially have additional 2271 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2272 // DIILocation. 2273 Value *Op0 = nullptr; 2274 DIExpression *SalvagedExpr = DII->getExpression(); 2275 auto LocItr = find(DIILocation, &I); 2276 while (SalvagedExpr && LocItr != DIILocation.end()) { 2277 SmallVector<uint64_t, 16> Ops; 2278 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2279 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2280 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2281 if (!Op0) 2282 break; 2283 SalvagedExpr = 2284 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2285 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2286 } 2287 // salvageDebugInfoImpl should fail on examining the first element of 2288 // DbgUsers, or none of them. 2289 if (!Op0) 2290 break; 2291 2292 DII->replaceVariableLocationOp(&I, Op0); 2293 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2294 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2295 DII->setExpression(SalvagedExpr); 2296 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2297 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2298 MaxDebugArgs) { 2299 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2300 } else { 2301 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2302 // supported in those instructions. Also do not salvage if the resulting 2303 // DIArgList would contain an unreasonably large number of values. 2304 DII->setKillLocation(); 2305 } 2306 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2307 Salvaged = true; 2308 } 2309 // Duplicate of above block for DPValues. 2310 for (auto *DPV : DPUsers) { 2311 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2312 // are implicitly pointing out the value as a DWARF memory location 2313 // description. 2314 bool StackValue = DPV->getType() == DPValue::LocationType::Value; 2315 auto DPVLocation = DPV->location_ops(); 2316 assert( 2317 is_contained(DPVLocation, &I) && 2318 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2319 SmallVector<Value *, 4> AdditionalValues; 2320 // 'I' may appear more than once in DPV's location ops, and each use of 'I' 2321 // must be updated in the DIExpression and potentially have additional 2322 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2323 // DPVLocation. 2324 Value *Op0 = nullptr; 2325 DIExpression *SalvagedExpr = DPV->getExpression(); 2326 auto LocItr = find(DPVLocation, &I); 2327 while (SalvagedExpr && LocItr != DPVLocation.end()) { 2328 SmallVector<uint64_t, 16> Ops; 2329 unsigned LocNo = std::distance(DPVLocation.begin(), LocItr); 2330 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2331 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2332 if (!Op0) 2333 break; 2334 SalvagedExpr = 2335 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2336 LocItr = std::find(++LocItr, DPVLocation.end(), &I); 2337 } 2338 // salvageDebugInfoImpl should fail on examining the first element of 2339 // DbgUsers, or none of them. 2340 if (!Op0) 2341 break; 2342 2343 DPV->replaceVariableLocationOp(&I, Op0); 2344 bool IsValidSalvageExpr = 2345 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2346 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2347 DPV->setExpression(SalvagedExpr); 2348 } else if (DPV->getType() == DPValue::LocationType::Value && 2349 IsValidSalvageExpr && 2350 DPV->getNumVariableLocationOps() + AdditionalValues.size() <= 2351 MaxDebugArgs) { 2352 DPV->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2353 } else { 2354 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2355 // currently only valid for stack value expressions. 2356 // Also do not salvage if the resulting DIArgList would contain an 2357 // unreasonably large number of values. 2358 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 2359 DPV->replaceVariableLocationOp(I.getOperand(0), Undef); 2360 } 2361 LLVM_DEBUG(dbgs() << "SALVAGE: " << DPV << '\n'); 2362 Salvaged = true; 2363 } 2364 2365 if (Salvaged) 2366 return; 2367 2368 for (auto *DII : DbgUsers) 2369 DII->setKillLocation(); 2370 2371 for (auto *DPV : DPUsers) 2372 DPV->setKillLocation(); 2373 } 2374 2375 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2376 uint64_t CurrentLocOps, 2377 SmallVectorImpl<uint64_t> &Opcodes, 2378 SmallVectorImpl<Value *> &AdditionalValues) { 2379 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2380 // Rewrite a GEP into a DIExpression. 2381 MapVector<Value *, APInt> VariableOffsets; 2382 APInt ConstantOffset(BitWidth, 0); 2383 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2384 return nullptr; 2385 if (!VariableOffsets.empty() && !CurrentLocOps) { 2386 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2387 CurrentLocOps = 1; 2388 } 2389 for (const auto &Offset : VariableOffsets) { 2390 AdditionalValues.push_back(Offset.first); 2391 assert(Offset.second.isStrictlyPositive() && 2392 "Expected strictly positive multiplier for offset."); 2393 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2394 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2395 dwarf::DW_OP_plus}); 2396 } 2397 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2398 return GEP->getOperand(0); 2399 } 2400 2401 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2402 switch (Opcode) { 2403 case Instruction::Add: 2404 return dwarf::DW_OP_plus; 2405 case Instruction::Sub: 2406 return dwarf::DW_OP_minus; 2407 case Instruction::Mul: 2408 return dwarf::DW_OP_mul; 2409 case Instruction::SDiv: 2410 return dwarf::DW_OP_div; 2411 case Instruction::SRem: 2412 return dwarf::DW_OP_mod; 2413 case Instruction::Or: 2414 return dwarf::DW_OP_or; 2415 case Instruction::And: 2416 return dwarf::DW_OP_and; 2417 case Instruction::Xor: 2418 return dwarf::DW_OP_xor; 2419 case Instruction::Shl: 2420 return dwarf::DW_OP_shl; 2421 case Instruction::LShr: 2422 return dwarf::DW_OP_shr; 2423 case Instruction::AShr: 2424 return dwarf::DW_OP_shra; 2425 default: 2426 // TODO: Salvage from each kind of binop we know about. 2427 return 0; 2428 } 2429 } 2430 2431 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2432 SmallVectorImpl<uint64_t> &Opcodes, 2433 SmallVectorImpl<Value *> &AdditionalValues, 2434 Instruction *I) { 2435 if (!CurrentLocOps) { 2436 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2437 CurrentLocOps = 1; 2438 } 2439 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2440 AdditionalValues.push_back(I->getOperand(1)); 2441 } 2442 2443 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2444 SmallVectorImpl<uint64_t> &Opcodes, 2445 SmallVectorImpl<Value *> &AdditionalValues) { 2446 // Handle binary operations with constant integer operands as a special case. 2447 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2448 // Values wider than 64 bits cannot be represented within a DIExpression. 2449 if (ConstInt && ConstInt->getBitWidth() > 64) 2450 return nullptr; 2451 2452 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2453 // Push any Constant Int operand onto the expression stack. 2454 if (ConstInt) { 2455 uint64_t Val = ConstInt->getSExtValue(); 2456 // Add or Sub Instructions with a constant operand can potentially be 2457 // simplified. 2458 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2459 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2460 DIExpression::appendOffset(Opcodes, Offset); 2461 return BI->getOperand(0); 2462 } 2463 Opcodes.append({dwarf::DW_OP_constu, Val}); 2464 } else { 2465 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2466 } 2467 2468 // Add salvaged binary operator to expression stack, if it has a valid 2469 // representation in a DIExpression. 2470 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2471 if (!DwarfBinOp) 2472 return nullptr; 2473 Opcodes.push_back(DwarfBinOp); 2474 return BI->getOperand(0); 2475 } 2476 2477 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2478 // The signedness of the operation is implicit in the typed stack, signed and 2479 // unsigned instructions map to the same DWARF opcode. 2480 switch (Pred) { 2481 case CmpInst::ICMP_EQ: 2482 return dwarf::DW_OP_eq; 2483 case CmpInst::ICMP_NE: 2484 return dwarf::DW_OP_ne; 2485 case CmpInst::ICMP_UGT: 2486 case CmpInst::ICMP_SGT: 2487 return dwarf::DW_OP_gt; 2488 case CmpInst::ICMP_UGE: 2489 case CmpInst::ICMP_SGE: 2490 return dwarf::DW_OP_ge; 2491 case CmpInst::ICMP_ULT: 2492 case CmpInst::ICMP_SLT: 2493 return dwarf::DW_OP_lt; 2494 case CmpInst::ICMP_ULE: 2495 case CmpInst::ICMP_SLE: 2496 return dwarf::DW_OP_le; 2497 default: 2498 return 0; 2499 } 2500 } 2501 2502 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2503 SmallVectorImpl<uint64_t> &Opcodes, 2504 SmallVectorImpl<Value *> &AdditionalValues) { 2505 // Handle icmp operations with constant integer operands as a special case. 2506 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2507 // Values wider than 64 bits cannot be represented within a DIExpression. 2508 if (ConstInt && ConstInt->getBitWidth() > 64) 2509 return nullptr; 2510 // Push any Constant Int operand onto the expression stack. 2511 if (ConstInt) { 2512 if (Icmp->isSigned()) 2513 Opcodes.push_back(dwarf::DW_OP_consts); 2514 else 2515 Opcodes.push_back(dwarf::DW_OP_constu); 2516 uint64_t Val = ConstInt->getSExtValue(); 2517 Opcodes.push_back(Val); 2518 } else { 2519 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2520 } 2521 2522 // Add salvaged binary operator to expression stack, if it has a valid 2523 // representation in a DIExpression. 2524 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2525 if (!DwarfIcmpOp) 2526 return nullptr; 2527 Opcodes.push_back(DwarfIcmpOp); 2528 return Icmp->getOperand(0); 2529 } 2530 2531 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2532 SmallVectorImpl<uint64_t> &Ops, 2533 SmallVectorImpl<Value *> &AdditionalValues) { 2534 auto &M = *I.getModule(); 2535 auto &DL = M.getDataLayout(); 2536 2537 if (auto *CI = dyn_cast<CastInst>(&I)) { 2538 Value *FromValue = CI->getOperand(0); 2539 // No-op casts are irrelevant for debug info. 2540 if (CI->isNoopCast(DL)) { 2541 return FromValue; 2542 } 2543 2544 Type *Type = CI->getType(); 2545 if (Type->isPointerTy()) 2546 Type = DL.getIntPtrType(Type); 2547 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2548 if (Type->isVectorTy() || 2549 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2550 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2551 return nullptr; 2552 2553 llvm::Type *FromType = FromValue->getType(); 2554 if (FromType->isPointerTy()) 2555 FromType = DL.getIntPtrType(FromType); 2556 2557 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2558 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2559 2560 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2561 isa<SExtInst>(&I)); 2562 Ops.append(ExtOps.begin(), ExtOps.end()); 2563 return FromValue; 2564 } 2565 2566 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2567 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2568 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2569 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2570 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2571 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2572 2573 // *Not* to do: we should not attempt to salvage load instructions, 2574 // because the validity and lifetime of a dbg.value containing 2575 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2576 return nullptr; 2577 } 2578 2579 /// A replacement for a dbg.value expression. 2580 using DbgValReplacement = std::optional<DIExpression *>; 2581 2582 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2583 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2584 /// changes are made. 2585 static bool rewriteDebugUsers( 2586 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2587 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2588 function_ref<DbgValReplacement(DPValue &DPV)> RewriteDPVExpr) { 2589 // Find debug users of From. 2590 SmallVector<DbgVariableIntrinsic *, 1> Users; 2591 SmallVector<DPValue *, 1> DPUsers; 2592 findDbgUsers(Users, &From, &DPUsers); 2593 if (Users.empty() && DPUsers.empty()) 2594 return false; 2595 2596 // Prevent use-before-def of To. 2597 bool Changed = false; 2598 2599 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2600 SmallPtrSet<DPValue *, 1> UndefOrSalvageDPV; 2601 if (isa<Instruction>(&To)) { 2602 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2603 2604 for (auto *DII : Users) { 2605 // It's common to see a debug user between From and DomPoint. Move it 2606 // after DomPoint to preserve the variable update without any reordering. 2607 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2608 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2609 DII->moveAfter(&DomPoint); 2610 Changed = true; 2611 2612 // Users which otherwise aren't dominated by the replacement value must 2613 // be salvaged or deleted. 2614 } else if (!DT.dominates(&DomPoint, DII)) { 2615 UndefOrSalvage.insert(DII); 2616 } 2617 } 2618 2619 // DPValue implementation of the above. 2620 for (auto *DPV : DPUsers) { 2621 Instruction *MarkedInstr = DPV->getMarker()->MarkedInstr; 2622 Instruction *NextNonDebug = MarkedInstr; 2623 // The next instruction might still be a dbg.declare, skip over it. 2624 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2625 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2626 2627 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2628 LLVM_DEBUG(dbgs() << "MOVE: " << *DPV << '\n'); 2629 DPV->removeFromParent(); 2630 // Ensure there's a marker. 2631 DomPoint.getParent()->insertDPValueAfter(DPV, &DomPoint); 2632 Changed = true; 2633 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2634 UndefOrSalvageDPV.insert(DPV); 2635 } 2636 } 2637 } 2638 2639 // Update debug users without use-before-def risk. 2640 for (auto *DII : Users) { 2641 if (UndefOrSalvage.count(DII)) 2642 continue; 2643 2644 DbgValReplacement DVR = RewriteExpr(*DII); 2645 if (!DVR) 2646 continue; 2647 2648 DII->replaceVariableLocationOp(&From, &To); 2649 DII->setExpression(*DVR); 2650 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2651 Changed = true; 2652 } 2653 for (auto *DPV : DPUsers) { 2654 if (UndefOrSalvageDPV.count(DPV)) 2655 continue; 2656 2657 DbgValReplacement DVR = RewriteDPVExpr(*DPV); 2658 if (!DVR) 2659 continue; 2660 2661 DPV->replaceVariableLocationOp(&From, &To); 2662 DPV->setExpression(*DVR); 2663 LLVM_DEBUG(dbgs() << "REWRITE: " << DPV << '\n'); 2664 Changed = true; 2665 } 2666 2667 if (!UndefOrSalvage.empty() || !UndefOrSalvageDPV.empty()) { 2668 // Try to salvage the remaining debug users. 2669 salvageDebugInfo(From); 2670 Changed = true; 2671 } 2672 2673 return Changed; 2674 } 2675 2676 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2677 /// losslessly preserve the bits and semantics of the value. This predicate is 2678 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2679 /// 2680 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2681 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2682 /// and also does not allow lossless pointer <-> integer conversions. 2683 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2684 Type *ToTy) { 2685 // Trivially compatible types. 2686 if (FromTy == ToTy) 2687 return true; 2688 2689 // Handle compatible pointer <-> integer conversions. 2690 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2691 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2692 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2693 !DL.isNonIntegralPointerType(ToTy); 2694 return SameSize && LosslessConversion; 2695 } 2696 2697 // TODO: This is not exhaustive. 2698 return false; 2699 } 2700 2701 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2702 Instruction &DomPoint, DominatorTree &DT) { 2703 // Exit early if From has no debug users. 2704 if (!From.isUsedByMetadata()) 2705 return false; 2706 2707 assert(&From != &To && "Can't replace something with itself"); 2708 2709 Type *FromTy = From.getType(); 2710 Type *ToTy = To.getType(); 2711 2712 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2713 return DII.getExpression(); 2714 }; 2715 auto IdentityDPV = [&](DPValue &DPV) -> DbgValReplacement { 2716 return DPV.getExpression(); 2717 }; 2718 2719 // Handle no-op conversions. 2720 Module &M = *From.getModule(); 2721 const DataLayout &DL = M.getDataLayout(); 2722 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2723 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV); 2724 2725 // Handle integer-to-integer widening and narrowing. 2726 // FIXME: Use DW_OP_convert when it's available everywhere. 2727 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2728 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2729 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2730 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2731 2732 // When the width of the result grows, assume that a debugger will only 2733 // access the low `FromBits` bits when inspecting the source variable. 2734 if (FromBits < ToBits) 2735 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV); 2736 2737 // The width of the result has shrunk. Use sign/zero extension to describe 2738 // the source variable's high bits. 2739 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2740 DILocalVariable *Var = DII.getVariable(); 2741 2742 // Without knowing signedness, sign/zero extension isn't possible. 2743 auto Signedness = Var->getSignedness(); 2744 if (!Signedness) 2745 return std::nullopt; 2746 2747 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2748 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2749 Signed); 2750 }; 2751 // RemoveDIs: duplicate implementation working on DPValues rather than on 2752 // dbg.value intrinsics. 2753 auto SignOrZeroExtDPV = [&](DPValue &DPV) -> DbgValReplacement { 2754 DILocalVariable *Var = DPV.getVariable(); 2755 2756 // Without knowing signedness, sign/zero extension isn't possible. 2757 auto Signedness = Var->getSignedness(); 2758 if (!Signedness) 2759 return std::nullopt; 2760 2761 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2762 return DIExpression::appendExt(DPV.getExpression(), ToBits, FromBits, 2763 Signed); 2764 }; 2765 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2766 SignOrZeroExtDPV); 2767 } 2768 2769 // TODO: Floating-point conversions, vectors. 2770 return false; 2771 } 2772 2773 std::pair<unsigned, unsigned> 2774 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2775 unsigned NumDeadInst = 0; 2776 unsigned NumDeadDbgInst = 0; 2777 // Delete the instructions backwards, as it has a reduced likelihood of 2778 // having to update as many def-use and use-def chains. 2779 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2780 // RemoveDIs: erasing debug-info must be done manually. 2781 EndInst->dropDbgValues(); 2782 while (EndInst != &BB->front()) { 2783 // Delete the next to last instruction. 2784 Instruction *Inst = &*--EndInst->getIterator(); 2785 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2786 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2787 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2788 // EHPads can't have DPValues attached to them, but it might be possible 2789 // for things with token type. 2790 Inst->dropDbgValues(); 2791 EndInst = Inst; 2792 continue; 2793 } 2794 if (isa<DbgInfoIntrinsic>(Inst)) 2795 ++NumDeadDbgInst; 2796 else 2797 ++NumDeadInst; 2798 // RemoveDIs: erasing debug-info must be done manually. 2799 Inst->dropDbgValues(); 2800 Inst->eraseFromParent(); 2801 } 2802 return {NumDeadInst, NumDeadDbgInst}; 2803 } 2804 2805 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2806 DomTreeUpdater *DTU, 2807 MemorySSAUpdater *MSSAU) { 2808 BasicBlock *BB = I->getParent(); 2809 2810 if (MSSAU) 2811 MSSAU->changeToUnreachable(I); 2812 2813 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2814 2815 // Loop over all of the successors, removing BB's entry from any PHI 2816 // nodes. 2817 for (BasicBlock *Successor : successors(BB)) { 2818 Successor->removePredecessor(BB, PreserveLCSSA); 2819 if (DTU) 2820 UniqueSuccessors.insert(Successor); 2821 } 2822 auto *UI = new UnreachableInst(I->getContext(), I); 2823 UI->setDebugLoc(I->getDebugLoc()); 2824 2825 // All instructions after this are dead. 2826 unsigned NumInstrsRemoved = 0; 2827 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2828 while (BBI != BBE) { 2829 if (!BBI->use_empty()) 2830 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2831 BBI++->eraseFromParent(); 2832 ++NumInstrsRemoved; 2833 } 2834 if (DTU) { 2835 SmallVector<DominatorTree::UpdateType, 8> Updates; 2836 Updates.reserve(UniqueSuccessors.size()); 2837 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2838 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2839 DTU->applyUpdates(Updates); 2840 } 2841 BB->flushTerminatorDbgValues(); 2842 return NumInstrsRemoved; 2843 } 2844 2845 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2846 SmallVector<Value *, 8> Args(II->args()); 2847 SmallVector<OperandBundleDef, 1> OpBundles; 2848 II->getOperandBundlesAsDefs(OpBundles); 2849 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2850 II->getCalledOperand(), Args, OpBundles); 2851 NewCall->setCallingConv(II->getCallingConv()); 2852 NewCall->setAttributes(II->getAttributes()); 2853 NewCall->setDebugLoc(II->getDebugLoc()); 2854 NewCall->copyMetadata(*II); 2855 2856 // If the invoke had profile metadata, try converting them for CallInst. 2857 uint64_t TotalWeight; 2858 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2859 // Set the total weight if it fits into i32, otherwise reset. 2860 MDBuilder MDB(NewCall->getContext()); 2861 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2862 ? nullptr 2863 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2864 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2865 } 2866 2867 return NewCall; 2868 } 2869 2870 // changeToCall - Convert the specified invoke into a normal call. 2871 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2872 CallInst *NewCall = createCallMatchingInvoke(II); 2873 NewCall->takeName(II); 2874 NewCall->insertBefore(II); 2875 II->replaceAllUsesWith(NewCall); 2876 2877 // Follow the call by a branch to the normal destination. 2878 BasicBlock *NormalDestBB = II->getNormalDest(); 2879 BranchInst::Create(NormalDestBB, II); 2880 2881 // Update PHI nodes in the unwind destination 2882 BasicBlock *BB = II->getParent(); 2883 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2884 UnwindDestBB->removePredecessor(BB); 2885 II->eraseFromParent(); 2886 if (DTU) 2887 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2888 return NewCall; 2889 } 2890 2891 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2892 BasicBlock *UnwindEdge, 2893 DomTreeUpdater *DTU) { 2894 BasicBlock *BB = CI->getParent(); 2895 2896 // Convert this function call into an invoke instruction. First, split the 2897 // basic block. 2898 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2899 CI->getName() + ".noexc"); 2900 2901 // Delete the unconditional branch inserted by SplitBlock 2902 BB->back().eraseFromParent(); 2903 2904 // Create the new invoke instruction. 2905 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2906 SmallVector<OperandBundleDef, 1> OpBundles; 2907 2908 CI->getOperandBundlesAsDefs(OpBundles); 2909 2910 // Note: we're round tripping operand bundles through memory here, and that 2911 // can potentially be avoided with a cleverer API design that we do not have 2912 // as of this time. 2913 2914 InvokeInst *II = 2915 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2916 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2917 II->setDebugLoc(CI->getDebugLoc()); 2918 II->setCallingConv(CI->getCallingConv()); 2919 II->setAttributes(CI->getAttributes()); 2920 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2921 2922 if (DTU) 2923 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2924 2925 // Make sure that anything using the call now uses the invoke! This also 2926 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2927 CI->replaceAllUsesWith(II); 2928 2929 // Delete the original call 2930 Split->front().eraseFromParent(); 2931 return Split; 2932 } 2933 2934 static bool markAliveBlocks(Function &F, 2935 SmallPtrSetImpl<BasicBlock *> &Reachable, 2936 DomTreeUpdater *DTU = nullptr) { 2937 SmallVector<BasicBlock*, 128> Worklist; 2938 BasicBlock *BB = &F.front(); 2939 Worklist.push_back(BB); 2940 Reachable.insert(BB); 2941 bool Changed = false; 2942 do { 2943 BB = Worklist.pop_back_val(); 2944 2945 // Do a quick scan of the basic block, turning any obviously unreachable 2946 // instructions into LLVM unreachable insts. The instruction combining pass 2947 // canonicalizes unreachable insts into stores to null or undef. 2948 for (Instruction &I : *BB) { 2949 if (auto *CI = dyn_cast<CallInst>(&I)) { 2950 Value *Callee = CI->getCalledOperand(); 2951 // Handle intrinsic calls. 2952 if (Function *F = dyn_cast<Function>(Callee)) { 2953 auto IntrinsicID = F->getIntrinsicID(); 2954 // Assumptions that are known to be false are equivalent to 2955 // unreachable. Also, if the condition is undefined, then we make the 2956 // choice most beneficial to the optimizer, and choose that to also be 2957 // unreachable. 2958 if (IntrinsicID == Intrinsic::assume) { 2959 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2960 // Don't insert a call to llvm.trap right before the unreachable. 2961 changeToUnreachable(CI, false, DTU); 2962 Changed = true; 2963 break; 2964 } 2965 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2966 // A call to the guard intrinsic bails out of the current 2967 // compilation unit if the predicate passed to it is false. If the 2968 // predicate is a constant false, then we know the guard will bail 2969 // out of the current compile unconditionally, so all code following 2970 // it is dead. 2971 // 2972 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2973 // guards to treat `undef` as `false` since a guard on `undef` can 2974 // still be useful for widening. 2975 if (match(CI->getArgOperand(0), m_Zero())) 2976 if (!isa<UnreachableInst>(CI->getNextNode())) { 2977 changeToUnreachable(CI->getNextNode(), false, DTU); 2978 Changed = true; 2979 break; 2980 } 2981 } 2982 } else if ((isa<ConstantPointerNull>(Callee) && 2983 !NullPointerIsDefined(CI->getFunction(), 2984 cast<PointerType>(Callee->getType()) 2985 ->getAddressSpace())) || 2986 isa<UndefValue>(Callee)) { 2987 changeToUnreachable(CI, false, DTU); 2988 Changed = true; 2989 break; 2990 } 2991 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2992 // If we found a call to a no-return function, insert an unreachable 2993 // instruction after it. Make sure there isn't *already* one there 2994 // though. 2995 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 2996 // Don't insert a call to llvm.trap right before the unreachable. 2997 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 2998 Changed = true; 2999 } 3000 break; 3001 } 3002 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3003 // Store to undef and store to null are undefined and used to signal 3004 // that they should be changed to unreachable by passes that can't 3005 // modify the CFG. 3006 3007 // Don't touch volatile stores. 3008 if (SI->isVolatile()) continue; 3009 3010 Value *Ptr = SI->getOperand(1); 3011 3012 if (isa<UndefValue>(Ptr) || 3013 (isa<ConstantPointerNull>(Ptr) && 3014 !NullPointerIsDefined(SI->getFunction(), 3015 SI->getPointerAddressSpace()))) { 3016 changeToUnreachable(SI, false, DTU); 3017 Changed = true; 3018 break; 3019 } 3020 } 3021 } 3022 3023 Instruction *Terminator = BB->getTerminator(); 3024 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3025 // Turn invokes that call 'nounwind' functions into ordinary calls. 3026 Value *Callee = II->getCalledOperand(); 3027 if ((isa<ConstantPointerNull>(Callee) && 3028 !NullPointerIsDefined(BB->getParent())) || 3029 isa<UndefValue>(Callee)) { 3030 changeToUnreachable(II, false, DTU); 3031 Changed = true; 3032 } else { 3033 if (II->doesNotReturn() && 3034 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3035 // If we found an invoke of a no-return function, 3036 // create a new empty basic block with an `unreachable` terminator, 3037 // and set it as the normal destination for the invoke, 3038 // unless that is already the case. 3039 // Note that the original normal destination could have other uses. 3040 BasicBlock *OrigNormalDest = II->getNormalDest(); 3041 OrigNormalDest->removePredecessor(II->getParent()); 3042 LLVMContext &Ctx = II->getContext(); 3043 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3044 Ctx, OrigNormalDest->getName() + ".unreachable", 3045 II->getFunction(), OrigNormalDest); 3046 new UnreachableInst(Ctx, UnreachableNormalDest); 3047 II->setNormalDest(UnreachableNormalDest); 3048 if (DTU) 3049 DTU->applyUpdates( 3050 {{DominatorTree::Delete, BB, OrigNormalDest}, 3051 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3052 Changed = true; 3053 } 3054 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3055 if (II->use_empty() && !II->mayHaveSideEffects()) { 3056 // jump to the normal destination branch. 3057 BasicBlock *NormalDestBB = II->getNormalDest(); 3058 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3059 BranchInst::Create(NormalDestBB, II); 3060 UnwindDestBB->removePredecessor(II->getParent()); 3061 II->eraseFromParent(); 3062 if (DTU) 3063 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3064 } else 3065 changeToCall(II, DTU); 3066 Changed = true; 3067 } 3068 } 3069 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3070 // Remove catchpads which cannot be reached. 3071 struct CatchPadDenseMapInfo { 3072 static CatchPadInst *getEmptyKey() { 3073 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3074 } 3075 3076 static CatchPadInst *getTombstoneKey() { 3077 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3078 } 3079 3080 static unsigned getHashValue(CatchPadInst *CatchPad) { 3081 return static_cast<unsigned>(hash_combine_range( 3082 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3083 } 3084 3085 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3086 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3087 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3088 return LHS == RHS; 3089 return LHS->isIdenticalTo(RHS); 3090 } 3091 }; 3092 3093 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3094 // Set of unique CatchPads. 3095 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3096 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3097 HandlerSet; 3098 detail::DenseSetEmpty Empty; 3099 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3100 E = CatchSwitch->handler_end(); 3101 I != E; ++I) { 3102 BasicBlock *HandlerBB = *I; 3103 if (DTU) 3104 ++NumPerSuccessorCases[HandlerBB]; 3105 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3106 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3107 if (DTU) 3108 --NumPerSuccessorCases[HandlerBB]; 3109 CatchSwitch->removeHandler(I); 3110 --I; 3111 --E; 3112 Changed = true; 3113 } 3114 } 3115 if (DTU) { 3116 std::vector<DominatorTree::UpdateType> Updates; 3117 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3118 if (I.second == 0) 3119 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3120 DTU->applyUpdates(Updates); 3121 } 3122 } 3123 3124 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3125 for (BasicBlock *Successor : successors(BB)) 3126 if (Reachable.insert(Successor).second) 3127 Worklist.push_back(Successor); 3128 } while (!Worklist.empty()); 3129 return Changed; 3130 } 3131 3132 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3133 Instruction *TI = BB->getTerminator(); 3134 3135 if (auto *II = dyn_cast<InvokeInst>(TI)) 3136 return changeToCall(II, DTU); 3137 3138 Instruction *NewTI; 3139 BasicBlock *UnwindDest; 3140 3141 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3142 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 3143 UnwindDest = CRI->getUnwindDest(); 3144 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3145 auto *NewCatchSwitch = CatchSwitchInst::Create( 3146 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3147 CatchSwitch->getName(), CatchSwitch); 3148 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3149 NewCatchSwitch->addHandler(PadBB); 3150 3151 NewTI = NewCatchSwitch; 3152 UnwindDest = CatchSwitch->getUnwindDest(); 3153 } else { 3154 llvm_unreachable("Could not find unwind successor"); 3155 } 3156 3157 NewTI->takeName(TI); 3158 NewTI->setDebugLoc(TI->getDebugLoc()); 3159 UnwindDest->removePredecessor(BB); 3160 TI->replaceAllUsesWith(NewTI); 3161 TI->eraseFromParent(); 3162 if (DTU) 3163 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3164 return NewTI; 3165 } 3166 3167 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3168 /// if they are in a dead cycle. Return true if a change was made, false 3169 /// otherwise. 3170 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3171 MemorySSAUpdater *MSSAU) { 3172 SmallPtrSet<BasicBlock *, 16> Reachable; 3173 bool Changed = markAliveBlocks(F, Reachable, DTU); 3174 3175 // If there are unreachable blocks in the CFG... 3176 if (Reachable.size() == F.size()) 3177 return Changed; 3178 3179 assert(Reachable.size() < F.size()); 3180 3181 // Are there any blocks left to actually delete? 3182 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3183 for (BasicBlock &BB : F) { 3184 // Skip reachable basic blocks 3185 if (Reachable.count(&BB)) 3186 continue; 3187 // Skip already-deleted blocks 3188 if (DTU && DTU->isBBPendingDeletion(&BB)) 3189 continue; 3190 BlocksToRemove.insert(&BB); 3191 } 3192 3193 if (BlocksToRemove.empty()) 3194 return Changed; 3195 3196 Changed = true; 3197 NumRemoved += BlocksToRemove.size(); 3198 3199 if (MSSAU) 3200 MSSAU->removeBlocks(BlocksToRemove); 3201 3202 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3203 3204 return Changed; 3205 } 3206 3207 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3208 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3209 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3210 K->dropUnknownNonDebugMetadata(KnownIDs); 3211 K->getAllMetadataOtherThanDebugLoc(Metadata); 3212 for (const auto &MD : Metadata) { 3213 unsigned Kind = MD.first; 3214 MDNode *JMD = J->getMetadata(Kind); 3215 MDNode *KMD = MD.second; 3216 3217 switch (Kind) { 3218 default: 3219 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3220 break; 3221 case LLVMContext::MD_dbg: 3222 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3223 case LLVMContext::MD_DIAssignID: 3224 K->mergeDIAssignID(J); 3225 break; 3226 case LLVMContext::MD_tbaa: 3227 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3228 break; 3229 case LLVMContext::MD_alias_scope: 3230 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3231 break; 3232 case LLVMContext::MD_noalias: 3233 case LLVMContext::MD_mem_parallel_loop_access: 3234 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3235 break; 3236 case LLVMContext::MD_access_group: 3237 K->setMetadata(LLVMContext::MD_access_group, 3238 intersectAccessGroups(K, J)); 3239 break; 3240 case LLVMContext::MD_range: 3241 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3242 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3243 break; 3244 case LLVMContext::MD_fpmath: 3245 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3246 break; 3247 case LLVMContext::MD_invariant_load: 3248 // If K moves, only set the !invariant.load if it is present in both 3249 // instructions. 3250 if (DoesKMove) 3251 K->setMetadata(Kind, JMD); 3252 break; 3253 case LLVMContext::MD_nonnull: 3254 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3255 K->setMetadata(Kind, JMD); 3256 break; 3257 case LLVMContext::MD_invariant_group: 3258 // Preserve !invariant.group in K. 3259 break; 3260 case LLVMContext::MD_align: 3261 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3262 K->setMetadata( 3263 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3264 break; 3265 case LLVMContext::MD_dereferenceable: 3266 case LLVMContext::MD_dereferenceable_or_null: 3267 if (DoesKMove) 3268 K->setMetadata(Kind, 3269 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3270 break; 3271 case LLVMContext::MD_preserve_access_index: 3272 // Preserve !preserve.access.index in K. 3273 break; 3274 case LLVMContext::MD_noundef: 3275 // If K does move, keep noundef if it is present in both instructions. 3276 if (DoesKMove) 3277 K->setMetadata(Kind, JMD); 3278 break; 3279 case LLVMContext::MD_nontemporal: 3280 // Preserve !nontemporal if it is present on both instructions. 3281 K->setMetadata(Kind, JMD); 3282 break; 3283 case LLVMContext::MD_prof: 3284 if (DoesKMove) 3285 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3286 break; 3287 } 3288 } 3289 // Set !invariant.group from J if J has it. If both instructions have it 3290 // then we will just pick it from J - even when they are different. 3291 // Also make sure that K is load or store - f.e. combining bitcast with load 3292 // could produce bitcast with invariant.group metadata, which is invalid. 3293 // FIXME: we should try to preserve both invariant.group md if they are 3294 // different, but right now instruction can only have one invariant.group. 3295 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3296 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3297 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3298 } 3299 3300 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3301 bool KDominatesJ) { 3302 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3303 LLVMContext::MD_alias_scope, 3304 LLVMContext::MD_noalias, 3305 LLVMContext::MD_range, 3306 LLVMContext::MD_fpmath, 3307 LLVMContext::MD_invariant_load, 3308 LLVMContext::MD_nonnull, 3309 LLVMContext::MD_invariant_group, 3310 LLVMContext::MD_align, 3311 LLVMContext::MD_dereferenceable, 3312 LLVMContext::MD_dereferenceable_or_null, 3313 LLVMContext::MD_access_group, 3314 LLVMContext::MD_preserve_access_index, 3315 LLVMContext::MD_prof, 3316 LLVMContext::MD_nontemporal, 3317 LLVMContext::MD_noundef}; 3318 combineMetadata(K, J, KnownIDs, KDominatesJ); 3319 } 3320 3321 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3322 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3323 Source.getAllMetadata(MD); 3324 MDBuilder MDB(Dest.getContext()); 3325 Type *NewType = Dest.getType(); 3326 const DataLayout &DL = Source.getModule()->getDataLayout(); 3327 for (const auto &MDPair : MD) { 3328 unsigned ID = MDPair.first; 3329 MDNode *N = MDPair.second; 3330 // Note, essentially every kind of metadata should be preserved here! This 3331 // routine is supposed to clone a load instruction changing *only its type*. 3332 // The only metadata it makes sense to drop is metadata which is invalidated 3333 // when the pointer type changes. This should essentially never be the case 3334 // in LLVM, but we explicitly switch over only known metadata to be 3335 // conservatively correct. If you are adding metadata to LLVM which pertains 3336 // to loads, you almost certainly want to add it here. 3337 switch (ID) { 3338 case LLVMContext::MD_dbg: 3339 case LLVMContext::MD_tbaa: 3340 case LLVMContext::MD_prof: 3341 case LLVMContext::MD_fpmath: 3342 case LLVMContext::MD_tbaa_struct: 3343 case LLVMContext::MD_invariant_load: 3344 case LLVMContext::MD_alias_scope: 3345 case LLVMContext::MD_noalias: 3346 case LLVMContext::MD_nontemporal: 3347 case LLVMContext::MD_mem_parallel_loop_access: 3348 case LLVMContext::MD_access_group: 3349 case LLVMContext::MD_noundef: 3350 // All of these directly apply. 3351 Dest.setMetadata(ID, N); 3352 break; 3353 3354 case LLVMContext::MD_nonnull: 3355 copyNonnullMetadata(Source, N, Dest); 3356 break; 3357 3358 case LLVMContext::MD_align: 3359 case LLVMContext::MD_dereferenceable: 3360 case LLVMContext::MD_dereferenceable_or_null: 3361 // These only directly apply if the new type is also a pointer. 3362 if (NewType->isPointerTy()) 3363 Dest.setMetadata(ID, N); 3364 break; 3365 3366 case LLVMContext::MD_range: 3367 copyRangeMetadata(DL, Source, N, Dest); 3368 break; 3369 } 3370 } 3371 } 3372 3373 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3374 auto *ReplInst = dyn_cast<Instruction>(Repl); 3375 if (!ReplInst) 3376 return; 3377 3378 // Patch the replacement so that it is not more restrictive than the value 3379 // being replaced. 3380 // Note that if 'I' is a load being replaced by some operation, 3381 // for example, by an arithmetic operation, then andIRFlags() 3382 // would just erase all math flags from the original arithmetic 3383 // operation, which is clearly not wanted and not needed. 3384 if (!isa<LoadInst>(I)) 3385 ReplInst->andIRFlags(I); 3386 3387 // FIXME: If both the original and replacement value are part of the 3388 // same control-flow region (meaning that the execution of one 3389 // guarantees the execution of the other), then we can combine the 3390 // noalias scopes here and do better than the general conservative 3391 // answer used in combineMetadata(). 3392 3393 // In general, GVN unifies expressions over different control-flow 3394 // regions, and so we need a conservative combination of the noalias 3395 // scopes. 3396 combineMetadataForCSE(ReplInst, I, false); 3397 } 3398 3399 template <typename RootType, typename DominatesFn> 3400 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3401 const RootType &Root, 3402 const DominatesFn &Dominates) { 3403 assert(From->getType() == To->getType()); 3404 3405 unsigned Count = 0; 3406 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3407 if (!Dominates(Root, U)) 3408 continue; 3409 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3410 From->printAsOperand(dbgs()); 3411 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3412 U.set(To); 3413 ++Count; 3414 } 3415 return Count; 3416 } 3417 3418 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3419 assert(From->getType() == To->getType()); 3420 auto *BB = From->getParent(); 3421 unsigned Count = 0; 3422 3423 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3424 auto *I = cast<Instruction>(U.getUser()); 3425 if (I->getParent() == BB) 3426 continue; 3427 U.set(To); 3428 ++Count; 3429 } 3430 return Count; 3431 } 3432 3433 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3434 DominatorTree &DT, 3435 const BasicBlockEdge &Root) { 3436 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3437 return DT.dominates(Root, U); 3438 }; 3439 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3440 } 3441 3442 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3443 DominatorTree &DT, 3444 const BasicBlock *BB) { 3445 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3446 return DT.dominates(BB, U); 3447 }; 3448 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3449 } 3450 3451 bool llvm::callsGCLeafFunction(const CallBase *Call, 3452 const TargetLibraryInfo &TLI) { 3453 // Check if the function is specifically marked as a gc leaf function. 3454 if (Call->hasFnAttr("gc-leaf-function")) 3455 return true; 3456 if (const Function *F = Call->getCalledFunction()) { 3457 if (F->hasFnAttribute("gc-leaf-function")) 3458 return true; 3459 3460 if (auto IID = F->getIntrinsicID()) { 3461 // Most LLVM intrinsics do not take safepoints. 3462 return IID != Intrinsic::experimental_gc_statepoint && 3463 IID != Intrinsic::experimental_deoptimize && 3464 IID != Intrinsic::memcpy_element_unordered_atomic && 3465 IID != Intrinsic::memmove_element_unordered_atomic; 3466 } 3467 } 3468 3469 // Lib calls can be materialized by some passes, and won't be 3470 // marked as 'gc-leaf-function.' All available Libcalls are 3471 // GC-leaf. 3472 LibFunc LF; 3473 if (TLI.getLibFunc(*Call, LF)) { 3474 return TLI.has(LF); 3475 } 3476 3477 return false; 3478 } 3479 3480 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3481 LoadInst &NewLI) { 3482 auto *NewTy = NewLI.getType(); 3483 3484 // This only directly applies if the new type is also a pointer. 3485 if (NewTy->isPointerTy()) { 3486 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3487 return; 3488 } 3489 3490 // The only other translation we can do is to integral loads with !range 3491 // metadata. 3492 if (!NewTy->isIntegerTy()) 3493 return; 3494 3495 MDBuilder MDB(NewLI.getContext()); 3496 const Value *Ptr = OldLI.getPointerOperand(); 3497 auto *ITy = cast<IntegerType>(NewTy); 3498 auto *NullInt = ConstantExpr::getPtrToInt( 3499 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3500 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3501 NewLI.setMetadata(LLVMContext::MD_range, 3502 MDB.createRange(NonNullInt, NullInt)); 3503 } 3504 3505 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3506 MDNode *N, LoadInst &NewLI) { 3507 auto *NewTy = NewLI.getType(); 3508 // Simply copy the metadata if the type did not change. 3509 if (NewTy == OldLI.getType()) { 3510 NewLI.setMetadata(LLVMContext::MD_range, N); 3511 return; 3512 } 3513 3514 // Give up unless it is converted to a pointer where there is a single very 3515 // valuable mapping we can do reliably. 3516 // FIXME: It would be nice to propagate this in more ways, but the type 3517 // conversions make it hard. 3518 if (!NewTy->isPointerTy()) 3519 return; 3520 3521 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3522 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3523 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3524 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 3525 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3526 } 3527 } 3528 3529 void llvm::dropDebugUsers(Instruction &I) { 3530 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3531 SmallVector<DPValue *, 1> DPUsers; 3532 findDbgUsers(DbgUsers, &I, &DPUsers); 3533 for (auto *DII : DbgUsers) 3534 DII->eraseFromParent(); 3535 for (auto *DPV : DPUsers) 3536 DPV->eraseFromParent(); 3537 } 3538 3539 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3540 BasicBlock *BB) { 3541 // Since we are moving the instructions out of its basic block, we do not 3542 // retain their original debug locations (DILocations) and debug intrinsic 3543 // instructions. 3544 // 3545 // Doing so would degrade the debugging experience and adversely affect the 3546 // accuracy of profiling information. 3547 // 3548 // Currently, when hoisting the instructions, we take the following actions: 3549 // - Remove their debug intrinsic instructions. 3550 // - Set their debug locations to the values from the insertion point. 3551 // 3552 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3553 // need to be deleted, is because there will not be any instructions with a 3554 // DILocation in either branch left after performing the transformation. We 3555 // can only insert a dbg.value after the two branches are joined again. 3556 // 3557 // See PR38762, PR39243 for more details. 3558 // 3559 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3560 // encode predicated DIExpressions that yield different results on different 3561 // code paths. 3562 3563 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3564 Instruction *I = &*II; 3565 I->dropUBImplyingAttrsAndMetadata(); 3566 if (I->isUsedByMetadata()) 3567 dropDebugUsers(*I); 3568 // RemoveDIs: drop debug-info too as the following code does. 3569 I->dropDbgValues(); 3570 if (I->isDebugOrPseudoInst()) { 3571 // Remove DbgInfo and pseudo probe Intrinsics. 3572 II = I->eraseFromParent(); 3573 continue; 3574 } 3575 I->setDebugLoc(InsertPt->getDebugLoc()); 3576 ++II; 3577 } 3578 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3579 BB->getTerminator()->getIterator()); 3580 } 3581 3582 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3583 Type &Ty) { 3584 // Create integer constant expression. 3585 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3586 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3587 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3588 return InitIntOpt ? DIB.createConstantValueExpression( 3589 static_cast<uint64_t>(*InitIntOpt)) 3590 : nullptr; 3591 }; 3592 3593 if (isa<ConstantInt>(C)) 3594 return createIntegerExpression(C); 3595 3596 auto *FP = dyn_cast<ConstantFP>(&C); 3597 if (FP && (Ty.isFloatTy() || Ty.isDoubleTy())) { 3598 const APFloat &APF = FP->getValueAPF(); 3599 return DIB.createConstantValueExpression( 3600 APF.bitcastToAPInt().getZExtValue()); 3601 } 3602 3603 if (!Ty.isPointerTy()) 3604 return nullptr; 3605 3606 if (isa<ConstantPointerNull>(C)) 3607 return DIB.createConstantValueExpression(0); 3608 3609 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3610 if (CE->getOpcode() == Instruction::IntToPtr) { 3611 const Value *V = CE->getOperand(0); 3612 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3613 return createIntegerExpression(*CI); 3614 } 3615 return nullptr; 3616 } 3617 3618 namespace { 3619 3620 /// A potential constituent of a bitreverse or bswap expression. See 3621 /// collectBitParts for a fuller explanation. 3622 struct BitPart { 3623 BitPart(Value *P, unsigned BW) : Provider(P) { 3624 Provenance.resize(BW); 3625 } 3626 3627 /// The Value that this is a bitreverse/bswap of. 3628 Value *Provider; 3629 3630 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3631 /// in Provider becomes bit B in the result of this expression. 3632 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3633 3634 enum { Unset = -1 }; 3635 }; 3636 3637 } // end anonymous namespace 3638 3639 /// Analyze the specified subexpression and see if it is capable of providing 3640 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3641 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3642 /// the output of the expression came from a corresponding bit in some other 3643 /// value. This function is recursive, and the end result is a mapping of 3644 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3645 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3646 /// 3647 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3648 /// that the expression deposits the low byte of %X into the high byte of the 3649 /// result and that all other bits are zero. This expression is accepted and a 3650 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3651 /// [0-7]. 3652 /// 3653 /// For vector types, all analysis is performed at the per-element level. No 3654 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3655 /// constant masks must be splatted across all elements. 3656 /// 3657 /// To avoid revisiting values, the BitPart results are memoized into the 3658 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3659 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3660 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3661 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3662 /// type instead to provide the same functionality. 3663 /// 3664 /// Because we pass around references into \c BPS, we must use a container that 3665 /// does not invalidate internal references (std::map instead of DenseMap). 3666 static const std::optional<BitPart> & 3667 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3668 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3669 bool &FoundRoot) { 3670 auto I = BPS.find(V); 3671 if (I != BPS.end()) 3672 return I->second; 3673 3674 auto &Result = BPS[V] = std::nullopt; 3675 auto BitWidth = V->getType()->getScalarSizeInBits(); 3676 3677 // Can't do integer/elements > 128 bits. 3678 if (BitWidth > 128) 3679 return Result; 3680 3681 // Prevent stack overflow by limiting the recursion depth 3682 if (Depth == BitPartRecursionMaxDepth) { 3683 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3684 return Result; 3685 } 3686 3687 if (auto *I = dyn_cast<Instruction>(V)) { 3688 Value *X, *Y; 3689 const APInt *C; 3690 3691 // If this is an or instruction, it may be an inner node of the bswap. 3692 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3693 // Check we have both sources and they are from the same provider. 3694 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3695 Depth + 1, FoundRoot); 3696 if (!A || !A->Provider) 3697 return Result; 3698 3699 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3700 Depth + 1, FoundRoot); 3701 if (!B || A->Provider != B->Provider) 3702 return Result; 3703 3704 // Try and merge the two together. 3705 Result = BitPart(A->Provider, BitWidth); 3706 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3707 if (A->Provenance[BitIdx] != BitPart::Unset && 3708 B->Provenance[BitIdx] != BitPart::Unset && 3709 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3710 return Result = std::nullopt; 3711 3712 if (A->Provenance[BitIdx] == BitPart::Unset) 3713 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3714 else 3715 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3716 } 3717 3718 return Result; 3719 } 3720 3721 // If this is a logical shift by a constant, recurse then shift the result. 3722 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3723 const APInt &BitShift = *C; 3724 3725 // Ensure the shift amount is defined. 3726 if (BitShift.uge(BitWidth)) 3727 return Result; 3728 3729 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3730 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3731 return Result; 3732 3733 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3734 Depth + 1, FoundRoot); 3735 if (!Res) 3736 return Result; 3737 Result = Res; 3738 3739 // Perform the "shift" on BitProvenance. 3740 auto &P = Result->Provenance; 3741 if (I->getOpcode() == Instruction::Shl) { 3742 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3743 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3744 } else { 3745 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3746 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3747 } 3748 3749 return Result; 3750 } 3751 3752 // If this is a logical 'and' with a mask that clears bits, recurse then 3753 // unset the appropriate bits. 3754 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3755 const APInt &AndMask = *C; 3756 3757 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3758 // early exit. 3759 unsigned NumMaskedBits = AndMask.popcount(); 3760 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3761 return Result; 3762 3763 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3764 Depth + 1, FoundRoot); 3765 if (!Res) 3766 return Result; 3767 Result = Res; 3768 3769 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3770 // If the AndMask is zero for this bit, clear the bit. 3771 if (AndMask[BitIdx] == 0) 3772 Result->Provenance[BitIdx] = BitPart::Unset; 3773 return Result; 3774 } 3775 3776 // If this is a zext instruction zero extend the result. 3777 if (match(V, m_ZExt(m_Value(X)))) { 3778 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3779 Depth + 1, FoundRoot); 3780 if (!Res) 3781 return Result; 3782 3783 Result = BitPart(Res->Provider, BitWidth); 3784 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3785 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3786 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3787 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3788 Result->Provenance[BitIdx] = BitPart::Unset; 3789 return Result; 3790 } 3791 3792 // If this is a truncate instruction, extract the lower bits. 3793 if (match(V, m_Trunc(m_Value(X)))) { 3794 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3795 Depth + 1, FoundRoot); 3796 if (!Res) 3797 return Result; 3798 3799 Result = BitPart(Res->Provider, BitWidth); 3800 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3801 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3802 return Result; 3803 } 3804 3805 // BITREVERSE - most likely due to us previous matching a partial 3806 // bitreverse. 3807 if (match(V, m_BitReverse(m_Value(X)))) { 3808 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3809 Depth + 1, FoundRoot); 3810 if (!Res) 3811 return Result; 3812 3813 Result = BitPart(Res->Provider, BitWidth); 3814 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3815 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3816 return Result; 3817 } 3818 3819 // BSWAP - most likely due to us previous matching a partial bswap. 3820 if (match(V, m_BSwap(m_Value(X)))) { 3821 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3822 Depth + 1, FoundRoot); 3823 if (!Res) 3824 return Result; 3825 3826 unsigned ByteWidth = BitWidth / 8; 3827 Result = BitPart(Res->Provider, BitWidth); 3828 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3829 unsigned ByteBitOfs = ByteIdx * 8; 3830 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3831 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3832 Res->Provenance[ByteBitOfs + BitIdx]; 3833 } 3834 return Result; 3835 } 3836 3837 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3838 // amount (modulo). 3839 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3840 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3841 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3842 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3843 // We can treat fshr as a fshl by flipping the modulo amount. 3844 unsigned ModAmt = C->urem(BitWidth); 3845 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3846 ModAmt = BitWidth - ModAmt; 3847 3848 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3849 if (!MatchBitReversals && (ModAmt % 8) != 0) 3850 return Result; 3851 3852 // Check we have both sources and they are from the same provider. 3853 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3854 Depth + 1, FoundRoot); 3855 if (!LHS || !LHS->Provider) 3856 return Result; 3857 3858 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3859 Depth + 1, FoundRoot); 3860 if (!RHS || LHS->Provider != RHS->Provider) 3861 return Result; 3862 3863 unsigned StartBitRHS = BitWidth - ModAmt; 3864 Result = BitPart(LHS->Provider, BitWidth); 3865 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3866 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3867 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3868 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3869 return Result; 3870 } 3871 } 3872 3873 // If we've already found a root input value then we're never going to merge 3874 // these back together. 3875 if (FoundRoot) 3876 return Result; 3877 3878 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3879 // be the root input value to the bswap/bitreverse. 3880 FoundRoot = true; 3881 Result = BitPart(V, BitWidth); 3882 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3883 Result->Provenance[BitIdx] = BitIdx; 3884 return Result; 3885 } 3886 3887 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3888 unsigned BitWidth) { 3889 if (From % 8 != To % 8) 3890 return false; 3891 // Convert from bit indices to byte indices and check for a byte reversal. 3892 From >>= 3; 3893 To >>= 3; 3894 BitWidth >>= 3; 3895 return From == BitWidth - To - 1; 3896 } 3897 3898 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3899 unsigned BitWidth) { 3900 return From == BitWidth - To - 1; 3901 } 3902 3903 bool llvm::recognizeBSwapOrBitReverseIdiom( 3904 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3905 SmallVectorImpl<Instruction *> &InsertedInsts) { 3906 if (!match(I, m_Or(m_Value(), m_Value())) && 3907 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3908 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3909 return false; 3910 if (!MatchBSwaps && !MatchBitReversals) 3911 return false; 3912 Type *ITy = I->getType(); 3913 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3914 return false; // Can't do integer/elements > 128 bits. 3915 3916 // Try to find all the pieces corresponding to the bswap. 3917 bool FoundRoot = false; 3918 std::map<Value *, std::optional<BitPart>> BPS; 3919 const auto &Res = 3920 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3921 if (!Res) 3922 return false; 3923 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3924 assert(all_of(BitProvenance, 3925 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3926 "Illegal bit provenance index"); 3927 3928 // If the upper bits are zero, then attempt to perform as a truncated op. 3929 Type *DemandedTy = ITy; 3930 if (BitProvenance.back() == BitPart::Unset) { 3931 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3932 BitProvenance = BitProvenance.drop_back(); 3933 if (BitProvenance.empty()) 3934 return false; // TODO - handle null value? 3935 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3936 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3937 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3938 } 3939 3940 // Check BitProvenance hasn't found a source larger than the result type. 3941 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3942 if (DemandedBW > ITy->getScalarSizeInBits()) 3943 return false; 3944 3945 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3946 // only byteswap values with an even number of bytes. 3947 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3948 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3949 bool OKForBitReverse = MatchBitReversals; 3950 for (unsigned BitIdx = 0; 3951 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3952 if (BitProvenance[BitIdx] == BitPart::Unset) { 3953 DemandedMask.clearBit(BitIdx); 3954 continue; 3955 } 3956 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3957 DemandedBW); 3958 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3959 BitIdx, DemandedBW); 3960 } 3961 3962 Intrinsic::ID Intrin; 3963 if (OKForBSwap) 3964 Intrin = Intrinsic::bswap; 3965 else if (OKForBitReverse) 3966 Intrin = Intrinsic::bitreverse; 3967 else 3968 return false; 3969 3970 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3971 Value *Provider = Res->Provider; 3972 3973 // We may need to truncate the provider. 3974 if (DemandedTy != Provider->getType()) { 3975 auto *Trunc = 3976 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3977 InsertedInsts.push_back(Trunc); 3978 Provider = Trunc; 3979 } 3980 3981 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3982 InsertedInsts.push_back(Result); 3983 3984 if (!DemandedMask.isAllOnes()) { 3985 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3986 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3987 InsertedInsts.push_back(Result); 3988 } 3989 3990 // We may need to zeroextend back to the result type. 3991 if (ITy != Result->getType()) { 3992 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3993 InsertedInsts.push_back(ExtInst); 3994 } 3995 3996 return true; 3997 } 3998 3999 // CodeGen has special handling for some string functions that may replace 4000 // them with target-specific intrinsics. Since that'd skip our interceptors 4001 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4002 // we mark affected calls as NoBuiltin, which will disable optimization 4003 // in CodeGen. 4004 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4005 CallInst *CI, const TargetLibraryInfo *TLI) { 4006 Function *F = CI->getCalledFunction(); 4007 LibFunc Func; 4008 if (F && !F->hasLocalLinkage() && F->hasName() && 4009 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4010 !F->doesNotAccessMemory()) 4011 CI->addFnAttr(Attribute::NoBuiltin); 4012 } 4013 4014 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4015 // We can't have a PHI with a metadata type. 4016 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4017 return false; 4018 4019 // Early exit. 4020 if (!isa<Constant>(I->getOperand(OpIdx))) 4021 return true; 4022 4023 switch (I->getOpcode()) { 4024 default: 4025 return true; 4026 case Instruction::Call: 4027 case Instruction::Invoke: { 4028 const auto &CB = cast<CallBase>(*I); 4029 4030 // Can't handle inline asm. Skip it. 4031 if (CB.isInlineAsm()) 4032 return false; 4033 4034 // Constant bundle operands may need to retain their constant-ness for 4035 // correctness. 4036 if (CB.isBundleOperand(OpIdx)) 4037 return false; 4038 4039 if (OpIdx < CB.arg_size()) { 4040 // Some variadic intrinsics require constants in the variadic arguments, 4041 // which currently aren't markable as immarg. 4042 if (isa<IntrinsicInst>(CB) && 4043 OpIdx >= CB.getFunctionType()->getNumParams()) { 4044 // This is known to be OK for stackmap. 4045 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4046 } 4047 4048 // gcroot is a special case, since it requires a constant argument which 4049 // isn't also required to be a simple ConstantInt. 4050 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4051 return false; 4052 4053 // Some intrinsic operands are required to be immediates. 4054 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4055 } 4056 4057 // It is never allowed to replace the call argument to an intrinsic, but it 4058 // may be possible for a call. 4059 return !isa<IntrinsicInst>(CB); 4060 } 4061 case Instruction::ShuffleVector: 4062 // Shufflevector masks are constant. 4063 return OpIdx != 2; 4064 case Instruction::Switch: 4065 case Instruction::ExtractValue: 4066 // All operands apart from the first are constant. 4067 return OpIdx == 0; 4068 case Instruction::InsertValue: 4069 // All operands apart from the first and the second are constant. 4070 return OpIdx < 2; 4071 case Instruction::Alloca: 4072 // Static allocas (constant size in the entry block) are handled by 4073 // prologue/epilogue insertion so they're free anyway. We definitely don't 4074 // want to make them non-constant. 4075 return !cast<AllocaInst>(I)->isStaticAlloca(); 4076 case Instruction::GetElementPtr: 4077 if (OpIdx == 0) 4078 return true; 4079 gep_type_iterator It = gep_type_begin(I); 4080 for (auto E = std::next(It, OpIdx); It != E; ++It) 4081 if (It.isStruct()) 4082 return false; 4083 return true; 4084 } 4085 } 4086 4087 Value *llvm::invertCondition(Value *Condition) { 4088 // First: Check if it's a constant 4089 if (Constant *C = dyn_cast<Constant>(Condition)) 4090 return ConstantExpr::getNot(C); 4091 4092 // Second: If the condition is already inverted, return the original value 4093 Value *NotCondition; 4094 if (match(Condition, m_Not(m_Value(NotCondition)))) 4095 return NotCondition; 4096 4097 BasicBlock *Parent = nullptr; 4098 Instruction *Inst = dyn_cast<Instruction>(Condition); 4099 if (Inst) 4100 Parent = Inst->getParent(); 4101 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4102 Parent = &Arg->getParent()->getEntryBlock(); 4103 assert(Parent && "Unsupported condition to invert"); 4104 4105 // Third: Check all the users for an invert 4106 for (User *U : Condition->users()) 4107 if (Instruction *I = dyn_cast<Instruction>(U)) 4108 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4109 return I; 4110 4111 // Last option: Create a new instruction 4112 auto *Inverted = 4113 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4114 if (Inst && !isa<PHINode>(Inst)) 4115 Inverted->insertAfter(Inst); 4116 else 4117 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4118 return Inverted; 4119 } 4120 4121 bool llvm::inferAttributesFromOthers(Function &F) { 4122 // Note: We explicitly check for attributes rather than using cover functions 4123 // because some of the cover functions include the logic being implemented. 4124 4125 bool Changed = false; 4126 // readnone + not convergent implies nosync 4127 if (!F.hasFnAttribute(Attribute::NoSync) && 4128 F.doesNotAccessMemory() && !F.isConvergent()) { 4129 F.setNoSync(); 4130 Changed = true; 4131 } 4132 4133 // readonly implies nofree 4134 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4135 F.setDoesNotFreeMemory(); 4136 Changed = true; 4137 } 4138 4139 // willreturn implies mustprogress 4140 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4141 F.setMustProgress(); 4142 Changed = true; 4143 } 4144 4145 // TODO: There are a bunch of cases of restrictive memory effects we 4146 // can infer by inspecting arguments of argmemonly-ish functions. 4147 4148 return Changed; 4149 } 4150