1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/ProfDataUtils.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <optional> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::PatternMatch; 88 89 #define DEBUG_TYPE "local" 90 91 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 92 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 93 94 static cl::opt<bool> PHICSEDebugHash( 95 "phicse-debug-hash", 96 #ifdef EXPENSIVE_CHECKS 97 cl::init(true), 98 #else 99 cl::init(false), 100 #endif 101 cl::Hidden, 102 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 103 "function is well-behaved w.r.t. its isEqual predicate")); 104 105 static cl::opt<unsigned> PHICSENumPHISmallSize( 106 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 107 cl::desc( 108 "When the basic block contains not more than this number of PHI nodes, " 109 "perform a (faster!) exhaustive search instead of set-driven one.")); 110 111 // Max recursion depth for collectBitParts used when detecting bswap and 112 // bitreverse idioms. 113 static const unsigned BitPartRecursionMaxDepth = 48; 114 115 //===----------------------------------------------------------------------===// 116 // Local constant propagation. 117 // 118 119 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 120 /// constant value, convert it into an unconditional branch to the constant 121 /// destination. This is a nontrivial operation because the successors of this 122 /// basic block must have their PHI nodes updated. 123 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 124 /// conditions and indirectbr addresses this might make dead if 125 /// DeleteDeadConditions is true. 126 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 127 const TargetLibraryInfo *TLI, 128 DomTreeUpdater *DTU) { 129 Instruction *T = BB->getTerminator(); 130 IRBuilder<> Builder(T); 131 132 // Branch - See if we are conditional jumping on constant 133 if (auto *BI = dyn_cast<BranchInst>(T)) { 134 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 135 136 BasicBlock *Dest1 = BI->getSuccessor(0); 137 BasicBlock *Dest2 = BI->getSuccessor(1); 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 BranchInst *NewBI = Builder.CreateBr(Dest1); 150 151 // Transfer the metadata to the new branch instruction. 152 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 153 LLVMContext::MD_annotation}); 154 155 Value *Cond = BI->getCondition(); 156 BI->eraseFromParent(); 157 if (DeleteDeadConditions) 158 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 159 return true; 160 } 161 162 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 163 // Are we branching on constant? 164 // YES. Change to unconditional branch... 165 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 166 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 167 168 // Let the basic block know that we are letting go of it. Based on this, 169 // it will adjust it's PHI nodes. 170 OldDest->removePredecessor(BB); 171 172 // Replace the conditional branch with an unconditional one. 173 BranchInst *NewBI = Builder.CreateBr(Destination); 174 175 // Transfer the metadata to the new branch instruction. 176 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 177 LLVMContext::MD_annotation}); 178 179 BI->eraseFromParent(); 180 if (DTU) 181 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 182 return true; 183 } 184 185 return false; 186 } 187 188 if (auto *SI = dyn_cast<SwitchInst>(T)) { 189 // If we are switching on a constant, we can convert the switch to an 190 // unconditional branch. 191 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 192 BasicBlock *DefaultDest = SI->getDefaultDest(); 193 BasicBlock *TheOnlyDest = DefaultDest; 194 195 // If the default is unreachable, ignore it when searching for TheOnlyDest. 196 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 197 SI->getNumCases() > 0) { 198 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 199 } 200 201 bool Changed = false; 202 203 // Figure out which case it goes to. 204 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 205 // Found case matching a constant operand? 206 if (It->getCaseValue() == CI) { 207 TheOnlyDest = It->getCaseSuccessor(); 208 break; 209 } 210 211 // Check to see if this branch is going to the same place as the default 212 // dest. If so, eliminate it as an explicit compare. 213 if (It->getCaseSuccessor() == DefaultDest) { 214 MDNode *MD = getValidBranchWeightMDNode(*SI); 215 unsigned NCases = SI->getNumCases(); 216 // Fold the case metadata into the default if there will be any branches 217 // left, unless the metadata doesn't match the switch. 218 if (NCases > 1 && MD) { 219 // Collect branch weights into a vector. 220 SmallVector<uint32_t, 8> Weights; 221 extractBranchWeights(MD, Weights); 222 223 // Merge weight of this case to the default weight. 224 unsigned Idx = It->getCaseIndex(); 225 // TODO: Add overflow check. 226 Weights[0] += Weights[Idx + 1]; 227 // Remove weight for this case. 228 std::swap(Weights[Idx + 1], Weights.back()); 229 Weights.pop_back(); 230 SI->setMetadata(LLVMContext::MD_prof, 231 MDBuilder(BB->getContext()). 232 createBranchWeights(Weights)); 233 } 234 // Remove this entry. 235 BasicBlock *ParentBB = SI->getParent(); 236 DefaultDest->removePredecessor(ParentBB); 237 It = SI->removeCase(It); 238 End = SI->case_end(); 239 240 // Removing this case may have made the condition constant. In that 241 // case, update CI and restart iteration through the cases. 242 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 243 CI = NewCI; 244 It = SI->case_begin(); 245 } 246 247 Changed = true; 248 continue; 249 } 250 251 // Otherwise, check to see if the switch only branches to one destination. 252 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 253 // destinations. 254 if (It->getCaseSuccessor() != TheOnlyDest) 255 TheOnlyDest = nullptr; 256 257 // Increment this iterator as we haven't removed the case. 258 ++It; 259 } 260 261 if (CI && !TheOnlyDest) { 262 // Branching on a constant, but not any of the cases, go to the default 263 // successor. 264 TheOnlyDest = SI->getDefaultDest(); 265 } 266 267 // If we found a single destination that we can fold the switch into, do so 268 // now. 269 if (TheOnlyDest) { 270 // Insert the new branch. 271 Builder.CreateBr(TheOnlyDest); 272 BasicBlock *BB = SI->getParent(); 273 274 SmallSet<BasicBlock *, 8> RemovedSuccessors; 275 276 // Remove entries from PHI nodes which we no longer branch to... 277 BasicBlock *SuccToKeep = TheOnlyDest; 278 for (BasicBlock *Succ : successors(SI)) { 279 if (DTU && Succ != TheOnlyDest) 280 RemovedSuccessors.insert(Succ); 281 // Found case matching a constant operand? 282 if (Succ == SuccToKeep) { 283 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 284 } else { 285 Succ->removePredecessor(BB); 286 } 287 } 288 289 // Delete the old switch. 290 Value *Cond = SI->getCondition(); 291 SI->eraseFromParent(); 292 if (DeleteDeadConditions) 293 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 294 if (DTU) { 295 std::vector<DominatorTree::UpdateType> Updates; 296 Updates.reserve(RemovedSuccessors.size()); 297 for (auto *RemovedSuccessor : RemovedSuccessors) 298 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 299 DTU->applyUpdates(Updates); 300 } 301 return true; 302 } 303 304 if (SI->getNumCases() == 1) { 305 // Otherwise, we can fold this switch into a conditional branch 306 // instruction if it has only one non-default destination. 307 auto FirstCase = *SI->case_begin(); 308 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 309 FirstCase.getCaseValue(), "cond"); 310 311 // Insert the new branch. 312 BranchInst *NewBr = Builder.CreateCondBr(Cond, 313 FirstCase.getCaseSuccessor(), 314 SI->getDefaultDest()); 315 SmallVector<uint32_t> Weights; 316 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 317 uint32_t DefWeight = Weights[0]; 318 uint32_t CaseWeight = Weights[1]; 319 // The TrueWeight should be the weight for the single case of SI. 320 NewBr->setMetadata(LLVMContext::MD_prof, 321 MDBuilder(BB->getContext()) 322 .createBranchWeights(CaseWeight, DefWeight)); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 406 Instruction *I, const TargetLibraryInfo *TLI) { 407 // Instructions that are "markers" and have implied meaning on code around 408 // them (without explicit uses), are not dead on unused paths. 409 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 410 if (II->getIntrinsicID() == Intrinsic::stacksave || 411 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 412 II->isLifetimeStartOrEnd()) 413 return false; 414 return wouldInstructionBeTriviallyDead(I, TLI); 415 } 416 417 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 418 const TargetLibraryInfo *TLI) { 419 if (I->isTerminator()) 420 return false; 421 422 // We don't want the landingpad-like instructions removed by anything this 423 // general. 424 if (I->isEHPad()) 425 return false; 426 427 // We don't want debug info removed by anything this general. 428 if (isa<DbgVariableIntrinsic>(I)) 429 return false; 430 431 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 432 if (DLI->getLabel()) 433 return false; 434 return true; 435 } 436 437 if (auto *CB = dyn_cast<CallBase>(I)) 438 if (isRemovableAlloc(CB, TLI)) 439 return true; 440 441 if (!I->willReturn()) { 442 auto *II = dyn_cast<IntrinsicInst>(I); 443 if (!II) 444 return false; 445 446 // TODO: These intrinsics are not safe to remove, because this may remove 447 // a well-defined trap. 448 switch (II->getIntrinsicID()) { 449 case Intrinsic::wasm_trunc_signed: 450 case Intrinsic::wasm_trunc_unsigned: 451 case Intrinsic::ptrauth_auth: 452 case Intrinsic::ptrauth_resign: 453 return true; 454 default: 455 return false; 456 } 457 } 458 459 if (!I->mayHaveSideEffects()) 460 return true; 461 462 // Special case intrinsics that "may have side effects" but can be deleted 463 // when dead. 464 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 465 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 466 if (II->getIntrinsicID() == Intrinsic::stacksave || 467 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 468 return true; 469 470 if (II->isLifetimeStartOrEnd()) { 471 auto *Arg = II->getArgOperand(1); 472 // Lifetime intrinsics are dead when their right-hand is undef. 473 if (isa<UndefValue>(Arg)) 474 return true; 475 // If the right-hand is an alloc, global, or argument and the only uses 476 // are lifetime intrinsics then the intrinsics are dead. 477 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 478 return llvm::all_of(Arg->uses(), [](Use &Use) { 479 if (IntrinsicInst *IntrinsicUse = 480 dyn_cast<IntrinsicInst>(Use.getUser())) 481 return IntrinsicUse->isLifetimeStartOrEnd(); 482 return false; 483 }); 484 return false; 485 } 486 487 // Assumptions are dead if their condition is trivially true. Guards on 488 // true are operationally no-ops. In the future we can consider more 489 // sophisticated tradeoffs for guards considering potential for check 490 // widening, but for now we keep things simple. 491 if ((II->getIntrinsicID() == Intrinsic::assume && 492 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 493 II->getIntrinsicID() == Intrinsic::experimental_guard) { 494 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 495 return !Cond->isZero(); 496 497 return false; 498 } 499 500 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 501 std::optional<fp::ExceptionBehavior> ExBehavior = 502 FPI->getExceptionBehavior(); 503 return *ExBehavior != fp::ebStrict; 504 } 505 } 506 507 if (auto *Call = dyn_cast<CallBase>(I)) { 508 if (Value *FreedOp = getFreedOperand(Call, TLI)) 509 if (Constant *C = dyn_cast<Constant>(FreedOp)) 510 return C->isNullValue() || isa<UndefValue>(C); 511 if (isMathLibCallNoop(Call, TLI)) 512 return true; 513 } 514 515 // Non-volatile atomic loads from constants can be removed. 516 if (auto *LI = dyn_cast<LoadInst>(I)) 517 if (auto *GV = dyn_cast<GlobalVariable>( 518 LI->getPointerOperand()->stripPointerCasts())) 519 if (!LI->isVolatile() && GV->isConstant()) 520 return true; 521 522 return false; 523 } 524 525 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 526 /// trivially dead instruction, delete it. If that makes any of its operands 527 /// trivially dead, delete them too, recursively. Return true if any 528 /// instructions were deleted. 529 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 530 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 531 std::function<void(Value *)> AboutToDeleteCallback) { 532 Instruction *I = dyn_cast<Instruction>(V); 533 if (!I || !isInstructionTriviallyDead(I, TLI)) 534 return false; 535 536 SmallVector<WeakTrackingVH, 16> DeadInsts; 537 DeadInsts.push_back(I); 538 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 539 AboutToDeleteCallback); 540 541 return true; 542 } 543 544 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 545 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 546 MemorySSAUpdater *MSSAU, 547 std::function<void(Value *)> AboutToDeleteCallback) { 548 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 549 for (; S != E; ++S) { 550 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 551 if (!I || !isInstructionTriviallyDead(I)) { 552 DeadInsts[S] = nullptr; 553 ++Alive; 554 } 555 } 556 if (Alive == E) 557 return false; 558 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 559 AboutToDeleteCallback); 560 return true; 561 } 562 563 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 564 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 565 MemorySSAUpdater *MSSAU, 566 std::function<void(Value *)> AboutToDeleteCallback) { 567 // Process the dead instruction list until empty. 568 while (!DeadInsts.empty()) { 569 Value *V = DeadInsts.pop_back_val(); 570 Instruction *I = cast_or_null<Instruction>(V); 571 if (!I) 572 continue; 573 assert(isInstructionTriviallyDead(I, TLI) && 574 "Live instruction found in dead worklist!"); 575 assert(I->use_empty() && "Instructions with uses are not dead."); 576 577 // Don't lose the debug info while deleting the instructions. 578 salvageDebugInfo(*I); 579 580 if (AboutToDeleteCallback) 581 AboutToDeleteCallback(I); 582 583 // Null out all of the instruction's operands to see if any operand becomes 584 // dead as we go. 585 for (Use &OpU : I->operands()) { 586 Value *OpV = OpU.get(); 587 OpU.set(nullptr); 588 589 if (!OpV->use_empty()) 590 continue; 591 592 // If the operand is an instruction that became dead as we nulled out the 593 // operand, and if it is 'trivially' dead, delete it in a future loop 594 // iteration. 595 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 596 if (isInstructionTriviallyDead(OpI, TLI)) 597 DeadInsts.push_back(OpI); 598 } 599 if (MSSAU) 600 MSSAU->removeMemoryAccess(I); 601 602 I->eraseFromParent(); 603 } 604 } 605 606 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 607 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 608 findDbgUsers(DbgUsers, I); 609 for (auto *DII : DbgUsers) 610 DII->setKillLocation(); 611 return !DbgUsers.empty(); 612 } 613 614 /// areAllUsesEqual - Check whether the uses of a value are all the same. 615 /// This is similar to Instruction::hasOneUse() except this will also return 616 /// true when there are no uses or multiple uses that all refer to the same 617 /// value. 618 static bool areAllUsesEqual(Instruction *I) { 619 Value::user_iterator UI = I->user_begin(); 620 Value::user_iterator UE = I->user_end(); 621 if (UI == UE) 622 return true; 623 624 User *TheUse = *UI; 625 for (++UI; UI != UE; ++UI) { 626 if (*UI != TheUse) 627 return false; 628 } 629 return true; 630 } 631 632 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 633 /// dead PHI node, due to being a def-use chain of single-use nodes that 634 /// either forms a cycle or is terminated by a trivially dead instruction, 635 /// delete it. If that makes any of its operands trivially dead, delete them 636 /// too, recursively. Return true if a change was made. 637 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 638 const TargetLibraryInfo *TLI, 639 llvm::MemorySSAUpdater *MSSAU) { 640 SmallPtrSet<Instruction*, 4> Visited; 641 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 642 I = cast<Instruction>(*I->user_begin())) { 643 if (I->use_empty()) 644 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 645 646 // If we find an instruction more than once, we're on a cycle that 647 // won't prove fruitful. 648 if (!Visited.insert(I).second) { 649 // Break the cycle and delete the instruction and its operands. 650 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 651 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 652 return true; 653 } 654 } 655 return false; 656 } 657 658 static bool 659 simplifyAndDCEInstruction(Instruction *I, 660 SmallSetVector<Instruction *, 16> &WorkList, 661 const DataLayout &DL, 662 const TargetLibraryInfo *TLI) { 663 if (isInstructionTriviallyDead(I, TLI)) { 664 salvageDebugInfo(*I); 665 666 // Null out all of the instruction's operands to see if any operand becomes 667 // dead as we go. 668 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 669 Value *OpV = I->getOperand(i); 670 I->setOperand(i, nullptr); 671 672 if (!OpV->use_empty() || I == OpV) 673 continue; 674 675 // If the operand is an instruction that became dead as we nulled out the 676 // operand, and if it is 'trivially' dead, delete it in a future loop 677 // iteration. 678 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 679 if (isInstructionTriviallyDead(OpI, TLI)) 680 WorkList.insert(OpI); 681 } 682 683 I->eraseFromParent(); 684 685 return true; 686 } 687 688 if (Value *SimpleV = simplifyInstruction(I, DL)) { 689 // Add the users to the worklist. CAREFUL: an instruction can use itself, 690 // in the case of a phi node. 691 for (User *U : I->users()) { 692 if (U != I) { 693 WorkList.insert(cast<Instruction>(U)); 694 } 695 } 696 697 // Replace the instruction with its simplified value. 698 bool Changed = false; 699 if (!I->use_empty()) { 700 I->replaceAllUsesWith(SimpleV); 701 Changed = true; 702 } 703 if (isInstructionTriviallyDead(I, TLI)) { 704 I->eraseFromParent(); 705 Changed = true; 706 } 707 return Changed; 708 } 709 return false; 710 } 711 712 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 713 /// simplify any instructions in it and recursively delete dead instructions. 714 /// 715 /// This returns true if it changed the code, note that it can delete 716 /// instructions in other blocks as well in this block. 717 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 718 const TargetLibraryInfo *TLI) { 719 bool MadeChange = false; 720 const DataLayout &DL = BB->getModule()->getDataLayout(); 721 722 #ifndef NDEBUG 723 // In debug builds, ensure that the terminator of the block is never replaced 724 // or deleted by these simplifications. The idea of simplification is that it 725 // cannot introduce new instructions, and there is no way to replace the 726 // terminator of a block without introducing a new instruction. 727 AssertingVH<Instruction> TerminatorVH(&BB->back()); 728 #endif 729 730 SmallSetVector<Instruction *, 16> WorkList; 731 // Iterate over the original function, only adding insts to the worklist 732 // if they actually need to be revisited. This avoids having to pre-init 733 // the worklist with the entire function's worth of instructions. 734 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 735 BI != E;) { 736 assert(!BI->isTerminator()); 737 Instruction *I = &*BI; 738 ++BI; 739 740 // We're visiting this instruction now, so make sure it's not in the 741 // worklist from an earlier visit. 742 if (!WorkList.count(I)) 743 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 744 } 745 746 while (!WorkList.empty()) { 747 Instruction *I = WorkList.pop_back_val(); 748 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 749 } 750 return MadeChange; 751 } 752 753 //===----------------------------------------------------------------------===// 754 // Control Flow Graph Restructuring. 755 // 756 757 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 758 DomTreeUpdater *DTU) { 759 760 // If BB has single-entry PHI nodes, fold them. 761 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 762 Value *NewVal = PN->getIncomingValue(0); 763 // Replace self referencing PHI with poison, it must be dead. 764 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 765 PN->replaceAllUsesWith(NewVal); 766 PN->eraseFromParent(); 767 } 768 769 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 770 assert(PredBB && "Block doesn't have a single predecessor!"); 771 772 bool ReplaceEntryBB = PredBB->isEntryBlock(); 773 774 // DTU updates: Collect all the edges that enter 775 // PredBB. These dominator edges will be redirected to DestBB. 776 SmallVector<DominatorTree::UpdateType, 32> Updates; 777 778 if (DTU) { 779 // To avoid processing the same predecessor more than once. 780 SmallPtrSet<BasicBlock *, 2> SeenPreds; 781 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 782 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 783 // This predecessor of PredBB may already have DestBB as a successor. 784 if (PredOfPredBB != PredBB) 785 if (SeenPreds.insert(PredOfPredBB).second) 786 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 787 SeenPreds.clear(); 788 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 789 if (SeenPreds.insert(PredOfPredBB).second) 790 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 791 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 792 } 793 794 // Zap anything that took the address of DestBB. Not doing this will give the 795 // address an invalid value. 796 if (DestBB->hasAddressTaken()) { 797 BlockAddress *BA = BlockAddress::get(DestBB); 798 Constant *Replacement = 799 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 800 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 801 BA->getType())); 802 BA->destroyConstant(); 803 } 804 805 // Anything that branched to PredBB now branches to DestBB. 806 PredBB->replaceAllUsesWith(DestBB); 807 808 // Splice all the instructions from PredBB to DestBB. 809 PredBB->getTerminator()->eraseFromParent(); 810 DestBB->splice(DestBB->begin(), PredBB); 811 new UnreachableInst(PredBB->getContext(), PredBB); 812 813 // If the PredBB is the entry block of the function, move DestBB up to 814 // become the entry block after we erase PredBB. 815 if (ReplaceEntryBB) 816 DestBB->moveAfter(PredBB); 817 818 if (DTU) { 819 assert(PredBB->size() == 1 && 820 isa<UnreachableInst>(PredBB->getTerminator()) && 821 "The successor list of PredBB isn't empty before " 822 "applying corresponding DTU updates."); 823 DTU->applyUpdatesPermissive(Updates); 824 DTU->deleteBB(PredBB); 825 // Recalculation of DomTree is needed when updating a forward DomTree and 826 // the Entry BB is replaced. 827 if (ReplaceEntryBB && DTU->hasDomTree()) { 828 // The entry block was removed and there is no external interface for 829 // the dominator tree to be notified of this change. In this corner-case 830 // we recalculate the entire tree. 831 DTU->recalculate(*(DestBB->getParent())); 832 } 833 } 834 835 else { 836 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 837 } 838 } 839 840 /// Return true if we can choose one of these values to use in place of the 841 /// other. Note that we will always choose the non-undef value to keep. 842 static bool CanMergeValues(Value *First, Value *Second) { 843 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 844 } 845 846 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 847 /// branch to Succ, into Succ. 848 /// 849 /// Assumption: Succ is the single successor for BB. 850 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 851 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 852 853 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 854 << Succ->getName() << "\n"); 855 // Shortcut, if there is only a single predecessor it must be BB and merging 856 // is always safe 857 if (Succ->getSinglePredecessor()) return true; 858 859 // Make a list of the predecessors of BB 860 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 861 862 // Look at all the phi nodes in Succ, to see if they present a conflict when 863 // merging these blocks 864 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 865 PHINode *PN = cast<PHINode>(I); 866 867 // If the incoming value from BB is again a PHINode in 868 // BB which has the same incoming value for *PI as PN does, we can 869 // merge the phi nodes and then the blocks can still be merged 870 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 871 if (BBPN && BBPN->getParent() == BB) { 872 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 873 BasicBlock *IBB = PN->getIncomingBlock(PI); 874 if (BBPreds.count(IBB) && 875 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 876 PN->getIncomingValue(PI))) { 877 LLVM_DEBUG(dbgs() 878 << "Can't fold, phi node " << PN->getName() << " in " 879 << Succ->getName() << " is conflicting with " 880 << BBPN->getName() << " with regard to common predecessor " 881 << IBB->getName() << "\n"); 882 return false; 883 } 884 } 885 } else { 886 Value* Val = PN->getIncomingValueForBlock(BB); 887 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 888 // See if the incoming value for the common predecessor is equal to the 889 // one for BB, in which case this phi node will not prevent the merging 890 // of the block. 891 BasicBlock *IBB = PN->getIncomingBlock(PI); 892 if (BBPreds.count(IBB) && 893 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 894 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 895 << " in " << Succ->getName() 896 << " is conflicting with regard to common " 897 << "predecessor " << IBB->getName() << "\n"); 898 return false; 899 } 900 } 901 } 902 } 903 904 return true; 905 } 906 907 using PredBlockVector = SmallVector<BasicBlock *, 16>; 908 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 909 910 /// Determines the value to use as the phi node input for a block. 911 /// 912 /// Select between \p OldVal any value that we know flows from \p BB 913 /// to a particular phi on the basis of which one (if either) is not 914 /// undef. Update IncomingValues based on the selected value. 915 /// 916 /// \param OldVal The value we are considering selecting. 917 /// \param BB The block that the value flows in from. 918 /// \param IncomingValues A map from block-to-value for other phi inputs 919 /// that we have examined. 920 /// 921 /// \returns the selected value. 922 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 923 IncomingValueMap &IncomingValues) { 924 if (!isa<UndefValue>(OldVal)) { 925 assert((!IncomingValues.count(BB) || 926 IncomingValues.find(BB)->second == OldVal) && 927 "Expected OldVal to match incoming value from BB!"); 928 929 IncomingValues.insert(std::make_pair(BB, OldVal)); 930 return OldVal; 931 } 932 933 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 934 if (It != IncomingValues.end()) return It->second; 935 936 return OldVal; 937 } 938 939 /// Create a map from block to value for the operands of a 940 /// given phi. 941 /// 942 /// Create a map from block to value for each non-undef value flowing 943 /// into \p PN. 944 /// 945 /// \param PN The phi we are collecting the map for. 946 /// \param IncomingValues [out] The map from block to value for this phi. 947 static void gatherIncomingValuesToPhi(PHINode *PN, 948 IncomingValueMap &IncomingValues) { 949 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 950 BasicBlock *BB = PN->getIncomingBlock(i); 951 Value *V = PN->getIncomingValue(i); 952 953 if (!isa<UndefValue>(V)) 954 IncomingValues.insert(std::make_pair(BB, V)); 955 } 956 } 957 958 /// Replace the incoming undef values to a phi with the values 959 /// from a block-to-value map. 960 /// 961 /// \param PN The phi we are replacing the undefs in. 962 /// \param IncomingValues A map from block to value. 963 static void replaceUndefValuesInPhi(PHINode *PN, 964 const IncomingValueMap &IncomingValues) { 965 SmallVector<unsigned> TrueUndefOps; 966 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 967 Value *V = PN->getIncomingValue(i); 968 969 if (!isa<UndefValue>(V)) continue; 970 971 BasicBlock *BB = PN->getIncomingBlock(i); 972 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 973 974 // Keep track of undef/poison incoming values. Those must match, so we fix 975 // them up below if needed. 976 // Note: this is conservatively correct, but we could try harder and group 977 // the undef values per incoming basic block. 978 if (It == IncomingValues.end()) { 979 TrueUndefOps.push_back(i); 980 continue; 981 } 982 983 // There is a defined value for this incoming block, so map this undef 984 // incoming value to the defined value. 985 PN->setIncomingValue(i, It->second); 986 } 987 988 // If there are both undef and poison values incoming, then convert those 989 // values to undef. It is invalid to have different values for the same 990 // incoming block. 991 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 992 return isa<PoisonValue>(PN->getIncomingValue(i)); 993 }); 994 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 995 for (unsigned i : TrueUndefOps) 996 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 997 } 998 } 999 1000 /// Replace a value flowing from a block to a phi with 1001 /// potentially multiple instances of that value flowing from the 1002 /// block's predecessors to the phi. 1003 /// 1004 /// \param BB The block with the value flowing into the phi. 1005 /// \param BBPreds The predecessors of BB. 1006 /// \param PN The phi that we are updating. 1007 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1008 const PredBlockVector &BBPreds, 1009 PHINode *PN) { 1010 Value *OldVal = PN->removeIncomingValue(BB, false); 1011 assert(OldVal && "No entry in PHI for Pred BB!"); 1012 1013 IncomingValueMap IncomingValues; 1014 1015 // We are merging two blocks - BB, and the block containing PN - and 1016 // as a result we need to redirect edges from the predecessors of BB 1017 // to go to the block containing PN, and update PN 1018 // accordingly. Since we allow merging blocks in the case where the 1019 // predecessor and successor blocks both share some predecessors, 1020 // and where some of those common predecessors might have undef 1021 // values flowing into PN, we want to rewrite those values to be 1022 // consistent with the non-undef values. 1023 1024 gatherIncomingValuesToPhi(PN, IncomingValues); 1025 1026 // If this incoming value is one of the PHI nodes in BB, the new entries 1027 // in the PHI node are the entries from the old PHI. 1028 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1029 PHINode *OldValPN = cast<PHINode>(OldVal); 1030 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1031 // Note that, since we are merging phi nodes and BB and Succ might 1032 // have common predecessors, we could end up with a phi node with 1033 // identical incoming branches. This will be cleaned up later (and 1034 // will trigger asserts if we try to clean it up now, without also 1035 // simplifying the corresponding conditional branch). 1036 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1037 Value *PredVal = OldValPN->getIncomingValue(i); 1038 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1039 IncomingValues); 1040 1041 // And add a new incoming value for this predecessor for the 1042 // newly retargeted branch. 1043 PN->addIncoming(Selected, PredBB); 1044 } 1045 } else { 1046 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1047 // Update existing incoming values in PN for this 1048 // predecessor of BB. 1049 BasicBlock *PredBB = BBPreds[i]; 1050 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1051 IncomingValues); 1052 1053 // And add a new incoming value for this predecessor for the 1054 // newly retargeted branch. 1055 PN->addIncoming(Selected, PredBB); 1056 } 1057 } 1058 1059 replaceUndefValuesInPhi(PN, IncomingValues); 1060 } 1061 1062 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1063 DomTreeUpdater *DTU) { 1064 assert(BB != &BB->getParent()->getEntryBlock() && 1065 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1066 1067 // We can't eliminate infinite loops. 1068 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1069 if (BB == Succ) return false; 1070 1071 // Check to see if merging these blocks would cause conflicts for any of the 1072 // phi nodes in BB or Succ. If not, we can safely merge. 1073 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1074 1075 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1076 // has uses which will not disappear when the PHI nodes are merged. It is 1077 // possible to handle such cases, but difficult: it requires checking whether 1078 // BB dominates Succ, which is non-trivial to calculate in the case where 1079 // Succ has multiple predecessors. Also, it requires checking whether 1080 // constructing the necessary self-referential PHI node doesn't introduce any 1081 // conflicts; this isn't too difficult, but the previous code for doing this 1082 // was incorrect. 1083 // 1084 // Note that if this check finds a live use, BB dominates Succ, so BB is 1085 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1086 // folding the branch isn't profitable in that case anyway. 1087 if (!Succ->getSinglePredecessor()) { 1088 BasicBlock::iterator BBI = BB->begin(); 1089 while (isa<PHINode>(*BBI)) { 1090 for (Use &U : BBI->uses()) { 1091 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1092 if (PN->getIncomingBlock(U) != BB) 1093 return false; 1094 } else { 1095 return false; 1096 } 1097 } 1098 ++BBI; 1099 } 1100 } 1101 1102 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1103 // metadata. 1104 // 1105 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1106 // current status (that loop metadata is implemented as metadata attached to 1107 // the branch instruction in the loop latch block). To quote from review 1108 // comments, "the current representation of loop metadata (using a loop latch 1109 // terminator attachment) is known to be fundamentally broken. Loop latches 1110 // are not uniquely associated with loops (both in that a latch can be part of 1111 // multiple loops and a loop may have multiple latches). Loop headers are. The 1112 // solution to this problem is also known: Add support for basic block 1113 // metadata, and attach loop metadata to the loop header." 1114 // 1115 // Why bail out: 1116 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1117 // the latch for inner-loop (see reason below), so bail out to prerserve 1118 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1119 // to this inner-loop. 1120 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1121 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1122 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1123 // one self-looping basic block, which is contradictory with the assumption. 1124 // 1125 // To illustrate how inner-loop metadata is dropped: 1126 // 1127 // CFG Before 1128 // 1129 // BB is while.cond.exit, attached with loop metdata md2. 1130 // BB->Pred is for.body, attached with loop metadata md1. 1131 // 1132 // entry 1133 // | 1134 // v 1135 // ---> while.cond -------------> while.end 1136 // | | 1137 // | v 1138 // | while.body 1139 // | | 1140 // | v 1141 // | for.body <---- (md1) 1142 // | | |______| 1143 // | v 1144 // | while.cond.exit (md2) 1145 // | | 1146 // |_______| 1147 // 1148 // CFG After 1149 // 1150 // while.cond1 is the merge of while.cond.exit and while.cond above. 1151 // for.body is attached with md2, and md1 is dropped. 1152 // If LoopSimplify runs later (as a part of loop pass), it could create 1153 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1154 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1155 // 1156 // entry 1157 // | 1158 // v 1159 // ---> while.cond1 -------------> while.end 1160 // | | 1161 // | v 1162 // | while.body 1163 // | | 1164 // | v 1165 // | for.body <---- (md2) 1166 // |_______| |______| 1167 if (Instruction *TI = BB->getTerminator()) 1168 if (TI->hasMetadata(LLVMContext::MD_loop)) 1169 for (BasicBlock *Pred : predecessors(BB)) 1170 if (Instruction *PredTI = Pred->getTerminator()) 1171 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1172 return false; 1173 1174 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1175 1176 SmallVector<DominatorTree::UpdateType, 32> Updates; 1177 if (DTU) { 1178 // To avoid processing the same predecessor more than once. 1179 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1180 // All predecessors of BB will be moved to Succ. 1181 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1182 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1183 for (auto *PredOfBB : predecessors(BB)) 1184 // This predecessor of BB may already have Succ as a successor. 1185 if (!PredsOfSucc.contains(PredOfBB)) 1186 if (SeenPreds.insert(PredOfBB).second) 1187 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1188 SeenPreds.clear(); 1189 for (auto *PredOfBB : predecessors(BB)) 1190 if (SeenPreds.insert(PredOfBB).second) 1191 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1192 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1193 } 1194 1195 if (isa<PHINode>(Succ->begin())) { 1196 // If there is more than one pred of succ, and there are PHI nodes in 1197 // the successor, then we need to add incoming edges for the PHI nodes 1198 // 1199 const PredBlockVector BBPreds(predecessors(BB)); 1200 1201 // Loop over all of the PHI nodes in the successor of BB. 1202 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1203 PHINode *PN = cast<PHINode>(I); 1204 1205 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1206 } 1207 } 1208 1209 if (Succ->getSinglePredecessor()) { 1210 // BB is the only predecessor of Succ, so Succ will end up with exactly 1211 // the same predecessors BB had. 1212 1213 // Copy over any phi, debug or lifetime instruction. 1214 BB->getTerminator()->eraseFromParent(); 1215 Succ->splice(Succ->getFirstNonPHI()->getIterator(), BB); 1216 } else { 1217 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1218 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1219 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1220 PN->eraseFromParent(); 1221 } 1222 } 1223 1224 // If the unconditional branch we replaced contains llvm.loop metadata, we 1225 // add the metadata to the branch instructions in the predecessors. 1226 if (Instruction *TI = BB->getTerminator()) 1227 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1228 for (BasicBlock *Pred : predecessors(BB)) 1229 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1230 1231 // Everything that jumped to BB now goes to Succ. 1232 BB->replaceAllUsesWith(Succ); 1233 if (!Succ->hasName()) Succ->takeName(BB); 1234 1235 // Clear the successor list of BB to match updates applying to DTU later. 1236 if (BB->getTerminator()) 1237 BB->back().eraseFromParent(); 1238 new UnreachableInst(BB->getContext(), BB); 1239 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1240 "applying corresponding DTU updates."); 1241 1242 if (DTU) 1243 DTU->applyUpdates(Updates); 1244 1245 DeleteDeadBlock(BB, DTU); 1246 1247 return true; 1248 } 1249 1250 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1251 // This implementation doesn't currently consider undef operands 1252 // specially. Theoretically, two phis which are identical except for 1253 // one having an undef where the other doesn't could be collapsed. 1254 1255 bool Changed = false; 1256 1257 // Examine each PHI. 1258 // Note that increment of I must *NOT* be in the iteration_expression, since 1259 // we don't want to immediately advance when we restart from the beginning. 1260 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1261 ++I; 1262 // Is there an identical PHI node in this basic block? 1263 // Note that we only look in the upper square's triangle, 1264 // we already checked that the lower triangle PHI's aren't identical. 1265 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1266 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1267 continue; 1268 // A duplicate. Replace this PHI with the base PHI. 1269 ++NumPHICSEs; 1270 DuplicatePN->replaceAllUsesWith(PN); 1271 DuplicatePN->eraseFromParent(); 1272 Changed = true; 1273 1274 // The RAUW can change PHIs that we already visited. 1275 I = BB->begin(); 1276 break; // Start over from the beginning. 1277 } 1278 } 1279 return Changed; 1280 } 1281 1282 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1283 // This implementation doesn't currently consider undef operands 1284 // specially. Theoretically, two phis which are identical except for 1285 // one having an undef where the other doesn't could be collapsed. 1286 1287 struct PHIDenseMapInfo { 1288 static PHINode *getEmptyKey() { 1289 return DenseMapInfo<PHINode *>::getEmptyKey(); 1290 } 1291 1292 static PHINode *getTombstoneKey() { 1293 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1294 } 1295 1296 static bool isSentinel(PHINode *PN) { 1297 return PN == getEmptyKey() || PN == getTombstoneKey(); 1298 } 1299 1300 // WARNING: this logic must be kept in sync with 1301 // Instruction::isIdenticalToWhenDefined()! 1302 static unsigned getHashValueImpl(PHINode *PN) { 1303 // Compute a hash value on the operands. Instcombine will likely have 1304 // sorted them, which helps expose duplicates, but we have to check all 1305 // the operands to be safe in case instcombine hasn't run. 1306 return static_cast<unsigned>(hash_combine( 1307 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1308 hash_combine_range(PN->block_begin(), PN->block_end()))); 1309 } 1310 1311 static unsigned getHashValue(PHINode *PN) { 1312 #ifndef NDEBUG 1313 // If -phicse-debug-hash was specified, return a constant -- this 1314 // will force all hashing to collide, so we'll exhaustively search 1315 // the table for a match, and the assertion in isEqual will fire if 1316 // there's a bug causing equal keys to hash differently. 1317 if (PHICSEDebugHash) 1318 return 0; 1319 #endif 1320 return getHashValueImpl(PN); 1321 } 1322 1323 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1324 if (isSentinel(LHS) || isSentinel(RHS)) 1325 return LHS == RHS; 1326 return LHS->isIdenticalTo(RHS); 1327 } 1328 1329 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1330 // These comparisons are nontrivial, so assert that equality implies 1331 // hash equality (DenseMap demands this as an invariant). 1332 bool Result = isEqualImpl(LHS, RHS); 1333 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1334 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1335 return Result; 1336 } 1337 }; 1338 1339 // Set of unique PHINodes. 1340 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1341 PHISet.reserve(4 * PHICSENumPHISmallSize); 1342 1343 // Examine each PHI. 1344 bool Changed = false; 1345 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1346 auto Inserted = PHISet.insert(PN); 1347 if (!Inserted.second) { 1348 // A duplicate. Replace this PHI with its duplicate. 1349 ++NumPHICSEs; 1350 PN->replaceAllUsesWith(*Inserted.first); 1351 PN->eraseFromParent(); 1352 Changed = true; 1353 1354 // The RAUW can change PHIs that we already visited. Start over from the 1355 // beginning. 1356 PHISet.clear(); 1357 I = BB->begin(); 1358 } 1359 } 1360 1361 return Changed; 1362 } 1363 1364 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1365 if ( 1366 #ifndef NDEBUG 1367 !PHICSEDebugHash && 1368 #endif 1369 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1370 return EliminateDuplicatePHINodesNaiveImpl(BB); 1371 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1372 } 1373 1374 /// If the specified pointer points to an object that we control, try to modify 1375 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1376 /// the value after the operation, which may be lower than PrefAlign. 1377 /// 1378 /// Increating value alignment isn't often possible though. If alignment is 1379 /// important, a more reliable approach is to simply align all global variables 1380 /// and allocation instructions to their preferred alignment from the beginning. 1381 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1382 const DataLayout &DL) { 1383 V = V->stripPointerCasts(); 1384 1385 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1386 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1387 // than the current alignment, as the known bits calculation should have 1388 // already taken it into account. However, this is not always the case, 1389 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1390 // doesn't. 1391 Align CurrentAlign = AI->getAlign(); 1392 if (PrefAlign <= CurrentAlign) 1393 return CurrentAlign; 1394 1395 // If the preferred alignment is greater than the natural stack alignment 1396 // then don't round up. This avoids dynamic stack realignment. 1397 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1398 return CurrentAlign; 1399 AI->setAlignment(PrefAlign); 1400 return PrefAlign; 1401 } 1402 1403 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1404 // TODO: as above, this shouldn't be necessary. 1405 Align CurrentAlign = GO->getPointerAlignment(DL); 1406 if (PrefAlign <= CurrentAlign) 1407 return CurrentAlign; 1408 1409 // If there is a large requested alignment and we can, bump up the alignment 1410 // of the global. If the memory we set aside for the global may not be the 1411 // memory used by the final program then it is impossible for us to reliably 1412 // enforce the preferred alignment. 1413 if (!GO->canIncreaseAlignment()) 1414 return CurrentAlign; 1415 1416 if (GO->isThreadLocal()) { 1417 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1418 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1419 PrefAlign = Align(MaxTLSAlign); 1420 } 1421 1422 GO->setAlignment(PrefAlign); 1423 return PrefAlign; 1424 } 1425 1426 return Align(1); 1427 } 1428 1429 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1430 const DataLayout &DL, 1431 const Instruction *CxtI, 1432 AssumptionCache *AC, 1433 const DominatorTree *DT) { 1434 assert(V->getType()->isPointerTy() && 1435 "getOrEnforceKnownAlignment expects a pointer!"); 1436 1437 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1438 unsigned TrailZ = Known.countMinTrailingZeros(); 1439 1440 // Avoid trouble with ridiculously large TrailZ values, such as 1441 // those computed from a null pointer. 1442 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1443 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1444 1445 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1446 1447 if (PrefAlign && *PrefAlign > Alignment) 1448 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1449 1450 // We don't need to make any adjustment. 1451 return Alignment; 1452 } 1453 1454 ///===---------------------------------------------------------------------===// 1455 /// Dbg Intrinsic utilities 1456 /// 1457 1458 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1459 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1460 DIExpression *DIExpr, 1461 PHINode *APN) { 1462 // Since we can't guarantee that the original dbg.declare intrinsic 1463 // is removed by LowerDbgDeclare(), we need to make sure that we are 1464 // not inserting the same dbg.value intrinsic over and over. 1465 SmallVector<DbgValueInst *, 1> DbgValues; 1466 findDbgValues(DbgValues, APN); 1467 for (auto *DVI : DbgValues) { 1468 assert(is_contained(DVI->getValues(), APN)); 1469 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1470 return true; 1471 } 1472 return false; 1473 } 1474 1475 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1476 /// (or fragment of the variable) described by \p DII. 1477 /// 1478 /// This is primarily intended as a helper for the different 1479 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1480 /// describes an alloca'd variable, so we need to use the alloc size of the 1481 /// value when doing the comparison. E.g. an i1 value will be identified as 1482 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1483 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1484 const DataLayout &DL = DII->getModule()->getDataLayout(); 1485 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1486 if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) 1487 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1488 1489 // We can't always calculate the size of the DI variable (e.g. if it is a 1490 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1491 // intead. 1492 if (DII->isAddressOfVariable()) { 1493 // DII should have exactly 1 location when it is an address. 1494 assert(DII->getNumVariableLocationOps() == 1 && 1495 "address of variable must have exactly 1 location operand."); 1496 if (auto *AI = 1497 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1498 if (std::optional<TypeSize> FragmentSize = 1499 AI->getAllocationSizeInBits(DL)) { 1500 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1501 } 1502 } 1503 } 1504 // Could not determine size of variable. Conservatively return false. 1505 return false; 1506 } 1507 1508 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1509 /// that has an associated llvm.dbg.declare intrinsic. 1510 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1511 StoreInst *SI, DIBuilder &Builder) { 1512 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1513 auto *DIVar = DII->getVariable(); 1514 assert(DIVar && "Missing variable"); 1515 auto *DIExpr = DII->getExpression(); 1516 Value *DV = SI->getValueOperand(); 1517 1518 DebugLoc NewLoc = getDebugValueLoc(DII); 1519 1520 // If the alloca describes the variable itself, i.e. the expression in the 1521 // dbg.declare doesn't start with a dereference, we can perform the 1522 // conversion if the value covers the entire fragment of DII. 1523 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1524 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1525 // We conservatively ignore other dereferences, because the following two are 1526 // not equivalent: 1527 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1528 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1529 // The former is adding 2 to the address of the variable, whereas the latter 1530 // is adding 2 to the value of the variable. As such, we insist on just a 1531 // deref expression. 1532 bool CanConvert = 1533 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1534 valueCoversEntireFragment(DV->getType(), DII)); 1535 if (CanConvert) { 1536 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1537 return; 1538 } 1539 1540 // FIXME: If storing to a part of the variable described by the dbg.declare, 1541 // then we want to insert a dbg.value for the corresponding fragment. 1542 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1543 << '\n'); 1544 // For now, when there is a store to parts of the variable (but we do not 1545 // know which part) we insert an dbg.value intrinsic to indicate that we 1546 // know nothing about the variable's content. 1547 DV = UndefValue::get(DV->getType()); 1548 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1549 } 1550 1551 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1552 /// that has an associated llvm.dbg.declare intrinsic. 1553 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1554 LoadInst *LI, DIBuilder &Builder) { 1555 auto *DIVar = DII->getVariable(); 1556 auto *DIExpr = DII->getExpression(); 1557 assert(DIVar && "Missing variable"); 1558 1559 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1560 // FIXME: If only referring to a part of the variable described by the 1561 // dbg.declare, then we want to insert a dbg.value for the corresponding 1562 // fragment. 1563 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1564 << *DII << '\n'); 1565 return; 1566 } 1567 1568 DebugLoc NewLoc = getDebugValueLoc(DII); 1569 1570 // We are now tracking the loaded value instead of the address. In the 1571 // future if multi-location support is added to the IR, it might be 1572 // preferable to keep tracking both the loaded value and the original 1573 // address in case the alloca can not be elided. 1574 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1575 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1576 DbgValue->insertAfter(LI); 1577 } 1578 1579 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1580 /// llvm.dbg.declare intrinsic. 1581 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1582 PHINode *APN, DIBuilder &Builder) { 1583 auto *DIVar = DII->getVariable(); 1584 auto *DIExpr = DII->getExpression(); 1585 assert(DIVar && "Missing variable"); 1586 1587 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1588 return; 1589 1590 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1591 // FIXME: If only referring to a part of the variable described by the 1592 // dbg.declare, then we want to insert a dbg.value for the corresponding 1593 // fragment. 1594 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1595 << *DII << '\n'); 1596 return; 1597 } 1598 1599 BasicBlock *BB = APN->getParent(); 1600 auto InsertionPt = BB->getFirstInsertionPt(); 1601 1602 DebugLoc NewLoc = getDebugValueLoc(DII); 1603 1604 // The block may be a catchswitch block, which does not have a valid 1605 // insertion point. 1606 // FIXME: Insert dbg.value markers in the successors when appropriate. 1607 if (InsertionPt != BB->end()) 1608 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1609 } 1610 1611 /// Determine whether this alloca is either a VLA or an array. 1612 static bool isArray(AllocaInst *AI) { 1613 return AI->isArrayAllocation() || 1614 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1615 } 1616 1617 /// Determine whether this alloca is a structure. 1618 static bool isStructure(AllocaInst *AI) { 1619 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1620 } 1621 1622 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1623 /// of llvm.dbg.value intrinsics. 1624 bool llvm::LowerDbgDeclare(Function &F) { 1625 bool Changed = false; 1626 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1627 SmallVector<DbgDeclareInst *, 4> Dbgs; 1628 for (auto &FI : F) 1629 for (Instruction &BI : FI) 1630 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1631 Dbgs.push_back(DDI); 1632 1633 if (Dbgs.empty()) 1634 return Changed; 1635 1636 for (auto &I : Dbgs) { 1637 DbgDeclareInst *DDI = I; 1638 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1639 // If this is an alloca for a scalar variable, insert a dbg.value 1640 // at each load and store to the alloca and erase the dbg.declare. 1641 // The dbg.values allow tracking a variable even if it is not 1642 // stored on the stack, while the dbg.declare can only describe 1643 // the stack slot (and at a lexical-scope granularity). Later 1644 // passes will attempt to elide the stack slot. 1645 if (!AI || isArray(AI) || isStructure(AI)) 1646 continue; 1647 1648 // A volatile load/store means that the alloca can't be elided anyway. 1649 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1650 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1651 return LI->isVolatile(); 1652 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1653 return SI->isVolatile(); 1654 return false; 1655 })) 1656 continue; 1657 1658 SmallVector<const Value *, 8> WorkList; 1659 WorkList.push_back(AI); 1660 while (!WorkList.empty()) { 1661 const Value *V = WorkList.pop_back_val(); 1662 for (const auto &AIUse : V->uses()) { 1663 User *U = AIUse.getUser(); 1664 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1665 if (AIUse.getOperandNo() == 1) 1666 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1667 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1668 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1669 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1670 // This is a call by-value or some other instruction that takes a 1671 // pointer to the variable. Insert a *value* intrinsic that describes 1672 // the variable by dereferencing the alloca. 1673 if (!CI->isLifetimeStartOrEnd()) { 1674 DebugLoc NewLoc = getDebugValueLoc(DDI); 1675 auto *DerefExpr = 1676 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1677 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1678 NewLoc, CI); 1679 } 1680 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1681 if (BI->getType()->isPointerTy()) 1682 WorkList.push_back(BI); 1683 } 1684 } 1685 } 1686 DDI->eraseFromParent(); 1687 Changed = true; 1688 } 1689 1690 if (Changed) 1691 for (BasicBlock &BB : F) 1692 RemoveRedundantDbgInstrs(&BB); 1693 1694 return Changed; 1695 } 1696 1697 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1698 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1699 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1700 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1701 if (InsertedPHIs.size() == 0) 1702 return; 1703 1704 // Map existing PHI nodes to their dbg.values. 1705 ValueToValueMapTy DbgValueMap; 1706 for (auto &I : *BB) { 1707 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1708 for (Value *V : DbgII->location_ops()) 1709 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1710 DbgValueMap.insert({Loc, DbgII}); 1711 } 1712 } 1713 if (DbgValueMap.size() == 0) 1714 return; 1715 1716 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1717 // so that if a dbg.value is being rewritten to use more than one of the 1718 // inserted PHIs in the same destination BB, we can update the same dbg.value 1719 // with all the new PHIs instead of creating one copy for each. 1720 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1721 DbgVariableIntrinsic *> 1722 NewDbgValueMap; 1723 // Then iterate through the new PHIs and look to see if they use one of the 1724 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1725 // propagate the info through the new PHI. If we use more than one new PHI in 1726 // a single destination BB with the same old dbg.value, merge the updates so 1727 // that we get a single new dbg.value with all the new PHIs. 1728 for (auto *PHI : InsertedPHIs) { 1729 BasicBlock *Parent = PHI->getParent(); 1730 // Avoid inserting an intrinsic into an EH block. 1731 if (Parent->getFirstNonPHI()->isEHPad()) 1732 continue; 1733 for (auto *VI : PHI->operand_values()) { 1734 auto V = DbgValueMap.find(VI); 1735 if (V != DbgValueMap.end()) { 1736 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1737 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1738 if (NewDI == NewDbgValueMap.end()) { 1739 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1740 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1741 } 1742 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1743 // If PHI contains VI as an operand more than once, we may 1744 // replaced it in NewDbgII; confirm that it is present. 1745 if (is_contained(NewDbgII->location_ops(), VI)) 1746 NewDbgII->replaceVariableLocationOp(VI, PHI); 1747 } 1748 } 1749 } 1750 // Insert thew new dbg.values into their destination blocks. 1751 for (auto DI : NewDbgValueMap) { 1752 BasicBlock *Parent = DI.first.first; 1753 auto *NewDbgII = DI.second; 1754 auto InsertionPt = Parent->getFirstInsertionPt(); 1755 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1756 NewDbgII->insertBefore(&*InsertionPt); 1757 } 1758 } 1759 1760 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1761 DIBuilder &Builder, uint8_t DIExprFlags, 1762 int Offset) { 1763 auto DbgDeclares = FindDbgDeclareUses(Address); 1764 for (DbgVariableIntrinsic *DII : DbgDeclares) { 1765 const DebugLoc &Loc = DII->getDebugLoc(); 1766 auto *DIVar = DII->getVariable(); 1767 auto *DIExpr = DII->getExpression(); 1768 assert(DIVar && "Missing variable"); 1769 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1770 // Insert llvm.dbg.declare immediately before DII, and remove old 1771 // llvm.dbg.declare. 1772 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1773 DII->eraseFromParent(); 1774 } 1775 return !DbgDeclares.empty(); 1776 } 1777 1778 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1779 DIBuilder &Builder, int Offset) { 1780 const DebugLoc &Loc = DVI->getDebugLoc(); 1781 auto *DIVar = DVI->getVariable(); 1782 auto *DIExpr = DVI->getExpression(); 1783 assert(DIVar && "Missing variable"); 1784 1785 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1786 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1787 // it and give up. 1788 if (!DIExpr || DIExpr->getNumElements() < 1 || 1789 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1790 return; 1791 1792 // Insert the offset before the first deref. 1793 // We could just change the offset argument of dbg.value, but it's unsigned... 1794 if (Offset) 1795 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1796 1797 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1798 DVI->eraseFromParent(); 1799 } 1800 1801 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1802 DIBuilder &Builder, int Offset) { 1803 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1804 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1805 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1806 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1807 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1808 } 1809 1810 /// Where possible to salvage debug information for \p I do so. 1811 /// If not possible mark undef. 1812 void llvm::salvageDebugInfo(Instruction &I) { 1813 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1814 findDbgUsers(DbgUsers, &I); 1815 salvageDebugInfoForDbgValues(I, DbgUsers); 1816 } 1817 1818 /// Salvage the address component of \p DAI. 1819 static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) { 1820 Instruction *I = dyn_cast<Instruction>(DAI->getAddress()); 1821 // Only instructions can be salvaged at the moment. 1822 if (!I) 1823 return; 1824 1825 assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() && 1826 "address-expression shouldn't have fragment info"); 1827 1828 // The address component of a dbg.assign cannot be variadic. 1829 uint64_t CurrentLocOps = 0; 1830 SmallVector<Value *, 4> AdditionalValues; 1831 SmallVector<uint64_t, 16> Ops; 1832 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 1833 1834 // Check if the salvage failed. 1835 if (!NewV) 1836 return; 1837 1838 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 1839 DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false); 1840 assert(!SalvagedExpr->getFragmentInfo().has_value() && 1841 "address-expression shouldn't have fragment info"); 1842 1843 // Salvage succeeds if no additional values are required. 1844 if (AdditionalValues.empty()) { 1845 DAI->setAddress(NewV); 1846 DAI->setAddressExpression(SalvagedExpr); 1847 } else { 1848 DAI->setKillAddress(); 1849 } 1850 } 1851 1852 void llvm::salvageDebugInfoForDbgValues( 1853 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1854 // These are arbitrary chosen limits on the maximum number of values and the 1855 // maximum size of a debug expression we can salvage up to, used for 1856 // performance reasons. 1857 const unsigned MaxDebugArgs = 16; 1858 const unsigned MaxExpressionSize = 128; 1859 bool Salvaged = false; 1860 1861 for (auto *DII : DbgUsers) { 1862 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 1863 if (DAI->getAddress() == &I) { 1864 salvageDbgAssignAddress(DAI); 1865 Salvaged = true; 1866 } 1867 if (DAI->getValue() != &I) 1868 continue; 1869 } 1870 1871 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 1872 // pointing out the value as a DWARF memory location description. 1873 bool StackValue = isa<DbgValueInst>(DII); 1874 auto DIILocation = DII->location_ops(); 1875 assert( 1876 is_contained(DIILocation, &I) && 1877 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1878 SmallVector<Value *, 4> AdditionalValues; 1879 // `I` may appear more than once in DII's location ops, and each use of `I` 1880 // must be updated in the DIExpression and potentially have additional 1881 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1882 // DIILocation. 1883 Value *Op0 = nullptr; 1884 DIExpression *SalvagedExpr = DII->getExpression(); 1885 auto LocItr = find(DIILocation, &I); 1886 while (SalvagedExpr && LocItr != DIILocation.end()) { 1887 SmallVector<uint64_t, 16> Ops; 1888 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1889 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1890 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1891 if (!Op0) 1892 break; 1893 SalvagedExpr = 1894 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1895 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1896 } 1897 // salvageDebugInfoImpl should fail on examining the first element of 1898 // DbgUsers, or none of them. 1899 if (!Op0) 1900 break; 1901 1902 DII->replaceVariableLocationOp(&I, Op0); 1903 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1904 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1905 DII->setExpression(SalvagedExpr); 1906 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1907 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1908 MaxDebugArgs) { 1909 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1910 } else { 1911 // Do not salvage using DIArgList for dbg.declare, as it is not currently 1912 // supported in those instructions. Also do not salvage if the resulting 1913 // DIArgList would contain an unreasonably large number of values. 1914 DII->setKillLocation(); 1915 } 1916 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1917 Salvaged = true; 1918 } 1919 1920 if (Salvaged) 1921 return; 1922 1923 for (auto *DII : DbgUsers) 1924 DII->setKillLocation(); 1925 } 1926 1927 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1928 uint64_t CurrentLocOps, 1929 SmallVectorImpl<uint64_t> &Opcodes, 1930 SmallVectorImpl<Value *> &AdditionalValues) { 1931 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1932 // Rewrite a GEP into a DIExpression. 1933 MapVector<Value *, APInt> VariableOffsets; 1934 APInt ConstantOffset(BitWidth, 0); 1935 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1936 return nullptr; 1937 if (!VariableOffsets.empty() && !CurrentLocOps) { 1938 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1939 CurrentLocOps = 1; 1940 } 1941 for (const auto &Offset : VariableOffsets) { 1942 AdditionalValues.push_back(Offset.first); 1943 assert(Offset.second.isStrictlyPositive() && 1944 "Expected strictly positive multiplier for offset."); 1945 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1946 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1947 dwarf::DW_OP_plus}); 1948 } 1949 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1950 return GEP->getOperand(0); 1951 } 1952 1953 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1954 switch (Opcode) { 1955 case Instruction::Add: 1956 return dwarf::DW_OP_plus; 1957 case Instruction::Sub: 1958 return dwarf::DW_OP_minus; 1959 case Instruction::Mul: 1960 return dwarf::DW_OP_mul; 1961 case Instruction::SDiv: 1962 return dwarf::DW_OP_div; 1963 case Instruction::SRem: 1964 return dwarf::DW_OP_mod; 1965 case Instruction::Or: 1966 return dwarf::DW_OP_or; 1967 case Instruction::And: 1968 return dwarf::DW_OP_and; 1969 case Instruction::Xor: 1970 return dwarf::DW_OP_xor; 1971 case Instruction::Shl: 1972 return dwarf::DW_OP_shl; 1973 case Instruction::LShr: 1974 return dwarf::DW_OP_shr; 1975 case Instruction::AShr: 1976 return dwarf::DW_OP_shra; 1977 default: 1978 // TODO: Salvage from each kind of binop we know about. 1979 return 0; 1980 } 1981 } 1982 1983 static void handleSSAValueOperands(uint64_t CurrentLocOps, 1984 SmallVectorImpl<uint64_t> &Opcodes, 1985 SmallVectorImpl<Value *> &AdditionalValues, 1986 Instruction *I) { 1987 if (!CurrentLocOps) { 1988 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1989 CurrentLocOps = 1; 1990 } 1991 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1992 AdditionalValues.push_back(I->getOperand(1)); 1993 } 1994 1995 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1996 SmallVectorImpl<uint64_t> &Opcodes, 1997 SmallVectorImpl<Value *> &AdditionalValues) { 1998 // Handle binary operations with constant integer operands as a special case. 1999 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2000 // Values wider than 64 bits cannot be represented within a DIExpression. 2001 if (ConstInt && ConstInt->getBitWidth() > 64) 2002 return nullptr; 2003 2004 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2005 // Push any Constant Int operand onto the expression stack. 2006 if (ConstInt) { 2007 uint64_t Val = ConstInt->getSExtValue(); 2008 // Add or Sub Instructions with a constant operand can potentially be 2009 // simplified. 2010 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2011 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2012 DIExpression::appendOffset(Opcodes, Offset); 2013 return BI->getOperand(0); 2014 } 2015 Opcodes.append({dwarf::DW_OP_constu, Val}); 2016 } else { 2017 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2018 } 2019 2020 // Add salvaged binary operator to expression stack, if it has a valid 2021 // representation in a DIExpression. 2022 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2023 if (!DwarfBinOp) 2024 return nullptr; 2025 Opcodes.push_back(DwarfBinOp); 2026 return BI->getOperand(0); 2027 } 2028 2029 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2030 // The signedness of the operation is implicit in the typed stack, signed and 2031 // unsigned instructions map to the same DWARF opcode. 2032 switch (Pred) { 2033 case CmpInst::ICMP_EQ: 2034 return dwarf::DW_OP_eq; 2035 case CmpInst::ICMP_NE: 2036 return dwarf::DW_OP_ne; 2037 case CmpInst::ICMP_UGT: 2038 case CmpInst::ICMP_SGT: 2039 return dwarf::DW_OP_gt; 2040 case CmpInst::ICMP_UGE: 2041 case CmpInst::ICMP_SGE: 2042 return dwarf::DW_OP_ge; 2043 case CmpInst::ICMP_ULT: 2044 case CmpInst::ICMP_SLT: 2045 return dwarf::DW_OP_lt; 2046 case CmpInst::ICMP_ULE: 2047 case CmpInst::ICMP_SLE: 2048 return dwarf::DW_OP_le; 2049 default: 2050 return 0; 2051 } 2052 } 2053 2054 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2055 SmallVectorImpl<uint64_t> &Opcodes, 2056 SmallVectorImpl<Value *> &AdditionalValues) { 2057 // Handle icmp operations with constant integer operands as a special case. 2058 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2059 // Values wider than 64 bits cannot be represented within a DIExpression. 2060 if (ConstInt && ConstInt->getBitWidth() > 64) 2061 return nullptr; 2062 // Push any Constant Int operand onto the expression stack. 2063 if (ConstInt) { 2064 if (Icmp->isSigned()) 2065 Opcodes.push_back(dwarf::DW_OP_consts); 2066 else 2067 Opcodes.push_back(dwarf::DW_OP_constu); 2068 uint64_t Val = ConstInt->getSExtValue(); 2069 Opcodes.push_back(Val); 2070 } else { 2071 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2072 } 2073 2074 // Add salvaged binary operator to expression stack, if it has a valid 2075 // representation in a DIExpression. 2076 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2077 if (!DwarfIcmpOp) 2078 return nullptr; 2079 Opcodes.push_back(DwarfIcmpOp); 2080 return Icmp->getOperand(0); 2081 } 2082 2083 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2084 SmallVectorImpl<uint64_t> &Ops, 2085 SmallVectorImpl<Value *> &AdditionalValues) { 2086 auto &M = *I.getModule(); 2087 auto &DL = M.getDataLayout(); 2088 2089 if (auto *CI = dyn_cast<CastInst>(&I)) { 2090 Value *FromValue = CI->getOperand(0); 2091 // No-op casts are irrelevant for debug info. 2092 if (CI->isNoopCast(DL)) { 2093 return FromValue; 2094 } 2095 2096 Type *Type = CI->getType(); 2097 if (Type->isPointerTy()) 2098 Type = DL.getIntPtrType(Type); 2099 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2100 if (Type->isVectorTy() || 2101 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2102 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2103 return nullptr; 2104 2105 llvm::Type *FromType = FromValue->getType(); 2106 if (FromType->isPointerTy()) 2107 FromType = DL.getIntPtrType(FromType); 2108 2109 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2110 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2111 2112 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2113 isa<SExtInst>(&I)); 2114 Ops.append(ExtOps.begin(), ExtOps.end()); 2115 return FromValue; 2116 } 2117 2118 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2119 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2120 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2121 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2122 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2123 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2124 2125 // *Not* to do: we should not attempt to salvage load instructions, 2126 // because the validity and lifetime of a dbg.value containing 2127 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2128 return nullptr; 2129 } 2130 2131 /// A replacement for a dbg.value expression. 2132 using DbgValReplacement = std::optional<DIExpression *>; 2133 2134 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2135 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2136 /// changes are made. 2137 static bool rewriteDebugUsers( 2138 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2139 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 2140 // Find debug users of From. 2141 SmallVector<DbgVariableIntrinsic *, 1> Users; 2142 findDbgUsers(Users, &From); 2143 if (Users.empty()) 2144 return false; 2145 2146 // Prevent use-before-def of To. 2147 bool Changed = false; 2148 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2149 if (isa<Instruction>(&To)) { 2150 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2151 2152 for (auto *DII : Users) { 2153 // It's common to see a debug user between From and DomPoint. Move it 2154 // after DomPoint to preserve the variable update without any reordering. 2155 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2156 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2157 DII->moveAfter(&DomPoint); 2158 Changed = true; 2159 2160 // Users which otherwise aren't dominated by the replacement value must 2161 // be salvaged or deleted. 2162 } else if (!DT.dominates(&DomPoint, DII)) { 2163 UndefOrSalvage.insert(DII); 2164 } 2165 } 2166 } 2167 2168 // Update debug users without use-before-def risk. 2169 for (auto *DII : Users) { 2170 if (UndefOrSalvage.count(DII)) 2171 continue; 2172 2173 DbgValReplacement DVR = RewriteExpr(*DII); 2174 if (!DVR) 2175 continue; 2176 2177 DII->replaceVariableLocationOp(&From, &To); 2178 DII->setExpression(*DVR); 2179 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2180 Changed = true; 2181 } 2182 2183 if (!UndefOrSalvage.empty()) { 2184 // Try to salvage the remaining debug users. 2185 salvageDebugInfo(From); 2186 Changed = true; 2187 } 2188 2189 return Changed; 2190 } 2191 2192 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2193 /// losslessly preserve the bits and semantics of the value. This predicate is 2194 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2195 /// 2196 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2197 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2198 /// and also does not allow lossless pointer <-> integer conversions. 2199 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2200 Type *ToTy) { 2201 // Trivially compatible types. 2202 if (FromTy == ToTy) 2203 return true; 2204 2205 // Handle compatible pointer <-> integer conversions. 2206 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2207 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2208 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2209 !DL.isNonIntegralPointerType(ToTy); 2210 return SameSize && LosslessConversion; 2211 } 2212 2213 // TODO: This is not exhaustive. 2214 return false; 2215 } 2216 2217 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2218 Instruction &DomPoint, DominatorTree &DT) { 2219 // Exit early if From has no debug users. 2220 if (!From.isUsedByMetadata()) 2221 return false; 2222 2223 assert(&From != &To && "Can't replace something with itself"); 2224 2225 Type *FromTy = From.getType(); 2226 Type *ToTy = To.getType(); 2227 2228 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2229 return DII.getExpression(); 2230 }; 2231 2232 // Handle no-op conversions. 2233 Module &M = *From.getModule(); 2234 const DataLayout &DL = M.getDataLayout(); 2235 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2236 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2237 2238 // Handle integer-to-integer widening and narrowing. 2239 // FIXME: Use DW_OP_convert when it's available everywhere. 2240 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2241 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2242 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2243 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2244 2245 // When the width of the result grows, assume that a debugger will only 2246 // access the low `FromBits` bits when inspecting the source variable. 2247 if (FromBits < ToBits) 2248 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2249 2250 // The width of the result has shrunk. Use sign/zero extension to describe 2251 // the source variable's high bits. 2252 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2253 DILocalVariable *Var = DII.getVariable(); 2254 2255 // Without knowing signedness, sign/zero extension isn't possible. 2256 auto Signedness = Var->getSignedness(); 2257 if (!Signedness) 2258 return std::nullopt; 2259 2260 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2261 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2262 Signed); 2263 }; 2264 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2265 } 2266 2267 // TODO: Floating-point conversions, vectors. 2268 return false; 2269 } 2270 2271 std::pair<unsigned, unsigned> 2272 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2273 unsigned NumDeadInst = 0; 2274 unsigned NumDeadDbgInst = 0; 2275 // Delete the instructions backwards, as it has a reduced likelihood of 2276 // having to update as many def-use and use-def chains. 2277 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2278 while (EndInst != &BB->front()) { 2279 // Delete the next to last instruction. 2280 Instruction *Inst = &*--EndInst->getIterator(); 2281 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2282 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2283 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2284 EndInst = Inst; 2285 continue; 2286 } 2287 if (isa<DbgInfoIntrinsic>(Inst)) 2288 ++NumDeadDbgInst; 2289 else 2290 ++NumDeadInst; 2291 Inst->eraseFromParent(); 2292 } 2293 return {NumDeadInst, NumDeadDbgInst}; 2294 } 2295 2296 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2297 DomTreeUpdater *DTU, 2298 MemorySSAUpdater *MSSAU) { 2299 BasicBlock *BB = I->getParent(); 2300 2301 if (MSSAU) 2302 MSSAU->changeToUnreachable(I); 2303 2304 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2305 2306 // Loop over all of the successors, removing BB's entry from any PHI 2307 // nodes. 2308 for (BasicBlock *Successor : successors(BB)) { 2309 Successor->removePredecessor(BB, PreserveLCSSA); 2310 if (DTU) 2311 UniqueSuccessors.insert(Successor); 2312 } 2313 auto *UI = new UnreachableInst(I->getContext(), I); 2314 UI->setDebugLoc(I->getDebugLoc()); 2315 2316 // All instructions after this are dead. 2317 unsigned NumInstrsRemoved = 0; 2318 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2319 while (BBI != BBE) { 2320 if (!BBI->use_empty()) 2321 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2322 BBI++->eraseFromParent(); 2323 ++NumInstrsRemoved; 2324 } 2325 if (DTU) { 2326 SmallVector<DominatorTree::UpdateType, 8> Updates; 2327 Updates.reserve(UniqueSuccessors.size()); 2328 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2329 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2330 DTU->applyUpdates(Updates); 2331 } 2332 return NumInstrsRemoved; 2333 } 2334 2335 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2336 SmallVector<Value *, 8> Args(II->args()); 2337 SmallVector<OperandBundleDef, 1> OpBundles; 2338 II->getOperandBundlesAsDefs(OpBundles); 2339 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2340 II->getCalledOperand(), Args, OpBundles); 2341 NewCall->setCallingConv(II->getCallingConv()); 2342 NewCall->setAttributes(II->getAttributes()); 2343 NewCall->setDebugLoc(II->getDebugLoc()); 2344 NewCall->copyMetadata(*II); 2345 2346 // If the invoke had profile metadata, try converting them for CallInst. 2347 uint64_t TotalWeight; 2348 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2349 // Set the total weight if it fits into i32, otherwise reset. 2350 MDBuilder MDB(NewCall->getContext()); 2351 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2352 ? nullptr 2353 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2354 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2355 } 2356 2357 return NewCall; 2358 } 2359 2360 // changeToCall - Convert the specified invoke into a normal call. 2361 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2362 CallInst *NewCall = createCallMatchingInvoke(II); 2363 NewCall->takeName(II); 2364 NewCall->insertBefore(II); 2365 II->replaceAllUsesWith(NewCall); 2366 2367 // Follow the call by a branch to the normal destination. 2368 BasicBlock *NormalDestBB = II->getNormalDest(); 2369 BranchInst::Create(NormalDestBB, II); 2370 2371 // Update PHI nodes in the unwind destination 2372 BasicBlock *BB = II->getParent(); 2373 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2374 UnwindDestBB->removePredecessor(BB); 2375 II->eraseFromParent(); 2376 if (DTU) 2377 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2378 return NewCall; 2379 } 2380 2381 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2382 BasicBlock *UnwindEdge, 2383 DomTreeUpdater *DTU) { 2384 BasicBlock *BB = CI->getParent(); 2385 2386 // Convert this function call into an invoke instruction. First, split the 2387 // basic block. 2388 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2389 CI->getName() + ".noexc"); 2390 2391 // Delete the unconditional branch inserted by SplitBlock 2392 BB->back().eraseFromParent(); 2393 2394 // Create the new invoke instruction. 2395 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2396 SmallVector<OperandBundleDef, 1> OpBundles; 2397 2398 CI->getOperandBundlesAsDefs(OpBundles); 2399 2400 // Note: we're round tripping operand bundles through memory here, and that 2401 // can potentially be avoided with a cleverer API design that we do not have 2402 // as of this time. 2403 2404 InvokeInst *II = 2405 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2406 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2407 II->setDebugLoc(CI->getDebugLoc()); 2408 II->setCallingConv(CI->getCallingConv()); 2409 II->setAttributes(CI->getAttributes()); 2410 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2411 2412 if (DTU) 2413 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2414 2415 // Make sure that anything using the call now uses the invoke! This also 2416 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2417 CI->replaceAllUsesWith(II); 2418 2419 // Delete the original call 2420 Split->front().eraseFromParent(); 2421 return Split; 2422 } 2423 2424 static bool markAliveBlocks(Function &F, 2425 SmallPtrSetImpl<BasicBlock *> &Reachable, 2426 DomTreeUpdater *DTU = nullptr) { 2427 SmallVector<BasicBlock*, 128> Worklist; 2428 BasicBlock *BB = &F.front(); 2429 Worklist.push_back(BB); 2430 Reachable.insert(BB); 2431 bool Changed = false; 2432 do { 2433 BB = Worklist.pop_back_val(); 2434 2435 // Do a quick scan of the basic block, turning any obviously unreachable 2436 // instructions into LLVM unreachable insts. The instruction combining pass 2437 // canonicalizes unreachable insts into stores to null or undef. 2438 for (Instruction &I : *BB) { 2439 if (auto *CI = dyn_cast<CallInst>(&I)) { 2440 Value *Callee = CI->getCalledOperand(); 2441 // Handle intrinsic calls. 2442 if (Function *F = dyn_cast<Function>(Callee)) { 2443 auto IntrinsicID = F->getIntrinsicID(); 2444 // Assumptions that are known to be false are equivalent to 2445 // unreachable. Also, if the condition is undefined, then we make the 2446 // choice most beneficial to the optimizer, and choose that to also be 2447 // unreachable. 2448 if (IntrinsicID == Intrinsic::assume) { 2449 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2450 // Don't insert a call to llvm.trap right before the unreachable. 2451 changeToUnreachable(CI, false, DTU); 2452 Changed = true; 2453 break; 2454 } 2455 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2456 // A call to the guard intrinsic bails out of the current 2457 // compilation unit if the predicate passed to it is false. If the 2458 // predicate is a constant false, then we know the guard will bail 2459 // out of the current compile unconditionally, so all code following 2460 // it is dead. 2461 // 2462 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2463 // guards to treat `undef` as `false` since a guard on `undef` can 2464 // still be useful for widening. 2465 if (match(CI->getArgOperand(0), m_Zero())) 2466 if (!isa<UnreachableInst>(CI->getNextNode())) { 2467 changeToUnreachable(CI->getNextNode(), false, DTU); 2468 Changed = true; 2469 break; 2470 } 2471 } 2472 } else if ((isa<ConstantPointerNull>(Callee) && 2473 !NullPointerIsDefined(CI->getFunction(), 2474 cast<PointerType>(Callee->getType()) 2475 ->getAddressSpace())) || 2476 isa<UndefValue>(Callee)) { 2477 changeToUnreachable(CI, false, DTU); 2478 Changed = true; 2479 break; 2480 } 2481 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2482 // If we found a call to a no-return function, insert an unreachable 2483 // instruction after it. Make sure there isn't *already* one there 2484 // though. 2485 if (!isa<UnreachableInst>(CI->getNextNode())) { 2486 // Don't insert a call to llvm.trap right before the unreachable. 2487 changeToUnreachable(CI->getNextNode(), false, DTU); 2488 Changed = true; 2489 } 2490 break; 2491 } 2492 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2493 // Store to undef and store to null are undefined and used to signal 2494 // that they should be changed to unreachable by passes that can't 2495 // modify the CFG. 2496 2497 // Don't touch volatile stores. 2498 if (SI->isVolatile()) continue; 2499 2500 Value *Ptr = SI->getOperand(1); 2501 2502 if (isa<UndefValue>(Ptr) || 2503 (isa<ConstantPointerNull>(Ptr) && 2504 !NullPointerIsDefined(SI->getFunction(), 2505 SI->getPointerAddressSpace()))) { 2506 changeToUnreachable(SI, false, DTU); 2507 Changed = true; 2508 break; 2509 } 2510 } 2511 } 2512 2513 Instruction *Terminator = BB->getTerminator(); 2514 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2515 // Turn invokes that call 'nounwind' functions into ordinary calls. 2516 Value *Callee = II->getCalledOperand(); 2517 if ((isa<ConstantPointerNull>(Callee) && 2518 !NullPointerIsDefined(BB->getParent())) || 2519 isa<UndefValue>(Callee)) { 2520 changeToUnreachable(II, false, DTU); 2521 Changed = true; 2522 } else { 2523 if (II->doesNotReturn() && 2524 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2525 // If we found an invoke of a no-return function, 2526 // create a new empty basic block with an `unreachable` terminator, 2527 // and set it as the normal destination for the invoke, 2528 // unless that is already the case. 2529 // Note that the original normal destination could have other uses. 2530 BasicBlock *OrigNormalDest = II->getNormalDest(); 2531 OrigNormalDest->removePredecessor(II->getParent()); 2532 LLVMContext &Ctx = II->getContext(); 2533 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2534 Ctx, OrigNormalDest->getName() + ".unreachable", 2535 II->getFunction(), OrigNormalDest); 2536 new UnreachableInst(Ctx, UnreachableNormalDest); 2537 II->setNormalDest(UnreachableNormalDest); 2538 if (DTU) 2539 DTU->applyUpdates( 2540 {{DominatorTree::Delete, BB, OrigNormalDest}, 2541 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2542 Changed = true; 2543 } 2544 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2545 if (II->use_empty() && !II->mayHaveSideEffects()) { 2546 // jump to the normal destination branch. 2547 BasicBlock *NormalDestBB = II->getNormalDest(); 2548 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2549 BranchInst::Create(NormalDestBB, II); 2550 UnwindDestBB->removePredecessor(II->getParent()); 2551 II->eraseFromParent(); 2552 if (DTU) 2553 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2554 } else 2555 changeToCall(II, DTU); 2556 Changed = true; 2557 } 2558 } 2559 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2560 // Remove catchpads which cannot be reached. 2561 struct CatchPadDenseMapInfo { 2562 static CatchPadInst *getEmptyKey() { 2563 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2564 } 2565 2566 static CatchPadInst *getTombstoneKey() { 2567 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2568 } 2569 2570 static unsigned getHashValue(CatchPadInst *CatchPad) { 2571 return static_cast<unsigned>(hash_combine_range( 2572 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2573 } 2574 2575 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2576 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2577 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2578 return LHS == RHS; 2579 return LHS->isIdenticalTo(RHS); 2580 } 2581 }; 2582 2583 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2584 // Set of unique CatchPads. 2585 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2586 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2587 HandlerSet; 2588 detail::DenseSetEmpty Empty; 2589 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2590 E = CatchSwitch->handler_end(); 2591 I != E; ++I) { 2592 BasicBlock *HandlerBB = *I; 2593 if (DTU) 2594 ++NumPerSuccessorCases[HandlerBB]; 2595 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2596 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2597 if (DTU) 2598 --NumPerSuccessorCases[HandlerBB]; 2599 CatchSwitch->removeHandler(I); 2600 --I; 2601 --E; 2602 Changed = true; 2603 } 2604 } 2605 if (DTU) { 2606 std::vector<DominatorTree::UpdateType> Updates; 2607 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2608 if (I.second == 0) 2609 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2610 DTU->applyUpdates(Updates); 2611 } 2612 } 2613 2614 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2615 for (BasicBlock *Successor : successors(BB)) 2616 if (Reachable.insert(Successor).second) 2617 Worklist.push_back(Successor); 2618 } while (!Worklist.empty()); 2619 return Changed; 2620 } 2621 2622 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2623 Instruction *TI = BB->getTerminator(); 2624 2625 if (auto *II = dyn_cast<InvokeInst>(TI)) 2626 return changeToCall(II, DTU); 2627 2628 Instruction *NewTI; 2629 BasicBlock *UnwindDest; 2630 2631 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2632 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2633 UnwindDest = CRI->getUnwindDest(); 2634 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2635 auto *NewCatchSwitch = CatchSwitchInst::Create( 2636 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2637 CatchSwitch->getName(), CatchSwitch); 2638 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2639 NewCatchSwitch->addHandler(PadBB); 2640 2641 NewTI = NewCatchSwitch; 2642 UnwindDest = CatchSwitch->getUnwindDest(); 2643 } else { 2644 llvm_unreachable("Could not find unwind successor"); 2645 } 2646 2647 NewTI->takeName(TI); 2648 NewTI->setDebugLoc(TI->getDebugLoc()); 2649 UnwindDest->removePredecessor(BB); 2650 TI->replaceAllUsesWith(NewTI); 2651 TI->eraseFromParent(); 2652 if (DTU) 2653 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2654 return NewTI; 2655 } 2656 2657 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2658 /// if they are in a dead cycle. Return true if a change was made, false 2659 /// otherwise. 2660 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2661 MemorySSAUpdater *MSSAU) { 2662 SmallPtrSet<BasicBlock *, 16> Reachable; 2663 bool Changed = markAliveBlocks(F, Reachable, DTU); 2664 2665 // If there are unreachable blocks in the CFG... 2666 if (Reachable.size() == F.size()) 2667 return Changed; 2668 2669 assert(Reachable.size() < F.size()); 2670 2671 // Are there any blocks left to actually delete? 2672 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2673 for (BasicBlock &BB : F) { 2674 // Skip reachable basic blocks 2675 if (Reachable.count(&BB)) 2676 continue; 2677 // Skip already-deleted blocks 2678 if (DTU && DTU->isBBPendingDeletion(&BB)) 2679 continue; 2680 BlocksToRemove.insert(&BB); 2681 } 2682 2683 if (BlocksToRemove.empty()) 2684 return Changed; 2685 2686 Changed = true; 2687 NumRemoved += BlocksToRemove.size(); 2688 2689 if (MSSAU) 2690 MSSAU->removeBlocks(BlocksToRemove); 2691 2692 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2693 2694 return Changed; 2695 } 2696 2697 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2698 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2699 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2700 K->dropUnknownNonDebugMetadata(KnownIDs); 2701 K->getAllMetadataOtherThanDebugLoc(Metadata); 2702 for (const auto &MD : Metadata) { 2703 unsigned Kind = MD.first; 2704 MDNode *JMD = J->getMetadata(Kind); 2705 MDNode *KMD = MD.second; 2706 2707 switch (Kind) { 2708 default: 2709 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2710 break; 2711 case LLVMContext::MD_dbg: 2712 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2713 case LLVMContext::MD_DIAssignID: 2714 K->mergeDIAssignID(J); 2715 break; 2716 case LLVMContext::MD_tbaa: 2717 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2718 break; 2719 case LLVMContext::MD_alias_scope: 2720 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2721 break; 2722 case LLVMContext::MD_noalias: 2723 case LLVMContext::MD_mem_parallel_loop_access: 2724 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2725 break; 2726 case LLVMContext::MD_access_group: 2727 K->setMetadata(LLVMContext::MD_access_group, 2728 intersectAccessGroups(K, J)); 2729 break; 2730 case LLVMContext::MD_range: 2731 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 2732 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2733 break; 2734 case LLVMContext::MD_fpmath: 2735 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2736 break; 2737 case LLVMContext::MD_invariant_load: 2738 // If K moves, only set the !invariant.load if it is present in both 2739 // instructions. 2740 if (DoesKMove) 2741 K->setMetadata(Kind, JMD); 2742 break; 2743 case LLVMContext::MD_nonnull: 2744 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 2745 K->setMetadata(Kind, JMD); 2746 break; 2747 case LLVMContext::MD_invariant_group: 2748 // Preserve !invariant.group in K. 2749 break; 2750 case LLVMContext::MD_align: 2751 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 2752 K->setMetadata( 2753 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2754 break; 2755 case LLVMContext::MD_dereferenceable: 2756 case LLVMContext::MD_dereferenceable_or_null: 2757 if (DoesKMove) 2758 K->setMetadata(Kind, 2759 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2760 break; 2761 case LLVMContext::MD_preserve_access_index: 2762 // Preserve !preserve.access.index in K. 2763 break; 2764 case LLVMContext::MD_noundef: 2765 // If K does move, keep noundef if it is present in both instructions. 2766 if (DoesKMove) 2767 K->setMetadata(Kind, JMD); 2768 break; 2769 case LLVMContext::MD_nontemporal: 2770 // Preserve !nontemporal if it is present on both instructions. 2771 K->setMetadata(Kind, JMD); 2772 break; 2773 case LLVMContext::MD_prof: 2774 if (DoesKMove) 2775 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 2776 break; 2777 } 2778 } 2779 // Set !invariant.group from J if J has it. If both instructions have it 2780 // then we will just pick it from J - even when they are different. 2781 // Also make sure that K is load or store - f.e. combining bitcast with load 2782 // could produce bitcast with invariant.group metadata, which is invalid. 2783 // FIXME: we should try to preserve both invariant.group md if they are 2784 // different, but right now instruction can only have one invariant.group. 2785 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2786 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2787 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2788 } 2789 2790 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2791 bool KDominatesJ) { 2792 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 2793 LLVMContext::MD_alias_scope, 2794 LLVMContext::MD_noalias, 2795 LLVMContext::MD_range, 2796 LLVMContext::MD_fpmath, 2797 LLVMContext::MD_invariant_load, 2798 LLVMContext::MD_nonnull, 2799 LLVMContext::MD_invariant_group, 2800 LLVMContext::MD_align, 2801 LLVMContext::MD_dereferenceable, 2802 LLVMContext::MD_dereferenceable_or_null, 2803 LLVMContext::MD_access_group, 2804 LLVMContext::MD_preserve_access_index, 2805 LLVMContext::MD_prof, 2806 LLVMContext::MD_nontemporal, 2807 LLVMContext::MD_noundef}; 2808 combineMetadata(K, J, KnownIDs, KDominatesJ); 2809 } 2810 2811 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2812 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2813 Source.getAllMetadata(MD); 2814 MDBuilder MDB(Dest.getContext()); 2815 Type *NewType = Dest.getType(); 2816 const DataLayout &DL = Source.getModule()->getDataLayout(); 2817 for (const auto &MDPair : MD) { 2818 unsigned ID = MDPair.first; 2819 MDNode *N = MDPair.second; 2820 // Note, essentially every kind of metadata should be preserved here! This 2821 // routine is supposed to clone a load instruction changing *only its type*. 2822 // The only metadata it makes sense to drop is metadata which is invalidated 2823 // when the pointer type changes. This should essentially never be the case 2824 // in LLVM, but we explicitly switch over only known metadata to be 2825 // conservatively correct. If you are adding metadata to LLVM which pertains 2826 // to loads, you almost certainly want to add it here. 2827 switch (ID) { 2828 case LLVMContext::MD_dbg: 2829 case LLVMContext::MD_tbaa: 2830 case LLVMContext::MD_prof: 2831 case LLVMContext::MD_fpmath: 2832 case LLVMContext::MD_tbaa_struct: 2833 case LLVMContext::MD_invariant_load: 2834 case LLVMContext::MD_alias_scope: 2835 case LLVMContext::MD_noalias: 2836 case LLVMContext::MD_nontemporal: 2837 case LLVMContext::MD_mem_parallel_loop_access: 2838 case LLVMContext::MD_access_group: 2839 case LLVMContext::MD_noundef: 2840 // All of these directly apply. 2841 Dest.setMetadata(ID, N); 2842 break; 2843 2844 case LLVMContext::MD_nonnull: 2845 copyNonnullMetadata(Source, N, Dest); 2846 break; 2847 2848 case LLVMContext::MD_align: 2849 case LLVMContext::MD_dereferenceable: 2850 case LLVMContext::MD_dereferenceable_or_null: 2851 // These only directly apply if the new type is also a pointer. 2852 if (NewType->isPointerTy()) 2853 Dest.setMetadata(ID, N); 2854 break; 2855 2856 case LLVMContext::MD_range: 2857 copyRangeMetadata(DL, Source, N, Dest); 2858 break; 2859 } 2860 } 2861 } 2862 2863 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2864 auto *ReplInst = dyn_cast<Instruction>(Repl); 2865 if (!ReplInst) 2866 return; 2867 2868 // Patch the replacement so that it is not more restrictive than the value 2869 // being replaced. 2870 // Note that if 'I' is a load being replaced by some operation, 2871 // for example, by an arithmetic operation, then andIRFlags() 2872 // would just erase all math flags from the original arithmetic 2873 // operation, which is clearly not wanted and not needed. 2874 if (!isa<LoadInst>(I)) 2875 ReplInst->andIRFlags(I); 2876 2877 // FIXME: If both the original and replacement value are part of the 2878 // same control-flow region (meaning that the execution of one 2879 // guarantees the execution of the other), then we can combine the 2880 // noalias scopes here and do better than the general conservative 2881 // answer used in combineMetadata(). 2882 2883 // In general, GVN unifies expressions over different control-flow 2884 // regions, and so we need a conservative combination of the noalias 2885 // scopes. 2886 combineMetadataForCSE(ReplInst, I, false); 2887 } 2888 2889 template <typename RootType, typename DominatesFn> 2890 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2891 const RootType &Root, 2892 const DominatesFn &Dominates) { 2893 assert(From->getType() == To->getType()); 2894 2895 unsigned Count = 0; 2896 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2897 if (!Dominates(Root, U)) 2898 continue; 2899 U.set(To); 2900 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2901 << "' as " << *To << " in " << *U << "\n"); 2902 ++Count; 2903 } 2904 return Count; 2905 } 2906 2907 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2908 assert(From->getType() == To->getType()); 2909 auto *BB = From->getParent(); 2910 unsigned Count = 0; 2911 2912 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2913 auto *I = cast<Instruction>(U.getUser()); 2914 if (I->getParent() == BB) 2915 continue; 2916 U.set(To); 2917 ++Count; 2918 } 2919 return Count; 2920 } 2921 2922 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2923 DominatorTree &DT, 2924 const BasicBlockEdge &Root) { 2925 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2926 return DT.dominates(Root, U); 2927 }; 2928 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2929 } 2930 2931 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2932 DominatorTree &DT, 2933 const BasicBlock *BB) { 2934 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2935 return DT.dominates(BB, U); 2936 }; 2937 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2938 } 2939 2940 bool llvm::callsGCLeafFunction(const CallBase *Call, 2941 const TargetLibraryInfo &TLI) { 2942 // Check if the function is specifically marked as a gc leaf function. 2943 if (Call->hasFnAttr("gc-leaf-function")) 2944 return true; 2945 if (const Function *F = Call->getCalledFunction()) { 2946 if (F->hasFnAttribute("gc-leaf-function")) 2947 return true; 2948 2949 if (auto IID = F->getIntrinsicID()) { 2950 // Most LLVM intrinsics do not take safepoints. 2951 return IID != Intrinsic::experimental_gc_statepoint && 2952 IID != Intrinsic::experimental_deoptimize && 2953 IID != Intrinsic::memcpy_element_unordered_atomic && 2954 IID != Intrinsic::memmove_element_unordered_atomic; 2955 } 2956 } 2957 2958 // Lib calls can be materialized by some passes, and won't be 2959 // marked as 'gc-leaf-function.' All available Libcalls are 2960 // GC-leaf. 2961 LibFunc LF; 2962 if (TLI.getLibFunc(*Call, LF)) { 2963 return TLI.has(LF); 2964 } 2965 2966 return false; 2967 } 2968 2969 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2970 LoadInst &NewLI) { 2971 auto *NewTy = NewLI.getType(); 2972 2973 // This only directly applies if the new type is also a pointer. 2974 if (NewTy->isPointerTy()) { 2975 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2976 return; 2977 } 2978 2979 // The only other translation we can do is to integral loads with !range 2980 // metadata. 2981 if (!NewTy->isIntegerTy()) 2982 return; 2983 2984 MDBuilder MDB(NewLI.getContext()); 2985 const Value *Ptr = OldLI.getPointerOperand(); 2986 auto *ITy = cast<IntegerType>(NewTy); 2987 auto *NullInt = ConstantExpr::getPtrToInt( 2988 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2989 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2990 NewLI.setMetadata(LLVMContext::MD_range, 2991 MDB.createRange(NonNullInt, NullInt)); 2992 } 2993 2994 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2995 MDNode *N, LoadInst &NewLI) { 2996 auto *NewTy = NewLI.getType(); 2997 // Simply copy the metadata if the type did not change. 2998 if (NewTy == OldLI.getType()) { 2999 NewLI.setMetadata(LLVMContext::MD_range, N); 3000 return; 3001 } 3002 3003 // Give up unless it is converted to a pointer where there is a single very 3004 // valuable mapping we can do reliably. 3005 // FIXME: It would be nice to propagate this in more ways, but the type 3006 // conversions make it hard. 3007 if (!NewTy->isPointerTy()) 3008 return; 3009 3010 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3011 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3012 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3013 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 3014 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3015 } 3016 } 3017 3018 void llvm::dropDebugUsers(Instruction &I) { 3019 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3020 findDbgUsers(DbgUsers, &I); 3021 for (auto *DII : DbgUsers) 3022 DII->eraseFromParent(); 3023 } 3024 3025 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3026 BasicBlock *BB) { 3027 // Since we are moving the instructions out of its basic block, we do not 3028 // retain their original debug locations (DILocations) and debug intrinsic 3029 // instructions. 3030 // 3031 // Doing so would degrade the debugging experience and adversely affect the 3032 // accuracy of profiling information. 3033 // 3034 // Currently, when hoisting the instructions, we take the following actions: 3035 // - Remove their debug intrinsic instructions. 3036 // - Set their debug locations to the values from the insertion point. 3037 // 3038 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3039 // need to be deleted, is because there will not be any instructions with a 3040 // DILocation in either branch left after performing the transformation. We 3041 // can only insert a dbg.value after the two branches are joined again. 3042 // 3043 // See PR38762, PR39243 for more details. 3044 // 3045 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3046 // encode predicated DIExpressions that yield different results on different 3047 // code paths. 3048 3049 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3050 Instruction *I = &*II; 3051 I->dropUBImplyingAttrsAndMetadata(); 3052 if (I->isUsedByMetadata()) 3053 dropDebugUsers(*I); 3054 if (I->isDebugOrPseudoInst()) { 3055 // Remove DbgInfo and pseudo probe Intrinsics. 3056 II = I->eraseFromParent(); 3057 continue; 3058 } 3059 I->setDebugLoc(InsertPt->getDebugLoc()); 3060 ++II; 3061 } 3062 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3063 BB->getTerminator()->getIterator()); 3064 } 3065 3066 namespace { 3067 3068 /// A potential constituent of a bitreverse or bswap expression. See 3069 /// collectBitParts for a fuller explanation. 3070 struct BitPart { 3071 BitPart(Value *P, unsigned BW) : Provider(P) { 3072 Provenance.resize(BW); 3073 } 3074 3075 /// The Value that this is a bitreverse/bswap of. 3076 Value *Provider; 3077 3078 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3079 /// in Provider becomes bit B in the result of this expression. 3080 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3081 3082 enum { Unset = -1 }; 3083 }; 3084 3085 } // end anonymous namespace 3086 3087 /// Analyze the specified subexpression and see if it is capable of providing 3088 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3089 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3090 /// the output of the expression came from a corresponding bit in some other 3091 /// value. This function is recursive, and the end result is a mapping of 3092 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3093 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3094 /// 3095 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3096 /// that the expression deposits the low byte of %X into the high byte of the 3097 /// result and that all other bits are zero. This expression is accepted and a 3098 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3099 /// [0-7]. 3100 /// 3101 /// For vector types, all analysis is performed at the per-element level. No 3102 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3103 /// constant masks must be splatted across all elements. 3104 /// 3105 /// To avoid revisiting values, the BitPart results are memoized into the 3106 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3107 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3108 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3109 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3110 /// type instead to provide the same functionality. 3111 /// 3112 /// Because we pass around references into \c BPS, we must use a container that 3113 /// does not invalidate internal references (std::map instead of DenseMap). 3114 static const std::optional<BitPart> & 3115 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3116 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3117 bool &FoundRoot) { 3118 auto I = BPS.find(V); 3119 if (I != BPS.end()) 3120 return I->second; 3121 3122 auto &Result = BPS[V] = std::nullopt; 3123 auto BitWidth = V->getType()->getScalarSizeInBits(); 3124 3125 // Can't do integer/elements > 128 bits. 3126 if (BitWidth > 128) 3127 return Result; 3128 3129 // Prevent stack overflow by limiting the recursion depth 3130 if (Depth == BitPartRecursionMaxDepth) { 3131 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3132 return Result; 3133 } 3134 3135 if (auto *I = dyn_cast<Instruction>(V)) { 3136 Value *X, *Y; 3137 const APInt *C; 3138 3139 // If this is an or instruction, it may be an inner node of the bswap. 3140 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3141 // Check we have both sources and they are from the same provider. 3142 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3143 Depth + 1, FoundRoot); 3144 if (!A || !A->Provider) 3145 return Result; 3146 3147 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3148 Depth + 1, FoundRoot); 3149 if (!B || A->Provider != B->Provider) 3150 return Result; 3151 3152 // Try and merge the two together. 3153 Result = BitPart(A->Provider, BitWidth); 3154 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3155 if (A->Provenance[BitIdx] != BitPart::Unset && 3156 B->Provenance[BitIdx] != BitPart::Unset && 3157 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3158 return Result = std::nullopt; 3159 3160 if (A->Provenance[BitIdx] == BitPart::Unset) 3161 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3162 else 3163 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3164 } 3165 3166 return Result; 3167 } 3168 3169 // If this is a logical shift by a constant, recurse then shift the result. 3170 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3171 const APInt &BitShift = *C; 3172 3173 // Ensure the shift amount is defined. 3174 if (BitShift.uge(BitWidth)) 3175 return Result; 3176 3177 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3178 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3179 return Result; 3180 3181 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3182 Depth + 1, FoundRoot); 3183 if (!Res) 3184 return Result; 3185 Result = Res; 3186 3187 // Perform the "shift" on BitProvenance. 3188 auto &P = Result->Provenance; 3189 if (I->getOpcode() == Instruction::Shl) { 3190 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3191 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3192 } else { 3193 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3194 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3195 } 3196 3197 return Result; 3198 } 3199 3200 // If this is a logical 'and' with a mask that clears bits, recurse then 3201 // unset the appropriate bits. 3202 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3203 const APInt &AndMask = *C; 3204 3205 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3206 // early exit. 3207 unsigned NumMaskedBits = AndMask.popcount(); 3208 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3209 return Result; 3210 3211 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3212 Depth + 1, FoundRoot); 3213 if (!Res) 3214 return Result; 3215 Result = Res; 3216 3217 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3218 // If the AndMask is zero for this bit, clear the bit. 3219 if (AndMask[BitIdx] == 0) 3220 Result->Provenance[BitIdx] = BitPart::Unset; 3221 return Result; 3222 } 3223 3224 // If this is a zext instruction zero extend the result. 3225 if (match(V, m_ZExt(m_Value(X)))) { 3226 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3227 Depth + 1, FoundRoot); 3228 if (!Res) 3229 return Result; 3230 3231 Result = BitPart(Res->Provider, BitWidth); 3232 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3233 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3234 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3235 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3236 Result->Provenance[BitIdx] = BitPart::Unset; 3237 return Result; 3238 } 3239 3240 // If this is a truncate instruction, extract the lower bits. 3241 if (match(V, m_Trunc(m_Value(X)))) { 3242 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3243 Depth + 1, FoundRoot); 3244 if (!Res) 3245 return Result; 3246 3247 Result = BitPart(Res->Provider, BitWidth); 3248 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3249 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3250 return Result; 3251 } 3252 3253 // BITREVERSE - most likely due to us previous matching a partial 3254 // bitreverse. 3255 if (match(V, m_BitReverse(m_Value(X)))) { 3256 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3257 Depth + 1, FoundRoot); 3258 if (!Res) 3259 return Result; 3260 3261 Result = BitPart(Res->Provider, BitWidth); 3262 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3263 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3264 return Result; 3265 } 3266 3267 // BSWAP - most likely due to us previous matching a partial bswap. 3268 if (match(V, m_BSwap(m_Value(X)))) { 3269 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3270 Depth + 1, FoundRoot); 3271 if (!Res) 3272 return Result; 3273 3274 unsigned ByteWidth = BitWidth / 8; 3275 Result = BitPart(Res->Provider, BitWidth); 3276 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3277 unsigned ByteBitOfs = ByteIdx * 8; 3278 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3279 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3280 Res->Provenance[ByteBitOfs + BitIdx]; 3281 } 3282 return Result; 3283 } 3284 3285 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3286 // amount (modulo). 3287 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3288 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3289 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3290 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3291 // We can treat fshr as a fshl by flipping the modulo amount. 3292 unsigned ModAmt = C->urem(BitWidth); 3293 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3294 ModAmt = BitWidth - ModAmt; 3295 3296 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3297 if (!MatchBitReversals && (ModAmt % 8) != 0) 3298 return Result; 3299 3300 // Check we have both sources and they are from the same provider. 3301 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3302 Depth + 1, FoundRoot); 3303 if (!LHS || !LHS->Provider) 3304 return Result; 3305 3306 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3307 Depth + 1, FoundRoot); 3308 if (!RHS || LHS->Provider != RHS->Provider) 3309 return Result; 3310 3311 unsigned StartBitRHS = BitWidth - ModAmt; 3312 Result = BitPart(LHS->Provider, BitWidth); 3313 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3314 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3315 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3316 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3317 return Result; 3318 } 3319 } 3320 3321 // If we've already found a root input value then we're never going to merge 3322 // these back together. 3323 if (FoundRoot) 3324 return Result; 3325 3326 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3327 // be the root input value to the bswap/bitreverse. 3328 FoundRoot = true; 3329 Result = BitPart(V, BitWidth); 3330 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3331 Result->Provenance[BitIdx] = BitIdx; 3332 return Result; 3333 } 3334 3335 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3336 unsigned BitWidth) { 3337 if (From % 8 != To % 8) 3338 return false; 3339 // Convert from bit indices to byte indices and check for a byte reversal. 3340 From >>= 3; 3341 To >>= 3; 3342 BitWidth >>= 3; 3343 return From == BitWidth - To - 1; 3344 } 3345 3346 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3347 unsigned BitWidth) { 3348 return From == BitWidth - To - 1; 3349 } 3350 3351 bool llvm::recognizeBSwapOrBitReverseIdiom( 3352 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3353 SmallVectorImpl<Instruction *> &InsertedInsts) { 3354 if (!match(I, m_Or(m_Value(), m_Value())) && 3355 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3356 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3357 return false; 3358 if (!MatchBSwaps && !MatchBitReversals) 3359 return false; 3360 Type *ITy = I->getType(); 3361 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3362 return false; // Can't do integer/elements > 128 bits. 3363 3364 // Try to find all the pieces corresponding to the bswap. 3365 bool FoundRoot = false; 3366 std::map<Value *, std::optional<BitPart>> BPS; 3367 const auto &Res = 3368 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3369 if (!Res) 3370 return false; 3371 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3372 assert(all_of(BitProvenance, 3373 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3374 "Illegal bit provenance index"); 3375 3376 // If the upper bits are zero, then attempt to perform as a truncated op. 3377 Type *DemandedTy = ITy; 3378 if (BitProvenance.back() == BitPart::Unset) { 3379 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3380 BitProvenance = BitProvenance.drop_back(); 3381 if (BitProvenance.empty()) 3382 return false; // TODO - handle null value? 3383 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3384 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3385 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3386 } 3387 3388 // Check BitProvenance hasn't found a source larger than the result type. 3389 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3390 if (DemandedBW > ITy->getScalarSizeInBits()) 3391 return false; 3392 3393 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3394 // only byteswap values with an even number of bytes. 3395 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3396 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3397 bool OKForBitReverse = MatchBitReversals; 3398 for (unsigned BitIdx = 0; 3399 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3400 if (BitProvenance[BitIdx] == BitPart::Unset) { 3401 DemandedMask.clearBit(BitIdx); 3402 continue; 3403 } 3404 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3405 DemandedBW); 3406 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3407 BitIdx, DemandedBW); 3408 } 3409 3410 Intrinsic::ID Intrin; 3411 if (OKForBSwap) 3412 Intrin = Intrinsic::bswap; 3413 else if (OKForBitReverse) 3414 Intrin = Intrinsic::bitreverse; 3415 else 3416 return false; 3417 3418 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3419 Value *Provider = Res->Provider; 3420 3421 // We may need to truncate the provider. 3422 if (DemandedTy != Provider->getType()) { 3423 auto *Trunc = 3424 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3425 InsertedInsts.push_back(Trunc); 3426 Provider = Trunc; 3427 } 3428 3429 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3430 InsertedInsts.push_back(Result); 3431 3432 if (!DemandedMask.isAllOnes()) { 3433 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3434 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3435 InsertedInsts.push_back(Result); 3436 } 3437 3438 // We may need to zeroextend back to the result type. 3439 if (ITy != Result->getType()) { 3440 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3441 InsertedInsts.push_back(ExtInst); 3442 } 3443 3444 return true; 3445 } 3446 3447 // CodeGen has special handling for some string functions that may replace 3448 // them with target-specific intrinsics. Since that'd skip our interceptors 3449 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3450 // we mark affected calls as NoBuiltin, which will disable optimization 3451 // in CodeGen. 3452 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3453 CallInst *CI, const TargetLibraryInfo *TLI) { 3454 Function *F = CI->getCalledFunction(); 3455 LibFunc Func; 3456 if (F && !F->hasLocalLinkage() && F->hasName() && 3457 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3458 !F->doesNotAccessMemory()) 3459 CI->addFnAttr(Attribute::NoBuiltin); 3460 } 3461 3462 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3463 // We can't have a PHI with a metadata type. 3464 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3465 return false; 3466 3467 // Early exit. 3468 if (!isa<Constant>(I->getOperand(OpIdx))) 3469 return true; 3470 3471 switch (I->getOpcode()) { 3472 default: 3473 return true; 3474 case Instruction::Call: 3475 case Instruction::Invoke: { 3476 const auto &CB = cast<CallBase>(*I); 3477 3478 // Can't handle inline asm. Skip it. 3479 if (CB.isInlineAsm()) 3480 return false; 3481 3482 // Constant bundle operands may need to retain their constant-ness for 3483 // correctness. 3484 if (CB.isBundleOperand(OpIdx)) 3485 return false; 3486 3487 if (OpIdx < CB.arg_size()) { 3488 // Some variadic intrinsics require constants in the variadic arguments, 3489 // which currently aren't markable as immarg. 3490 if (isa<IntrinsicInst>(CB) && 3491 OpIdx >= CB.getFunctionType()->getNumParams()) { 3492 // This is known to be OK for stackmap. 3493 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3494 } 3495 3496 // gcroot is a special case, since it requires a constant argument which 3497 // isn't also required to be a simple ConstantInt. 3498 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3499 return false; 3500 3501 // Some intrinsic operands are required to be immediates. 3502 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3503 } 3504 3505 // It is never allowed to replace the call argument to an intrinsic, but it 3506 // may be possible for a call. 3507 return !isa<IntrinsicInst>(CB); 3508 } 3509 case Instruction::ShuffleVector: 3510 // Shufflevector masks are constant. 3511 return OpIdx != 2; 3512 case Instruction::Switch: 3513 case Instruction::ExtractValue: 3514 // All operands apart from the first are constant. 3515 return OpIdx == 0; 3516 case Instruction::InsertValue: 3517 // All operands apart from the first and the second are constant. 3518 return OpIdx < 2; 3519 case Instruction::Alloca: 3520 // Static allocas (constant size in the entry block) are handled by 3521 // prologue/epilogue insertion so they're free anyway. We definitely don't 3522 // want to make them non-constant. 3523 return !cast<AllocaInst>(I)->isStaticAlloca(); 3524 case Instruction::GetElementPtr: 3525 if (OpIdx == 0) 3526 return true; 3527 gep_type_iterator It = gep_type_begin(I); 3528 for (auto E = std::next(It, OpIdx); It != E; ++It) 3529 if (It.isStruct()) 3530 return false; 3531 return true; 3532 } 3533 } 3534 3535 Value *llvm::invertCondition(Value *Condition) { 3536 // First: Check if it's a constant 3537 if (Constant *C = dyn_cast<Constant>(Condition)) 3538 return ConstantExpr::getNot(C); 3539 3540 // Second: If the condition is already inverted, return the original value 3541 Value *NotCondition; 3542 if (match(Condition, m_Not(m_Value(NotCondition)))) 3543 return NotCondition; 3544 3545 BasicBlock *Parent = nullptr; 3546 Instruction *Inst = dyn_cast<Instruction>(Condition); 3547 if (Inst) 3548 Parent = Inst->getParent(); 3549 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3550 Parent = &Arg->getParent()->getEntryBlock(); 3551 assert(Parent && "Unsupported condition to invert"); 3552 3553 // Third: Check all the users for an invert 3554 for (User *U : Condition->users()) 3555 if (Instruction *I = dyn_cast<Instruction>(U)) 3556 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3557 return I; 3558 3559 // Last option: Create a new instruction 3560 auto *Inverted = 3561 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3562 if (Inst && !isa<PHINode>(Inst)) 3563 Inverted->insertAfter(Inst); 3564 else 3565 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3566 return Inverted; 3567 } 3568 3569 bool llvm::inferAttributesFromOthers(Function &F) { 3570 // Note: We explicitly check for attributes rather than using cover functions 3571 // because some of the cover functions include the logic being implemented. 3572 3573 bool Changed = false; 3574 // readnone + not convergent implies nosync 3575 if (!F.hasFnAttribute(Attribute::NoSync) && 3576 F.doesNotAccessMemory() && !F.isConvergent()) { 3577 F.setNoSync(); 3578 Changed = true; 3579 } 3580 3581 // readonly implies nofree 3582 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3583 F.setDoesNotFreeMemory(); 3584 Changed = true; 3585 } 3586 3587 // willreturn implies mustprogress 3588 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3589 F.setMustProgress(); 3590 Changed = true; 3591 } 3592 3593 // TODO: There are a bunch of cases of restrictive memory effects we 3594 // can infer by inspecting arguments of argmemonly-ish functions. 3595 3596 return Changed; 3597 } 3598