1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "lcssa" 55 56 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 57 58 #ifdef EXPENSIVE_CHECKS 59 static bool VerifyLoopLCSSA = true; 60 #else 61 static bool VerifyLoopLCSSA = false; 62 #endif 63 static cl::opt<bool, true> 64 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 65 cl::Hidden, 66 cl::desc("Verify loop lcssa form (time consuming)")); 67 68 /// Return true if the specified block is in the list. 69 static bool isExitBlock(BasicBlock *BB, 70 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 71 return is_contained(ExitBlocks, BB); 72 } 73 74 /// For every instruction from the worklist, check to see if it has any uses 75 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 76 /// rewrite the uses. 77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 78 const DominatorTree &DT, const LoopInfo &LI, 79 ScalarEvolution *SE, 80 SmallVectorImpl<PHINode *> *PHIsToRemove, 81 SmallVectorImpl<PHINode *> *InsertedPHIs) { 82 SmallVector<Use *, 16> UsesToRewrite; 83 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 84 PredIteratorCache PredCache; 85 bool Changed = false; 86 87 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 88 // instructions within the same loops, computing the exit blocks is 89 // expensive, and we're not mutating the loop structure. 90 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 91 92 while (!Worklist.empty()) { 93 UsesToRewrite.clear(); 94 95 Instruction *I = Worklist.pop_back_val(); 96 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 97 BasicBlock *InstBB = I->getParent(); 98 Loop *L = LI.getLoopFor(InstBB); 99 assert(L && "Instruction belongs to a BB that's not part of a loop"); 100 if (!LoopExitBlocks.count(L)) 101 L->getExitBlocks(LoopExitBlocks[L]); 102 assert(LoopExitBlocks.count(L)); 103 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 104 105 if (ExitBlocks.empty()) 106 continue; 107 108 for (Use &U : make_early_inc_range(I->uses())) { 109 Instruction *User = cast<Instruction>(U.getUser()); 110 BasicBlock *UserBB = User->getParent(); 111 112 // Skip uses in unreachable blocks. 113 if (!DT.isReachableFromEntry(UserBB)) { 114 U.set(PoisonValue::get(I->getType())); 115 continue; 116 } 117 118 // For practical purposes, we consider that the use in a PHI 119 // occurs in the respective predecessor block. For more info, 120 // see the `phi` doc in LangRef and the LCSSA doc. 121 if (auto *PN = dyn_cast<PHINode>(User)) 122 UserBB = PN->getIncomingBlock(U); 123 124 if (InstBB != UserBB && !L->contains(UserBB)) 125 UsesToRewrite.push_back(&U); 126 } 127 128 // If there are no uses outside the loop, exit with no change. 129 if (UsesToRewrite.empty()) 130 continue; 131 132 ++NumLCSSA; // We are applying the transformation 133 134 // Invoke instructions are special in that their result value is not 135 // available along their unwind edge. The code below tests to see whether 136 // DomBB dominates the value, so adjust DomBB to the normal destination 137 // block, which is effectively where the value is first usable. 138 BasicBlock *DomBB = InstBB; 139 if (auto *Inv = dyn_cast<InvokeInst>(I)) 140 DomBB = Inv->getNormalDest(); 141 142 const DomTreeNode *DomNode = DT.getNode(DomBB); 143 144 SmallVector<PHINode *, 16> AddedPHIs; 145 SmallVector<PHINode *, 8> PostProcessPHIs; 146 147 SmallVector<PHINode *, 4> LocalInsertedPHIs; 148 SSAUpdater SSAUpdate(&LocalInsertedPHIs); 149 SSAUpdate.Initialize(I->getType(), I->getName()); 150 151 // Insert the LCSSA phi's into all of the exit blocks dominated by the 152 // value, and add them to the Phi's map. 153 bool HasSCEV = SE && SE->isSCEVable(I->getType()) && 154 SE->getExistingSCEV(I) != nullptr; 155 for (BasicBlock *ExitBB : ExitBlocks) { 156 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 157 continue; 158 159 // If we already inserted something for this BB, don't reprocess it. 160 if (SSAUpdate.HasValueForBlock(ExitBB)) 161 continue; 162 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 163 I->getName() + ".lcssa", &ExitBB->front()); 164 if (InsertedPHIs) 165 InsertedPHIs->push_back(PN); 166 // Get the debug location from the original instruction. 167 PN->setDebugLoc(I->getDebugLoc()); 168 169 // Add inputs from inside the loop for this PHI. This is valid 170 // because `I` dominates `ExitBB` (checked above). This implies 171 // that every incoming block/edge is dominated by `I` as well, 172 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 173 // blocks without violating the SSA dominance property. 174 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 175 PN->addIncoming(I, Pred); 176 177 // If the exit block has a predecessor not within the loop, arrange for 178 // the incoming value use corresponding to that predecessor to be 179 // rewritten in terms of a different LCSSA PHI. 180 if (!L->contains(Pred)) 181 UsesToRewrite.push_back( 182 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 183 PN->getNumIncomingValues() - 1))); 184 } 185 186 AddedPHIs.push_back(PN); 187 188 // Remember that this phi makes the value alive in this block. 189 SSAUpdate.AddAvailableValue(ExitBB, PN); 190 191 // LoopSimplify might fail to simplify some loops (e.g. when indirect 192 // branches are involved). In such situations, it might happen that an 193 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 194 // create PHIs in such an exit block, we are also inserting PHIs into L2's 195 // header. This could break LCSSA form for L2 because these inserted PHIs 196 // can also have uses outside of L2. Remember all PHIs in such situation 197 // as to revisit than later on. FIXME: Remove this if indirectbr support 198 // into LoopSimplify gets improved. 199 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 200 if (!L->contains(OtherLoop)) 201 PostProcessPHIs.push_back(PN); 202 203 // If we have a cached SCEV for the original instruction, make sure the 204 // new LCSSA phi node is also cached. This makes sures that BECounts 205 // based on it will be invalidated when the LCSSA phi node is invalidated, 206 // which some passes rely on. 207 if (HasSCEV) 208 SE->getSCEV(PN); 209 } 210 211 // Rewrite all uses outside the loop in terms of the new PHIs we just 212 // inserted. 213 for (Use *UseToRewrite : UsesToRewrite) { 214 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 215 BasicBlock *UserBB = User->getParent(); 216 217 // For practical purposes, we consider that the use in a PHI 218 // occurs in the respective predecessor block. For more info, 219 // see the `phi` doc in LangRef and the LCSSA doc. 220 if (auto *PN = dyn_cast<PHINode>(User)) 221 UserBB = PN->getIncomingBlock(*UseToRewrite); 222 223 // If this use is in an exit block, rewrite to use the newly inserted PHI. 224 // This is required for correctness because SSAUpdate doesn't handle uses 225 // in the same block. It assumes the PHI we inserted is at the end of the 226 // block. 227 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 228 UseToRewrite->set(&UserBB->front()); 229 continue; 230 } 231 232 // If we added a single PHI, it must dominate all uses and we can directly 233 // rename it. 234 if (AddedPHIs.size() == 1) { 235 UseToRewrite->set(AddedPHIs[0]); 236 continue; 237 } 238 239 // Otherwise, do full PHI insertion. 240 SSAUpdate.RewriteUse(*UseToRewrite); 241 } 242 243 SmallVector<DbgValueInst *, 4> DbgValues; 244 llvm::findDbgValues(DbgValues, I); 245 246 // Update pre-existing debug value uses that reside outside the loop. 247 for (auto *DVI : DbgValues) { 248 BasicBlock *UserBB = DVI->getParent(); 249 if (InstBB == UserBB || L->contains(UserBB)) 250 continue; 251 // We currently only handle debug values residing in blocks that were 252 // traversed while rewriting the uses. If we inserted just a single PHI, 253 // we will handle all relevant debug values. 254 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 255 : SSAUpdate.FindValueForBlock(UserBB); 256 if (V) 257 DVI->replaceVariableLocationOp(I, V); 258 } 259 260 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 261 // to post-process them to keep LCSSA form. 262 for (PHINode *InsertedPN : LocalInsertedPHIs) { 263 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 264 if (!L->contains(OtherLoop)) 265 PostProcessPHIs.push_back(InsertedPN); 266 if (InsertedPHIs) 267 InsertedPHIs->push_back(InsertedPN); 268 } 269 270 // Post process PHI instructions that were inserted into another disjoint 271 // loop and update their exits properly. 272 for (auto *PostProcessPN : PostProcessPHIs) 273 if (!PostProcessPN->use_empty()) 274 Worklist.push_back(PostProcessPN); 275 276 // Keep track of PHI nodes that we want to remove because they did not have 277 // any uses rewritten. 278 for (PHINode *PN : AddedPHIs) 279 if (PN->use_empty()) 280 LocalPHIsToRemove.insert(PN); 281 282 Changed = true; 283 } 284 285 // Remove PHI nodes that did not have any uses rewritten or add them to 286 // PHIsToRemove, so the caller can remove them after some additional cleanup. 287 // We need to redo the use_empty() check here, because even if the PHI node 288 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 289 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 290 // nodes that only are used by each other. Such situations has only been 291 // noticed when the input IR contains unreachable code, and leaving some extra 292 // redundant PHI nodes in such situations is considered a minor problem. 293 if (PHIsToRemove) { 294 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 295 } else { 296 for (PHINode *PN : LocalPHIsToRemove) 297 if (PN->use_empty()) 298 PN->eraseFromParent(); 299 } 300 return Changed; 301 } 302 303 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 304 static void computeBlocksDominatingExits( 305 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 306 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 307 // We start from the exit blocks, as every block trivially dominates itself 308 // (not strictly). 309 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 310 311 while (!BBWorklist.empty()) { 312 BasicBlock *BB = BBWorklist.pop_back_val(); 313 314 // Check if this is a loop header. If this is the case, we're done. 315 if (L.getHeader() == BB) 316 continue; 317 318 // Otherwise, add its immediate predecessor in the dominator tree to the 319 // worklist, unless we visited it already. 320 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 321 322 // Exit blocks can have an immediate dominator not belonging to the 323 // loop. For an exit block to be immediately dominated by another block 324 // outside the loop, it implies not all paths from that dominator, to the 325 // exit block, go through the loop. 326 // Example: 327 // 328 // |---- A 329 // | | 330 // | B<-- 331 // | | | 332 // |---> C -- 333 // | 334 // D 335 // 336 // C is the exit block of the loop and it's immediately dominated by A, 337 // which doesn't belong to the loop. 338 if (!L.contains(IDomBB)) 339 continue; 340 341 if (BlocksDominatingExits.insert(IDomBB)) 342 BBWorklist.push_back(IDomBB); 343 } 344 } 345 346 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 347 ScalarEvolution *SE) { 348 bool Changed = false; 349 350 #ifdef EXPENSIVE_CHECKS 351 // Verify all sub-loops are in LCSSA form already. 352 for (Loop *SubLoop: L) { 353 (void)SubLoop; // Silence unused variable warning. 354 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 355 } 356 #endif 357 358 SmallVector<BasicBlock *, 8> ExitBlocks; 359 L.getExitBlocks(ExitBlocks); 360 if (ExitBlocks.empty()) 361 return false; 362 363 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 364 365 // We want to avoid use-scanning leveraging dominance informations. 366 // If a block doesn't dominate any of the loop exits, the none of the values 367 // defined in the loop can be used outside. 368 // We compute the set of blocks fullfilling the conditions in advance 369 // walking the dominator tree upwards until we hit a loop header. 370 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 371 372 SmallVector<Instruction *, 8> Worklist; 373 374 // Look at all the instructions in the loop, checking to see if they have uses 375 // outside the loop. If so, put them into the worklist to rewrite those uses. 376 for (BasicBlock *BB : BlocksDominatingExits) { 377 // Skip blocks that are part of any sub-loops, they must be in LCSSA 378 // already. 379 if (LI->getLoopFor(BB) != &L) 380 continue; 381 for (Instruction &I : *BB) { 382 // Reject two common cases fast: instructions with no uses (like stores) 383 // and instructions with one use that is in the same block as this. 384 if (I.use_empty() || 385 (I.hasOneUse() && I.user_back()->getParent() == BB && 386 !isa<PHINode>(I.user_back()))) 387 continue; 388 389 // Tokens cannot be used in PHI nodes, so we skip over them. 390 // We can run into tokens which are live out of a loop with catchswitch 391 // instructions in Windows EH if the catchswitch has one catchpad which 392 // is inside the loop and another which is not. 393 if (I.getType()->isTokenTy()) 394 continue; 395 396 Worklist.push_back(&I); 397 } 398 } 399 400 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE); 401 402 assert(L.isLCSSAForm(DT)); 403 404 return Changed; 405 } 406 407 /// Process a loop nest depth first. 408 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 409 const LoopInfo *LI, ScalarEvolution *SE) { 410 bool Changed = false; 411 412 // Recurse depth-first through inner loops. 413 for (Loop *SubLoop : L.getSubLoops()) 414 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 415 416 Changed |= formLCSSA(L, DT, LI, SE); 417 return Changed; 418 } 419 420 /// Process all loops in the function, inner-most out. 421 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 422 ScalarEvolution *SE) { 423 bool Changed = false; 424 for (const auto &L : *LI) 425 Changed |= formLCSSARecursively(*L, DT, LI, SE); 426 return Changed; 427 } 428 429 namespace { 430 struct LCSSAWrapperPass : public FunctionPass { 431 static char ID; // Pass identification, replacement for typeid 432 LCSSAWrapperPass() : FunctionPass(ID) { 433 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 434 } 435 436 // Cached analysis information for the current function. 437 DominatorTree *DT; 438 LoopInfo *LI; 439 ScalarEvolution *SE; 440 441 bool runOnFunction(Function &F) override; 442 void verifyAnalysis() const override { 443 // This check is very expensive. On the loop intensive compiles it may cause 444 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 445 // always does limited form of the LCSSA verification. Similar reasoning 446 // was used for the LoopInfo verifier. 447 if (VerifyLoopLCSSA) { 448 assert(all_of(*LI, 449 [&](Loop *L) { 450 return L->isRecursivelyLCSSAForm(*DT, *LI); 451 }) && 452 "LCSSA form is broken!"); 453 } 454 }; 455 456 /// This transformation requires natural loop information & requires that 457 /// loop preheaders be inserted into the CFG. It maintains both of these, 458 /// as well as the CFG. It also requires dominator information. 459 void getAnalysisUsage(AnalysisUsage &AU) const override { 460 AU.setPreservesCFG(); 461 462 AU.addRequired<DominatorTreeWrapperPass>(); 463 AU.addRequired<LoopInfoWrapperPass>(); 464 AU.addPreservedID(LoopSimplifyID); 465 AU.addPreserved<AAResultsWrapperPass>(); 466 AU.addPreserved<BasicAAWrapperPass>(); 467 AU.addPreserved<GlobalsAAWrapperPass>(); 468 AU.addPreserved<ScalarEvolutionWrapperPass>(); 469 AU.addPreserved<SCEVAAWrapperPass>(); 470 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 471 AU.addPreserved<MemorySSAWrapperPass>(); 472 473 // This is needed to perform LCSSA verification inside LPPassManager 474 AU.addRequired<LCSSAVerificationPass>(); 475 AU.addPreserved<LCSSAVerificationPass>(); 476 } 477 }; 478 } 479 480 char LCSSAWrapperPass::ID = 0; 481 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 482 false, false) 483 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 484 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 485 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 486 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 487 false, false) 488 489 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 490 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 491 492 /// Transform \p F into loop-closed SSA form. 493 bool LCSSAWrapperPass::runOnFunction(Function &F) { 494 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 495 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 496 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 497 SE = SEWP ? &SEWP->getSE() : nullptr; 498 499 return formLCSSAOnAllLoops(LI, *DT, SE); 500 } 501 502 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 503 auto &LI = AM.getResult<LoopAnalysis>(F); 504 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 505 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 506 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 507 return PreservedAnalyses::all(); 508 509 PreservedAnalyses PA; 510 PA.preserveSet<CFGAnalyses>(); 511 PA.preserve<ScalarEvolutionAnalysis>(); 512 // BPI maps terminators to probabilities, since we don't modify the CFG, no 513 // updates are needed to preserve it. 514 PA.preserve<BranchProbabilityAnalysis>(); 515 PA.preserve<MemorySSAAnalysis>(); 516 return PA; 517 } 518