1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (dyn_cast<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 430 PI != PE;) { 431 BasicBlock *Pred = *PI++; 432 if (Blocks.count(Pred)) 433 continue; 434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 435 } 436 // Now add the old exit block to the outline region. 437 Blocks.insert(CommonExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 // We don't model addresses with multiple start/end markers, but the 455 // markers do not need to be in the region. 456 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 457 if (Info.LifeStart) 458 return {}; 459 Info.LifeStart = IntrInst; 460 continue; 461 } 462 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 463 if (Info.LifeEnd) 464 return {}; 465 Info.LifeEnd = IntrInst; 466 continue; 467 } 468 // At this point, permit debug uses outside of the region. 469 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 470 if (isa<DbgInfoIntrinsic>(IntrInst)) 471 continue; 472 } 473 // Find untracked uses of the address, bail. 474 if (!definedInRegion(Blocks, U)) 475 return {}; 476 } 477 478 if (!Info.LifeStart || !Info.LifeEnd) 479 return {}; 480 481 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 482 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 483 // Do legality check. 484 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 485 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 486 return {}; 487 488 // Check to see if we have a place to do hoisting, if not, bail. 489 if (Info.HoistLifeEnd && !ExitBlock) 490 return {}; 491 492 return Info; 493 } 494 495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 496 ValueSet &SinkCands, ValueSet &HoistCands, 497 BasicBlock *&ExitBlock) const { 498 Function *Func = (*Blocks.begin())->getParent(); 499 ExitBlock = getCommonExitBlock(Blocks); 500 501 auto moveOrIgnoreLifetimeMarkers = 502 [&](const LifetimeMarkerInfo &LMI) -> bool { 503 if (!LMI.LifeStart) 504 return false; 505 if (LMI.SinkLifeStart) { 506 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 507 << "\n"); 508 SinkCands.insert(LMI.LifeStart); 509 } 510 if (LMI.HoistLifeEnd) { 511 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 512 HoistCands.insert(LMI.LifeEnd); 513 } 514 return true; 515 }; 516 517 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 518 // this is much faster than walking all the instructions. 519 for (AllocaInst *AI : CEAC.getAllocas()) { 520 BasicBlock *BB = AI->getParent(); 521 if (Blocks.count(BB)) 522 continue; 523 524 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 525 // check whether it is actually still in the original function. 526 Function *AIFunc = BB->getParent(); 527 if (AIFunc != Func) 528 continue; 529 530 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 531 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 532 if (Moved) { 533 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 534 SinkCands.insert(AI); 535 continue; 536 } 537 538 // Follow any bitcasts. 539 SmallVector<Instruction *, 2> Bitcasts; 540 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 541 for (User *U : AI->users()) { 542 if (U->stripInBoundsConstantOffsets() == AI) { 543 Instruction *Bitcast = cast<Instruction>(U); 544 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 545 if (LMI.LifeStart) { 546 Bitcasts.push_back(Bitcast); 547 BitcastLifetimeInfo.push_back(LMI); 548 continue; 549 } 550 } 551 552 // Found unknown use of AI. 553 if (!definedInRegion(Blocks, U)) { 554 Bitcasts.clear(); 555 break; 556 } 557 } 558 559 // Either no bitcasts reference the alloca or there are unknown uses. 560 if (Bitcasts.empty()) 561 continue; 562 563 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 564 SinkCands.insert(AI); 565 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 566 Instruction *BitcastAddr = Bitcasts[I]; 567 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 568 assert(LMI.LifeStart && 569 "Unsafe to sink bitcast without lifetime markers"); 570 moveOrIgnoreLifetimeMarkers(LMI); 571 if (!definedInRegion(Blocks, BitcastAddr)) { 572 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 573 << "\n"); 574 SinkCands.insert(BitcastAddr); 575 } 576 } 577 } 578 } 579 580 bool CodeExtractor::isEligible() const { 581 if (Blocks.empty()) 582 return false; 583 BasicBlock *Header = *Blocks.begin(); 584 Function *F = Header->getParent(); 585 586 // For functions with varargs, check that varargs handling is only done in the 587 // outlined function, i.e vastart and vaend are only used in outlined blocks. 588 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 589 auto containsVarArgIntrinsic = [](const Instruction &I) { 590 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 591 if (const Function *Callee = CI->getCalledFunction()) 592 return Callee->getIntrinsicID() == Intrinsic::vastart || 593 Callee->getIntrinsicID() == Intrinsic::vaend; 594 return false; 595 }; 596 597 for (auto &BB : *F) { 598 if (Blocks.count(&BB)) 599 continue; 600 if (llvm::any_of(BB, containsVarArgIntrinsic)) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 608 const ValueSet &SinkCands) const { 609 for (BasicBlock *BB : Blocks) { 610 // If a used value is defined outside the region, it's an input. If an 611 // instruction is used outside the region, it's an output. 612 for (Instruction &II : *BB) { 613 for (auto &OI : II.operands()) { 614 Value *V = OI; 615 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 616 Inputs.insert(V); 617 } 618 619 for (User *U : II.users()) 620 if (!definedInRegion(Blocks, U)) { 621 Outputs.insert(&II); 622 break; 623 } 624 } 625 } 626 } 627 628 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 629 /// of the region, we need to split the entry block of the region so that the 630 /// PHI node is easier to deal with. 631 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 632 unsigned NumPredsFromRegion = 0; 633 unsigned NumPredsOutsideRegion = 0; 634 635 if (Header != &Header->getParent()->getEntryBlock()) { 636 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 637 if (!PN) return; // No PHI nodes. 638 639 // If the header node contains any PHI nodes, check to see if there is more 640 // than one entry from outside the region. If so, we need to sever the 641 // header block into two. 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 643 if (Blocks.count(PN->getIncomingBlock(i))) 644 ++NumPredsFromRegion; 645 else 646 ++NumPredsOutsideRegion; 647 648 // If there is one (or fewer) predecessor from outside the region, we don't 649 // need to do anything special. 650 if (NumPredsOutsideRegion <= 1) return; 651 } 652 653 // Otherwise, we need to split the header block into two pieces: one 654 // containing PHI nodes merging values from outside of the region, and a 655 // second that contains all of the code for the block and merges back any 656 // incoming values from inside of the region. 657 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 658 659 // We only want to code extract the second block now, and it becomes the new 660 // header of the region. 661 BasicBlock *OldPred = Header; 662 Blocks.remove(OldPred); 663 Blocks.insert(NewBB); 664 Header = NewBB; 665 666 // Okay, now we need to adjust the PHI nodes and any branches from within the 667 // region to go to the new header block instead of the old header block. 668 if (NumPredsFromRegion) { 669 PHINode *PN = cast<PHINode>(OldPred->begin()); 670 // Loop over all of the predecessors of OldPred that are in the region, 671 // changing them to branch to NewBB instead. 672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 673 if (Blocks.count(PN->getIncomingBlock(i))) { 674 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 675 TI->replaceUsesOfWith(OldPred, NewBB); 676 } 677 678 // Okay, everything within the region is now branching to the right block, we 679 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 680 BasicBlock::iterator AfterPHIs; 681 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 682 PHINode *PN = cast<PHINode>(AfterPHIs); 683 // Create a new PHI node in the new region, which has an incoming value 684 // from OldPred of PN. 685 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 686 PN->getName() + ".ce", &NewBB->front()); 687 PN->replaceAllUsesWith(NewPN); 688 NewPN->addIncoming(PN, OldPred); 689 690 // Loop over all of the incoming value in PN, moving them to NewPN if they 691 // are from the extracted region. 692 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 693 if (Blocks.count(PN->getIncomingBlock(i))) { 694 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 695 PN->removeIncomingValue(i); 696 --i; 697 } 698 } 699 } 700 } 701 } 702 703 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 704 /// outlined region, we split these PHIs on two: one with inputs from region 705 /// and other with remaining incoming blocks; then first PHIs are placed in 706 /// outlined region. 707 void CodeExtractor::severSplitPHINodesOfExits( 708 const SmallPtrSetImpl<BasicBlock *> &Exits) { 709 for (BasicBlock *ExitBB : Exits) { 710 BasicBlock *NewBB = nullptr; 711 712 for (PHINode &PN : ExitBB->phis()) { 713 // Find all incoming values from the outlining region. 714 SmallVector<unsigned, 2> IncomingVals; 715 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 716 if (Blocks.count(PN.getIncomingBlock(i))) 717 IncomingVals.push_back(i); 718 719 // Do not process PHI if there is one (or fewer) predecessor from region. 720 // If PHI has exactly one predecessor from region, only this one incoming 721 // will be replaced on codeRepl block, so it should be safe to skip PHI. 722 if (IncomingVals.size() <= 1) 723 continue; 724 725 // Create block for new PHIs and add it to the list of outlined if it 726 // wasn't done before. 727 if (!NewBB) { 728 NewBB = BasicBlock::Create(ExitBB->getContext(), 729 ExitBB->getName() + ".split", 730 ExitBB->getParent(), ExitBB); 731 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 732 pred_end(ExitBB)); 733 for (BasicBlock *PredBB : Preds) 734 if (Blocks.count(PredBB)) 735 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 736 BranchInst::Create(ExitBB, NewBB); 737 Blocks.insert(NewBB); 738 } 739 740 // Split this PHI. 741 PHINode *NewPN = 742 PHINode::Create(PN.getType(), IncomingVals.size(), 743 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 744 for (unsigned i : IncomingVals) 745 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 746 for (unsigned i : reverse(IncomingVals)) 747 PN.removeIncomingValue(i, false); 748 PN.addIncoming(NewPN, NewBB); 749 } 750 } 751 } 752 753 void CodeExtractor::splitReturnBlocks() { 754 for (BasicBlock *Block : Blocks) 755 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 756 BasicBlock *New = 757 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 758 if (DT) { 759 // Old dominates New. New node dominates all other nodes dominated 760 // by Old. 761 DomTreeNode *OldNode = DT->getNode(Block); 762 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 763 OldNode->end()); 764 765 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 766 767 for (DomTreeNode *I : Children) 768 DT->changeImmediateDominator(I, NewNode); 769 } 770 } 771 } 772 773 /// constructFunction - make a function based on inputs and outputs, as follows: 774 /// f(in0, ..., inN, out0, ..., outN) 775 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 776 const ValueSet &outputs, 777 BasicBlock *header, 778 BasicBlock *newRootNode, 779 BasicBlock *newHeader, 780 Function *oldFunction, 781 Module *M) { 782 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 783 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 784 785 // This function returns unsigned, outputs will go back by reference. 786 switch (NumExitBlocks) { 787 case 0: 788 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 789 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 790 default: RetTy = Type::getInt16Ty(header->getContext()); break; 791 } 792 793 std::vector<Type *> paramTy; 794 795 // Add the types of the input values to the function's argument list 796 for (Value *value : inputs) { 797 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 798 paramTy.push_back(value->getType()); 799 } 800 801 // Add the types of the output values to the function's argument list. 802 for (Value *output : outputs) { 803 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 804 if (AggregateArgs) 805 paramTy.push_back(output->getType()); 806 else 807 paramTy.push_back(PointerType::getUnqual(output->getType())); 808 } 809 810 LLVM_DEBUG({ 811 dbgs() << "Function type: " << *RetTy << " f("; 812 for (Type *i : paramTy) 813 dbgs() << *i << ", "; 814 dbgs() << ")\n"; 815 }); 816 817 StructType *StructTy = nullptr; 818 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 819 StructTy = StructType::get(M->getContext(), paramTy); 820 paramTy.clear(); 821 paramTy.push_back(PointerType::getUnqual(StructTy)); 822 } 823 FunctionType *funcType = 824 FunctionType::get(RetTy, paramTy, 825 AllowVarArgs && oldFunction->isVarArg()); 826 827 std::string SuffixToUse = 828 Suffix.empty() 829 ? (header->getName().empty() ? "extracted" : header->getName().str()) 830 : Suffix; 831 // Create the new function 832 Function *newFunction = Function::Create( 833 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 834 oldFunction->getName() + "." + SuffixToUse, M); 835 // If the old function is no-throw, so is the new one. 836 if (oldFunction->doesNotThrow()) 837 newFunction->setDoesNotThrow(); 838 839 // Inherit the uwtable attribute if we need to. 840 if (oldFunction->hasUWTable()) 841 newFunction->setHasUWTable(); 842 843 // Inherit all of the target dependent attributes and white-listed 844 // target independent attributes. 845 // (e.g. If the extracted region contains a call to an x86.sse 846 // instruction we need to make sure that the extracted region has the 847 // "target-features" attribute allowing it to be lowered. 848 // FIXME: This should be changed to check to see if a specific 849 // attribute can not be inherited. 850 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 851 if (Attr.isStringAttribute()) { 852 if (Attr.getKindAsString() == "thunk") 853 continue; 854 } else 855 switch (Attr.getKindAsEnum()) { 856 // Those attributes cannot be propagated safely. Explicitly list them 857 // here so we get a warning if new attributes are added. This list also 858 // includes non-function attributes. 859 case Attribute::Alignment: 860 case Attribute::AllocSize: 861 case Attribute::ArgMemOnly: 862 case Attribute::Builtin: 863 case Attribute::ByVal: 864 case Attribute::Convergent: 865 case Attribute::Dereferenceable: 866 case Attribute::DereferenceableOrNull: 867 case Attribute::InAlloca: 868 case Attribute::InReg: 869 case Attribute::InaccessibleMemOnly: 870 case Attribute::InaccessibleMemOrArgMemOnly: 871 case Attribute::JumpTable: 872 case Attribute::Naked: 873 case Attribute::Nest: 874 case Attribute::NoAlias: 875 case Attribute::NoBuiltin: 876 case Attribute::NoCapture: 877 case Attribute::NoMerge: 878 case Attribute::NoReturn: 879 case Attribute::NoSync: 880 case Attribute::NoUndef: 881 case Attribute::None: 882 case Attribute::NonNull: 883 case Attribute::Preallocated: 884 case Attribute::ReadNone: 885 case Attribute::ReadOnly: 886 case Attribute::Returned: 887 case Attribute::ReturnsTwice: 888 case Attribute::SExt: 889 case Attribute::Speculatable: 890 case Attribute::StackAlignment: 891 case Attribute::StructRet: 892 case Attribute::SwiftError: 893 case Attribute::SwiftSelf: 894 case Attribute::WillReturn: 895 case Attribute::WriteOnly: 896 case Attribute::ZExt: 897 case Attribute::ImmArg: 898 case Attribute::EndAttrKinds: 899 case Attribute::EmptyKey: 900 case Attribute::TombstoneKey: 901 continue; 902 // Those attributes should be safe to propagate to the extracted function. 903 case Attribute::AlwaysInline: 904 case Attribute::Cold: 905 case Attribute::NoRecurse: 906 case Attribute::InlineHint: 907 case Attribute::MinSize: 908 case Attribute::NoDuplicate: 909 case Attribute::NoFree: 910 case Attribute::NoImplicitFloat: 911 case Attribute::NoInline: 912 case Attribute::NonLazyBind: 913 case Attribute::NoRedZone: 914 case Attribute::NoUnwind: 915 case Attribute::NullPointerIsValid: 916 case Attribute::OptForFuzzing: 917 case Attribute::OptimizeNone: 918 case Attribute::OptimizeForSize: 919 case Attribute::SafeStack: 920 case Attribute::ShadowCallStack: 921 case Attribute::SanitizeAddress: 922 case Attribute::SanitizeMemory: 923 case Attribute::SanitizeThread: 924 case Attribute::SanitizeHWAddress: 925 case Attribute::SanitizeMemTag: 926 case Attribute::SpeculativeLoadHardening: 927 case Attribute::StackProtect: 928 case Attribute::StackProtectReq: 929 case Attribute::StackProtectStrong: 930 case Attribute::StrictFP: 931 case Attribute::UWTable: 932 case Attribute::NoCfCheck: 933 break; 934 } 935 936 newFunction->addFnAttr(Attr); 937 } 938 newFunction->getBasicBlockList().push_back(newRootNode); 939 940 // Create an iterator to name all of the arguments we inserted. 941 Function::arg_iterator AI = newFunction->arg_begin(); 942 943 // Rewrite all users of the inputs in the extracted region to use the 944 // arguments (or appropriate addressing into struct) instead. 945 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 946 Value *RewriteVal; 947 if (AggregateArgs) { 948 Value *Idx[2]; 949 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 950 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 951 Instruction *TI = newFunction->begin()->getTerminator(); 952 GetElementPtrInst *GEP = GetElementPtrInst::Create( 953 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 954 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 955 "loadgep_" + inputs[i]->getName(), TI); 956 } else 957 RewriteVal = &*AI++; 958 959 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 960 for (User *use : Users) 961 if (Instruction *inst = dyn_cast<Instruction>(use)) 962 if (Blocks.count(inst->getParent())) 963 inst->replaceUsesOfWith(inputs[i], RewriteVal); 964 } 965 966 // Set names for input and output arguments. 967 if (!AggregateArgs) { 968 AI = newFunction->arg_begin(); 969 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 970 AI->setName(inputs[i]->getName()); 971 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 972 AI->setName(outputs[i]->getName()+".out"); 973 } 974 975 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 976 // within the new function. This must be done before we lose track of which 977 // blocks were originally in the code region. 978 std::vector<User *> Users(header->user_begin(), header->user_end()); 979 for (auto &U : Users) 980 // The BasicBlock which contains the branch is not in the region 981 // modify the branch target to a new block 982 if (Instruction *I = dyn_cast<Instruction>(U)) 983 if (I->isTerminator() && I->getFunction() == oldFunction && 984 !Blocks.count(I->getParent())) 985 I->replaceUsesOfWith(header, newHeader); 986 987 return newFunction; 988 } 989 990 /// Erase lifetime.start markers which reference inputs to the extraction 991 /// region, and insert the referenced memory into \p LifetimesStart. 992 /// 993 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 994 /// of allocas which will be moved from the caller function into the extracted 995 /// function (\p SunkAllocas). 996 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 997 const SetVector<Value *> &SunkAllocas, 998 SetVector<Value *> &LifetimesStart) { 999 for (BasicBlock *BB : Blocks) { 1000 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1001 auto *II = dyn_cast<IntrinsicInst>(&*It); 1002 ++It; 1003 if (!II || !II->isLifetimeStartOrEnd()) 1004 continue; 1005 1006 // Get the memory operand of the lifetime marker. If the underlying 1007 // object is a sunk alloca, or is otherwise defined in the extraction 1008 // region, the lifetime marker must not be erased. 1009 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1010 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1011 continue; 1012 1013 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1014 LifetimesStart.insert(Mem); 1015 II->eraseFromParent(); 1016 } 1017 } 1018 } 1019 1020 /// Insert lifetime start/end markers surrounding the call to the new function 1021 /// for objects defined in the caller. 1022 static void insertLifetimeMarkersSurroundingCall( 1023 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1024 CallInst *TheCall) { 1025 LLVMContext &Ctx = M->getContext(); 1026 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1027 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1028 Instruction *Term = TheCall->getParent()->getTerminator(); 1029 1030 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1031 // needed to satisfy this requirement so they may be reused. 1032 DenseMap<Value *, Value *> Bitcasts; 1033 1034 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1035 // markers before the call if \p InsertBefore, and after the call otherwise. 1036 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1037 bool InsertBefore) { 1038 for (Value *Mem : Objects) { 1039 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1040 TheCall->getFunction()) && 1041 "Input memory not defined in original function"); 1042 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1043 if (!MemAsI8Ptr) { 1044 if (Mem->getType() == Int8PtrTy) 1045 MemAsI8Ptr = Mem; 1046 else 1047 MemAsI8Ptr = 1048 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1049 } 1050 1051 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1052 if (InsertBefore) 1053 Marker->insertBefore(TheCall); 1054 else 1055 Marker->insertBefore(Term); 1056 } 1057 }; 1058 1059 if (!LifetimesStart.empty()) { 1060 auto StartFn = llvm::Intrinsic::getDeclaration( 1061 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1062 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1063 } 1064 1065 if (!LifetimesEnd.empty()) { 1066 auto EndFn = llvm::Intrinsic::getDeclaration( 1067 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1068 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1069 } 1070 } 1071 1072 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1073 /// the call instruction, splitting any PHI nodes in the header block as 1074 /// necessary. 1075 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1076 BasicBlock *codeReplacer, 1077 ValueSet &inputs, 1078 ValueSet &outputs) { 1079 // Emit a call to the new function, passing in: *pointer to struct (if 1080 // aggregating parameters), or plan inputs and allocated memory for outputs 1081 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1082 1083 Module *M = newFunction->getParent(); 1084 LLVMContext &Context = M->getContext(); 1085 const DataLayout &DL = M->getDataLayout(); 1086 CallInst *call = nullptr; 1087 1088 // Add inputs as params, or to be filled into the struct 1089 unsigned ArgNo = 0; 1090 SmallVector<unsigned, 1> SwiftErrorArgs; 1091 for (Value *input : inputs) { 1092 if (AggregateArgs) 1093 StructValues.push_back(input); 1094 else { 1095 params.push_back(input); 1096 if (input->isSwiftError()) 1097 SwiftErrorArgs.push_back(ArgNo); 1098 } 1099 ++ArgNo; 1100 } 1101 1102 // Create allocas for the outputs 1103 for (Value *output : outputs) { 1104 if (AggregateArgs) { 1105 StructValues.push_back(output); 1106 } else { 1107 AllocaInst *alloca = 1108 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1109 nullptr, output->getName() + ".loc", 1110 &codeReplacer->getParent()->front().front()); 1111 ReloadOutputs.push_back(alloca); 1112 params.push_back(alloca); 1113 } 1114 } 1115 1116 StructType *StructArgTy = nullptr; 1117 AllocaInst *Struct = nullptr; 1118 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1119 std::vector<Type *> ArgTypes; 1120 for (ValueSet::iterator v = StructValues.begin(), 1121 ve = StructValues.end(); v != ve; ++v) 1122 ArgTypes.push_back((*v)->getType()); 1123 1124 // Allocate a struct at the beginning of this function 1125 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1126 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1127 "structArg", 1128 &codeReplacer->getParent()->front().front()); 1129 params.push_back(Struct); 1130 1131 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1132 Value *Idx[2]; 1133 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1134 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1135 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1136 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1137 codeReplacer->getInstList().push_back(GEP); 1138 new StoreInst(StructValues[i], GEP, codeReplacer); 1139 } 1140 } 1141 1142 // Emit the call to the function 1143 call = CallInst::Create(newFunction, params, 1144 NumExitBlocks > 1 ? "targetBlock" : ""); 1145 // Add debug location to the new call, if the original function has debug 1146 // info. In that case, the terminator of the entry block of the extracted 1147 // function contains the first debug location of the extracted function, 1148 // set in extractCodeRegion. 1149 if (codeReplacer->getParent()->getSubprogram()) { 1150 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1151 call->setDebugLoc(DL); 1152 } 1153 codeReplacer->getInstList().push_back(call); 1154 1155 // Set swifterror parameter attributes. 1156 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1157 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1158 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1159 } 1160 1161 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1162 unsigned FirstOut = inputs.size(); 1163 if (!AggregateArgs) 1164 std::advance(OutputArgBegin, inputs.size()); 1165 1166 // Reload the outputs passed in by reference. 1167 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1168 Value *Output = nullptr; 1169 if (AggregateArgs) { 1170 Value *Idx[2]; 1171 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1172 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1173 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1174 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1175 codeReplacer->getInstList().push_back(GEP); 1176 Output = GEP; 1177 } else { 1178 Output = ReloadOutputs[i]; 1179 } 1180 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1181 outputs[i]->getName() + ".reload", 1182 codeReplacer); 1183 Reloads.push_back(load); 1184 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1185 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1186 Instruction *inst = cast<Instruction>(Users[u]); 1187 if (!Blocks.count(inst->getParent())) 1188 inst->replaceUsesOfWith(outputs[i], load); 1189 } 1190 } 1191 1192 // Now we can emit a switch statement using the call as a value. 1193 SwitchInst *TheSwitch = 1194 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1195 codeReplacer, 0, codeReplacer); 1196 1197 // Since there may be multiple exits from the original region, make the new 1198 // function return an unsigned, switch on that number. This loop iterates 1199 // over all of the blocks in the extracted region, updating any terminator 1200 // instructions in the to-be-extracted region that branch to blocks that are 1201 // not in the region to be extracted. 1202 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1203 1204 unsigned switchVal = 0; 1205 for (BasicBlock *Block : Blocks) { 1206 Instruction *TI = Block->getTerminator(); 1207 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1208 if (!Blocks.count(TI->getSuccessor(i))) { 1209 BasicBlock *OldTarget = TI->getSuccessor(i); 1210 // add a new basic block which returns the appropriate value 1211 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1212 if (!NewTarget) { 1213 // If we don't already have an exit stub for this non-extracted 1214 // destination, create one now! 1215 NewTarget = BasicBlock::Create(Context, 1216 OldTarget->getName() + ".exitStub", 1217 newFunction); 1218 unsigned SuccNum = switchVal++; 1219 1220 Value *brVal = nullptr; 1221 switch (NumExitBlocks) { 1222 case 0: 1223 case 1: break; // No value needed. 1224 case 2: // Conditional branch, return a bool 1225 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1226 break; 1227 default: 1228 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1229 break; 1230 } 1231 1232 ReturnInst::Create(Context, brVal, NewTarget); 1233 1234 // Update the switch instruction. 1235 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1236 SuccNum), 1237 OldTarget); 1238 } 1239 1240 // rewrite the original branch instruction with this new target 1241 TI->setSuccessor(i, NewTarget); 1242 } 1243 } 1244 1245 // Store the arguments right after the definition of output value. 1246 // This should be proceeded after creating exit stubs to be ensure that invoke 1247 // result restore will be placed in the outlined function. 1248 Function::arg_iterator OAI = OutputArgBegin; 1249 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1250 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1251 if (!OutI) 1252 continue; 1253 1254 // Find proper insertion point. 1255 BasicBlock::iterator InsertPt; 1256 // In case OutI is an invoke, we insert the store at the beginning in the 1257 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1258 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1259 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1260 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1261 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1262 else 1263 InsertPt = std::next(OutI->getIterator()); 1264 1265 Instruction *InsertBefore = &*InsertPt; 1266 assert((InsertBefore->getFunction() == newFunction || 1267 Blocks.count(InsertBefore->getParent())) && 1268 "InsertPt should be in new function"); 1269 assert(OAI != newFunction->arg_end() && 1270 "Number of output arguments should match " 1271 "the amount of defined values"); 1272 if (AggregateArgs) { 1273 Value *Idx[2]; 1274 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1275 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1276 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1277 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1278 InsertBefore); 1279 new StoreInst(outputs[i], GEP, InsertBefore); 1280 // Since there should be only one struct argument aggregating 1281 // all the output values, we shouldn't increment OAI, which always 1282 // points to the struct argument, in this case. 1283 } else { 1284 new StoreInst(outputs[i], &*OAI, InsertBefore); 1285 ++OAI; 1286 } 1287 } 1288 1289 // Now that we've done the deed, simplify the switch instruction. 1290 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1291 switch (NumExitBlocks) { 1292 case 0: 1293 // There are no successors (the block containing the switch itself), which 1294 // means that previously this was the last part of the function, and hence 1295 // this should be rewritten as a `ret' 1296 1297 // Check if the function should return a value 1298 if (OldFnRetTy->isVoidTy()) { 1299 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1300 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1301 // return what we have 1302 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1303 } else { 1304 // Otherwise we must have code extracted an unwind or something, just 1305 // return whatever we want. 1306 ReturnInst::Create(Context, 1307 Constant::getNullValue(OldFnRetTy), TheSwitch); 1308 } 1309 1310 TheSwitch->eraseFromParent(); 1311 break; 1312 case 1: 1313 // Only a single destination, change the switch into an unconditional 1314 // branch. 1315 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1316 TheSwitch->eraseFromParent(); 1317 break; 1318 case 2: 1319 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1320 call, TheSwitch); 1321 TheSwitch->eraseFromParent(); 1322 break; 1323 default: 1324 // Otherwise, make the default destination of the switch instruction be one 1325 // of the other successors. 1326 TheSwitch->setCondition(call); 1327 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1328 // Remove redundant case 1329 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1330 break; 1331 } 1332 1333 // Insert lifetime markers around the reloads of any output values. The 1334 // allocas output values are stored in are only in-use in the codeRepl block. 1335 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1336 1337 return call; 1338 } 1339 1340 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1341 Function *oldFunc = (*Blocks.begin())->getParent(); 1342 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1343 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1344 1345 for (BasicBlock *Block : Blocks) { 1346 // Delete the basic block from the old function, and the list of blocks 1347 oldBlocks.remove(Block); 1348 1349 // Insert this basic block into the new function 1350 newBlocks.push_back(Block); 1351 } 1352 } 1353 1354 void CodeExtractor::calculateNewCallTerminatorWeights( 1355 BasicBlock *CodeReplacer, 1356 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1357 BranchProbabilityInfo *BPI) { 1358 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1359 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1360 1361 // Update the branch weights for the exit block. 1362 Instruction *TI = CodeReplacer->getTerminator(); 1363 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1364 1365 // Block Frequency distribution with dummy node. 1366 Distribution BranchDist; 1367 1368 SmallVector<BranchProbability, 4> EdgeProbabilities( 1369 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1370 1371 // Add each of the frequencies of the successors. 1372 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1373 BlockNode ExitNode(i); 1374 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1375 if (ExitFreq != 0) 1376 BranchDist.addExit(ExitNode, ExitFreq); 1377 else 1378 EdgeProbabilities[i] = BranchProbability::getZero(); 1379 } 1380 1381 // Check for no total weight. 1382 if (BranchDist.Total == 0) { 1383 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1384 return; 1385 } 1386 1387 // Normalize the distribution so that they can fit in unsigned. 1388 BranchDist.normalize(); 1389 1390 // Create normalized branch weights and set the metadata. 1391 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1392 const auto &Weight = BranchDist.Weights[I]; 1393 1394 // Get the weight and update the current BFI. 1395 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1396 BranchProbability BP(Weight.Amount, BranchDist.Total); 1397 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1398 } 1399 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1400 TI->setMetadata( 1401 LLVMContext::MD_prof, 1402 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1403 } 1404 1405 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1406 /// \p F. 1407 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1408 for (Instruction &I : instructions(F)) { 1409 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1410 findDbgUsers(DbgUsers, &I); 1411 for (DbgVariableIntrinsic *DVI : DbgUsers) 1412 if (DVI->getFunction() != &F) 1413 DVI->eraseFromParent(); 1414 } 1415 } 1416 1417 /// Fix up the debug info in the old and new functions by pointing line 1418 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1419 /// intrinsics which point to values outside of the new function. 1420 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1421 CallInst &TheCall) { 1422 DISubprogram *OldSP = OldFunc.getSubprogram(); 1423 LLVMContext &Ctx = OldFunc.getContext(); 1424 1425 if (!OldSP) { 1426 // Erase any debug info the new function contains. 1427 stripDebugInfo(NewFunc); 1428 // Make sure the old function doesn't contain any non-local metadata refs. 1429 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1430 return; 1431 } 1432 1433 // Create a subprogram for the new function. Leave out a description of the 1434 // function arguments, as the parameters don't correspond to anything at the 1435 // source level. 1436 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1437 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false, 1438 OldSP->getUnit()); 1439 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1440 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1441 DISubprogram::SPFlagOptimized | 1442 DISubprogram::SPFlagLocalToUnit; 1443 auto NewSP = DIB.createFunction( 1444 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1445 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1446 NewFunc.setSubprogram(NewSP); 1447 1448 // Debug intrinsics in the new function need to be updated in one of two 1449 // ways: 1450 // 1) They need to be deleted, because they describe a value in the old 1451 // function. 1452 // 2) They need to point to fresh metadata, e.g. because they currently 1453 // point to a variable in the wrong scope. 1454 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1455 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1456 for (Instruction &I : instructions(NewFunc)) { 1457 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1458 if (!DII) 1459 continue; 1460 1461 // Point the intrinsic to a fresh label within the new function. 1462 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1463 DILabel *OldLabel = DLI->getLabel(); 1464 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1465 if (!NewLabel) 1466 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1467 OldLabel->getFile(), OldLabel->getLine()); 1468 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1469 continue; 1470 } 1471 1472 // If the location isn't a constant or an instruction, delete the 1473 // intrinsic. 1474 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1475 Value *Location = DVI->getVariableLocation(); 1476 if (!Location || 1477 (!isa<Constant>(Location) && !isa<Instruction>(Location))) { 1478 DebugIntrinsicsToDelete.push_back(DVI); 1479 continue; 1480 } 1481 1482 // If the variable location is an instruction but isn't in the new 1483 // function, delete the intrinsic. 1484 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1485 if (LocationInst && LocationInst->getFunction() != &NewFunc) { 1486 DebugIntrinsicsToDelete.push_back(DVI); 1487 continue; 1488 } 1489 1490 // Point the intrinsic to a fresh variable within the new function. 1491 DILocalVariable *OldVar = DVI->getVariable(); 1492 DINode *&NewVar = RemappedMetadata[OldVar]; 1493 if (!NewVar) 1494 NewVar = DIB.createAutoVariable( 1495 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1496 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1497 OldVar->getAlignInBits()); 1498 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar)); 1499 } 1500 for (auto *DII : DebugIntrinsicsToDelete) 1501 DII->eraseFromParent(); 1502 DIB.finalizeSubprogram(NewSP); 1503 1504 // Fix up the scope information attached to the line locations in the new 1505 // function. 1506 for (Instruction &I : instructions(NewFunc)) { 1507 if (const DebugLoc &DL = I.getDebugLoc()) 1508 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP)); 1509 1510 // Loop info metadata may contain line locations. Fix them up. 1511 auto updateLoopInfoLoc = [&Ctx, 1512 NewSP](const DILocation &Loc) -> DILocation * { 1513 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1514 nullptr); 1515 }; 1516 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1517 } 1518 if (!TheCall.getDebugLoc()) 1519 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP)); 1520 1521 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1522 } 1523 1524 Function * 1525 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1526 if (!isEligible()) 1527 return nullptr; 1528 1529 // Assumption: this is a single-entry code region, and the header is the first 1530 // block in the region. 1531 BasicBlock *header = *Blocks.begin(); 1532 Function *oldFunction = header->getParent(); 1533 1534 // Calculate the entry frequency of the new function before we change the root 1535 // block. 1536 BlockFrequency EntryFreq; 1537 if (BFI) { 1538 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1539 for (BasicBlock *Pred : predecessors(header)) { 1540 if (Blocks.count(Pred)) 1541 continue; 1542 EntryFreq += 1543 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1544 } 1545 } 1546 1547 // Remove @llvm.assume calls that will be moved to the new function from the 1548 // old function's assumption cache. 1549 for (BasicBlock *Block : Blocks) { 1550 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1551 Instruction *I = &*It; 1552 ++It; 1553 1554 if (match(I, m_Intrinsic<Intrinsic::assume>())) { 1555 if (AC) 1556 AC->unregisterAssumption(cast<CallInst>(I)); 1557 I->eraseFromParent(); 1558 } 1559 } 1560 } 1561 1562 // If we have any return instructions in the region, split those blocks so 1563 // that the return is not in the region. 1564 splitReturnBlocks(); 1565 1566 // Calculate the exit blocks for the extracted region and the total exit 1567 // weights for each of those blocks. 1568 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1569 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1570 for (BasicBlock *Block : Blocks) { 1571 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1572 ++SI) { 1573 if (!Blocks.count(*SI)) { 1574 // Update the branch weight for this successor. 1575 if (BFI) { 1576 BlockFrequency &BF = ExitWeights[*SI]; 1577 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1578 } 1579 ExitBlocks.insert(*SI); 1580 } 1581 } 1582 } 1583 NumExitBlocks = ExitBlocks.size(); 1584 1585 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1586 severSplitPHINodesOfEntry(header); 1587 severSplitPHINodesOfExits(ExitBlocks); 1588 1589 // This takes place of the original loop 1590 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1591 "codeRepl", oldFunction, 1592 header); 1593 1594 // The new function needs a root node because other nodes can branch to the 1595 // head of the region, but the entry node of a function cannot have preds. 1596 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1597 "newFuncRoot"); 1598 auto *BranchI = BranchInst::Create(header); 1599 // If the original function has debug info, we have to add a debug location 1600 // to the new branch instruction from the artificial entry block. 1601 // We use the debug location of the first instruction in the extracted 1602 // blocks, as there is no other equivalent line in the source code. 1603 if (oldFunction->getSubprogram()) { 1604 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1605 return any_of(*BB, [&BranchI](const Instruction &I) { 1606 if (!I.getDebugLoc()) 1607 return false; 1608 BranchI->setDebugLoc(I.getDebugLoc()); 1609 return true; 1610 }); 1611 }); 1612 } 1613 newFuncRoot->getInstList().push_back(BranchI); 1614 1615 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1616 BasicBlock *CommonExit = nullptr; 1617 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1618 assert(HoistingCands.empty() || CommonExit); 1619 1620 // Find inputs to, outputs from the code region. 1621 findInputsOutputs(inputs, outputs, SinkingCands); 1622 1623 // Now sink all instructions which only have non-phi uses inside the region. 1624 // Group the allocas at the start of the block, so that any bitcast uses of 1625 // the allocas are well-defined. 1626 AllocaInst *FirstSunkAlloca = nullptr; 1627 for (auto *II : SinkingCands) { 1628 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1629 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1630 if (!FirstSunkAlloca) 1631 FirstSunkAlloca = AI; 1632 } 1633 } 1634 assert((SinkingCands.empty() || FirstSunkAlloca) && 1635 "Did not expect a sink candidate without any allocas"); 1636 for (auto *II : SinkingCands) { 1637 if (!isa<AllocaInst>(II)) { 1638 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1639 } 1640 } 1641 1642 if (!HoistingCands.empty()) { 1643 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1644 Instruction *TI = HoistToBlock->getTerminator(); 1645 for (auto *II : HoistingCands) 1646 cast<Instruction>(II)->moveBefore(TI); 1647 } 1648 1649 // Collect objects which are inputs to the extraction region and also 1650 // referenced by lifetime start markers within it. The effects of these 1651 // markers must be replicated in the calling function to prevent the stack 1652 // coloring pass from merging slots which store input objects. 1653 ValueSet LifetimesStart; 1654 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1655 1656 // Construct new function based on inputs/outputs & add allocas for all defs. 1657 Function *newFunction = 1658 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1659 oldFunction, oldFunction->getParent()); 1660 1661 // Update the entry count of the function. 1662 if (BFI) { 1663 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1664 if (Count.hasValue()) 1665 newFunction->setEntryCount( 1666 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1667 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1668 } 1669 1670 CallInst *TheCall = 1671 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1672 1673 moveCodeToFunction(newFunction); 1674 1675 // Replicate the effects of any lifetime start/end markers which referenced 1676 // input objects in the extraction region by placing markers around the call. 1677 insertLifetimeMarkersSurroundingCall( 1678 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1679 1680 // Propagate personality info to the new function if there is one. 1681 if (oldFunction->hasPersonalityFn()) 1682 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1683 1684 // Update the branch weights for the exit block. 1685 if (BFI && NumExitBlocks > 1) 1686 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1687 1688 // Loop over all of the PHI nodes in the header and exit blocks, and change 1689 // any references to the old incoming edge to be the new incoming edge. 1690 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1691 PHINode *PN = cast<PHINode>(I); 1692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1693 if (!Blocks.count(PN->getIncomingBlock(i))) 1694 PN->setIncomingBlock(i, newFuncRoot); 1695 } 1696 1697 for (BasicBlock *ExitBB : ExitBlocks) 1698 for (PHINode &PN : ExitBB->phis()) { 1699 Value *IncomingCodeReplacerVal = nullptr; 1700 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1701 // Ignore incoming values from outside of the extracted region. 1702 if (!Blocks.count(PN.getIncomingBlock(i))) 1703 continue; 1704 1705 // Ensure that there is only one incoming value from codeReplacer. 1706 if (!IncomingCodeReplacerVal) { 1707 PN.setIncomingBlock(i, codeReplacer); 1708 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1709 } else 1710 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1711 "PHI has two incompatbile incoming values from codeRepl"); 1712 } 1713 } 1714 1715 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1716 1717 // Mark the new function `noreturn` if applicable. Terminators which resume 1718 // exception propagation are treated as returning instructions. This is to 1719 // avoid inserting traps after calls to outlined functions which unwind. 1720 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1721 const Instruction *Term = BB.getTerminator(); 1722 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1723 }); 1724 if (doesNotReturn) 1725 newFunction->setDoesNotReturn(); 1726 1727 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1728 newFunction->dump(); 1729 report_fatal_error("verification of newFunction failed!"); 1730 }); 1731 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1732 report_fatal_error("verification of oldFunction failed!")); 1733 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1734 report_fatal_error("Stale Asumption cache for old Function!")); 1735 return newFunction; 1736 } 1737 1738 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1739 const Function &NewFunc, 1740 AssumptionCache *AC) { 1741 for (auto AssumeVH : AC->assumptions()) { 1742 CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH); 1743 if (!I) 1744 continue; 1745 1746 // There shouldn't be any llvm.assume intrinsics in the new function. 1747 if (I->getFunction() != &OldFunc) 1748 return true; 1749 1750 // There shouldn't be any stale affected values in the assumption cache 1751 // that were previously in the old function, but that have now been moved 1752 // to the new function. 1753 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1754 CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1755 if (!AffectedCI) 1756 continue; 1757 if (AffectedCI->getFunction() != &OldFunc) 1758 return true; 1759 auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0)); 1760 if (AssumedInst->getFunction() != &OldFunc) 1761 return true; 1762 } 1763 } 1764 return false; 1765 } 1766