1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 157 MemorySSAUpdater *MSSAU) { 158 // Recursively deleting a PHI may cause multiple PHIs to be deleted 159 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 160 SmallVector<WeakTrackingVH, 8> PHIs; 161 for (PHINode &PN : BB->phis()) 162 PHIs.push_back(&PN); 163 164 bool Changed = false; 165 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 166 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 167 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 168 169 return Changed; 170 } 171 172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 173 LoopInfo *LI, MemorySSAUpdater *MSSAU, 174 MemoryDependenceResults *MemDep, 175 bool PredecessorWithTwoSuccessors) { 176 if (BB->hasAddressTaken()) 177 return false; 178 179 // Can't merge if there are multiple predecessors, or no predecessors. 180 BasicBlock *PredBB = BB->getUniquePredecessor(); 181 if (!PredBB) return false; 182 183 // Don't break self-loops. 184 if (PredBB == BB) return false; 185 // Don't break unwinding instructions. 186 if (PredBB->getTerminator()->isExceptionalTerminator()) 187 return false; 188 189 // Can't merge if there are multiple distinct successors. 190 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 191 return false; 192 193 // Currently only allow PredBB to have two predecessors, one being BB. 194 // Update BI to branch to BB's only successor instead of BB. 195 BranchInst *PredBB_BI; 196 BasicBlock *NewSucc = nullptr; 197 unsigned FallThruPath; 198 if (PredecessorWithTwoSuccessors) { 199 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 200 return false; 201 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 202 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 203 return false; 204 NewSucc = BB_JmpI->getSuccessor(0); 205 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 206 } 207 208 // Can't merge if there is PHI loop. 209 for (PHINode &PN : BB->phis()) 210 for (Value *IncValue : PN.incoming_values()) 211 if (IncValue == &PN) 212 return false; 213 214 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 215 << PredBB->getName() << "\n"); 216 217 // Begin by getting rid of unneeded PHIs. 218 SmallVector<AssertingVH<Value>, 4> IncomingValues; 219 if (isa<PHINode>(BB->front())) { 220 for (PHINode &PN : BB->phis()) 221 if (!isa<PHINode>(PN.getIncomingValue(0)) || 222 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 223 IncomingValues.push_back(PN.getIncomingValue(0)); 224 FoldSingleEntryPHINodes(BB, MemDep); 225 } 226 227 // DTU update: Collect all the edges that exit BB. 228 // These dominator edges will be redirected from Pred. 229 std::vector<DominatorTree::UpdateType> Updates; 230 if (DTU) { 231 Updates.reserve(1 + (2 * succ_size(BB))); 232 // Add insert edges first. Experimentally, for the particular case of two 233 // blocks that can be merged, with a single successor and single predecessor 234 // respectively, it is beneficial to have all insert updates first. Deleting 235 // edges first may lead to unreachable blocks, followed by inserting edges 236 // making the blocks reachable again. Such DT updates lead to high compile 237 // times. We add inserts before deletes here to reduce compile time. 238 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 239 // This successor of BB may already have PredBB as a predecessor. 240 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 241 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 242 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 243 Updates.push_back({DominatorTree::Delete, BB, *I}); 244 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 245 } 246 247 Instruction *PTI = PredBB->getTerminator(); 248 Instruction *STI = BB->getTerminator(); 249 Instruction *Start = &*BB->begin(); 250 // If there's nothing to move, mark the starting instruction as the last 251 // instruction in the block. Terminator instruction is handled separately. 252 if (Start == STI) 253 Start = PTI; 254 255 // Move all definitions in the successor to the predecessor... 256 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 257 BB->begin(), STI->getIterator()); 258 259 if (MSSAU) 260 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 261 262 // Make all PHI nodes that referred to BB now refer to Pred as their 263 // source... 264 BB->replaceAllUsesWith(PredBB); 265 266 if (PredecessorWithTwoSuccessors) { 267 // Delete the unconditional branch from BB. 268 BB->getInstList().pop_back(); 269 270 // Update branch in the predecessor. 271 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 272 } else { 273 // Delete the unconditional branch from the predecessor. 274 PredBB->getInstList().pop_back(); 275 276 // Move terminator instruction. 277 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 278 279 // Terminator may be a memory accessing instruction too. 280 if (MSSAU) 281 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 282 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 283 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 284 } 285 // Add unreachable to now empty BB. 286 new UnreachableInst(BB->getContext(), BB); 287 288 // Eliminate duplicate/redundant dbg.values. This seems to be a good place to 289 // do that since we might end up with redundant dbg.values describing the 290 // entry PHI node post-splice. 291 RemoveRedundantDbgInstrs(PredBB); 292 293 // Inherit predecessors name if it exists. 294 if (!PredBB->hasName()) 295 PredBB->takeName(BB); 296 297 if (LI) 298 LI->removeBlock(BB); 299 300 if (MemDep) 301 MemDep->invalidateCachedPredecessors(); 302 303 // Finally, erase the old block and update dominator info. 304 if (DTU) { 305 assert(BB->getInstList().size() == 1 && 306 isa<UnreachableInst>(BB->getTerminator()) && 307 "The successor list of BB isn't empty before " 308 "applying corresponding DTU updates."); 309 DTU->applyUpdatesPermissive(Updates); 310 DTU->deleteBB(BB); 311 } else { 312 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 313 } 314 315 return true; 316 } 317 318 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 319 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 320 LoopInfo *LI) { 321 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 322 323 bool BlocksHaveBeenMerged = false; 324 while (!MergeBlocks.empty()) { 325 BasicBlock *BB = *MergeBlocks.begin(); 326 BasicBlock *Dest = BB->getSingleSuccessor(); 327 if (Dest && (!L || L->contains(Dest))) { 328 BasicBlock *Fold = Dest->getUniquePredecessor(); 329 (void)Fold; 330 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 331 assert(Fold == BB && 332 "Expecting BB to be unique predecessor of the Dest block"); 333 MergeBlocks.erase(Dest); 334 BlocksHaveBeenMerged = true; 335 } else 336 MergeBlocks.erase(BB); 337 } else 338 MergeBlocks.erase(BB); 339 } 340 return BlocksHaveBeenMerged; 341 } 342 343 /// Remove redundant instructions within sequences of consecutive dbg.value 344 /// instructions. This is done using a backward scan to keep the last dbg.value 345 /// describing a specific variable/fragment. 346 /// 347 /// BackwardScan strategy: 348 /// ---------------------- 349 /// Given a sequence of consecutive DbgValueInst like this 350 /// 351 /// dbg.value ..., "x", FragmentX1 (*) 352 /// dbg.value ..., "y", FragmentY1 353 /// dbg.value ..., "x", FragmentX2 354 /// dbg.value ..., "x", FragmentX1 (**) 355 /// 356 /// then the instruction marked with (*) can be removed (it is guaranteed to be 357 /// obsoleted by the instruction marked with (**) as the latter instruction is 358 /// describing the same variable using the same fragment info). 359 /// 360 /// Possible improvements: 361 /// - Check fully overlapping fragments and not only identical fragments. 362 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 363 /// instructions being part of the sequence of consecutive instructions. 364 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 365 SmallVector<DbgValueInst *, 8> ToBeRemoved; 366 SmallDenseSet<DebugVariable> VariableSet; 367 for (auto &I : reverse(*BB)) { 368 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 369 DebugVariable Key(DVI->getVariable(), 370 DVI->getExpression(), 371 DVI->getDebugLoc()->getInlinedAt()); 372 auto R = VariableSet.insert(Key); 373 // If the same variable fragment is described more than once it is enough 374 // to keep the last one (i.e. the first found since we for reverse 375 // iteration). 376 if (!R.second) 377 ToBeRemoved.push_back(DVI); 378 continue; 379 } 380 // Sequence with consecutive dbg.value instrs ended. Clear the map to 381 // restart identifying redundant instructions if case we find another 382 // dbg.value sequence. 383 VariableSet.clear(); 384 } 385 386 for (auto &Instr : ToBeRemoved) 387 Instr->eraseFromParent(); 388 389 return !ToBeRemoved.empty(); 390 } 391 392 /// Remove redundant dbg.value instructions using a forward scan. This can 393 /// remove a dbg.value instruction that is redundant due to indicating that a 394 /// variable has the same value as already being indicated by an earlier 395 /// dbg.value. 396 /// 397 /// ForwardScan strategy: 398 /// --------------------- 399 /// Given two identical dbg.value instructions, separated by a block of 400 /// instructions that isn't describing the same variable, like this 401 /// 402 /// dbg.value X1, "x", FragmentX1 (**) 403 /// <block of instructions, none being "dbg.value ..., "x", ..."> 404 /// dbg.value X1, "x", FragmentX1 (*) 405 /// 406 /// then the instruction marked with (*) can be removed. Variable "x" is already 407 /// described as being mapped to the SSA value X1. 408 /// 409 /// Possible improvements: 410 /// - Keep track of non-overlapping fragments. 411 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 412 SmallVector<DbgValueInst *, 8> ToBeRemoved; 413 DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap; 414 for (auto &I : *BB) { 415 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 416 DebugVariable Key(DVI->getVariable(), 417 NoneType(), 418 DVI->getDebugLoc()->getInlinedAt()); 419 auto VMI = VariableMap.find(Key); 420 // Update the map if we found a new value/expression describing the 421 // variable, or if the variable wasn't mapped already. 422 if (VMI == VariableMap.end() || 423 VMI->second.first != DVI->getValue() || 424 VMI->second.second != DVI->getExpression()) { 425 VariableMap[Key] = { DVI->getValue(), DVI->getExpression() }; 426 continue; 427 } 428 // Found an identical mapping. Remember the instruction for later removal. 429 ToBeRemoved.push_back(DVI); 430 } 431 } 432 433 for (auto &Instr : ToBeRemoved) 434 Instr->eraseFromParent(); 435 436 return !ToBeRemoved.empty(); 437 } 438 439 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 440 bool MadeChanges = false; 441 // By using the "backward scan" strategy before the "forward scan" strategy we 442 // can remove both dbg.value (2) and (3) in a situation like this: 443 // 444 // (1) dbg.value V1, "x", DIExpression() 445 // ... 446 // (2) dbg.value V2, "x", DIExpression() 447 // (3) dbg.value V1, "x", DIExpression() 448 // 449 // The backward scan will remove (2), it is made obsolete by (3). After 450 // getting (2) out of the way, the foward scan will remove (3) since "x" 451 // already is described as having the value V1 at (1). 452 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 453 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 454 455 if (MadeChanges) 456 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 457 << BB->getName() << "\n"); 458 return MadeChanges; 459 } 460 461 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 462 BasicBlock::iterator &BI, Value *V) { 463 Instruction &I = *BI; 464 // Replaces all of the uses of the instruction with uses of the value 465 I.replaceAllUsesWith(V); 466 467 // Make sure to propagate a name if there is one already. 468 if (I.hasName() && !V->hasName()) 469 V->takeName(&I); 470 471 // Delete the unnecessary instruction now... 472 BI = BIL.erase(BI); 473 } 474 475 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 476 BasicBlock::iterator &BI, Instruction *I) { 477 assert(I->getParent() == nullptr && 478 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 479 480 // Copy debug location to newly added instruction, if it wasn't already set 481 // by the caller. 482 if (!I->getDebugLoc()) 483 I->setDebugLoc(BI->getDebugLoc()); 484 485 // Insert the new instruction into the basic block... 486 BasicBlock::iterator New = BIL.insert(BI, I); 487 488 // Replace all uses of the old instruction, and delete it. 489 ReplaceInstWithValue(BIL, BI, I); 490 491 // Move BI back to point to the newly inserted instruction 492 BI = New; 493 } 494 495 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 496 BasicBlock::iterator BI(From); 497 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 498 } 499 500 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 501 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 502 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 503 504 // If this is a critical edge, let SplitCriticalEdge do it. 505 Instruction *LatchTerm = BB->getTerminator(); 506 if (SplitCriticalEdge( 507 LatchTerm, SuccNum, 508 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 509 return LatchTerm->getSuccessor(SuccNum); 510 511 // If the edge isn't critical, then BB has a single successor or Succ has a 512 // single pred. Split the block. 513 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 514 // If the successor only has a single pred, split the top of the successor 515 // block. 516 assert(SP == BB && "CFG broken"); 517 SP = nullptr; 518 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 519 } 520 521 // Otherwise, if BB has a single successor, split it at the bottom of the 522 // block. 523 assert(BB->getTerminator()->getNumSuccessors() == 1 && 524 "Should have a single succ!"); 525 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 526 } 527 528 unsigned 529 llvm::SplitAllCriticalEdges(Function &F, 530 const CriticalEdgeSplittingOptions &Options) { 531 unsigned NumBroken = 0; 532 for (BasicBlock &BB : F) { 533 Instruction *TI = BB.getTerminator(); 534 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 535 !isa<CallBrInst>(TI)) 536 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 537 if (SplitCriticalEdge(TI, i, Options)) 538 ++NumBroken; 539 } 540 return NumBroken; 541 } 542 543 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 544 DominatorTree *DT, LoopInfo *LI, 545 MemorySSAUpdater *MSSAU, const Twine &BBName) { 546 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 547 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 548 ++SplitIt; 549 std::string Name = BBName.str(); 550 BasicBlock *New = Old->splitBasicBlock( 551 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 552 553 // The new block lives in whichever loop the old one did. This preserves 554 // LCSSA as well, because we force the split point to be after any PHI nodes. 555 if (LI) 556 if (Loop *L = LI->getLoopFor(Old)) 557 L->addBasicBlockToLoop(New, *LI); 558 559 if (DT) 560 // Old dominates New. New node dominates all other nodes dominated by Old. 561 if (DomTreeNode *OldNode = DT->getNode(Old)) { 562 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 563 564 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 565 for (DomTreeNode *I : Children) 566 DT->changeImmediateDominator(I, NewNode); 567 } 568 569 // Move MemoryAccesses still tracked in Old, but part of New now. 570 // Update accesses in successor blocks accordingly. 571 if (MSSAU) 572 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 573 574 return New; 575 } 576 577 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 578 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 579 ArrayRef<BasicBlock *> Preds, 580 DominatorTree *DT, LoopInfo *LI, 581 MemorySSAUpdater *MSSAU, 582 bool PreserveLCSSA, bool &HasLoopExit) { 583 // Update dominator tree if available. 584 if (DT) { 585 if (OldBB == DT->getRootNode()->getBlock()) { 586 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 587 DT->setNewRoot(NewBB); 588 } else { 589 // Split block expects NewBB to have a non-empty set of predecessors. 590 DT->splitBlock(NewBB); 591 } 592 } 593 594 // Update MemoryPhis after split if MemorySSA is available 595 if (MSSAU) 596 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 597 598 // The rest of the logic is only relevant for updating the loop structures. 599 if (!LI) 600 return; 601 602 assert(DT && "DT should be available to update LoopInfo!"); 603 Loop *L = LI->getLoopFor(OldBB); 604 605 // If we need to preserve loop analyses, collect some information about how 606 // this split will affect loops. 607 bool IsLoopEntry = !!L; 608 bool SplitMakesNewLoopHeader = false; 609 for (BasicBlock *Pred : Preds) { 610 // Preds that are not reachable from entry should not be used to identify if 611 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 612 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 613 // as true and make the NewBB the header of some loop. This breaks LI. 614 if (!DT->isReachableFromEntry(Pred)) 615 continue; 616 // If we need to preserve LCSSA, determine if any of the preds is a loop 617 // exit. 618 if (PreserveLCSSA) 619 if (Loop *PL = LI->getLoopFor(Pred)) 620 if (!PL->contains(OldBB)) 621 HasLoopExit = true; 622 623 // If we need to preserve LoopInfo, note whether any of the preds crosses 624 // an interesting loop boundary. 625 if (!L) 626 continue; 627 if (L->contains(Pred)) 628 IsLoopEntry = false; 629 else 630 SplitMakesNewLoopHeader = true; 631 } 632 633 // Unless we have a loop for OldBB, nothing else to do here. 634 if (!L) 635 return; 636 637 if (IsLoopEntry) { 638 // Add the new block to the nearest enclosing loop (and not an adjacent 639 // loop). To find this, examine each of the predecessors and determine which 640 // loops enclose them, and select the most-nested loop which contains the 641 // loop containing the block being split. 642 Loop *InnermostPredLoop = nullptr; 643 for (BasicBlock *Pred : Preds) { 644 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 645 // Seek a loop which actually contains the block being split (to avoid 646 // adjacent loops). 647 while (PredLoop && !PredLoop->contains(OldBB)) 648 PredLoop = PredLoop->getParentLoop(); 649 650 // Select the most-nested of these loops which contains the block. 651 if (PredLoop && PredLoop->contains(OldBB) && 652 (!InnermostPredLoop || 653 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 654 InnermostPredLoop = PredLoop; 655 } 656 } 657 658 if (InnermostPredLoop) 659 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 660 } else { 661 L->addBasicBlockToLoop(NewBB, *LI); 662 if (SplitMakesNewLoopHeader) 663 L->moveToHeader(NewBB); 664 } 665 } 666 667 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 668 /// This also updates AliasAnalysis, if available. 669 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 670 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 671 bool HasLoopExit) { 672 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 673 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 674 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 675 PHINode *PN = cast<PHINode>(I++); 676 677 // Check to see if all of the values coming in are the same. If so, we 678 // don't need to create a new PHI node, unless it's needed for LCSSA. 679 Value *InVal = nullptr; 680 if (!HasLoopExit) { 681 InVal = PN->getIncomingValueForBlock(Preds[0]); 682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 683 if (!PredSet.count(PN->getIncomingBlock(i))) 684 continue; 685 if (!InVal) 686 InVal = PN->getIncomingValue(i); 687 else if (InVal != PN->getIncomingValue(i)) { 688 InVal = nullptr; 689 break; 690 } 691 } 692 } 693 694 if (InVal) { 695 // If all incoming values for the new PHI would be the same, just don't 696 // make a new PHI. Instead, just remove the incoming values from the old 697 // PHI. 698 699 // NOTE! This loop walks backwards for a reason! First off, this minimizes 700 // the cost of removal if we end up removing a large number of values, and 701 // second off, this ensures that the indices for the incoming values 702 // aren't invalidated when we remove one. 703 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 704 if (PredSet.count(PN->getIncomingBlock(i))) 705 PN->removeIncomingValue(i, false); 706 707 // Add an incoming value to the PHI node in the loop for the preheader 708 // edge. 709 PN->addIncoming(InVal, NewBB); 710 continue; 711 } 712 713 // If the values coming into the block are not the same, we need a new 714 // PHI. 715 // Create the new PHI node, insert it into NewBB at the end of the block 716 PHINode *NewPHI = 717 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 718 719 // NOTE! This loop walks backwards for a reason! First off, this minimizes 720 // the cost of removal if we end up removing a large number of values, and 721 // second off, this ensures that the indices for the incoming values aren't 722 // invalidated when we remove one. 723 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 724 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 725 if (PredSet.count(IncomingBB)) { 726 Value *V = PN->removeIncomingValue(i, false); 727 NewPHI->addIncoming(V, IncomingBB); 728 } 729 } 730 731 PN->addIncoming(NewPHI, NewBB); 732 } 733 } 734 735 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 736 ArrayRef<BasicBlock *> Preds, 737 const char *Suffix, DominatorTree *DT, 738 LoopInfo *LI, MemorySSAUpdater *MSSAU, 739 bool PreserveLCSSA) { 740 // Do not attempt to split that which cannot be split. 741 if (!BB->canSplitPredecessors()) 742 return nullptr; 743 744 // For the landingpads we need to act a bit differently. 745 // Delegate this work to the SplitLandingPadPredecessors. 746 if (BB->isLandingPad()) { 747 SmallVector<BasicBlock*, 2> NewBBs; 748 std::string NewName = std::string(Suffix) + ".split-lp"; 749 750 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 751 LI, MSSAU, PreserveLCSSA); 752 return NewBBs[0]; 753 } 754 755 // Create new basic block, insert right before the original block. 756 BasicBlock *NewBB = BasicBlock::Create( 757 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 758 759 // The new block unconditionally branches to the old block. 760 BranchInst *BI = BranchInst::Create(BB, NewBB); 761 // Splitting the predecessors of a loop header creates a preheader block. 762 if (LI && LI->isLoopHeader(BB)) 763 // Using the loop start line number prevents debuggers stepping into the 764 // loop body for this instruction. 765 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); 766 else 767 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 768 769 // Move the edges from Preds to point to NewBB instead of BB. 770 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 771 // This is slightly more strict than necessary; the minimum requirement 772 // is that there be no more than one indirectbr branching to BB. And 773 // all BlockAddress uses would need to be updated. 774 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 775 "Cannot split an edge from an IndirectBrInst"); 776 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 777 "Cannot split an edge from a CallBrInst"); 778 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 779 } 780 781 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 782 // node becomes an incoming value for BB's phi node. However, if the Preds 783 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 784 // account for the newly created predecessor. 785 if (Preds.empty()) { 786 // Insert dummy values as the incoming value. 787 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 788 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 789 } 790 791 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 792 bool HasLoopExit = false; 793 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 794 HasLoopExit); 795 796 if (!Preds.empty()) { 797 // Update the PHI nodes in BB with the values coming from NewBB. 798 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 799 } 800 801 return NewBB; 802 } 803 804 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 805 ArrayRef<BasicBlock *> Preds, 806 const char *Suffix1, const char *Suffix2, 807 SmallVectorImpl<BasicBlock *> &NewBBs, 808 DominatorTree *DT, LoopInfo *LI, 809 MemorySSAUpdater *MSSAU, 810 bool PreserveLCSSA) { 811 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 812 813 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 814 // it right before the original block. 815 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 816 OrigBB->getName() + Suffix1, 817 OrigBB->getParent(), OrigBB); 818 NewBBs.push_back(NewBB1); 819 820 // The new block unconditionally branches to the old block. 821 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 822 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 823 824 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 825 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 826 // This is slightly more strict than necessary; the minimum requirement 827 // is that there be no more than one indirectbr branching to BB. And 828 // all BlockAddress uses would need to be updated. 829 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 830 "Cannot split an edge from an IndirectBrInst"); 831 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 832 } 833 834 bool HasLoopExit = false; 835 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 836 HasLoopExit); 837 838 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 839 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 840 841 // Move the remaining edges from OrigBB to point to NewBB2. 842 SmallVector<BasicBlock*, 8> NewBB2Preds; 843 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 844 i != e; ) { 845 BasicBlock *Pred = *i++; 846 if (Pred == NewBB1) continue; 847 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 848 "Cannot split an edge from an IndirectBrInst"); 849 NewBB2Preds.push_back(Pred); 850 e = pred_end(OrigBB); 851 } 852 853 BasicBlock *NewBB2 = nullptr; 854 if (!NewBB2Preds.empty()) { 855 // Create another basic block for the rest of OrigBB's predecessors. 856 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 857 OrigBB->getName() + Suffix2, 858 OrigBB->getParent(), OrigBB); 859 NewBBs.push_back(NewBB2); 860 861 // The new block unconditionally branches to the old block. 862 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 863 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 864 865 // Move the remaining edges from OrigBB to point to NewBB2. 866 for (BasicBlock *NewBB2Pred : NewBB2Preds) 867 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 868 869 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 870 HasLoopExit = false; 871 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 872 PreserveLCSSA, HasLoopExit); 873 874 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 875 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 876 } 877 878 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 879 Instruction *Clone1 = LPad->clone(); 880 Clone1->setName(Twine("lpad") + Suffix1); 881 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 882 883 if (NewBB2) { 884 Instruction *Clone2 = LPad->clone(); 885 Clone2->setName(Twine("lpad") + Suffix2); 886 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 887 888 // Create a PHI node for the two cloned landingpad instructions only 889 // if the original landingpad instruction has some uses. 890 if (!LPad->use_empty()) { 891 assert(!LPad->getType()->isTokenTy() && 892 "Split cannot be applied if LPad is token type. Otherwise an " 893 "invalid PHINode of token type would be created."); 894 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 895 PN->addIncoming(Clone1, NewBB1); 896 PN->addIncoming(Clone2, NewBB2); 897 LPad->replaceAllUsesWith(PN); 898 } 899 LPad->eraseFromParent(); 900 } else { 901 // There is no second clone. Just replace the landing pad with the first 902 // clone. 903 LPad->replaceAllUsesWith(Clone1); 904 LPad->eraseFromParent(); 905 } 906 } 907 908 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 909 BasicBlock *Pred, 910 DomTreeUpdater *DTU) { 911 Instruction *UncondBranch = Pred->getTerminator(); 912 // Clone the return and add it to the end of the predecessor. 913 Instruction *NewRet = RI->clone(); 914 Pred->getInstList().push_back(NewRet); 915 916 // If the return instruction returns a value, and if the value was a 917 // PHI node in "BB", propagate the right value into the return. 918 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 919 i != e; ++i) { 920 Value *V = *i; 921 Instruction *NewBC = nullptr; 922 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 923 // Return value might be bitcasted. Clone and insert it before the 924 // return instruction. 925 V = BCI->getOperand(0); 926 NewBC = BCI->clone(); 927 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 928 *i = NewBC; 929 } 930 931 Instruction *NewEV = nullptr; 932 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 933 V = EVI->getOperand(0); 934 NewEV = EVI->clone(); 935 if (NewBC) { 936 NewBC->setOperand(0, NewEV); 937 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 938 } else { 939 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 940 *i = NewEV; 941 } 942 } 943 944 if (PHINode *PN = dyn_cast<PHINode>(V)) { 945 if (PN->getParent() == BB) { 946 if (NewEV) { 947 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 948 } else if (NewBC) 949 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 950 else 951 *i = PN->getIncomingValueForBlock(Pred); 952 } 953 } 954 } 955 956 // Update any PHI nodes in the returning block to realize that we no 957 // longer branch to them. 958 BB->removePredecessor(Pred); 959 UncondBranch->eraseFromParent(); 960 961 if (DTU) 962 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 963 964 return cast<ReturnInst>(NewRet); 965 } 966 967 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 968 Instruction *SplitBefore, 969 bool Unreachable, 970 MDNode *BranchWeights, 971 DominatorTree *DT, LoopInfo *LI, 972 BasicBlock *ThenBlock) { 973 BasicBlock *Head = SplitBefore->getParent(); 974 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 975 Instruction *HeadOldTerm = Head->getTerminator(); 976 LLVMContext &C = Head->getContext(); 977 Instruction *CheckTerm; 978 bool CreateThenBlock = (ThenBlock == nullptr); 979 if (CreateThenBlock) { 980 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 981 if (Unreachable) 982 CheckTerm = new UnreachableInst(C, ThenBlock); 983 else 984 CheckTerm = BranchInst::Create(Tail, ThenBlock); 985 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 986 } else 987 CheckTerm = ThenBlock->getTerminator(); 988 BranchInst *HeadNewTerm = 989 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 990 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 991 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 992 993 if (DT) { 994 if (DomTreeNode *OldNode = DT->getNode(Head)) { 995 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 996 997 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 998 for (DomTreeNode *Child : Children) 999 DT->changeImmediateDominator(Child, NewNode); 1000 1001 // Head dominates ThenBlock. 1002 if (CreateThenBlock) 1003 DT->addNewBlock(ThenBlock, Head); 1004 else 1005 DT->changeImmediateDominator(ThenBlock, Head); 1006 } 1007 } 1008 1009 if (LI) { 1010 if (Loop *L = LI->getLoopFor(Head)) { 1011 L->addBasicBlockToLoop(ThenBlock, *LI); 1012 L->addBasicBlockToLoop(Tail, *LI); 1013 } 1014 } 1015 1016 return CheckTerm; 1017 } 1018 1019 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1020 Instruction **ThenTerm, 1021 Instruction **ElseTerm, 1022 MDNode *BranchWeights) { 1023 BasicBlock *Head = SplitBefore->getParent(); 1024 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1025 Instruction *HeadOldTerm = Head->getTerminator(); 1026 LLVMContext &C = Head->getContext(); 1027 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1028 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1029 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1030 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1031 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1032 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1033 BranchInst *HeadNewTerm = 1034 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1035 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1036 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1037 } 1038 1039 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1040 BasicBlock *&IfFalse) { 1041 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1042 BasicBlock *Pred1 = nullptr; 1043 BasicBlock *Pred2 = nullptr; 1044 1045 if (SomePHI) { 1046 if (SomePHI->getNumIncomingValues() != 2) 1047 return nullptr; 1048 Pred1 = SomePHI->getIncomingBlock(0); 1049 Pred2 = SomePHI->getIncomingBlock(1); 1050 } else { 1051 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1052 if (PI == PE) // No predecessor 1053 return nullptr; 1054 Pred1 = *PI++; 1055 if (PI == PE) // Only one predecessor 1056 return nullptr; 1057 Pred2 = *PI++; 1058 if (PI != PE) // More than two predecessors 1059 return nullptr; 1060 } 1061 1062 // We can only handle branches. Other control flow will be lowered to 1063 // branches if possible anyway. 1064 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1065 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1066 if (!Pred1Br || !Pred2Br) 1067 return nullptr; 1068 1069 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1070 // either are. 1071 if (Pred2Br->isConditional()) { 1072 // If both branches are conditional, we don't have an "if statement". In 1073 // reality, we could transform this case, but since the condition will be 1074 // required anyway, we stand no chance of eliminating it, so the xform is 1075 // probably not profitable. 1076 if (Pred1Br->isConditional()) 1077 return nullptr; 1078 1079 std::swap(Pred1, Pred2); 1080 std::swap(Pred1Br, Pred2Br); 1081 } 1082 1083 if (Pred1Br->isConditional()) { 1084 // The only thing we have to watch out for here is to make sure that Pred2 1085 // doesn't have incoming edges from other blocks. If it does, the condition 1086 // doesn't dominate BB. 1087 if (!Pred2->getSinglePredecessor()) 1088 return nullptr; 1089 1090 // If we found a conditional branch predecessor, make sure that it branches 1091 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1092 if (Pred1Br->getSuccessor(0) == BB && 1093 Pred1Br->getSuccessor(1) == Pred2) { 1094 IfTrue = Pred1; 1095 IfFalse = Pred2; 1096 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1097 Pred1Br->getSuccessor(1) == BB) { 1098 IfTrue = Pred2; 1099 IfFalse = Pred1; 1100 } else { 1101 // We know that one arm of the conditional goes to BB, so the other must 1102 // go somewhere unrelated, and this must not be an "if statement". 1103 return nullptr; 1104 } 1105 1106 return Pred1Br->getCondition(); 1107 } 1108 1109 // Ok, if we got here, both predecessors end with an unconditional branch to 1110 // BB. Don't panic! If both blocks only have a single (identical) 1111 // predecessor, and THAT is a conditional branch, then we're all ok! 1112 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1113 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1114 return nullptr; 1115 1116 // Otherwise, if this is a conditional branch, then we can use it! 1117 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1118 if (!BI) return nullptr; 1119 1120 assert(BI->isConditional() && "Two successors but not conditional?"); 1121 if (BI->getSuccessor(0) == Pred1) { 1122 IfTrue = Pred1; 1123 IfFalse = Pred2; 1124 } else { 1125 IfTrue = Pred2; 1126 IfFalse = Pred1; 1127 } 1128 return BI->getCondition(); 1129 } 1130 1131 // After creating a control flow hub, the operands of PHINodes in an outgoing 1132 // block Out no longer match the predecessors of that block. Predecessors of Out 1133 // that are incoming blocks to the hub are now replaced by just one edge from 1134 // the hub. To match this new control flow, the corresponding values from each 1135 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1136 // 1137 // This operation cannot be performed with SSAUpdater, because it involves one 1138 // new use: If the block Out is in the list of Incoming blocks, then the newly 1139 // created PHI in the Hub will use itself along that edge from Out to Hub. 1140 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1141 const SetVector<BasicBlock *> &Incoming, 1142 BasicBlock *FirstGuardBlock) { 1143 auto I = Out->begin(); 1144 while (I != Out->end() && isa<PHINode>(I)) { 1145 auto Phi = cast<PHINode>(I); 1146 auto NewPhi = 1147 PHINode::Create(Phi->getType(), Incoming.size(), 1148 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1149 for (auto In : Incoming) { 1150 Value *V = UndefValue::get(Phi->getType()); 1151 if (In == Out) { 1152 V = NewPhi; 1153 } else if (Phi->getBasicBlockIndex(In) != -1) { 1154 V = Phi->removeIncomingValue(In, false); 1155 } 1156 NewPhi->addIncoming(V, In); 1157 } 1158 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1159 if (Phi->getNumOperands() == 0) { 1160 Phi->replaceAllUsesWith(NewPhi); 1161 I = Phi->eraseFromParent(); 1162 continue; 1163 } 1164 Phi->addIncoming(NewPhi, GuardBlock); 1165 ++I; 1166 } 1167 } 1168 1169 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1170 using BBSetVector = SetVector<BasicBlock *>; 1171 1172 // Redirects the terminator of the incoming block to the first guard 1173 // block in the hub. The condition of the original terminator (if it 1174 // was conditional) and its original successors are returned as a 1175 // tuple <condition, succ0, succ1>. The function additionally filters 1176 // out successors that are not in the set of outgoing blocks. 1177 // 1178 // - condition is non-null iff the branch is conditional. 1179 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1180 // - Succ2 is non-null iff condition is non-null and the fallthrough 1181 // target is an outgoing block. 1182 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1183 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1184 const BBSetVector &Outgoing) { 1185 auto Branch = cast<BranchInst>(BB->getTerminator()); 1186 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1187 1188 BasicBlock *Succ0 = Branch->getSuccessor(0); 1189 BasicBlock *Succ1 = nullptr; 1190 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1191 1192 if (Branch->isUnconditional()) { 1193 Branch->setSuccessor(0, FirstGuardBlock); 1194 assert(Succ0); 1195 } else { 1196 Succ1 = Branch->getSuccessor(1); 1197 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1198 assert(Succ0 || Succ1); 1199 if (Succ0 && !Succ1) { 1200 Branch->setSuccessor(0, FirstGuardBlock); 1201 } else if (Succ1 && !Succ0) { 1202 Branch->setSuccessor(1, FirstGuardBlock); 1203 } else { 1204 Branch->eraseFromParent(); 1205 BranchInst::Create(FirstGuardBlock, BB); 1206 } 1207 } 1208 1209 assert(Succ0 || Succ1); 1210 return std::make_tuple(Condition, Succ0, Succ1); 1211 } 1212 1213 // Capture the existing control flow as guard predicates, and redirect 1214 // control flow from every incoming block to the first guard block in 1215 // the hub. 1216 // 1217 // There is one guard predicate for each outgoing block OutBB. The 1218 // predicate is a PHINode with one input for each InBB which 1219 // represents whether the hub should transfer control flow to OutBB if 1220 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1221 // evaluates them in the same order as the Outgoing set-vector, and 1222 // control branches to the first outgoing block whose predicate 1223 // evaluates to true. 1224 static void convertToGuardPredicates( 1225 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1226 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1227 const BBSetVector &Outgoing) { 1228 auto &Context = Incoming.front()->getContext(); 1229 auto BoolTrue = ConstantInt::getTrue(Context); 1230 auto BoolFalse = ConstantInt::getFalse(Context); 1231 1232 // The predicate for the last outgoing is trivially true, and so we 1233 // process only the first N-1 successors. 1234 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1235 auto Out = Outgoing[i]; 1236 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1237 auto Phi = 1238 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1239 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1240 GuardPredicates[Out] = Phi; 1241 } 1242 1243 for (auto In : Incoming) { 1244 Value *Condition; 1245 BasicBlock *Succ0; 1246 BasicBlock *Succ1; 1247 std::tie(Condition, Succ0, Succ1) = 1248 redirectToHub(In, FirstGuardBlock, Outgoing); 1249 1250 // Optimization: Consider an incoming block A with both successors 1251 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1252 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1253 // first in the loop below, control will branch to Succ0 using the 1254 // corresponding predicate. But if that branch is not taken, then 1255 // control must reach Succ1, which means that the predicate for 1256 // Succ1 is always true. 1257 bool OneSuccessorDone = false; 1258 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1259 auto Out = Outgoing[i]; 1260 auto Phi = GuardPredicates[Out]; 1261 if (Out != Succ0 && Out != Succ1) { 1262 Phi->addIncoming(BoolFalse, In); 1263 continue; 1264 } 1265 // Optimization: When only one successor is an outgoing block, 1266 // the predicate is always true. 1267 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1268 Phi->addIncoming(BoolTrue, In); 1269 continue; 1270 } 1271 assert(Succ0 && Succ1); 1272 OneSuccessorDone = true; 1273 if (Out == Succ0) { 1274 Phi->addIncoming(Condition, In); 1275 continue; 1276 } 1277 auto Inverted = invertCondition(Condition); 1278 DeletionCandidates.push_back(Condition); 1279 Phi->addIncoming(Inverted, In); 1280 } 1281 } 1282 } 1283 1284 // For each outgoing block OutBB, create a guard block in the Hub. The 1285 // first guard block was already created outside, and available as the 1286 // first element in the vector of guard blocks. 1287 // 1288 // Each guard block terminates in a conditional branch that transfers 1289 // control to the corresponding outgoing block or the next guard 1290 // block. The last guard block has two outgoing blocks as successors 1291 // since the condition for the final outgoing block is trivially 1292 // true. So we create one less block (including the first guard block) 1293 // than the number of outgoing blocks. 1294 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1295 Function *F, const BBSetVector &Outgoing, 1296 BBPredicates &GuardPredicates, StringRef Prefix) { 1297 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1298 GuardBlocks.push_back( 1299 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1300 } 1301 assert(GuardBlocks.size() == GuardPredicates.size()); 1302 1303 // To help keep the loop simple, temporarily append the last 1304 // outgoing block to the list of guard blocks. 1305 GuardBlocks.push_back(Outgoing.back()); 1306 1307 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1308 auto Out = Outgoing[i]; 1309 assert(GuardPredicates.count(Out)); 1310 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1311 GuardBlocks[i]); 1312 } 1313 1314 // Remove the last block from the guard list. 1315 GuardBlocks.pop_back(); 1316 } 1317 1318 BasicBlock *llvm::CreateControlFlowHub( 1319 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1320 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1321 const StringRef Prefix) { 1322 auto F = Incoming.front()->getParent(); 1323 auto FirstGuardBlock = 1324 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1325 1326 SmallVector<DominatorTree::UpdateType, 16> Updates; 1327 if (DTU) { 1328 for (auto In : Incoming) { 1329 for (auto Succ : successors(In)) { 1330 if (Outgoing.count(Succ)) 1331 Updates.push_back({DominatorTree::Delete, In, Succ}); 1332 } 1333 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1334 } 1335 } 1336 1337 BBPredicates GuardPredicates; 1338 SmallVector<WeakVH, 8> DeletionCandidates; 1339 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1340 Incoming, Outgoing); 1341 1342 GuardBlocks.push_back(FirstGuardBlock); 1343 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1344 1345 // Update the PHINodes in each outgoing block to match the new control flow. 1346 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1347 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1348 } 1349 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1350 1351 if (DTU) { 1352 int NumGuards = GuardBlocks.size(); 1353 assert((int)Outgoing.size() == NumGuards + 1); 1354 for (int i = 0; i != NumGuards - 1; ++i) { 1355 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1356 Updates.push_back( 1357 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1358 } 1359 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1360 Outgoing[NumGuards - 1]}); 1361 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1362 Outgoing[NumGuards]}); 1363 DTU->applyUpdates(Updates); 1364 } 1365 1366 for (auto I : DeletionCandidates) { 1367 if (I->use_empty()) 1368 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1369 Inst->eraseFromParent(); 1370 } 1371 1372 return FirstGuardBlock; 1373 } 1374