1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks, when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Sink.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/CFG.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Scalar.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "sink" 31 32 STATISTIC(NumSunk, "Number of instructions sunk"); 33 STATISTIC(NumSinkIter, "Number of sinking iterations"); 34 35 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 36 /// occur in blocks dominated by the specified block. 37 static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB, 38 DominatorTree &DT) { 39 // Ignoring debug uses is necessary so debug info doesn't affect the code. 40 // This may leave a referencing dbg_value in the original block, before 41 // the definition of the vreg. Dwarf generator handles this although the 42 // user might not get the right info at runtime. 43 for (Use &U : Inst->uses()) { 44 // Determine the block of the use. 45 Instruction *UseInst = cast<Instruction>(U.getUser()); 46 BasicBlock *UseBlock = UseInst->getParent(); 47 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 48 // PHI nodes use the operand in the predecessor block, not the block with 49 // the PHI. 50 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 51 UseBlock = PN->getIncomingBlock(Num); 52 } 53 // Check that it dominates. 54 if (!DT.dominates(BB, UseBlock)) 55 return false; 56 } 57 return true; 58 } 59 60 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, 61 SmallPtrSetImpl<Instruction *> &Stores) { 62 63 if (Inst->mayWriteToMemory()) { 64 Stores.insert(Inst); 65 return false; 66 } 67 68 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 69 MemoryLocation Loc = MemoryLocation::get(L); 70 for (Instruction *S : Stores) 71 if (isModSet(AA.getModRefInfo(S, Loc))) 72 return false; 73 } 74 75 if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() || 76 Inst->mayThrow()) 77 return false; 78 79 if (auto *Call = dyn_cast<CallBase>(Inst)) { 80 // Convergent operations cannot be made control-dependent on additional 81 // values. 82 if (Call->isConvergent()) 83 return false; 84 85 for (Instruction *S : Stores) 86 if (isModSet(AA.getModRefInfo(S, Call))) 87 return false; 88 } 89 90 return true; 91 } 92 93 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 94 /// in the specified basic block. 95 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, 96 DominatorTree &DT, LoopInfo &LI) { 97 assert(Inst && "Instruction to be sunk is null"); 98 assert(SuccToSinkTo && "Candidate sink target is null"); 99 100 // It is not possible to sink an instruction into its own block. This can 101 // happen with loops. 102 if (Inst->getParent() == SuccToSinkTo) 103 return false; 104 105 // It's never legal to sink an instruction into a block which terminates in an 106 // EH-pad. 107 if (SuccToSinkTo->getTerminator()->isExceptionalTerminator()) 108 return false; 109 110 // If the block has multiple predecessors, this would introduce computation 111 // on different code paths. We could split the critical edge, but for now we 112 // just punt. 113 // FIXME: Split critical edges if not backedges. 114 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 115 // We cannot sink a load across a critical edge - there may be stores in 116 // other code paths. 117 if (Inst->mayReadFromMemory()) 118 return false; 119 120 // We don't want to sink across a critical edge if we don't dominate the 121 // successor. We could be introducing calculations to new code paths. 122 if (!DT.dominates(Inst->getParent(), SuccToSinkTo)) 123 return false; 124 125 // Don't sink instructions into a loop. 126 Loop *succ = LI.getLoopFor(SuccToSinkTo); 127 Loop *cur = LI.getLoopFor(Inst->getParent()); 128 if (succ != nullptr && succ != cur) 129 return false; 130 } 131 132 // Finally, check that all the uses of the instruction are actually 133 // dominated by the candidate 134 return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT); 135 } 136 137 /// SinkInstruction - Determine whether it is safe to sink the specified machine 138 /// instruction out of its current block into a successor. 139 static bool SinkInstruction(Instruction *Inst, 140 SmallPtrSetImpl<Instruction *> &Stores, 141 DominatorTree &DT, LoopInfo &LI, AAResults &AA) { 142 143 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 144 // entry block are dynamically sized stack objects. 145 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 146 if (AI->isStaticAlloca()) 147 return false; 148 149 // Check if it's safe to move the instruction. 150 if (!isSafeToMove(Inst, AA, Stores)) 151 return false; 152 153 // FIXME: This should include support for sinking instructions within the 154 // block they are currently in to shorten the live ranges. We often get 155 // instructions sunk into the top of a large block, but it would be better to 156 // also sink them down before their first use in the block. This xform has to 157 // be careful not to *increase* register pressure though, e.g. sinking 158 // "x = y + z" down if it kills y and z would increase the live ranges of y 159 // and z and only shrink the live range of x. 160 161 // SuccToSinkTo - This is the successor to sink this instruction to, once we 162 // decide. 163 BasicBlock *SuccToSinkTo = nullptr; 164 165 // Instructions can only be sunk if all their uses are in blocks 166 // dominated by one of the successors. 167 // Look at all the dominated blocks and see if we can sink it in one. 168 DomTreeNode *DTN = DT.getNode(Inst->getParent()); 169 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 170 I != E && SuccToSinkTo == nullptr; ++I) { 171 BasicBlock *Candidate = (*I)->getBlock(); 172 // A node always immediate-dominates its children on the dominator 173 // tree. 174 if (IsAcceptableTarget(Inst, Candidate, DT, LI)) 175 SuccToSinkTo = Candidate; 176 } 177 178 // If no suitable postdominator was found, look at all the successors and 179 // decide which one we should sink to, if any. 180 for (succ_iterator I = succ_begin(Inst->getParent()), 181 E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) { 182 if (IsAcceptableTarget(Inst, *I, DT, LI)) 183 SuccToSinkTo = *I; 184 } 185 186 // If we couldn't find a block to sink to, ignore this instruction. 187 if (!SuccToSinkTo) 188 return false; 189 190 LLVM_DEBUG(dbgs() << "Sink" << *Inst << " ("; 191 Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> "; 192 SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n"); 193 194 // Move the instruction. 195 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt()); 196 return true; 197 } 198 199 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, 200 AAResults &AA) { 201 // Can't sink anything out of a block that has less than two successors. 202 if (BB.getTerminator()->getNumSuccessors() <= 1) return false; 203 204 // Don't bother sinking code out of unreachable blocks. In addition to being 205 // unprofitable, it can also lead to infinite looping, because in an 206 // unreachable loop there may be nowhere to stop. 207 if (!DT.isReachableFromEntry(&BB)) return false; 208 209 bool MadeChange = false; 210 211 // Walk the basic block bottom-up. Remember if we saw a store. 212 BasicBlock::iterator I = BB.end(); 213 --I; 214 bool ProcessedBegin = false; 215 SmallPtrSet<Instruction *, 8> Stores; 216 do { 217 Instruction *Inst = &*I; // The instruction to sink. 218 219 // Predecrement I (if it's not begin) so that it isn't invalidated by 220 // sinking. 221 ProcessedBegin = I == BB.begin(); 222 if (!ProcessedBegin) 223 --I; 224 225 if (isa<DbgInfoIntrinsic>(Inst)) 226 continue; 227 228 if (SinkInstruction(Inst, Stores, DT, LI, AA)) { 229 ++NumSunk; 230 MadeChange = true; 231 } 232 233 // If we just processed the first instruction in the block, we're done. 234 } while (!ProcessedBegin); 235 236 return MadeChange; 237 } 238 239 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, 240 LoopInfo &LI, AAResults &AA) { 241 bool MadeChange, EverMadeChange = false; 242 243 do { 244 MadeChange = false; 245 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 246 // Process all basic blocks. 247 for (BasicBlock &I : F) 248 MadeChange |= ProcessBlock(I, DT, LI, AA); 249 EverMadeChange |= MadeChange; 250 NumSinkIter++; 251 } while (MadeChange); 252 253 return EverMadeChange; 254 } 255 256 PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) { 257 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 258 auto &LI = AM.getResult<LoopAnalysis>(F); 259 auto &AA = AM.getResult<AAManager>(F); 260 261 if (!iterativelySinkInstructions(F, DT, LI, AA)) 262 return PreservedAnalyses::all(); 263 264 PreservedAnalyses PA; 265 PA.preserveSet<CFGAnalyses>(); 266 return PA; 267 } 268 269 namespace { 270 class SinkingLegacyPass : public FunctionPass { 271 public: 272 static char ID; // Pass identification 273 SinkingLegacyPass() : FunctionPass(ID) { 274 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); 275 } 276 277 bool runOnFunction(Function &F) override { 278 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 279 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 280 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 281 282 return iterativelySinkInstructions(F, DT, LI, AA); 283 } 284 285 void getAnalysisUsage(AnalysisUsage &AU) const override { 286 AU.setPreservesCFG(); 287 FunctionPass::getAnalysisUsage(AU); 288 AU.addRequired<AAResultsWrapperPass>(); 289 AU.addRequired<DominatorTreeWrapperPass>(); 290 AU.addRequired<LoopInfoWrapperPass>(); 291 AU.addPreserved<DominatorTreeWrapperPass>(); 292 AU.addPreserved<LoopInfoWrapperPass>(); 293 } 294 }; 295 } // end anonymous namespace 296 297 char SinkingLegacyPass::ID = 0; 298 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false) 299 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false) 303 304 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); } 305