1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/DomTreeUpdater.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/Loads.h" 44 #include "llvm/Analysis/PtrUseVisitor.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantFolder.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DIBuilder.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugInfo.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalAlias.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstVisitor.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Scalar.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <cstddef> 88 #include <cstdint> 89 #include <cstring> 90 #include <iterator> 91 #include <string> 92 #include <tuple> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace llvm::sroa; 98 99 #define DEBUG_TYPE "sroa" 100 101 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 102 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 103 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 104 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 105 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 106 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 107 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 108 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 109 STATISTIC(NumLoadsPredicated, 110 "Number of loads rewritten into predicated loads to allow promotion"); 111 STATISTIC( 112 NumStoresPredicated, 113 "Number of stores rewritten into predicated loads to allow promotion"); 114 STATISTIC(NumDeleted, "Number of instructions deleted"); 115 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 116 117 /// Hidden option to experiment with completely strict handling of inbounds 118 /// GEPs. 119 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 120 cl::Hidden); 121 namespace { 122 /// Find linked dbg.assign and generate a new one with the correct 123 /// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the 124 /// value component is copied from the old dbg.assign to the new. 125 /// \param OldAlloca Alloca for the variable before splitting. 126 /// \param RelativeOffsetInBits Offset into \p OldAlloca relative to the 127 /// offset prior to splitting (change in offset). 128 /// \param SliceSizeInBits New number of bits being written to. 129 /// \param OldInst Instruction that is being split. 130 /// \param Inst New instruction performing this part of the 131 /// split store. 132 /// \param Dest Store destination. 133 /// \param Value Stored value. 134 /// \param DL Datalayout. 135 static void migrateDebugInfo(AllocaInst *OldAlloca, 136 uint64_t RelativeOffsetInBits, 137 uint64_t SliceSizeInBits, Instruction *OldInst, 138 Instruction *Inst, Value *Dest, Value *Value, 139 const DataLayout &DL) { 140 auto MarkerRange = at::getAssignmentMarkers(OldInst); 141 // Nothing to do if OldInst has no linked dbg.assign intrinsics. 142 if (MarkerRange.empty()) 143 return; 144 145 LLVM_DEBUG(dbgs() << " migrateDebugInfo\n"); 146 LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n"); 147 LLVM_DEBUG(dbgs() << " RelativeOffset: " << RelativeOffsetInBits << "\n"); 148 LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n"); 149 LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n"); 150 LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n"); 151 LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n"); 152 if (Value) 153 LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n"); 154 155 // The new inst needs a DIAssignID unique metadata tag (if OldInst has 156 // one). It shouldn't already have one: assert this assumption. 157 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID)); 158 DIAssignID *NewID = nullptr; 159 auto &Ctx = Inst->getContext(); 160 DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false); 161 uint64_t AllocaSizeInBits = *OldAlloca->getAllocationSizeInBits(DL); 162 assert(OldAlloca->isStaticAlloca()); 163 164 for (DbgAssignIntrinsic *DbgAssign : MarkerRange) { 165 LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign 166 << "\n"); 167 auto *Expr = DbgAssign->getExpression(); 168 169 // Check if the dbg.assign already describes a fragment. 170 auto GetCurrentFragSize = [AllocaSizeInBits, DbgAssign, 171 Expr]() -> uint64_t { 172 if (auto FI = Expr->getFragmentInfo()) 173 return FI->SizeInBits; 174 if (auto VarSize = DbgAssign->getVariable()->getSizeInBits()) 175 return *VarSize; 176 // The variable type has an unspecified size. This can happen in the 177 // case of DW_TAG_unspecified_type types, e.g. std::nullptr_t. Because 178 // there is no fragment and we do not know the size of the variable type, 179 // we'll guess by looking at the alloca. 180 return AllocaSizeInBits; 181 }; 182 uint64_t CurrentFragSize = GetCurrentFragSize(); 183 bool MakeNewFragment = CurrentFragSize != SliceSizeInBits; 184 assert(MakeNewFragment || RelativeOffsetInBits == 0); 185 186 assert(SliceSizeInBits <= AllocaSizeInBits); 187 if (MakeNewFragment) { 188 assert(RelativeOffsetInBits + SliceSizeInBits <= CurrentFragSize); 189 auto E = DIExpression::createFragmentExpression( 190 Expr, RelativeOffsetInBits, SliceSizeInBits); 191 assert(E && "Failed to create fragment expr!"); 192 Expr = *E; 193 } 194 195 // If we haven't created a DIAssignID ID do that now and attach it to Inst. 196 if (!NewID) { 197 NewID = DIAssignID::getDistinct(Ctx); 198 Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID); 199 } 200 201 Value = Value ? Value : DbgAssign->getValue(); 202 auto *NewAssign = DIB.insertDbgAssign( 203 Inst, Value, DbgAssign->getVariable(), Expr, Dest, 204 DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc()); 205 206 // We could use more precision here at the cost of some additional (code) 207 // complexity - if the original dbg.assign was adjacent to its store, we 208 // could position this new dbg.assign adjacent to its store rather than the 209 // old dbg.assgn. That would result in interleaved dbg.assigns rather than 210 // what we get now: 211 // split store !1 212 // split store !2 213 // dbg.assign !1 214 // dbg.assign !2 215 // This (current behaviour) results results in debug assignments being 216 // noted as slightly offset (in code) from the store. In practice this 217 // should have little effect on the debugging experience due to the fact 218 // that all the split stores should get the same line number. 219 NewAssign->moveBefore(DbgAssign); 220 221 NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); 222 LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign 223 << "\n"); 224 } 225 } 226 227 /// A custom IRBuilder inserter which prefixes all names, but only in 228 /// Assert builds. 229 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 230 std::string Prefix; 231 232 Twine getNameWithPrefix(const Twine &Name) const { 233 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 234 } 235 236 public: 237 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 238 239 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 240 BasicBlock::iterator InsertPt) const override { 241 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 242 InsertPt); 243 } 244 }; 245 246 /// Provide a type for IRBuilder that drops names in release builds. 247 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 248 249 /// A used slice of an alloca. 250 /// 251 /// This structure represents a slice of an alloca used by some instruction. It 252 /// stores both the begin and end offsets of this use, a pointer to the use 253 /// itself, and a flag indicating whether we can classify the use as splittable 254 /// or not when forming partitions of the alloca. 255 class Slice { 256 /// The beginning offset of the range. 257 uint64_t BeginOffset = 0; 258 259 /// The ending offset, not included in the range. 260 uint64_t EndOffset = 0; 261 262 /// Storage for both the use of this slice and whether it can be 263 /// split. 264 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 265 266 public: 267 Slice() = default; 268 269 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 270 : BeginOffset(BeginOffset), EndOffset(EndOffset), 271 UseAndIsSplittable(U, IsSplittable) {} 272 273 uint64_t beginOffset() const { return BeginOffset; } 274 uint64_t endOffset() const { return EndOffset; } 275 276 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 277 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 278 279 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 280 281 bool isDead() const { return getUse() == nullptr; } 282 void kill() { UseAndIsSplittable.setPointer(nullptr); } 283 284 /// Support for ordering ranges. 285 /// 286 /// This provides an ordering over ranges such that start offsets are 287 /// always increasing, and within equal start offsets, the end offsets are 288 /// decreasing. Thus the spanning range comes first in a cluster with the 289 /// same start position. 290 bool operator<(const Slice &RHS) const { 291 if (beginOffset() < RHS.beginOffset()) 292 return true; 293 if (beginOffset() > RHS.beginOffset()) 294 return false; 295 if (isSplittable() != RHS.isSplittable()) 296 return !isSplittable(); 297 if (endOffset() > RHS.endOffset()) 298 return true; 299 return false; 300 } 301 302 /// Support comparison with a single offset to allow binary searches. 303 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 304 uint64_t RHSOffset) { 305 return LHS.beginOffset() < RHSOffset; 306 } 307 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 308 const Slice &RHS) { 309 return LHSOffset < RHS.beginOffset(); 310 } 311 312 bool operator==(const Slice &RHS) const { 313 return isSplittable() == RHS.isSplittable() && 314 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 315 } 316 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 317 }; 318 319 } // end anonymous namespace 320 321 /// Representation of the alloca slices. 322 /// 323 /// This class represents the slices of an alloca which are formed by its 324 /// various uses. If a pointer escapes, we can't fully build a representation 325 /// for the slices used and we reflect that in this structure. The uses are 326 /// stored, sorted by increasing beginning offset and with unsplittable slices 327 /// starting at a particular offset before splittable slices. 328 class llvm::sroa::AllocaSlices { 329 public: 330 /// Construct the slices of a particular alloca. 331 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 332 333 /// Test whether a pointer to the allocation escapes our analysis. 334 /// 335 /// If this is true, the slices are never fully built and should be 336 /// ignored. 337 bool isEscaped() const { return PointerEscapingInstr; } 338 339 /// Support for iterating over the slices. 340 /// @{ 341 using iterator = SmallVectorImpl<Slice>::iterator; 342 using range = iterator_range<iterator>; 343 344 iterator begin() { return Slices.begin(); } 345 iterator end() { return Slices.end(); } 346 347 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 348 using const_range = iterator_range<const_iterator>; 349 350 const_iterator begin() const { return Slices.begin(); } 351 const_iterator end() const { return Slices.end(); } 352 /// @} 353 354 /// Erase a range of slices. 355 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 356 357 /// Insert new slices for this alloca. 358 /// 359 /// This moves the slices into the alloca's slices collection, and re-sorts 360 /// everything so that the usual ordering properties of the alloca's slices 361 /// hold. 362 void insert(ArrayRef<Slice> NewSlices) { 363 int OldSize = Slices.size(); 364 Slices.append(NewSlices.begin(), NewSlices.end()); 365 auto SliceI = Slices.begin() + OldSize; 366 llvm::sort(SliceI, Slices.end()); 367 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 368 } 369 370 // Forward declare the iterator and range accessor for walking the 371 // partitions. 372 class partition_iterator; 373 iterator_range<partition_iterator> partitions(); 374 375 /// Access the dead users for this alloca. 376 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 377 378 /// Access Uses that should be dropped if the alloca is promotable. 379 ArrayRef<Use *> getDeadUsesIfPromotable() const { 380 return DeadUseIfPromotable; 381 } 382 383 /// Access the dead operands referring to this alloca. 384 /// 385 /// These are operands which have cannot actually be used to refer to the 386 /// alloca as they are outside its range and the user doesn't correct for 387 /// that. These mostly consist of PHI node inputs and the like which we just 388 /// need to replace with undef. 389 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 390 391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 392 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 393 void printSlice(raw_ostream &OS, const_iterator I, 394 StringRef Indent = " ") const; 395 void printUse(raw_ostream &OS, const_iterator I, 396 StringRef Indent = " ") const; 397 void print(raw_ostream &OS) const; 398 void dump(const_iterator I) const; 399 void dump() const; 400 #endif 401 402 private: 403 template <typename DerivedT, typename RetT = void> class BuilderBase; 404 class SliceBuilder; 405 406 friend class AllocaSlices::SliceBuilder; 407 408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 409 /// Handle to alloca instruction to simplify method interfaces. 410 AllocaInst &AI; 411 #endif 412 413 /// The instruction responsible for this alloca not having a known set 414 /// of slices. 415 /// 416 /// When an instruction (potentially) escapes the pointer to the alloca, we 417 /// store a pointer to that here and abort trying to form slices of the 418 /// alloca. This will be null if the alloca slices are analyzed successfully. 419 Instruction *PointerEscapingInstr; 420 421 /// The slices of the alloca. 422 /// 423 /// We store a vector of the slices formed by uses of the alloca here. This 424 /// vector is sorted by increasing begin offset, and then the unsplittable 425 /// slices before the splittable ones. See the Slice inner class for more 426 /// details. 427 SmallVector<Slice, 8> Slices; 428 429 /// Instructions which will become dead if we rewrite the alloca. 430 /// 431 /// Note that these are not separated by slice. This is because we expect an 432 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 433 /// all these instructions can simply be removed and replaced with poison as 434 /// they come from outside of the allocated space. 435 SmallVector<Instruction *, 8> DeadUsers; 436 437 /// Uses which will become dead if can promote the alloca. 438 SmallVector<Use *, 8> DeadUseIfPromotable; 439 440 /// Operands which will become dead if we rewrite the alloca. 441 /// 442 /// These are operands that in their particular use can be replaced with 443 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 444 /// to PHI nodes and the like. They aren't entirely dead (there might be 445 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 446 /// want to swap this particular input for poison to simplify the use lists of 447 /// the alloca. 448 SmallVector<Use *, 8> DeadOperands; 449 }; 450 451 /// A partition of the slices. 452 /// 453 /// An ephemeral representation for a range of slices which can be viewed as 454 /// a partition of the alloca. This range represents a span of the alloca's 455 /// memory which cannot be split, and provides access to all of the slices 456 /// overlapping some part of the partition. 457 /// 458 /// Objects of this type are produced by traversing the alloca's slices, but 459 /// are only ephemeral and not persistent. 460 class llvm::sroa::Partition { 461 private: 462 friend class AllocaSlices; 463 friend class AllocaSlices::partition_iterator; 464 465 using iterator = AllocaSlices::iterator; 466 467 /// The beginning and ending offsets of the alloca for this 468 /// partition. 469 uint64_t BeginOffset = 0, EndOffset = 0; 470 471 /// The start and end iterators of this partition. 472 iterator SI, SJ; 473 474 /// A collection of split slice tails overlapping the partition. 475 SmallVector<Slice *, 4> SplitTails; 476 477 /// Raw constructor builds an empty partition starting and ending at 478 /// the given iterator. 479 Partition(iterator SI) : SI(SI), SJ(SI) {} 480 481 public: 482 /// The start offset of this partition. 483 /// 484 /// All of the contained slices start at or after this offset. 485 uint64_t beginOffset() const { return BeginOffset; } 486 487 /// The end offset of this partition. 488 /// 489 /// All of the contained slices end at or before this offset. 490 uint64_t endOffset() const { return EndOffset; } 491 492 /// The size of the partition. 493 /// 494 /// Note that this can never be zero. 495 uint64_t size() const { 496 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 497 return EndOffset - BeginOffset; 498 } 499 500 /// Test whether this partition contains no slices, and merely spans 501 /// a region occupied by split slices. 502 bool empty() const { return SI == SJ; } 503 504 /// \name Iterate slices that start within the partition. 505 /// These may be splittable or unsplittable. They have a begin offset >= the 506 /// partition begin offset. 507 /// @{ 508 // FIXME: We should probably define a "concat_iterator" helper and use that 509 // to stitch together pointee_iterators over the split tails and the 510 // contiguous iterators of the partition. That would give a much nicer 511 // interface here. We could then additionally expose filtered iterators for 512 // split, unsplit, and unsplittable splices based on the usage patterns. 513 iterator begin() const { return SI; } 514 iterator end() const { return SJ; } 515 /// @} 516 517 /// Get the sequence of split slice tails. 518 /// 519 /// These tails are of slices which start before this partition but are 520 /// split and overlap into the partition. We accumulate these while forming 521 /// partitions. 522 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 523 }; 524 525 /// An iterator over partitions of the alloca's slices. 526 /// 527 /// This iterator implements the core algorithm for partitioning the alloca's 528 /// slices. It is a forward iterator as we don't support backtracking for 529 /// efficiency reasons, and re-use a single storage area to maintain the 530 /// current set of split slices. 531 /// 532 /// It is templated on the slice iterator type to use so that it can operate 533 /// with either const or non-const slice iterators. 534 class AllocaSlices::partition_iterator 535 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 536 Partition> { 537 friend class AllocaSlices; 538 539 /// Most of the state for walking the partitions is held in a class 540 /// with a nice interface for examining them. 541 Partition P; 542 543 /// We need to keep the end of the slices to know when to stop. 544 AllocaSlices::iterator SE; 545 546 /// We also need to keep track of the maximum split end offset seen. 547 /// FIXME: Do we really? 548 uint64_t MaxSplitSliceEndOffset = 0; 549 550 /// Sets the partition to be empty at given iterator, and sets the 551 /// end iterator. 552 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 553 : P(SI), SE(SE) { 554 // If not already at the end, advance our state to form the initial 555 // partition. 556 if (SI != SE) 557 advance(); 558 } 559 560 /// Advance the iterator to the next partition. 561 /// 562 /// Requires that the iterator not be at the end of the slices. 563 void advance() { 564 assert((P.SI != SE || !P.SplitTails.empty()) && 565 "Cannot advance past the end of the slices!"); 566 567 // Clear out any split uses which have ended. 568 if (!P.SplitTails.empty()) { 569 if (P.EndOffset >= MaxSplitSliceEndOffset) { 570 // If we've finished all splits, this is easy. 571 P.SplitTails.clear(); 572 MaxSplitSliceEndOffset = 0; 573 } else { 574 // Remove the uses which have ended in the prior partition. This 575 // cannot change the max split slice end because we just checked that 576 // the prior partition ended prior to that max. 577 llvm::erase_if(P.SplitTails, 578 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 579 assert(llvm::any_of(P.SplitTails, 580 [&](Slice *S) { 581 return S->endOffset() == MaxSplitSliceEndOffset; 582 }) && 583 "Could not find the current max split slice offset!"); 584 assert(llvm::all_of(P.SplitTails, 585 [&](Slice *S) { 586 return S->endOffset() <= MaxSplitSliceEndOffset; 587 }) && 588 "Max split slice end offset is not actually the max!"); 589 } 590 } 591 592 // If P.SI is already at the end, then we've cleared the split tail and 593 // now have an end iterator. 594 if (P.SI == SE) { 595 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 596 return; 597 } 598 599 // If we had a non-empty partition previously, set up the state for 600 // subsequent partitions. 601 if (P.SI != P.SJ) { 602 // Accumulate all the splittable slices which started in the old 603 // partition into the split list. 604 for (Slice &S : P) 605 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 606 P.SplitTails.push_back(&S); 607 MaxSplitSliceEndOffset = 608 std::max(S.endOffset(), MaxSplitSliceEndOffset); 609 } 610 611 // Start from the end of the previous partition. 612 P.SI = P.SJ; 613 614 // If P.SI is now at the end, we at most have a tail of split slices. 615 if (P.SI == SE) { 616 P.BeginOffset = P.EndOffset; 617 P.EndOffset = MaxSplitSliceEndOffset; 618 return; 619 } 620 621 // If the we have split slices and the next slice is after a gap and is 622 // not splittable immediately form an empty partition for the split 623 // slices up until the next slice begins. 624 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 625 !P.SI->isSplittable()) { 626 P.BeginOffset = P.EndOffset; 627 P.EndOffset = P.SI->beginOffset(); 628 return; 629 } 630 } 631 632 // OK, we need to consume new slices. Set the end offset based on the 633 // current slice, and step SJ past it. The beginning offset of the 634 // partition is the beginning offset of the next slice unless we have 635 // pre-existing split slices that are continuing, in which case we begin 636 // at the prior end offset. 637 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 638 P.EndOffset = P.SI->endOffset(); 639 ++P.SJ; 640 641 // There are two strategies to form a partition based on whether the 642 // partition starts with an unsplittable slice or a splittable slice. 643 if (!P.SI->isSplittable()) { 644 // When we're forming an unsplittable region, it must always start at 645 // the first slice and will extend through its end. 646 assert(P.BeginOffset == P.SI->beginOffset()); 647 648 // Form a partition including all of the overlapping slices with this 649 // unsplittable slice. 650 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 651 if (!P.SJ->isSplittable()) 652 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 653 ++P.SJ; 654 } 655 656 // We have a partition across a set of overlapping unsplittable 657 // partitions. 658 return; 659 } 660 661 // If we're starting with a splittable slice, then we need to form 662 // a synthetic partition spanning it and any other overlapping splittable 663 // splices. 664 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 665 666 // Collect all of the overlapping splittable slices. 667 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 668 P.SJ->isSplittable()) { 669 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 670 ++P.SJ; 671 } 672 673 // Back upiP.EndOffset if we ended the span early when encountering an 674 // unsplittable slice. This synthesizes the early end offset of 675 // a partition spanning only splittable slices. 676 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 677 assert(!P.SJ->isSplittable()); 678 P.EndOffset = P.SJ->beginOffset(); 679 } 680 } 681 682 public: 683 bool operator==(const partition_iterator &RHS) const { 684 assert(SE == RHS.SE && 685 "End iterators don't match between compared partition iterators!"); 686 687 // The observed positions of partitions is marked by the P.SI iterator and 688 // the emptiness of the split slices. The latter is only relevant when 689 // P.SI == SE, as the end iterator will additionally have an empty split 690 // slices list, but the prior may have the same P.SI and a tail of split 691 // slices. 692 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 693 assert(P.SJ == RHS.P.SJ && 694 "Same set of slices formed two different sized partitions!"); 695 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 696 "Same slice position with differently sized non-empty split " 697 "slice tails!"); 698 return true; 699 } 700 return false; 701 } 702 703 partition_iterator &operator++() { 704 advance(); 705 return *this; 706 } 707 708 Partition &operator*() { return P; } 709 }; 710 711 /// A forward range over the partitions of the alloca's slices. 712 /// 713 /// This accesses an iterator range over the partitions of the alloca's 714 /// slices. It computes these partitions on the fly based on the overlapping 715 /// offsets of the slices and the ability to split them. It will visit "empty" 716 /// partitions to cover regions of the alloca only accessed via split 717 /// slices. 718 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 719 return make_range(partition_iterator(begin(), end()), 720 partition_iterator(end(), end())); 721 } 722 723 static Value *foldSelectInst(SelectInst &SI) { 724 // If the condition being selected on is a constant or the same value is 725 // being selected between, fold the select. Yes this does (rarely) happen 726 // early on. 727 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 728 return SI.getOperand(1 + CI->isZero()); 729 if (SI.getOperand(1) == SI.getOperand(2)) 730 return SI.getOperand(1); 731 732 return nullptr; 733 } 734 735 /// A helper that folds a PHI node or a select. 736 static Value *foldPHINodeOrSelectInst(Instruction &I) { 737 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 738 // If PN merges together the same value, return that value. 739 return PN->hasConstantValue(); 740 } 741 return foldSelectInst(cast<SelectInst>(I)); 742 } 743 744 /// Builder for the alloca slices. 745 /// 746 /// This class builds a set of alloca slices by recursively visiting the uses 747 /// of an alloca and making a slice for each load and store at each offset. 748 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 749 friend class PtrUseVisitor<SliceBuilder>; 750 friend class InstVisitor<SliceBuilder>; 751 752 using Base = PtrUseVisitor<SliceBuilder>; 753 754 const uint64_t AllocSize; 755 AllocaSlices &AS; 756 757 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 758 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 759 760 /// Set to de-duplicate dead instructions found in the use walk. 761 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 762 763 public: 764 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 765 : PtrUseVisitor<SliceBuilder>(DL), 766 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()), 767 AS(AS) {} 768 769 private: 770 void markAsDead(Instruction &I) { 771 if (VisitedDeadInsts.insert(&I).second) 772 AS.DeadUsers.push_back(&I); 773 } 774 775 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 776 bool IsSplittable = false) { 777 // Completely skip uses which have a zero size or start either before or 778 // past the end of the allocation. 779 if (Size == 0 || Offset.uge(AllocSize)) { 780 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 781 << Offset 782 << " which has zero size or starts outside of the " 783 << AllocSize << " byte alloca:\n" 784 << " alloca: " << AS.AI << "\n" 785 << " use: " << I << "\n"); 786 return markAsDead(I); 787 } 788 789 uint64_t BeginOffset = Offset.getZExtValue(); 790 uint64_t EndOffset = BeginOffset + Size; 791 792 // Clamp the end offset to the end of the allocation. Note that this is 793 // formulated to handle even the case where "BeginOffset + Size" overflows. 794 // This may appear superficially to be something we could ignore entirely, 795 // but that is not so! There may be widened loads or PHI-node uses where 796 // some instructions are dead but not others. We can't completely ignore 797 // them, and so have to record at least the information here. 798 assert(AllocSize >= BeginOffset); // Established above. 799 if (Size > AllocSize - BeginOffset) { 800 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 801 << Offset << " to remain within the " << AllocSize 802 << " byte alloca:\n" 803 << " alloca: " << AS.AI << "\n" 804 << " use: " << I << "\n"); 805 EndOffset = AllocSize; 806 } 807 808 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 809 } 810 811 void visitBitCastInst(BitCastInst &BC) { 812 if (BC.use_empty()) 813 return markAsDead(BC); 814 815 return Base::visitBitCastInst(BC); 816 } 817 818 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 819 if (ASC.use_empty()) 820 return markAsDead(ASC); 821 822 return Base::visitAddrSpaceCastInst(ASC); 823 } 824 825 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 826 if (GEPI.use_empty()) 827 return markAsDead(GEPI); 828 829 if (SROAStrictInbounds && GEPI.isInBounds()) { 830 // FIXME: This is a manually un-factored variant of the basic code inside 831 // of GEPs with checking of the inbounds invariant specified in the 832 // langref in a very strict sense. If we ever want to enable 833 // SROAStrictInbounds, this code should be factored cleanly into 834 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 835 // by writing out the code here where we have the underlying allocation 836 // size readily available. 837 APInt GEPOffset = Offset; 838 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 839 for (gep_type_iterator GTI = gep_type_begin(GEPI), 840 GTE = gep_type_end(GEPI); 841 GTI != GTE; ++GTI) { 842 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 843 if (!OpC) 844 break; 845 846 // Handle a struct index, which adds its field offset to the pointer. 847 if (StructType *STy = GTI.getStructTypeOrNull()) { 848 unsigned ElementIdx = OpC->getZExtValue(); 849 const StructLayout *SL = DL.getStructLayout(STy); 850 GEPOffset += 851 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 852 } else { 853 // For array or vector indices, scale the index by the size of the 854 // type. 855 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 856 GEPOffset += 857 Index * 858 APInt(Offset.getBitWidth(), 859 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue()); 860 } 861 862 // If this index has computed an intermediate pointer which is not 863 // inbounds, then the result of the GEP is a poison value and we can 864 // delete it and all uses. 865 if (GEPOffset.ugt(AllocSize)) 866 return markAsDead(GEPI); 867 } 868 } 869 870 return Base::visitGetElementPtrInst(GEPI); 871 } 872 873 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 874 uint64_t Size, bool IsVolatile) { 875 // We allow splitting of non-volatile loads and stores where the type is an 876 // integer type. These may be used to implement 'memcpy' or other "transfer 877 // of bits" patterns. 878 bool IsSplittable = 879 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 880 881 insertUse(I, Offset, Size, IsSplittable); 882 } 883 884 void visitLoadInst(LoadInst &LI) { 885 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 886 "All simple FCA loads should have been pre-split"); 887 888 if (!IsOffsetKnown) 889 return PI.setAborted(&LI); 890 891 if (isa<ScalableVectorType>(LI.getType())) 892 return PI.setAborted(&LI); 893 894 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedValue(); 895 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 896 } 897 898 void visitStoreInst(StoreInst &SI) { 899 Value *ValOp = SI.getValueOperand(); 900 if (ValOp == *U) 901 return PI.setEscapedAndAborted(&SI); 902 if (!IsOffsetKnown) 903 return PI.setAborted(&SI); 904 905 if (isa<ScalableVectorType>(ValOp->getType())) 906 return PI.setAborted(&SI); 907 908 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedValue(); 909 910 // If this memory access can be shown to *statically* extend outside the 911 // bounds of the allocation, it's behavior is undefined, so simply 912 // ignore it. Note that this is more strict than the generic clamping 913 // behavior of insertUse. We also try to handle cases which might run the 914 // risk of overflow. 915 // FIXME: We should instead consider the pointer to have escaped if this 916 // function is being instrumented for addressing bugs or race conditions. 917 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 918 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 919 << Offset << " which extends past the end of the " 920 << AllocSize << " byte alloca:\n" 921 << " alloca: " << AS.AI << "\n" 922 << " use: " << SI << "\n"); 923 return markAsDead(SI); 924 } 925 926 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 927 "All simple FCA stores should have been pre-split"); 928 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 929 } 930 931 void visitMemSetInst(MemSetInst &II) { 932 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 933 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 934 if ((Length && Length->getValue() == 0) || 935 (IsOffsetKnown && Offset.uge(AllocSize))) 936 // Zero-length mem transfer intrinsics can be ignored entirely. 937 return markAsDead(II); 938 939 if (!IsOffsetKnown) 940 return PI.setAborted(&II); 941 942 insertUse(II, Offset, Length ? Length->getLimitedValue() 943 : AllocSize - Offset.getLimitedValue(), 944 (bool)Length); 945 } 946 947 void visitMemTransferInst(MemTransferInst &II) { 948 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 949 if (Length && Length->getValue() == 0) 950 // Zero-length mem transfer intrinsics can be ignored entirely. 951 return markAsDead(II); 952 953 // Because we can visit these intrinsics twice, also check to see if the 954 // first time marked this instruction as dead. If so, skip it. 955 if (VisitedDeadInsts.count(&II)) 956 return; 957 958 if (!IsOffsetKnown) 959 return PI.setAborted(&II); 960 961 // This side of the transfer is completely out-of-bounds, and so we can 962 // nuke the entire transfer. However, we also need to nuke the other side 963 // if already added to our partitions. 964 // FIXME: Yet another place we really should bypass this when 965 // instrumenting for ASan. 966 if (Offset.uge(AllocSize)) { 967 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 968 MemTransferSliceMap.find(&II); 969 if (MTPI != MemTransferSliceMap.end()) 970 AS.Slices[MTPI->second].kill(); 971 return markAsDead(II); 972 } 973 974 uint64_t RawOffset = Offset.getLimitedValue(); 975 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 976 977 // Check for the special case where the same exact value is used for both 978 // source and dest. 979 if (*U == II.getRawDest() && *U == II.getRawSource()) { 980 // For non-volatile transfers this is a no-op. 981 if (!II.isVolatile()) 982 return markAsDead(II); 983 984 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 985 } 986 987 // If we have seen both source and destination for a mem transfer, then 988 // they both point to the same alloca. 989 bool Inserted; 990 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 991 std::tie(MTPI, Inserted) = 992 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 993 unsigned PrevIdx = MTPI->second; 994 if (!Inserted) { 995 Slice &PrevP = AS.Slices[PrevIdx]; 996 997 // Check if the begin offsets match and this is a non-volatile transfer. 998 // In that case, we can completely elide the transfer. 999 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 1000 PrevP.kill(); 1001 return markAsDead(II); 1002 } 1003 1004 // Otherwise we have an offset transfer within the same alloca. We can't 1005 // split those. 1006 PrevP.makeUnsplittable(); 1007 } 1008 1009 // Insert the use now that we've fixed up the splittable nature. 1010 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 1011 1012 // Check that we ended up with a valid index in the map. 1013 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 1014 "Map index doesn't point back to a slice with this user."); 1015 } 1016 1017 // Disable SRoA for any intrinsics except for lifetime invariants and 1018 // invariant group. 1019 // FIXME: What about debug intrinsics? This matches old behavior, but 1020 // doesn't make sense. 1021 void visitIntrinsicInst(IntrinsicInst &II) { 1022 if (II.isDroppable()) { 1023 AS.DeadUseIfPromotable.push_back(U); 1024 return; 1025 } 1026 1027 if (!IsOffsetKnown) 1028 return PI.setAborted(&II); 1029 1030 if (II.isLifetimeStartOrEnd()) { 1031 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 1032 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 1033 Length->getLimitedValue()); 1034 insertUse(II, Offset, Size, true); 1035 return; 1036 } 1037 1038 if (II.isLaunderOrStripInvariantGroup()) { 1039 enqueueUsers(II); 1040 return; 1041 } 1042 1043 Base::visitIntrinsicInst(II); 1044 } 1045 1046 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 1047 // We consider any PHI or select that results in a direct load or store of 1048 // the same offset to be a viable use for slicing purposes. These uses 1049 // are considered unsplittable and the size is the maximum loaded or stored 1050 // size. 1051 SmallPtrSet<Instruction *, 4> Visited; 1052 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 1053 Visited.insert(Root); 1054 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 1055 const DataLayout &DL = Root->getModule()->getDataLayout(); 1056 // If there are no loads or stores, the access is dead. We mark that as 1057 // a size zero access. 1058 Size = 0; 1059 do { 1060 Instruction *I, *UsedI; 1061 std::tie(UsedI, I) = Uses.pop_back_val(); 1062 1063 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1064 Size = 1065 std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue()); 1066 continue; 1067 } 1068 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1069 Value *Op = SI->getOperand(0); 1070 if (Op == UsedI) 1071 return SI; 1072 Size = 1073 std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue()); 1074 continue; 1075 } 1076 1077 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 1078 if (!GEP->hasAllZeroIndices()) 1079 return GEP; 1080 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 1081 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 1082 return I; 1083 } 1084 1085 for (User *U : I->users()) 1086 if (Visited.insert(cast<Instruction>(U)).second) 1087 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1088 } while (!Uses.empty()); 1089 1090 return nullptr; 1091 } 1092 1093 void visitPHINodeOrSelectInst(Instruction &I) { 1094 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1095 if (I.use_empty()) 1096 return markAsDead(I); 1097 1098 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1099 // instructions in this BB, which may be required during rewriting. Bail out 1100 // on these cases. 1101 if (isa<PHINode>(I) && 1102 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1103 return PI.setAborted(&I); 1104 1105 // TODO: We could use simplifyInstruction here to fold PHINodes and 1106 // SelectInsts. However, doing so requires to change the current 1107 // dead-operand-tracking mechanism. For instance, suppose neither loading 1108 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1109 // trap either. However, if we simply replace %U with undef using the 1110 // current dead-operand-tracking mechanism, "load (select undef, undef, 1111 // %other)" may trap because the select may return the first operand 1112 // "undef". 1113 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1114 if (Result == *U) 1115 // If the result of the constant fold will be the pointer, recurse 1116 // through the PHI/select as if we had RAUW'ed it. 1117 enqueueUsers(I); 1118 else 1119 // Otherwise the operand to the PHI/select is dead, and we can replace 1120 // it with poison. 1121 AS.DeadOperands.push_back(U); 1122 1123 return; 1124 } 1125 1126 if (!IsOffsetKnown) 1127 return PI.setAborted(&I); 1128 1129 // See if we already have computed info on this node. 1130 uint64_t &Size = PHIOrSelectSizes[&I]; 1131 if (!Size) { 1132 // This is a new PHI/Select, check for an unsafe use of it. 1133 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1134 return PI.setAborted(UnsafeI); 1135 } 1136 1137 // For PHI and select operands outside the alloca, we can't nuke the entire 1138 // phi or select -- the other side might still be relevant, so we special 1139 // case them here and use a separate structure to track the operands 1140 // themselves which should be replaced with poison. 1141 // FIXME: This should instead be escaped in the event we're instrumenting 1142 // for address sanitization. 1143 if (Offset.uge(AllocSize)) { 1144 AS.DeadOperands.push_back(U); 1145 return; 1146 } 1147 1148 insertUse(I, Offset, Size); 1149 } 1150 1151 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1152 1153 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1154 1155 /// Disable SROA entirely if there are unhandled users of the alloca. 1156 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1157 }; 1158 1159 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1160 : 1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1162 AI(AI), 1163 #endif 1164 PointerEscapingInstr(nullptr) { 1165 SliceBuilder PB(DL, AI, *this); 1166 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1167 if (PtrI.isEscaped() || PtrI.isAborted()) { 1168 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1169 // possibly by just storing the PtrInfo in the AllocaSlices. 1170 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1171 : PtrI.getAbortingInst(); 1172 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1173 return; 1174 } 1175 1176 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1177 1178 // Sort the uses. This arranges for the offsets to be in ascending order, 1179 // and the sizes to be in descending order. 1180 llvm::stable_sort(Slices); 1181 } 1182 1183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1184 1185 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1186 StringRef Indent) const { 1187 printSlice(OS, I, Indent); 1188 OS << "\n"; 1189 printUse(OS, I, Indent); 1190 } 1191 1192 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1193 StringRef Indent) const { 1194 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1195 << " slice #" << (I - begin()) 1196 << (I->isSplittable() ? " (splittable)" : ""); 1197 } 1198 1199 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1200 StringRef Indent) const { 1201 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1202 } 1203 1204 void AllocaSlices::print(raw_ostream &OS) const { 1205 if (PointerEscapingInstr) { 1206 OS << "Can't analyze slices for alloca: " << AI << "\n" 1207 << " A pointer to this alloca escaped by:\n" 1208 << " " << *PointerEscapingInstr << "\n"; 1209 return; 1210 } 1211 1212 OS << "Slices of alloca: " << AI << "\n"; 1213 for (const_iterator I = begin(), E = end(); I != E; ++I) 1214 print(OS, I); 1215 } 1216 1217 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1218 print(dbgs(), I); 1219 } 1220 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1221 1222 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1223 1224 /// Walk the range of a partitioning looking for a common type to cover this 1225 /// sequence of slices. 1226 static std::pair<Type *, IntegerType *> 1227 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1228 uint64_t EndOffset) { 1229 Type *Ty = nullptr; 1230 bool TyIsCommon = true; 1231 IntegerType *ITy = nullptr; 1232 1233 // Note that we need to look at *every* alloca slice's Use to ensure we 1234 // always get consistent results regardless of the order of slices. 1235 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1236 Use *U = I->getUse(); 1237 if (isa<IntrinsicInst>(*U->getUser())) 1238 continue; 1239 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1240 continue; 1241 1242 Type *UserTy = nullptr; 1243 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1244 UserTy = LI->getType(); 1245 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1246 UserTy = SI->getValueOperand()->getType(); 1247 } 1248 1249 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1250 // If the type is larger than the partition, skip it. We only encounter 1251 // this for split integer operations where we want to use the type of the 1252 // entity causing the split. Also skip if the type is not a byte width 1253 // multiple. 1254 if (UserITy->getBitWidth() % 8 != 0 || 1255 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1256 continue; 1257 1258 // Track the largest bitwidth integer type used in this way in case there 1259 // is no common type. 1260 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1261 ITy = UserITy; 1262 } 1263 1264 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1265 // depend on types skipped above. 1266 if (!UserTy || (Ty && Ty != UserTy)) 1267 TyIsCommon = false; // Give up on anything but an iN type. 1268 else 1269 Ty = UserTy; 1270 } 1271 1272 return {TyIsCommon ? Ty : nullptr, ITy}; 1273 } 1274 1275 /// PHI instructions that use an alloca and are subsequently loaded can be 1276 /// rewritten to load both input pointers in the pred blocks and then PHI the 1277 /// results, allowing the load of the alloca to be promoted. 1278 /// From this: 1279 /// %P2 = phi [i32* %Alloca, i32* %Other] 1280 /// %V = load i32* %P2 1281 /// to: 1282 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1283 /// ... 1284 /// %V2 = load i32* %Other 1285 /// ... 1286 /// %V = phi [i32 %V1, i32 %V2] 1287 /// 1288 /// We can do this to a select if its only uses are loads and if the operands 1289 /// to the select can be loaded unconditionally. 1290 /// 1291 /// FIXME: This should be hoisted into a generic utility, likely in 1292 /// Transforms/Util/Local.h 1293 static bool isSafePHIToSpeculate(PHINode &PN) { 1294 const DataLayout &DL = PN.getModule()->getDataLayout(); 1295 1296 // For now, we can only do this promotion if the load is in the same block 1297 // as the PHI, and if there are no stores between the phi and load. 1298 // TODO: Allow recursive phi users. 1299 // TODO: Allow stores. 1300 BasicBlock *BB = PN.getParent(); 1301 Align MaxAlign; 1302 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1303 Type *LoadType = nullptr; 1304 for (User *U : PN.users()) { 1305 LoadInst *LI = dyn_cast<LoadInst>(U); 1306 if (!LI || !LI->isSimple()) 1307 return false; 1308 1309 // For now we only allow loads in the same block as the PHI. This is 1310 // a common case that happens when instcombine merges two loads through 1311 // a PHI. 1312 if (LI->getParent() != BB) 1313 return false; 1314 1315 if (LoadType) { 1316 if (LoadType != LI->getType()) 1317 return false; 1318 } else { 1319 LoadType = LI->getType(); 1320 } 1321 1322 // Ensure that there are no instructions between the PHI and the load that 1323 // could store. 1324 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1325 if (BBI->mayWriteToMemory()) 1326 return false; 1327 1328 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1329 } 1330 1331 if (!LoadType) 1332 return false; 1333 1334 APInt LoadSize = 1335 APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue()); 1336 1337 // We can only transform this if it is safe to push the loads into the 1338 // predecessor blocks. The only thing to watch out for is that we can't put 1339 // a possibly trapping load in the predecessor if it is a critical edge. 1340 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1341 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1342 Value *InVal = PN.getIncomingValue(Idx); 1343 1344 // If the value is produced by the terminator of the predecessor (an 1345 // invoke) or it has side-effects, there is no valid place to put a load 1346 // in the predecessor. 1347 if (TI == InVal || TI->mayHaveSideEffects()) 1348 return false; 1349 1350 // If the predecessor has a single successor, then the edge isn't 1351 // critical. 1352 if (TI->getNumSuccessors() == 1) 1353 continue; 1354 1355 // If this pointer is always safe to load, or if we can prove that there 1356 // is already a load in the block, then we can move the load to the pred 1357 // block. 1358 if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI)) 1359 continue; 1360 1361 return false; 1362 } 1363 1364 return true; 1365 } 1366 1367 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1368 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1369 1370 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1371 Type *LoadTy = SomeLoad->getType(); 1372 IRB.SetInsertPoint(&PN); 1373 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1374 PN.getName() + ".sroa.speculated"); 1375 1376 // Get the AA tags and alignment to use from one of the loads. It does not 1377 // matter which one we get and if any differ. 1378 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1379 Align Alignment = SomeLoad->getAlign(); 1380 1381 // Rewrite all loads of the PN to use the new PHI. 1382 while (!PN.use_empty()) { 1383 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1384 LI->replaceAllUsesWith(NewPN); 1385 LI->eraseFromParent(); 1386 } 1387 1388 // Inject loads into all of the pred blocks. 1389 DenseMap<BasicBlock*, Value*> InjectedLoads; 1390 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1391 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1392 Value *InVal = PN.getIncomingValue(Idx); 1393 1394 // A PHI node is allowed to have multiple (duplicated) entries for the same 1395 // basic block, as long as the value is the same. So if we already injected 1396 // a load in the predecessor, then we should reuse the same load for all 1397 // duplicated entries. 1398 if (Value* V = InjectedLoads.lookup(Pred)) { 1399 NewPN->addIncoming(V, Pred); 1400 continue; 1401 } 1402 1403 Instruction *TI = Pred->getTerminator(); 1404 IRB.SetInsertPoint(TI); 1405 1406 LoadInst *Load = IRB.CreateAlignedLoad( 1407 LoadTy, InVal, Alignment, 1408 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1409 ++NumLoadsSpeculated; 1410 if (AATags) 1411 Load->setAAMetadata(AATags); 1412 NewPN->addIncoming(Load, Pred); 1413 InjectedLoads[Pred] = Load; 1414 } 1415 1416 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1417 PN.eraseFromParent(); 1418 } 1419 1420 sroa::SelectHandSpeculativity & 1421 sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) { 1422 if (isTrueVal) 1423 Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true); 1424 else 1425 Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true); 1426 return *this; 1427 } 1428 1429 bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const { 1430 return isTrueVal 1431 ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage) 1432 : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage); 1433 } 1434 1435 bool sroa::SelectHandSpeculativity::areAllSpeculatable() const { 1436 return isSpeculatable(/*isTrueVal=*/true) && 1437 isSpeculatable(/*isTrueVal=*/false); 1438 } 1439 1440 bool sroa::SelectHandSpeculativity::areAnySpeculatable() const { 1441 return isSpeculatable(/*isTrueVal=*/true) || 1442 isSpeculatable(/*isTrueVal=*/false); 1443 } 1444 bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const { 1445 return !areAnySpeculatable(); 1446 } 1447 1448 static sroa::SelectHandSpeculativity 1449 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) { 1450 assert(LI.isSimple() && "Only for simple loads"); 1451 sroa::SelectHandSpeculativity Spec; 1452 1453 const DataLayout &DL = SI.getModule()->getDataLayout(); 1454 for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()}) 1455 if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL, 1456 &LI)) 1457 Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue()); 1458 else if (PreserveCFG) 1459 return Spec; 1460 1461 return Spec; 1462 } 1463 1464 std::optional<sroa::RewriteableMemOps> 1465 SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) { 1466 RewriteableMemOps Ops; 1467 1468 for (User *U : SI.users()) { 1469 if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse()) 1470 U = *BC->user_begin(); 1471 1472 if (auto *Store = dyn_cast<StoreInst>(U)) { 1473 // Note that atomic stores can be transformed; atomic semantics do not 1474 // have any meaning for a local alloca. Stores are not speculatable, 1475 // however, so if we can't turn it into a predicated store, we are done. 1476 if (Store->isVolatile() || PreserveCFG) 1477 return {}; // Give up on this `select`. 1478 Ops.emplace_back(Store); 1479 continue; 1480 } 1481 1482 auto *LI = dyn_cast<LoadInst>(U); 1483 1484 // Note that atomic loads can be transformed; 1485 // atomic semantics do not have any meaning for a local alloca. 1486 if (!LI || LI->isVolatile()) 1487 return {}; // Give up on this `select`. 1488 1489 PossiblySpeculatableLoad Load(LI); 1490 if (!LI->isSimple()) { 1491 // If the `load` is not simple, we can't speculatively execute it, 1492 // but we could handle this via a CFG modification. But can we? 1493 if (PreserveCFG) 1494 return {}; // Give up on this `select`. 1495 Ops.emplace_back(Load); 1496 continue; 1497 } 1498 1499 sroa::SelectHandSpeculativity Spec = 1500 isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG); 1501 if (PreserveCFG && !Spec.areAllSpeculatable()) 1502 return {}; // Give up on this `select`. 1503 1504 Load.setInt(Spec); 1505 Ops.emplace_back(Load); 1506 } 1507 1508 return Ops; 1509 } 1510 1511 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI, 1512 IRBuilderTy &IRB) { 1513 LLVM_DEBUG(dbgs() << " original load: " << SI << "\n"); 1514 1515 Value *TV = SI.getTrueValue(); 1516 Value *FV = SI.getFalseValue(); 1517 // Replace the given load of the select with a select of two loads. 1518 1519 assert(LI.isSimple() && "We only speculate simple loads"); 1520 1521 IRB.SetInsertPoint(&LI); 1522 1523 if (auto *TypedPtrTy = LI.getPointerOperandType(); 1524 !TypedPtrTy->isOpaquePointerTy() && SI.getType() != TypedPtrTy) { 1525 TV = IRB.CreateBitOrPointerCast(TV, TypedPtrTy, ""); 1526 FV = IRB.CreateBitOrPointerCast(FV, TypedPtrTy, ""); 1527 } 1528 1529 LoadInst *TL = 1530 IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(), 1531 LI.getName() + ".sroa.speculate.load.true"); 1532 LoadInst *FL = 1533 IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(), 1534 LI.getName() + ".sroa.speculate.load.false"); 1535 NumLoadsSpeculated += 2; 1536 1537 // Transfer alignment and AA info if present. 1538 TL->setAlignment(LI.getAlign()); 1539 FL->setAlignment(LI.getAlign()); 1540 1541 AAMDNodes Tags = LI.getAAMetadata(); 1542 if (Tags) { 1543 TL->setAAMetadata(Tags); 1544 FL->setAAMetadata(Tags); 1545 } 1546 1547 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1548 LI.getName() + ".sroa.speculated"); 1549 1550 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1551 LI.replaceAllUsesWith(V); 1552 } 1553 1554 template <typename T> 1555 static void rewriteMemOpOfSelect(SelectInst &SI, T &I, 1556 sroa::SelectHandSpeculativity Spec, 1557 DomTreeUpdater &DTU) { 1558 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!"); 1559 LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n"); 1560 BasicBlock *Head = I.getParent(); 1561 Instruction *ThenTerm = nullptr; 1562 Instruction *ElseTerm = nullptr; 1563 if (Spec.areNoneSpeculatable()) 1564 SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm, 1565 SI.getMetadata(LLVMContext::MD_prof), &DTU); 1566 else { 1567 SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false, 1568 SI.getMetadata(LLVMContext::MD_prof), &DTU, 1569 /*LI=*/nullptr, /*ThenBlock=*/nullptr); 1570 if (Spec.isSpeculatable(/*isTrueVal=*/true)) 1571 cast<BranchInst>(Head->getTerminator())->swapSuccessors(); 1572 } 1573 auto *HeadBI = cast<BranchInst>(Head->getTerminator()); 1574 Spec = {}; // Do not use `Spec` beyond this point. 1575 BasicBlock *Tail = I.getParent(); 1576 Tail->setName(Head->getName() + ".cont"); 1577 PHINode *PN; 1578 if (isa<LoadInst>(I)) 1579 PN = PHINode::Create(I.getType(), 2, "", &I); 1580 for (BasicBlock *SuccBB : successors(Head)) { 1581 bool IsThen = SuccBB == HeadBI->getSuccessor(0); 1582 int SuccIdx = IsThen ? 0 : 1; 1583 auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB; 1584 if (NewMemOpBB != Head) { 1585 NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else")); 1586 if (isa<LoadInst>(I)) 1587 ++NumLoadsPredicated; 1588 else 1589 ++NumStoresPredicated; 1590 } else 1591 ++NumLoadsSpeculated; 1592 auto &CondMemOp = cast<T>(*I.clone()); 1593 CondMemOp.insertBefore(NewMemOpBB->getTerminator()); 1594 Value *Ptr = SI.getOperand(1 + SuccIdx); 1595 if (auto *PtrTy = Ptr->getType(); 1596 !PtrTy->isOpaquePointerTy() && 1597 PtrTy != CondMemOp.getPointerOperandType()) 1598 Ptr = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( 1599 Ptr, CondMemOp.getPointerOperandType(), "", &CondMemOp); 1600 CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr); 1601 if (isa<LoadInst>(I)) { 1602 CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val"); 1603 PN->addIncoming(&CondMemOp, NewMemOpBB); 1604 } else 1605 LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n"); 1606 } 1607 if (isa<LoadInst>(I)) { 1608 PN->takeName(&I); 1609 LLVM_DEBUG(dbgs() << " to: " << *PN << "\n"); 1610 I.replaceAllUsesWith(PN); 1611 } 1612 } 1613 1614 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I, 1615 sroa::SelectHandSpeculativity Spec, 1616 DomTreeUpdater &DTU) { 1617 if (auto *LI = dyn_cast<LoadInst>(&I)) 1618 rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU); 1619 else if (auto *SI = dyn_cast<StoreInst>(&I)) 1620 rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU); 1621 else 1622 llvm_unreachable_internal("Only for load and store."); 1623 } 1624 1625 static bool rewriteSelectInstMemOps(SelectInst &SI, 1626 const sroa::RewriteableMemOps &Ops, 1627 IRBuilderTy &IRB, DomTreeUpdater *DTU) { 1628 bool CFGChanged = false; 1629 LLVM_DEBUG(dbgs() << " original select: " << SI << "\n"); 1630 1631 for (const RewriteableMemOp &Op : Ops) { 1632 sroa::SelectHandSpeculativity Spec; 1633 Instruction *I; 1634 if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) { 1635 I = *US; 1636 } else { 1637 auto PSL = std::get<PossiblySpeculatableLoad>(Op); 1638 I = PSL.getPointer(); 1639 Spec = PSL.getInt(); 1640 } 1641 if (Spec.areAllSpeculatable()) { 1642 speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB); 1643 } else { 1644 assert(DTU && "Should not get here when not allowed to modify the CFG!"); 1645 rewriteMemOpOfSelect(SI, *I, Spec, *DTU); 1646 CFGChanged = true; 1647 } 1648 I->eraseFromParent(); 1649 } 1650 1651 for (User *U : make_early_inc_range(SI.users())) 1652 cast<BitCastInst>(U)->eraseFromParent(); 1653 SI.eraseFromParent(); 1654 return CFGChanged; 1655 } 1656 1657 /// Build a GEP out of a base pointer and indices. 1658 /// 1659 /// This will return the BasePtr if that is valid, or build a new GEP 1660 /// instruction using the IRBuilder if GEP-ing is needed. 1661 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1662 SmallVectorImpl<Value *> &Indices, 1663 const Twine &NamePrefix) { 1664 if (Indices.empty()) 1665 return BasePtr; 1666 1667 // A single zero index is a no-op, so check for this and avoid building a GEP 1668 // in that case. 1669 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1670 return BasePtr; 1671 1672 // buildGEP() is only called for non-opaque pointers. 1673 return IRB.CreateInBoundsGEP( 1674 BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices, 1675 NamePrefix + "sroa_idx"); 1676 } 1677 1678 /// Get a natural GEP off of the BasePtr walking through Ty toward 1679 /// TargetTy without changing the offset of the pointer. 1680 /// 1681 /// This routine assumes we've already established a properly offset GEP with 1682 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1683 /// zero-indices down through type layers until we find one the same as 1684 /// TargetTy. If we can't find one with the same type, we at least try to use 1685 /// one with the same size. If none of that works, we just produce the GEP as 1686 /// indicated by Indices to have the correct offset. 1687 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1688 Value *BasePtr, Type *Ty, Type *TargetTy, 1689 SmallVectorImpl<Value *> &Indices, 1690 const Twine &NamePrefix) { 1691 if (Ty == TargetTy) 1692 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1693 1694 // Offset size to use for the indices. 1695 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1696 1697 // See if we can descend into a struct and locate a field with the correct 1698 // type. 1699 unsigned NumLayers = 0; 1700 Type *ElementTy = Ty; 1701 do { 1702 if (ElementTy->isPointerTy()) 1703 break; 1704 1705 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1706 ElementTy = ArrayTy->getElementType(); 1707 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1708 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1709 ElementTy = VectorTy->getElementType(); 1710 Indices.push_back(IRB.getInt32(0)); 1711 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1712 if (STy->element_begin() == STy->element_end()) 1713 break; // Nothing left to descend into. 1714 ElementTy = *STy->element_begin(); 1715 Indices.push_back(IRB.getInt32(0)); 1716 } else { 1717 break; 1718 } 1719 ++NumLayers; 1720 } while (ElementTy != TargetTy); 1721 if (ElementTy != TargetTy) 1722 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1723 1724 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1725 } 1726 1727 /// Get a natural GEP from a base pointer to a particular offset and 1728 /// resulting in a particular type. 1729 /// 1730 /// The goal is to produce a "natural" looking GEP that works with the existing 1731 /// composite types to arrive at the appropriate offset and element type for 1732 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1733 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1734 /// Indices, and setting Ty to the result subtype. 1735 /// 1736 /// If no natural GEP can be constructed, this function returns null. 1737 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1738 Value *Ptr, APInt Offset, Type *TargetTy, 1739 SmallVectorImpl<Value *> &Indices, 1740 const Twine &NamePrefix) { 1741 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1742 1743 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1744 // an i8. 1745 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1746 return nullptr; 1747 1748 Type *ElementTy = Ty->getNonOpaquePointerElementType(); 1749 if (!ElementTy->isSized()) 1750 return nullptr; // We can't GEP through an unsized element. 1751 1752 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset); 1753 if (Offset != 0) 1754 return nullptr; 1755 1756 for (const APInt &Index : IntIndices) 1757 Indices.push_back(IRB.getInt(Index)); 1758 return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices, 1759 NamePrefix); 1760 } 1761 1762 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1763 /// resulting pointer has PointerTy. 1764 /// 1765 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1766 /// and produces the pointer type desired. Where it cannot, it will try to use 1767 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1768 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1769 /// bitcast to the type. 1770 /// 1771 /// The strategy for finding the more natural GEPs is to peel off layers of the 1772 /// pointer, walking back through bit casts and GEPs, searching for a base 1773 /// pointer from which we can compute a natural GEP with the desired 1774 /// properties. The algorithm tries to fold as many constant indices into 1775 /// a single GEP as possible, thus making each GEP more independent of the 1776 /// surrounding code. 1777 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1778 APInt Offset, Type *PointerTy, 1779 const Twine &NamePrefix) { 1780 // Create i8 GEP for opaque pointers. 1781 if (Ptr->getType()->isOpaquePointerTy()) { 1782 if (Offset != 0) 1783 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1784 NamePrefix + "sroa_idx"); 1785 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1786 NamePrefix + "sroa_cast"); 1787 } 1788 1789 // Even though we don't look through PHI nodes, we could be called on an 1790 // instruction in an unreachable block, which may be on a cycle. 1791 SmallPtrSet<Value *, 4> Visited; 1792 Visited.insert(Ptr); 1793 SmallVector<Value *, 4> Indices; 1794 1795 // We may end up computing an offset pointer that has the wrong type. If we 1796 // never are able to compute one directly that has the correct type, we'll 1797 // fall back to it, so keep it and the base it was computed from around here. 1798 Value *OffsetPtr = nullptr; 1799 Value *OffsetBasePtr; 1800 1801 // Remember any i8 pointer we come across to re-use if we need to do a raw 1802 // byte offset. 1803 Value *Int8Ptr = nullptr; 1804 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1805 1806 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1807 Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType(); 1808 1809 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1810 // address space from the expected `PointerTy` (the pointer to be used). 1811 // Adjust the pointer type based the original storage pointer. 1812 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1813 PointerTy = TargetTy->getPointerTo(AS); 1814 1815 do { 1816 // First fold any existing GEPs into the offset. 1817 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1818 APInt GEPOffset(Offset.getBitWidth(), 0); 1819 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1820 break; 1821 Offset += GEPOffset; 1822 Ptr = GEP->getPointerOperand(); 1823 if (!Visited.insert(Ptr).second) 1824 break; 1825 } 1826 1827 // See if we can perform a natural GEP here. 1828 Indices.clear(); 1829 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1830 Indices, NamePrefix)) { 1831 // If we have a new natural pointer at the offset, clear out any old 1832 // offset pointer we computed. Unless it is the base pointer or 1833 // a non-instruction, we built a GEP we don't need. Zap it. 1834 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1835 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1836 assert(I->use_empty() && "Built a GEP with uses some how!"); 1837 I->eraseFromParent(); 1838 } 1839 OffsetPtr = P; 1840 OffsetBasePtr = Ptr; 1841 // If we also found a pointer of the right type, we're done. 1842 if (P->getType() == PointerTy) 1843 break; 1844 } 1845 1846 // Stash this pointer if we've found an i8*. 1847 if (Ptr->getType()->isIntegerTy(8)) { 1848 Int8Ptr = Ptr; 1849 Int8PtrOffset = Offset; 1850 } 1851 1852 // Peel off a layer of the pointer and update the offset appropriately. 1853 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1854 Ptr = cast<Operator>(Ptr)->getOperand(0); 1855 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1856 if (GA->isInterposable()) 1857 break; 1858 Ptr = GA->getAliasee(); 1859 } else { 1860 break; 1861 } 1862 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1863 } while (Visited.insert(Ptr).second); 1864 1865 if (!OffsetPtr) { 1866 if (!Int8Ptr) { 1867 Int8Ptr = IRB.CreateBitCast( 1868 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1869 NamePrefix + "sroa_raw_cast"); 1870 Int8PtrOffset = Offset; 1871 } 1872 1873 OffsetPtr = Int8PtrOffset == 0 1874 ? Int8Ptr 1875 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1876 IRB.getInt(Int8PtrOffset), 1877 NamePrefix + "sroa_raw_idx"); 1878 } 1879 Ptr = OffsetPtr; 1880 1881 // On the off chance we were targeting i8*, guard the bitcast here. 1882 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1883 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1884 TargetPtrTy, 1885 NamePrefix + "sroa_cast"); 1886 } 1887 1888 return Ptr; 1889 } 1890 1891 /// Compute the adjusted alignment for a load or store from an offset. 1892 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1893 return commonAlignment(getLoadStoreAlignment(I), Offset); 1894 } 1895 1896 /// Test whether we can convert a value from the old to the new type. 1897 /// 1898 /// This predicate should be used to guard calls to convertValue in order to 1899 /// ensure that we only try to convert viable values. The strategy is that we 1900 /// will peel off single element struct and array wrappings to get to an 1901 /// underlying value, and convert that value. 1902 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1903 if (OldTy == NewTy) 1904 return true; 1905 1906 // For integer types, we can't handle any bit-width differences. This would 1907 // break both vector conversions with extension and introduce endianness 1908 // issues when in conjunction with loads and stores. 1909 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1910 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1911 cast<IntegerType>(NewTy)->getBitWidth() && 1912 "We can't have the same bitwidth for different int types"); 1913 return false; 1914 } 1915 1916 if (DL.getTypeSizeInBits(NewTy).getFixedValue() != 1917 DL.getTypeSizeInBits(OldTy).getFixedValue()) 1918 return false; 1919 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1920 return false; 1921 1922 // We can convert pointers to integers and vice-versa. Same for vectors 1923 // of pointers and integers. 1924 OldTy = OldTy->getScalarType(); 1925 NewTy = NewTy->getScalarType(); 1926 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1927 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1928 unsigned OldAS = OldTy->getPointerAddressSpace(); 1929 unsigned NewAS = NewTy->getPointerAddressSpace(); 1930 // Convert pointers if they are pointers from the same address space or 1931 // different integral (not non-integral) address spaces with the same 1932 // pointer size. 1933 return OldAS == NewAS || 1934 (!DL.isNonIntegralAddressSpace(OldAS) && 1935 !DL.isNonIntegralAddressSpace(NewAS) && 1936 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1937 } 1938 1939 // We can convert integers to integral pointers, but not to non-integral 1940 // pointers. 1941 if (OldTy->isIntegerTy()) 1942 return !DL.isNonIntegralPointerType(NewTy); 1943 1944 // We can convert integral pointers to integers, but non-integral pointers 1945 // need to remain pointers. 1946 if (!DL.isNonIntegralPointerType(OldTy)) 1947 return NewTy->isIntegerTy(); 1948 1949 return false; 1950 } 1951 1952 if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy()) 1953 return false; 1954 1955 return true; 1956 } 1957 1958 /// Generic routine to convert an SSA value to a value of a different 1959 /// type. 1960 /// 1961 /// This will try various different casting techniques, such as bitcasts, 1962 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1963 /// two types for viability with this routine. 1964 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1965 Type *NewTy) { 1966 Type *OldTy = V->getType(); 1967 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1968 1969 if (OldTy == NewTy) 1970 return V; 1971 1972 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1973 "Integer types must be the exact same to convert."); 1974 1975 // See if we need inttoptr for this type pair. May require additional bitcast. 1976 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1977 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1978 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1979 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1980 // Directly handle i64 to i8* 1981 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1982 NewTy); 1983 } 1984 1985 // See if we need ptrtoint for this type pair. May require additional bitcast. 1986 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1987 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1988 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1989 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1990 // Expand i8* to i64 --> i8* to i64 to i64 1991 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1992 NewTy); 1993 } 1994 1995 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1996 unsigned OldAS = OldTy->getPointerAddressSpace(); 1997 unsigned NewAS = NewTy->getPointerAddressSpace(); 1998 // To convert pointers with different address spaces (they are already 1999 // checked convertible, i.e. they have the same pointer size), so far we 2000 // cannot use `bitcast` (which has restrict on the same address space) or 2001 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 2002 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 2003 // size. 2004 if (OldAS != NewAS) { 2005 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 2006 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 2007 NewTy); 2008 } 2009 } 2010 2011 return IRB.CreateBitCast(V, NewTy); 2012 } 2013 2014 /// Test whether the given slice use can be promoted to a vector. 2015 /// 2016 /// This function is called to test each entry in a partition which is slated 2017 /// for a single slice. 2018 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 2019 VectorType *Ty, 2020 uint64_t ElementSize, 2021 const DataLayout &DL) { 2022 // First validate the slice offsets. 2023 uint64_t BeginOffset = 2024 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 2025 uint64_t BeginIndex = BeginOffset / ElementSize; 2026 if (BeginIndex * ElementSize != BeginOffset || 2027 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 2028 return false; 2029 uint64_t EndOffset = 2030 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 2031 uint64_t EndIndex = EndOffset / ElementSize; 2032 if (EndIndex * ElementSize != EndOffset || 2033 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 2034 return false; 2035 2036 assert(EndIndex > BeginIndex && "Empty vector!"); 2037 uint64_t NumElements = EndIndex - BeginIndex; 2038 Type *SliceTy = (NumElements == 1) 2039 ? Ty->getElementType() 2040 : FixedVectorType::get(Ty->getElementType(), NumElements); 2041 2042 Type *SplitIntTy = 2043 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 2044 2045 Use *U = S.getUse(); 2046 2047 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2048 if (MI->isVolatile()) 2049 return false; 2050 if (!S.isSplittable()) 2051 return false; // Skip any unsplittable intrinsics. 2052 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2053 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 2054 return false; 2055 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2056 if (LI->isVolatile()) 2057 return false; 2058 Type *LTy = LI->getType(); 2059 // Disable vector promotion when there are loads or stores of an FCA. 2060 if (LTy->isStructTy()) 2061 return false; 2062 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 2063 assert(LTy->isIntegerTy()); 2064 LTy = SplitIntTy; 2065 } 2066 if (!canConvertValue(DL, SliceTy, LTy)) 2067 return false; 2068 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2069 if (SI->isVolatile()) 2070 return false; 2071 Type *STy = SI->getValueOperand()->getType(); 2072 // Disable vector promotion when there are loads or stores of an FCA. 2073 if (STy->isStructTy()) 2074 return false; 2075 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 2076 assert(STy->isIntegerTy()); 2077 STy = SplitIntTy; 2078 } 2079 if (!canConvertValue(DL, STy, SliceTy)) 2080 return false; 2081 } else { 2082 return false; 2083 } 2084 2085 return true; 2086 } 2087 2088 /// Test whether a vector type is viable for promotion. 2089 /// 2090 /// This implements the necessary checking for \c isVectorPromotionViable over 2091 /// all slices of the alloca for the given VectorType. 2092 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy, 2093 const DataLayout &DL) { 2094 uint64_t ElementSize = 2095 DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue(); 2096 2097 // While the definition of LLVM vectors is bitpacked, we don't support sizes 2098 // that aren't byte sized. 2099 if (ElementSize % 8) 2100 return false; 2101 assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 && 2102 "vector size not a multiple of element size?"); 2103 ElementSize /= 8; 2104 2105 for (const Slice &S : P) 2106 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 2107 return false; 2108 2109 for (const Slice *S : P.splitSliceTails()) 2110 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 2111 return false; 2112 2113 return true; 2114 } 2115 2116 /// Test whether the given alloca partitioning and range of slices can be 2117 /// promoted to a vector. 2118 /// 2119 /// This is a quick test to check whether we can rewrite a particular alloca 2120 /// partition (and its newly formed alloca) into a vector alloca with only 2121 /// whole-vector loads and stores such that it could be promoted to a vector 2122 /// SSA value. We only can ensure this for a limited set of operations, and we 2123 /// don't want to do the rewrites unless we are confident that the result will 2124 /// be promotable, so we have an early test here. 2125 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 2126 // Collect the candidate types for vector-based promotion. Also track whether 2127 // we have different element types. 2128 SmallVector<VectorType *, 4> CandidateTys; 2129 Type *CommonEltTy = nullptr; 2130 VectorType *CommonVecPtrTy = nullptr; 2131 bool HaveVecPtrTy = false; 2132 bool HaveCommonEltTy = true; 2133 bool HaveCommonVecPtrTy = true; 2134 auto CheckCandidateType = [&](Type *Ty) { 2135 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2136 // Return if bitcast to vectors is different for total size in bits. 2137 if (!CandidateTys.empty()) { 2138 VectorType *V = CandidateTys[0]; 2139 if (DL.getTypeSizeInBits(VTy).getFixedValue() != 2140 DL.getTypeSizeInBits(V).getFixedValue()) { 2141 CandidateTys.clear(); 2142 return; 2143 } 2144 } 2145 CandidateTys.push_back(VTy); 2146 Type *EltTy = VTy->getElementType(); 2147 2148 if (!CommonEltTy) 2149 CommonEltTy = EltTy; 2150 else if (CommonEltTy != EltTy) 2151 HaveCommonEltTy = false; 2152 2153 if (EltTy->isPointerTy()) { 2154 HaveVecPtrTy = true; 2155 if (!CommonVecPtrTy) 2156 CommonVecPtrTy = VTy; 2157 else if (CommonVecPtrTy != VTy) 2158 HaveCommonVecPtrTy = false; 2159 } 2160 } 2161 }; 2162 // Consider any loads or stores that are the exact size of the slice. 2163 for (const Slice &S : P) 2164 if (S.beginOffset() == P.beginOffset() && 2165 S.endOffset() == P.endOffset()) { 2166 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 2167 CheckCandidateType(LI->getType()); 2168 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 2169 CheckCandidateType(SI->getValueOperand()->getType()); 2170 } 2171 2172 // If we didn't find a vector type, nothing to do here. 2173 if (CandidateTys.empty()) 2174 return nullptr; 2175 2176 // Pointer-ness is sticky, if we had a vector-of-pointers candidate type, 2177 // then we should choose it, not some other alternative. 2178 // But, we can't perform a no-op pointer address space change via bitcast, 2179 // so if we didn't have a common pointer element type, bail. 2180 if (HaveVecPtrTy && !HaveCommonVecPtrTy) 2181 return nullptr; 2182 2183 // Try to pick the "best" element type out of the choices. 2184 if (!HaveCommonEltTy && HaveVecPtrTy) { 2185 // If there was a pointer element type, there's really only one choice. 2186 CandidateTys.clear(); 2187 CandidateTys.push_back(CommonVecPtrTy); 2188 } else if (!HaveCommonEltTy && !HaveVecPtrTy) { 2189 // Integer-ify vector types. 2190 for (VectorType *&VTy : CandidateTys) { 2191 if (!VTy->getElementType()->isIntegerTy()) 2192 VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy( 2193 VTy->getContext(), VTy->getScalarSizeInBits()))); 2194 } 2195 2196 // Rank the remaining candidate vector types. This is easy because we know 2197 // they're all integer vectors. We sort by ascending number of elements. 2198 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 2199 (void)DL; 2200 assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == 2201 DL.getTypeSizeInBits(LHSTy).getFixedValue() && 2202 "Cannot have vector types of different sizes!"); 2203 assert(RHSTy->getElementType()->isIntegerTy() && 2204 "All non-integer types eliminated!"); 2205 assert(LHSTy->getElementType()->isIntegerTy() && 2206 "All non-integer types eliminated!"); 2207 return cast<FixedVectorType>(RHSTy)->getNumElements() < 2208 cast<FixedVectorType>(LHSTy)->getNumElements(); 2209 }; 2210 llvm::sort(CandidateTys, RankVectorTypes); 2211 CandidateTys.erase( 2212 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 2213 CandidateTys.end()); 2214 } else { 2215 // The only way to have the same element type in every vector type is to 2216 // have the same vector type. Check that and remove all but one. 2217 #ifndef NDEBUG 2218 for (VectorType *VTy : CandidateTys) { 2219 assert(VTy->getElementType() == CommonEltTy && 2220 "Unaccounted for element type!"); 2221 assert(VTy == CandidateTys[0] && 2222 "Different vector types with the same element type!"); 2223 } 2224 #endif 2225 CandidateTys.resize(1); 2226 } 2227 2228 // FIXME: hack. Do we have a named constant for this? 2229 // SDAG SDNode can't have more than 65535 operands. 2230 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 2231 return cast<FixedVectorType>(VTy)->getNumElements() > 2232 std::numeric_limits<unsigned short>::max(); 2233 }); 2234 2235 for (VectorType *VTy : CandidateTys) 2236 if (checkVectorTypeForPromotion(P, VTy, DL)) 2237 return VTy; 2238 2239 return nullptr; 2240 } 2241 2242 /// Test whether a slice of an alloca is valid for integer widening. 2243 /// 2244 /// This implements the necessary checking for the \c isIntegerWideningViable 2245 /// test below on a single slice of the alloca. 2246 static bool isIntegerWideningViableForSlice(const Slice &S, 2247 uint64_t AllocBeginOffset, 2248 Type *AllocaTy, 2249 const DataLayout &DL, 2250 bool &WholeAllocaOp) { 2251 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue(); 2252 2253 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 2254 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 2255 2256 Use *U = S.getUse(); 2257 2258 // Lifetime intrinsics operate over the whole alloca whose sizes are usually 2259 // larger than other load/store slices (RelEnd > Size). But lifetime are 2260 // always promotable and should not impact other slices' promotability of the 2261 // partition. 2262 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2263 if (II->isLifetimeStartOrEnd() || II->isDroppable()) 2264 return true; 2265 } 2266 2267 // We can't reasonably handle cases where the load or store extends past 2268 // the end of the alloca's type and into its padding. 2269 if (RelEnd > Size) 2270 return false; 2271 2272 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2273 if (LI->isVolatile()) 2274 return false; 2275 // We can't handle loads that extend past the allocated memory. 2276 if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size) 2277 return false; 2278 // So far, AllocaSliceRewriter does not support widening split slice tails 2279 // in rewriteIntegerLoad. 2280 if (S.beginOffset() < AllocBeginOffset) 2281 return false; 2282 // Note that we don't count vector loads or stores as whole-alloca 2283 // operations which enable integer widening because we would prefer to use 2284 // vector widening instead. 2285 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2286 WholeAllocaOp = true; 2287 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2288 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2289 return false; 2290 } else if (RelBegin != 0 || RelEnd != Size || 2291 !canConvertValue(DL, AllocaTy, LI->getType())) { 2292 // Non-integer loads need to be convertible from the alloca type so that 2293 // they are promotable. 2294 return false; 2295 } 2296 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2297 Type *ValueTy = SI->getValueOperand()->getType(); 2298 if (SI->isVolatile()) 2299 return false; 2300 // We can't handle stores that extend past the allocated memory. 2301 if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size) 2302 return false; 2303 // So far, AllocaSliceRewriter does not support widening split slice tails 2304 // in rewriteIntegerStore. 2305 if (S.beginOffset() < AllocBeginOffset) 2306 return false; 2307 // Note that we don't count vector loads or stores as whole-alloca 2308 // operations which enable integer widening because we would prefer to use 2309 // vector widening instead. 2310 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2311 WholeAllocaOp = true; 2312 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2313 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2314 return false; 2315 } else if (RelBegin != 0 || RelEnd != Size || 2316 !canConvertValue(DL, ValueTy, AllocaTy)) { 2317 // Non-integer stores need to be convertible to the alloca type so that 2318 // they are promotable. 2319 return false; 2320 } 2321 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2322 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2323 return false; 2324 if (!S.isSplittable()) 2325 return false; // Skip any unsplittable intrinsics. 2326 } else { 2327 return false; 2328 } 2329 2330 return true; 2331 } 2332 2333 /// Test whether the given alloca partition's integer operations can be 2334 /// widened to promotable ones. 2335 /// 2336 /// This is a quick test to check whether we can rewrite the integer loads and 2337 /// stores to a particular alloca into wider loads and stores and be able to 2338 /// promote the resulting alloca. 2339 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2340 const DataLayout &DL) { 2341 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue(); 2342 // Don't create integer types larger than the maximum bitwidth. 2343 if (SizeInBits > IntegerType::MAX_INT_BITS) 2344 return false; 2345 2346 // Don't try to handle allocas with bit-padding. 2347 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue()) 2348 return false; 2349 2350 // We need to ensure that an integer type with the appropriate bitwidth can 2351 // be converted to the alloca type, whatever that is. We don't want to force 2352 // the alloca itself to have an integer type if there is a more suitable one. 2353 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2354 if (!canConvertValue(DL, AllocaTy, IntTy) || 2355 !canConvertValue(DL, IntTy, AllocaTy)) 2356 return false; 2357 2358 // While examining uses, we ensure that the alloca has a covering load or 2359 // store. We don't want to widen the integer operations only to fail to 2360 // promote due to some other unsplittable entry (which we may make splittable 2361 // later). However, if there are only splittable uses, go ahead and assume 2362 // that we cover the alloca. 2363 // FIXME: We shouldn't consider split slices that happen to start in the 2364 // partition here... 2365 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2366 2367 for (const Slice &S : P) 2368 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2369 WholeAllocaOp)) 2370 return false; 2371 2372 for (const Slice *S : P.splitSliceTails()) 2373 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2374 WholeAllocaOp)) 2375 return false; 2376 2377 return WholeAllocaOp; 2378 } 2379 2380 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2381 IntegerType *Ty, uint64_t Offset, 2382 const Twine &Name) { 2383 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2384 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2385 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2386 DL.getTypeStoreSize(IntTy).getFixedValue() && 2387 "Element extends past full value"); 2388 uint64_t ShAmt = 8 * Offset; 2389 if (DL.isBigEndian()) 2390 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2391 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2392 if (ShAmt) { 2393 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2394 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2395 } 2396 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2397 "Cannot extract to a larger integer!"); 2398 if (Ty != IntTy) { 2399 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2400 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2401 } 2402 return V; 2403 } 2404 2405 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2406 Value *V, uint64_t Offset, const Twine &Name) { 2407 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2408 IntegerType *Ty = cast<IntegerType>(V->getType()); 2409 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2410 "Cannot insert a larger integer!"); 2411 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2412 if (Ty != IntTy) { 2413 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2414 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2415 } 2416 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2417 DL.getTypeStoreSize(IntTy).getFixedValue() && 2418 "Element store outside of alloca store"); 2419 uint64_t ShAmt = 8 * Offset; 2420 if (DL.isBigEndian()) 2421 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2422 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2423 if (ShAmt) { 2424 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2425 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2426 } 2427 2428 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2429 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2430 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2431 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2432 V = IRB.CreateOr(Old, V, Name + ".insert"); 2433 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2434 } 2435 return V; 2436 } 2437 2438 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2439 unsigned EndIndex, const Twine &Name) { 2440 auto *VecTy = cast<FixedVectorType>(V->getType()); 2441 unsigned NumElements = EndIndex - BeginIndex; 2442 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2443 2444 if (NumElements == VecTy->getNumElements()) 2445 return V; 2446 2447 if (NumElements == 1) { 2448 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2449 Name + ".extract"); 2450 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2451 return V; 2452 } 2453 2454 auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex)); 2455 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2456 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2457 return V; 2458 } 2459 2460 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2461 unsigned BeginIndex, const Twine &Name) { 2462 VectorType *VecTy = cast<VectorType>(Old->getType()); 2463 assert(VecTy && "Can only insert a vector into a vector"); 2464 2465 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2466 if (!Ty) { 2467 // Single element to insert. 2468 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2469 Name + ".insert"); 2470 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2471 return V; 2472 } 2473 2474 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2475 cast<FixedVectorType>(VecTy)->getNumElements() && 2476 "Too many elements!"); 2477 if (cast<FixedVectorType>(Ty)->getNumElements() == 2478 cast<FixedVectorType>(VecTy)->getNumElements()) { 2479 assert(V->getType() == VecTy && "Vector type mismatch"); 2480 return V; 2481 } 2482 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2483 2484 // When inserting a smaller vector into the larger to store, we first 2485 // use a shuffle vector to widen it with undef elements, and then 2486 // a second shuffle vector to select between the loaded vector and the 2487 // incoming vector. 2488 SmallVector<int, 8> Mask; 2489 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2490 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2491 if (i >= BeginIndex && i < EndIndex) 2492 Mask.push_back(i - BeginIndex); 2493 else 2494 Mask.push_back(-1); 2495 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2496 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2497 2498 SmallVector<Constant *, 8> Mask2; 2499 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2500 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2501 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2502 2503 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2504 2505 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2506 return V; 2507 } 2508 2509 /// Visitor to rewrite instructions using p particular slice of an alloca 2510 /// to use a new alloca. 2511 /// 2512 /// Also implements the rewriting to vector-based accesses when the partition 2513 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2514 /// lives here. 2515 class llvm::sroa::AllocaSliceRewriter 2516 : public InstVisitor<AllocaSliceRewriter, bool> { 2517 // Befriend the base class so it can delegate to private visit methods. 2518 friend class InstVisitor<AllocaSliceRewriter, bool>; 2519 2520 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2521 2522 const DataLayout &DL; 2523 AllocaSlices &AS; 2524 SROAPass &Pass; 2525 AllocaInst &OldAI, &NewAI; 2526 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2527 Type *NewAllocaTy; 2528 2529 // This is a convenience and flag variable that will be null unless the new 2530 // alloca's integer operations should be widened to this integer type due to 2531 // passing isIntegerWideningViable above. If it is non-null, the desired 2532 // integer type will be stored here for easy access during rewriting. 2533 IntegerType *IntTy; 2534 2535 // If we are rewriting an alloca partition which can be written as pure 2536 // vector operations, we stash extra information here. When VecTy is 2537 // non-null, we have some strict guarantees about the rewritten alloca: 2538 // - The new alloca is exactly the size of the vector type here. 2539 // - The accesses all either map to the entire vector or to a single 2540 // element. 2541 // - The set of accessing instructions is only one of those handled above 2542 // in isVectorPromotionViable. Generally these are the same access kinds 2543 // which are promotable via mem2reg. 2544 VectorType *VecTy; 2545 Type *ElementTy; 2546 uint64_t ElementSize; 2547 2548 // The original offset of the slice currently being rewritten relative to 2549 // the original alloca. 2550 uint64_t BeginOffset = 0; 2551 uint64_t EndOffset = 0; 2552 2553 // The new offsets of the slice currently being rewritten relative to the 2554 // original alloca. 2555 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2556 2557 uint64_t RelativeOffset = 0; 2558 uint64_t SliceSize = 0; 2559 bool IsSplittable = false; 2560 bool IsSplit = false; 2561 Use *OldUse = nullptr; 2562 Instruction *OldPtr = nullptr; 2563 2564 // Track post-rewrite users which are PHI nodes and Selects. 2565 SmallSetVector<PHINode *, 8> &PHIUsers; 2566 SmallSetVector<SelectInst *, 8> &SelectUsers; 2567 2568 // Utility IR builder, whose name prefix is setup for each visited use, and 2569 // the insertion point is set to point to the user. 2570 IRBuilderTy IRB; 2571 2572 // Return the new alloca, addrspacecasted if required to avoid changing the 2573 // addrspace of a volatile access. 2574 Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) { 2575 if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace()) 2576 return &NewAI; 2577 2578 Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace); 2579 return IRB.CreateAddrSpaceCast(&NewAI, AccessTy); 2580 } 2581 2582 public: 2583 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2584 AllocaInst &OldAI, AllocaInst &NewAI, 2585 uint64_t NewAllocaBeginOffset, 2586 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2587 VectorType *PromotableVecTy, 2588 SmallSetVector<PHINode *, 8> &PHIUsers, 2589 SmallSetVector<SelectInst *, 8> &SelectUsers) 2590 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2591 NewAllocaBeginOffset(NewAllocaBeginOffset), 2592 NewAllocaEndOffset(NewAllocaEndOffset), 2593 NewAllocaTy(NewAI.getAllocatedType()), 2594 IntTy( 2595 IsIntegerPromotable 2596 ? Type::getIntNTy(NewAI.getContext(), 2597 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2598 .getFixedValue()) 2599 : nullptr), 2600 VecTy(PromotableVecTy), 2601 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2602 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8 2603 : 0), 2604 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2605 IRB(NewAI.getContext(), ConstantFolder()) { 2606 if (VecTy) { 2607 assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 && 2608 "Only multiple-of-8 sized vector elements are viable"); 2609 ++NumVectorized; 2610 } 2611 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2612 } 2613 2614 bool visit(AllocaSlices::const_iterator I) { 2615 bool CanSROA = true; 2616 BeginOffset = I->beginOffset(); 2617 EndOffset = I->endOffset(); 2618 IsSplittable = I->isSplittable(); 2619 IsSplit = 2620 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2621 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2622 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2623 LLVM_DEBUG(dbgs() << "\n"); 2624 2625 // Compute the intersecting offset range. 2626 assert(BeginOffset < NewAllocaEndOffset); 2627 assert(EndOffset > NewAllocaBeginOffset); 2628 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2629 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2630 2631 RelativeOffset = NewBeginOffset - BeginOffset; 2632 SliceSize = NewEndOffset - NewBeginOffset; 2633 LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset 2634 << ") NewBegin:(" << NewBeginOffset << ", " 2635 << NewEndOffset << ") NewAllocaBegin:(" 2636 << NewAllocaBeginOffset << ", " << NewAllocaEndOffset 2637 << ")\n"); 2638 assert(IsSplit || RelativeOffset == 0); 2639 OldUse = I->getUse(); 2640 OldPtr = cast<Instruction>(OldUse->get()); 2641 2642 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2643 IRB.SetInsertPoint(OldUserI); 2644 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2645 IRB.getInserter().SetNamePrefix( 2646 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2647 2648 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2649 if (VecTy || IntTy) 2650 assert(CanSROA); 2651 return CanSROA; 2652 } 2653 2654 private: 2655 // Make sure the other visit overloads are visible. 2656 using Base::visit; 2657 2658 // Every instruction which can end up as a user must have a rewrite rule. 2659 bool visitInstruction(Instruction &I) { 2660 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2661 llvm_unreachable("No rewrite rule for this instruction!"); 2662 } 2663 2664 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2665 // Note that the offset computation can use BeginOffset or NewBeginOffset 2666 // interchangeably for unsplit slices. 2667 assert(IsSplit || BeginOffset == NewBeginOffset); 2668 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2669 2670 #ifndef NDEBUG 2671 StringRef OldName = OldPtr->getName(); 2672 // Skip through the last '.sroa.' component of the name. 2673 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2674 if (LastSROAPrefix != StringRef::npos) { 2675 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2676 // Look for an SROA slice index. 2677 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2678 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2679 // Strip the index and look for the offset. 2680 OldName = OldName.substr(IndexEnd + 1); 2681 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2682 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2683 // Strip the offset. 2684 OldName = OldName.substr(OffsetEnd + 1); 2685 } 2686 } 2687 // Strip any SROA suffixes as well. 2688 OldName = OldName.substr(0, OldName.find(".sroa_")); 2689 #endif 2690 2691 return getAdjustedPtr(IRB, DL, &NewAI, 2692 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2693 PointerTy, 2694 #ifndef NDEBUG 2695 Twine(OldName) + "." 2696 #else 2697 Twine() 2698 #endif 2699 ); 2700 } 2701 2702 /// Compute suitable alignment to access this slice of the *new* 2703 /// alloca. 2704 /// 2705 /// You can optionally pass a type to this routine and if that type's ABI 2706 /// alignment is itself suitable, this will return zero. 2707 Align getSliceAlign() { 2708 return commonAlignment(NewAI.getAlign(), 2709 NewBeginOffset - NewAllocaBeginOffset); 2710 } 2711 2712 unsigned getIndex(uint64_t Offset) { 2713 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2714 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2715 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2716 uint32_t Index = RelOffset / ElementSize; 2717 assert(Index * ElementSize == RelOffset); 2718 return Index; 2719 } 2720 2721 void deleteIfTriviallyDead(Value *V) { 2722 Instruction *I = cast<Instruction>(V); 2723 if (isInstructionTriviallyDead(I)) 2724 Pass.DeadInsts.push_back(I); 2725 } 2726 2727 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2728 unsigned BeginIndex = getIndex(NewBeginOffset); 2729 unsigned EndIndex = getIndex(NewEndOffset); 2730 assert(EndIndex > BeginIndex && "Empty vector!"); 2731 2732 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2733 NewAI.getAlign(), "load"); 2734 2735 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2736 LLVMContext::MD_access_group}); 2737 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2738 } 2739 2740 Value *rewriteIntegerLoad(LoadInst &LI) { 2741 assert(IntTy && "We cannot insert an integer to the alloca"); 2742 assert(!LI.isVolatile()); 2743 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2744 NewAI.getAlign(), "load"); 2745 V = convertValue(DL, IRB, V, IntTy); 2746 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2747 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2748 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2749 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2750 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2751 } 2752 // It is possible that the extracted type is not the load type. This 2753 // happens if there is a load past the end of the alloca, and as 2754 // a consequence the slice is narrower but still a candidate for integer 2755 // lowering. To handle this case, we just zero extend the extracted 2756 // integer. 2757 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2758 "Can only handle an extract for an overly wide load"); 2759 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2760 V = IRB.CreateZExt(V, LI.getType()); 2761 return V; 2762 } 2763 2764 bool visitLoadInst(LoadInst &LI) { 2765 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2766 Value *OldOp = LI.getOperand(0); 2767 assert(OldOp == OldPtr); 2768 2769 AAMDNodes AATags = LI.getAAMetadata(); 2770 2771 unsigned AS = LI.getPointerAddressSpace(); 2772 2773 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2774 : LI.getType(); 2775 const bool IsLoadPastEnd = 2776 DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize; 2777 bool IsPtrAdjusted = false; 2778 Value *V; 2779 if (VecTy) { 2780 V = rewriteVectorizedLoadInst(LI); 2781 } else if (IntTy && LI.getType()->isIntegerTy()) { 2782 V = rewriteIntegerLoad(LI); 2783 } else if (NewBeginOffset == NewAllocaBeginOffset && 2784 NewEndOffset == NewAllocaEndOffset && 2785 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2786 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2787 TargetTy->isIntegerTy()))) { 2788 Value *NewPtr = 2789 getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile()); 2790 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr, 2791 NewAI.getAlign(), LI.isVolatile(), 2792 LI.getName()); 2793 if (LI.isVolatile()) 2794 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2795 if (NewLI->isAtomic()) 2796 NewLI->setAlignment(LI.getAlign()); 2797 2798 // Copy any metadata that is valid for the new load. This may require 2799 // conversion to a different kind of metadata, e.g. !nonnull might change 2800 // to !range or vice versa. 2801 copyMetadataForLoad(*NewLI, LI); 2802 2803 // Do this after copyMetadataForLoad() to preserve the TBAA shift. 2804 if (AATags) 2805 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2806 2807 // Try to preserve nonnull metadata 2808 V = NewLI; 2809 2810 // If this is an integer load past the end of the slice (which means the 2811 // bytes outside the slice are undef or this load is dead) just forcibly 2812 // fix the integer size with correct handling of endianness. 2813 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2814 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2815 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2816 V = IRB.CreateZExt(V, TITy, "load.ext"); 2817 if (DL.isBigEndian()) 2818 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2819 "endian_shift"); 2820 } 2821 } else { 2822 Type *LTy = TargetTy->getPointerTo(AS); 2823 LoadInst *NewLI = 2824 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2825 getSliceAlign(), LI.isVolatile(), LI.getName()); 2826 if (AATags) 2827 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2828 if (LI.isVolatile()) 2829 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2830 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2831 LLVMContext::MD_access_group}); 2832 2833 V = NewLI; 2834 IsPtrAdjusted = true; 2835 } 2836 V = convertValue(DL, IRB, V, TargetTy); 2837 2838 if (IsSplit) { 2839 assert(!LI.isVolatile()); 2840 assert(LI.getType()->isIntegerTy() && 2841 "Only integer type loads and stores are split"); 2842 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() && 2843 "Split load isn't smaller than original load"); 2844 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2845 "Non-byte-multiple bit width"); 2846 // Move the insertion point just past the load so that we can refer to it. 2847 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2848 // Create a placeholder value with the same type as LI to use as the 2849 // basis for the new value. This allows us to replace the uses of LI with 2850 // the computed value, and then replace the placeholder with LI, leaving 2851 // LI only used for this computation. 2852 Value *Placeholder = new LoadInst( 2853 LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "", 2854 false, Align(1)); 2855 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2856 "insert"); 2857 LI.replaceAllUsesWith(V); 2858 Placeholder->replaceAllUsesWith(&LI); 2859 Placeholder->deleteValue(); 2860 } else { 2861 LI.replaceAllUsesWith(V); 2862 } 2863 2864 Pass.DeadInsts.push_back(&LI); 2865 deleteIfTriviallyDead(OldOp); 2866 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2867 return !LI.isVolatile() && !IsPtrAdjusted; 2868 } 2869 2870 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2871 AAMDNodes AATags) { 2872 // Capture V for the purpose of debug-info accounting once it's converted 2873 // to a vector store. 2874 Value *OrigV = V; 2875 if (V->getType() != VecTy) { 2876 unsigned BeginIndex = getIndex(NewBeginOffset); 2877 unsigned EndIndex = getIndex(NewEndOffset); 2878 assert(EndIndex > BeginIndex && "Empty vector!"); 2879 unsigned NumElements = EndIndex - BeginIndex; 2880 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2881 "Too many elements!"); 2882 Type *SliceTy = (NumElements == 1) 2883 ? ElementTy 2884 : FixedVectorType::get(ElementTy, NumElements); 2885 if (V->getType() != SliceTy) 2886 V = convertValue(DL, IRB, V, SliceTy); 2887 2888 // Mix in the existing elements. 2889 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2890 NewAI.getAlign(), "load"); 2891 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2892 } 2893 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2894 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2895 LLVMContext::MD_access_group}); 2896 if (AATags) 2897 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2898 Pass.DeadInsts.push_back(&SI); 2899 2900 // NOTE: Careful to use OrigV rather than V. 2901 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store, 2902 Store->getPointerOperand(), OrigV, DL); 2903 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2904 return true; 2905 } 2906 2907 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2908 assert(IntTy && "We cannot extract an integer from the alloca"); 2909 assert(!SI.isVolatile()); 2910 if (DL.getTypeSizeInBits(V->getType()).getFixedValue() != 2911 IntTy->getBitWidth()) { 2912 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2913 NewAI.getAlign(), "oldload"); 2914 Old = convertValue(DL, IRB, Old, IntTy); 2915 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2916 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2917 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2918 } 2919 V = convertValue(DL, IRB, V, NewAllocaTy); 2920 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2921 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2922 LLVMContext::MD_access_group}); 2923 if (AATags) 2924 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2925 2926 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store, 2927 Store->getPointerOperand(), Store->getValueOperand(), DL); 2928 2929 Pass.DeadInsts.push_back(&SI); 2930 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2931 return true; 2932 } 2933 2934 bool visitStoreInst(StoreInst &SI) { 2935 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2936 Value *OldOp = SI.getOperand(1); 2937 assert(OldOp == OldPtr); 2938 2939 AAMDNodes AATags = SI.getAAMetadata(); 2940 Value *V = SI.getValueOperand(); 2941 2942 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2943 // alloca that should be re-examined after promoting this alloca. 2944 if (V->getType()->isPointerTy()) 2945 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2946 Pass.PostPromotionWorklist.insert(AI); 2947 2948 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) { 2949 assert(!SI.isVolatile()); 2950 assert(V->getType()->isIntegerTy() && 2951 "Only integer type loads and stores are split"); 2952 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2953 "Non-byte-multiple bit width"); 2954 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2955 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2956 "extract"); 2957 } 2958 2959 if (VecTy) 2960 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2961 if (IntTy && V->getType()->isIntegerTy()) 2962 return rewriteIntegerStore(V, SI, AATags); 2963 2964 const bool IsStorePastEnd = 2965 DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize; 2966 StoreInst *NewSI; 2967 if (NewBeginOffset == NewAllocaBeginOffset && 2968 NewEndOffset == NewAllocaEndOffset && 2969 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2970 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2971 V->getType()->isIntegerTy()))) { 2972 // If this is an integer store past the end of slice (and thus the bytes 2973 // past that point are irrelevant or this is unreachable), truncate the 2974 // value prior to storing. 2975 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2976 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2977 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2978 if (DL.isBigEndian()) 2979 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2980 "endian_shift"); 2981 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2982 } 2983 2984 V = convertValue(DL, IRB, V, NewAllocaTy); 2985 Value *NewPtr = 2986 getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile()); 2987 2988 NewSI = 2989 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile()); 2990 } else { 2991 unsigned AS = SI.getPointerAddressSpace(); 2992 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2993 NewSI = 2994 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2995 } 2996 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2997 LLVMContext::MD_access_group}); 2998 if (AATags) 2999 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3000 if (SI.isVolatile()) 3001 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 3002 if (NewSI->isAtomic()) 3003 NewSI->setAlignment(SI.getAlign()); 3004 3005 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, NewSI, 3006 NewSI->getPointerOperand(), NewSI->getValueOperand(), DL); 3007 3008 Pass.DeadInsts.push_back(&SI); 3009 deleteIfTriviallyDead(OldOp); 3010 3011 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 3012 return NewSI->getPointerOperand() == &NewAI && 3013 NewSI->getValueOperand()->getType() == NewAllocaTy && 3014 !SI.isVolatile(); 3015 } 3016 3017 /// Compute an integer value from splatting an i8 across the given 3018 /// number of bytes. 3019 /// 3020 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 3021 /// call this routine. 3022 /// FIXME: Heed the advice above. 3023 /// 3024 /// \param V The i8 value to splat. 3025 /// \param Size The number of bytes in the output (assuming i8 is one byte) 3026 Value *getIntegerSplat(Value *V, unsigned Size) { 3027 assert(Size > 0 && "Expected a positive number of bytes."); 3028 IntegerType *VTy = cast<IntegerType>(V->getType()); 3029 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 3030 if (Size == 1) 3031 return V; 3032 3033 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 3034 V = IRB.CreateMul( 3035 IRB.CreateZExt(V, SplatIntTy, "zext"), 3036 IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy), 3037 IRB.CreateZExt(Constant::getAllOnesValue(V->getType()), 3038 SplatIntTy)), 3039 "isplat"); 3040 return V; 3041 } 3042 3043 /// Compute a vector splat for a given element value. 3044 Value *getVectorSplat(Value *V, unsigned NumElements) { 3045 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 3046 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 3047 return V; 3048 } 3049 3050 bool visitMemSetInst(MemSetInst &II) { 3051 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3052 assert(II.getRawDest() == OldPtr); 3053 3054 AAMDNodes AATags = II.getAAMetadata(); 3055 3056 // If the memset has a variable size, it cannot be split, just adjust the 3057 // pointer to the new alloca. 3058 if (!isa<ConstantInt>(II.getLength())) { 3059 assert(!IsSplit); 3060 assert(NewBeginOffset == BeginOffset); 3061 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 3062 II.setDestAlignment(getSliceAlign()); 3063 // In theory we should call migrateDebugInfo here. However, we do not 3064 // emit dbg.assign intrinsics for mem intrinsics storing through non- 3065 // constant geps, or storing a variable number of bytes. 3066 assert(at::getAssignmentMarkers(&II).empty() && 3067 "AT: Unexpected link to non-const GEP"); 3068 deleteIfTriviallyDead(OldPtr); 3069 return false; 3070 } 3071 3072 // Record this instruction for deletion. 3073 Pass.DeadInsts.push_back(&II); 3074 3075 Type *AllocaTy = NewAI.getAllocatedType(); 3076 Type *ScalarTy = AllocaTy->getScalarType(); 3077 3078 const bool CanContinue = [&]() { 3079 if (VecTy || IntTy) 3080 return true; 3081 if (BeginOffset > NewAllocaBeginOffset || 3082 EndOffset < NewAllocaEndOffset) 3083 return false; 3084 // Length must be in range for FixedVectorType. 3085 auto *C = cast<ConstantInt>(II.getLength()); 3086 const uint64_t Len = C->getLimitedValue(); 3087 if (Len > std::numeric_limits<unsigned>::max()) 3088 return false; 3089 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 3090 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 3091 return canConvertValue(DL, SrcTy, AllocaTy) && 3092 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue()); 3093 }(); 3094 3095 // If this doesn't map cleanly onto the alloca type, and that type isn't 3096 // a single value type, just emit a memset. 3097 if (!CanContinue) { 3098 Type *SizeTy = II.getLength()->getType(); 3099 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3100 MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet( 3101 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 3102 MaybeAlign(getSliceAlign()), II.isVolatile())); 3103 if (AATags) 3104 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3105 3106 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New, 3107 New->getRawDest(), nullptr, DL); 3108 3109 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3110 return false; 3111 } 3112 3113 // If we can represent this as a simple value, we have to build the actual 3114 // value to store, which requires expanding the byte present in memset to 3115 // a sensible representation for the alloca type. This is essentially 3116 // splatting the byte to a sufficiently wide integer, splatting it across 3117 // any desired vector width, and bitcasting to the final type. 3118 Value *V; 3119 3120 if (VecTy) { 3121 // If this is a memset of a vectorized alloca, insert it. 3122 assert(ElementTy == ScalarTy); 3123 3124 unsigned BeginIndex = getIndex(NewBeginOffset); 3125 unsigned EndIndex = getIndex(NewEndOffset); 3126 assert(EndIndex > BeginIndex && "Empty vector!"); 3127 unsigned NumElements = EndIndex - BeginIndex; 3128 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 3129 "Too many elements!"); 3130 3131 Value *Splat = getIntegerSplat( 3132 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8); 3133 Splat = convertValue(DL, IRB, Splat, ElementTy); 3134 if (NumElements > 1) 3135 Splat = getVectorSplat(Splat, NumElements); 3136 3137 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3138 NewAI.getAlign(), "oldload"); 3139 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 3140 } else if (IntTy) { 3141 // If this is a memset on an alloca where we can widen stores, insert the 3142 // set integer. 3143 assert(!II.isVolatile()); 3144 3145 uint64_t Size = NewEndOffset - NewBeginOffset; 3146 V = getIntegerSplat(II.getValue(), Size); 3147 3148 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 3149 EndOffset != NewAllocaBeginOffset)) { 3150 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3151 NewAI.getAlign(), "oldload"); 3152 Old = convertValue(DL, IRB, Old, IntTy); 3153 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3154 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 3155 } else { 3156 assert(V->getType() == IntTy && 3157 "Wrong type for an alloca wide integer!"); 3158 } 3159 V = convertValue(DL, IRB, V, AllocaTy); 3160 } else { 3161 // Established these invariants above. 3162 assert(NewBeginOffset == NewAllocaBeginOffset); 3163 assert(NewEndOffset == NewAllocaEndOffset); 3164 3165 V = getIntegerSplat(II.getValue(), 3166 DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8); 3167 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 3168 V = getVectorSplat( 3169 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 3170 3171 V = convertValue(DL, IRB, V, AllocaTy); 3172 } 3173 3174 Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3175 StoreInst *New = 3176 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile()); 3177 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3178 LLVMContext::MD_access_group}); 3179 if (AATags) 3180 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3181 3182 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New, 3183 New->getPointerOperand(), V, DL); 3184 3185 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3186 return !II.isVolatile(); 3187 } 3188 3189 bool visitMemTransferInst(MemTransferInst &II) { 3190 // Rewriting of memory transfer instructions can be a bit tricky. We break 3191 // them into two categories: split intrinsics and unsplit intrinsics. 3192 3193 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3194 3195 AAMDNodes AATags = II.getAAMetadata(); 3196 3197 bool IsDest = &II.getRawDestUse() == OldUse; 3198 assert((IsDest && II.getRawDest() == OldPtr) || 3199 (!IsDest && II.getRawSource() == OldPtr)); 3200 3201 Align SliceAlign = getSliceAlign(); 3202 // For unsplit intrinsics, we simply modify the source and destination 3203 // pointers in place. This isn't just an optimization, it is a matter of 3204 // correctness. With unsplit intrinsics we may be dealing with transfers 3205 // within a single alloca before SROA ran, or with transfers that have 3206 // a variable length. We may also be dealing with memmove instead of 3207 // memcpy, and so simply updating the pointers is the necessary for us to 3208 // update both source and dest of a single call. 3209 if (!IsSplittable) { 3210 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3211 if (IsDest) { 3212 // Update the address component of linked dbg.assigns. 3213 for (auto *DAI : at::getAssignmentMarkers(&II)) { 3214 if (any_of(DAI->location_ops(), 3215 [&](Value *V) { return V == II.getDest(); }) || 3216 DAI->getAddress() == II.getDest()) 3217 DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr); 3218 } 3219 II.setDest(AdjustedPtr); 3220 II.setDestAlignment(SliceAlign); 3221 } else { 3222 II.setSource(AdjustedPtr); 3223 II.setSourceAlignment(SliceAlign); 3224 } 3225 3226 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 3227 deleteIfTriviallyDead(OldPtr); 3228 return false; 3229 } 3230 // For split transfer intrinsics we have an incredibly useful assurance: 3231 // the source and destination do not reside within the same alloca, and at 3232 // least one of them does not escape. This means that we can replace 3233 // memmove with memcpy, and we don't need to worry about all manner of 3234 // downsides to splitting and transforming the operations. 3235 3236 // If this doesn't map cleanly onto the alloca type, and that type isn't 3237 // a single value type, just emit a memcpy. 3238 bool EmitMemCpy = 3239 !VecTy && !IntTy && 3240 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 3241 SliceSize != 3242 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() || 3243 !NewAI.getAllocatedType()->isSingleValueType()); 3244 3245 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 3246 // size hasn't been shrunk based on analysis of the viable range, this is 3247 // a no-op. 3248 if (EmitMemCpy && &OldAI == &NewAI) { 3249 // Ensure the start lines up. 3250 assert(NewBeginOffset == BeginOffset); 3251 3252 // Rewrite the size as needed. 3253 if (NewEndOffset != EndOffset) 3254 II.setLength(ConstantInt::get(II.getLength()->getType(), 3255 NewEndOffset - NewBeginOffset)); 3256 return false; 3257 } 3258 // Record this instruction for deletion. 3259 Pass.DeadInsts.push_back(&II); 3260 3261 // Strip all inbounds GEPs and pointer casts to try to dig out any root 3262 // alloca that should be re-examined after rewriting this instruction. 3263 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 3264 if (AllocaInst *AI = 3265 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 3266 assert(AI != &OldAI && AI != &NewAI && 3267 "Splittable transfers cannot reach the same alloca on both ends."); 3268 Pass.Worklist.insert(AI); 3269 } 3270 3271 Type *OtherPtrTy = OtherPtr->getType(); 3272 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 3273 3274 // Compute the relative offset for the other pointer within the transfer. 3275 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 3276 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 3277 Align OtherAlign = 3278 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 3279 OtherAlign = 3280 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 3281 3282 if (EmitMemCpy) { 3283 // Compute the other pointer, folding as much as possible to produce 3284 // a single, simple GEP in most cases. 3285 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3286 OtherPtr->getName() + "."); 3287 3288 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3289 Type *SizeTy = II.getLength()->getType(); 3290 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3291 3292 Value *DestPtr, *SrcPtr; 3293 MaybeAlign DestAlign, SrcAlign; 3294 // Note: IsDest is true iff we're copying into the new alloca slice 3295 if (IsDest) { 3296 DestPtr = OurPtr; 3297 DestAlign = SliceAlign; 3298 SrcPtr = OtherPtr; 3299 SrcAlign = OtherAlign; 3300 } else { 3301 DestPtr = OtherPtr; 3302 DestAlign = OtherAlign; 3303 SrcPtr = OurPtr; 3304 SrcAlign = SliceAlign; 3305 } 3306 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 3307 Size, II.isVolatile()); 3308 if (AATags) 3309 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3310 3311 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New, 3312 DestPtr, nullptr, DL); 3313 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3314 return false; 3315 } 3316 3317 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3318 NewEndOffset == NewAllocaEndOffset; 3319 uint64_t Size = NewEndOffset - NewBeginOffset; 3320 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3321 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3322 unsigned NumElements = EndIndex - BeginIndex; 3323 IntegerType *SubIntTy = 3324 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3325 3326 // Reset the other pointer type to match the register type we're going to 3327 // use, but using the address space of the original other pointer. 3328 Type *OtherTy; 3329 if (VecTy && !IsWholeAlloca) { 3330 if (NumElements == 1) 3331 OtherTy = VecTy->getElementType(); 3332 else 3333 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3334 } else if (IntTy && !IsWholeAlloca) { 3335 OtherTy = SubIntTy; 3336 } else { 3337 OtherTy = NewAllocaTy; 3338 } 3339 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3340 3341 Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3342 OtherPtr->getName() + "."); 3343 MaybeAlign SrcAlign = OtherAlign; 3344 MaybeAlign DstAlign = SliceAlign; 3345 if (!IsDest) 3346 std::swap(SrcAlign, DstAlign); 3347 3348 Value *SrcPtr; 3349 Value *DstPtr; 3350 3351 if (IsDest) { 3352 DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3353 SrcPtr = AdjPtr; 3354 } else { 3355 DstPtr = AdjPtr; 3356 SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile()); 3357 } 3358 3359 Value *Src; 3360 if (VecTy && !IsWholeAlloca && !IsDest) { 3361 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3362 NewAI.getAlign(), "load"); 3363 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3364 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3365 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3366 NewAI.getAlign(), "load"); 3367 Src = convertValue(DL, IRB, Src, IntTy); 3368 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3369 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3370 } else { 3371 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3372 II.isVolatile(), "copyload"); 3373 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3374 LLVMContext::MD_access_group}); 3375 if (AATags) 3376 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3377 Src = Load; 3378 } 3379 3380 if (VecTy && !IsWholeAlloca && IsDest) { 3381 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3382 NewAI.getAlign(), "oldload"); 3383 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3384 } else if (IntTy && !IsWholeAlloca && IsDest) { 3385 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3386 NewAI.getAlign(), "oldload"); 3387 Old = convertValue(DL, IRB, Old, IntTy); 3388 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3389 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3390 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3391 } 3392 3393 StoreInst *Store = cast<StoreInst>( 3394 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3395 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3396 LLVMContext::MD_access_group}); 3397 if (AATags) 3398 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3399 3400 migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, Store, 3401 DstPtr, Src, DL); 3402 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3403 return !II.isVolatile(); 3404 } 3405 3406 bool visitIntrinsicInst(IntrinsicInst &II) { 3407 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3408 "Unexpected intrinsic!"); 3409 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3410 3411 // Record this instruction for deletion. 3412 Pass.DeadInsts.push_back(&II); 3413 3414 if (II.isDroppable()) { 3415 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3416 // TODO For now we forget assumed information, this can be improved. 3417 OldPtr->dropDroppableUsesIn(II); 3418 return true; 3419 } 3420 3421 assert(II.getArgOperand(1) == OldPtr); 3422 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3423 // Therefore, we drop lifetime intrinsics which don't cover the whole 3424 // alloca. 3425 // (In theory, intrinsics which partially cover an alloca could be 3426 // promoted, but PromoteMemToReg doesn't handle that case.) 3427 // FIXME: Check whether the alloca is promotable before dropping the 3428 // lifetime intrinsics? 3429 if (NewBeginOffset != NewAllocaBeginOffset || 3430 NewEndOffset != NewAllocaEndOffset) 3431 return true; 3432 3433 ConstantInt *Size = 3434 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3435 NewEndOffset - NewBeginOffset); 3436 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3437 // for the new alloca slice. 3438 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3439 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3440 Value *New; 3441 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3442 New = IRB.CreateLifetimeStart(Ptr, Size); 3443 else 3444 New = IRB.CreateLifetimeEnd(Ptr, Size); 3445 3446 (void)New; 3447 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3448 3449 return true; 3450 } 3451 3452 void fixLoadStoreAlign(Instruction &Root) { 3453 // This algorithm implements the same visitor loop as 3454 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3455 // or store found. 3456 SmallPtrSet<Instruction *, 4> Visited; 3457 SmallVector<Instruction *, 4> Uses; 3458 Visited.insert(&Root); 3459 Uses.push_back(&Root); 3460 do { 3461 Instruction *I = Uses.pop_back_val(); 3462 3463 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3464 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3465 continue; 3466 } 3467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3468 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3469 continue; 3470 } 3471 3472 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3473 isa<PHINode>(I) || isa<SelectInst>(I) || 3474 isa<GetElementPtrInst>(I)); 3475 for (User *U : I->users()) 3476 if (Visited.insert(cast<Instruction>(U)).second) 3477 Uses.push_back(cast<Instruction>(U)); 3478 } while (!Uses.empty()); 3479 } 3480 3481 bool visitPHINode(PHINode &PN) { 3482 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3483 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3484 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3485 3486 // We would like to compute a new pointer in only one place, but have it be 3487 // as local as possible to the PHI. To do that, we re-use the location of 3488 // the old pointer, which necessarily must be in the right position to 3489 // dominate the PHI. 3490 IRBuilderBase::InsertPointGuard Guard(IRB); 3491 if (isa<PHINode>(OldPtr)) 3492 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3493 else 3494 IRB.SetInsertPoint(OldPtr); 3495 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3496 3497 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3498 // Replace the operands which were using the old pointer. 3499 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3500 3501 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3502 deleteIfTriviallyDead(OldPtr); 3503 3504 // Fix the alignment of any loads or stores using this PHI node. 3505 fixLoadStoreAlign(PN); 3506 3507 // PHIs can't be promoted on their own, but often can be speculated. We 3508 // check the speculation outside of the rewriter so that we see the 3509 // fully-rewritten alloca. 3510 PHIUsers.insert(&PN); 3511 return true; 3512 } 3513 3514 bool visitSelectInst(SelectInst &SI) { 3515 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3516 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3517 "Pointer isn't an operand!"); 3518 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3519 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3520 3521 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3522 // Replace the operands which were using the old pointer. 3523 if (SI.getOperand(1) == OldPtr) 3524 SI.setOperand(1, NewPtr); 3525 if (SI.getOperand(2) == OldPtr) 3526 SI.setOperand(2, NewPtr); 3527 3528 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3529 deleteIfTriviallyDead(OldPtr); 3530 3531 // Fix the alignment of any loads or stores using this select. 3532 fixLoadStoreAlign(SI); 3533 3534 // Selects can't be promoted on their own, but often can be speculated. We 3535 // check the speculation outside of the rewriter so that we see the 3536 // fully-rewritten alloca. 3537 SelectUsers.insert(&SI); 3538 return true; 3539 } 3540 }; 3541 3542 namespace { 3543 3544 /// Visitor to rewrite aggregate loads and stores as scalar. 3545 /// 3546 /// This pass aggressively rewrites all aggregate loads and stores on 3547 /// a particular pointer (or any pointer derived from it which we can identify) 3548 /// with scalar loads and stores. 3549 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3550 // Befriend the base class so it can delegate to private visit methods. 3551 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3552 3553 /// Queue of pointer uses to analyze and potentially rewrite. 3554 SmallVector<Use *, 8> Queue; 3555 3556 /// Set to prevent us from cycling with phi nodes and loops. 3557 SmallPtrSet<User *, 8> Visited; 3558 3559 /// The current pointer use being rewritten. This is used to dig up the used 3560 /// value (as opposed to the user). 3561 Use *U = nullptr; 3562 3563 /// Used to calculate offsets, and hence alignment, of subobjects. 3564 const DataLayout &DL; 3565 3566 IRBuilderTy &IRB; 3567 3568 public: 3569 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3570 : DL(DL), IRB(IRB) {} 3571 3572 /// Rewrite loads and stores through a pointer and all pointers derived from 3573 /// it. 3574 bool rewrite(Instruction &I) { 3575 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3576 enqueueUsers(I); 3577 bool Changed = false; 3578 while (!Queue.empty()) { 3579 U = Queue.pop_back_val(); 3580 Changed |= visit(cast<Instruction>(U->getUser())); 3581 } 3582 return Changed; 3583 } 3584 3585 private: 3586 /// Enqueue all the users of the given instruction for further processing. 3587 /// This uses a set to de-duplicate users. 3588 void enqueueUsers(Instruction &I) { 3589 for (Use &U : I.uses()) 3590 if (Visited.insert(U.getUser()).second) 3591 Queue.push_back(&U); 3592 } 3593 3594 // Conservative default is to not rewrite anything. 3595 bool visitInstruction(Instruction &I) { return false; } 3596 3597 /// Generic recursive split emission class. 3598 template <typename Derived> class OpSplitter { 3599 protected: 3600 /// The builder used to form new instructions. 3601 IRBuilderTy &IRB; 3602 3603 /// The indices which to be used with insert- or extractvalue to select the 3604 /// appropriate value within the aggregate. 3605 SmallVector<unsigned, 4> Indices; 3606 3607 /// The indices to a GEP instruction which will move Ptr to the correct slot 3608 /// within the aggregate. 3609 SmallVector<Value *, 4> GEPIndices; 3610 3611 /// The base pointer of the original op, used as a base for GEPing the 3612 /// split operations. 3613 Value *Ptr; 3614 3615 /// The base pointee type being GEPed into. 3616 Type *BaseTy; 3617 3618 /// Known alignment of the base pointer. 3619 Align BaseAlign; 3620 3621 /// To calculate offset of each component so we can correctly deduce 3622 /// alignments. 3623 const DataLayout &DL; 3624 3625 /// Initialize the splitter with an insertion point, Ptr and start with a 3626 /// single zero GEP index. 3627 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3628 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3629 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3630 BaseAlign(BaseAlign), DL(DL) { 3631 IRB.SetInsertPoint(InsertionPoint); 3632 } 3633 3634 public: 3635 /// Generic recursive split emission routine. 3636 /// 3637 /// This method recursively splits an aggregate op (load or store) into 3638 /// scalar or vector ops. It splits recursively until it hits a single value 3639 /// and emits that single value operation via the template argument. 3640 /// 3641 /// The logic of this routine relies on GEPs and insertvalue and 3642 /// extractvalue all operating with the same fundamental index list, merely 3643 /// formatted differently (GEPs need actual values). 3644 /// 3645 /// \param Ty The type being split recursively into smaller ops. 3646 /// \param Agg The aggregate value being built up or stored, depending on 3647 /// whether this is splitting a load or a store respectively. 3648 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3649 if (Ty->isSingleValueType()) { 3650 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3651 return static_cast<Derived *>(this)->emitFunc( 3652 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3653 } 3654 3655 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3656 unsigned OldSize = Indices.size(); 3657 (void)OldSize; 3658 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3659 ++Idx) { 3660 assert(Indices.size() == OldSize && "Did not return to the old size"); 3661 Indices.push_back(Idx); 3662 GEPIndices.push_back(IRB.getInt32(Idx)); 3663 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3664 GEPIndices.pop_back(); 3665 Indices.pop_back(); 3666 } 3667 return; 3668 } 3669 3670 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3671 unsigned OldSize = Indices.size(); 3672 (void)OldSize; 3673 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3674 ++Idx) { 3675 assert(Indices.size() == OldSize && "Did not return to the old size"); 3676 Indices.push_back(Idx); 3677 GEPIndices.push_back(IRB.getInt32(Idx)); 3678 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3679 GEPIndices.pop_back(); 3680 Indices.pop_back(); 3681 } 3682 return; 3683 } 3684 3685 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3686 } 3687 }; 3688 3689 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3690 AAMDNodes AATags; 3691 3692 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3693 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3694 IRBuilderTy &IRB) 3695 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3696 IRB), 3697 AATags(AATags) {} 3698 3699 /// Emit a leaf load of a single value. This is called at the leaves of the 3700 /// recursive emission to actually load values. 3701 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3702 assert(Ty->isSingleValueType()); 3703 // Load the single value and insert it using the indices. 3704 Value *GEP = 3705 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3706 LoadInst *Load = 3707 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3708 3709 APInt Offset( 3710 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3711 if (AATags && 3712 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3713 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3714 3715 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3716 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3717 } 3718 }; 3719 3720 bool visitLoadInst(LoadInst &LI) { 3721 assert(LI.getPointerOperand() == *U); 3722 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3723 return false; 3724 3725 // We have an aggregate being loaded, split it apart. 3726 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3727 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3728 getAdjustedAlignment(&LI, 0), DL, IRB); 3729 Value *V = PoisonValue::get(LI.getType()); 3730 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3731 Visited.erase(&LI); 3732 LI.replaceAllUsesWith(V); 3733 LI.eraseFromParent(); 3734 return true; 3735 } 3736 3737 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3738 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3739 AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign, 3740 const DataLayout &DL, IRBuilderTy &IRB) 3741 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3742 DL, IRB), 3743 AATags(AATags), AggStore(AggStore) {} 3744 AAMDNodes AATags; 3745 StoreInst *AggStore; 3746 /// Emit a leaf store of a single value. This is called at the leaves of the 3747 /// recursive emission to actually produce stores. 3748 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3749 assert(Ty->isSingleValueType()); 3750 // Extract the single value and store it using the indices. 3751 // 3752 // The gep and extractvalue values are factored out of the CreateStore 3753 // call to make the output independent of the argument evaluation order. 3754 Value *ExtractValue = 3755 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3756 Value *InBoundsGEP = 3757 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3758 StoreInst *Store = 3759 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3760 3761 APInt Offset( 3762 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3763 if (AATags && 3764 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3765 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3766 3767 // migrateDebugInfo requires the base Alloca. Walk to it from this gep. 3768 // If we cannot (because there's an intervening non-const or unbounded 3769 // gep) then we wouldn't expect to see dbg.assign intrinsics linked to 3770 // this instruction. 3771 APInt OffsetInBytes(DL.getTypeSizeInBits(Ptr->getType()), false); 3772 Value *Base = InBoundsGEP->stripAndAccumulateInBoundsConstantOffsets( 3773 DL, OffsetInBytes); 3774 if (auto *OldAI = dyn_cast<AllocaInst>(Base)) { 3775 uint64_t SizeInBits = 3776 DL.getTypeSizeInBits(Store->getValueOperand()->getType()); 3777 migrateDebugInfo(OldAI, OffsetInBytes.getZExtValue() * 8, SizeInBits, 3778 AggStore, Store, Store->getPointerOperand(), 3779 Store->getValueOperand(), DL); 3780 } else { 3781 assert(at::getAssignmentMarkers(Store).empty() && 3782 "AT: unexpected debug.assign linked to store through " 3783 "unbounded GEP"); 3784 } 3785 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3786 } 3787 }; 3788 3789 bool visitStoreInst(StoreInst &SI) { 3790 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3791 return false; 3792 Value *V = SI.getValueOperand(); 3793 if (V->getType()->isSingleValueType()) 3794 return false; 3795 3796 // We have an aggregate being stored, split it apart. 3797 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3798 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI, 3799 getAdjustedAlignment(&SI, 0), DL, IRB); 3800 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3801 Visited.erase(&SI); 3802 SI.eraseFromParent(); 3803 return true; 3804 } 3805 3806 bool visitBitCastInst(BitCastInst &BC) { 3807 enqueueUsers(BC); 3808 return false; 3809 } 3810 3811 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3812 enqueueUsers(ASC); 3813 return false; 3814 } 3815 3816 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3817 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3818 if (!GEPI.hasAllConstantIndices()) 3819 return false; 3820 3821 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3822 3823 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3824 << "\n original: " << *Sel 3825 << "\n " << GEPI); 3826 3827 IRB.SetInsertPoint(&GEPI); 3828 SmallVector<Value *, 4> Index(GEPI.indices()); 3829 bool IsInBounds = GEPI.isInBounds(); 3830 3831 Type *Ty = GEPI.getSourceElementType(); 3832 Value *True = Sel->getTrueValue(); 3833 Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep", 3834 IsInBounds); 3835 3836 Value *False = Sel->getFalseValue(); 3837 3838 Value *NFalse = IRB.CreateGEP(Ty, False, Index, 3839 False->getName() + ".sroa.gep", IsInBounds); 3840 3841 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3842 Sel->getName() + ".sroa.sel"); 3843 Visited.erase(&GEPI); 3844 GEPI.replaceAllUsesWith(NSel); 3845 GEPI.eraseFromParent(); 3846 Instruction *NSelI = cast<Instruction>(NSel); 3847 Visited.insert(NSelI); 3848 enqueueUsers(*NSelI); 3849 3850 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3851 << "\n " << *NFalse 3852 << "\n " << *NSel << '\n'); 3853 3854 return true; 3855 } 3856 3857 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3858 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3859 if (!GEPI.hasAllConstantIndices()) 3860 return false; 3861 3862 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3863 if (GEPI.getParent() != PHI->getParent() || 3864 llvm::any_of(PHI->incoming_values(), [](Value *In) 3865 { Instruction *I = dyn_cast<Instruction>(In); 3866 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3867 succ_empty(I->getParent()) || 3868 !I->getParent()->isLegalToHoistInto(); 3869 })) 3870 return false; 3871 3872 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3873 << "\n original: " << *PHI 3874 << "\n " << GEPI 3875 << "\n to: "); 3876 3877 SmallVector<Value *, 4> Index(GEPI.indices()); 3878 bool IsInBounds = GEPI.isInBounds(); 3879 IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI()); 3880 PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), 3881 PHI->getName() + ".sroa.phi"); 3882 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3883 BasicBlock *B = PHI->getIncomingBlock(I); 3884 Value *NewVal = nullptr; 3885 int Idx = NewPN->getBasicBlockIndex(B); 3886 if (Idx >= 0) { 3887 NewVal = NewPN->getIncomingValue(Idx); 3888 } else { 3889 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3890 3891 IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator())); 3892 Type *Ty = GEPI.getSourceElementType(); 3893 NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep", 3894 IsInBounds); 3895 } 3896 NewPN->addIncoming(NewVal, B); 3897 } 3898 3899 Visited.erase(&GEPI); 3900 GEPI.replaceAllUsesWith(NewPN); 3901 GEPI.eraseFromParent(); 3902 Visited.insert(NewPN); 3903 enqueueUsers(*NewPN); 3904 3905 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3906 dbgs() << "\n " << *In; 3907 dbgs() << "\n " << *NewPN << '\n'); 3908 3909 return true; 3910 } 3911 3912 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3913 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3914 foldGEPSelect(GEPI)) 3915 return true; 3916 3917 if (isa<PHINode>(GEPI.getPointerOperand()) && 3918 foldGEPPhi(GEPI)) 3919 return true; 3920 3921 enqueueUsers(GEPI); 3922 return false; 3923 } 3924 3925 bool visitPHINode(PHINode &PN) { 3926 enqueueUsers(PN); 3927 return false; 3928 } 3929 3930 bool visitSelectInst(SelectInst &SI) { 3931 enqueueUsers(SI); 3932 return false; 3933 } 3934 }; 3935 3936 } // end anonymous namespace 3937 3938 /// Strip aggregate type wrapping. 3939 /// 3940 /// This removes no-op aggregate types wrapping an underlying type. It will 3941 /// strip as many layers of types as it can without changing either the type 3942 /// size or the allocated size. 3943 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3944 if (Ty->isSingleValueType()) 3945 return Ty; 3946 3947 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue(); 3948 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); 3949 3950 Type *InnerTy; 3951 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3952 InnerTy = ArrTy->getElementType(); 3953 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3954 const StructLayout *SL = DL.getStructLayout(STy); 3955 unsigned Index = SL->getElementContainingOffset(0); 3956 InnerTy = STy->getElementType(Index); 3957 } else { 3958 return Ty; 3959 } 3960 3961 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() || 3962 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue()) 3963 return Ty; 3964 3965 return stripAggregateTypeWrapping(DL, InnerTy); 3966 } 3967 3968 /// Try to find a partition of the aggregate type passed in for a given 3969 /// offset and size. 3970 /// 3971 /// This recurses through the aggregate type and tries to compute a subtype 3972 /// based on the offset and size. When the offset and size span a sub-section 3973 /// of an array, it will even compute a new array type for that sub-section, 3974 /// and the same for structs. 3975 /// 3976 /// Note that this routine is very strict and tries to find a partition of the 3977 /// type which produces the *exact* right offset and size. It is not forgiving 3978 /// when the size or offset cause either end of type-based partition to be off. 3979 /// Also, this is a best-effort routine. It is reasonable to give up and not 3980 /// return a type if necessary. 3981 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3982 uint64_t Size) { 3983 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size) 3984 return stripAggregateTypeWrapping(DL, Ty); 3985 if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() || 3986 (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size) 3987 return nullptr; 3988 3989 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3990 Type *ElementTy; 3991 uint64_t TyNumElements; 3992 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3993 ElementTy = AT->getElementType(); 3994 TyNumElements = AT->getNumElements(); 3995 } else { 3996 // FIXME: This isn't right for vectors with non-byte-sized or 3997 // non-power-of-two sized elements. 3998 auto *VT = cast<FixedVectorType>(Ty); 3999 ElementTy = VT->getElementType(); 4000 TyNumElements = VT->getNumElements(); 4001 } 4002 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 4003 uint64_t NumSkippedElements = Offset / ElementSize; 4004 if (NumSkippedElements >= TyNumElements) 4005 return nullptr; 4006 Offset -= NumSkippedElements * ElementSize; 4007 4008 // First check if we need to recurse. 4009 if (Offset > 0 || Size < ElementSize) { 4010 // Bail if the partition ends in a different array element. 4011 if ((Offset + Size) > ElementSize) 4012 return nullptr; 4013 // Recurse through the element type trying to peel off offset bytes. 4014 return getTypePartition(DL, ElementTy, Offset, Size); 4015 } 4016 assert(Offset == 0); 4017 4018 if (Size == ElementSize) 4019 return stripAggregateTypeWrapping(DL, ElementTy); 4020 assert(Size > ElementSize); 4021 uint64_t NumElements = Size / ElementSize; 4022 if (NumElements * ElementSize != Size) 4023 return nullptr; 4024 return ArrayType::get(ElementTy, NumElements); 4025 } 4026 4027 StructType *STy = dyn_cast<StructType>(Ty); 4028 if (!STy) 4029 return nullptr; 4030 4031 const StructLayout *SL = DL.getStructLayout(STy); 4032 if (Offset >= SL->getSizeInBytes()) 4033 return nullptr; 4034 uint64_t EndOffset = Offset + Size; 4035 if (EndOffset > SL->getSizeInBytes()) 4036 return nullptr; 4037 4038 unsigned Index = SL->getElementContainingOffset(Offset); 4039 Offset -= SL->getElementOffset(Index); 4040 4041 Type *ElementTy = STy->getElementType(Index); 4042 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 4043 if (Offset >= ElementSize) 4044 return nullptr; // The offset points into alignment padding. 4045 4046 // See if any partition must be contained by the element. 4047 if (Offset > 0 || Size < ElementSize) { 4048 if ((Offset + Size) > ElementSize) 4049 return nullptr; 4050 return getTypePartition(DL, ElementTy, Offset, Size); 4051 } 4052 assert(Offset == 0); 4053 4054 if (Size == ElementSize) 4055 return stripAggregateTypeWrapping(DL, ElementTy); 4056 4057 StructType::element_iterator EI = STy->element_begin() + Index, 4058 EE = STy->element_end(); 4059 if (EndOffset < SL->getSizeInBytes()) { 4060 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 4061 if (Index == EndIndex) 4062 return nullptr; // Within a single element and its padding. 4063 4064 // Don't try to form "natural" types if the elements don't line up with the 4065 // expected size. 4066 // FIXME: We could potentially recurse down through the last element in the 4067 // sub-struct to find a natural end point. 4068 if (SL->getElementOffset(EndIndex) != EndOffset) 4069 return nullptr; 4070 4071 assert(Index < EndIndex); 4072 EE = STy->element_begin() + EndIndex; 4073 } 4074 4075 // Try to build up a sub-structure. 4076 StructType *SubTy = 4077 StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked()); 4078 const StructLayout *SubSL = DL.getStructLayout(SubTy); 4079 if (Size != SubSL->getSizeInBytes()) 4080 return nullptr; // The sub-struct doesn't have quite the size needed. 4081 4082 return SubTy; 4083 } 4084 4085 /// Pre-split loads and stores to simplify rewriting. 4086 /// 4087 /// We want to break up the splittable load+store pairs as much as 4088 /// possible. This is important to do as a preprocessing step, as once we 4089 /// start rewriting the accesses to partitions of the alloca we lose the 4090 /// necessary information to correctly split apart paired loads and stores 4091 /// which both point into this alloca. The case to consider is something like 4092 /// the following: 4093 /// 4094 /// %a = alloca [12 x i8] 4095 /// %gep1 = getelementptr i8, ptr %a, i32 0 4096 /// %gep2 = getelementptr i8, ptr %a, i32 4 4097 /// %gep3 = getelementptr i8, ptr %a, i32 8 4098 /// store float 0.0, ptr %gep1 4099 /// store float 1.0, ptr %gep2 4100 /// %v = load i64, ptr %gep1 4101 /// store i64 %v, ptr %gep2 4102 /// %f1 = load float, ptr %gep2 4103 /// %f2 = load float, ptr %gep3 4104 /// 4105 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 4106 /// promote everything so we recover the 2 SSA values that should have been 4107 /// there all along. 4108 /// 4109 /// \returns true if any changes are made. 4110 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 4111 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 4112 4113 // Track the loads and stores which are candidates for pre-splitting here, in 4114 // the order they first appear during the partition scan. These give stable 4115 // iteration order and a basis for tracking which loads and stores we 4116 // actually split. 4117 SmallVector<LoadInst *, 4> Loads; 4118 SmallVector<StoreInst *, 4> Stores; 4119 4120 // We need to accumulate the splits required of each load or store where we 4121 // can find them via a direct lookup. This is important to cross-check loads 4122 // and stores against each other. We also track the slice so that we can kill 4123 // all the slices that end up split. 4124 struct SplitOffsets { 4125 Slice *S; 4126 std::vector<uint64_t> Splits; 4127 }; 4128 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 4129 4130 // Track loads out of this alloca which cannot, for any reason, be pre-split. 4131 // This is important as we also cannot pre-split stores of those loads! 4132 // FIXME: This is all pretty gross. It means that we can be more aggressive 4133 // in pre-splitting when the load feeding the store happens to come from 4134 // a separate alloca. Put another way, the effectiveness of SROA would be 4135 // decreased by a frontend which just concatenated all of its local allocas 4136 // into one big flat alloca. But defeating such patterns is exactly the job 4137 // SROA is tasked with! Sadly, to not have this discrepancy we would have 4138 // change store pre-splitting to actually force pre-splitting of the load 4139 // that feeds it *and all stores*. That makes pre-splitting much harder, but 4140 // maybe it would make it more principled? 4141 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 4142 4143 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 4144 for (auto &P : AS.partitions()) { 4145 for (Slice &S : P) { 4146 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 4147 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 4148 // If this is a load we have to track that it can't participate in any 4149 // pre-splitting. If this is a store of a load we have to track that 4150 // that load also can't participate in any pre-splitting. 4151 if (auto *LI = dyn_cast<LoadInst>(I)) 4152 UnsplittableLoads.insert(LI); 4153 else if (auto *SI = dyn_cast<StoreInst>(I)) 4154 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 4155 UnsplittableLoads.insert(LI); 4156 continue; 4157 } 4158 assert(P.endOffset() > S.beginOffset() && 4159 "Empty or backwards partition!"); 4160 4161 // Determine if this is a pre-splittable slice. 4162 if (auto *LI = dyn_cast<LoadInst>(I)) { 4163 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 4164 4165 // The load must be used exclusively to store into other pointers for 4166 // us to be able to arbitrarily pre-split it. The stores must also be 4167 // simple to avoid changing semantics. 4168 auto IsLoadSimplyStored = [](LoadInst *LI) { 4169 for (User *LU : LI->users()) { 4170 auto *SI = dyn_cast<StoreInst>(LU); 4171 if (!SI || !SI->isSimple()) 4172 return false; 4173 } 4174 return true; 4175 }; 4176 if (!IsLoadSimplyStored(LI)) { 4177 UnsplittableLoads.insert(LI); 4178 continue; 4179 } 4180 4181 Loads.push_back(LI); 4182 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 4183 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 4184 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 4185 continue; 4186 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 4187 if (!StoredLoad || !StoredLoad->isSimple()) 4188 continue; 4189 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 4190 4191 Stores.push_back(SI); 4192 } else { 4193 // Other uses cannot be pre-split. 4194 continue; 4195 } 4196 4197 // Record the initial split. 4198 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 4199 auto &Offsets = SplitOffsetsMap[I]; 4200 assert(Offsets.Splits.empty() && 4201 "Should not have splits the first time we see an instruction!"); 4202 Offsets.S = &S; 4203 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 4204 } 4205 4206 // Now scan the already split slices, and add a split for any of them which 4207 // we're going to pre-split. 4208 for (Slice *S : P.splitSliceTails()) { 4209 auto SplitOffsetsMapI = 4210 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 4211 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 4212 continue; 4213 auto &Offsets = SplitOffsetsMapI->second; 4214 4215 assert(Offsets.S == S && "Found a mismatched slice!"); 4216 assert(!Offsets.Splits.empty() && 4217 "Cannot have an empty set of splits on the second partition!"); 4218 assert(Offsets.Splits.back() == 4219 P.beginOffset() - Offsets.S->beginOffset() && 4220 "Previous split does not end where this one begins!"); 4221 4222 // Record each split. The last partition's end isn't needed as the size 4223 // of the slice dictates that. 4224 if (S->endOffset() > P.endOffset()) 4225 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 4226 } 4227 } 4228 4229 // We may have split loads where some of their stores are split stores. For 4230 // such loads and stores, we can only pre-split them if their splits exactly 4231 // match relative to their starting offset. We have to verify this prior to 4232 // any rewriting. 4233 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 4234 // Lookup the load we are storing in our map of split 4235 // offsets. 4236 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4237 // If it was completely unsplittable, then we're done, 4238 // and this store can't be pre-split. 4239 if (UnsplittableLoads.count(LI)) 4240 return true; 4241 4242 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 4243 if (LoadOffsetsI == SplitOffsetsMap.end()) 4244 return false; // Unrelated loads are definitely safe. 4245 auto &LoadOffsets = LoadOffsetsI->second; 4246 4247 // Now lookup the store's offsets. 4248 auto &StoreOffsets = SplitOffsetsMap[SI]; 4249 4250 // If the relative offsets of each split in the load and 4251 // store match exactly, then we can split them and we 4252 // don't need to remove them here. 4253 if (LoadOffsets.Splits == StoreOffsets.Splits) 4254 return false; 4255 4256 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 4257 << " " << *LI << "\n" 4258 << " " << *SI << "\n"); 4259 4260 // We've found a store and load that we need to split 4261 // with mismatched relative splits. Just give up on them 4262 // and remove both instructions from our list of 4263 // candidates. 4264 UnsplittableLoads.insert(LI); 4265 return true; 4266 }); 4267 // Now we have to go *back* through all the stores, because a later store may 4268 // have caused an earlier store's load to become unsplittable and if it is 4269 // unsplittable for the later store, then we can't rely on it being split in 4270 // the earlier store either. 4271 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 4272 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4273 return UnsplittableLoads.count(LI); 4274 }); 4275 // Once we've established all the loads that can't be split for some reason, 4276 // filter any that made it into our list out. 4277 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 4278 return UnsplittableLoads.count(LI); 4279 }); 4280 4281 // If no loads or stores are left, there is no pre-splitting to be done for 4282 // this alloca. 4283 if (Loads.empty() && Stores.empty()) 4284 return false; 4285 4286 // From here on, we can't fail and will be building new accesses, so rig up 4287 // an IR builder. 4288 IRBuilderTy IRB(&AI); 4289 4290 // Collect the new slices which we will merge into the alloca slices. 4291 SmallVector<Slice, 4> NewSlices; 4292 4293 // Track any allocas we end up splitting loads and stores for so we iterate 4294 // on them. 4295 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 4296 4297 // At this point, we have collected all of the loads and stores we can 4298 // pre-split, and the specific splits needed for them. We actually do the 4299 // splitting in a specific order in order to handle when one of the loads in 4300 // the value operand to one of the stores. 4301 // 4302 // First, we rewrite all of the split loads, and just accumulate each split 4303 // load in a parallel structure. We also build the slices for them and append 4304 // them to the alloca slices. 4305 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 4306 std::vector<LoadInst *> SplitLoads; 4307 const DataLayout &DL = AI.getModule()->getDataLayout(); 4308 for (LoadInst *LI : Loads) { 4309 SplitLoads.clear(); 4310 4311 auto &Offsets = SplitOffsetsMap[LI]; 4312 unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); 4313 assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && 4314 "Load must have type size equal to store size"); 4315 assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && 4316 "Load must be >= slice size"); 4317 4318 uint64_t BaseOffset = Offsets.S->beginOffset(); 4319 assert(BaseOffset + SliceSize > BaseOffset && 4320 "Cannot represent alloca access size using 64-bit integers!"); 4321 4322 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 4323 IRB.SetInsertPoint(LI); 4324 4325 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 4326 4327 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4328 int Idx = 0, Size = Offsets.Splits.size(); 4329 for (;;) { 4330 auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8); 4331 auto AS = LI->getPointerAddressSpace(); 4332 auto *PartPtrTy = PartTy->getPointerTo(AS); 4333 LoadInst *PLoad = IRB.CreateAlignedLoad( 4334 PartTy, 4335 getAdjustedPtr(IRB, DL, BasePtr, 4336 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4337 PartPtrTy, BasePtr->getName() + "."), 4338 getAdjustedAlignment(LI, PartOffset), 4339 /*IsVolatile*/ false, LI->getName()); 4340 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4341 LLVMContext::MD_access_group}); 4342 4343 // Append this load onto the list of split loads so we can find it later 4344 // to rewrite the stores. 4345 SplitLoads.push_back(PLoad); 4346 4347 // Now build a new slice for the alloca. 4348 NewSlices.push_back( 4349 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4350 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4351 /*IsSplittable*/ false)); 4352 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4353 << ", " << NewSlices.back().endOffset() 4354 << "): " << *PLoad << "\n"); 4355 4356 // See if we've handled all the splits. 4357 if (Idx >= Size) 4358 break; 4359 4360 // Setup the next partition. 4361 PartOffset = Offsets.Splits[Idx]; 4362 ++Idx; 4363 PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; 4364 } 4365 4366 // Now that we have the split loads, do the slow walk over all uses of the 4367 // load and rewrite them as split stores, or save the split loads to use 4368 // below if the store is going to be split there anyways. 4369 bool DeferredStores = false; 4370 for (User *LU : LI->users()) { 4371 StoreInst *SI = cast<StoreInst>(LU); 4372 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4373 DeferredStores = true; 4374 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4375 << "\n"); 4376 continue; 4377 } 4378 4379 Value *StoreBasePtr = SI->getPointerOperand(); 4380 IRB.SetInsertPoint(SI); 4381 4382 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4383 4384 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4385 LoadInst *PLoad = SplitLoads[Idx]; 4386 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4387 auto *PartPtrTy = 4388 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4389 4390 auto AS = SI->getPointerAddressSpace(); 4391 StoreInst *PStore = IRB.CreateAlignedStore( 4392 PLoad, 4393 getAdjustedPtr(IRB, DL, StoreBasePtr, 4394 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4395 PartPtrTy, StoreBasePtr->getName() + "."), 4396 getAdjustedAlignment(SI, PartOffset), 4397 /*IsVolatile*/ false); 4398 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4399 LLVMContext::MD_access_group, 4400 LLVMContext::MD_DIAssignID}); 4401 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4402 } 4403 4404 // We want to immediately iterate on any allocas impacted by splitting 4405 // this store, and we have to track any promotable alloca (indicated by 4406 // a direct store) as needing to be resplit because it is no longer 4407 // promotable. 4408 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4409 ResplitPromotableAllocas.insert(OtherAI); 4410 Worklist.insert(OtherAI); 4411 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4412 StoreBasePtr->stripInBoundsOffsets())) { 4413 Worklist.insert(OtherAI); 4414 } 4415 4416 // Mark the original store as dead. 4417 DeadInsts.push_back(SI); 4418 } 4419 4420 // Save the split loads if there are deferred stores among the users. 4421 if (DeferredStores) 4422 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4423 4424 // Mark the original load as dead and kill the original slice. 4425 DeadInsts.push_back(LI); 4426 Offsets.S->kill(); 4427 } 4428 4429 // Second, we rewrite all of the split stores. At this point, we know that 4430 // all loads from this alloca have been split already. For stores of such 4431 // loads, we can simply look up the pre-existing split loads. For stores of 4432 // other loads, we split those loads first and then write split stores of 4433 // them. 4434 for (StoreInst *SI : Stores) { 4435 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4436 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4437 assert(Ty->getBitWidth() % 8 == 0); 4438 uint64_t StoreSize = Ty->getBitWidth() / 8; 4439 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4440 4441 auto &Offsets = SplitOffsetsMap[SI]; 4442 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4443 "Slice size should always match load size exactly!"); 4444 uint64_t BaseOffset = Offsets.S->beginOffset(); 4445 assert(BaseOffset + StoreSize > BaseOffset && 4446 "Cannot represent alloca access size using 64-bit integers!"); 4447 4448 Value *LoadBasePtr = LI->getPointerOperand(); 4449 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4450 4451 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4452 4453 // Check whether we have an already split load. 4454 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4455 std::vector<LoadInst *> *SplitLoads = nullptr; 4456 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4457 SplitLoads = &SplitLoadsMapI->second; 4458 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4459 "Too few split loads for the number of splits in the store!"); 4460 } else { 4461 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4462 } 4463 4464 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4465 int Idx = 0, Size = Offsets.Splits.size(); 4466 for (;;) { 4467 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4468 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4469 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4470 4471 // Either lookup a split load or create one. 4472 LoadInst *PLoad; 4473 if (SplitLoads) { 4474 PLoad = (*SplitLoads)[Idx]; 4475 } else { 4476 IRB.SetInsertPoint(LI); 4477 auto AS = LI->getPointerAddressSpace(); 4478 PLoad = IRB.CreateAlignedLoad( 4479 PartTy, 4480 getAdjustedPtr(IRB, DL, LoadBasePtr, 4481 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4482 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4483 getAdjustedAlignment(LI, PartOffset), 4484 /*IsVolatile*/ false, LI->getName()); 4485 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4486 LLVMContext::MD_access_group}); 4487 } 4488 4489 // And store this partition. 4490 IRB.SetInsertPoint(SI); 4491 auto AS = SI->getPointerAddressSpace(); 4492 StoreInst *PStore = IRB.CreateAlignedStore( 4493 PLoad, 4494 getAdjustedPtr(IRB, DL, StoreBasePtr, 4495 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4496 StorePartPtrTy, StoreBasePtr->getName() + "."), 4497 getAdjustedAlignment(SI, PartOffset), 4498 /*IsVolatile*/ false); 4499 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4500 LLVMContext::MD_access_group}); 4501 4502 // Now build a new slice for the alloca. 4503 NewSlices.push_back( 4504 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4505 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4506 /*IsSplittable*/ false)); 4507 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4508 << ", " << NewSlices.back().endOffset() 4509 << "): " << *PStore << "\n"); 4510 if (!SplitLoads) { 4511 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4512 } 4513 4514 // See if we've finished all the splits. 4515 if (Idx >= Size) 4516 break; 4517 4518 // Setup the next partition. 4519 PartOffset = Offsets.Splits[Idx]; 4520 ++Idx; 4521 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4522 } 4523 4524 // We want to immediately iterate on any allocas impacted by splitting 4525 // this load, which is only relevant if it isn't a load of this alloca and 4526 // thus we didn't already split the loads above. We also have to keep track 4527 // of any promotable allocas we split loads on as they can no longer be 4528 // promoted. 4529 if (!SplitLoads) { 4530 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4531 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4532 ResplitPromotableAllocas.insert(OtherAI); 4533 Worklist.insert(OtherAI); 4534 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4535 LoadBasePtr->stripInBoundsOffsets())) { 4536 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4537 Worklist.insert(OtherAI); 4538 } 4539 } 4540 4541 // Mark the original store as dead now that we've split it up and kill its 4542 // slice. Note that we leave the original load in place unless this store 4543 // was its only use. It may in turn be split up if it is an alloca load 4544 // for some other alloca, but it may be a normal load. This may introduce 4545 // redundant loads, but where those can be merged the rest of the optimizer 4546 // should handle the merging, and this uncovers SSA splits which is more 4547 // important. In practice, the original loads will almost always be fully 4548 // split and removed eventually, and the splits will be merged by any 4549 // trivial CSE, including instcombine. 4550 if (LI->hasOneUse()) { 4551 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4552 DeadInsts.push_back(LI); 4553 } 4554 DeadInsts.push_back(SI); 4555 Offsets.S->kill(); 4556 } 4557 4558 // Remove the killed slices that have ben pre-split. 4559 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4560 4561 // Insert our new slices. This will sort and merge them into the sorted 4562 // sequence. 4563 AS.insert(NewSlices); 4564 4565 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4566 #ifndef NDEBUG 4567 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4568 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4569 #endif 4570 4571 // Finally, don't try to promote any allocas that new require re-splitting. 4572 // They have already been added to the worklist above. 4573 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4574 return ResplitPromotableAllocas.count(AI); 4575 }); 4576 4577 return true; 4578 } 4579 4580 /// Rewrite an alloca partition's users. 4581 /// 4582 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4583 /// to rewrite uses of an alloca partition to be conducive for SSA value 4584 /// promotion. If the partition needs a new, more refined alloca, this will 4585 /// build that new alloca, preserving as much type information as possible, and 4586 /// rewrite the uses of the old alloca to point at the new one and have the 4587 /// appropriate new offsets. It also evaluates how successful the rewrite was 4588 /// at enabling promotion and if it was successful queues the alloca to be 4589 /// promoted. 4590 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4591 Partition &P) { 4592 // Try to compute a friendly type for this partition of the alloca. This 4593 // won't always succeed, in which case we fall back to a legal integer type 4594 // or an i8 array of an appropriate size. 4595 Type *SliceTy = nullptr; 4596 VectorType *SliceVecTy = nullptr; 4597 const DataLayout &DL = AI.getModule()->getDataLayout(); 4598 std::pair<Type *, IntegerType *> CommonUseTy = 4599 findCommonType(P.begin(), P.end(), P.endOffset()); 4600 // Do all uses operate on the same type? 4601 if (CommonUseTy.first) 4602 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) { 4603 SliceTy = CommonUseTy.first; 4604 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4605 } 4606 // If not, can we find an appropriate subtype in the original allocated type? 4607 if (!SliceTy) 4608 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4609 P.beginOffset(), P.size())) 4610 SliceTy = TypePartitionTy; 4611 4612 // If still not, can we use the largest bitwidth integer type used? 4613 if (!SliceTy && CommonUseTy.second) 4614 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) { 4615 SliceTy = CommonUseTy.second; 4616 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4617 } 4618 if ((!SliceTy || (SliceTy->isArrayTy() && 4619 SliceTy->getArrayElementType()->isIntegerTy())) && 4620 DL.isLegalInteger(P.size() * 8)) { 4621 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4622 } 4623 4624 // If the common use types are not viable for promotion then attempt to find 4625 // another type that is viable. 4626 if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL)) 4627 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4628 P.beginOffset(), P.size())) { 4629 VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy); 4630 if (TypePartitionVecTy && 4631 checkVectorTypeForPromotion(P, TypePartitionVecTy, DL)) 4632 SliceTy = TypePartitionTy; 4633 } 4634 4635 if (!SliceTy) 4636 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4637 assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size()); 4638 4639 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4640 4641 VectorType *VecTy = 4642 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4643 if (VecTy) 4644 SliceTy = VecTy; 4645 4646 // Check for the case where we're going to rewrite to a new alloca of the 4647 // exact same type as the original, and with the same access offsets. In that 4648 // case, re-use the existing alloca, but still run through the rewriter to 4649 // perform phi and select speculation. 4650 // P.beginOffset() can be non-zero even with the same type in a case with 4651 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4652 AllocaInst *NewAI; 4653 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4654 NewAI = &AI; 4655 // FIXME: We should be able to bail at this point with "nothing changed". 4656 // FIXME: We might want to defer PHI speculation until after here. 4657 // FIXME: return nullptr; 4658 } else { 4659 // Make sure the alignment is compatible with P.beginOffset(). 4660 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4661 // If we will get at least this much alignment from the type alone, leave 4662 // the alloca's alignment unconstrained. 4663 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4664 NewAI = new AllocaInst( 4665 SliceTy, AI.getAddressSpace(), nullptr, 4666 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4667 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4668 // Copy the old AI debug location over to the new one. 4669 NewAI->setDebugLoc(AI.getDebugLoc()); 4670 ++NumNewAllocas; 4671 } 4672 4673 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4674 << "[" << P.beginOffset() << "," << P.endOffset() 4675 << ") to: " << *NewAI << "\n"); 4676 4677 // Track the high watermark on the worklist as it is only relevant for 4678 // promoted allocas. We will reset it to this point if the alloca is not in 4679 // fact scheduled for promotion. 4680 unsigned PPWOldSize = PostPromotionWorklist.size(); 4681 unsigned NumUses = 0; 4682 SmallSetVector<PHINode *, 8> PHIUsers; 4683 SmallSetVector<SelectInst *, 8> SelectUsers; 4684 4685 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4686 P.endOffset(), IsIntegerPromotable, VecTy, 4687 PHIUsers, SelectUsers); 4688 bool Promotable = true; 4689 for (Slice *S : P.splitSliceTails()) { 4690 Promotable &= Rewriter.visit(S); 4691 ++NumUses; 4692 } 4693 for (Slice &S : P) { 4694 Promotable &= Rewriter.visit(&S); 4695 ++NumUses; 4696 } 4697 4698 NumAllocaPartitionUses += NumUses; 4699 MaxUsesPerAllocaPartition.updateMax(NumUses); 4700 4701 // Now that we've processed all the slices in the new partition, check if any 4702 // PHIs or Selects would block promotion. 4703 for (PHINode *PHI : PHIUsers) 4704 if (!isSafePHIToSpeculate(*PHI)) { 4705 Promotable = false; 4706 PHIUsers.clear(); 4707 SelectUsers.clear(); 4708 break; 4709 } 4710 4711 SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2> 4712 NewSelectsToRewrite; 4713 NewSelectsToRewrite.reserve(SelectUsers.size()); 4714 for (SelectInst *Sel : SelectUsers) { 4715 std::optional<RewriteableMemOps> Ops = 4716 isSafeSelectToSpeculate(*Sel, PreserveCFG); 4717 if (!Ops) { 4718 Promotable = false; 4719 PHIUsers.clear(); 4720 SelectUsers.clear(); 4721 NewSelectsToRewrite.clear(); 4722 break; 4723 } 4724 NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops)); 4725 } 4726 4727 if (Promotable) { 4728 for (Use *U : AS.getDeadUsesIfPromotable()) { 4729 auto *OldInst = dyn_cast<Instruction>(U->get()); 4730 Value::dropDroppableUse(*U); 4731 if (OldInst) 4732 if (isInstructionTriviallyDead(OldInst)) 4733 DeadInsts.push_back(OldInst); 4734 } 4735 if (PHIUsers.empty() && SelectUsers.empty()) { 4736 // Promote the alloca. 4737 PromotableAllocas.push_back(NewAI); 4738 } else { 4739 // If we have either PHIs or Selects to speculate, add them to those 4740 // worklists and re-queue the new alloca so that we promote in on the 4741 // next iteration. 4742 for (PHINode *PHIUser : PHIUsers) 4743 SpeculatablePHIs.insert(PHIUser); 4744 SelectsToRewrite.reserve(SelectsToRewrite.size() + 4745 NewSelectsToRewrite.size()); 4746 for (auto &&KV : llvm::make_range( 4747 std::make_move_iterator(NewSelectsToRewrite.begin()), 4748 std::make_move_iterator(NewSelectsToRewrite.end()))) 4749 SelectsToRewrite.insert(std::move(KV)); 4750 Worklist.insert(NewAI); 4751 } 4752 } else { 4753 // Drop any post-promotion work items if promotion didn't happen. 4754 while (PostPromotionWorklist.size() > PPWOldSize) 4755 PostPromotionWorklist.pop_back(); 4756 4757 // We couldn't promote and we didn't create a new partition, nothing 4758 // happened. 4759 if (NewAI == &AI) 4760 return nullptr; 4761 4762 // If we can't promote the alloca, iterate on it to check for new 4763 // refinements exposed by splitting the current alloca. Don't iterate on an 4764 // alloca which didn't actually change and didn't get promoted. 4765 Worklist.insert(NewAI); 4766 } 4767 4768 return NewAI; 4769 } 4770 4771 /// Walks the slices of an alloca and form partitions based on them, 4772 /// rewriting each of their uses. 4773 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4774 if (AS.begin() == AS.end()) 4775 return false; 4776 4777 unsigned NumPartitions = 0; 4778 bool Changed = false; 4779 const DataLayout &DL = AI.getModule()->getDataLayout(); 4780 4781 // First try to pre-split loads and stores. 4782 Changed |= presplitLoadsAndStores(AI, AS); 4783 4784 // Now that we have identified any pre-splitting opportunities, 4785 // mark loads and stores unsplittable except for the following case. 4786 // We leave a slice splittable if all other slices are disjoint or fully 4787 // included in the slice, such as whole-alloca loads and stores. 4788 // If we fail to split these during pre-splitting, we want to force them 4789 // to be rewritten into a partition. 4790 bool IsSorted = true; 4791 4792 uint64_t AllocaSize = 4793 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue(); 4794 const uint64_t MaxBitVectorSize = 1024; 4795 if (AllocaSize <= MaxBitVectorSize) { 4796 // If a byte boundary is included in any load or store, a slice starting or 4797 // ending at the boundary is not splittable. 4798 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4799 for (Slice &S : AS) 4800 for (unsigned O = S.beginOffset() + 1; 4801 O < S.endOffset() && O < AllocaSize; O++) 4802 SplittableOffset.reset(O); 4803 4804 for (Slice &S : AS) { 4805 if (!S.isSplittable()) 4806 continue; 4807 4808 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4809 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4810 continue; 4811 4812 if (isa<LoadInst>(S.getUse()->getUser()) || 4813 isa<StoreInst>(S.getUse()->getUser())) { 4814 S.makeUnsplittable(); 4815 IsSorted = false; 4816 } 4817 } 4818 } 4819 else { 4820 // We only allow whole-alloca splittable loads and stores 4821 // for a large alloca to avoid creating too large BitVector. 4822 for (Slice &S : AS) { 4823 if (!S.isSplittable()) 4824 continue; 4825 4826 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4827 continue; 4828 4829 if (isa<LoadInst>(S.getUse()->getUser()) || 4830 isa<StoreInst>(S.getUse()->getUser())) { 4831 S.makeUnsplittable(); 4832 IsSorted = false; 4833 } 4834 } 4835 } 4836 4837 if (!IsSorted) 4838 llvm::sort(AS); 4839 4840 /// Describes the allocas introduced by rewritePartition in order to migrate 4841 /// the debug info. 4842 struct Fragment { 4843 AllocaInst *Alloca; 4844 uint64_t Offset; 4845 uint64_t Size; 4846 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4847 : Alloca(AI), Offset(O), Size(S) {} 4848 }; 4849 SmallVector<Fragment, 4> Fragments; 4850 4851 // Rewrite each partition. 4852 for (auto &P : AS.partitions()) { 4853 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4854 Changed = true; 4855 if (NewAI != &AI) { 4856 uint64_t SizeOfByte = 8; 4857 uint64_t AllocaSize = 4858 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue(); 4859 // Don't include any padding. 4860 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4861 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4862 } 4863 } 4864 ++NumPartitions; 4865 } 4866 4867 NumAllocaPartitions += NumPartitions; 4868 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4869 4870 // Migrate debug information from the old alloca to the new alloca(s) 4871 // and the individual partitions. 4872 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4873 for (auto *DbgAssign : at::getAssignmentMarkers(&AI)) 4874 DbgDeclares.push_back(DbgAssign); 4875 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4876 auto *Expr = DbgDeclare->getExpression(); 4877 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4878 uint64_t AllocaSize = 4879 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue(); 4880 for (auto Fragment : Fragments) { 4881 // Create a fragment expression describing the new partition or reuse AI's 4882 // expression if there is only one partition. 4883 auto *FragmentExpr = Expr; 4884 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4885 // If this alloca is already a scalar replacement of a larger aggregate, 4886 // Fragment.Offset describes the offset inside the scalar. 4887 auto ExprFragment = Expr->getFragmentInfo(); 4888 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4889 uint64_t Start = Offset + Fragment.Offset; 4890 uint64_t Size = Fragment.Size; 4891 if (ExprFragment) { 4892 uint64_t AbsEnd = 4893 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4894 if (Start >= AbsEnd) { 4895 // No need to describe a SROAed padding. 4896 continue; 4897 } 4898 Size = std::min(Size, AbsEnd - Start); 4899 } 4900 // The new, smaller fragment is stenciled out from the old fragment. 4901 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4902 assert(Start >= OrigFragment->OffsetInBits && 4903 "new fragment is outside of original fragment"); 4904 Start -= OrigFragment->OffsetInBits; 4905 } 4906 4907 // The alloca may be larger than the variable. 4908 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4909 if (VarSize) { 4910 if (Size > *VarSize) 4911 Size = *VarSize; 4912 if (Size == 0 || Start + Size > *VarSize) 4913 continue; 4914 } 4915 4916 // Avoid creating a fragment expression that covers the entire variable. 4917 if (!VarSize || *VarSize != Size) { 4918 if (auto E = 4919 DIExpression::createFragmentExpression(Expr, Start, Size)) 4920 FragmentExpr = *E; 4921 else 4922 continue; 4923 } 4924 } 4925 4926 // Remove any existing intrinsics on the new alloca describing 4927 // the variable fragment. 4928 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4929 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4930 const DbgVariableIntrinsic *RHS) { 4931 return LHS->getVariable() == RHS->getVariable() && 4932 LHS->getDebugLoc()->getInlinedAt() == 4933 RHS->getDebugLoc()->getInlinedAt(); 4934 }; 4935 if (SameVariableFragment(OldDII, DbgDeclare)) 4936 OldDII->eraseFromParent(); 4937 } 4938 4939 if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgDeclare)) { 4940 if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) { 4941 Fragment.Alloca->setMetadata( 4942 LLVMContext::MD_DIAssignID, 4943 DIAssignID::getDistinct(AI.getContext())); 4944 } 4945 auto *NewAssign = DIB.insertDbgAssign( 4946 Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(), 4947 FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(), 4948 DbgAssign->getDebugLoc()); 4949 NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); 4950 LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign 4951 << "\n"); 4952 } else { 4953 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), 4954 FragmentExpr, DbgDeclare->getDebugLoc(), &AI); 4955 } 4956 } 4957 } 4958 return Changed; 4959 } 4960 4961 /// Clobber a use with poison, deleting the used value if it becomes dead. 4962 void SROAPass::clobberUse(Use &U) { 4963 Value *OldV = U; 4964 // Replace the use with an poison value. 4965 U = PoisonValue::get(OldV->getType()); 4966 4967 // Check for this making an instruction dead. We have to garbage collect 4968 // all the dead instructions to ensure the uses of any alloca end up being 4969 // minimal. 4970 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4971 if (isInstructionTriviallyDead(OldI)) { 4972 DeadInsts.push_back(OldI); 4973 } 4974 } 4975 4976 /// Analyze an alloca for SROA. 4977 /// 4978 /// This analyzes the alloca to ensure we can reason about it, builds 4979 /// the slices of the alloca, and then hands it off to be split and 4980 /// rewritten as needed. 4981 std::pair<bool /*Changed*/, bool /*CFGChanged*/> 4982 SROAPass::runOnAlloca(AllocaInst &AI) { 4983 bool Changed = false; 4984 bool CFGChanged = false; 4985 4986 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4987 ++NumAllocasAnalyzed; 4988 4989 // Special case dead allocas, as they're trivial. 4990 if (AI.use_empty()) { 4991 AI.eraseFromParent(); 4992 Changed = true; 4993 return {Changed, CFGChanged}; 4994 } 4995 const DataLayout &DL = AI.getModule()->getDataLayout(); 4996 4997 // Skip alloca forms that this analysis can't handle. 4998 auto *AT = AI.getAllocatedType(); 4999 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 5000 DL.getTypeAllocSize(AT).getFixedValue() == 0) 5001 return {Changed, CFGChanged}; 5002 5003 // First, split any FCA loads and stores touching this alloca to promote 5004 // better splitting and promotion opportunities. 5005 IRBuilderTy IRB(&AI); 5006 AggLoadStoreRewriter AggRewriter(DL, IRB); 5007 Changed |= AggRewriter.rewrite(AI); 5008 5009 // Build the slices using a recursive instruction-visiting builder. 5010 AllocaSlices AS(DL, AI); 5011 LLVM_DEBUG(AS.print(dbgs())); 5012 if (AS.isEscaped()) 5013 return {Changed, CFGChanged}; 5014 5015 // Delete all the dead users of this alloca before splitting and rewriting it. 5016 for (Instruction *DeadUser : AS.getDeadUsers()) { 5017 // Free up everything used by this instruction. 5018 for (Use &DeadOp : DeadUser->operands()) 5019 clobberUse(DeadOp); 5020 5021 // Now replace the uses of this instruction. 5022 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 5023 5024 // And mark it for deletion. 5025 DeadInsts.push_back(DeadUser); 5026 Changed = true; 5027 } 5028 for (Use *DeadOp : AS.getDeadOperands()) { 5029 clobberUse(*DeadOp); 5030 Changed = true; 5031 } 5032 5033 // No slices to split. Leave the dead alloca for a later pass to clean up. 5034 if (AS.begin() == AS.end()) 5035 return {Changed, CFGChanged}; 5036 5037 Changed |= splitAlloca(AI, AS); 5038 5039 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 5040 while (!SpeculatablePHIs.empty()) 5041 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 5042 5043 LLVM_DEBUG(dbgs() << " Rewriting Selects\n"); 5044 auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector(); 5045 while (!RemainingSelectsToRewrite.empty()) { 5046 const auto [K, V] = RemainingSelectsToRewrite.pop_back_val(); 5047 CFGChanged |= 5048 rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU); 5049 } 5050 5051 return {Changed, CFGChanged}; 5052 } 5053 5054 /// Delete the dead instructions accumulated in this run. 5055 /// 5056 /// Recursively deletes the dead instructions we've accumulated. This is done 5057 /// at the very end to maximize locality of the recursive delete and to 5058 /// minimize the problems of invalidated instruction pointers as such pointers 5059 /// are used heavily in the intermediate stages of the algorithm. 5060 /// 5061 /// We also record the alloca instructions deleted here so that they aren't 5062 /// subsequently handed to mem2reg to promote. 5063 bool SROAPass::deleteDeadInstructions( 5064 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 5065 bool Changed = false; 5066 while (!DeadInsts.empty()) { 5067 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 5068 if (!I) 5069 continue; 5070 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 5071 5072 // If the instruction is an alloca, find the possible dbg.declare connected 5073 // to it, and remove it too. We must do this before calling RAUW or we will 5074 // not be able to find it. 5075 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5076 DeletedAllocas.insert(AI); 5077 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 5078 OldDII->eraseFromParent(); 5079 } 5080 5081 at::deleteAssignmentMarkers(I); 5082 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5083 5084 for (Use &Operand : I->operands()) 5085 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 5086 // Zero out the operand and see if it becomes trivially dead. 5087 Operand = nullptr; 5088 if (isInstructionTriviallyDead(U)) 5089 DeadInsts.push_back(U); 5090 } 5091 5092 ++NumDeleted; 5093 I->eraseFromParent(); 5094 Changed = true; 5095 } 5096 return Changed; 5097 } 5098 5099 /// Promote the allocas, using the best available technique. 5100 /// 5101 /// This attempts to promote whatever allocas have been identified as viable in 5102 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 5103 /// This function returns whether any promotion occurred. 5104 bool SROAPass::promoteAllocas(Function &F) { 5105 if (PromotableAllocas.empty()) 5106 return false; 5107 5108 NumPromoted += PromotableAllocas.size(); 5109 5110 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 5111 PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC); 5112 PromotableAllocas.clear(); 5113 return true; 5114 } 5115 5116 PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU, 5117 AssumptionCache &RunAC) { 5118 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 5119 C = &F.getContext(); 5120 DTU = &RunDTU; 5121 AC = &RunAC; 5122 5123 BasicBlock &EntryBB = F.getEntryBlock(); 5124 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 5125 I != E; ++I) { 5126 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5127 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 5128 if (isAllocaPromotable(AI)) 5129 PromotableAllocas.push_back(AI); 5130 } else { 5131 Worklist.insert(AI); 5132 } 5133 } 5134 } 5135 5136 bool Changed = false; 5137 bool CFGChanged = false; 5138 // A set of deleted alloca instruction pointers which should be removed from 5139 // the list of promotable allocas. 5140 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 5141 5142 do { 5143 while (!Worklist.empty()) { 5144 auto [IterationChanged, IterationCFGChanged] = 5145 runOnAlloca(*Worklist.pop_back_val()); 5146 Changed |= IterationChanged; 5147 CFGChanged |= IterationCFGChanged; 5148 5149 Changed |= deleteDeadInstructions(DeletedAllocas); 5150 5151 // Remove the deleted allocas from various lists so that we don't try to 5152 // continue processing them. 5153 if (!DeletedAllocas.empty()) { 5154 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 5155 Worklist.remove_if(IsInSet); 5156 PostPromotionWorklist.remove_if(IsInSet); 5157 llvm::erase_if(PromotableAllocas, IsInSet); 5158 DeletedAllocas.clear(); 5159 } 5160 } 5161 5162 Changed |= promoteAllocas(F); 5163 5164 Worklist = PostPromotionWorklist; 5165 PostPromotionWorklist.clear(); 5166 } while (!Worklist.empty()); 5167 5168 assert((!CFGChanged || Changed) && "Can not only modify the CFG."); 5169 assert((!CFGChanged || !PreserveCFG) && 5170 "Should not have modified the CFG when told to preserve it."); 5171 5172 if (!Changed) 5173 return PreservedAnalyses::all(); 5174 5175 PreservedAnalyses PA; 5176 if (!CFGChanged) 5177 PA.preserveSet<CFGAnalyses>(); 5178 PA.preserve<DominatorTreeAnalysis>(); 5179 return PA; 5180 } 5181 5182 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 5183 AssumptionCache &RunAC) { 5184 DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy); 5185 return runImpl(F, DTU, RunAC); 5186 } 5187 5188 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 5189 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 5190 AM.getResult<AssumptionAnalysis>(F)); 5191 } 5192 5193 void SROAPass::printPipeline( 5194 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 5195 static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline( 5196 OS, MapClassName2PassName); 5197 OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>"); 5198 } 5199 5200 SROAPass::SROAPass(SROAOptions PreserveCFG_) 5201 : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {} 5202 5203 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 5204 /// 5205 /// This is in the llvm namespace purely to allow it to be a friend of the \c 5206 /// SROA pass. 5207 class llvm::sroa::SROALegacyPass : public FunctionPass { 5208 /// The SROA implementation. 5209 SROAPass Impl; 5210 5211 public: 5212 static char ID; 5213 5214 SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG) 5215 : FunctionPass(ID), Impl(PreserveCFG) { 5216 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 5217 } 5218 5219 bool runOnFunction(Function &F) override { 5220 if (skipFunction(F)) 5221 return false; 5222 5223 auto PA = Impl.runImpl( 5224 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 5225 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 5226 return !PA.areAllPreserved(); 5227 } 5228 5229 void getAnalysisUsage(AnalysisUsage &AU) const override { 5230 AU.addRequired<AssumptionCacheTracker>(); 5231 AU.addRequired<DominatorTreeWrapperPass>(); 5232 AU.addPreserved<GlobalsAAWrapperPass>(); 5233 AU.addPreserved<DominatorTreeWrapperPass>(); 5234 } 5235 5236 StringRef getPassName() const override { return "SROA"; } 5237 }; 5238 5239 char SROALegacyPass::ID = 0; 5240 5241 FunctionPass *llvm::createSROAPass(bool PreserveCFG) { 5242 return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG 5243 : SROAOptions::ModifyCFG); 5244 } 5245 5246 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 5247 "Scalar Replacement Of Aggregates", false, false) 5248 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5250 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 5251 false, false) 5252