1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/AttributeMask.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GCStrategy.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <optional> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 81 82 using namespace llvm; 83 84 // Print the liveset found at the insert location 85 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 86 cl::init(false)); 87 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 88 cl::init(false)); 89 90 // Print out the base pointers for debugging 91 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 92 cl::init(false)); 93 94 // Cost threshold measuring when it is profitable to rematerialize value instead 95 // of relocating it 96 static cl::opt<unsigned> 97 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 98 cl::init(6)); 99 100 #ifdef EXPENSIVE_CHECKS 101 static bool ClobberNonLive = true; 102 #else 103 static bool ClobberNonLive = false; 104 #endif 105 106 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 107 cl::location(ClobberNonLive), 108 cl::Hidden); 109 110 static cl::opt<bool> 111 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 112 cl::Hidden, cl::init(true)); 113 114 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses", 115 cl::Hidden, cl::init(true)); 116 117 /// The IR fed into RewriteStatepointsForGC may have had attributes and 118 /// metadata implying dereferenceability that are no longer valid/correct after 119 /// RewriteStatepointsForGC has run. This is because semantically, after 120 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 121 /// heap. stripNonValidData (conservatively) restores 122 /// correctness by erasing all attributes in the module that externally imply 123 /// dereferenceability. Similar reasoning also applies to the noalias 124 /// attributes and metadata. gc.statepoint can touch the entire heap including 125 /// noalias objects. 126 /// Apart from attributes and metadata, we also remove instructions that imply 127 /// constant physical memory: llvm.invariant.start. 128 static void stripNonValidData(Module &M); 129 130 // Find the GC strategy for a function, or null if it doesn't have one. 131 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); 132 133 static bool shouldRewriteStatepointsIn(Function &F); 134 135 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 136 ModuleAnalysisManager &AM) { 137 bool Changed = false; 138 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 139 for (Function &F : M) { 140 // Nothing to do for declarations. 141 if (F.isDeclaration() || F.empty()) 142 continue; 143 144 // Policy choice says not to rewrite - the most common reason is that we're 145 // compiling code without a GCStrategy. 146 if (!shouldRewriteStatepointsIn(F)) 147 continue; 148 149 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 150 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 151 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 152 Changed |= runOnFunction(F, DT, TTI, TLI); 153 } 154 if (!Changed) 155 return PreservedAnalyses::all(); 156 157 // stripNonValidData asserts that shouldRewriteStatepointsIn 158 // returns true for at least one function in the module. Since at least 159 // one function changed, we know that the precondition is satisfied. 160 stripNonValidData(M); 161 162 PreservedAnalyses PA; 163 PA.preserve<TargetIRAnalysis>(); 164 PA.preserve<TargetLibraryAnalysis>(); 165 return PA; 166 } 167 168 namespace { 169 170 struct GCPtrLivenessData { 171 /// Values defined in this block. 172 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 173 174 /// Values used in this block (and thus live); does not included values 175 /// killed within this block. 176 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 177 178 /// Values live into this basic block (i.e. used by any 179 /// instruction in this basic block or ones reachable from here) 180 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 181 182 /// Values live out of this basic block (i.e. live into 183 /// any successor block) 184 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 185 }; 186 187 // The type of the internal cache used inside the findBasePointers family 188 // of functions. From the callers perspective, this is an opaque type and 189 // should not be inspected. 190 // 191 // In the actual implementation this caches two relations: 192 // - The base relation itself (i.e. this pointer is based on that one) 193 // - The base defining value relation (i.e. before base_phi insertion) 194 // Generally, after the execution of a full findBasePointer call, only the 195 // base relation will remain. Internally, we add a mixture of the two 196 // types, then update all the second type to the first type 197 using DefiningValueMapTy = MapVector<Value *, Value *>; 198 using IsKnownBaseMapTy = MapVector<Value *, bool>; 199 using PointerToBaseTy = MapVector<Value *, Value *>; 200 using StatepointLiveSetTy = SetVector<Value *>; 201 using RematerializedValueMapTy = 202 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 203 204 struct PartiallyConstructedSafepointRecord { 205 /// The set of values known to be live across this safepoint 206 StatepointLiveSetTy LiveSet; 207 208 /// The *new* gc.statepoint instruction itself. This produces the token 209 /// that normal path gc.relocates and the gc.result are tied to. 210 GCStatepointInst *StatepointToken; 211 212 /// Instruction to which exceptional gc relocates are attached 213 /// Makes it easier to iterate through them during relocationViaAlloca. 214 Instruction *UnwindToken; 215 216 /// Record live values we are rematerialized instead of relocating. 217 /// They are not included into 'LiveSet' field. 218 /// Maps rematerialized copy to it's original value. 219 RematerializedValueMapTy RematerializedValues; 220 }; 221 222 struct RematerizlizationCandidateRecord { 223 // Chain from derived pointer to base. 224 SmallVector<Instruction *, 3> ChainToBase; 225 // Original base. 226 Value *RootOfChain; 227 // Cost of chain. 228 InstructionCost Cost; 229 }; 230 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 231 232 } // end anonymous namespace 233 234 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 235 std::optional<OperandBundleUse> DeoptBundle = 236 Call->getOperandBundle(LLVMContext::OB_deopt); 237 238 if (!DeoptBundle) { 239 assert(AllowStatepointWithNoDeoptInfo && 240 "Found non-leaf call without deopt info!"); 241 return std::nullopt; 242 } 243 244 return DeoptBundle->Inputs; 245 } 246 247 /// Compute the live-in set for every basic block in the function 248 static void computeLiveInValues(DominatorTree &DT, Function &F, 249 GCPtrLivenessData &Data, GCStrategy *GC); 250 251 /// Given results from the dataflow liveness computation, find the set of live 252 /// Values at a particular instruction. 253 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 254 StatepointLiveSetTy &out, GCStrategy *GC); 255 256 static bool isGCPointerType(Type *T, GCStrategy *GC) { 257 assert(GC && "GC Strategy for isGCPointerType cannot be null"); 258 259 if (!isa<PointerType>(T)) 260 return false; 261 262 // conservative - same as StatepointLowering 263 return GC->isGCManagedPointer(T).value_or(true); 264 } 265 266 // Return true if this type is one which a) is a gc pointer or contains a GC 267 // pointer and b) is of a type this code expects to encounter as a live value. 268 // (The insertion code will assert that a type which matches (a) and not (b) 269 // is not encountered.) 270 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { 271 // We fully support gc pointers 272 if (isGCPointerType(T, GC)) 273 return true; 274 // We partially support vectors of gc pointers. The code will assert if it 275 // can't handle something. 276 if (auto VT = dyn_cast<VectorType>(T)) 277 if (isGCPointerType(VT->getElementType(), GC)) 278 return true; 279 return false; 280 } 281 282 #ifndef NDEBUG 283 /// Returns true if this type contains a gc pointer whether we know how to 284 /// handle that type or not. 285 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { 286 if (isGCPointerType(Ty, GC)) 287 return true; 288 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 289 return isGCPointerType(VT->getScalarType(), GC); 290 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 291 return containsGCPtrType(AT->getElementType(), GC); 292 if (StructType *ST = dyn_cast<StructType>(Ty)) 293 return llvm::any_of(ST->elements(), 294 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); 295 return false; 296 } 297 298 // Returns true if this is a type which a) is a gc pointer or contains a GC 299 // pointer and b) is of a type which the code doesn't expect (i.e. first class 300 // aggregates). Used to trip assertions. 301 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { 302 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); 303 } 304 #endif 305 306 // Return the name of the value suffixed with the provided value, or if the 307 // value didn't have a name, the default value specified. 308 static std::string suffixed_name_or(Value *V, StringRef Suffix, 309 StringRef DefaultName) { 310 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 311 } 312 313 // Conservatively identifies any definitions which might be live at the 314 // given instruction. The analysis is performed immediately before the 315 // given instruction. Values defined by that instruction are not considered 316 // live. Values used by that instruction are considered live. 317 static void analyzeParsePointLiveness( 318 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 319 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { 320 StatepointLiveSetTy LiveSet; 321 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); 322 323 if (PrintLiveSet) { 324 dbgs() << "Live Variables:\n"; 325 for (Value *V : LiveSet) 326 dbgs() << " " << V->getName() << " " << *V << "\n"; 327 } 328 if (PrintLiveSetSize) { 329 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 330 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 331 } 332 Result.LiveSet = LiveSet; 333 } 334 335 /// Returns true if V is a known base. 336 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 337 338 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 339 /// in the cache before. 340 static void setKnownBase(Value *V, bool IsKnownBase, 341 IsKnownBaseMapTy &KnownBases); 342 343 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 344 IsKnownBaseMapTy &KnownBases); 345 346 /// Return a base defining value for the 'Index' element of the given vector 347 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 348 /// 'I'. As an optimization, this method will try to determine when the 349 /// element is known to already be a base pointer. If this can be established, 350 /// the second value in the returned pair will be true. Note that either a 351 /// vector or a pointer typed value can be returned. For the former, the 352 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 353 /// If the later, the return pointer is a BDV (or possibly a base) for the 354 /// particular element in 'I'. 355 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 356 IsKnownBaseMapTy &KnownBases) { 357 // Each case parallels findBaseDefiningValue below, see that code for 358 // detailed motivation. 359 360 auto Cached = Cache.find(I); 361 if (Cached != Cache.end()) 362 return Cached->second; 363 364 if (isa<Argument>(I)) { 365 // An incoming argument to the function is a base pointer 366 Cache[I] = I; 367 setKnownBase(I, /* IsKnownBase */true, KnownBases); 368 return I; 369 } 370 371 if (isa<Constant>(I)) { 372 // Base of constant vector consists only of constant null pointers. 373 // For reasoning see similar case inside 'findBaseDefiningValue' function. 374 auto *CAZ = ConstantAggregateZero::get(I->getType()); 375 Cache[I] = CAZ; 376 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 377 return CAZ; 378 } 379 380 if (isa<LoadInst>(I)) { 381 Cache[I] = I; 382 setKnownBase(I, /* IsKnownBase */true, KnownBases); 383 return I; 384 } 385 386 if (isa<InsertElementInst>(I)) { 387 // We don't know whether this vector contains entirely base pointers or 388 // not. To be conservatively correct, we treat it as a BDV and will 389 // duplicate code as needed to construct a parallel vector of bases. 390 Cache[I] = I; 391 setKnownBase(I, /* IsKnownBase */false, KnownBases); 392 return I; 393 } 394 395 if (isa<ShuffleVectorInst>(I)) { 396 // We don't know whether this vector contains entirely base pointers or 397 // not. To be conservatively correct, we treat it as a BDV and will 398 // duplicate code as needed to construct a parallel vector of bases. 399 // TODO: There a number of local optimizations which could be applied here 400 // for particular sufflevector patterns. 401 Cache[I] = I; 402 setKnownBase(I, /* IsKnownBase */false, KnownBases); 403 return I; 404 } 405 406 // The behavior of getelementptr instructions is the same for vector and 407 // non-vector data types. 408 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 409 auto *BDV = 410 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 411 Cache[GEP] = BDV; 412 return BDV; 413 } 414 415 // The behavior of freeze instructions is the same for vector and 416 // non-vector data types. 417 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 418 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 419 Cache[Freeze] = BDV; 420 return BDV; 421 } 422 423 // If the pointer comes through a bitcast of a vector of pointers to 424 // a vector of another type of pointer, then look through the bitcast 425 if (auto *BC = dyn_cast<BitCastInst>(I)) { 426 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 427 Cache[BC] = BDV; 428 return BDV; 429 } 430 431 // We assume that functions in the source language only return base 432 // pointers. This should probably be generalized via attributes to support 433 // both source language and internal functions. 434 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 435 Cache[I] = I; 436 setKnownBase(I, /* IsKnownBase */true, KnownBases); 437 return I; 438 } 439 440 // A PHI or Select is a base defining value. The outer findBasePointer 441 // algorithm is responsible for constructing a base value for this BDV. 442 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 443 "unknown vector instruction - no base found for vector element"); 444 Cache[I] = I; 445 setKnownBase(I, /* IsKnownBase */false, KnownBases); 446 return I; 447 } 448 449 /// Helper function for findBasePointer - Will return a value which either a) 450 /// defines the base pointer for the input, b) blocks the simple search 451 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 452 /// from pointer to vector type or back. 453 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 454 IsKnownBaseMapTy &KnownBases) { 455 assert(I->getType()->isPtrOrPtrVectorTy() && 456 "Illegal to ask for the base pointer of a non-pointer type"); 457 auto Cached = Cache.find(I); 458 if (Cached != Cache.end()) 459 return Cached->second; 460 461 if (I->getType()->isVectorTy()) 462 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 463 464 if (isa<Argument>(I)) { 465 // An incoming argument to the function is a base pointer 466 // We should have never reached here if this argument isn't an gc value 467 Cache[I] = I; 468 setKnownBase(I, /* IsKnownBase */true, KnownBases); 469 return I; 470 } 471 472 if (isa<Constant>(I)) { 473 // We assume that objects with a constant base (e.g. a global) can't move 474 // and don't need to be reported to the collector because they are always 475 // live. Besides global references, all kinds of constants (e.g. undef, 476 // constant expressions, null pointers) can be introduced by the inliner or 477 // the optimizer, especially on dynamically dead paths. 478 // Here we treat all of them as having single null base. By doing this we 479 // trying to avoid problems reporting various conflicts in a form of 480 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 481 // See constant.ll file for relevant test cases. 482 483 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 484 Cache[I] = CPN; 485 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 486 return CPN; 487 } 488 489 // inttoptrs in an integral address space are currently ill-defined. We 490 // treat them as defining base pointers here for consistency with the 491 // constant rule above and because we don't really have a better semantic 492 // to give them. Note that the optimizer is always free to insert undefined 493 // behavior on dynamically dead paths as well. 494 if (isa<IntToPtrInst>(I)) { 495 Cache[I] = I; 496 setKnownBase(I, /* IsKnownBase */true, KnownBases); 497 return I; 498 } 499 500 if (CastInst *CI = dyn_cast<CastInst>(I)) { 501 Value *Def = CI->stripPointerCasts(); 502 // If stripping pointer casts changes the address space there is an 503 // addrspacecast in between. 504 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 505 cast<PointerType>(CI->getType())->getAddressSpace() && 506 "unsupported addrspacecast"); 507 // If we find a cast instruction here, it means we've found a cast which is 508 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 509 // handle int->ptr conversion. 510 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 511 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 512 Cache[CI] = BDV; 513 return BDV; 514 } 515 516 if (isa<LoadInst>(I)) { 517 // The value loaded is an gc base itself 518 Cache[I] = I; 519 setKnownBase(I, /* IsKnownBase */true, KnownBases); 520 return I; 521 } 522 523 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 524 // The base of this GEP is the base 525 auto *BDV = 526 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 527 Cache[GEP] = BDV; 528 return BDV; 529 } 530 531 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 532 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 533 Cache[Freeze] = BDV; 534 return BDV; 535 } 536 537 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 538 switch (II->getIntrinsicID()) { 539 default: 540 // fall through to general call handling 541 break; 542 case Intrinsic::experimental_gc_statepoint: 543 llvm_unreachable("statepoints don't produce pointers"); 544 case Intrinsic::experimental_gc_relocate: 545 // Rerunning safepoint insertion after safepoints are already 546 // inserted is not supported. It could probably be made to work, 547 // but why are you doing this? There's no good reason. 548 llvm_unreachable("repeat safepoint insertion is not supported"); 549 case Intrinsic::gcroot: 550 // Currently, this mechanism hasn't been extended to work with gcroot. 551 // There's no reason it couldn't be, but I haven't thought about the 552 // implications much. 553 llvm_unreachable( 554 "interaction with the gcroot mechanism is not supported"); 555 case Intrinsic::experimental_gc_get_pointer_base: 556 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 557 Cache[II] = BDV; 558 return BDV; 559 } 560 } 561 // We assume that functions in the source language only return base 562 // pointers. This should probably be generalized via attributes to support 563 // both source language and internal functions. 564 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 565 Cache[I] = I; 566 setKnownBase(I, /* IsKnownBase */true, KnownBases); 567 return I; 568 } 569 570 // TODO: I have absolutely no idea how to implement this part yet. It's not 571 // necessarily hard, I just haven't really looked at it yet. 572 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 573 574 if (isa<AtomicCmpXchgInst>(I)) { 575 // A CAS is effectively a atomic store and load combined under a 576 // predicate. From the perspective of base pointers, we just treat it 577 // like a load. 578 Cache[I] = I; 579 setKnownBase(I, /* IsKnownBase */true, KnownBases); 580 return I; 581 } 582 583 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 584 "binary ops which don't apply to pointers"); 585 586 // The aggregate ops. Aggregates can either be in the heap or on the 587 // stack, but in either case, this is simply a field load. As a result, 588 // this is a defining definition of the base just like a load is. 589 if (isa<ExtractValueInst>(I)) { 590 Cache[I] = I; 591 setKnownBase(I, /* IsKnownBase */true, KnownBases); 592 return I; 593 } 594 595 // We should never see an insert vector since that would require we be 596 // tracing back a struct value not a pointer value. 597 assert(!isa<InsertValueInst>(I) && 598 "Base pointer for a struct is meaningless"); 599 600 // This value might have been generated by findBasePointer() called when 601 // substituting gc.get.pointer.base() intrinsic. 602 bool IsKnownBase = 603 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 604 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 605 Cache[I] = I; 606 607 // An extractelement produces a base result exactly when it's input does. 608 // We may need to insert a parallel instruction to extract the appropriate 609 // element out of the base vector corresponding to the input. Given this, 610 // it's analogous to the phi and select case even though it's not a merge. 611 if (isa<ExtractElementInst>(I)) 612 // Note: There a lot of obvious peephole cases here. This are deliberately 613 // handled after the main base pointer inference algorithm to make writing 614 // test cases to exercise that code easier. 615 return I; 616 617 // The last two cases here don't return a base pointer. Instead, they 618 // return a value which dynamically selects from among several base 619 // derived pointers (each with it's own base potentially). It's the job of 620 // the caller to resolve these. 621 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 622 "missing instruction case in findBaseDefiningValue"); 623 return I; 624 } 625 626 /// Returns the base defining value for this value. 627 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 628 IsKnownBaseMapTy &KnownBases) { 629 if (!Cache.contains(I)) { 630 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 631 Cache[I] = BDV; 632 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 633 << Cache[I]->getName() << ", is known base = " 634 << KnownBases[I] << "\n"); 635 } 636 assert(Cache[I] != nullptr); 637 assert(KnownBases.contains(Cache[I]) && 638 "Cached value must be present in known bases map"); 639 return Cache[I]; 640 } 641 642 /// Return a base pointer for this value if known. Otherwise, return it's 643 /// base defining value. 644 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 645 IsKnownBaseMapTy &KnownBases) { 646 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 647 auto Found = Cache.find(Def); 648 if (Found != Cache.end()) { 649 // Either a base-of relation, or a self reference. Caller must check. 650 return Found->second; 651 } 652 // Only a BDV available 653 return Def; 654 } 655 656 #ifndef NDEBUG 657 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 658 /// exists in the code. 659 static bool isOriginalBaseResult(Value *V) { 660 // no recursion possible 661 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 662 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 663 !isa<ShuffleVectorInst>(V); 664 } 665 #endif 666 667 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 668 auto It = KnownBases.find(V); 669 assert(It != KnownBases.end() && "Value not present in the map"); 670 return It->second; 671 } 672 673 static void setKnownBase(Value *V, bool IsKnownBase, 674 IsKnownBaseMapTy &KnownBases) { 675 #ifndef NDEBUG 676 auto It = KnownBases.find(V); 677 if (It != KnownBases.end()) 678 assert(It->second == IsKnownBase && "Changing already present value"); 679 #endif 680 KnownBases[V] = IsKnownBase; 681 } 682 683 // Returns true if First and Second values are both scalar or both vector. 684 static bool areBothVectorOrScalar(Value *First, Value *Second) { 685 return isa<VectorType>(First->getType()) == 686 isa<VectorType>(Second->getType()); 687 } 688 689 namespace { 690 691 /// Models the state of a single base defining value in the findBasePointer 692 /// algorithm for determining where a new instruction is needed to propagate 693 /// the base of this BDV. 694 class BDVState { 695 public: 696 enum StatusTy { 697 // Starting state of lattice 698 Unknown, 699 // Some specific base value -- does *not* mean that instruction 700 // propagates the base of the object 701 // ex: gep %arg, 16 -> %arg is the base value 702 Base, 703 // Need to insert a node to represent a merge. 704 Conflict 705 }; 706 707 BDVState() { 708 llvm_unreachable("missing state in map"); 709 } 710 711 explicit BDVState(Value *OriginalValue) 712 : OriginalValue(OriginalValue) {} 713 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 714 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 715 assert(Status != Base || BaseValue); 716 } 717 718 StatusTy getStatus() const { return Status; } 719 Value *getOriginalValue() const { return OriginalValue; } 720 Value *getBaseValue() const { return BaseValue; } 721 722 bool isBase() const { return getStatus() == Base; } 723 bool isUnknown() const { return getStatus() == Unknown; } 724 bool isConflict() const { return getStatus() == Conflict; } 725 726 // Values of type BDVState form a lattice, and this function implements the 727 // meet 728 // operation. 729 void meet(const BDVState &Other) { 730 auto markConflict = [&]() { 731 Status = BDVState::Conflict; 732 BaseValue = nullptr; 733 }; 734 // Conflict is a final state. 735 if (isConflict()) 736 return; 737 // if we are not known - just take other state. 738 if (isUnknown()) { 739 Status = Other.getStatus(); 740 BaseValue = Other.getBaseValue(); 741 return; 742 } 743 // We are base. 744 assert(isBase() && "Unknown state"); 745 // If other is unknown - just keep our state. 746 if (Other.isUnknown()) 747 return; 748 // If other is conflict - it is a final state. 749 if (Other.isConflict()) 750 return markConflict(); 751 // Other is base as well. 752 assert(Other.isBase() && "Unknown state"); 753 // If bases are different - Conflict. 754 if (getBaseValue() != Other.getBaseValue()) 755 return markConflict(); 756 // We are identical, do nothing. 757 } 758 759 bool operator==(const BDVState &Other) const { 760 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 761 Status == Other.Status; 762 } 763 764 bool operator!=(const BDVState &other) const { return !(*this == other); } 765 766 LLVM_DUMP_METHOD 767 void dump() const { 768 print(dbgs()); 769 dbgs() << '\n'; 770 } 771 772 void print(raw_ostream &OS) const { 773 switch (getStatus()) { 774 case Unknown: 775 OS << "U"; 776 break; 777 case Base: 778 OS << "B"; 779 break; 780 case Conflict: 781 OS << "C"; 782 break; 783 } 784 OS << " (base " << getBaseValue() << " - " 785 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 786 << " for " << OriginalValue->getName() << ":"; 787 } 788 789 private: 790 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 791 StatusTy Status = Unknown; 792 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 793 }; 794 795 } // end anonymous namespace 796 797 #ifndef NDEBUG 798 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 799 State.print(OS); 800 return OS; 801 } 802 #endif 803 804 /// For a given value or instruction, figure out what base ptr its derived from. 805 /// For gc objects, this is simply itself. On success, returns a value which is 806 /// the base pointer. (This is reliable and can be used for relocation.) On 807 /// failure, returns nullptr. 808 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 809 IsKnownBaseMapTy &KnownBases) { 810 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 811 812 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 813 return Def; 814 815 // Here's the rough algorithm: 816 // - For every SSA value, construct a mapping to either an actual base 817 // pointer or a PHI which obscures the base pointer. 818 // - Construct a mapping from PHI to unknown TOP state. Use an 819 // optimistic algorithm to propagate base pointer information. Lattice 820 // looks like: 821 // UNKNOWN 822 // b1 b2 b3 b4 823 // CONFLICT 824 // When algorithm terminates, all PHIs will either have a single concrete 825 // base or be in a conflict state. 826 // - For every conflict, insert a dummy PHI node without arguments. Add 827 // these to the base[Instruction] = BasePtr mapping. For every 828 // non-conflict, add the actual base. 829 // - For every conflict, add arguments for the base[a] of each input 830 // arguments. 831 // 832 // Note: A simpler form of this would be to add the conflict form of all 833 // PHIs without running the optimistic algorithm. This would be 834 // analogous to pessimistic data flow and would likely lead to an 835 // overall worse solution. 836 837 #ifndef NDEBUG 838 auto isExpectedBDVType = [](Value *BDV) { 839 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 840 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 841 isa<ShuffleVectorInst>(BDV); 842 }; 843 #endif 844 845 // Once populated, will contain a mapping from each potentially non-base BDV 846 // to a lattice value (described above) which corresponds to that BDV. 847 // We use the order of insertion (DFS over the def/use graph) to provide a 848 // stable deterministic ordering for visiting DenseMaps (which are unordered) 849 // below. This is important for deterministic compilation. 850 MapVector<Value *, BDVState> States; 851 852 #ifndef NDEBUG 853 auto VerifyStates = [&]() { 854 for (auto &Entry : States) { 855 assert(Entry.first == Entry.second.getOriginalValue()); 856 } 857 }; 858 #endif 859 860 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 861 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 862 for (Value *InVal : PN->incoming_values()) 863 F(InVal); 864 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 865 F(SI->getTrueValue()); 866 F(SI->getFalseValue()); 867 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 868 F(EE->getVectorOperand()); 869 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 870 F(IE->getOperand(0)); 871 F(IE->getOperand(1)); 872 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 873 // For a canonical broadcast, ignore the undef argument 874 // (without this, we insert a parallel base shuffle for every broadcast) 875 F(SV->getOperand(0)); 876 if (!SV->isZeroEltSplat()) 877 F(SV->getOperand(1)); 878 } else { 879 llvm_unreachable("unexpected BDV type"); 880 } 881 }; 882 883 884 // Recursively fill in all base defining values reachable from the initial 885 // one for which we don't already know a definite base value for 886 /* scope */ { 887 SmallVector<Value*, 16> Worklist; 888 Worklist.push_back(Def); 889 States.insert({Def, BDVState(Def)}); 890 while (!Worklist.empty()) { 891 Value *Current = Worklist.pop_back_val(); 892 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 893 894 auto visitIncomingValue = [&](Value *InVal) { 895 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 896 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 897 // Known bases won't need new instructions introduced and can be 898 // ignored safely. However, this can only be done when InVal and Base 899 // are both scalar or both vector. Otherwise, we need to find a 900 // correct BDV for InVal, by creating an entry in the lattice 901 // (States). 902 return; 903 assert(isExpectedBDVType(Base) && "the only non-base values " 904 "we see should be base defining values"); 905 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 906 Worklist.push_back(Base); 907 }; 908 909 visitBDVOperands(Current, visitIncomingValue); 910 } 911 } 912 913 #ifndef NDEBUG 914 VerifyStates(); 915 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 916 for (const auto &Pair : States) { 917 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 918 } 919 #endif 920 921 // Iterate forward through the value graph pruning any node from the state 922 // list where all of the inputs are base pointers. The purpose of this is to 923 // reuse existing values when the derived pointer we were asked to materialize 924 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 925 // feeding it does.) 926 SmallVector<Value *> ToRemove; 927 do { 928 ToRemove.clear(); 929 for (auto Pair : States) { 930 Value *BDV = Pair.first; 931 auto canPruneInput = [&](Value *V) { 932 // If the input of the BDV is the BDV itself we can prune it. This is 933 // only possible if the BDV is a PHI node. 934 if (V->stripPointerCasts() == BDV) 935 return true; 936 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 937 if (V->stripPointerCasts() != VBDV) 938 return false; 939 // The assumption is that anything not in the state list is 940 // propagates a base pointer. 941 return States.count(VBDV) == 0; 942 }; 943 944 bool CanPrune = true; 945 visitBDVOperands(BDV, [&](Value *Op) { 946 CanPrune = CanPrune && canPruneInput(Op); 947 }); 948 if (CanPrune) 949 ToRemove.push_back(BDV); 950 } 951 for (Value *V : ToRemove) { 952 States.erase(V); 953 // Cache the fact V is it's own base for later usage. 954 Cache[V] = V; 955 } 956 } while (!ToRemove.empty()); 957 958 // Did we manage to prove that Def itself must be a base pointer? 959 if (!States.count(Def)) 960 return Def; 961 962 // Return a phi state for a base defining value. We'll generate a new 963 // base state for known bases and expect to find a cached state otherwise. 964 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 965 auto I = States.find(BaseValue); 966 if (I != States.end()) 967 return I->second; 968 assert(areBothVectorOrScalar(BaseValue, Input)); 969 return BDVState(BaseValue, BDVState::Base, BaseValue); 970 }; 971 972 bool Progress = true; 973 while (Progress) { 974 #ifndef NDEBUG 975 const size_t OldSize = States.size(); 976 #endif 977 Progress = false; 978 // We're only changing values in this loop, thus safe to keep iterators. 979 // Since this is computing a fixed point, the order of visit does not 980 // effect the result. TODO: We could use a worklist here and make this run 981 // much faster. 982 for (auto Pair : States) { 983 Value *BDV = Pair.first; 984 // Only values that do not have known bases or those that have differing 985 // type (scalar versus vector) from a possible known base should be in the 986 // lattice. 987 assert((!isKnownBase(BDV, KnownBases) || 988 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 989 "why did it get added?"); 990 991 BDVState NewState(BDV); 992 visitBDVOperands(BDV, [&](Value *Op) { 993 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 994 auto OpState = GetStateForBDV(BDV, Op); 995 NewState.meet(OpState); 996 }); 997 998 BDVState OldState = States[BDV]; 999 if (OldState != NewState) { 1000 Progress = true; 1001 States[BDV] = NewState; 1002 } 1003 } 1004 1005 assert(OldSize == States.size() && 1006 "fixed point shouldn't be adding any new nodes to state"); 1007 } 1008 1009 #ifndef NDEBUG 1010 VerifyStates(); 1011 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1012 for (const auto &Pair : States) { 1013 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1014 } 1015 #endif 1016 1017 // Handle all instructions that have a vector BDV, but the instruction itself 1018 // is of scalar type. 1019 for (auto Pair : States) { 1020 Instruction *I = cast<Instruction>(Pair.first); 1021 BDVState State = Pair.second; 1022 auto *BaseValue = State.getBaseValue(); 1023 // Only values that do not have known bases or those that have differing 1024 // type (scalar versus vector) from a possible known base should be in the 1025 // lattice. 1026 assert( 1027 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1028 "why did it get added?"); 1029 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1030 1031 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1032 continue; 1033 // extractelement instructions are a bit special in that we may need to 1034 // insert an extract even when we know an exact base for the instruction. 1035 // The problem is that we need to convert from a vector base to a scalar 1036 // base for the particular indice we're interested in. 1037 if (isa<ExtractElementInst>(I)) { 1038 auto *EE = cast<ExtractElementInst>(I); 1039 // TODO: In many cases, the new instruction is just EE itself. We should 1040 // exploit this, but can't do it here since it would break the invariant 1041 // about the BDV not being known to be a base. 1042 auto *BaseInst = ExtractElementInst::Create( 1043 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1044 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1045 States[I] = BDVState(I, BDVState::Base, BaseInst); 1046 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1047 } else if (!isa<VectorType>(I->getType())) { 1048 // We need to handle cases that have a vector base but the instruction is 1049 // a scalar type (these could be phis or selects or any instruction that 1050 // are of scalar type, but the base can be a vector type). We 1051 // conservatively set this as conflict. Setting the base value for these 1052 // conflicts is handled in the next loop which traverses States. 1053 States[I] = BDVState(I, BDVState::Conflict); 1054 } 1055 } 1056 1057 #ifndef NDEBUG 1058 VerifyStates(); 1059 #endif 1060 1061 // Insert Phis for all conflicts 1062 // TODO: adjust naming patterns to avoid this order of iteration dependency 1063 for (auto Pair : States) { 1064 Instruction *I = cast<Instruction>(Pair.first); 1065 BDVState State = Pair.second; 1066 // Only values that do not have known bases or those that have differing 1067 // type (scalar versus vector) from a possible known base should be in the 1068 // lattice. 1069 assert((!isKnownBase(I, KnownBases) || 1070 !areBothVectorOrScalar(I, State.getBaseValue())) && 1071 "why did it get added?"); 1072 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1073 1074 // Since we're joining a vector and scalar base, they can never be the 1075 // same. As a result, we should always see insert element having reached 1076 // the conflict state. 1077 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1078 1079 if (!State.isConflict()) 1080 continue; 1081 1082 auto getMangledName = [](Instruction *I) -> std::string { 1083 if (isa<PHINode>(I)) { 1084 return suffixed_name_or(I, ".base", "base_phi"); 1085 } else if (isa<SelectInst>(I)) { 1086 return suffixed_name_or(I, ".base", "base_select"); 1087 } else if (isa<ExtractElementInst>(I)) { 1088 return suffixed_name_or(I, ".base", "base_ee"); 1089 } else if (isa<InsertElementInst>(I)) { 1090 return suffixed_name_or(I, ".base", "base_ie"); 1091 } else { 1092 return suffixed_name_or(I, ".base", "base_sv"); 1093 } 1094 }; 1095 1096 Instruction *BaseInst = I->clone(); 1097 BaseInst->insertBefore(I); 1098 BaseInst->setName(getMangledName(I)); 1099 // Add metadata marking this as a base value 1100 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1101 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1102 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1103 } 1104 1105 #ifndef NDEBUG 1106 VerifyStates(); 1107 #endif 1108 1109 // Returns a instruction which produces the base pointer for a given 1110 // instruction. The instruction is assumed to be an input to one of the BDVs 1111 // seen in the inference algorithm above. As such, we must either already 1112 // know it's base defining value is a base, or have inserted a new 1113 // instruction to propagate the base of it's BDV and have entered that newly 1114 // introduced instruction into the state table. In either case, we are 1115 // assured to be able to determine an instruction which produces it's base 1116 // pointer. 1117 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1118 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1119 Value *Base = nullptr; 1120 if (!States.count(BDV)) { 1121 assert(areBothVectorOrScalar(BDV, Input)); 1122 Base = BDV; 1123 } else { 1124 // Either conflict or base. 1125 assert(States.count(BDV)); 1126 Base = States[BDV].getBaseValue(); 1127 } 1128 assert(Base && "Can't be null"); 1129 // The cast is needed since base traversal may strip away bitcasts 1130 if (Base->getType() != Input->getType() && InsertPt) 1131 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1132 return Base; 1133 }; 1134 1135 // Fixup all the inputs of the new PHIs. Visit order needs to be 1136 // deterministic and predictable because we're naming newly created 1137 // instructions. 1138 for (auto Pair : States) { 1139 Instruction *BDV = cast<Instruction>(Pair.first); 1140 BDVState State = Pair.second; 1141 1142 // Only values that do not have known bases or those that have differing 1143 // type (scalar versus vector) from a possible known base should be in the 1144 // lattice. 1145 assert((!isKnownBase(BDV, KnownBases) || 1146 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1147 "why did it get added?"); 1148 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1149 if (!State.isConflict()) 1150 continue; 1151 1152 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1153 PHINode *PN = cast<PHINode>(BDV); 1154 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1155 1156 // The IR verifier requires phi nodes with multiple entries from the 1157 // same basic block to have the same incoming value for each of those 1158 // entries. Since we're inserting bitcasts in the loop, make sure we 1159 // do so at least once per incoming block. 1160 DenseMap<BasicBlock *, Value*> BlockToValue; 1161 for (unsigned i = 0; i < NumPHIValues; i++) { 1162 Value *InVal = PN->getIncomingValue(i); 1163 BasicBlock *InBB = PN->getIncomingBlock(i); 1164 if (!BlockToValue.count(InBB)) 1165 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1166 else { 1167 #ifndef NDEBUG 1168 Value *OldBase = BlockToValue[InBB]; 1169 Value *Base = getBaseForInput(InVal, nullptr); 1170 1171 // We can't use `stripPointerCasts` instead of this function because 1172 // `stripPointerCasts` doesn't handle vectors of pointers. 1173 auto StripBitCasts = [](Value *V) -> Value * { 1174 while (auto *BC = dyn_cast<BitCastInst>(V)) 1175 V = BC->getOperand(0); 1176 return V; 1177 }; 1178 // In essence this assert states: the only way two values 1179 // incoming from the same basic block may be different is by 1180 // being different bitcasts of the same value. A cleanup 1181 // that remains TODO is changing findBaseOrBDV to return an 1182 // llvm::Value of the correct type (and still remain pure). 1183 // This will remove the need to add bitcasts. 1184 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1185 "findBaseOrBDV should be pure!"); 1186 #endif 1187 } 1188 Value *Base = BlockToValue[InBB]; 1189 BasePHI->setIncomingValue(i, Base); 1190 } 1191 } else if (SelectInst *BaseSI = 1192 dyn_cast<SelectInst>(State.getBaseValue())) { 1193 SelectInst *SI = cast<SelectInst>(BDV); 1194 1195 // Find the instruction which produces the base for each input. 1196 // We may need to insert a bitcast. 1197 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1198 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1199 } else if (auto *BaseEE = 1200 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1201 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1202 // Find the instruction which produces the base for each input. We may 1203 // need to insert a bitcast. 1204 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1205 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1206 auto *BdvIE = cast<InsertElementInst>(BDV); 1207 auto UpdateOperand = [&](int OperandIdx) { 1208 Value *InVal = BdvIE->getOperand(OperandIdx); 1209 Value *Base = getBaseForInput(InVal, BaseIE); 1210 BaseIE->setOperand(OperandIdx, Base); 1211 }; 1212 UpdateOperand(0); // vector operand 1213 UpdateOperand(1); // scalar operand 1214 } else { 1215 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1216 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1217 auto UpdateOperand = [&](int OperandIdx) { 1218 Value *InVal = BdvSV->getOperand(OperandIdx); 1219 Value *Base = getBaseForInput(InVal, BaseSV); 1220 BaseSV->setOperand(OperandIdx, Base); 1221 }; 1222 UpdateOperand(0); // vector operand 1223 if (!BdvSV->isZeroEltSplat()) 1224 UpdateOperand(1); // vector operand 1225 else { 1226 // Never read, so just use poison 1227 Value *InVal = BdvSV->getOperand(1); 1228 BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); 1229 } 1230 } 1231 } 1232 1233 #ifndef NDEBUG 1234 VerifyStates(); 1235 #endif 1236 1237 // Cache all of our results so we can cheaply reuse them 1238 // NOTE: This is actually two caches: one of the base defining value 1239 // relation and one of the base pointer relation! FIXME 1240 for (auto Pair : States) { 1241 auto *BDV = Pair.first; 1242 Value *Base = Pair.second.getBaseValue(); 1243 assert(BDV && Base); 1244 // Only values that do not have known bases or those that have differing 1245 // type (scalar versus vector) from a possible known base should be in the 1246 // lattice. 1247 assert( 1248 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1249 "why did it get added?"); 1250 1251 LLVM_DEBUG( 1252 dbgs() << "Updating base value cache" 1253 << " for: " << BDV->getName() << " from: " 1254 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1255 << " to: " << Base->getName() << "\n"); 1256 1257 Cache[BDV] = Base; 1258 } 1259 assert(Cache.count(Def)); 1260 return Cache[Def]; 1261 } 1262 1263 // For a set of live pointers (base and/or derived), identify the base 1264 // pointer of the object which they are derived from. This routine will 1265 // mutate the IR graph as needed to make the 'base' pointer live at the 1266 // definition site of 'derived'. This ensures that any use of 'derived' can 1267 // also use 'base'. This may involve the insertion of a number of 1268 // additional PHI nodes. 1269 // 1270 // preconditions: live is a set of pointer type Values 1271 // 1272 // side effects: may insert PHI nodes into the existing CFG, will preserve 1273 // CFG, will not remove or mutate any existing nodes 1274 // 1275 // post condition: PointerToBase contains one (derived, base) pair for every 1276 // pointer in live. Note that derived can be equal to base if the original 1277 // pointer was a base pointer. 1278 static void findBasePointers(const StatepointLiveSetTy &live, 1279 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1280 DefiningValueMapTy &DVCache, 1281 IsKnownBaseMapTy &KnownBases) { 1282 for (Value *ptr : live) { 1283 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1284 assert(base && "failed to find base pointer"); 1285 PointerToBase[ptr] = base; 1286 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1287 DT->dominates(cast<Instruction>(base)->getParent(), 1288 cast<Instruction>(ptr)->getParent())) && 1289 "The base we found better dominate the derived pointer"); 1290 } 1291 } 1292 1293 /// Find the required based pointers (and adjust the live set) for the given 1294 /// parse point. 1295 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1296 CallBase *Call, 1297 PartiallyConstructedSafepointRecord &result, 1298 PointerToBaseTy &PointerToBase, 1299 IsKnownBaseMapTy &KnownBases) { 1300 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1301 // We assume that all pointers passed to deopt are base pointers; as an 1302 // optimization, we can use this to avoid seperately materializing the base 1303 // pointer graph. This is only relevant since we're very conservative about 1304 // generating new conflict nodes during base pointer insertion. If we were 1305 // smarter there, this would be irrelevant. 1306 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1307 for (Value *V : Opt->Inputs) { 1308 if (!PotentiallyDerivedPointers.count(V)) 1309 continue; 1310 PotentiallyDerivedPointers.remove(V); 1311 PointerToBase[V] = V; 1312 } 1313 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1314 KnownBases); 1315 } 1316 1317 /// Given an updated version of the dataflow liveness results, update the 1318 /// liveset and base pointer maps for the call site CS. 1319 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1320 CallBase *Call, 1321 PartiallyConstructedSafepointRecord &result, 1322 PointerToBaseTy &PointerToBase, 1323 GCStrategy *GC); 1324 1325 static void recomputeLiveInValues( 1326 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1327 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1328 PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1329 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1330 // again. The old values are still live and will help it stabilize quickly. 1331 GCPtrLivenessData RevisedLivenessData; 1332 computeLiveInValues(DT, F, RevisedLivenessData, GC); 1333 for (size_t i = 0; i < records.size(); i++) { 1334 struct PartiallyConstructedSafepointRecord &info = records[i]; 1335 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, 1336 GC); 1337 } 1338 } 1339 1340 // Utility function which clones all instructions from "ChainToBase" 1341 // and inserts them before "InsertBefore". Returns rematerialized value 1342 // which should be used after statepoint. 1343 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1344 Instruction *InsertBefore, 1345 Value *RootOfChain, 1346 Value *AlternateLiveBase) { 1347 Instruction *LastClonedValue = nullptr; 1348 Instruction *LastValue = nullptr; 1349 // Walk backwards to visit top-most instructions first. 1350 for (Instruction *Instr : 1351 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1352 // Only GEP's and casts are supported as we need to be careful to not 1353 // introduce any new uses of pointers not in the liveset. 1354 // Note that it's fine to introduce new uses of pointers which were 1355 // otherwise not used after this statepoint. 1356 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1357 1358 Instruction *ClonedValue = Instr->clone(); 1359 ClonedValue->insertBefore(InsertBefore); 1360 ClonedValue->setName(Instr->getName() + ".remat"); 1361 1362 // If it is not first instruction in the chain then it uses previously 1363 // cloned value. We should update it to use cloned value. 1364 if (LastClonedValue) { 1365 assert(LastValue); 1366 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1367 #ifndef NDEBUG 1368 for (auto *OpValue : ClonedValue->operand_values()) { 1369 // Assert that cloned instruction does not use any instructions from 1370 // this chain other than LastClonedValue 1371 assert(!is_contained(ChainToBase, OpValue) && 1372 "incorrect use in rematerialization chain"); 1373 // Assert that the cloned instruction does not use the RootOfChain 1374 // or the AlternateLiveBase. 1375 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1376 } 1377 #endif 1378 } else { 1379 // For the first instruction, replace the use of unrelocated base i.e. 1380 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1381 // live set. They have been proved to be the same PHI nodes. Note 1382 // that the *only* use of the RootOfChain in the ChainToBase list is 1383 // the first Value in the list. 1384 if (RootOfChain != AlternateLiveBase) 1385 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1386 } 1387 1388 LastClonedValue = ClonedValue; 1389 LastValue = Instr; 1390 } 1391 assert(LastClonedValue); 1392 return LastClonedValue; 1393 } 1394 1395 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1396 // no uses of the original value / return value between the gc.statepoint and 1397 // the gc.relocate / gc.result call. One case which can arise is a phi node 1398 // starting one of the successor blocks. We also need to be able to insert the 1399 // gc.relocates only on the path which goes through the statepoint. We might 1400 // need to split an edge to make this possible. 1401 static BasicBlock * 1402 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1403 DominatorTree &DT) { 1404 BasicBlock *Ret = BB; 1405 if (!BB->getUniquePredecessor()) 1406 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1407 1408 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1409 // from it 1410 FoldSingleEntryPHINodes(Ret); 1411 assert(!isa<PHINode>(Ret->begin()) && 1412 "All PHI nodes should have been removed!"); 1413 1414 // At this point, we can safely insert a gc.relocate or gc.result as the first 1415 // instruction in Ret if needed. 1416 return Ret; 1417 } 1418 1419 // List of all function attributes which must be stripped when lowering from 1420 // abstract machine model to physical machine model. Essentially, these are 1421 // all the effects a safepoint might have which we ignored in the abstract 1422 // machine model for purposes of optimization. We have to strip these on 1423 // both function declarations and call sites. 1424 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1425 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1426 1427 // Create new attribute set containing only attributes which can be transferred 1428 // from original call to the safepoint. 1429 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1430 AttributeList OrigAL, 1431 AttributeList StatepointAL) { 1432 if (OrigAL.isEmpty()) 1433 return StatepointAL; 1434 1435 // Remove the readonly, readnone, and statepoint function attributes. 1436 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1437 for (auto Attr : FnAttrsToStrip) 1438 FnAttrs.removeAttribute(Attr); 1439 1440 for (Attribute A : OrigAL.getFnAttrs()) { 1441 if (isStatepointDirectiveAttr(A)) 1442 FnAttrs.removeAttribute(A); 1443 } 1444 1445 // Just skip parameter and return attributes for now 1446 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1447 } 1448 1449 /// Helper function to place all gc relocates necessary for the given 1450 /// statepoint. 1451 /// Inputs: 1452 /// liveVariables - list of variables to be relocated. 1453 /// basePtrs - base pointers. 1454 /// statepointToken - statepoint instruction to which relocates should be 1455 /// bound. 1456 /// Builder - Llvm IR builder to be used to construct new calls. 1457 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1458 ArrayRef<Value *> BasePtrs, 1459 Instruction *StatepointToken, 1460 IRBuilder<> &Builder, GCStrategy *GC) { 1461 if (LiveVariables.empty()) 1462 return; 1463 1464 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1465 auto ValIt = llvm::find(LiveVec, Val); 1466 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1467 size_t Index = std::distance(LiveVec.begin(), ValIt); 1468 assert(Index < LiveVec.size() && "Bug in std::find?"); 1469 return Index; 1470 }; 1471 Module *M = StatepointToken->getModule(); 1472 1473 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1474 // element type is i8 addrspace(1)*). We originally generated unique 1475 // declarations for each pointer type, but this proved problematic because 1476 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1477 // towards a single unified pointer type anyways, we can just cast everything 1478 // to an i8* of the right address space. A bitcast is added later to convert 1479 // gc_relocate to the actual value's type. 1480 auto getGCRelocateDecl = [&](Type *Ty) { 1481 assert(isHandledGCPointerType(Ty, GC)); 1482 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1483 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1484 if (auto *VT = dyn_cast<VectorType>(Ty)) 1485 NewTy = FixedVectorType::get(NewTy, 1486 cast<FixedVectorType>(VT)->getNumElements()); 1487 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1488 {NewTy}); 1489 }; 1490 1491 // Lazily populated map from input types to the canonicalized form mentioned 1492 // in the comment above. This should probably be cached somewhere more 1493 // broadly. 1494 DenseMap<Type *, Function *> TypeToDeclMap; 1495 1496 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1497 // Generate the gc.relocate call and save the result 1498 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1499 Value *LiveIdx = Builder.getInt32(i); 1500 1501 Type *Ty = LiveVariables[i]->getType(); 1502 if (!TypeToDeclMap.count(Ty)) 1503 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1504 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1505 1506 // only specify a debug name if we can give a useful one 1507 CallInst *Reloc = Builder.CreateCall( 1508 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1509 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1510 // Trick CodeGen into thinking there are lots of free registers at this 1511 // fake call. 1512 Reloc->setCallingConv(CallingConv::Cold); 1513 } 1514 } 1515 1516 namespace { 1517 1518 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1519 /// avoids having to worry about keeping around dangling pointers to Values. 1520 class DeferredReplacement { 1521 AssertingVH<Instruction> Old; 1522 AssertingVH<Instruction> New; 1523 bool IsDeoptimize = false; 1524 1525 DeferredReplacement() = default; 1526 1527 public: 1528 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1529 assert(Old != New && Old && New && 1530 "Cannot RAUW equal values or to / from null!"); 1531 1532 DeferredReplacement D; 1533 D.Old = Old; 1534 D.New = New; 1535 return D; 1536 } 1537 1538 static DeferredReplacement createDelete(Instruction *ToErase) { 1539 DeferredReplacement D; 1540 D.Old = ToErase; 1541 return D; 1542 } 1543 1544 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1545 #ifndef NDEBUG 1546 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1547 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1548 "Only way to construct a deoptimize deferred replacement"); 1549 #endif 1550 DeferredReplacement D; 1551 D.Old = Old; 1552 D.IsDeoptimize = true; 1553 return D; 1554 } 1555 1556 /// Does the task represented by this instance. 1557 void doReplacement() { 1558 Instruction *OldI = Old; 1559 Instruction *NewI = New; 1560 1561 assert(OldI != NewI && "Disallowed at construction?!"); 1562 assert((!IsDeoptimize || !New) && 1563 "Deoptimize intrinsics are not replaced!"); 1564 1565 Old = nullptr; 1566 New = nullptr; 1567 1568 if (NewI) 1569 OldI->replaceAllUsesWith(NewI); 1570 1571 if (IsDeoptimize) { 1572 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1573 // not necessarily be followed by the matching return. 1574 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1575 new UnreachableInst(RI->getContext(), RI); 1576 RI->eraseFromParent(); 1577 } 1578 1579 OldI->eraseFromParent(); 1580 } 1581 }; 1582 1583 } // end anonymous namespace 1584 1585 static StringRef getDeoptLowering(CallBase *Call) { 1586 const char *DeoptLowering = "deopt-lowering"; 1587 if (Call->hasFnAttr(DeoptLowering)) { 1588 // FIXME: Calls have a *really* confusing interface around attributes 1589 // with values. 1590 const AttributeList &CSAS = Call->getAttributes(); 1591 if (CSAS.hasFnAttr(DeoptLowering)) 1592 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1593 Function *F = Call->getCalledFunction(); 1594 assert(F && F->hasFnAttribute(DeoptLowering)); 1595 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1596 } 1597 return "live-through"; 1598 } 1599 1600 static void 1601 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1602 const SmallVectorImpl<Value *> &BasePtrs, 1603 const SmallVectorImpl<Value *> &LiveVariables, 1604 PartiallyConstructedSafepointRecord &Result, 1605 std::vector<DeferredReplacement> &Replacements, 1606 const PointerToBaseTy &PointerToBase, 1607 GCStrategy *GC) { 1608 assert(BasePtrs.size() == LiveVariables.size()); 1609 1610 // Then go ahead and use the builder do actually do the inserts. We insert 1611 // immediately before the previous instruction under the assumption that all 1612 // arguments will be available here. We can't insert afterwards since we may 1613 // be replacing a terminator. 1614 IRBuilder<> Builder(Call); 1615 1616 ArrayRef<Value *> GCArgs(LiveVariables); 1617 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1618 uint32_t NumPatchBytes = 0; 1619 uint32_t Flags = uint32_t(StatepointFlags::None); 1620 1621 SmallVector<Value *, 8> CallArgs(Call->args()); 1622 std::optional<ArrayRef<Use>> DeoptArgs; 1623 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1624 DeoptArgs = Bundle->Inputs; 1625 std::optional<ArrayRef<Use>> TransitionArgs; 1626 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1627 TransitionArgs = Bundle->Inputs; 1628 // TODO: This flag no longer serves a purpose and can be removed later 1629 Flags |= uint32_t(StatepointFlags::GCTransition); 1630 } 1631 1632 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1633 // with a return value, we lower then as never returning calls to 1634 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1635 bool IsDeoptimize = false; 1636 1637 StatepointDirectives SD = 1638 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1639 if (SD.NumPatchBytes) 1640 NumPatchBytes = *SD.NumPatchBytes; 1641 if (SD.StatepointID) 1642 StatepointID = *SD.StatepointID; 1643 1644 // Pass through the requested lowering if any. The default is live-through. 1645 StringRef DeoptLowering = getDeoptLowering(Call); 1646 if (DeoptLowering.equals("live-in")) 1647 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1648 else { 1649 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1650 } 1651 1652 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1653 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1654 auto IID = F->getIntrinsicID(); 1655 if (IID == Intrinsic::experimental_deoptimize) { 1656 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1657 // __llvm_deoptimize symbol. We want to resolve this now, since the 1658 // verifier does not allow taking the address of an intrinsic function. 1659 1660 SmallVector<Type *, 8> DomainTy; 1661 for (Value *Arg : CallArgs) 1662 DomainTy.push_back(Arg->getType()); 1663 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1664 /* isVarArg = */ false); 1665 1666 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1667 // calls to @llvm.experimental.deoptimize with different argument types in 1668 // the same module. This is fine -- we assume the frontend knew what it 1669 // was doing when generating this kind of IR. 1670 CallTarget = F->getParent() 1671 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1672 1673 IsDeoptimize = true; 1674 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1675 IID == Intrinsic::memmove_element_unordered_atomic) { 1676 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1677 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1678 // Specifically, these calls should be lowered to the 1679 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1680 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1681 // verifier does not allow taking the address of an intrinsic function. 1682 // 1683 // Moreover we need to shuffle the arguments for the call in order to 1684 // accommodate GC. The underlying source and destination objects might be 1685 // relocated during copy operation should the GC occur. To relocate the 1686 // derived source and destination pointers the implementation of the 1687 // intrinsic should know the corresponding base pointers. 1688 // 1689 // To make the base pointers available pass them explicitly as arguments: 1690 // memcpy(dest_derived, source_derived, ...) => 1691 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1692 auto &Context = Call->getContext(); 1693 auto &DL = Call->getModule()->getDataLayout(); 1694 auto GetBaseAndOffset = [&](Value *Derived) { 1695 Value *Base = nullptr; 1696 // Optimizations in unreachable code might substitute the real pointer 1697 // with undef, poison or null-derived constant. Return null base for 1698 // them to be consistent with the handling in the main algorithm in 1699 // findBaseDefiningValue. 1700 if (isa<Constant>(Derived)) 1701 Base = 1702 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1703 else { 1704 assert(PointerToBase.count(Derived)); 1705 Base = PointerToBase.find(Derived)->second; 1706 } 1707 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1708 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1709 Value *Base_int = Builder.CreatePtrToInt( 1710 Base, Type::getIntNTy(Context, IntPtrSize)); 1711 Value *Derived_int = Builder.CreatePtrToInt( 1712 Derived, Type::getIntNTy(Context, IntPtrSize)); 1713 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1714 }; 1715 1716 auto *Dest = CallArgs[0]; 1717 Value *DestBase, *DestOffset; 1718 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1719 1720 auto *Source = CallArgs[1]; 1721 Value *SourceBase, *SourceOffset; 1722 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1723 1724 auto *LengthInBytes = CallArgs[2]; 1725 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1726 1727 CallArgs.clear(); 1728 CallArgs.push_back(DestBase); 1729 CallArgs.push_back(DestOffset); 1730 CallArgs.push_back(SourceBase); 1731 CallArgs.push_back(SourceOffset); 1732 CallArgs.push_back(LengthInBytes); 1733 1734 SmallVector<Type *, 8> DomainTy; 1735 for (Value *Arg : CallArgs) 1736 DomainTy.push_back(Arg->getType()); 1737 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1738 /* isVarArg = */ false); 1739 1740 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1741 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1742 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1743 switch (ElementSize) { 1744 case 1: 1745 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1746 case 2: 1747 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1748 case 4: 1749 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1750 case 8: 1751 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1752 case 16: 1753 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1754 default: 1755 llvm_unreachable("unexpected element size!"); 1756 } 1757 } 1758 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1759 switch (ElementSize) { 1760 case 1: 1761 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1762 case 2: 1763 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1764 case 4: 1765 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1766 case 8: 1767 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1768 case 16: 1769 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1770 default: 1771 llvm_unreachable("unexpected element size!"); 1772 } 1773 }; 1774 1775 CallTarget = 1776 F->getParent() 1777 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1778 } 1779 } 1780 1781 // Create the statepoint given all the arguments 1782 GCStatepointInst *Token = nullptr; 1783 if (auto *CI = dyn_cast<CallInst>(Call)) { 1784 CallInst *SPCall = Builder.CreateGCStatepointCall( 1785 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1786 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1787 1788 SPCall->setTailCallKind(CI->getTailCallKind()); 1789 SPCall->setCallingConv(CI->getCallingConv()); 1790 1791 // Currently we will fail on parameter attributes and on certain 1792 // function attributes. In case if we can handle this set of attributes - 1793 // set up function attrs directly on statepoint and return attrs later for 1794 // gc_result intrinsic. 1795 SPCall->setAttributes(legalizeCallAttributes( 1796 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1797 1798 Token = cast<GCStatepointInst>(SPCall); 1799 1800 // Put the following gc_result and gc_relocate calls immediately after the 1801 // the old call (which we're about to delete) 1802 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1803 Builder.SetInsertPoint(CI->getNextNode()); 1804 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1805 } else { 1806 auto *II = cast<InvokeInst>(Call); 1807 1808 // Insert the new invoke into the old block. We'll remove the old one in a 1809 // moment at which point this will become the new terminator for the 1810 // original block. 1811 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1812 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1813 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1814 "statepoint_token"); 1815 1816 SPInvoke->setCallingConv(II->getCallingConv()); 1817 1818 // Currently we will fail on parameter attributes and on certain 1819 // function attributes. In case if we can handle this set of attributes - 1820 // set up function attrs directly on statepoint and return attrs later for 1821 // gc_result intrinsic. 1822 SPInvoke->setAttributes(legalizeCallAttributes( 1823 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1824 1825 Token = cast<GCStatepointInst>(SPInvoke); 1826 1827 // Generate gc relocates in exceptional path 1828 BasicBlock *UnwindBlock = II->getUnwindDest(); 1829 assert(!isa<PHINode>(UnwindBlock->begin()) && 1830 UnwindBlock->getUniquePredecessor() && 1831 "can't safely insert in this block!"); 1832 1833 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1834 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1835 1836 // Attach exceptional gc relocates to the landingpad. 1837 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1838 Result.UnwindToken = ExceptionalToken; 1839 1840 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); 1841 1842 // Generate gc relocates and returns for normal block 1843 BasicBlock *NormalDest = II->getNormalDest(); 1844 assert(!isa<PHINode>(NormalDest->begin()) && 1845 NormalDest->getUniquePredecessor() && 1846 "can't safely insert in this block!"); 1847 1848 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1849 1850 // gc relocates will be generated later as if it were regular call 1851 // statepoint 1852 } 1853 assert(Token && "Should be set in one of the above branches!"); 1854 1855 if (IsDeoptimize) { 1856 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1857 // transform the tail-call like structure to a call to a void function 1858 // followed by unreachable to get better codegen. 1859 Replacements.push_back( 1860 DeferredReplacement::createDeoptimizeReplacement(Call)); 1861 } else { 1862 Token->setName("statepoint_token"); 1863 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1864 StringRef Name = Call->hasName() ? Call->getName() : ""; 1865 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1866 GCResult->setAttributes( 1867 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1868 Call->getAttributes().getRetAttrs())); 1869 1870 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1871 // live set of some other safepoint, in which case that safepoint's 1872 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1873 // llvm::Instruction. Instead, we defer the replacement and deletion to 1874 // after the live sets have been made explicit in the IR, and we no longer 1875 // have raw pointers to worry about. 1876 Replacements.emplace_back( 1877 DeferredReplacement::createRAUW(Call, GCResult)); 1878 } else { 1879 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1880 } 1881 } 1882 1883 Result.StatepointToken = Token; 1884 1885 // Second, create a gc.relocate for every live variable 1886 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); 1887 } 1888 1889 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1890 // which make the relocations happening at this safepoint explicit. 1891 // 1892 // WARNING: Does not do any fixup to adjust users of the original live 1893 // values. That's the callers responsibility. 1894 static void 1895 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1896 PartiallyConstructedSafepointRecord &Result, 1897 std::vector<DeferredReplacement> &Replacements, 1898 const PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1899 const auto &LiveSet = Result.LiveSet; 1900 1901 // Convert to vector for efficient cross referencing. 1902 SmallVector<Value *, 64> BaseVec, LiveVec; 1903 LiveVec.reserve(LiveSet.size()); 1904 BaseVec.reserve(LiveSet.size()); 1905 for (Value *L : LiveSet) { 1906 LiveVec.push_back(L); 1907 assert(PointerToBase.count(L)); 1908 Value *Base = PointerToBase.find(L)->second; 1909 BaseVec.push_back(Base); 1910 } 1911 assert(LiveVec.size() == BaseVec.size()); 1912 1913 // Do the actual rewriting and delete the old statepoint 1914 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1915 PointerToBase, GC); 1916 } 1917 1918 // Helper function for the relocationViaAlloca. 1919 // 1920 // It receives iterator to the statepoint gc relocates and emits a store to the 1921 // assigned location (via allocaMap) for the each one of them. It adds the 1922 // visited values into the visitedLiveValues set, which we will later use them 1923 // for validation checking. 1924 static void 1925 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1926 DenseMap<Value *, AllocaInst *> &AllocaMap, 1927 DenseSet<Value *> &VisitedLiveValues) { 1928 for (User *U : GCRelocs) { 1929 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1930 if (!Relocate) 1931 continue; 1932 1933 Value *OriginalValue = Relocate->getDerivedPtr(); 1934 assert(AllocaMap.count(OriginalValue)); 1935 Value *Alloca = AllocaMap[OriginalValue]; 1936 1937 // Emit store into the related alloca 1938 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1939 // the correct type according to alloca. 1940 assert(Relocate->getNextNode() && 1941 "Should always have one since it's not a terminator"); 1942 IRBuilder<> Builder(Relocate->getNextNode()); 1943 Value *CastedRelocatedValue = 1944 Builder.CreateBitCast(Relocate, 1945 cast<AllocaInst>(Alloca)->getAllocatedType(), 1946 suffixed_name_or(Relocate, ".casted", "")); 1947 1948 new StoreInst(CastedRelocatedValue, Alloca, 1949 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1950 1951 #ifndef NDEBUG 1952 VisitedLiveValues.insert(OriginalValue); 1953 #endif 1954 } 1955 } 1956 1957 // Helper function for the "relocationViaAlloca". Similar to the 1958 // "insertRelocationStores" but works for rematerialized values. 1959 static void insertRematerializationStores( 1960 const RematerializedValueMapTy &RematerializedValues, 1961 DenseMap<Value *, AllocaInst *> &AllocaMap, 1962 DenseSet<Value *> &VisitedLiveValues) { 1963 for (auto RematerializedValuePair: RematerializedValues) { 1964 Instruction *RematerializedValue = RematerializedValuePair.first; 1965 Value *OriginalValue = RematerializedValuePair.second; 1966 1967 assert(AllocaMap.count(OriginalValue) && 1968 "Can not find alloca for rematerialized value"); 1969 Value *Alloca = AllocaMap[OriginalValue]; 1970 1971 new StoreInst(RematerializedValue, Alloca, 1972 RematerializedValue->getNextNode()); 1973 1974 #ifndef NDEBUG 1975 VisitedLiveValues.insert(OriginalValue); 1976 #endif 1977 } 1978 } 1979 1980 /// Do all the relocation update via allocas and mem2reg 1981 static void relocationViaAlloca( 1982 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1983 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1984 #ifndef NDEBUG 1985 // record initial number of (static) allocas; we'll check we have the same 1986 // number when we get done. 1987 int InitialAllocaNum = 0; 1988 for (Instruction &I : F.getEntryBlock()) 1989 if (isa<AllocaInst>(I)) 1990 InitialAllocaNum++; 1991 #endif 1992 1993 // TODO-PERF: change data structures, reserve 1994 DenseMap<Value *, AllocaInst *> AllocaMap; 1995 SmallVector<AllocaInst *, 200> PromotableAllocas; 1996 // Used later to chack that we have enough allocas to store all values 1997 std::size_t NumRematerializedValues = 0; 1998 PromotableAllocas.reserve(Live.size()); 1999 2000 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2001 // "PromotableAllocas" 2002 const DataLayout &DL = F.getParent()->getDataLayout(); 2003 auto emitAllocaFor = [&](Value *LiveValue) { 2004 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2005 DL.getAllocaAddrSpace(), "", 2006 F.getEntryBlock().getFirstNonPHI()); 2007 AllocaMap[LiveValue] = Alloca; 2008 PromotableAllocas.push_back(Alloca); 2009 }; 2010 2011 // Emit alloca for each live gc pointer 2012 for (Value *V : Live) 2013 emitAllocaFor(V); 2014 2015 // Emit allocas for rematerialized values 2016 for (const auto &Info : Records) 2017 for (auto RematerializedValuePair : Info.RematerializedValues) { 2018 Value *OriginalValue = RematerializedValuePair.second; 2019 if (AllocaMap.count(OriginalValue) != 0) 2020 continue; 2021 2022 emitAllocaFor(OriginalValue); 2023 ++NumRematerializedValues; 2024 } 2025 2026 // The next two loops are part of the same conceptual operation. We need to 2027 // insert a store to the alloca after the original def and at each 2028 // redefinition. We need to insert a load before each use. These are split 2029 // into distinct loops for performance reasons. 2030 2031 // Update gc pointer after each statepoint: either store a relocated value or 2032 // null (if no relocated value was found for this gc pointer and it is not a 2033 // gc_result). This must happen before we update the statepoint with load of 2034 // alloca otherwise we lose the link between statepoint and old def. 2035 for (const auto &Info : Records) { 2036 Value *Statepoint = Info.StatepointToken; 2037 2038 // This will be used for consistency check 2039 DenseSet<Value *> VisitedLiveValues; 2040 2041 // Insert stores for normal statepoint gc relocates 2042 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2043 2044 // In case if it was invoke statepoint 2045 // we will insert stores for exceptional path gc relocates. 2046 if (isa<InvokeInst>(Statepoint)) { 2047 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2048 VisitedLiveValues); 2049 } 2050 2051 // Do similar thing with rematerialized values 2052 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2053 VisitedLiveValues); 2054 2055 if (ClobberNonLive) { 2056 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2057 // the gc.statepoint. This will turn some subtle GC problems into 2058 // slightly easier to debug SEGVs. Note that on large IR files with 2059 // lots of gc.statepoints this is extremely costly both memory and time 2060 // wise. 2061 SmallVector<AllocaInst *, 64> ToClobber; 2062 for (auto Pair : AllocaMap) { 2063 Value *Def = Pair.first; 2064 AllocaInst *Alloca = Pair.second; 2065 2066 // This value was relocated 2067 if (VisitedLiveValues.count(Def)) { 2068 continue; 2069 } 2070 ToClobber.push_back(Alloca); 2071 } 2072 2073 auto InsertClobbersAt = [&](Instruction *IP) { 2074 for (auto *AI : ToClobber) { 2075 auto AT = AI->getAllocatedType(); 2076 Constant *CPN; 2077 if (AT->isVectorTy()) 2078 CPN = ConstantAggregateZero::get(AT); 2079 else 2080 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2081 new StoreInst(CPN, AI, IP); 2082 } 2083 }; 2084 2085 // Insert the clobbering stores. These may get intermixed with the 2086 // gc.results and gc.relocates, but that's fine. 2087 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2088 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2089 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2090 } else { 2091 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2092 } 2093 } 2094 } 2095 2096 // Update use with load allocas and add store for gc_relocated. 2097 for (auto Pair : AllocaMap) { 2098 Value *Def = Pair.first; 2099 AllocaInst *Alloca = Pair.second; 2100 2101 // We pre-record the uses of allocas so that we dont have to worry about 2102 // later update that changes the user information.. 2103 2104 SmallVector<Instruction *, 20> Uses; 2105 // PERF: trade a linear scan for repeated reallocation 2106 Uses.reserve(Def->getNumUses()); 2107 for (User *U : Def->users()) { 2108 if (!isa<ConstantExpr>(U)) { 2109 // If the def has a ConstantExpr use, then the def is either a 2110 // ConstantExpr use itself or null. In either case 2111 // (recursively in the first, directly in the second), the oop 2112 // it is ultimately dependent on is null and this particular 2113 // use does not need to be fixed up. 2114 Uses.push_back(cast<Instruction>(U)); 2115 } 2116 } 2117 2118 llvm::sort(Uses); 2119 auto Last = std::unique(Uses.begin(), Uses.end()); 2120 Uses.erase(Last, Uses.end()); 2121 2122 for (Instruction *Use : Uses) { 2123 if (isa<PHINode>(Use)) { 2124 PHINode *Phi = cast<PHINode>(Use); 2125 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2126 if (Def == Phi->getIncomingValue(i)) { 2127 LoadInst *Load = 2128 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2129 Phi->getIncomingBlock(i)->getTerminator()); 2130 Phi->setIncomingValue(i, Load); 2131 } 2132 } 2133 } else { 2134 LoadInst *Load = 2135 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2136 Use->replaceUsesOfWith(Def, Load); 2137 } 2138 } 2139 2140 // Emit store for the initial gc value. Store must be inserted after load, 2141 // otherwise store will be in alloca's use list and an extra load will be 2142 // inserted before it. 2143 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2144 DL.getABITypeAlign(Def->getType())); 2145 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2146 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2147 // InvokeInst is a terminator so the store need to be inserted into its 2148 // normal destination block. 2149 BasicBlock *NormalDest = Invoke->getNormalDest(); 2150 Store->insertBefore(NormalDest->getFirstNonPHI()); 2151 } else { 2152 assert(!Inst->isTerminator() && 2153 "The only terminator that can produce a value is " 2154 "InvokeInst which is handled above."); 2155 Store->insertAfter(Inst); 2156 } 2157 } else { 2158 assert(isa<Argument>(Def)); 2159 Store->insertAfter(cast<Instruction>(Alloca)); 2160 } 2161 } 2162 2163 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2164 "we must have the same allocas with lives"); 2165 (void) NumRematerializedValues; 2166 if (!PromotableAllocas.empty()) { 2167 // Apply mem2reg to promote alloca to SSA 2168 PromoteMemToReg(PromotableAllocas, DT); 2169 } 2170 2171 #ifndef NDEBUG 2172 for (auto &I : F.getEntryBlock()) 2173 if (isa<AllocaInst>(I)) 2174 InitialAllocaNum--; 2175 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2176 #endif 2177 } 2178 2179 /// Implement a unique function which doesn't require we sort the input 2180 /// vector. Doing so has the effect of changing the output of a couple of 2181 /// tests in ways which make them less useful in testing fused safepoints. 2182 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2183 SmallSet<T, 8> Seen; 2184 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2185 } 2186 2187 /// Insert holders so that each Value is obviously live through the entire 2188 /// lifetime of the call. 2189 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2190 SmallVectorImpl<CallInst *> &Holders) { 2191 if (Values.empty()) 2192 // No values to hold live, might as well not insert the empty holder 2193 return; 2194 2195 Module *M = Call->getModule(); 2196 // Use a dummy vararg function to actually hold the values live 2197 FunctionCallee Func = M->getOrInsertFunction( 2198 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2199 if (isa<CallInst>(Call)) { 2200 // For call safepoints insert dummy calls right after safepoint 2201 Holders.push_back( 2202 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2203 return; 2204 } 2205 // For invoke safepooints insert dummy calls both in normal and 2206 // exceptional destination blocks 2207 auto *II = cast<InvokeInst>(Call); 2208 Holders.push_back(CallInst::Create( 2209 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2210 Holders.push_back(CallInst::Create( 2211 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2212 } 2213 2214 static void findLiveReferences( 2215 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2216 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 2217 GCStrategy *GC) { 2218 GCPtrLivenessData OriginalLivenessData; 2219 computeLiveInValues(DT, F, OriginalLivenessData, GC); 2220 for (size_t i = 0; i < records.size(); i++) { 2221 struct PartiallyConstructedSafepointRecord &info = records[i]; 2222 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); 2223 } 2224 } 2225 2226 // Helper function for the "rematerializeLiveValues". It walks use chain 2227 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2228 // the base or a value it cannot process. Only "simple" values are processed 2229 // (currently it is GEP's and casts). The returned root is examined by the 2230 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2231 // with all visited values. 2232 static Value* findRematerializableChainToBasePointer( 2233 SmallVectorImpl<Instruction*> &ChainToBase, 2234 Value *CurrentValue) { 2235 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2236 ChainToBase.push_back(GEP); 2237 return findRematerializableChainToBasePointer(ChainToBase, 2238 GEP->getPointerOperand()); 2239 } 2240 2241 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2242 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2243 return CI; 2244 2245 ChainToBase.push_back(CI); 2246 return findRematerializableChainToBasePointer(ChainToBase, 2247 CI->getOperand(0)); 2248 } 2249 2250 // We have reached the root of the chain, which is either equal to the base or 2251 // is the first unsupported value along the use chain. 2252 return CurrentValue; 2253 } 2254 2255 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2256 // chain we are going to rematerialize. 2257 static InstructionCost 2258 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2259 TargetTransformInfo &TTI) { 2260 InstructionCost Cost = 0; 2261 2262 for (Instruction *Instr : Chain) { 2263 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2264 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2265 "non noop cast is found during rematerialization"); 2266 2267 Type *SrcTy = CI->getOperand(0)->getType(); 2268 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2269 TTI::getCastContextHint(CI), 2270 TargetTransformInfo::TCK_SizeAndLatency, CI); 2271 2272 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2273 // Cost of the address calculation 2274 Type *ValTy = GEP->getSourceElementType(); 2275 Cost += TTI.getAddressComputationCost(ValTy); 2276 2277 // And cost of the GEP itself 2278 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2279 // allowed for the external usage) 2280 if (!GEP->hasAllConstantIndices()) 2281 Cost += 2; 2282 2283 } else { 2284 llvm_unreachable("unsupported instruction type during rematerialization"); 2285 } 2286 } 2287 2288 return Cost; 2289 } 2290 2291 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2292 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2293 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2294 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2295 return false; 2296 // Map of incoming values and their corresponding basic blocks of 2297 // OrigRootPhi. 2298 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2299 for (unsigned i = 0; i < PhiNum; i++) 2300 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2301 OrigRootPhi.getIncomingBlock(i); 2302 2303 // Both current and base PHIs should have same incoming values and 2304 // the same basic blocks corresponding to the incoming values. 2305 for (unsigned i = 0; i < PhiNum; i++) { 2306 auto CIVI = 2307 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2308 if (CIVI == CurrentIncomingValues.end()) 2309 return false; 2310 BasicBlock *CurrentIncomingBB = CIVI->second; 2311 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2312 return false; 2313 } 2314 return true; 2315 } 2316 2317 // Find derived pointers that can be recomputed cheap enough and fill 2318 // RematerizationCandidates with such candidates. 2319 static void 2320 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2321 RematCandTy &RematerizationCandidates, 2322 TargetTransformInfo &TTI) { 2323 const unsigned int ChainLengthThreshold = 10; 2324 2325 for (auto P2B : PointerToBase) { 2326 auto *Derived = P2B.first; 2327 auto *Base = P2B.second; 2328 // Consider only derived pointers. 2329 if (Derived == Base) 2330 continue; 2331 2332 // For each live pointer find its defining chain. 2333 SmallVector<Instruction *, 3> ChainToBase; 2334 Value *RootOfChain = 2335 findRematerializableChainToBasePointer(ChainToBase, Derived); 2336 2337 // Nothing to do, or chain is too long 2338 if ( ChainToBase.size() == 0 || 2339 ChainToBase.size() > ChainLengthThreshold) 2340 continue; 2341 2342 // Handle the scenario where the RootOfChain is not equal to the 2343 // Base Value, but they are essentially the same phi values. 2344 if (RootOfChain != PointerToBase[Derived]) { 2345 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2346 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2347 if (!OrigRootPhi || !AlternateRootPhi) 2348 continue; 2349 // PHI nodes that have the same incoming values, and belonging to the same 2350 // basic blocks are essentially the same SSA value. When the original phi 2351 // has incoming values with different base pointers, the original phi is 2352 // marked as conflict, and an additional `AlternateRootPhi` with the same 2353 // incoming values get generated by the findBasePointer function. We need 2354 // to identify the newly generated AlternateRootPhi (.base version of phi) 2355 // and RootOfChain (the original phi node itself) are the same, so that we 2356 // can rematerialize the gep and casts. This is a workaround for the 2357 // deficiency in the findBasePointer algorithm. 2358 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2359 continue; 2360 } 2361 // Compute cost of this chain. 2362 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2363 // TODO: We can also account for cases when we will be able to remove some 2364 // of the rematerialized values by later optimization passes. I.e if 2365 // we rematerialized several intersecting chains. Or if original values 2366 // don't have any uses besides this statepoint. 2367 2368 // Ok, there is a candidate. 2369 RematerizlizationCandidateRecord Record; 2370 Record.ChainToBase = ChainToBase; 2371 Record.RootOfChain = RootOfChain; 2372 Record.Cost = Cost; 2373 RematerizationCandidates.insert({ Derived, Record }); 2374 } 2375 } 2376 2377 // Try to rematerialize derived pointers immediately before their uses 2378 // (instead of rematerializing after every statepoint it is live through). 2379 // This can be beneficial when derived pointer is live across many 2380 // statepoints, but uses are rare. 2381 static void rematerializeLiveValuesAtUses( 2382 RematCandTy &RematerizationCandidates, 2383 MutableArrayRef<PartiallyConstructedSafepointRecord> Records, 2384 PointerToBaseTy &PointerToBase) { 2385 if (!RematDerivedAtUses) 2386 return; 2387 2388 SmallVector<Instruction *, 32> LiveValuesToBeDeleted; 2389 2390 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " 2391 << "Num statepoints: " << Records.size() << '\n'); 2392 2393 for (auto &It : RematerizationCandidates) { 2394 Instruction *Cand = cast<Instruction>(It.first); 2395 auto &Record = It.second; 2396 2397 if (Record.Cost >= RematerializationThreshold) 2398 continue; 2399 2400 if (Cand->user_empty()) 2401 continue; 2402 2403 if (Cand->hasOneUse()) 2404 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser())) 2405 if (U->getParent() == Cand->getParent()) 2406 continue; 2407 2408 // Rematerialization before PHI nodes is not implemented. 2409 if (llvm::any_of(Cand->users(), 2410 [](const auto *U) { return isa<PHINode>(U); })) 2411 continue; 2412 2413 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); 2414 2415 // Count of rematerialization instructions we introduce is equal to number 2416 // of candidate uses. 2417 // Count of rematerialization instructions we eliminate is equal to number 2418 // of statepoints it is live through. 2419 // Consider transformation profitable if latter is greater than former 2420 // (in other words, we create less than eliminate). 2421 unsigned NumLiveStatepoints = llvm::count_if( 2422 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); 2423 unsigned NumUses = Cand->getNumUses(); 2424 2425 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " 2426 << NumLiveStatepoints << " "); 2427 2428 if (NumLiveStatepoints < NumUses) { 2429 LLVM_DEBUG(dbgs() << "not profitable\n"); 2430 continue; 2431 } 2432 2433 // If rematerialization is 'free', then favor rematerialization at 2434 // uses as it generally shortens live ranges. 2435 // TODO: Short (size ==1) chains only? 2436 if (NumLiveStatepoints == NumUses && Record.Cost > 0) { 2437 LLVM_DEBUG(dbgs() << "not profitable\n"); 2438 continue; 2439 } 2440 2441 LLVM_DEBUG(dbgs() << "looks profitable\n"); 2442 2443 // ChainToBase may contain another remat candidate (as a sub chain) which 2444 // has been rewritten by now. Need to recollect chain to have up to date 2445 // value. 2446 // TODO: sort records in findRematerializationCandidates() in 2447 // decreasing chain size order? 2448 if (Record.ChainToBase.size() > 1) { 2449 Record.ChainToBase.clear(); 2450 findRematerializableChainToBasePointer(Record.ChainToBase, Cand); 2451 } 2452 2453 // Current rematerialization algorithm is very simple: we rematerialize 2454 // immediately before EVERY use, even if there are several uses in same 2455 // block or if use is local to Cand Def. The reason is that this allows 2456 // us to avoid recomputing liveness without complicated analysis: 2457 // - If we did not eliminate all uses of original Candidate, we do not 2458 // know exaclty in what BBs it is still live. 2459 // - If we rematerialize once per BB, we need to find proper insertion 2460 // place (first use in block, but after Def) and analyze if there is 2461 // statepoint between uses in the block. 2462 while (!Cand->user_empty()) { 2463 Instruction *UserI = cast<Instruction>(*Cand->user_begin()); 2464 Instruction *RematChain = rematerializeChain( 2465 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); 2466 UserI->replaceUsesOfWith(Cand, RematChain); 2467 PointerToBase[RematChain] = PointerToBase[Cand]; 2468 } 2469 LiveValuesToBeDeleted.push_back(Cand); 2470 } 2471 2472 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() 2473 << " derived pointers\n"); 2474 for (auto *Cand : LiveValuesToBeDeleted) { 2475 assert(Cand->use_empty() && "Unexpected user remain"); 2476 RematerizationCandidates.erase(Cand); 2477 for (auto &R : Records) { 2478 assert(!R.LiveSet.contains(Cand) || 2479 R.LiveSet.contains(PointerToBase[Cand])); 2480 R.LiveSet.remove(Cand); 2481 } 2482 } 2483 2484 // Recollect not rematerialized chains - we might have rewritten 2485 // their sub-chains. 2486 if (!LiveValuesToBeDeleted.empty()) { 2487 for (auto &P : RematerizationCandidates) { 2488 auto &R = P.second; 2489 if (R.ChainToBase.size() > 1) { 2490 R.ChainToBase.clear(); 2491 findRematerializableChainToBasePointer(R.ChainToBase, P.first); 2492 } 2493 } 2494 } 2495 } 2496 2497 // From the statepoint live set pick values that are cheaper to recompute then 2498 // to relocate. Remove this values from the live set, rematerialize them after 2499 // statepoint and record them in "Info" structure. Note that similar to 2500 // relocated values we don't do any user adjustments here. 2501 static void rematerializeLiveValues(CallBase *Call, 2502 PartiallyConstructedSafepointRecord &Info, 2503 PointerToBaseTy &PointerToBase, 2504 RematCandTy &RematerizationCandidates, 2505 TargetTransformInfo &TTI) { 2506 // Record values we are going to delete from this statepoint live set. 2507 // We can not di this in following loop due to iterator invalidation. 2508 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2509 2510 for (Value *LiveValue : Info.LiveSet) { 2511 auto It = RematerizationCandidates.find(LiveValue); 2512 if (It == RematerizationCandidates.end()) 2513 continue; 2514 2515 RematerizlizationCandidateRecord &Record = It->second; 2516 2517 InstructionCost Cost = Record.Cost; 2518 // For invokes we need to rematerialize each chain twice - for normal and 2519 // for unwind basic blocks. Model this by multiplying cost by two. 2520 if (isa<InvokeInst>(Call)) 2521 Cost *= 2; 2522 2523 // If it's too expensive - skip it. 2524 if (Cost >= RematerializationThreshold) 2525 continue; 2526 2527 // Remove value from the live set 2528 LiveValuesToBeDeleted.push_back(LiveValue); 2529 2530 // Clone instructions and record them inside "Info" structure. 2531 2532 // Different cases for calls and invokes. For invokes we need to clone 2533 // instructions both on normal and unwind path. 2534 if (isa<CallInst>(Call)) { 2535 Instruction *InsertBefore = Call->getNextNode(); 2536 assert(InsertBefore); 2537 Instruction *RematerializedValue = 2538 rematerializeChain(Record.ChainToBase, InsertBefore, 2539 Record.RootOfChain, PointerToBase[LiveValue]); 2540 Info.RematerializedValues[RematerializedValue] = LiveValue; 2541 } else { 2542 auto *Invoke = cast<InvokeInst>(Call); 2543 2544 Instruction *NormalInsertBefore = 2545 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2546 Instruction *UnwindInsertBefore = 2547 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2548 2549 Instruction *NormalRematerializedValue = 2550 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2551 Record.RootOfChain, PointerToBase[LiveValue]); 2552 Instruction *UnwindRematerializedValue = 2553 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2554 Record.RootOfChain, PointerToBase[LiveValue]); 2555 2556 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2557 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2558 } 2559 } 2560 2561 // Remove rematerialized values from the live set. 2562 for (auto *LiveValue: LiveValuesToBeDeleted) { 2563 Info.LiveSet.remove(LiveValue); 2564 } 2565 } 2566 2567 static bool inlineGetBaseAndOffset(Function &F, 2568 SmallVectorImpl<CallInst *> &Intrinsics, 2569 DefiningValueMapTy &DVCache, 2570 IsKnownBaseMapTy &KnownBases) { 2571 auto &Context = F.getContext(); 2572 auto &DL = F.getParent()->getDataLayout(); 2573 bool Changed = false; 2574 2575 for (auto *Callsite : Intrinsics) 2576 switch (Callsite->getIntrinsicID()) { 2577 case Intrinsic::experimental_gc_get_pointer_base: { 2578 Changed = true; 2579 Value *Base = 2580 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2581 assert(!DVCache.count(Callsite)); 2582 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2583 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2584 if (BaseBC != Base) 2585 DVCache[BaseBC] = Base; 2586 Callsite->replaceAllUsesWith(BaseBC); 2587 if (!BaseBC->hasName()) 2588 BaseBC->takeName(Callsite); 2589 Callsite->eraseFromParent(); 2590 break; 2591 } 2592 case Intrinsic::experimental_gc_get_pointer_offset: { 2593 Changed = true; 2594 Value *Derived = Callsite->getOperand(0); 2595 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2596 assert(!DVCache.count(Callsite)); 2597 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2598 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2599 IRBuilder<> Builder(Callsite); 2600 Value *BaseInt = 2601 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2602 suffixed_name_or(Base, ".int", "")); 2603 Value *DerivedInt = 2604 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2605 suffixed_name_or(Derived, ".int", "")); 2606 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2607 Callsite->replaceAllUsesWith(Offset); 2608 Offset->takeName(Callsite); 2609 Callsite->eraseFromParent(); 2610 break; 2611 } 2612 default: 2613 llvm_unreachable("Unknown intrinsic"); 2614 } 2615 2616 return Changed; 2617 } 2618 2619 static bool insertParsePoints(Function &F, DominatorTree &DT, 2620 TargetTransformInfo &TTI, 2621 SmallVectorImpl<CallBase *> &ToUpdate, 2622 DefiningValueMapTy &DVCache, 2623 IsKnownBaseMapTy &KnownBases) { 2624 std::unique_ptr<GCStrategy> GC = findGCStrategy(F); 2625 2626 #ifndef NDEBUG 2627 // Validate the input 2628 std::set<CallBase *> Uniqued; 2629 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2630 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2631 2632 for (CallBase *Call : ToUpdate) 2633 assert(Call->getFunction() == &F); 2634 #endif 2635 2636 // When inserting gc.relocates for invokes, we need to be able to insert at 2637 // the top of the successor blocks. See the comment on 2638 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2639 // may restructure the CFG. 2640 for (CallBase *Call : ToUpdate) { 2641 auto *II = dyn_cast<InvokeInst>(Call); 2642 if (!II) 2643 continue; 2644 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2645 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2646 } 2647 2648 // A list of dummy calls added to the IR to keep various values obviously 2649 // live in the IR. We'll remove all of these when done. 2650 SmallVector<CallInst *, 64> Holders; 2651 2652 // Insert a dummy call with all of the deopt operands we'll need for the 2653 // actual safepoint insertion as arguments. This ensures reference operands 2654 // in the deopt argument list are considered live through the safepoint (and 2655 // thus makes sure they get relocated.) 2656 for (CallBase *Call : ToUpdate) { 2657 SmallVector<Value *, 64> DeoptValues; 2658 2659 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2660 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && 2661 "support for FCA unimplemented"); 2662 if (isHandledGCPointerType(Arg->getType(), GC.get())) 2663 DeoptValues.push_back(Arg); 2664 } 2665 2666 insertUseHolderAfter(Call, DeoptValues, Holders); 2667 } 2668 2669 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2670 2671 // A) Identify all gc pointers which are statically live at the given call 2672 // site. 2673 findLiveReferences(F, DT, ToUpdate, Records, GC.get()); 2674 2675 /// Global mapping from live pointers to a base-defining-value. 2676 PointerToBaseTy PointerToBase; 2677 2678 // B) Find the base pointers for each live pointer 2679 for (size_t i = 0; i < Records.size(); i++) { 2680 PartiallyConstructedSafepointRecord &info = Records[i]; 2681 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2682 } 2683 if (PrintBasePointers) { 2684 errs() << "Base Pairs (w/o Relocation):\n"; 2685 for (auto &Pair : PointerToBase) { 2686 errs() << " derived "; 2687 Pair.first->printAsOperand(errs(), false); 2688 errs() << " base "; 2689 Pair.second->printAsOperand(errs(), false); 2690 errs() << "\n"; 2691 ; 2692 } 2693 } 2694 2695 // The base phi insertion logic (for any safepoint) may have inserted new 2696 // instructions which are now live at some safepoint. The simplest such 2697 // example is: 2698 // loop: 2699 // phi a <-- will be a new base_phi here 2700 // safepoint 1 <-- that needs to be live here 2701 // gep a + 1 2702 // safepoint 2 2703 // br loop 2704 // We insert some dummy calls after each safepoint to definitely hold live 2705 // the base pointers which were identified for that safepoint. We'll then 2706 // ask liveness for _every_ base inserted to see what is now live. Then we 2707 // remove the dummy calls. 2708 Holders.reserve(Holders.size() + Records.size()); 2709 for (size_t i = 0; i < Records.size(); i++) { 2710 PartiallyConstructedSafepointRecord &Info = Records[i]; 2711 2712 SmallVector<Value *, 128> Bases; 2713 for (auto *Derived : Info.LiveSet) { 2714 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2715 Bases.push_back(PointerToBase[Derived]); 2716 } 2717 2718 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2719 } 2720 2721 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2722 // need to rerun liveness. We may *also* have inserted new defs, but that's 2723 // not the key issue. 2724 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); 2725 2726 if (PrintBasePointers) { 2727 errs() << "Base Pairs: (w/Relocation)\n"; 2728 for (auto Pair : PointerToBase) { 2729 errs() << " derived "; 2730 Pair.first->printAsOperand(errs(), false); 2731 errs() << " base "; 2732 Pair.second->printAsOperand(errs(), false); 2733 errs() << "\n"; 2734 } 2735 } 2736 2737 // It is possible that non-constant live variables have a constant base. For 2738 // example, a GEP with a variable offset from a global. In this case we can 2739 // remove it from the liveset. We already don't add constants to the liveset 2740 // because we assume they won't move at runtime and the GC doesn't need to be 2741 // informed about them. The same reasoning applies if the base is constant. 2742 // Note that the relocation placement code relies on this filtering for 2743 // correctness as it expects the base to be in the liveset, which isn't true 2744 // if the base is constant. 2745 for (auto &Info : Records) { 2746 Info.LiveSet.remove_if([&](Value *LiveV) { 2747 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2748 return isa<Constant>(PointerToBase[LiveV]); 2749 }); 2750 } 2751 2752 for (CallInst *CI : Holders) 2753 CI->eraseFromParent(); 2754 2755 Holders.clear(); 2756 2757 // Compute the cost of possible re-materialization of derived pointers. 2758 RematCandTy RematerizationCandidates; 2759 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2760 2761 // In order to reduce live set of statepoint we might choose to rematerialize 2762 // some values instead of relocating them. This is purely an optimization and 2763 // does not influence correctness. 2764 // First try rematerialization at uses, then after statepoints. 2765 rematerializeLiveValuesAtUses(RematerizationCandidates, Records, 2766 PointerToBase); 2767 for (size_t i = 0; i < Records.size(); i++) 2768 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2769 RematerizationCandidates, TTI); 2770 2771 // We need this to safely RAUW and delete call or invoke return values that 2772 // may themselves be live over a statepoint. For details, please see usage in 2773 // makeStatepointExplicitImpl. 2774 std::vector<DeferredReplacement> Replacements; 2775 2776 // Now run through and replace the existing statepoints with new ones with 2777 // the live variables listed. We do not yet update uses of the values being 2778 // relocated. We have references to live variables that need to 2779 // survive to the last iteration of this loop. (By construction, the 2780 // previous statepoint can not be a live variable, thus we can and remove 2781 // the old statepoint calls as we go.) 2782 for (size_t i = 0; i < Records.size(); i++) 2783 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2784 PointerToBase, GC.get()); 2785 2786 ToUpdate.clear(); // prevent accident use of invalid calls. 2787 2788 for (auto &PR : Replacements) 2789 PR.doReplacement(); 2790 2791 Replacements.clear(); 2792 2793 for (auto &Info : Records) { 2794 // These live sets may contain state Value pointers, since we replaced calls 2795 // with operand bundles with calls wrapped in gc.statepoint, and some of 2796 // those calls may have been def'ing live gc pointers. Clear these out to 2797 // avoid accidentally using them. 2798 // 2799 // TODO: We should create a separate data structure that does not contain 2800 // these live sets, and migrate to using that data structure from this point 2801 // onward. 2802 Info.LiveSet.clear(); 2803 } 2804 PointerToBase.clear(); 2805 2806 // Do all the fixups of the original live variables to their relocated selves 2807 SmallVector<Value *, 128> Live; 2808 for (const PartiallyConstructedSafepointRecord &Info : Records) { 2809 // We can't simply save the live set from the original insertion. One of 2810 // the live values might be the result of a call which needs a safepoint. 2811 // That Value* no longer exists and we need to use the new gc_result. 2812 // Thankfully, the live set is embedded in the statepoint (and updated), so 2813 // we just grab that. 2814 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2815 #ifndef NDEBUG 2816 // Do some basic validation checking on our liveness results before 2817 // performing relocation. Relocation can and will turn mistakes in liveness 2818 // results into non-sensical code which is must harder to debug. 2819 // TODO: It would be nice to test consistency as well 2820 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2821 "statepoint must be reachable or liveness is meaningless"); 2822 for (Value *V : Info.StatepointToken->gc_args()) { 2823 if (!isa<Instruction>(V)) 2824 // Non-instruction values trivial dominate all possible uses 2825 continue; 2826 auto *LiveInst = cast<Instruction>(V); 2827 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2828 "unreachable values should never be live"); 2829 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2830 "basic SSA liveness expectation violated by liveness analysis"); 2831 } 2832 #endif 2833 } 2834 unique_unsorted(Live); 2835 2836 #ifndef NDEBUG 2837 // Validation check 2838 for (auto *Ptr : Live) 2839 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && 2840 "must be a gc pointer type"); 2841 #endif 2842 2843 relocationViaAlloca(F, DT, Live, Records); 2844 return !Records.empty(); 2845 } 2846 2847 // List of all parameter and return attributes which must be stripped when 2848 // lowering from the abstract machine model. Note that we list attributes 2849 // here which aren't valid as return attributes, that is okay. 2850 static AttributeMask getParamAndReturnAttributesToRemove() { 2851 AttributeMask R; 2852 R.addAttribute(Attribute::Dereferenceable); 2853 R.addAttribute(Attribute::DereferenceableOrNull); 2854 R.addAttribute(Attribute::ReadNone); 2855 R.addAttribute(Attribute::ReadOnly); 2856 R.addAttribute(Attribute::WriteOnly); 2857 R.addAttribute(Attribute::NoAlias); 2858 R.addAttribute(Attribute::NoFree); 2859 return R; 2860 } 2861 2862 static void stripNonValidAttributesFromPrototype(Function &F) { 2863 LLVMContext &Ctx = F.getContext(); 2864 2865 // Intrinsics are very delicate. Lowering sometimes depends the presence 2866 // of certain attributes for correctness, but we may have also inferred 2867 // additional ones in the abstract machine model which need stripped. This 2868 // assumes that the attributes defined in Intrinsic.td are conservatively 2869 // correct for both physical and abstract model. 2870 if (Intrinsic::ID id = F.getIntrinsicID()) { 2871 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2872 return; 2873 } 2874 2875 AttributeMask R = getParamAndReturnAttributesToRemove(); 2876 for (Argument &A : F.args()) 2877 if (isa<PointerType>(A.getType())) 2878 F.removeParamAttrs(A.getArgNo(), R); 2879 2880 if (isa<PointerType>(F.getReturnType())) 2881 F.removeRetAttrs(R); 2882 2883 for (auto Attr : FnAttrsToStrip) 2884 F.removeFnAttr(Attr); 2885 } 2886 2887 /// Certain metadata on instructions are invalid after running RS4GC. 2888 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2889 /// optimize functions. We drop such metadata on the instruction. 2890 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2891 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2892 return; 2893 // These are the attributes that are still valid on loads and stores after 2894 // RS4GC. 2895 // The metadata implying dereferenceability and noalias are (conservatively) 2896 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2897 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2898 // touch the entire heap including noalias objects. Note: The reasoning is 2899 // same as stripping the dereferenceability and noalias attributes that are 2900 // analogous to the metadata counterparts. 2901 // We also drop the invariant.load metadata on the load because that metadata 2902 // implies the address operand to the load points to memory that is never 2903 // changed once it became dereferenceable. This is no longer true after RS4GC. 2904 // Similar reasoning applies to invariant.group metadata, which applies to 2905 // loads within a group. 2906 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2907 LLVMContext::MD_range, 2908 LLVMContext::MD_alias_scope, 2909 LLVMContext::MD_nontemporal, 2910 LLVMContext::MD_nonnull, 2911 LLVMContext::MD_align, 2912 LLVMContext::MD_type}; 2913 2914 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2915 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2916 } 2917 2918 static void stripNonValidDataFromBody(Function &F) { 2919 if (F.empty()) 2920 return; 2921 2922 LLVMContext &Ctx = F.getContext(); 2923 MDBuilder Builder(Ctx); 2924 2925 // Set of invariantstart instructions that we need to remove. 2926 // Use this to avoid invalidating the instruction iterator. 2927 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2928 2929 for (Instruction &I : instructions(F)) { 2930 // invariant.start on memory location implies that the referenced memory 2931 // location is constant and unchanging. This is no longer true after 2932 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2933 // which frees the entire heap and the presence of invariant.start allows 2934 // the optimizer to sink the load of a memory location past a statepoint, 2935 // which is incorrect. 2936 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2937 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2938 InvariantStartInstructions.push_back(II); 2939 continue; 2940 } 2941 2942 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2943 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2944 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2945 } 2946 2947 stripInvalidMetadataFromInstruction(I); 2948 2949 AttributeMask R = getParamAndReturnAttributesToRemove(); 2950 if (auto *Call = dyn_cast<CallBase>(&I)) { 2951 for (int i = 0, e = Call->arg_size(); i != e; i++) 2952 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2953 Call->removeParamAttrs(i, R); 2954 if (isa<PointerType>(Call->getType())) 2955 Call->removeRetAttrs(R); 2956 } 2957 } 2958 2959 // Delete the invariant.start instructions and RAUW poison. 2960 for (auto *II : InvariantStartInstructions) { 2961 II->replaceAllUsesWith(PoisonValue::get(II->getType())); 2962 II->eraseFromParent(); 2963 } 2964 } 2965 2966 /// Looks up the GC strategy for a given function, returning null if the 2967 /// function doesn't have a GC tag. The strategy is stored in the cache. 2968 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { 2969 if (!F.hasGC()) 2970 return nullptr; 2971 2972 return getGCStrategy(F.getGC()); 2973 } 2974 2975 /// Returns true if this function should be rewritten by this pass. The main 2976 /// point of this function is as an extension point for custom logic. 2977 static bool shouldRewriteStatepointsIn(Function &F) { 2978 if (!F.hasGC()) 2979 return false; 2980 2981 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); 2982 2983 assert(Strategy && "GC strategy is required by function, but was not found"); 2984 2985 return Strategy->useRS4GC(); 2986 } 2987 2988 static void stripNonValidData(Module &M) { 2989 #ifndef NDEBUG 2990 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2991 #endif 2992 2993 for (Function &F : M) 2994 stripNonValidAttributesFromPrototype(F); 2995 2996 for (Function &F : M) 2997 stripNonValidDataFromBody(F); 2998 } 2999 3000 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 3001 TargetTransformInfo &TTI, 3002 const TargetLibraryInfo &TLI) { 3003 assert(!F.isDeclaration() && !F.empty() && 3004 "need function body to rewrite statepoints in"); 3005 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 3006 3007 auto NeedsRewrite = [&TLI](Instruction &I) { 3008 if (const auto *Call = dyn_cast<CallBase>(&I)) { 3009 if (isa<GCStatepointInst>(Call)) 3010 return false; 3011 if (callsGCLeafFunction(Call, TLI)) 3012 return false; 3013 3014 // Normally it's up to the frontend to make sure that non-leaf calls also 3015 // have proper deopt state if it is required. We make an exception for 3016 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 3017 // these are non-leaf by default. They might be generated by the optimizer 3018 // which doesn't know how to produce a proper deopt state. So if we see a 3019 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 3020 // copy and don't produce a statepoint. 3021 if (!AllowStatepointWithNoDeoptInfo && 3022 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 3023 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 3024 "Don't expect any other calls here!"); 3025 return false; 3026 } 3027 return true; 3028 } 3029 return false; 3030 }; 3031 3032 // Delete any unreachable statepoints so that we don't have unrewritten 3033 // statepoints surviving this pass. This makes testing easier and the 3034 // resulting IR less confusing to human readers. 3035 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 3036 bool MadeChange = removeUnreachableBlocks(F, &DTU); 3037 // Flush the Dominator Tree. 3038 DTU.getDomTree(); 3039 3040 // Gather all the statepoints which need rewritten. Be careful to only 3041 // consider those in reachable code since we need to ask dominance queries 3042 // when rewriting. We'll delete the unreachable ones in a moment. 3043 SmallVector<CallBase *, 64> ParsePointNeeded; 3044 SmallVector<CallInst *, 64> Intrinsics; 3045 for (Instruction &I : instructions(F)) { 3046 // TODO: only the ones with the flag set! 3047 if (NeedsRewrite(I)) { 3048 // NOTE removeUnreachableBlocks() is stronger than 3049 // DominatorTree::isReachableFromEntry(). In other words 3050 // removeUnreachableBlocks can remove some blocks for which 3051 // isReachableFromEntry() returns true. 3052 assert(DT.isReachableFromEntry(I.getParent()) && 3053 "no unreachable blocks expected"); 3054 ParsePointNeeded.push_back(cast<CallBase>(&I)); 3055 } 3056 if (auto *CI = dyn_cast<CallInst>(&I)) 3057 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 3058 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 3059 Intrinsics.emplace_back(CI); 3060 } 3061 3062 // Return early if no work to do. 3063 if (ParsePointNeeded.empty() && Intrinsics.empty()) 3064 return MadeChange; 3065 3066 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 3067 // These are created by LCSSA. They have the effect of increasing the size 3068 // of liveness sets for no good reason. It may be harder to do this post 3069 // insertion since relocations and base phis can confuse things. 3070 for (BasicBlock &BB : F) 3071 if (BB.getUniquePredecessor()) 3072 MadeChange |= FoldSingleEntryPHINodes(&BB); 3073 3074 // Before we start introducing relocations, we want to tweak the IR a bit to 3075 // avoid unfortunate code generation effects. The main example is that we 3076 // want to try to make sure the comparison feeding a branch is after any 3077 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3078 // values feeding a branch after relocation. This is semantically correct, 3079 // but results in extra register pressure since both the pre-relocation and 3080 // post-relocation copies must be available in registers. For code without 3081 // relocations this is handled elsewhere, but teaching the scheduler to 3082 // reverse the transform we're about to do would be slightly complex. 3083 // Note: This may extend the live range of the inputs to the icmp and thus 3084 // increase the liveset of any statepoint we move over. This is profitable 3085 // as long as all statepoints are in rare blocks. If we had in-register 3086 // lowering for live values this would be a much safer transform. 3087 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3088 if (auto *BI = dyn_cast<BranchInst>(TI)) 3089 if (BI->isConditional()) 3090 return dyn_cast<Instruction>(BI->getCondition()); 3091 // TODO: Extend this to handle switches 3092 return nullptr; 3093 }; 3094 for (BasicBlock &BB : F) { 3095 Instruction *TI = BB.getTerminator(); 3096 if (auto *Cond = getConditionInst(TI)) 3097 // TODO: Handle more than just ICmps here. We should be able to move 3098 // most instructions without side effects or memory access. 3099 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3100 MadeChange = true; 3101 Cond->moveBefore(TI); 3102 } 3103 } 3104 3105 // Nasty workaround - The base computation code in the main algorithm doesn't 3106 // consider the fact that a GEP can be used to convert a scalar to a vector. 3107 // The right fix for this is to integrate GEPs into the base rewriting 3108 // algorithm properly, this is just a short term workaround to prevent 3109 // crashes by canonicalizing such GEPs into fully vector GEPs. 3110 for (Instruction &I : instructions(F)) { 3111 if (!isa<GetElementPtrInst>(I)) 3112 continue; 3113 3114 unsigned VF = 0; 3115 for (unsigned i = 0; i < I.getNumOperands(); i++) 3116 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3117 assert(VF == 0 || 3118 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3119 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3120 } 3121 3122 // It's the vector to scalar traversal through the pointer operand which 3123 // confuses base pointer rewriting, so limit ourselves to that case. 3124 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3125 IRBuilder<> B(&I); 3126 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3127 I.setOperand(0, Splat); 3128 MadeChange = true; 3129 } 3130 } 3131 3132 // Cache the 'defining value' relation used in the computation and 3133 // insertion of base phis and selects. This ensures that we don't insert 3134 // large numbers of duplicate base_phis. Use one cache for both 3135 // inlineGetBaseAndOffset() and insertParsePoints(). 3136 DefiningValueMapTy DVCache; 3137 3138 // Mapping between a base values and a flag indicating whether it's a known 3139 // base or not. 3140 IsKnownBaseMapTy KnownBases; 3141 3142 if (!Intrinsics.empty()) 3143 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3144 // live references. 3145 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3146 3147 if (!ParsePointNeeded.empty()) 3148 MadeChange |= 3149 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3150 3151 return MadeChange; 3152 } 3153 3154 // liveness computation via standard dataflow 3155 // ------------------------------------------------------------------- 3156 3157 // TODO: Consider using bitvectors for liveness, the set of potentially 3158 // interesting values should be small and easy to pre-compute. 3159 3160 /// Compute the live-in set for the location rbegin starting from 3161 /// the live-out set of the basic block 3162 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3163 BasicBlock::reverse_iterator End, 3164 SetVector<Value *> &LiveTmp, GCStrategy *GC) { 3165 for (auto &I : make_range(Begin, End)) { 3166 // KILL/Def - Remove this definition from LiveIn 3167 LiveTmp.remove(&I); 3168 3169 // Don't consider *uses* in PHI nodes, we handle their contribution to 3170 // predecessor blocks when we seed the LiveOut sets 3171 if (isa<PHINode>(I)) 3172 continue; 3173 3174 // USE - Add to the LiveIn set for this instruction 3175 for (Value *V : I.operands()) { 3176 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3177 "support for FCA unimplemented"); 3178 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) { 3179 // The choice to exclude all things constant here is slightly subtle. 3180 // There are two independent reasons: 3181 // - We assume that things which are constant (from LLVM's definition) 3182 // do not move at runtime. For example, the address of a global 3183 // variable is fixed, even though it's contents may not be. 3184 // - Second, we can't disallow arbitrary inttoptr constants even 3185 // if the language frontend does. Optimization passes are free to 3186 // locally exploit facts without respect to global reachability. This 3187 // can create sections of code which are dynamically unreachable and 3188 // contain just about anything. (see constants.ll in tests) 3189 LiveTmp.insert(V); 3190 } 3191 } 3192 } 3193 } 3194 3195 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, 3196 GCStrategy *GC) { 3197 for (BasicBlock *Succ : successors(BB)) { 3198 for (auto &I : *Succ) { 3199 PHINode *PN = dyn_cast<PHINode>(&I); 3200 if (!PN) 3201 break; 3202 3203 Value *V = PN->getIncomingValueForBlock(BB); 3204 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3205 "support for FCA unimplemented"); 3206 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) 3207 LiveTmp.insert(V); 3208 } 3209 } 3210 } 3211 3212 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { 3213 SetVector<Value *> KillSet; 3214 for (Instruction &I : *BB) 3215 if (isHandledGCPointerType(I.getType(), GC)) 3216 KillSet.insert(&I); 3217 return KillSet; 3218 } 3219 3220 #ifndef NDEBUG 3221 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3222 /// validation check for the liveness computation. 3223 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3224 Instruction *TI, bool TermOkay = false) { 3225 for (Value *V : Live) { 3226 if (auto *I = dyn_cast<Instruction>(V)) { 3227 // The terminator can be a member of the LiveOut set. LLVM's definition 3228 // of instruction dominance states that V does not dominate itself. As 3229 // such, we need to special case this to allow it. 3230 if (TermOkay && TI == I) 3231 continue; 3232 assert(DT.dominates(I, TI) && 3233 "basic SSA liveness expectation violated by liveness analysis"); 3234 } 3235 } 3236 } 3237 3238 /// Check that all the liveness sets used during the computation of liveness 3239 /// obey basic SSA properties. This is useful for finding cases where we miss 3240 /// a def. 3241 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3242 BasicBlock &BB) { 3243 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3244 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3245 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3246 } 3247 #endif 3248 3249 static void computeLiveInValues(DominatorTree &DT, Function &F, 3250 GCPtrLivenessData &Data, GCStrategy *GC) { 3251 SmallSetVector<BasicBlock *, 32> Worklist; 3252 3253 // Seed the liveness for each individual block 3254 for (BasicBlock &BB : F) { 3255 Data.KillSet[&BB] = computeKillSet(&BB, GC); 3256 Data.LiveSet[&BB].clear(); 3257 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); 3258 3259 #ifndef NDEBUG 3260 for (Value *Kill : Data.KillSet[&BB]) 3261 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3262 #endif 3263 3264 Data.LiveOut[&BB] = SetVector<Value *>(); 3265 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); 3266 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3267 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3268 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3269 if (!Data.LiveIn[&BB].empty()) 3270 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3271 } 3272 3273 // Propagate that liveness until stable 3274 while (!Worklist.empty()) { 3275 BasicBlock *BB = Worklist.pop_back_val(); 3276 3277 // Compute our new liveout set, then exit early if it hasn't changed despite 3278 // the contribution of our successor. 3279 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3280 const auto OldLiveOutSize = LiveOut.size(); 3281 for (BasicBlock *Succ : successors(BB)) { 3282 assert(Data.LiveIn.count(Succ)); 3283 LiveOut.set_union(Data.LiveIn[Succ]); 3284 } 3285 // assert OutLiveOut is a subset of LiveOut 3286 if (OldLiveOutSize == LiveOut.size()) { 3287 // If the sets are the same size, then we didn't actually add anything 3288 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3289 // hasn't changed. 3290 continue; 3291 } 3292 Data.LiveOut[BB] = LiveOut; 3293 3294 // Apply the effects of this basic block 3295 SetVector<Value *> LiveTmp = LiveOut; 3296 LiveTmp.set_union(Data.LiveSet[BB]); 3297 LiveTmp.set_subtract(Data.KillSet[BB]); 3298 3299 assert(Data.LiveIn.count(BB)); 3300 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3301 // assert: OldLiveIn is a subset of LiveTmp 3302 if (OldLiveIn.size() != LiveTmp.size()) { 3303 Data.LiveIn[BB] = LiveTmp; 3304 Worklist.insert(pred_begin(BB), pred_end(BB)); 3305 } 3306 } // while (!Worklist.empty()) 3307 3308 #ifndef NDEBUG 3309 // Verify our output against SSA properties. This helps catch any 3310 // missing kills during the above iteration. 3311 for (BasicBlock &BB : F) 3312 checkBasicSSA(DT, Data, BB); 3313 #endif 3314 } 3315 3316 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3317 StatepointLiveSetTy &Out, GCStrategy *GC) { 3318 BasicBlock *BB = Inst->getParent(); 3319 3320 // Note: The copy is intentional and required 3321 assert(Data.LiveOut.count(BB)); 3322 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3323 3324 // We want to handle the statepoint itself oddly. It's 3325 // call result is not live (normal), nor are it's arguments 3326 // (unless they're used again later). This adjustment is 3327 // specifically what we need to relocate 3328 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, 3329 GC); 3330 LiveOut.remove(Inst); 3331 Out.insert(LiveOut.begin(), LiveOut.end()); 3332 } 3333 3334 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3335 CallBase *Call, 3336 PartiallyConstructedSafepointRecord &Info, 3337 PointerToBaseTy &PointerToBase, 3338 GCStrategy *GC) { 3339 StatepointLiveSetTy Updated; 3340 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); 3341 3342 // We may have base pointers which are now live that weren't before. We need 3343 // to update the PointerToBase structure to reflect this. 3344 for (auto *V : Updated) 3345 PointerToBase.insert({ V, V }); 3346 3347 Info.LiveSet = Updated; 3348 } 3349