1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/InstructionCost.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Transforms/Scalar.h" 96 #include "llvm/Transforms/Utils/BuildLibCalls.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "loop-idiom" 109 110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 113 STATISTIC( 114 NumShiftUntilBitTest, 115 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 116 STATISTIC(NumShiftUntilZero, 117 "Number of uncountable loops recognized as 'shift until zero' idiom"); 118 119 bool DisableLIRP::All; 120 static cl::opt<bool, true> 121 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 122 cl::desc("Options to disable Loop Idiom Recognize Pass."), 123 cl::location(DisableLIRP::All), cl::init(false), 124 cl::ReallyHidden); 125 126 bool DisableLIRP::Memset; 127 static cl::opt<bool, true> 128 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 129 cl::desc("Proceed with loop idiom recognize pass, but do " 130 "not convert loop(s) to memset."), 131 cl::location(DisableLIRP::Memset), cl::init(false), 132 cl::ReallyHidden); 133 134 bool DisableLIRP::Memcpy; 135 static cl::opt<bool, true> 136 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 137 cl::desc("Proceed with loop idiom recognize pass, but do " 138 "not convert loop(s) to memcpy."), 139 cl::location(DisableLIRP::Memcpy), cl::init(false), 140 cl::ReallyHidden); 141 142 static cl::opt<bool> UseLIRCodeSizeHeurs( 143 "use-lir-code-size-heurs", 144 cl::desc("Use loop idiom recognition code size heuristics when compiling" 145 "with -Os/-Oz"), 146 cl::init(true), cl::Hidden); 147 148 namespace { 149 150 class LoopIdiomRecognize { 151 Loop *CurLoop = nullptr; 152 AliasAnalysis *AA; 153 DominatorTree *DT; 154 LoopInfo *LI; 155 ScalarEvolution *SE; 156 TargetLibraryInfo *TLI; 157 const TargetTransformInfo *TTI; 158 const DataLayout *DL; 159 OptimizationRemarkEmitter &ORE; 160 bool ApplyCodeSizeHeuristics; 161 std::unique_ptr<MemorySSAUpdater> MSSAU; 162 163 public: 164 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 165 LoopInfo *LI, ScalarEvolution *SE, 166 TargetLibraryInfo *TLI, 167 const TargetTransformInfo *TTI, MemorySSA *MSSA, 168 const DataLayout *DL, 169 OptimizationRemarkEmitter &ORE) 170 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 171 if (MSSA) 172 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 173 } 174 175 bool runOnLoop(Loop *L); 176 177 private: 178 using StoreList = SmallVector<StoreInst *, 8>; 179 using StoreListMap = MapVector<Value *, StoreList>; 180 181 StoreListMap StoreRefsForMemset; 182 StoreListMap StoreRefsForMemsetPattern; 183 StoreList StoreRefsForMemcpy; 184 bool HasMemset; 185 bool HasMemsetPattern; 186 bool HasMemcpy; 187 188 /// Return code for isLegalStore() 189 enum LegalStoreKind { 190 None = 0, 191 Memset, 192 MemsetPattern, 193 Memcpy, 194 UnorderedAtomicMemcpy, 195 DontUse // Dummy retval never to be used. Allows catching errors in retval 196 // handling. 197 }; 198 199 /// \name Countable Loop Idiom Handling 200 /// @{ 201 202 bool runOnCountableLoop(); 203 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 204 SmallVectorImpl<BasicBlock *> &ExitBlocks); 205 206 void collectStores(BasicBlock *BB); 207 LegalStoreKind isLegalStore(StoreInst *SI); 208 enum class ForMemset { No, Yes }; 209 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 210 ForMemset For); 211 212 template <typename MemInst> 213 bool processLoopMemIntrinsic( 214 BasicBlock *BB, 215 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 216 const SCEV *BECount); 217 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 218 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 219 220 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 221 MaybeAlign StoreAlignment, Value *StoredVal, 222 Instruction *TheStore, 223 SmallPtrSetImpl<Instruction *> &Stores, 224 const SCEVAddRecExpr *Ev, const SCEV *BECount, 225 bool IsNegStride, bool IsLoopMemset = false); 226 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 227 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 228 const SCEV *StoreSize, MaybeAlign StoreAlign, 229 MaybeAlign LoadAlign, Instruction *TheStore, 230 Instruction *TheLoad, 231 const SCEVAddRecExpr *StoreEv, 232 const SCEVAddRecExpr *LoadEv, 233 const SCEV *BECount); 234 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 235 bool IsLoopMemset = false); 236 237 /// @} 238 /// \name Noncountable Loop Idiom Handling 239 /// @{ 240 241 bool runOnNoncountableLoop(); 242 243 bool recognizePopcount(); 244 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 245 PHINode *CntPhi, Value *Var); 246 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 247 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 248 Instruction *CntInst, PHINode *CntPhi, 249 Value *Var, Instruction *DefX, 250 const DebugLoc &DL, bool ZeroCheck, 251 bool IsCntPhiUsedOutsideLoop); 252 253 bool recognizeShiftUntilBitTest(); 254 bool recognizeShiftUntilZero(); 255 256 /// @} 257 }; 258 259 class LoopIdiomRecognizeLegacyPass : public LoopPass { 260 public: 261 static char ID; 262 263 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 264 initializeLoopIdiomRecognizeLegacyPassPass( 265 *PassRegistry::getPassRegistry()); 266 } 267 268 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 269 if (DisableLIRP::All) 270 return false; 271 272 if (skipLoop(L)) 273 return false; 274 275 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 276 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 277 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 278 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 279 TargetLibraryInfo *TLI = 280 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 281 *L->getHeader()->getParent()); 282 const TargetTransformInfo *TTI = 283 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 284 *L->getHeader()->getParent()); 285 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 286 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 287 MemorySSA *MSSA = nullptr; 288 if (MSSAAnalysis) 289 MSSA = &MSSAAnalysis->getMSSA(); 290 291 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 292 // pass. Function analyses need to be preserved across loop transformations 293 // but ORE cannot be preserved (see comment before the pass definition). 294 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 295 296 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 297 return LIR.runOnLoop(L); 298 } 299 300 /// This transformation requires natural loop information & requires that 301 /// loop preheaders be inserted into the CFG. 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.addRequired<TargetLibraryInfoWrapperPass>(); 304 AU.addRequired<TargetTransformInfoWrapperPass>(); 305 AU.addPreserved<MemorySSAWrapperPass>(); 306 getLoopAnalysisUsage(AU); 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char LoopIdiomRecognizeLegacyPass::ID = 0; 313 314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 315 LoopStandardAnalysisResults &AR, 316 LPMUpdater &) { 317 if (DisableLIRP::All) 318 return PreservedAnalyses::all(); 319 320 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 321 322 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 323 // pass. Function analyses need to be preserved across loop transformations 324 // but ORE cannot be preserved (see comment before the pass definition). 325 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 326 327 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 328 AR.MSSA, DL, ORE); 329 if (!LIR.runOnLoop(&L)) 330 return PreservedAnalyses::all(); 331 332 auto PA = getLoopPassPreservedAnalyses(); 333 if (AR.MSSA) 334 PA.preserve<MemorySSAAnalysis>(); 335 return PA; 336 } 337 338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 339 "Recognize loop idioms", false, false) 340 INITIALIZE_PASS_DEPENDENCY(LoopPass) 341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 344 "Recognize loop idioms", false, false) 345 346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 347 348 static void deleteDeadInstruction(Instruction *I) { 349 I->replaceAllUsesWith(UndefValue::get(I->getType())); 350 I->eraseFromParent(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // 355 // Implementation of LoopIdiomRecognize 356 // 357 //===----------------------------------------------------------------------===// 358 359 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 360 CurLoop = L; 361 // If the loop could not be converted to canonical form, it must have an 362 // indirectbr in it, just give up. 363 if (!L->getLoopPreheader()) 364 return false; 365 366 // Disable loop idiom recognition if the function's name is a common idiom. 367 StringRef Name = L->getHeader()->getParent()->getName(); 368 if (Name == "memset" || Name == "memcpy") 369 return false; 370 371 // Determine if code size heuristics need to be applied. 372 ApplyCodeSizeHeuristics = 373 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 374 375 HasMemset = TLI->has(LibFunc_memset); 376 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 377 HasMemcpy = TLI->has(LibFunc_memcpy); 378 379 if (HasMemset || HasMemsetPattern || HasMemcpy) 380 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 381 return runOnCountableLoop(); 382 383 return runOnNoncountableLoop(); 384 } 385 386 bool LoopIdiomRecognize::runOnCountableLoop() { 387 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 388 assert(!isa<SCEVCouldNotCompute>(BECount) && 389 "runOnCountableLoop() called on a loop without a predictable" 390 "backedge-taken count"); 391 392 // If this loop executes exactly one time, then it should be peeled, not 393 // optimized by this pass. 394 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 395 if (BECst->getAPInt() == 0) 396 return false; 397 398 SmallVector<BasicBlock *, 8> ExitBlocks; 399 CurLoop->getUniqueExitBlocks(ExitBlocks); 400 401 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 402 << CurLoop->getHeader()->getParent()->getName() 403 << "] Countable Loop %" << CurLoop->getHeader()->getName() 404 << "\n"); 405 406 // The following transforms hoist stores/memsets into the loop pre-header. 407 // Give up if the loop has instructions that may throw. 408 SimpleLoopSafetyInfo SafetyInfo; 409 SafetyInfo.computeLoopSafetyInfo(CurLoop); 410 if (SafetyInfo.anyBlockMayThrow()) 411 return false; 412 413 bool MadeChange = false; 414 415 // Scan all the blocks in the loop that are not in subloops. 416 for (auto *BB : CurLoop->getBlocks()) { 417 // Ignore blocks in subloops. 418 if (LI->getLoopFor(BB) != CurLoop) 419 continue; 420 421 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 422 } 423 return MadeChange; 424 } 425 426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 427 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 428 return ConstStride->getAPInt(); 429 } 430 431 /// getMemSetPatternValue - If a strided store of the specified value is safe to 432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 433 /// be passed in. Otherwise, return null. 434 /// 435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 436 /// just replicate their input array and then pass on to memset_pattern16. 437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 438 // FIXME: This could check for UndefValue because it can be merged into any 439 // other valid pattern. 440 441 // If the value isn't a constant, we can't promote it to being in a constant 442 // array. We could theoretically do a store to an alloca or something, but 443 // that doesn't seem worthwhile. 444 Constant *C = dyn_cast<Constant>(V); 445 if (!C) 446 return nullptr; 447 448 // Only handle simple values that are a power of two bytes in size. 449 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 450 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 451 return nullptr; 452 453 // Don't care enough about darwin/ppc to implement this. 454 if (DL->isBigEndian()) 455 return nullptr; 456 457 // Convert to size in bytes. 458 Size /= 8; 459 460 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 461 // if the top and bottom are the same (e.g. for vectors and large integers). 462 if (Size > 16) 463 return nullptr; 464 465 // If the constant is exactly 16 bytes, just use it. 466 if (Size == 16) 467 return C; 468 469 // Otherwise, we'll use an array of the constants. 470 unsigned ArraySize = 16 / Size; 471 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 472 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 473 } 474 475 LoopIdiomRecognize::LegalStoreKind 476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 477 // Don't touch volatile stores. 478 if (SI->isVolatile()) 479 return LegalStoreKind::None; 480 // We only want simple or unordered-atomic stores. 481 if (!SI->isUnordered()) 482 return LegalStoreKind::None; 483 484 // Avoid merging nontemporal stores. 485 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 486 return LegalStoreKind::None; 487 488 Value *StoredVal = SI->getValueOperand(); 489 Value *StorePtr = SI->getPointerOperand(); 490 491 // Don't convert stores of non-integral pointer types to memsets (which stores 492 // integers). 493 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 494 return LegalStoreKind::None; 495 496 // Reject stores that are so large that they overflow an unsigned. 497 // When storing out scalable vectors we bail out for now, since the code 498 // below currently only works for constant strides. 499 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 500 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 501 (SizeInBits.getFixedSize() >> 32) != 0) 502 return LegalStoreKind::None; 503 504 // See if the pointer expression is an AddRec like {base,+,1} on the current 505 // loop, which indicates a strided store. If we have something else, it's a 506 // random store we can't handle. 507 const SCEVAddRecExpr *StoreEv = 508 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 509 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 510 return LegalStoreKind::None; 511 512 // Check to see if we have a constant stride. 513 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 514 return LegalStoreKind::None; 515 516 // See if the store can be turned into a memset. 517 518 // If the stored value is a byte-wise value (like i32 -1), then it may be 519 // turned into a memset of i8 -1, assuming that all the consecutive bytes 520 // are stored. A store of i32 0x01020304 can never be turned into a memset, 521 // but it can be turned into memset_pattern if the target supports it. 522 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 523 524 // Note: memset and memset_pattern on unordered-atomic is yet not supported 525 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 526 527 // If we're allowed to form a memset, and the stored value would be 528 // acceptable for memset, use it. 529 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 530 // Verify that the stored value is loop invariant. If not, we can't 531 // promote the memset. 532 CurLoop->isLoopInvariant(SplatValue)) { 533 // It looks like we can use SplatValue. 534 return LegalStoreKind::Memset; 535 } 536 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 537 // Don't create memset_pattern16s with address spaces. 538 StorePtr->getType()->getPointerAddressSpace() == 0 && 539 getMemSetPatternValue(StoredVal, DL)) { 540 // It looks like we can use PatternValue! 541 return LegalStoreKind::MemsetPattern; 542 } 543 544 // Otherwise, see if the store can be turned into a memcpy. 545 if (HasMemcpy && !DisableLIRP::Memcpy) { 546 // Check to see if the stride matches the size of the store. If so, then we 547 // know that every byte is touched in the loop. 548 APInt Stride = getStoreStride(StoreEv); 549 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 550 if (StoreSize != Stride && StoreSize != -Stride) 551 return LegalStoreKind::None; 552 553 // The store must be feeding a non-volatile load. 554 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 555 556 // Only allow non-volatile loads 557 if (!LI || LI->isVolatile()) 558 return LegalStoreKind::None; 559 // Only allow simple or unordered-atomic loads 560 if (!LI->isUnordered()) 561 return LegalStoreKind::None; 562 563 // See if the pointer expression is an AddRec like {base,+,1} on the current 564 // loop, which indicates a strided load. If we have something else, it's a 565 // random load we can't handle. 566 const SCEVAddRecExpr *LoadEv = 567 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 568 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 569 return LegalStoreKind::None; 570 571 // The store and load must share the same stride. 572 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 573 return LegalStoreKind::None; 574 575 // Success. This store can be converted into a memcpy. 576 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 577 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 578 : LegalStoreKind::Memcpy; 579 } 580 // This store can't be transformed into a memset/memcpy. 581 return LegalStoreKind::None; 582 } 583 584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 585 StoreRefsForMemset.clear(); 586 StoreRefsForMemsetPattern.clear(); 587 StoreRefsForMemcpy.clear(); 588 for (Instruction &I : *BB) { 589 StoreInst *SI = dyn_cast<StoreInst>(&I); 590 if (!SI) 591 continue; 592 593 // Make sure this is a strided store with a constant stride. 594 switch (isLegalStore(SI)) { 595 case LegalStoreKind::None: 596 // Nothing to do 597 break; 598 case LegalStoreKind::Memset: { 599 // Find the base pointer. 600 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 601 StoreRefsForMemset[Ptr].push_back(SI); 602 } break; 603 case LegalStoreKind::MemsetPattern: { 604 // Find the base pointer. 605 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 606 StoreRefsForMemsetPattern[Ptr].push_back(SI); 607 } break; 608 case LegalStoreKind::Memcpy: 609 case LegalStoreKind::UnorderedAtomicMemcpy: 610 StoreRefsForMemcpy.push_back(SI); 611 break; 612 default: 613 assert(false && "unhandled return value"); 614 break; 615 } 616 } 617 } 618 619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 620 /// with the specified backedge count. This block is known to be in the current 621 /// loop and not in any subloops. 622 bool LoopIdiomRecognize::runOnLoopBlock( 623 BasicBlock *BB, const SCEV *BECount, 624 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 625 // We can only promote stores in this block if they are unconditionally 626 // executed in the loop. For a block to be unconditionally executed, it has 627 // to dominate all the exit blocks of the loop. Verify this now. 628 for (BasicBlock *ExitBlock : ExitBlocks) 629 if (!DT->dominates(BB, ExitBlock)) 630 return false; 631 632 bool MadeChange = false; 633 // Look for store instructions, which may be optimized to memset/memcpy. 634 collectStores(BB); 635 636 // Look for a single store or sets of stores with a common base, which can be 637 // optimized into a memset (memset_pattern). The latter most commonly happens 638 // with structs and handunrolled loops. 639 for (auto &SL : StoreRefsForMemset) 640 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 641 642 for (auto &SL : StoreRefsForMemsetPattern) 643 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 644 645 // Optimize the store into a memcpy, if it feeds an similarly strided load. 646 for (auto &SI : StoreRefsForMemcpy) 647 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 648 649 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 650 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 651 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 652 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 653 654 return MadeChange; 655 } 656 657 /// See if this store(s) can be promoted to a memset. 658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 659 const SCEV *BECount, ForMemset For) { 660 // Try to find consecutive stores that can be transformed into memsets. 661 SetVector<StoreInst *> Heads, Tails; 662 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 663 664 // Do a quadratic search on all of the given stores and find 665 // all of the pairs of stores that follow each other. 666 SmallVector<unsigned, 16> IndexQueue; 667 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 668 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 669 670 Value *FirstStoredVal = SL[i]->getValueOperand(); 671 Value *FirstStorePtr = SL[i]->getPointerOperand(); 672 const SCEVAddRecExpr *FirstStoreEv = 673 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 674 APInt FirstStride = getStoreStride(FirstStoreEv); 675 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 676 677 // See if we can optimize just this store in isolation. 678 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 679 Heads.insert(SL[i]); 680 continue; 681 } 682 683 Value *FirstSplatValue = nullptr; 684 Constant *FirstPatternValue = nullptr; 685 686 if (For == ForMemset::Yes) 687 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 688 else 689 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 690 691 assert((FirstSplatValue || FirstPatternValue) && 692 "Expected either splat value or pattern value."); 693 694 IndexQueue.clear(); 695 // If a store has multiple consecutive store candidates, search Stores 696 // array according to the sequence: from i+1 to e, then from i-1 to 0. 697 // This is because usually pairing with immediate succeeding or preceding 698 // candidate create the best chance to find memset opportunity. 699 unsigned j = 0; 700 for (j = i + 1; j < e; ++j) 701 IndexQueue.push_back(j); 702 for (j = i; j > 0; --j) 703 IndexQueue.push_back(j - 1); 704 705 for (auto &k : IndexQueue) { 706 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 707 Value *SecondStorePtr = SL[k]->getPointerOperand(); 708 const SCEVAddRecExpr *SecondStoreEv = 709 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 710 APInt SecondStride = getStoreStride(SecondStoreEv); 711 712 if (FirstStride != SecondStride) 713 continue; 714 715 Value *SecondStoredVal = SL[k]->getValueOperand(); 716 Value *SecondSplatValue = nullptr; 717 Constant *SecondPatternValue = nullptr; 718 719 if (For == ForMemset::Yes) 720 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 721 else 722 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 723 724 assert((SecondSplatValue || SecondPatternValue) && 725 "Expected either splat value or pattern value."); 726 727 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 728 if (For == ForMemset::Yes) { 729 if (isa<UndefValue>(FirstSplatValue)) 730 FirstSplatValue = SecondSplatValue; 731 if (FirstSplatValue != SecondSplatValue) 732 continue; 733 } else { 734 if (isa<UndefValue>(FirstPatternValue)) 735 FirstPatternValue = SecondPatternValue; 736 if (FirstPatternValue != SecondPatternValue) 737 continue; 738 } 739 Tails.insert(SL[k]); 740 Heads.insert(SL[i]); 741 ConsecutiveChain[SL[i]] = SL[k]; 742 break; 743 } 744 } 745 } 746 747 // We may run into multiple chains that merge into a single chain. We mark the 748 // stores that we transformed so that we don't visit the same store twice. 749 SmallPtrSet<Value *, 16> TransformedStores; 750 bool Changed = false; 751 752 // For stores that start but don't end a link in the chain: 753 for (StoreInst *I : Heads) { 754 if (Tails.count(I)) 755 continue; 756 757 // We found a store instr that starts a chain. Now follow the chain and try 758 // to transform it. 759 SmallPtrSet<Instruction *, 8> AdjacentStores; 760 StoreInst *HeadStore = I; 761 unsigned StoreSize = 0; 762 763 // Collect the chain into a list. 764 while (Tails.count(I) || Heads.count(I)) { 765 if (TransformedStores.count(I)) 766 break; 767 AdjacentStores.insert(I); 768 769 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 770 // Move to the next value in the chain. 771 I = ConsecutiveChain[I]; 772 } 773 774 Value *StoredVal = HeadStore->getValueOperand(); 775 Value *StorePtr = HeadStore->getPointerOperand(); 776 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 777 APInt Stride = getStoreStride(StoreEv); 778 779 // Check to see if the stride matches the size of the stores. If so, then 780 // we know that every byte is touched in the loop. 781 if (StoreSize != Stride && StoreSize != -Stride) 782 continue; 783 784 bool IsNegStride = StoreSize == -Stride; 785 786 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 787 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 788 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 789 MaybeAlign(HeadStore->getAlign()), StoredVal, 790 HeadStore, AdjacentStores, StoreEv, BECount, 791 IsNegStride)) { 792 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 793 Changed = true; 794 } 795 } 796 797 return Changed; 798 } 799 800 /// processLoopMemIntrinsic - Template function for calling different processor 801 /// functions based on mem instrinsic type. 802 template <typename MemInst> 803 bool LoopIdiomRecognize::processLoopMemIntrinsic( 804 BasicBlock *BB, 805 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 806 const SCEV *BECount) { 807 bool MadeChange = false; 808 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 809 Instruction *Inst = &*I++; 810 // Look for memory instructions, which may be optimized to a larger one. 811 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 812 WeakTrackingVH InstPtr(&*I); 813 if (!(this->*Processor)(MI, BECount)) 814 continue; 815 MadeChange = true; 816 817 // If processing the instruction invalidated our iterator, start over from 818 // the top of the block. 819 if (!InstPtr) 820 I = BB->begin(); 821 } 822 } 823 return MadeChange; 824 } 825 826 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 827 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 828 const SCEV *BECount) { 829 // We can only handle non-volatile memcpys with a constant size. 830 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 831 return false; 832 833 // If we're not allowed to hack on memcpy, we fail. 834 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 835 return false; 836 837 Value *Dest = MCI->getDest(); 838 Value *Source = MCI->getSource(); 839 if (!Dest || !Source) 840 return false; 841 842 // See if the load and store pointer expressions are AddRec like {base,+,1} on 843 // the current loop, which indicates a strided load and store. If we have 844 // something else, it's a random load or store we can't handle. 845 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 846 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 847 return false; 848 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 849 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 850 return false; 851 852 // Reject memcpys that are so large that they overflow an unsigned. 853 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 854 if ((SizeInBytes >> 32) != 0) 855 return false; 856 857 // Check if the stride matches the size of the memcpy. If so, then we know 858 // that every byte is touched in the loop. 859 const SCEVConstant *ConstStoreStride = 860 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 861 const SCEVConstant *ConstLoadStride = 862 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 863 if (!ConstStoreStride || !ConstLoadStride) 864 return false; 865 866 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 867 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 868 // Huge stride value - give up 869 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 870 return false; 871 872 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 873 ORE.emit([&]() { 874 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 875 << ore::NV("Inst", "memcpy") << " in " 876 << ore::NV("Function", MCI->getFunction()) 877 << " function will not be hoisted: " 878 << ore::NV("Reason", "memcpy size is not equal to stride"); 879 }); 880 return false; 881 } 882 883 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 884 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 885 // Check if the load stride matches the store stride. 886 if (StoreStrideInt != LoadStrideInt) 887 return false; 888 889 return processLoopStoreOfLoopLoad( 890 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 891 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 892 BECount); 893 } 894 895 /// processLoopMemSet - See if this memset can be promoted to a large memset. 896 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 897 const SCEV *BECount) { 898 // We can only handle non-volatile memsets. 899 if (MSI->isVolatile()) 900 return false; 901 902 // If we're not allowed to hack on memset, we fail. 903 if (!HasMemset || DisableLIRP::Memset) 904 return false; 905 906 Value *Pointer = MSI->getDest(); 907 908 // See if the pointer expression is an AddRec like {base,+,1} on the current 909 // loop, which indicates a strided store. If we have something else, it's a 910 // random store we can't handle. 911 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 912 if (!Ev || Ev->getLoop() != CurLoop) 913 return false; 914 if (!Ev->isAffine()) { 915 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 916 return false; 917 } 918 919 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 920 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 921 if (!PointerStrideSCEV || !MemsetSizeSCEV) 922 return false; 923 924 bool IsNegStride = false; 925 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 926 927 if (IsConstantSize) { 928 // Memset size is constant. 929 // Check if the pointer stride matches the memset size. If so, then 930 // we know that every byte is touched in the loop. 931 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 932 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 933 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 934 if (!ConstStride) 935 return false; 936 937 APInt Stride = ConstStride->getAPInt(); 938 if (SizeInBytes != Stride && SizeInBytes != -Stride) 939 return false; 940 941 IsNegStride = SizeInBytes == -Stride; 942 } else { 943 // Memset size is non-constant. 944 // Check if the pointer stride matches the memset size. 945 // To be conservative, the pass would not promote pointers that aren't in 946 // address space zero. Also, the pass only handles memset length and stride 947 // that are invariant for the top level loop. 948 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 949 if (Pointer->getType()->getPointerAddressSpace() != 0) { 950 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 951 << "abort\n"); 952 return false; 953 } 954 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 955 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 956 << "abort\n"); 957 return false; 958 } 959 960 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 961 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 962 const SCEV *PositiveStrideSCEV = 963 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 964 : PointerStrideSCEV; 965 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 966 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 967 << "\n"); 968 969 if (PositiveStrideSCEV != MemsetSizeSCEV) { 970 // If an expression is covered by the loop guard, compare again and 971 // proceed with optimization if equal. 972 const SCEV *FoldedPositiveStride = 973 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 974 const SCEV *FoldedMemsetSize = 975 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 976 977 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 978 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 979 << " FoldedPositiveStride: " << *FoldedPositiveStride 980 << "\n"); 981 982 if (FoldedPositiveStride != FoldedMemsetSize) { 983 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 984 return false; 985 } 986 } 987 } 988 989 // Verify that the memset value is loop invariant. If not, we can't promote 990 // the memset. 991 Value *SplatValue = MSI->getValue(); 992 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 993 return false; 994 995 SmallPtrSet<Instruction *, 1> MSIs; 996 MSIs.insert(MSI); 997 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 998 MaybeAlign(MSI->getDestAlignment()), 999 SplatValue, MSI, MSIs, Ev, BECount, 1000 IsNegStride, /*IsLoopMemset=*/true); 1001 } 1002 1003 /// mayLoopAccessLocation - Return true if the specified loop might access the 1004 /// specified pointer location, which is a loop-strided access. The 'Access' 1005 /// argument specifies what the verboten forms of access are (read or write). 1006 static bool 1007 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 1008 const SCEV *BECount, const SCEV *StoreSizeSCEV, 1009 AliasAnalysis &AA, 1010 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 1011 // Get the location that may be stored across the loop. Since the access is 1012 // strided positively through memory, we say that the modified location starts 1013 // at the pointer and has infinite size. 1014 LocationSize AccessSize = LocationSize::afterPointer(); 1015 1016 // If the loop iterates a fixed number of times, we can refine the access size 1017 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 1018 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 1019 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1020 if (BECst && ConstSize) 1021 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 1022 ConstSize->getValue()->getZExtValue()); 1023 1024 // TODO: For this to be really effective, we have to dive into the pointer 1025 // operand in the store. Store to &A[i] of 100 will always return may alias 1026 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 1027 // which will then no-alias a store to &A[100]. 1028 MemoryLocation StoreLoc(Ptr, AccessSize); 1029 1030 for (BasicBlock *B : L->blocks()) 1031 for (Instruction &I : *B) 1032 if (!IgnoredInsts.contains(&I) && 1033 isModOrRefSet( 1034 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 1035 return true; 1036 return false; 1037 } 1038 1039 // If we have a negative stride, Start refers to the end of the memory location 1040 // we're trying to memset. Therefore, we need to recompute the base pointer, 1041 // which is just Start - BECount*Size. 1042 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 1043 Type *IntPtr, const SCEV *StoreSizeSCEV, 1044 ScalarEvolution *SE) { 1045 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1046 if (!StoreSizeSCEV->isOne()) { 1047 // index = back edge count * store size 1048 Index = SE->getMulExpr(Index, 1049 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1050 SCEV::FlagNUW); 1051 } 1052 // base pointer = start - index * store size 1053 return SE->getMinusSCEV(Start, Index); 1054 } 1055 1056 /// Compute trip count from the backedge taken count. 1057 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr, 1058 Loop *CurLoop, const DataLayout *DL, 1059 ScalarEvolution *SE) { 1060 const SCEV *TripCountS = nullptr; 1061 // The # stored bytes is (BECount+1). Expand the trip count out to 1062 // pointer size if it isn't already. 1063 // 1064 // If we're going to need to zero extend the BE count, check if we can add 1065 // one to it prior to zero extending without overflow. Provided this is safe, 1066 // it allows better simplification of the +1. 1067 if (DL->getTypeSizeInBits(BECount->getType()) < 1068 DL->getTypeSizeInBits(IntPtr) && 1069 SE->isLoopEntryGuardedByCond( 1070 CurLoop, ICmpInst::ICMP_NE, BECount, 1071 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 1072 TripCountS = SE->getZeroExtendExpr( 1073 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 1074 IntPtr); 1075 } else { 1076 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 1077 SE->getOne(IntPtr), SCEV::FlagNUW); 1078 } 1079 1080 return TripCountS; 1081 } 1082 1083 /// Compute the number of bytes as a SCEV from the backedge taken count. 1084 /// 1085 /// This also maps the SCEV into the provided type and tries to handle the 1086 /// computation in a way that will fold cleanly. 1087 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 1088 const SCEV *StoreSizeSCEV, Loop *CurLoop, 1089 const DataLayout *DL, ScalarEvolution *SE) { 1090 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE); 1091 1092 return SE->getMulExpr(TripCountSCEV, 1093 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1094 SCEV::FlagNUW); 1095 } 1096 1097 /// processLoopStridedStore - We see a strided store of some value. If we can 1098 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1099 bool LoopIdiomRecognize::processLoopStridedStore( 1100 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1101 Value *StoredVal, Instruction *TheStore, 1102 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1103 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1104 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1105 Constant *PatternValue = nullptr; 1106 1107 if (!SplatValue) 1108 PatternValue = getMemSetPatternValue(StoredVal, DL); 1109 1110 assert((SplatValue || PatternValue) && 1111 "Expected either splat value or pattern value."); 1112 1113 // The trip count of the loop and the base pointer of the addrec SCEV is 1114 // guaranteed to be loop invariant, which means that it should dominate the 1115 // header. This allows us to insert code for it in the preheader. 1116 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1117 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1118 IRBuilder<> Builder(Preheader->getTerminator()); 1119 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1120 SCEVExpanderCleaner ExpCleaner(Expander); 1121 1122 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1123 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1124 1125 bool Changed = false; 1126 const SCEV *Start = Ev->getStart(); 1127 // Handle negative strided loops. 1128 if (IsNegStride) 1129 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1130 1131 // TODO: ideally we should still be able to generate memset if SCEV expander 1132 // is taught to generate the dependencies at the latest point. 1133 if (!isSafeToExpand(Start, *SE)) 1134 return Changed; 1135 1136 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1137 // this into a memset in the loop preheader now if we want. However, this 1138 // would be unsafe to do if there is anything else in the loop that may read 1139 // or write to the aliased location. Check for any overlap by generating the 1140 // base pointer and checking the region. 1141 Value *BasePtr = 1142 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1143 1144 // From here on out, conservatively report to the pass manager that we've 1145 // changed the IR, even if we later clean up these added instructions. There 1146 // may be structural differences e.g. in the order of use lists not accounted 1147 // for in just a textual dump of the IR. This is written as a variable, even 1148 // though statically all the places this dominates could be replaced with 1149 // 'true', with the hope that anyone trying to be clever / "more precise" with 1150 // the return value will read this comment, and leave them alone. 1151 Changed = true; 1152 1153 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1154 StoreSizeSCEV, *AA, Stores)) 1155 return Changed; 1156 1157 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1158 return Changed; 1159 1160 // Okay, everything looks good, insert the memset. 1161 1162 const SCEV *NumBytesS = 1163 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1164 1165 // TODO: ideally we should still be able to generate memset if SCEV expander 1166 // is taught to generate the dependencies at the latest point. 1167 if (!isSafeToExpand(NumBytesS, *SE)) 1168 return Changed; 1169 1170 Value *NumBytes = 1171 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1172 1173 CallInst *NewCall; 1174 if (SplatValue) { 1175 AAMDNodes AATags = TheStore->getAAMetadata(); 1176 for (Instruction *Store : Stores) 1177 AATags = AATags.merge(Store->getAAMetadata()); 1178 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1179 AATags = AATags.extendTo(CI->getZExtValue()); 1180 else 1181 AATags = AATags.extendTo(-1); 1182 1183 NewCall = Builder.CreateMemSet( 1184 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1185 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1186 } else { 1187 // Everything is emitted in default address space 1188 Type *Int8PtrTy = DestInt8PtrTy; 1189 1190 Module *M = TheStore->getModule(); 1191 StringRef FuncName = "memset_pattern16"; 1192 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1193 Int8PtrTy, Int8PtrTy, IntIdxTy); 1194 inferLibFuncAttributes(M, FuncName, *TLI); 1195 1196 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1197 // an constant array of 16-bytes. Plop the value into a mergable global. 1198 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1199 GlobalValue::PrivateLinkage, 1200 PatternValue, ".memset_pattern"); 1201 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1202 GV->setAlignment(Align(16)); 1203 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1204 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1205 } 1206 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1207 1208 if (MSSAU) { 1209 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1210 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1211 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1212 } 1213 1214 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1215 << " from store to: " << *Ev << " at: " << *TheStore 1216 << "\n"); 1217 1218 ORE.emit([&]() { 1219 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1220 NewCall->getDebugLoc(), Preheader); 1221 R << "Transformed loop-strided store in " 1222 << ore::NV("Function", TheStore->getFunction()) 1223 << " function into a call to " 1224 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1225 << "() intrinsic"; 1226 if (!Stores.empty()) 1227 R << ore::setExtraArgs(); 1228 for (auto *I : Stores) { 1229 R << ore::NV("FromBlock", I->getParent()->getName()) 1230 << ore::NV("ToBlock", Preheader->getName()); 1231 } 1232 return R; 1233 }); 1234 1235 // Okay, the memset has been formed. Zap the original store and anything that 1236 // feeds into it. 1237 for (auto *I : Stores) { 1238 if (MSSAU) 1239 MSSAU->removeMemoryAccess(I, true); 1240 deleteDeadInstruction(I); 1241 } 1242 if (MSSAU && VerifyMemorySSA) 1243 MSSAU->getMemorySSA()->verifyMemorySSA(); 1244 ++NumMemSet; 1245 ExpCleaner.markResultUsed(); 1246 return true; 1247 } 1248 1249 /// If the stored value is a strided load in the same loop with the same stride 1250 /// this may be transformable into a memcpy. This kicks in for stuff like 1251 /// for (i) A[i] = B[i]; 1252 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1253 const SCEV *BECount) { 1254 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1255 1256 Value *StorePtr = SI->getPointerOperand(); 1257 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1258 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1259 1260 // The store must be feeding a non-volatile load. 1261 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1262 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1263 1264 // See if the pointer expression is an AddRec like {base,+,1} on the current 1265 // loop, which indicates a strided load. If we have something else, it's a 1266 // random load we can't handle. 1267 Value *LoadPtr = LI->getPointerOperand(); 1268 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1269 1270 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1271 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1272 SI->getAlign(), LI->getAlign(), SI, LI, 1273 StoreEv, LoadEv, BECount); 1274 } 1275 1276 class MemmoveVerifier { 1277 public: 1278 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1279 const DataLayout &DL) 1280 : DL(DL), LoadOff(0), StoreOff(0), 1281 BP1(llvm::GetPointerBaseWithConstantOffset( 1282 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1283 BP2(llvm::GetPointerBaseWithConstantOffset( 1284 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1285 IsSameObject(BP1 == BP2) {} 1286 1287 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1288 const Instruction &TheLoad, 1289 bool IsMemCpy) const { 1290 if (IsMemCpy) { 1291 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1292 // for negative stride. 1293 if ((!IsNegStride && LoadOff <= StoreOff) || 1294 (IsNegStride && LoadOff >= StoreOff)) 1295 return false; 1296 } else { 1297 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1298 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1299 int64_t LoadSize = 1300 DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8; 1301 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1302 return false; 1303 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1304 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 private: 1311 const DataLayout &DL; 1312 int64_t LoadOff; 1313 int64_t StoreOff; 1314 const Value *BP1; 1315 const Value *BP2; 1316 1317 public: 1318 const bool IsSameObject; 1319 }; 1320 1321 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1322 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1323 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1324 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1325 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1326 1327 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1328 // conservatively bail here, since otherwise we may have to transform 1329 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1330 if (isa<MemCpyInlineInst>(TheStore)) 1331 return false; 1332 1333 // The trip count of the loop and the base pointer of the addrec SCEV is 1334 // guaranteed to be loop invariant, which means that it should dominate the 1335 // header. This allows us to insert code for it in the preheader. 1336 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1337 IRBuilder<> Builder(Preheader->getTerminator()); 1338 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1339 1340 SCEVExpanderCleaner ExpCleaner(Expander); 1341 1342 bool Changed = false; 1343 const SCEV *StrStart = StoreEv->getStart(); 1344 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1345 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1346 1347 APInt Stride = getStoreStride(StoreEv); 1348 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1349 1350 // TODO: Deal with non-constant size; Currently expect constant store size 1351 assert(ConstStoreSize && "store size is expected to be a constant"); 1352 1353 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1354 bool IsNegStride = StoreSize == -Stride; 1355 1356 // Handle negative strided loops. 1357 if (IsNegStride) 1358 StrStart = 1359 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1360 1361 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1362 // this into a memcpy in the loop preheader now if we want. However, this 1363 // would be unsafe to do if there is anything else in the loop that may read 1364 // or write the memory region we're storing to. This includes the load that 1365 // feeds the stores. Check for an alias by generating the base address and 1366 // checking everything. 1367 Value *StoreBasePtr = Expander.expandCodeFor( 1368 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1369 1370 // From here on out, conservatively report to the pass manager that we've 1371 // changed the IR, even if we later clean up these added instructions. There 1372 // may be structural differences e.g. in the order of use lists not accounted 1373 // for in just a textual dump of the IR. This is written as a variable, even 1374 // though statically all the places this dominates could be replaced with 1375 // 'true', with the hope that anyone trying to be clever / "more precise" with 1376 // the return value will read this comment, and leave them alone. 1377 Changed = true; 1378 1379 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1380 IgnoredInsts.insert(TheStore); 1381 1382 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1383 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1384 1385 bool LoopAccessStore = 1386 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1387 StoreSizeSCEV, *AA, IgnoredInsts); 1388 if (LoopAccessStore) { 1389 // For memmove case it's not enough to guarantee that loop doesn't access 1390 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1391 // the only user of TheLoad. 1392 if (!TheLoad->hasOneUse()) 1393 return Changed; 1394 IgnoredInsts.insert(TheLoad); 1395 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1396 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1397 ORE.emit([&]() { 1398 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1399 TheStore) 1400 << ore::NV("Inst", InstRemark) << " in " 1401 << ore::NV("Function", TheStore->getFunction()) 1402 << " function will not be hoisted: " 1403 << ore::NV("Reason", "The loop may access store location"); 1404 }); 1405 return Changed; 1406 } 1407 IgnoredInsts.erase(TheLoad); 1408 } 1409 1410 const SCEV *LdStart = LoadEv->getStart(); 1411 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1412 1413 // Handle negative strided loops. 1414 if (IsNegStride) 1415 LdStart = 1416 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1417 1418 // For a memcpy, we have to make sure that the input array is not being 1419 // mutated by the loop. 1420 Value *LoadBasePtr = Expander.expandCodeFor( 1421 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1422 1423 // If the store is a memcpy instruction, we must check if it will write to 1424 // the load memory locations. So remove it from the ignored stores. 1425 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1426 if (IsMemCpy && !Verifier.IsSameObject) 1427 IgnoredInsts.erase(TheStore); 1428 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1429 StoreSizeSCEV, *AA, IgnoredInsts)) { 1430 ORE.emit([&]() { 1431 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1432 << ore::NV("Inst", InstRemark) << " in " 1433 << ore::NV("Function", TheStore->getFunction()) 1434 << " function will not be hoisted: " 1435 << ore::NV("Reason", "The loop may access load location"); 1436 }); 1437 return Changed; 1438 } 1439 1440 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1441 if (UseMemMove) 1442 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1443 IsMemCpy)) 1444 return Changed; 1445 1446 if (avoidLIRForMultiBlockLoop()) 1447 return Changed; 1448 1449 // Okay, everything is safe, we can transform this! 1450 1451 const SCEV *NumBytesS = 1452 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1453 1454 Value *NumBytes = 1455 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1456 1457 AAMDNodes AATags = TheLoad->getAAMetadata(); 1458 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1459 AATags = AATags.merge(StoreAATags); 1460 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1461 AATags = AATags.extendTo(CI->getZExtValue()); 1462 else 1463 AATags = AATags.extendTo(-1); 1464 1465 CallInst *NewCall = nullptr; 1466 // Check whether to generate an unordered atomic memcpy: 1467 // If the load or store are atomic, then they must necessarily be unordered 1468 // by previous checks. 1469 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1470 if (UseMemMove) 1471 NewCall = Builder.CreateMemMove( 1472 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1473 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1474 else 1475 NewCall = 1476 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1477 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1478 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1479 } else { 1480 // For now don't support unordered atomic memmove. 1481 if (UseMemMove) 1482 return Changed; 1483 // We cannot allow unaligned ops for unordered load/store, so reject 1484 // anything where the alignment isn't at least the element size. 1485 assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && 1486 "Expect unordered load/store to have align."); 1487 if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) 1488 return Changed; 1489 1490 // If the element.atomic memcpy is not lowered into explicit 1491 // loads/stores later, then it will be lowered into an element-size 1492 // specific lib call. If the lib call doesn't exist for our store size, then 1493 // we shouldn't generate the memcpy. 1494 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1495 return Changed; 1496 1497 // Create the call. 1498 // Note that unordered atomic loads/stores are *required* by the spec to 1499 // have an alignment but non-atomic loads/stores may not. 1500 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1501 StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), 1502 NumBytes, StoreSize, AATags.TBAA, AATags.TBAAStruct, AATags.Scope, 1503 AATags.NoAlias); 1504 } 1505 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1506 1507 if (MSSAU) { 1508 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1509 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1510 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1511 } 1512 1513 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1514 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1515 << "\n" 1516 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1517 << "\n"); 1518 1519 ORE.emit([&]() { 1520 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1521 NewCall->getDebugLoc(), Preheader) 1522 << "Formed a call to " 1523 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1524 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1525 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1526 << " function" 1527 << ore::setExtraArgs() 1528 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1529 << ore::NV("ToBlock", Preheader->getName()); 1530 }); 1531 1532 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1533 // and anything that feeds into it. 1534 if (MSSAU) 1535 MSSAU->removeMemoryAccess(TheStore, true); 1536 deleteDeadInstruction(TheStore); 1537 if (MSSAU && VerifyMemorySSA) 1538 MSSAU->getMemorySSA()->verifyMemorySSA(); 1539 if (UseMemMove) 1540 ++NumMemMove; 1541 else 1542 ++NumMemCpy; 1543 ExpCleaner.markResultUsed(); 1544 return true; 1545 } 1546 1547 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1548 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1549 // 1550 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1551 bool IsLoopMemset) { 1552 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1553 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1554 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1555 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1556 << " avoided: multi-block top-level loop\n"); 1557 return true; 1558 } 1559 } 1560 1561 return false; 1562 } 1563 1564 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1565 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1566 << CurLoop->getHeader()->getParent()->getName() 1567 << "] Noncountable Loop %" 1568 << CurLoop->getHeader()->getName() << "\n"); 1569 1570 return recognizePopcount() || recognizeAndInsertFFS() || 1571 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1572 } 1573 1574 /// Check if the given conditional branch is based on the comparison between 1575 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1576 /// true), the control yields to the loop entry. If the branch matches the 1577 /// behavior, the variable involved in the comparison is returned. This function 1578 /// will be called to see if the precondition and postcondition of the loop are 1579 /// in desirable form. 1580 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1581 bool JmpOnZero = false) { 1582 if (!BI || !BI->isConditional()) 1583 return nullptr; 1584 1585 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1586 if (!Cond) 1587 return nullptr; 1588 1589 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1590 if (!CmpZero || !CmpZero->isZero()) 1591 return nullptr; 1592 1593 BasicBlock *TrueSucc = BI->getSuccessor(0); 1594 BasicBlock *FalseSucc = BI->getSuccessor(1); 1595 if (JmpOnZero) 1596 std::swap(TrueSucc, FalseSucc); 1597 1598 ICmpInst::Predicate Pred = Cond->getPredicate(); 1599 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1600 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1601 return Cond->getOperand(0); 1602 1603 return nullptr; 1604 } 1605 1606 // Check if the recurrence variable `VarX` is in the right form to create 1607 // the idiom. Returns the value coerced to a PHINode if so. 1608 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1609 BasicBlock *LoopEntry) { 1610 auto *PhiX = dyn_cast<PHINode>(VarX); 1611 if (PhiX && PhiX->getParent() == LoopEntry && 1612 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1613 return PhiX; 1614 return nullptr; 1615 } 1616 1617 /// Return true iff the idiom is detected in the loop. 1618 /// 1619 /// Additionally: 1620 /// 1) \p CntInst is set to the instruction counting the population bit. 1621 /// 2) \p CntPhi is set to the corresponding phi node. 1622 /// 3) \p Var is set to the value whose population bits are being counted. 1623 /// 1624 /// The core idiom we are trying to detect is: 1625 /// \code 1626 /// if (x0 != 0) 1627 /// goto loop-exit // the precondition of the loop 1628 /// cnt0 = init-val; 1629 /// do { 1630 /// x1 = phi (x0, x2); 1631 /// cnt1 = phi(cnt0, cnt2); 1632 /// 1633 /// cnt2 = cnt1 + 1; 1634 /// ... 1635 /// x2 = x1 & (x1 - 1); 1636 /// ... 1637 /// } while(x != 0); 1638 /// 1639 /// loop-exit: 1640 /// \endcode 1641 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1642 Instruction *&CntInst, PHINode *&CntPhi, 1643 Value *&Var) { 1644 // step 1: Check to see if the look-back branch match this pattern: 1645 // "if (a!=0) goto loop-entry". 1646 BasicBlock *LoopEntry; 1647 Instruction *DefX2, *CountInst; 1648 Value *VarX1, *VarX0; 1649 PHINode *PhiX, *CountPhi; 1650 1651 DefX2 = CountInst = nullptr; 1652 VarX1 = VarX0 = nullptr; 1653 PhiX = CountPhi = nullptr; 1654 LoopEntry = *(CurLoop->block_begin()); 1655 1656 // step 1: Check if the loop-back branch is in desirable form. 1657 { 1658 if (Value *T = matchCondition( 1659 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1660 DefX2 = dyn_cast<Instruction>(T); 1661 else 1662 return false; 1663 } 1664 1665 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1666 { 1667 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1668 return false; 1669 1670 BinaryOperator *SubOneOp; 1671 1672 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1673 VarX1 = DefX2->getOperand(1); 1674 else { 1675 VarX1 = DefX2->getOperand(0); 1676 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1677 } 1678 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1679 return false; 1680 1681 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1682 if (!Dec || 1683 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1684 (SubOneOp->getOpcode() == Instruction::Add && 1685 Dec->isMinusOne()))) { 1686 return false; 1687 } 1688 } 1689 1690 // step 3: Check the recurrence of variable X 1691 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1692 if (!PhiX) 1693 return false; 1694 1695 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1696 { 1697 CountInst = nullptr; 1698 for (Instruction &Inst : llvm::make_range( 1699 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1700 if (Inst.getOpcode() != Instruction::Add) 1701 continue; 1702 1703 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1704 if (!Inc || !Inc->isOne()) 1705 continue; 1706 1707 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1708 if (!Phi) 1709 continue; 1710 1711 // Check if the result of the instruction is live of the loop. 1712 bool LiveOutLoop = false; 1713 for (User *U : Inst.users()) { 1714 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1715 LiveOutLoop = true; 1716 break; 1717 } 1718 } 1719 1720 if (LiveOutLoop) { 1721 CountInst = &Inst; 1722 CountPhi = Phi; 1723 break; 1724 } 1725 } 1726 1727 if (!CountInst) 1728 return false; 1729 } 1730 1731 // step 5: check if the precondition is in this form: 1732 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1733 { 1734 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1735 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1736 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1737 return false; 1738 1739 CntInst = CountInst; 1740 CntPhi = CountPhi; 1741 Var = T; 1742 } 1743 1744 return true; 1745 } 1746 1747 /// Return true if the idiom is detected in the loop. 1748 /// 1749 /// Additionally: 1750 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1751 /// or nullptr if there is no such. 1752 /// 2) \p CntPhi is set to the corresponding phi node 1753 /// or nullptr if there is no such. 1754 /// 3) \p Var is set to the value whose CTLZ could be used. 1755 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1756 /// 1757 /// The core idiom we are trying to detect is: 1758 /// \code 1759 /// if (x0 == 0) 1760 /// goto loop-exit // the precondition of the loop 1761 /// cnt0 = init-val; 1762 /// do { 1763 /// x = phi (x0, x.next); //PhiX 1764 /// cnt = phi(cnt0, cnt.next); 1765 /// 1766 /// cnt.next = cnt + 1; 1767 /// ... 1768 /// x.next = x >> 1; // DefX 1769 /// ... 1770 /// } while(x.next != 0); 1771 /// 1772 /// loop-exit: 1773 /// \endcode 1774 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1775 Intrinsic::ID &IntrinID, Value *&InitX, 1776 Instruction *&CntInst, PHINode *&CntPhi, 1777 Instruction *&DefX) { 1778 BasicBlock *LoopEntry; 1779 Value *VarX = nullptr; 1780 1781 DefX = nullptr; 1782 CntInst = nullptr; 1783 CntPhi = nullptr; 1784 LoopEntry = *(CurLoop->block_begin()); 1785 1786 // step 1: Check if the loop-back branch is in desirable form. 1787 if (Value *T = matchCondition( 1788 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1789 DefX = dyn_cast<Instruction>(T); 1790 else 1791 return false; 1792 1793 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1794 if (!DefX || !DefX->isShift()) 1795 return false; 1796 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1797 Intrinsic::ctlz; 1798 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1799 if (!Shft || !Shft->isOne()) 1800 return false; 1801 VarX = DefX->getOperand(0); 1802 1803 // step 3: Check the recurrence of variable X 1804 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1805 if (!PhiX) 1806 return false; 1807 1808 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1809 1810 // Make sure the initial value can't be negative otherwise the ashr in the 1811 // loop might never reach zero which would make the loop infinite. 1812 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1813 return false; 1814 1815 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1816 // or cnt.next = cnt + -1. 1817 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1818 // then all uses of "cnt.next" could be optimized to the trip count 1819 // plus "cnt0". Currently it is not optimized. 1820 // This step could be used to detect POPCNT instruction: 1821 // cnt.next = cnt + (x.next & 1) 1822 for (Instruction &Inst : llvm::make_range( 1823 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1824 if (Inst.getOpcode() != Instruction::Add) 1825 continue; 1826 1827 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1828 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1829 continue; 1830 1831 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1832 if (!Phi) 1833 continue; 1834 1835 CntInst = &Inst; 1836 CntPhi = Phi; 1837 break; 1838 } 1839 if (!CntInst) 1840 return false; 1841 1842 return true; 1843 } 1844 1845 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1846 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1847 /// trip count returns true; otherwise, returns false. 1848 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1849 // Give up if the loop has multiple blocks or multiple backedges. 1850 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1851 return false; 1852 1853 Intrinsic::ID IntrinID; 1854 Value *InitX; 1855 Instruction *DefX = nullptr; 1856 PHINode *CntPhi = nullptr; 1857 Instruction *CntInst = nullptr; 1858 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1859 // this is always 6. 1860 size_t IdiomCanonicalSize = 6; 1861 1862 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1863 CntInst, CntPhi, DefX)) 1864 return false; 1865 1866 bool IsCntPhiUsedOutsideLoop = false; 1867 for (User *U : CntPhi->users()) 1868 if (!CurLoop->contains(cast<Instruction>(U))) { 1869 IsCntPhiUsedOutsideLoop = true; 1870 break; 1871 } 1872 bool IsCntInstUsedOutsideLoop = false; 1873 for (User *U : CntInst->users()) 1874 if (!CurLoop->contains(cast<Instruction>(U))) { 1875 IsCntInstUsedOutsideLoop = true; 1876 break; 1877 } 1878 // If both CntInst and CntPhi are used outside the loop the profitability 1879 // is questionable. 1880 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1881 return false; 1882 1883 // For some CPUs result of CTLZ(X) intrinsic is undefined 1884 // when X is 0. If we can not guarantee X != 0, we need to check this 1885 // when expand. 1886 bool ZeroCheck = false; 1887 // It is safe to assume Preheader exist as it was checked in 1888 // parent function RunOnLoop. 1889 BasicBlock *PH = CurLoop->getLoopPreheader(); 1890 1891 // If we are using the count instruction outside the loop, make sure we 1892 // have a zero check as a precondition. Without the check the loop would run 1893 // one iteration for before any check of the input value. This means 0 and 1 1894 // would have identical behavior in the original loop and thus 1895 if (!IsCntPhiUsedOutsideLoop) { 1896 auto *PreCondBB = PH->getSinglePredecessor(); 1897 if (!PreCondBB) 1898 return false; 1899 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1900 if (!PreCondBI) 1901 return false; 1902 if (matchCondition(PreCondBI, PH) != InitX) 1903 return false; 1904 ZeroCheck = true; 1905 } 1906 1907 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1908 // profitable if we delete the loop. 1909 1910 // the loop has only 6 instructions: 1911 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1912 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1913 // %shr = ashr %n.addr.0, 1 1914 // %tobool = icmp eq %shr, 0 1915 // %inc = add nsw %i.0, 1 1916 // br i1 %tobool 1917 1918 const Value *Args[] = {InitX, 1919 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1920 1921 // @llvm.dbg doesn't count as they have no semantic effect. 1922 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1923 uint32_t HeaderSize = 1924 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1925 1926 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1927 InstructionCost Cost = 1928 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1929 if (HeaderSize != IdiomCanonicalSize && 1930 Cost > TargetTransformInfo::TCC_Basic) 1931 return false; 1932 1933 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1934 DefX->getDebugLoc(), ZeroCheck, 1935 IsCntPhiUsedOutsideLoop); 1936 return true; 1937 } 1938 1939 /// Recognizes a population count idiom in a non-countable loop. 1940 /// 1941 /// If detected, transforms the relevant code to issue the popcount intrinsic 1942 /// function call, and returns true; otherwise, returns false. 1943 bool LoopIdiomRecognize::recognizePopcount() { 1944 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1945 return false; 1946 1947 // Counting population are usually conducted by few arithmetic instructions. 1948 // Such instructions can be easily "absorbed" by vacant slots in a 1949 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1950 // in a compact loop. 1951 1952 // Give up if the loop has multiple blocks or multiple backedges. 1953 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1954 return false; 1955 1956 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1957 if (LoopBody->size() >= 20) { 1958 // The loop is too big, bail out. 1959 return false; 1960 } 1961 1962 // It should have a preheader containing nothing but an unconditional branch. 1963 BasicBlock *PH = CurLoop->getLoopPreheader(); 1964 if (!PH || &PH->front() != PH->getTerminator()) 1965 return false; 1966 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1967 if (!EntryBI || EntryBI->isConditional()) 1968 return false; 1969 1970 // It should have a precondition block where the generated popcount intrinsic 1971 // function can be inserted. 1972 auto *PreCondBB = PH->getSinglePredecessor(); 1973 if (!PreCondBB) 1974 return false; 1975 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1976 if (!PreCondBI || PreCondBI->isUnconditional()) 1977 return false; 1978 1979 Instruction *CntInst; 1980 PHINode *CntPhi; 1981 Value *Val; 1982 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1983 return false; 1984 1985 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1986 return true; 1987 } 1988 1989 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1990 const DebugLoc &DL) { 1991 Value *Ops[] = {Val}; 1992 Type *Tys[] = {Val->getType()}; 1993 1994 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1995 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1996 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1997 CI->setDebugLoc(DL); 1998 1999 return CI; 2000 } 2001 2002 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2003 const DebugLoc &DL, bool ZeroCheck, 2004 Intrinsic::ID IID) { 2005 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 2006 Type *Tys[] = {Val->getType()}; 2007 2008 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 2009 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 2010 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 2011 CI->setDebugLoc(DL); 2012 2013 return CI; 2014 } 2015 2016 /// Transform the following loop (Using CTLZ, CTTZ is similar): 2017 /// loop: 2018 /// CntPhi = PHI [Cnt0, CntInst] 2019 /// PhiX = PHI [InitX, DefX] 2020 /// CntInst = CntPhi + 1 2021 /// DefX = PhiX >> 1 2022 /// LOOP_BODY 2023 /// Br: loop if (DefX != 0) 2024 /// Use(CntPhi) or Use(CntInst) 2025 /// 2026 /// Into: 2027 /// If CntPhi used outside the loop: 2028 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 2029 /// Count = CountPrev + 1 2030 /// else 2031 /// Count = BitWidth(InitX) - CTLZ(InitX) 2032 /// loop: 2033 /// CntPhi = PHI [Cnt0, CntInst] 2034 /// PhiX = PHI [InitX, DefX] 2035 /// PhiCount = PHI [Count, Dec] 2036 /// CntInst = CntPhi + 1 2037 /// DefX = PhiX >> 1 2038 /// Dec = PhiCount - 1 2039 /// LOOP_BODY 2040 /// Br: loop if (Dec != 0) 2041 /// Use(CountPrev + Cnt0) // Use(CntPhi) 2042 /// or 2043 /// Use(Count + Cnt0) // Use(CntInst) 2044 /// 2045 /// If LOOP_BODY is empty the loop will be deleted. 2046 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 2047 void LoopIdiomRecognize::transformLoopToCountable( 2048 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 2049 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 2050 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 2051 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 2052 2053 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 2054 IRBuilder<> Builder(PreheaderBr); 2055 Builder.SetCurrentDebugLocation(DL); 2056 2057 // If there are no uses of CntPhi crate: 2058 // Count = BitWidth - CTLZ(InitX); 2059 // NewCount = Count; 2060 // If there are uses of CntPhi create: 2061 // NewCount = BitWidth - CTLZ(InitX >> 1); 2062 // Count = NewCount + 1; 2063 Value *InitXNext; 2064 if (IsCntPhiUsedOutsideLoop) { 2065 if (DefX->getOpcode() == Instruction::AShr) 2066 InitXNext = Builder.CreateAShr(InitX, 1); 2067 else if (DefX->getOpcode() == Instruction::LShr) 2068 InitXNext = Builder.CreateLShr(InitX, 1); 2069 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2070 InitXNext = Builder.CreateShl(InitX, 1); 2071 else 2072 llvm_unreachable("Unexpected opcode!"); 2073 } else 2074 InitXNext = InitX; 2075 Value *Count = 2076 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2077 Type *CountTy = Count->getType(); 2078 Count = Builder.CreateSub( 2079 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2080 Value *NewCount = Count; 2081 if (IsCntPhiUsedOutsideLoop) 2082 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2083 2084 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2085 2086 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2087 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2088 // If the counter was being incremented in the loop, add NewCount to the 2089 // counter's initial value, but only if the initial value is not zero. 2090 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2091 if (!InitConst || !InitConst->isZero()) 2092 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2093 } else { 2094 // If the count was being decremented in the loop, subtract NewCount from 2095 // the counter's initial value. 2096 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2097 } 2098 2099 // Step 2: Insert new IV and loop condition: 2100 // loop: 2101 // ... 2102 // PhiCount = PHI [Count, Dec] 2103 // ... 2104 // Dec = PhiCount - 1 2105 // ... 2106 // Br: loop if (Dec != 0) 2107 BasicBlock *Body = *(CurLoop->block_begin()); 2108 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2109 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2110 2111 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 2112 2113 Builder.SetInsertPoint(LbCond); 2114 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2115 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2116 2117 TcPhi->addIncoming(Count, Preheader); 2118 TcPhi->addIncoming(TcDec, Body); 2119 2120 CmpInst::Predicate Pred = 2121 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2122 LbCond->setPredicate(Pred); 2123 LbCond->setOperand(0, TcDec); 2124 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2125 2126 // Step 3: All the references to the original counter outside 2127 // the loop are replaced with the NewCount 2128 if (IsCntPhiUsedOutsideLoop) 2129 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2130 else 2131 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2132 2133 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2134 // loop. The loop would otherwise not be deleted even if it becomes empty. 2135 SE->forgetLoop(CurLoop); 2136 } 2137 2138 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2139 Instruction *CntInst, 2140 PHINode *CntPhi, Value *Var) { 2141 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2142 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2143 const DebugLoc &DL = CntInst->getDebugLoc(); 2144 2145 // Assuming before transformation, the loop is following: 2146 // if (x) // the precondition 2147 // do { cnt++; x &= x - 1; } while(x); 2148 2149 // Step 1: Insert the ctpop instruction at the end of the precondition block 2150 IRBuilder<> Builder(PreCondBr); 2151 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2152 { 2153 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2154 NewCount = PopCntZext = 2155 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2156 2157 if (NewCount != PopCnt) 2158 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2159 2160 // TripCnt is exactly the number of iterations the loop has 2161 TripCnt = NewCount; 2162 2163 // If the population counter's initial value is not zero, insert Add Inst. 2164 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2165 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2166 if (!InitConst || !InitConst->isZero()) { 2167 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2168 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2169 } 2170 } 2171 2172 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2173 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2174 // function would be partial dead code, and downstream passes will drag 2175 // it back from the precondition block to the preheader. 2176 { 2177 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2178 2179 Value *Opnd0 = PopCntZext; 2180 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2181 if (PreCond->getOperand(0) != Var) 2182 std::swap(Opnd0, Opnd1); 2183 2184 ICmpInst *NewPreCond = cast<ICmpInst>( 2185 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2186 PreCondBr->setCondition(NewPreCond); 2187 2188 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2189 } 2190 2191 // Step 3: Note that the population count is exactly the trip count of the 2192 // loop in question, which enable us to convert the loop from noncountable 2193 // loop into a countable one. The benefit is twofold: 2194 // 2195 // - If the loop only counts population, the entire loop becomes dead after 2196 // the transformation. It is a lot easier to prove a countable loop dead 2197 // than to prove a noncountable one. (In some C dialects, an infinite loop 2198 // isn't dead even if it computes nothing useful. In general, DCE needs 2199 // to prove a noncountable loop finite before safely delete it.) 2200 // 2201 // - If the loop also performs something else, it remains alive. 2202 // Since it is transformed to countable form, it can be aggressively 2203 // optimized by some optimizations which are in general not applicable 2204 // to a noncountable loop. 2205 // 2206 // After this step, this loop (conceptually) would look like following: 2207 // newcnt = __builtin_ctpop(x); 2208 // t = newcnt; 2209 // if (x) 2210 // do { cnt++; x &= x-1; t--) } while (t > 0); 2211 BasicBlock *Body = *(CurLoop->block_begin()); 2212 { 2213 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2214 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2215 Type *Ty = TripCnt->getType(); 2216 2217 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2218 2219 Builder.SetInsertPoint(LbCond); 2220 Instruction *TcDec = cast<Instruction>( 2221 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2222 "tcdec", false, true)); 2223 2224 TcPhi->addIncoming(TripCnt, PreHead); 2225 TcPhi->addIncoming(TcDec, Body); 2226 2227 CmpInst::Predicate Pred = 2228 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2229 LbCond->setPredicate(Pred); 2230 LbCond->setOperand(0, TcDec); 2231 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2232 } 2233 2234 // Step 4: All the references to the original population counter outside 2235 // the loop are replaced with the NewCount -- the value returned from 2236 // __builtin_ctpop(). 2237 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2238 2239 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2240 // loop. The loop would otherwise not be deleted even if it becomes empty. 2241 SE->forgetLoop(CurLoop); 2242 } 2243 2244 /// Match loop-invariant value. 2245 template <typename SubPattern_t> struct match_LoopInvariant { 2246 SubPattern_t SubPattern; 2247 const Loop *L; 2248 2249 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2250 : SubPattern(SP), L(L) {} 2251 2252 template <typename ITy> bool match(ITy *V) { 2253 return L->isLoopInvariant(V) && SubPattern.match(V); 2254 } 2255 }; 2256 2257 /// Matches if the value is loop-invariant. 2258 template <typename Ty> 2259 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2260 return match_LoopInvariant<Ty>(M, L); 2261 } 2262 2263 /// Return true if the idiom is detected in the loop. 2264 /// 2265 /// The core idiom we are trying to detect is: 2266 /// \code 2267 /// entry: 2268 /// <...> 2269 /// %bitmask = shl i32 1, %bitpos 2270 /// br label %loop 2271 /// 2272 /// loop: 2273 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2274 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2275 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2276 /// %x.next = shl i32 %x.curr, 1 2277 /// <...> 2278 /// br i1 %x.curr.isbitunset, label %loop, label %end 2279 /// 2280 /// end: 2281 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2282 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2283 /// <...> 2284 /// \endcode 2285 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2286 Value *&BitMask, Value *&BitPos, 2287 Value *&CurrX, Instruction *&NextX) { 2288 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2289 " Performing shift-until-bittest idiom detection.\n"); 2290 2291 // Give up if the loop has multiple blocks or multiple backedges. 2292 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2293 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2294 return false; 2295 } 2296 2297 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2298 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2299 assert(LoopPreheaderBB && "There is always a loop preheader."); 2300 2301 using namespace PatternMatch; 2302 2303 // Step 1: Check if the loop backedge is in desirable form. 2304 2305 ICmpInst::Predicate Pred; 2306 Value *CmpLHS, *CmpRHS; 2307 BasicBlock *TrueBB, *FalseBB; 2308 if (!match(LoopHeaderBB->getTerminator(), 2309 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2310 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2311 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2312 return false; 2313 } 2314 2315 // Step 2: Check if the backedge's condition is in desirable form. 2316 2317 auto MatchVariableBitMask = [&]() { 2318 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2319 match(CmpLHS, 2320 m_c_And(m_Value(CurrX), 2321 m_CombineAnd( 2322 m_Value(BitMask), 2323 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2324 CurLoop)))); 2325 }; 2326 auto MatchConstantBitMask = [&]() { 2327 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2328 match(CmpLHS, m_And(m_Value(CurrX), 2329 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2330 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2331 }; 2332 auto MatchDecomposableConstantBitMask = [&]() { 2333 APInt Mask; 2334 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2335 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2336 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2337 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2338 }; 2339 2340 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2341 !MatchDecomposableConstantBitMask()) { 2342 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2343 return false; 2344 } 2345 2346 // Step 3: Check if the recurrence is in desirable form. 2347 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2348 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2349 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2350 return false; 2351 } 2352 2353 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2354 NextX = 2355 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2356 2357 assert(CurLoop->isLoopInvariant(BaseX) && 2358 "Expected BaseX to be avaliable in the preheader!"); 2359 2360 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2361 // FIXME: support right-shift? 2362 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2363 return false; 2364 } 2365 2366 // Step 4: Check if the backedge's destinations are in desirable form. 2367 2368 assert(ICmpInst::isEquality(Pred) && 2369 "Should only get equality predicates here."); 2370 2371 // cmp-br is commutative, so canonicalize to a single variant. 2372 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2373 Pred = ICmpInst::getInversePredicate(Pred); 2374 std::swap(TrueBB, FalseBB); 2375 } 2376 2377 // We expect to exit loop when comparison yields false, 2378 // so when it yields true we should branch back to loop header. 2379 if (TrueBB != LoopHeaderBB) { 2380 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2381 return false; 2382 } 2383 2384 // Okay, idiom checks out. 2385 return true; 2386 } 2387 2388 /// Look for the following loop: 2389 /// \code 2390 /// entry: 2391 /// <...> 2392 /// %bitmask = shl i32 1, %bitpos 2393 /// br label %loop 2394 /// 2395 /// loop: 2396 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2397 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2398 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2399 /// %x.next = shl i32 %x.curr, 1 2400 /// <...> 2401 /// br i1 %x.curr.isbitunset, label %loop, label %end 2402 /// 2403 /// end: 2404 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2405 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2406 /// <...> 2407 /// \endcode 2408 /// 2409 /// And transform it into: 2410 /// \code 2411 /// entry: 2412 /// %bitmask = shl i32 1, %bitpos 2413 /// %lowbitmask = add i32 %bitmask, -1 2414 /// %mask = or i32 %lowbitmask, %bitmask 2415 /// %x.masked = and i32 %x, %mask 2416 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2417 /// i1 true) 2418 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2419 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2420 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2421 /// %tripcount = add i32 %backedgetakencount, 1 2422 /// %x.curr = shl i32 %x, %backedgetakencount 2423 /// %x.next = shl i32 %x, %tripcount 2424 /// br label %loop 2425 /// 2426 /// loop: 2427 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2428 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2429 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2430 /// <...> 2431 /// br i1 %loop.ivcheck, label %end, label %loop 2432 /// 2433 /// end: 2434 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2435 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2436 /// <...> 2437 /// \endcode 2438 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2439 bool MadeChange = false; 2440 2441 Value *X, *BitMask, *BitPos, *XCurr; 2442 Instruction *XNext; 2443 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2444 XNext)) { 2445 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2446 " shift-until-bittest idiom detection failed.\n"); 2447 return MadeChange; 2448 } 2449 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2450 2451 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2452 // but is it profitable to transform? 2453 2454 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2455 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2456 assert(LoopPreheaderBB && "There is always a loop preheader."); 2457 2458 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2459 assert(SuccessorBB && "There is only a single successor."); 2460 2461 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2462 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2463 2464 Intrinsic::ID IntrID = Intrinsic::ctlz; 2465 Type *Ty = X->getType(); 2466 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2467 2468 TargetTransformInfo::TargetCostKind CostKind = 2469 TargetTransformInfo::TCK_SizeAndLatency; 2470 2471 // The rewrite is considered to be unprofitable iff and only iff the 2472 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2473 // making the loop countable, even if nothing else changes. 2474 IntrinsicCostAttributes Attrs( 2475 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2476 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2477 if (Cost > TargetTransformInfo::TCC_Basic) { 2478 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2479 " Intrinsic is too costly, not beneficial\n"); 2480 return MadeChange; 2481 } 2482 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2483 TargetTransformInfo::TCC_Basic) { 2484 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2485 return MadeChange; 2486 } 2487 2488 // Ok, transform appears worthwhile. 2489 MadeChange = true; 2490 2491 // Step 1: Compute the loop trip count. 2492 2493 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2494 BitPos->getName() + ".lowbitmask"); 2495 Value *Mask = 2496 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2497 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2498 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2499 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2500 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2501 Value *XMaskedNumActiveBits = Builder.CreateSub( 2502 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2503 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2504 /*HasNSW=*/Bitwidth != 2); 2505 Value *XMaskedLeadingOnePos = 2506 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2507 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2508 /*HasNSW=*/Bitwidth > 2); 2509 2510 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2511 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2512 /*HasNUW=*/true, /*HasNSW=*/true); 2513 // We know loop's backedge-taken count, but what's loop's trip count? 2514 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2515 Value *LoopTripCount = 2516 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2517 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2518 /*HasNSW=*/Bitwidth != 2); 2519 2520 // Step 2: Compute the recurrence's final value without a loop. 2521 2522 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2523 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2524 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2525 NewX->takeName(XCurr); 2526 if (auto *I = dyn_cast<Instruction>(NewX)) 2527 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2528 2529 Value *NewXNext; 2530 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2531 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2532 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2533 // that isn't the case, we'll need to emit an alternative, safe IR. 2534 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2535 PatternMatch::match( 2536 BitPos, PatternMatch::m_SpecificInt_ICMP( 2537 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2538 Ty->getScalarSizeInBits() - 1)))) 2539 NewXNext = Builder.CreateShl(X, LoopTripCount); 2540 else { 2541 // Otherwise, just additionally shift by one. It's the smallest solution, 2542 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2543 // and select 0 instead. 2544 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2545 } 2546 2547 NewXNext->takeName(XNext); 2548 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2549 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2550 2551 // Step 3: Adjust the successor basic block to recieve the computed 2552 // recurrence's final value instead of the recurrence itself. 2553 2554 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2555 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2556 2557 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2558 2559 // The new canonical induction variable. 2560 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2561 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2562 2563 // The induction itself. 2564 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2565 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2566 auto *IVNext = 2567 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2568 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2569 2570 // The loop trip count check. 2571 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2572 CurLoop->getName() + ".ivcheck"); 2573 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2574 LoopHeaderBB->getTerminator()->eraseFromParent(); 2575 2576 // Populate the IV PHI. 2577 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2578 IV->addIncoming(IVNext, LoopHeaderBB); 2579 2580 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2581 // loop. The loop would otherwise not be deleted even if it becomes empty. 2582 2583 SE->forgetLoop(CurLoop); 2584 2585 // Other passes will take care of actually deleting the loop if possible. 2586 2587 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2588 2589 ++NumShiftUntilBitTest; 2590 return MadeChange; 2591 } 2592 2593 /// Return true if the idiom is detected in the loop. 2594 /// 2595 /// The core idiom we are trying to detect is: 2596 /// \code 2597 /// entry: 2598 /// <...> 2599 /// %start = <...> 2600 /// %extraoffset = <...> 2601 /// <...> 2602 /// br label %for.cond 2603 /// 2604 /// loop: 2605 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2606 /// %nbits = add nsw i8 %iv, %extraoffset 2607 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2608 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2609 /// %iv.next = add i8 %iv, 1 2610 /// <...> 2611 /// br i1 %val.shifted.iszero, label %end, label %loop 2612 /// 2613 /// end: 2614 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2615 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2616 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2617 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2618 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2619 /// <...> 2620 /// \endcode 2621 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2622 Instruction *&ValShiftedIsZero, 2623 Intrinsic::ID &IntrinID, Instruction *&IV, 2624 Value *&Start, Value *&Val, 2625 const SCEV *&ExtraOffsetExpr, 2626 bool &InvertedCond) { 2627 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2628 " Performing shift-until-zero idiom detection.\n"); 2629 2630 // Give up if the loop has multiple blocks or multiple backedges. 2631 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2632 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2633 return false; 2634 } 2635 2636 Instruction *ValShifted, *NBits, *IVNext; 2637 Value *ExtraOffset; 2638 2639 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2640 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2641 assert(LoopPreheaderBB && "There is always a loop preheader."); 2642 2643 using namespace PatternMatch; 2644 2645 // Step 1: Check if the loop backedge, condition is in desirable form. 2646 2647 ICmpInst::Predicate Pred; 2648 BasicBlock *TrueBB, *FalseBB; 2649 if (!match(LoopHeaderBB->getTerminator(), 2650 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2651 m_BasicBlock(FalseBB))) || 2652 !match(ValShiftedIsZero, 2653 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2654 !ICmpInst::isEquality(Pred)) { 2655 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2656 return false; 2657 } 2658 2659 // Step 2: Check if the comparison's operand is in desirable form. 2660 // FIXME: Val could be a one-input PHI node, which we should look past. 2661 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2662 m_Instruction(NBits)))) { 2663 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2664 return false; 2665 } 2666 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2667 : Intrinsic::ctlz; 2668 2669 // Step 3: Check if the shift amount is in desirable form. 2670 2671 if (match(NBits, m_c_Add(m_Instruction(IV), 2672 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2673 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2674 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2675 else if (match(NBits, 2676 m_Sub(m_Instruction(IV), 2677 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2678 NBits->hasNoSignedWrap()) 2679 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2680 else { 2681 IV = NBits; 2682 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2683 } 2684 2685 // Step 4: Check if the recurrence is in desirable form. 2686 auto *IVPN = dyn_cast<PHINode>(IV); 2687 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2688 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2689 return false; 2690 } 2691 2692 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2693 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2694 2695 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2696 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2697 return false; 2698 } 2699 2700 // Step 4: Check if the backedge's destinations are in desirable form. 2701 2702 assert(ICmpInst::isEquality(Pred) && 2703 "Should only get equality predicates here."); 2704 2705 // cmp-br is commutative, so canonicalize to a single variant. 2706 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2707 if (InvertedCond) { 2708 Pred = ICmpInst::getInversePredicate(Pred); 2709 std::swap(TrueBB, FalseBB); 2710 } 2711 2712 // We expect to exit loop when comparison yields true, 2713 // so when it yields false we should branch back to loop header. 2714 if (FalseBB != LoopHeaderBB) { 2715 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2716 return false; 2717 } 2718 2719 // The new, countable, loop will certainly only run a known number of 2720 // iterations, It won't be infinite. But the old loop might be infinite 2721 // under certain conditions. For logical shifts, the value will become zero 2722 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2723 // right-shift, iff the sign bit was set, the value will never become zero, 2724 // and the loop may never finish. 2725 if (ValShifted->getOpcode() == Instruction::AShr && 2726 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2727 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2728 return false; 2729 } 2730 2731 // Okay, idiom checks out. 2732 return true; 2733 } 2734 2735 /// Look for the following loop: 2736 /// \code 2737 /// entry: 2738 /// <...> 2739 /// %start = <...> 2740 /// %extraoffset = <...> 2741 /// <...> 2742 /// br label %for.cond 2743 /// 2744 /// loop: 2745 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2746 /// %nbits = add nsw i8 %iv, %extraoffset 2747 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2748 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2749 /// %iv.next = add i8 %iv, 1 2750 /// <...> 2751 /// br i1 %val.shifted.iszero, label %end, label %loop 2752 /// 2753 /// end: 2754 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2755 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2756 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2757 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2758 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2759 /// <...> 2760 /// \endcode 2761 /// 2762 /// And transform it into: 2763 /// \code 2764 /// entry: 2765 /// <...> 2766 /// %start = <...> 2767 /// %extraoffset = <...> 2768 /// <...> 2769 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2770 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2771 /// %extraoffset.neg = sub i8 0, %extraoffset 2772 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2773 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2774 /// %loop.tripcount = sub i8 %iv.final, %start 2775 /// br label %loop 2776 /// 2777 /// loop: 2778 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2779 /// %loop.iv.next = add i8 %loop.iv, 1 2780 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2781 /// %iv = add i8 %loop.iv, %start 2782 /// <...> 2783 /// br i1 %loop.ivcheck, label %end, label %loop 2784 /// 2785 /// end: 2786 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2787 /// <...> 2788 /// \endcode 2789 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2790 bool MadeChange = false; 2791 2792 Instruction *ValShiftedIsZero; 2793 Intrinsic::ID IntrID; 2794 Instruction *IV; 2795 Value *Start, *Val; 2796 const SCEV *ExtraOffsetExpr; 2797 bool InvertedCond; 2798 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2799 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2800 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2801 " shift-until-zero idiom detection failed.\n"); 2802 return MadeChange; 2803 } 2804 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2805 2806 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2807 // but is it profitable to transform? 2808 2809 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2810 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2811 assert(LoopPreheaderBB && "There is always a loop preheader."); 2812 2813 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2814 assert(SuccessorBB && "There is only a single successor."); 2815 2816 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2817 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2818 2819 Type *Ty = Val->getType(); 2820 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2821 2822 TargetTransformInfo::TargetCostKind CostKind = 2823 TargetTransformInfo::TCK_SizeAndLatency; 2824 2825 // The rewrite is considered to be unprofitable iff and only iff the 2826 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2827 // making the loop countable, even if nothing else changes. 2828 IntrinsicCostAttributes Attrs( 2829 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); 2830 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2831 if (Cost > TargetTransformInfo::TCC_Basic) { 2832 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2833 " Intrinsic is too costly, not beneficial\n"); 2834 return MadeChange; 2835 } 2836 2837 // Ok, transform appears worthwhile. 2838 MadeChange = true; 2839 2840 bool OffsetIsZero = false; 2841 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2842 OffsetIsZero = ExtraOffsetExprC->isZero(); 2843 2844 // Step 1: Compute the loop's final IV value / trip count. 2845 2846 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2847 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, 2848 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2849 Value *ValNumActiveBits = Builder.CreateSub( 2850 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2851 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2852 /*HasNSW=*/Bitwidth != 2); 2853 2854 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2855 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2856 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2857 2858 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2859 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2860 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2861 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2862 {ValNumActiveBitsOffset, Start}, 2863 /*FMFSource=*/nullptr, "iv.final"); 2864 2865 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2866 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2867 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2868 // FIXME: or when the offset was `add nuw` 2869 2870 // We know loop's backedge-taken count, but what's loop's trip count? 2871 Value *LoopTripCount = 2872 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2873 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2874 /*HasNSW=*/Bitwidth != 2); 2875 2876 // Step 2: Adjust the successor basic block to recieve the original 2877 // induction variable's final value instead of the orig. IV itself. 2878 2879 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2880 2881 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2882 2883 // The new canonical induction variable. 2884 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2885 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2886 2887 // The induction itself. 2888 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2889 auto *CIVNext = 2890 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2891 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2892 2893 // The loop trip count check. 2894 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2895 CurLoop->getName() + ".ivcheck"); 2896 auto *NewIVCheck = CIVCheck; 2897 if (InvertedCond) { 2898 NewIVCheck = Builder.CreateNot(CIVCheck); 2899 NewIVCheck->takeName(ValShiftedIsZero); 2900 } 2901 2902 // The original IV, but rebased to be an offset to the CIV. 2903 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2904 /*HasNSW=*/true); // FIXME: what about NUW? 2905 IVDePHId->takeName(IV); 2906 2907 // The loop terminator. 2908 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2909 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2910 LoopHeaderBB->getTerminator()->eraseFromParent(); 2911 2912 // Populate the IV PHI. 2913 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2914 CIV->addIncoming(CIVNext, LoopHeaderBB); 2915 2916 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2917 // loop. The loop would otherwise not be deleted even if it becomes empty. 2918 2919 SE->forgetLoop(CurLoop); 2920 2921 // Step 5: Try to cleanup the loop's body somewhat. 2922 IV->replaceAllUsesWith(IVDePHId); 2923 IV->eraseFromParent(); 2924 2925 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2926 ValShiftedIsZero->eraseFromParent(); 2927 2928 // Other passes will take care of actually deleting the loop if possible. 2929 2930 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2931 2932 ++NumShiftUntilZero; 2933 return MadeChange; 2934 } 2935