1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Verifier.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Scalar.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/LoopUtils.h" 75 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 76 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 77 78 using namespace llvm; 79 using namespace llvm::PatternMatch; 80 81 #define DEBUG_TYPE "loop-flatten" 82 83 STATISTIC(NumFlattened, "Number of loops flattened"); 84 85 static cl::opt<unsigned> RepeatedInstructionThreshold( 86 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 87 cl::desc("Limit on the cost of instructions that can be repeated due to " 88 "loop flattening")); 89 90 static cl::opt<bool> 91 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 92 cl::init(false), 93 cl::desc("Assume that the product of the two iteration " 94 "trip counts will never overflow")); 95 96 static cl::opt<bool> 97 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 98 cl::desc("Widen the loop induction variables, if possible, so " 99 "overflow checks won't reject flattening")); 100 101 // We require all uses of both induction variables to match this pattern: 102 // 103 // (OuterPHI * InnerTripCount) + InnerPHI 104 // 105 // I.e., it needs to be a linear expression of the induction variables and the 106 // inner loop trip count. We keep track of all different expressions on which 107 // checks will be performed in this bookkeeping struct. 108 // 109 struct FlattenInfo { 110 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 111 Loop *InnerLoop = nullptr; 112 113 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 114 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 115 // expected to start at zero and 116 // increment by one on each loop. 117 118 Value *InnerTripCount = nullptr; // The product of these two tripcounts 119 Value *OuterTripCount = nullptr; // will be the new flattened loop 120 // tripcount. Also used to recognise a 121 // linear expression that will be replaced. 122 123 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 124 // of the form i*M+j that will be 125 // replaced. 126 127 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 128 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 129 BranchInst *InnerBranch = nullptr; // are safe to ignore. 130 131 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 132 // updated with new tripcount. 133 134 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 135 136 bool Widened = false; // Whether this holds the flatten info before or after 137 // widening. 138 139 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 140 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 141 // has been apllied. Used to skip 142 // checks on phi nodes. 143 144 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 145 146 bool isNarrowInductionPhi(PHINode *Phi) { 147 // This can't be the narrow phi if we haven't widened the IV first. 148 if (!Widened) 149 return false; 150 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 151 } 152 bool isInnerLoopIncrement(User *U) { 153 return InnerIncrement == U; 154 } 155 bool isOuterLoopIncrement(User *U) { 156 return OuterIncrement == U; 157 } 158 bool isInnerLoopTest(User *U) { 159 return InnerBranch->getCondition() == U; 160 } 161 162 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 163 for (User *U : OuterInductionPHI->users()) { 164 if (isOuterLoopIncrement(U)) 165 continue; 166 167 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 168 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 169 if (!ValidOuterPHIUses.count(U)) { 170 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 171 return false; 172 } 173 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 174 return true; 175 }; 176 177 if (auto *V = dyn_cast<TruncInst>(U)) { 178 for (auto *K : V->users()) { 179 if (!IsValidOuterPHIUses(K)) 180 return false; 181 } 182 continue; 183 } 184 185 if (!IsValidOuterPHIUses(U)) 186 return false; 187 } 188 return true; 189 } 190 191 bool matchLinearIVUser(User *U, Value *InnerTripCount, 192 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 193 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 194 Value *MatchedMul = nullptr; 195 Value *MatchedItCount = nullptr; 196 197 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 198 m_Value(MatchedMul))) && 199 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 200 m_Value(MatchedItCount))); 201 202 // Matches the same pattern as above, except it also looks for truncs 203 // on the phi, which can be the result of widening the induction variables. 204 bool IsAddTrunc = 205 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 206 m_Value(MatchedMul))) && 207 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 208 m_Value(MatchedItCount))); 209 210 if (!MatchedItCount) 211 return false; 212 213 // Look through extends if the IV has been widened. 214 if (Widened && 215 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 216 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 217 "Unexpected type mismatch in types after widening"); 218 MatchedItCount = isa<SExtInst>(MatchedItCount) 219 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 220 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 221 } 222 223 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 224 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 225 ValidOuterPHIUses.insert(MatchedMul); 226 LinearIVUses.insert(U); 227 return true; 228 } 229 230 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 231 return false; 232 } 233 234 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 235 Value *SExtInnerTripCount = InnerTripCount; 236 if (Widened && 237 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 238 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 239 240 for (User *U : InnerInductionPHI->users()) { 241 if (isInnerLoopIncrement(U)) 242 continue; 243 244 // After widening the IVs, a trunc instruction might have been introduced, 245 // so look through truncs. 246 if (isa<TruncInst>(U)) { 247 if (!U->hasOneUse()) 248 return false; 249 U = *U->user_begin(); 250 } 251 252 // If the use is in the compare (which is also the condition of the inner 253 // branch) then the compare has been altered by another transformation e.g 254 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 255 // a constant. Ignore this use as the compare gets removed later anyway. 256 if (isInnerLoopTest(U)) 257 continue; 258 259 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) 260 return false; 261 } 262 return true; 263 } 264 }; 265 266 static bool 267 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 268 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 269 TripCount = TC; 270 IterationInstructions.insert(Increment); 271 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 272 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 273 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 274 return true; 275 } 276 277 // Given the RHS of the loop latch compare instruction, verify with SCEV 278 // that this is indeed the loop tripcount. 279 // TODO: This used to be a straightforward check but has grown to be quite 280 // complicated now. It is therefore worth revisiting what the additional 281 // benefits are of this (compared to relying on canonical loops and pattern 282 // matching). 283 static bool verifyTripCount(Value *RHS, Loop *L, 284 SmallPtrSetImpl<Instruction *> &IterationInstructions, 285 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 286 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 287 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 288 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 289 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 290 return false; 291 } 292 293 // The Extend=false flag is used for getTripCountFromExitCount as we want 294 // to verify and match it with the pattern matched tripcount. Please note 295 // that overflow checks are performed in checkOverflow, but are first tried 296 // to avoid by widening the IV. 297 const SCEV *SCEVTripCount = 298 SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 299 300 const SCEV *SCEVRHS = SE->getSCEV(RHS); 301 if (SCEVRHS == SCEVTripCount) 302 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 303 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 304 if (ConstantRHS) { 305 const SCEV *BackedgeTCExt = nullptr; 306 if (IsWidened) { 307 const SCEV *SCEVTripCountExt; 308 // Find the extended backedge taken count and extended trip count using 309 // SCEV. One of these should now match the RHS of the compare. 310 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 311 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 312 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 313 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 314 return false; 315 } 316 } 317 // If the RHS of the compare is equal to the backedge taken count we need 318 // to add one to get the trip count. 319 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 320 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 321 Value *NewRHS = ConstantInt::get( 322 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 323 return setLoopComponents(NewRHS, TripCount, Increment, 324 IterationInstructions); 325 } 326 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 327 } 328 // If the RHS isn't a constant then check that the reason it doesn't match 329 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 330 // (and take the trip count to be the RHS). 331 if (!IsWidened) { 332 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 333 return false; 334 } 335 auto *TripCountInst = dyn_cast<Instruction>(RHS); 336 if (!TripCountInst) { 337 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 338 return false; 339 } 340 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 341 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 342 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 343 return false; 344 } 345 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 346 } 347 348 // Finds the induction variable, increment and trip count for a simple loop that 349 // we can flatten. 350 static bool findLoopComponents( 351 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 352 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 353 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 354 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 355 356 if (!L->isLoopSimplifyForm()) { 357 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 358 return false; 359 } 360 361 // Currently, to simplify the implementation, the Loop induction variable must 362 // start at zero and increment with a step size of one. 363 if (!L->isCanonical(*SE)) { 364 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 365 return false; 366 } 367 368 // There must be exactly one exiting block, and it must be the same at the 369 // latch. 370 BasicBlock *Latch = L->getLoopLatch(); 371 if (L->getExitingBlock() != Latch) { 372 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 373 return false; 374 } 375 376 // Find the induction PHI. If there is no induction PHI, we can't do the 377 // transformation. TODO: could other variables trigger this? Do we have to 378 // search for the best one? 379 InductionPHI = L->getInductionVariable(*SE); 380 if (!InductionPHI) { 381 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 382 return false; 383 } 384 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 385 386 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 387 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 388 if (ContinueOnTrue) 389 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 390 else 391 return Pred == CmpInst::ICMP_EQ; 392 }; 393 394 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 395 // back branch of the latch is conditional. 396 ICmpInst *Compare = L->getLatchCmpInst(); 397 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 398 Compare->hasNUsesOrMore(2)) { 399 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 400 return false; 401 } 402 BackBranch = cast<BranchInst>(Latch->getTerminator()); 403 IterationInstructions.insert(BackBranch); 404 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 405 IterationInstructions.insert(Compare); 406 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 407 408 // Find increment and trip count. 409 // There are exactly 2 incoming values to the induction phi; one from the 410 // pre-header and one from the latch. The incoming latch value is the 411 // increment variable. 412 Increment = 413 dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 414 if (Increment->hasNUsesOrMore(3)) { 415 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 416 return false; 417 } 418 // The trip count is the RHS of the compare. If this doesn't match the trip 419 // count computed by SCEV then this is because the trip count variable 420 // has been widened so the types don't match, or because it is a constant and 421 // another transformation has changed the compare (e.g. icmp ult %inc, 422 // tripcount -> icmp ult %j, tripcount-1), or both. 423 Value *RHS = Compare->getOperand(1); 424 425 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 426 Increment, BackBranch, SE, IsWidened); 427 } 428 429 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 430 // All PHIs in the inner and outer headers must either be: 431 // - The induction PHI, which we are going to rewrite as one induction in 432 // the new loop. This is already checked by findLoopComponents. 433 // - An outer header PHI with all incoming values from outside the loop. 434 // LoopSimplify guarantees we have a pre-header, so we don't need to 435 // worry about that here. 436 // - Pairs of PHIs in the inner and outer headers, which implement a 437 // loop-carried dependency that will still be valid in the new loop. To 438 // be valid, this variable must be modified only in the inner loop. 439 440 // The set of PHI nodes in the outer loop header that we know will still be 441 // valid after the transformation. These will not need to be modified (with 442 // the exception of the induction variable), but we do need to check that 443 // there are no unsafe PHI nodes. 444 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 445 SafeOuterPHIs.insert(FI.OuterInductionPHI); 446 447 // Check that all PHI nodes in the inner loop header match one of the valid 448 // patterns. 449 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 450 // The induction PHIs break these rules, and that's OK because we treat 451 // them specially when doing the transformation. 452 if (&InnerPHI == FI.InnerInductionPHI) 453 continue; 454 if (FI.isNarrowInductionPhi(&InnerPHI)) 455 continue; 456 457 // Each inner loop PHI node must have two incoming values/blocks - one 458 // from the pre-header, and one from the latch. 459 assert(InnerPHI.getNumIncomingValues() == 2); 460 Value *PreHeaderValue = 461 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 462 Value *LatchValue = 463 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 464 465 // The incoming value from the outer loop must be the PHI node in the 466 // outer loop header, with no modifications made in the top of the outer 467 // loop. 468 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 469 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 470 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 471 return false; 472 } 473 474 // The other incoming value must come from the inner loop, without any 475 // modifications in the tail end of the outer loop. We are in LCSSA form, 476 // so this will actually be a PHI in the inner loop's exit block, which 477 // only uses values from inside the inner loop. 478 PHINode *LCSSAPHI = dyn_cast<PHINode>( 479 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 480 if (!LCSSAPHI) { 481 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 482 return false; 483 } 484 485 // The value used by the LCSSA PHI must be the same one that the inner 486 // loop's PHI uses. 487 if (LCSSAPHI->hasConstantValue() != LatchValue) { 488 LLVM_DEBUG( 489 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 490 return false; 491 } 492 493 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 494 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 495 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 496 SafeOuterPHIs.insert(OuterPHI); 497 FI.InnerPHIsToTransform.insert(&InnerPHI); 498 } 499 500 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 501 if (FI.isNarrowInductionPhi(&OuterPHI)) 502 continue; 503 if (!SafeOuterPHIs.count(&OuterPHI)) { 504 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 505 return false; 506 } 507 } 508 509 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 510 return true; 511 } 512 513 static bool 514 checkOuterLoopInsts(FlattenInfo &FI, 515 SmallPtrSetImpl<Instruction *> &IterationInstructions, 516 const TargetTransformInfo *TTI) { 517 // Check for instructions in the outer but not inner loop. If any of these 518 // have side-effects then this transformation is not legal, and if there is 519 // a significant amount of code here which can't be optimised out that it's 520 // not profitable (as these instructions would get executed for each 521 // iteration of the inner loop). 522 InstructionCost RepeatedInstrCost = 0; 523 for (auto *B : FI.OuterLoop->getBlocks()) { 524 if (FI.InnerLoop->contains(B)) 525 continue; 526 527 for (auto &I : *B) { 528 if (!isa<PHINode>(&I) && !I.isTerminator() && 529 !isSafeToSpeculativelyExecute(&I)) { 530 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 531 "side effects: "; 532 I.dump()); 533 return false; 534 } 535 // The execution count of the outer loop's iteration instructions 536 // (increment, compare and branch) will be increased, but the 537 // equivalent instructions will be removed from the inner loop, so 538 // they make a net difference of zero. 539 if (IterationInstructions.count(&I)) 540 continue; 541 // The uncoditional branch to the inner loop's header will turn into 542 // a fall-through, so adds no cost. 543 BranchInst *Br = dyn_cast<BranchInst>(&I); 544 if (Br && Br->isUnconditional() && 545 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 546 continue; 547 // Multiplies of the outer iteration variable and inner iteration 548 // count will be optimised out. 549 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 550 m_Specific(FI.InnerTripCount)))) 551 continue; 552 InstructionCost Cost = 553 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 554 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 555 RepeatedInstrCost += Cost; 556 } 557 } 558 559 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 560 << RepeatedInstrCost << "\n"); 561 // Bail out if flattening the loops would cause instructions in the outer 562 // loop but not in the inner loop to be executed extra times. 563 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 564 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 565 return false; 566 } 567 568 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 569 return true; 570 } 571 572 573 574 // We require all uses of both induction variables to match this pattern: 575 // 576 // (OuterPHI * InnerTripCount) + InnerPHI 577 // 578 // Any uses of the induction variables not matching that pattern would 579 // require a div/mod to reconstruct in the flattened loop, so the 580 // transformation wouldn't be profitable. 581 static bool checkIVUsers(FlattenInfo &FI) { 582 // Check that all uses of the inner loop's induction variable match the 583 // expected pattern, recording the uses of the outer IV. 584 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 585 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 586 return false; 587 588 // Check that there are no uses of the outer IV other than the ones found 589 // as part of the pattern above. 590 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 591 return false; 592 593 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 594 dbgs() << "Found " << FI.LinearIVUses.size() 595 << " value(s) that can be replaced:\n"; 596 for (Value *V : FI.LinearIVUses) { 597 dbgs() << " "; 598 V->dump(); 599 }); 600 return true; 601 } 602 603 // Return an OverflowResult dependant on if overflow of the multiplication of 604 // InnerTripCount and OuterTripCount can be assumed not to happen. 605 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 606 AssumptionCache *AC) { 607 Function *F = FI.OuterLoop->getHeader()->getParent(); 608 const DataLayout &DL = F->getParent()->getDataLayout(); 609 610 // For debugging/testing. 611 if (AssumeNoOverflow) 612 return OverflowResult::NeverOverflows; 613 614 // Check if the multiply could not overflow due to known ranges of the 615 // input values. 616 OverflowResult OR = computeOverflowForUnsignedMul( 617 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 618 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 619 if (OR != OverflowResult::MayOverflow) 620 return OR; 621 622 for (Value *V : FI.LinearIVUses) { 623 for (Value *U : V->users()) { 624 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 625 for (Value *GEPUser : U->users()) { 626 auto *GEPUserInst = cast<Instruction>(GEPUser); 627 if (!isa<LoadInst>(GEPUserInst) && 628 !(isa<StoreInst>(GEPUserInst) && 629 GEP == GEPUserInst->getOperand(1))) 630 continue; 631 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 632 FI.InnerLoop)) 633 continue; 634 // The IV is used as the operand of a GEP which dominates the loop 635 // latch, and the IV is at least as wide as the address space of the 636 // GEP. In this case, the GEP would wrap around the address space 637 // before the IV increment wraps, which would be UB. 638 if (GEP->isInBounds() && 639 V->getType()->getIntegerBitWidth() >= 640 DL.getPointerTypeSizeInBits(GEP->getType())) { 641 LLVM_DEBUG( 642 dbgs() << "use of linear IV would be UB if overflow occurred: "; 643 GEP->dump()); 644 return OverflowResult::NeverOverflows; 645 } 646 } 647 } 648 } 649 } 650 651 return OverflowResult::MayOverflow; 652 } 653 654 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 655 ScalarEvolution *SE, AssumptionCache *AC, 656 const TargetTransformInfo *TTI) { 657 SmallPtrSet<Instruction *, 8> IterationInstructions; 658 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 659 FI.InnerInductionPHI, FI.InnerTripCount, 660 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 661 return false; 662 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 663 FI.OuterInductionPHI, FI.OuterTripCount, 664 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 665 return false; 666 667 // Both of the loop trip count values must be invariant in the outer loop 668 // (non-instructions are all inherently invariant). 669 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 670 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 671 return false; 672 } 673 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 674 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 675 return false; 676 } 677 678 if (!checkPHIs(FI, TTI)) 679 return false; 680 681 // FIXME: it should be possible to handle different types correctly. 682 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 683 return false; 684 685 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 686 return false; 687 688 // Find the values in the loop that can be replaced with the linearized 689 // induction variable, and check that there are no other uses of the inner 690 // or outer induction variable. If there were, we could still do this 691 // transformation, but we'd have to insert a div/mod to calculate the 692 // original IVs, so it wouldn't be profitable. 693 if (!checkIVUsers(FI)) 694 return false; 695 696 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 697 return true; 698 } 699 700 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 701 ScalarEvolution *SE, AssumptionCache *AC, 702 const TargetTransformInfo *TTI, LPMUpdater *U, 703 MemorySSAUpdater *MSSAU) { 704 Function *F = FI.OuterLoop->getHeader()->getParent(); 705 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 706 { 707 using namespace ore; 708 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 709 FI.InnerLoop->getHeader()); 710 OptimizationRemarkEmitter ORE(F); 711 Remark << "Flattened into outer loop"; 712 ORE.emit(Remark); 713 } 714 715 Value *NewTripCount = BinaryOperator::CreateMul( 716 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 717 FI.OuterLoop->getLoopPreheader()->getTerminator()); 718 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 719 NewTripCount->dump()); 720 721 // Fix up PHI nodes that take values from the inner loop back-edge, which 722 // we are about to remove. 723 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 724 725 // The old Phi will be optimised away later, but for now we can't leave 726 // leave it in an invalid state, so are updating them too. 727 for (PHINode *PHI : FI.InnerPHIsToTransform) 728 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 729 730 // Modify the trip count of the outer loop to be the product of the two 731 // trip counts. 732 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 733 734 // Replace the inner loop backedge with an unconditional branch to the exit. 735 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 736 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 737 InnerExitingBlock->getTerminator()->eraseFromParent(); 738 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 739 740 // Update the DomTree and MemorySSA. 741 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 742 if (MSSAU) 743 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 744 745 // Replace all uses of the polynomial calculated from the two induction 746 // variables with the one new one. 747 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 748 for (Value *V : FI.LinearIVUses) { 749 Value *OuterValue = FI.OuterInductionPHI; 750 if (FI.Widened) 751 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 752 "flatten.trunciv"); 753 754 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 755 OuterValue->dump()); 756 V->replaceAllUsesWith(OuterValue); 757 } 758 759 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 760 // deleted, and any information that have about the outer loop invalidated. 761 SE->forgetLoop(FI.OuterLoop); 762 SE->forgetLoop(FI.InnerLoop); 763 if (U) 764 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 765 LI->erase(FI.InnerLoop); 766 767 // Increment statistic value. 768 NumFlattened++; 769 770 return true; 771 } 772 773 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 774 ScalarEvolution *SE, AssumptionCache *AC, 775 const TargetTransformInfo *TTI) { 776 if (!WidenIV) { 777 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 778 return false; 779 } 780 781 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 782 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 783 auto &DL = M->getDataLayout(); 784 auto *InnerType = FI.InnerInductionPHI->getType(); 785 auto *OuterType = FI.OuterInductionPHI->getType(); 786 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 787 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 788 789 // If both induction types are less than the maximum legal integer width, 790 // promote both to the widest type available so we know calculating 791 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 792 if (InnerType != OuterType || 793 InnerType->getScalarSizeInBits() >= MaxLegalSize || 794 MaxLegalType->getScalarSizeInBits() < 795 InnerType->getScalarSizeInBits() * 2) { 796 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 797 return false; 798 } 799 800 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 801 SmallVector<WeakTrackingVH, 4> DeadInsts; 802 unsigned ElimExt = 0; 803 unsigned Widened = 0; 804 805 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 806 PHINode *WidePhi = 807 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 808 true /* HasGuards */, true /* UsePostIncrementRanges */); 809 if (!WidePhi) 810 return false; 811 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 812 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 813 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 814 return true; 815 }; 816 817 bool Deleted; 818 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 819 return false; 820 // Add the narrow phi to list, so that it will be adjusted later when the 821 // the transformation is performed. 822 if (!Deleted) 823 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 824 825 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 826 return false; 827 828 assert(Widened && "Widened IV expected"); 829 FI.Widened = true; 830 831 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 832 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 833 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 834 835 // After widening, rediscover all the loop components. 836 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 837 } 838 839 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 840 ScalarEvolution *SE, AssumptionCache *AC, 841 const TargetTransformInfo *TTI, LPMUpdater *U, 842 MemorySSAUpdater *MSSAU) { 843 LLVM_DEBUG( 844 dbgs() << "Loop flattening running on outer loop " 845 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 846 << FI.InnerLoop->getHeader()->getName() << " in " 847 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 848 849 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 850 return false; 851 852 // Check if we can widen the induction variables to avoid overflow checks. 853 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 854 855 // It can happen that after widening of the IV, flattening may not be 856 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 857 // that is the case. 858 // TODO: IV widening without performing the actual flattening transformation 859 // is not ideal. While this codegen change should not matter much, it is an 860 // unnecessary change which is better to avoid. It's unlikely this happens 861 // often, because if it's unprofitibale after widening, it should be 862 // unprofitabe before widening as checked in the first round of checks. But 863 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 864 // relaxed. Because this is making a code change (the IV widening, but not 865 // the flattening), we return true here. 866 if (FI.Widened && !CanFlatten) 867 return true; 868 869 // If we have widened and can perform the transformation, do that here. 870 if (CanFlatten) 871 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 872 873 // Otherwise, if we haven't widened the IV, check if the new iteration 874 // variable might overflow. In this case, we need to version the loop, and 875 // select the original version at runtime if the iteration space is too 876 // large. 877 // TODO: We currently don't version the loop. 878 OverflowResult OR = checkOverflow(FI, DT, AC); 879 if (OR == OverflowResult::AlwaysOverflowsHigh || 880 OR == OverflowResult::AlwaysOverflowsLow) { 881 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 882 return false; 883 } else if (OR == OverflowResult::MayOverflow) { 884 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 885 return false; 886 } 887 888 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 889 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 890 } 891 892 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 893 AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 894 MemorySSAUpdater *MSSAU) { 895 bool Changed = false; 896 for (Loop *InnerLoop : LN.getLoops()) { 897 auto *OuterLoop = InnerLoop->getParentLoop(); 898 if (!OuterLoop) 899 continue; 900 FlattenInfo FI(OuterLoop, InnerLoop); 901 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 902 } 903 return Changed; 904 } 905 906 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 907 LoopStandardAnalysisResults &AR, 908 LPMUpdater &U) { 909 910 bool Changed = false; 911 912 Optional<MemorySSAUpdater> MSSAU; 913 if (AR.MSSA) { 914 MSSAU = MemorySSAUpdater(AR.MSSA); 915 if (VerifyMemorySSA) 916 AR.MSSA->verifyMemorySSA(); 917 } 918 919 // The loop flattening pass requires loops to be 920 // in simplified form, and also needs LCSSA. Running 921 // this pass will simplify all loops that contain inner loops, 922 // regardless of whether anything ends up being flattened. 923 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 924 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 925 926 if (!Changed) 927 return PreservedAnalyses::all(); 928 929 if (AR.MSSA && VerifyMemorySSA) 930 AR.MSSA->verifyMemorySSA(); 931 932 auto PA = getLoopPassPreservedAnalyses(); 933 if (AR.MSSA) 934 PA.preserve<MemorySSAAnalysis>(); 935 return PA; 936 } 937 938 namespace { 939 class LoopFlattenLegacyPass : public FunctionPass { 940 public: 941 static char ID; // Pass ID, replacement for typeid 942 LoopFlattenLegacyPass() : FunctionPass(ID) { 943 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 944 } 945 946 // Possibly flatten loop L into its child. 947 bool runOnFunction(Function &F) override; 948 949 void getAnalysisUsage(AnalysisUsage &AU) const override { 950 getLoopAnalysisUsage(AU); 951 AU.addRequired<TargetTransformInfoWrapperPass>(); 952 AU.addPreserved<TargetTransformInfoWrapperPass>(); 953 AU.addRequired<AssumptionCacheTracker>(); 954 AU.addPreserved<AssumptionCacheTracker>(); 955 AU.addPreserved<MemorySSAWrapperPass>(); 956 } 957 }; 958 } // namespace 959 960 char LoopFlattenLegacyPass::ID = 0; 961 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 962 false, false) 963 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 964 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 965 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 966 false, false) 967 968 FunctionPass *llvm::createLoopFlattenPass() { 969 return new LoopFlattenLegacyPass(); 970 } 971 972 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 973 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 974 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 975 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 976 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 977 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 978 auto *TTI = &TTIP.getTTI(F); 979 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 980 auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 981 982 Optional<MemorySSAUpdater> MSSAU; 983 if (MSSA) 984 MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 985 986 bool Changed = false; 987 for (Loop *L : *LI) { 988 auto LN = LoopNest::getLoopNest(*L, *SE); 989 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, 990 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 991 } 992 return Changed; 993 } 994