1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Dead Loop Deletion Pass. This pass is responsible 10 // for eliminating loops with non-infinite computable trip counts that have no 11 // side effects or volatile instructions, and do not contribute to the 12 // computation of the function's return value. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopDeletion.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/MemorySSA.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/IR/Dominators.h" 27 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Transforms/Scalar/LoopPassManager.h" 32 #include "llvm/Transforms/Utils/LoopUtils.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "loop-delete" 37 38 STATISTIC(NumDeleted, "Number of loops deleted"); 39 40 static cl::opt<bool> EnableSymbolicExecution( 41 "loop-deletion-enable-symbolic-execution", cl::Hidden, cl::init(true), 42 cl::desc("Break backedge through symbolic execution of 1st iteration " 43 "attempting to prove that the backedge is never taken")); 44 45 enum class LoopDeletionResult { 46 Unmodified, 47 Modified, 48 Deleted, 49 }; 50 51 static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B) { 52 if (A == LoopDeletionResult::Deleted || B == LoopDeletionResult::Deleted) 53 return LoopDeletionResult::Deleted; 54 if (A == LoopDeletionResult::Modified || B == LoopDeletionResult::Modified) 55 return LoopDeletionResult::Modified; 56 return LoopDeletionResult::Unmodified; 57 } 58 59 /// Determines if a loop is dead. 60 /// 61 /// This assumes that we've already checked for unique exit and exiting blocks, 62 /// and that the code is in LCSSA form. 63 static bool isLoopDead(Loop *L, ScalarEvolution &SE, 64 SmallVectorImpl<BasicBlock *> &ExitingBlocks, 65 BasicBlock *ExitBlock, bool &Changed, 66 BasicBlock *Preheader, LoopInfo &LI) { 67 // Make sure that all PHI entries coming from the loop are loop invariant. 68 // Because the code is in LCSSA form, any values used outside of the loop 69 // must pass through a PHI in the exit block, meaning that this check is 70 // sufficient to guarantee that no loop-variant values are used outside 71 // of the loop. 72 bool AllEntriesInvariant = true; 73 bool AllOutgoingValuesSame = true; 74 if (!L->hasNoExitBlocks()) { 75 for (PHINode &P : ExitBlock->phis()) { 76 Value *incoming = P.getIncomingValueForBlock(ExitingBlocks[0]); 77 78 // Make sure all exiting blocks produce the same incoming value for the 79 // block. If there are different incoming values for different exiting 80 // blocks, then it is impossible to statically determine which value 81 // should be used. 82 AllOutgoingValuesSame = 83 all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) { 84 return incoming == P.getIncomingValueForBlock(BB); 85 }); 86 87 if (!AllOutgoingValuesSame) 88 break; 89 90 if (Instruction *I = dyn_cast<Instruction>(incoming)) 91 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) { 92 AllEntriesInvariant = false; 93 break; 94 } 95 } 96 } 97 98 if (Changed) 99 SE.forgetLoopDispositions(L); 100 101 if (!AllEntriesInvariant || !AllOutgoingValuesSame) 102 return false; 103 104 // Make sure that no instructions in the block have potential side-effects. 105 // This includes instructions that could write to memory, and loads that are 106 // marked volatile. 107 for (auto &I : L->blocks()) 108 if (any_of(*I, [](Instruction &I) { 109 return I.mayHaveSideEffects() && !I.isDroppable(); 110 })) 111 return false; 112 113 // The loop or any of its sub-loops looping infinitely is legal. The loop can 114 // only be considered dead if either 115 // a. the function is mustprogress. 116 // b. all (sub-)loops are mustprogress or have a known trip-count. 117 if (L->getHeader()->getParent()->mustProgress()) 118 return true; 119 120 LoopBlocksRPO RPOT(L); 121 RPOT.perform(&LI); 122 // If the loop contains an irreducible cycle, it may loop infinitely. 123 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 124 return false; 125 126 SmallVector<Loop *, 8> WorkList; 127 WorkList.push_back(L); 128 while (!WorkList.empty()) { 129 Loop *Current = WorkList.pop_back_val(); 130 if (hasMustProgress(Current)) 131 continue; 132 133 const SCEV *S = SE.getConstantMaxBackedgeTakenCount(Current); 134 if (isa<SCEVCouldNotCompute>(S)) { 135 LLVM_DEBUG( 136 dbgs() << "Could not compute SCEV MaxBackedgeTakenCount and was " 137 "not required to make progress.\n"); 138 return false; 139 } 140 WorkList.append(Current->begin(), Current->end()); 141 } 142 return true; 143 } 144 145 /// This function returns true if there is no viable path from the 146 /// entry block to the header of \p L. Right now, it only does 147 /// a local search to save compile time. 148 static bool isLoopNeverExecuted(Loop *L) { 149 using namespace PatternMatch; 150 151 auto *Preheader = L->getLoopPreheader(); 152 // TODO: We can relax this constraint, since we just need a loop 153 // predecessor. 154 assert(Preheader && "Needs preheader!"); 155 156 if (Preheader->isEntryBlock()) 157 return false; 158 // All predecessors of the preheader should have a constant conditional 159 // branch, with the loop's preheader as not-taken. 160 for (auto *Pred: predecessors(Preheader)) { 161 BasicBlock *Taken, *NotTaken; 162 ConstantInt *Cond; 163 if (!match(Pred->getTerminator(), 164 m_Br(m_ConstantInt(Cond), Taken, NotTaken))) 165 return false; 166 if (!Cond->getZExtValue()) 167 std::swap(Taken, NotTaken); 168 if (Taken == Preheader) 169 return false; 170 } 171 assert(!pred_empty(Preheader) && 172 "Preheader should have predecessors at this point!"); 173 // All the predecessors have the loop preheader as not-taken target. 174 return true; 175 } 176 177 static Value * 178 getValueOnFirstIteration(Value *V, DenseMap<Value *, Value *> &FirstIterValue, 179 const SimplifyQuery &SQ) { 180 // Quick hack: do not flood cache with non-instruction values. 181 if (!isa<Instruction>(V)) 182 return V; 183 // Do we already know cached result? 184 auto Existing = FirstIterValue.find(V); 185 if (Existing != FirstIterValue.end()) 186 return Existing->second; 187 Value *FirstIterV = nullptr; 188 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 189 Value *LHS = 190 getValueOnFirstIteration(BO->getOperand(0), FirstIterValue, SQ); 191 Value *RHS = 192 getValueOnFirstIteration(BO->getOperand(1), FirstIterValue, SQ); 193 FirstIterV = SimplifyBinOp(BO->getOpcode(), LHS, RHS, SQ); 194 } 195 if (!FirstIterV) 196 FirstIterV = V; 197 FirstIterValue[V] = FirstIterV; 198 return FirstIterV; 199 } 200 201 // Try to prove that one of conditions that dominates the latch must exit on 1st 202 // iteration. 203 static bool canProveExitOnFirstIteration(Loop *L, DominatorTree &DT, 204 LoopInfo &LI) { 205 // Disabled by option. 206 if (!EnableSymbolicExecution) 207 return false; 208 209 BasicBlock *Predecessor = L->getLoopPredecessor(); 210 BasicBlock *Latch = L->getLoopLatch(); 211 212 if (!Predecessor || !Latch) 213 return false; 214 215 LoopBlocksRPO RPOT(L); 216 RPOT.perform(&LI); 217 218 // For the optimization to be correct, we need RPOT to have a property that 219 // each block is processed after all its predecessors, which may only be 220 // violated for headers of the current loop and all nested loops. Irreducible 221 // CFG provides multiple ways to break this assumption, so we do not want to 222 // deal with it. 223 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 224 return false; 225 226 BasicBlock *Header = L->getHeader(); 227 // Blocks that are reachable on the 1st iteration. 228 SmallPtrSet<BasicBlock *, 4> LiveBlocks; 229 // Edges that are reachable on the 1st iteration. 230 DenseSet<BasicBlockEdge> LiveEdges; 231 LiveBlocks.insert(Header); 232 233 SmallPtrSet<BasicBlock *, 4> Visited; 234 auto MarkLiveEdge = [&](BasicBlock *From, BasicBlock *To) { 235 assert(LiveBlocks.count(From) && "Must be live!"); 236 assert((LI.isLoopHeader(To) || !Visited.count(To)) && 237 "Only canonical backedges are allowed. Irreducible CFG?"); 238 assert((LiveBlocks.count(To) || !Visited.count(To)) && 239 "We already discarded this block as dead!"); 240 LiveBlocks.insert(To); 241 LiveEdges.insert({ From, To }); 242 }; 243 244 auto MarkAllSuccessorsLive = [&](BasicBlock *BB) { 245 for (auto *Succ : successors(BB)) 246 MarkLiveEdge(BB, Succ); 247 }; 248 249 // Check if there is only one value coming from all live predecessor blocks. 250 // Note that because we iterate in RPOT, we have already visited all its 251 // (non-latch) predecessors. 252 auto GetSoleInputOnFirstIteration = [&](PHINode & PN)->Value * { 253 BasicBlock *BB = PN.getParent(); 254 bool HasLivePreds = false; 255 (void)HasLivePreds; 256 if (BB == Header) 257 return PN.getIncomingValueForBlock(Predecessor); 258 Value *OnlyInput = nullptr; 259 for (auto *Pred : predecessors(BB)) 260 if (LiveEdges.count({ Pred, BB })) { 261 HasLivePreds = true; 262 Value *Incoming = PN.getIncomingValueForBlock(Pred); 263 // Skip undefs. If they are present, we can assume they are equal to 264 // the non-undef input. 265 if (isa<UndefValue>(Incoming)) 266 continue; 267 // Two inputs. 268 if (OnlyInput && OnlyInput != Incoming) 269 return nullptr; 270 OnlyInput = Incoming; 271 } 272 273 assert(HasLivePreds && "No live predecessors?"); 274 // If all incoming live value were undefs, return undef. 275 return OnlyInput ? OnlyInput : UndefValue::get(PN.getType()); 276 }; 277 DenseMap<Value *, Value *> FirstIterValue; 278 279 // Use the following algorithm to prove we never take the latch on the 1st 280 // iteration: 281 // 1. Traverse in topological order, so that whenever we visit a block, all 282 // its predecessors are already visited. 283 // 2. If we can prove that the block may have only 1 predecessor on the 1st 284 // iteration, map all its phis onto input from this predecessor. 285 // 3a. If we can prove which successor of out block is taken on the 1st 286 // iteration, mark this successor live. 287 // 3b. If we cannot prove it, conservatively assume that all successors are 288 // live. 289 auto &DL = Header->getModule()->getDataLayout(); 290 const SimplifyQuery SQ(DL); 291 for (auto *BB : RPOT) { 292 Visited.insert(BB); 293 294 // This block is not reachable on the 1st iterations. 295 if (!LiveBlocks.count(BB)) 296 continue; 297 298 // Skip inner loops. 299 if (LI.getLoopFor(BB) != L) { 300 MarkAllSuccessorsLive(BB); 301 continue; 302 } 303 304 // If Phi has only one input from all live input blocks, use it. 305 for (auto &PN : BB->phis()) { 306 if (!PN.getType()->isIntegerTy()) 307 continue; 308 auto *Incoming = GetSoleInputOnFirstIteration(PN); 309 if (Incoming && DT.dominates(Incoming, BB->getTerminator())) { 310 Value *FirstIterV = 311 getValueOnFirstIteration(Incoming, FirstIterValue, SQ); 312 FirstIterValue[&PN] = FirstIterV; 313 } 314 } 315 316 using namespace PatternMatch; 317 ICmpInst::Predicate Pred; 318 Value *LHS, *RHS; 319 BasicBlock *IfTrue, *IfFalse; 320 auto *Term = BB->getTerminator(); 321 if (match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 322 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) { 323 if (!LHS->getType()->isIntegerTy()) { 324 MarkAllSuccessorsLive(BB); 325 continue; 326 } 327 328 // Can we prove constant true or false for this condition? 329 LHS = getValueOnFirstIteration(LHS, FirstIterValue, SQ); 330 RHS = getValueOnFirstIteration(RHS, FirstIterValue, SQ); 331 auto *KnownCondition = SimplifyICmpInst(Pred, LHS, RHS, SQ); 332 if (!KnownCondition) { 333 // Failed to simplify. 334 MarkAllSuccessorsLive(BB); 335 continue; 336 } 337 if (isa<UndefValue>(KnownCondition)) { 338 // TODO: According to langref, branching by undef is undefined behavior. 339 // It means that, theoretically, we should be able to just continue 340 // without marking any successors as live. However, we are not certain 341 // how correct our compiler is at handling such cases. So we are being 342 // very conservative here. 343 // 344 // If there is a non-loop successor, always assume this branch leaves the 345 // loop. Otherwise, arbitrarily take IfTrue. 346 // 347 // Once we are certain that branching by undef is handled correctly by 348 // other transforms, we should not mark any successors live here. 349 if (L->contains(IfTrue) && L->contains(IfFalse)) 350 MarkLiveEdge(BB, IfTrue); 351 continue; 352 } 353 auto *ConstCondition = dyn_cast<ConstantInt>(KnownCondition); 354 if (!ConstCondition) { 355 // Non-constant condition, cannot analyze any further. 356 MarkAllSuccessorsLive(BB); 357 continue; 358 } 359 if (ConstCondition->isAllOnesValue()) 360 MarkLiveEdge(BB, IfTrue); 361 else 362 MarkLiveEdge(BB, IfFalse); 363 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 364 auto *SwitchValue = SI->getCondition(); 365 auto *SwitchValueOnFirstIter = 366 getValueOnFirstIteration(SwitchValue, FirstIterValue, SQ); 367 auto *ConstSwitchValue = dyn_cast<ConstantInt>(SwitchValueOnFirstIter); 368 if (!ConstSwitchValue) { 369 MarkAllSuccessorsLive(BB); 370 continue; 371 } 372 auto CaseIterator = SI->findCaseValue(ConstSwitchValue); 373 MarkLiveEdge(BB, CaseIterator->getCaseSuccessor()); 374 } else { 375 MarkAllSuccessorsLive(BB); 376 continue; 377 } 378 } 379 380 // We can break the latch if it wasn't live. 381 return !LiveEdges.count({ Latch, Header }); 382 } 383 384 /// If we can prove the backedge is untaken, remove it. This destroys the 385 /// loop, but leaves the (now trivially loop invariant) control flow and 386 /// side effects (if any) in place. 387 static LoopDeletionResult 388 breakBackedgeIfNotTaken(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 389 LoopInfo &LI, MemorySSA *MSSA, 390 OptimizationRemarkEmitter &ORE) { 391 assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); 392 393 if (!L->getLoopLatch()) 394 return LoopDeletionResult::Unmodified; 395 396 auto *BTC = SE.getBackedgeTakenCount(L); 397 if (!isa<SCEVCouldNotCompute>(BTC) && SE.isKnownNonZero(BTC)) 398 return LoopDeletionResult::Unmodified; 399 if (!BTC->isZero() && !canProveExitOnFirstIteration(L, DT, LI)) 400 return LoopDeletionResult::Unmodified; 401 402 breakLoopBackedge(L, DT, SE, LI, MSSA); 403 return LoopDeletionResult::Deleted; 404 } 405 406 /// Remove a loop if it is dead. 407 /// 408 /// A loop is considered dead either if it does not impact the observable 409 /// behavior of the program other than finite running time, or if it is 410 /// required to make progress by an attribute such as 'mustprogress' or 411 /// 'llvm.loop.mustprogress' and does not make any. This may remove 412 /// infinite loops that have been required to make progress. 413 /// 414 /// This entire process relies pretty heavily on LoopSimplify form and LCSSA in 415 /// order to make various safety checks work. 416 /// 417 /// \returns true if any changes were made. This may mutate the loop even if it 418 /// is unable to delete it due to hoisting trivially loop invariant 419 /// instructions out of the loop. 420 static LoopDeletionResult deleteLoopIfDead(Loop *L, DominatorTree &DT, 421 ScalarEvolution &SE, LoopInfo &LI, 422 MemorySSA *MSSA, 423 OptimizationRemarkEmitter &ORE) { 424 assert(L->isLCSSAForm(DT) && "Expected LCSSA!"); 425 426 // We can only remove the loop if there is a preheader that we can branch from 427 // after removing it. Also, if LoopSimplify form is not available, stay out 428 // of trouble. 429 BasicBlock *Preheader = L->getLoopPreheader(); 430 if (!Preheader || !L->hasDedicatedExits()) { 431 LLVM_DEBUG( 432 dbgs() 433 << "Deletion requires Loop with preheader and dedicated exits.\n"); 434 return LoopDeletionResult::Unmodified; 435 } 436 437 BasicBlock *ExitBlock = L->getUniqueExitBlock(); 438 439 if (ExitBlock && isLoopNeverExecuted(L)) { 440 LLVM_DEBUG(dbgs() << "Loop is proven to never execute, delete it!"); 441 // We need to forget the loop before setting the incoming values of the exit 442 // phis to undef, so we properly invalidate the SCEV expressions for those 443 // phis. 444 SE.forgetLoop(L); 445 // Set incoming value to undef for phi nodes in the exit block. 446 for (PHINode &P : ExitBlock->phis()) { 447 std::fill(P.incoming_values().begin(), P.incoming_values().end(), 448 UndefValue::get(P.getType())); 449 } 450 ORE.emit([&]() { 451 return OptimizationRemark(DEBUG_TYPE, "NeverExecutes", L->getStartLoc(), 452 L->getHeader()) 453 << "Loop deleted because it never executes"; 454 }); 455 deleteDeadLoop(L, &DT, &SE, &LI, MSSA); 456 ++NumDeleted; 457 return LoopDeletionResult::Deleted; 458 } 459 460 // The remaining checks below are for a loop being dead because all statements 461 // in the loop are invariant. 462 SmallVector<BasicBlock *, 4> ExitingBlocks; 463 L->getExitingBlocks(ExitingBlocks); 464 465 // We require that the loop has at most one exit block. Otherwise, we'd be in 466 // the situation of needing to be able to solve statically which exit block 467 // will be branched to, or trying to preserve the branching logic in a loop 468 // invariant manner. 469 if (!ExitBlock && !L->hasNoExitBlocks()) { 470 LLVM_DEBUG(dbgs() << "Deletion requires at most one exit block.\n"); 471 return LoopDeletionResult::Unmodified; 472 } 473 // Finally, we have to check that the loop really is dead. 474 bool Changed = false; 475 if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader, LI)) { 476 LLVM_DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n"); 477 return Changed ? LoopDeletionResult::Modified 478 : LoopDeletionResult::Unmodified; 479 } 480 481 LLVM_DEBUG(dbgs() << "Loop is invariant, delete it!"); 482 ORE.emit([&]() { 483 return OptimizationRemark(DEBUG_TYPE, "Invariant", L->getStartLoc(), 484 L->getHeader()) 485 << "Loop deleted because it is invariant"; 486 }); 487 deleteDeadLoop(L, &DT, &SE, &LI, MSSA); 488 ++NumDeleted; 489 490 return LoopDeletionResult::Deleted; 491 } 492 493 PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM, 494 LoopStandardAnalysisResults &AR, 495 LPMUpdater &Updater) { 496 497 LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); 498 LLVM_DEBUG(L.dump()); 499 std::string LoopName = std::string(L.getName()); 500 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 501 // pass. Function analyses need to be preserved across loop transformations 502 // but ORE cannot be preserved (see comment before the pass definition). 503 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 504 auto Result = deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, AR.MSSA, ORE); 505 506 // If we can prove the backedge isn't taken, just break it and be done. This 507 // leaves the loop structure in place which means it can handle dispatching 508 // to the right exit based on whatever loop invariant structure remains. 509 if (Result != LoopDeletionResult::Deleted) 510 Result = merge(Result, breakBackedgeIfNotTaken(&L, AR.DT, AR.SE, AR.LI, 511 AR.MSSA, ORE)); 512 513 if (Result == LoopDeletionResult::Unmodified) 514 return PreservedAnalyses::all(); 515 516 if (Result == LoopDeletionResult::Deleted) 517 Updater.markLoopAsDeleted(L, LoopName); 518 519 auto PA = getLoopPassPreservedAnalyses(); 520 if (AR.MSSA) 521 PA.preserve<MemorySSAAnalysis>(); 522 return PA; 523 } 524 525 namespace { 526 class LoopDeletionLegacyPass : public LoopPass { 527 public: 528 static char ID; // Pass ID, replacement for typeid 529 LoopDeletionLegacyPass() : LoopPass(ID) { 530 initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry()); 531 } 532 533 // Possibly eliminate loop L if it is dead. 534 bool runOnLoop(Loop *L, LPPassManager &) override; 535 536 void getAnalysisUsage(AnalysisUsage &AU) const override { 537 AU.addPreserved<MemorySSAWrapperPass>(); 538 getLoopAnalysisUsage(AU); 539 } 540 }; 541 } 542 543 char LoopDeletionLegacyPass::ID = 0; 544 INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion", 545 "Delete dead loops", false, false) 546 INITIALIZE_PASS_DEPENDENCY(LoopPass) 547 INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion", 548 "Delete dead loops", false, false) 549 550 Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); } 551 552 bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 553 if (skipLoop(L)) 554 return false; 555 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 556 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 557 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 558 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 559 MemorySSA *MSSA = nullptr; 560 if (MSSAAnalysis) 561 MSSA = &MSSAAnalysis->getMSSA(); 562 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 563 // pass. Function analyses need to be preserved across loop transformations 564 // but ORE cannot be preserved (see comment before the pass definition). 565 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 566 567 LLVM_DEBUG(dbgs() << "Analyzing Loop for deletion: "); 568 LLVM_DEBUG(L->dump()); 569 570 LoopDeletionResult Result = deleteLoopIfDead(L, DT, SE, LI, MSSA, ORE); 571 572 // If we can prove the backedge isn't taken, just break it and be done. This 573 // leaves the loop structure in place which means it can handle dispatching 574 // to the right exit based on whatever loop invariant structure remains. 575 if (Result != LoopDeletionResult::Deleted) 576 Result = merge(Result, breakBackedgeIfNotTaken(L, DT, SE, LI, MSSA, ORE)); 577 578 if (Result == LoopDeletionResult::Deleted) 579 LPM.markLoopAsDeleted(*L); 580 581 return Result != LoopDeletionResult::Unmodified; 582 } 583