xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135 
136 #define DEBUG_TYPE "infer-address-spaces"
137 
138 using namespace llvm;
139 
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142     cl::desc("The default address space is assumed as the flat address space. "
143              "This is mainly for test purpose."));
144 
145 static const unsigned UninitializedAddressSpace =
146     std::numeric_limits<unsigned>::max();
147 
148 namespace {
149 
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160 
161 class InferAddressSpaces : public FunctionPass {
162   unsigned FlatAddrSpace = 0;
163 
164 public:
165   static char ID;
166 
167   InferAddressSpaces()
168       : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170   }
171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173   }
174 
175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.setPreservesCFG();
177     AU.addPreserved<DominatorTreeWrapperPass>();
178     AU.addRequired<AssumptionCacheTracker>();
179     AU.addRequired<TargetTransformInfoWrapperPass>();
180   }
181 
182   bool runOnFunction(Function &F) override;
183 };
184 
185 class InferAddressSpacesImpl {
186   AssumptionCache &AC;
187   const DominatorTree *DT = nullptr;
188   const TargetTransformInfo *TTI = nullptr;
189   const DataLayout *DL = nullptr;
190 
191   /// Target specific address space which uses of should be replaced if
192   /// possible.
193   unsigned FlatAddrSpace = 0;
194 
195   // Try to update the address space of V. If V is updated, returns true and
196   // false otherwise.
197   bool updateAddressSpace(const Value &V,
198                           ValueToAddrSpaceMapTy &InferredAddrSpace,
199                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
200 
201   // Tries to infer the specific address space of each address expression in
202   // Postorder.
203   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204                           ValueToAddrSpaceMapTy &InferredAddrSpace,
205                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
206 
207   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208 
209   Value *cloneInstructionWithNewAddressSpace(
210       Instruction *I, unsigned NewAddrSpace,
211       const ValueToValueMapTy &ValueWithNewAddrSpace,
212       const PredicatedAddrSpaceMapTy &PredicatedAS,
213       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214 
215   // Changes the flat address expressions in function F to point to specific
216   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
217   // all flat expressions in the use-def graph of function F.
218   bool
219   rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
220                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
221                               const PredicatedAddrSpaceMapTy &PredicatedAS,
222                               Function *F) const;
223 
224   void appendsFlatAddressExpressionToPostorderStack(
225       Value *V, PostorderStackTy &PostorderStack,
226       DenseSet<Value *> &Visited) const;
227 
228   bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
229                                 Value *NewV) const;
230   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
231                                           PostorderStackTy &PostorderStack,
232                                           DenseSet<Value *> &Visited) const;
233 
234   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
235 
236   Value *cloneValueWithNewAddressSpace(
237       Value *V, unsigned NewAddrSpace,
238       const ValueToValueMapTy &ValueWithNewAddrSpace,
239       const PredicatedAddrSpaceMapTy &PredicatedAS,
240       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
241   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
242 
243   unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
244 
245 public:
246   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
247                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
248       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
249   bool run(Function &F);
250 };
251 
252 } // end anonymous namespace
253 
254 char InferAddressSpaces::ID = 0;
255 
256 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257                       false, false)
258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
260 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261                     false, false)
262 
263 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
264   assert(Ty->isPtrOrPtrVectorTy());
265   PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
266   return Ty->getWithNewType(NPT);
267 }
268 
269 // Check whether that's no-op pointer bicast using a pair of
270 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
271 // different address spaces.
272 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
273                                  const TargetTransformInfo *TTI) {
274   assert(I2P->getOpcode() == Instruction::IntToPtr);
275   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
276   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
277     return false;
278   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
279   // no-op cast. Besides checking both of them are no-op casts, as the
280   // reinterpreted pointer may be used in other pointer arithmetic, we also
281   // need to double-check that through the target-specific hook. That ensures
282   // the underlying target also agrees that's a no-op address space cast and
283   // pointer bits are preserved.
284   // The current IR spec doesn't have clear rules on address space casts,
285   // especially a clear definition for pointer bits in non-default address
286   // spaces. It would be undefined if that pointer is dereferenced after an
287   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
288   // bits in non-default address spaces in the current spec, the pointer
289   // arithmetic may also be undefined after invalid pointer reinterpret cast.
290   // However, as we confirm through the target hooks that it's a no-op
291   // addrspacecast, it doesn't matter since the bits should be the same.
292   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
293   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
294   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
295                               I2P->getOperand(0)->getType(), I2P->getType(),
296                               DL) &&
297          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
298                               P2I->getOperand(0)->getType(), P2I->getType(),
299                               DL) &&
300          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
301 }
302 
303 // Returns true if V is an address expression.
304 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
305 // getelementptr operators.
306 static bool isAddressExpression(const Value &V, const DataLayout &DL,
307                                 const TargetTransformInfo *TTI) {
308   const Operator *Op = dyn_cast<Operator>(&V);
309   if (!Op)
310     return false;
311 
312   switch (Op->getOpcode()) {
313   case Instruction::PHI:
314     assert(Op->getType()->isPtrOrPtrVectorTy());
315     return true;
316   case Instruction::BitCast:
317   case Instruction::AddrSpaceCast:
318   case Instruction::GetElementPtr:
319     return true;
320   case Instruction::Select:
321     return Op->getType()->isPtrOrPtrVectorTy();
322   case Instruction::Call: {
323     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
324     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
325   }
326   case Instruction::IntToPtr:
327     return isNoopPtrIntCastPair(Op, DL, TTI);
328   default:
329     // That value is an address expression if it has an assumed address space.
330     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
331   }
332 }
333 
334 // Returns the pointer operands of V.
335 //
336 // Precondition: V is an address expression.
337 static SmallVector<Value *, 2>
338 getPointerOperands(const Value &V, const DataLayout &DL,
339                    const TargetTransformInfo *TTI) {
340   const Operator &Op = cast<Operator>(V);
341   switch (Op.getOpcode()) {
342   case Instruction::PHI: {
343     auto IncomingValues = cast<PHINode>(Op).incoming_values();
344     return {IncomingValues.begin(), IncomingValues.end()};
345   }
346   case Instruction::BitCast:
347   case Instruction::AddrSpaceCast:
348   case Instruction::GetElementPtr:
349     return {Op.getOperand(0)};
350   case Instruction::Select:
351     return {Op.getOperand(1), Op.getOperand(2)};
352   case Instruction::Call: {
353     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
354     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
355            "unexpected intrinsic call");
356     return {II.getArgOperand(0)};
357   }
358   case Instruction::IntToPtr: {
359     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
360     auto *P2I = cast<Operator>(Op.getOperand(0));
361     return {P2I->getOperand(0)};
362   }
363   default:
364     llvm_unreachable("Unexpected instruction type.");
365   }
366 }
367 
368 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
369                                                       Value *OldV,
370                                                       Value *NewV) const {
371   Module *M = II->getParent()->getParent()->getParent();
372 
373   switch (II->getIntrinsicID()) {
374   case Intrinsic::objectsize: {
375     Type *DestTy = II->getType();
376     Type *SrcTy = NewV->getType();
377     Function *NewDecl =
378         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
379     II->setArgOperand(0, NewV);
380     II->setCalledFunction(NewDecl);
381     return true;
382   }
383   case Intrinsic::ptrmask:
384     // This is handled as an address expression, not as a use memory operation.
385     return false;
386   case Intrinsic::masked_gather: {
387     Type *RetTy = II->getType();
388     Type *NewPtrTy = NewV->getType();
389     Function *NewDecl =
390         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy});
391     II->setArgOperand(0, NewV);
392     II->setCalledFunction(NewDecl);
393     return true;
394   }
395   case Intrinsic::masked_scatter: {
396     Type *ValueTy = II->getOperand(0)->getType();
397     Type *NewPtrTy = NewV->getType();
398     Function *NewDecl =
399         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
400     II->setArgOperand(1, NewV);
401     II->setCalledFunction(NewDecl);
402     return true;
403   }
404   default: {
405     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
406     if (!Rewrite)
407       return false;
408     if (Rewrite != II)
409       II->replaceAllUsesWith(Rewrite);
410     return true;
411   }
412   }
413 }
414 
415 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
416     IntrinsicInst *II, PostorderStackTy &PostorderStack,
417     DenseSet<Value *> &Visited) const {
418   auto IID = II->getIntrinsicID();
419   switch (IID) {
420   case Intrinsic::ptrmask:
421   case Intrinsic::objectsize:
422     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
423                                                  PostorderStack, Visited);
424     break;
425   case Intrinsic::masked_gather:
426     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
427                                                  PostorderStack, Visited);
428     break;
429   case Intrinsic::masked_scatter:
430     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
431                                                  PostorderStack, Visited);
432     break;
433   default:
434     SmallVector<int, 2> OpIndexes;
435     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
436       for (int Idx : OpIndexes) {
437         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
438                                                      PostorderStack, Visited);
439       }
440     }
441     break;
442   }
443 }
444 
445 // Returns all flat address expressions in function F. The elements are
446 // If V is an unvisited flat address expression, appends V to PostorderStack
447 // and marks it as visited.
448 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
449     Value *V, PostorderStackTy &PostorderStack,
450     DenseSet<Value *> &Visited) const {
451   assert(V->getType()->isPtrOrPtrVectorTy());
452 
453   // Generic addressing expressions may be hidden in nested constant
454   // expressions.
455   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
456     // TODO: Look in non-address parts, like icmp operands.
457     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
458       PostorderStack.emplace_back(CE, false);
459 
460     return;
461   }
462 
463   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
464       isAddressExpression(*V, *DL, TTI)) {
465     if (Visited.insert(V).second) {
466       PostorderStack.emplace_back(V, false);
467 
468       Operator *Op = cast<Operator>(V);
469       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
470         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
471           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
472             PostorderStack.emplace_back(CE, false);
473         }
474       }
475     }
476   }
477 }
478 
479 // Returns all flat address expressions in function F. The elements are ordered
480 // in postorder.
481 std::vector<WeakTrackingVH>
482 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
483   // This function implements a non-recursive postorder traversal of a partial
484   // use-def graph of function F.
485   PostorderStackTy PostorderStack;
486   // The set of visited expressions.
487   DenseSet<Value *> Visited;
488 
489   auto PushPtrOperand = [&](Value *Ptr) {
490     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
491   };
492 
493   // Look at operations that may be interesting accelerate by moving to a known
494   // address space. We aim at generating after loads and stores, but pure
495   // addressing calculations may also be faster.
496   for (Instruction &I : instructions(F)) {
497     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
498       PushPtrOperand(GEP->getPointerOperand());
499     } else if (auto *LI = dyn_cast<LoadInst>(&I))
500       PushPtrOperand(LI->getPointerOperand());
501     else if (auto *SI = dyn_cast<StoreInst>(&I))
502       PushPtrOperand(SI->getPointerOperand());
503     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
504       PushPtrOperand(RMW->getPointerOperand());
505     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
506       PushPtrOperand(CmpX->getPointerOperand());
507     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
508       // For memset/memcpy/memmove, any pointer operand can be replaced.
509       PushPtrOperand(MI->getRawDest());
510 
511       // Handle 2nd operand for memcpy/memmove.
512       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
513         PushPtrOperand(MTI->getRawSource());
514     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
515       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
516     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
517       if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
518         PushPtrOperand(Cmp->getOperand(0));
519         PushPtrOperand(Cmp->getOperand(1));
520       }
521     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
522       PushPtrOperand(ASC->getPointerOperand());
523     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
524       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
525         PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
526     } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
527       if (auto *RV = RI->getReturnValue();
528           RV && RV->getType()->isPtrOrPtrVectorTy())
529         PushPtrOperand(RV);
530     }
531   }
532 
533   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
534   while (!PostorderStack.empty()) {
535     Value *TopVal = PostorderStack.back().getPointer();
536     // If the operands of the expression on the top are already explored,
537     // adds that expression to the resultant postorder.
538     if (PostorderStack.back().getInt()) {
539       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
540         Postorder.push_back(TopVal);
541       PostorderStack.pop_back();
542       continue;
543     }
544     // Otherwise, adds its operands to the stack and explores them.
545     PostorderStack.back().setInt(true);
546     // Skip values with an assumed address space.
547     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
548       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
549         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
550                                                      Visited);
551       }
552     }
553   }
554   return Postorder;
555 }
556 
557 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
558 // of OperandUse.get() in the new address space. If the clone is not ready yet,
559 // returns poison in the new address space as a placeholder.
560 static Value *operandWithNewAddressSpaceOrCreatePoison(
561     const Use &OperandUse, unsigned NewAddrSpace,
562     const ValueToValueMapTy &ValueWithNewAddrSpace,
563     const PredicatedAddrSpaceMapTy &PredicatedAS,
564     SmallVectorImpl<const Use *> *PoisonUsesToFix) {
565   Value *Operand = OperandUse.get();
566 
567   Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
568 
569   if (Constant *C = dyn_cast<Constant>(Operand))
570     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
571 
572   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
573     return NewOperand;
574 
575   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
576   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
577   if (I != PredicatedAS.end()) {
578     // Insert an addrspacecast on that operand before the user.
579     unsigned NewAS = I->second;
580     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
581     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
582     NewI->insertBefore(Inst);
583     NewI->setDebugLoc(Inst->getDebugLoc());
584     return NewI;
585   }
586 
587   PoisonUsesToFix->push_back(&OperandUse);
588   return PoisonValue::get(NewPtrTy);
589 }
590 
591 // Returns a clone of `I` with its operands converted to those specified in
592 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
593 // operand whose address space needs to be modified might not exist in
594 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
595 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
596 //
597 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
598 // from a pointer whose type already matches. Therefore, this function returns a
599 // Value* instead of an Instruction*.
600 //
601 // This may also return nullptr in the case the instruction could not be
602 // rewritten.
603 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
604     Instruction *I, unsigned NewAddrSpace,
605     const ValueToValueMapTy &ValueWithNewAddrSpace,
606     const PredicatedAddrSpaceMapTy &PredicatedAS,
607     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
608   Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
609 
610   if (I->getOpcode() == Instruction::AddrSpaceCast) {
611     Value *Src = I->getOperand(0);
612     // Because `I` is flat, the source address space must be specific.
613     // Therefore, the inferred address space must be the source space, according
614     // to our algorithm.
615     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
616     if (Src->getType() != NewPtrType)
617       return new BitCastInst(Src, NewPtrType);
618     return Src;
619   }
620 
621   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
622     // Technically the intrinsic ID is a pointer typed argument, so specially
623     // handle calls early.
624     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
625     Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
626         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
627         PredicatedAS, PoisonUsesToFix);
628     Value *Rewrite =
629         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
630     if (Rewrite) {
631       assert(Rewrite != II && "cannot modify this pointer operation in place");
632       return Rewrite;
633     }
634 
635     return nullptr;
636   }
637 
638   unsigned AS = TTI->getAssumedAddrSpace(I);
639   if (AS != UninitializedAddressSpace) {
640     // For the assumed address space, insert an `addrspacecast` to make that
641     // explicit.
642     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
643     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
644     NewI->insertAfter(I);
645     return NewI;
646   }
647 
648   // Computes the converted pointer operands.
649   SmallVector<Value *, 4> NewPointerOperands;
650   for (const Use &OperandUse : I->operands()) {
651     if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
652       NewPointerOperands.push_back(nullptr);
653     else
654       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
655           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
656           PoisonUsesToFix));
657   }
658 
659   switch (I->getOpcode()) {
660   case Instruction::BitCast:
661     return new BitCastInst(NewPointerOperands[0], NewPtrType);
662   case Instruction::PHI: {
663     assert(I->getType()->isPtrOrPtrVectorTy());
664     PHINode *PHI = cast<PHINode>(I);
665     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
666     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
667       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
668       NewPHI->addIncoming(NewPointerOperands[OperandNo],
669                           PHI->getIncomingBlock(Index));
670     }
671     return NewPHI;
672   }
673   case Instruction::GetElementPtr: {
674     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
675     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
676         GEP->getSourceElementType(), NewPointerOperands[0],
677         SmallVector<Value *, 4>(GEP->indices()));
678     NewGEP->setIsInBounds(GEP->isInBounds());
679     return NewGEP;
680   }
681   case Instruction::Select:
682     assert(I->getType()->isPtrOrPtrVectorTy());
683     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
684                               NewPointerOperands[2], "", nullptr, I);
685   case Instruction::IntToPtr: {
686     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
687     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
688     if (Src->getType() == NewPtrType)
689       return Src;
690 
691     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
692     // source address space from a generic pointer source need to insert a cast
693     // back.
694     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
695   }
696   default:
697     llvm_unreachable("Unexpected opcode");
698   }
699 }
700 
701 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
702 // constant expression `CE` with its operands replaced as specified in
703 // ValueWithNewAddrSpace.
704 static Value *cloneConstantExprWithNewAddressSpace(
705     ConstantExpr *CE, unsigned NewAddrSpace,
706     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
707     const TargetTransformInfo *TTI) {
708   Type *TargetType =
709       CE->getType()->isPtrOrPtrVectorTy()
710           ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
711           : CE->getType();
712 
713   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
714     // Because CE is flat, the source address space must be specific.
715     // Therefore, the inferred address space must be the source space according
716     // to our algorithm.
717     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
718            NewAddrSpace);
719     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
720   }
721 
722   if (CE->getOpcode() == Instruction::BitCast) {
723     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
724       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
725     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
726   }
727 
728   if (CE->getOpcode() == Instruction::IntToPtr) {
729     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
730     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
731     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
732     return ConstantExpr::getBitCast(Src, TargetType);
733   }
734 
735   // Computes the operands of the new constant expression.
736   bool IsNew = false;
737   SmallVector<Constant *, 4> NewOperands;
738   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
739     Constant *Operand = CE->getOperand(Index);
740     // If the address space of `Operand` needs to be modified, the new operand
741     // with the new address space should already be in ValueWithNewAddrSpace
742     // because (1) the constant expressions we consider (i.e. addrspacecast,
743     // bitcast, and getelementptr) do not incur cycles in the data flow graph
744     // and (2) this function is called on constant expressions in postorder.
745     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
746       IsNew = true;
747       NewOperands.push_back(cast<Constant>(NewOperand));
748       continue;
749     }
750     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
751       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
752               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
753         IsNew = true;
754         NewOperands.push_back(cast<Constant>(NewOperand));
755         continue;
756       }
757     // Otherwise, reuses the old operand.
758     NewOperands.push_back(Operand);
759   }
760 
761   // If !IsNew, we will replace the Value with itself. However, replaced values
762   // are assumed to wrapped in an addrspacecast cast later so drop it now.
763   if (!IsNew)
764     return nullptr;
765 
766   if (CE->getOpcode() == Instruction::GetElementPtr) {
767     // Needs to specify the source type while constructing a getelementptr
768     // constant expression.
769     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
770                                cast<GEPOperator>(CE)->getSourceElementType());
771   }
772 
773   return CE->getWithOperands(NewOperands, TargetType);
774 }
775 
776 // Returns a clone of the value `V`, with its operands replaced as specified in
777 // ValueWithNewAddrSpace. This function is called on every flat address
778 // expression whose address space needs to be modified, in postorder.
779 //
780 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
781 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
782     Value *V, unsigned NewAddrSpace,
783     const ValueToValueMapTy &ValueWithNewAddrSpace,
784     const PredicatedAddrSpaceMapTy &PredicatedAS,
785     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
786   // All values in Postorder are flat address expressions.
787   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
788          isAddressExpression(*V, *DL, TTI));
789 
790   if (Instruction *I = dyn_cast<Instruction>(V)) {
791     Value *NewV = cloneInstructionWithNewAddressSpace(
792         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
793     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
794       if (NewI->getParent() == nullptr) {
795         NewI->insertBefore(I);
796         NewI->takeName(I);
797         NewI->setDebugLoc(I->getDebugLoc());
798       }
799     }
800     return NewV;
801   }
802 
803   return cloneConstantExprWithNewAddressSpace(
804       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
805 }
806 
807 // Defines the join operation on the address space lattice (see the file header
808 // comments).
809 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
810                                                    unsigned AS2) const {
811   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
812     return FlatAddrSpace;
813 
814   if (AS1 == UninitializedAddressSpace)
815     return AS2;
816   if (AS2 == UninitializedAddressSpace)
817     return AS1;
818 
819   // The join of two different specific address spaces is flat.
820   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
821 }
822 
823 bool InferAddressSpacesImpl::run(Function &F) {
824   DL = &F.getParent()->getDataLayout();
825 
826   if (AssumeDefaultIsFlatAddressSpace)
827     FlatAddrSpace = 0;
828 
829   if (FlatAddrSpace == UninitializedAddressSpace) {
830     FlatAddrSpace = TTI->getFlatAddressSpace();
831     if (FlatAddrSpace == UninitializedAddressSpace)
832       return false;
833   }
834 
835   // Collects all flat address expressions in postorder.
836   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
837 
838   // Runs a data-flow analysis to refine the address spaces of every expression
839   // in Postorder.
840   ValueToAddrSpaceMapTy InferredAddrSpace;
841   PredicatedAddrSpaceMapTy PredicatedAS;
842   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
843 
844   // Changes the address spaces of the flat address expressions who are inferred
845   // to point to a specific address space.
846   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
847                                      &F);
848 }
849 
850 // Constants need to be tracked through RAUW to handle cases with nested
851 // constant expressions, so wrap values in WeakTrackingVH.
852 void InferAddressSpacesImpl::inferAddressSpaces(
853     ArrayRef<WeakTrackingVH> Postorder,
854     ValueToAddrSpaceMapTy &InferredAddrSpace,
855     PredicatedAddrSpaceMapTy &PredicatedAS) const {
856   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
857   // Initially, all expressions are in the uninitialized address space.
858   for (Value *V : Postorder)
859     InferredAddrSpace[V] = UninitializedAddressSpace;
860 
861   while (!Worklist.empty()) {
862     Value *V = Worklist.pop_back_val();
863 
864     // Try to update the address space of the stack top according to the
865     // address spaces of its operands.
866     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
867       continue;
868 
869     for (Value *User : V->users()) {
870       // Skip if User is already in the worklist.
871       if (Worklist.count(User))
872         continue;
873 
874       auto Pos = InferredAddrSpace.find(User);
875       // Our algorithm only updates the address spaces of flat address
876       // expressions, which are those in InferredAddrSpace.
877       if (Pos == InferredAddrSpace.end())
878         continue;
879 
880       // Function updateAddressSpace moves the address space down a lattice
881       // path. Therefore, nothing to do if User is already inferred as flat (the
882       // bottom element in the lattice).
883       if (Pos->second == FlatAddrSpace)
884         continue;
885 
886       Worklist.insert(User);
887     }
888   }
889 }
890 
891 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
892                                                         Value *Opnd) const {
893   const Instruction *I = dyn_cast<Instruction>(&V);
894   if (!I)
895     return UninitializedAddressSpace;
896 
897   Opnd = Opnd->stripInBoundsOffsets();
898   for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
899     if (!AssumeVH)
900       continue;
901     CallInst *CI = cast<CallInst>(AssumeVH);
902     if (!isValidAssumeForContext(CI, I, DT))
903       continue;
904 
905     const Value *Ptr;
906     unsigned AS;
907     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
908     if (Ptr)
909       return AS;
910   }
911 
912   return UninitializedAddressSpace;
913 }
914 
915 bool InferAddressSpacesImpl::updateAddressSpace(
916     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
917     PredicatedAddrSpaceMapTy &PredicatedAS) const {
918   assert(InferredAddrSpace.count(&V));
919 
920   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
921 
922   // The new inferred address space equals the join of the address spaces
923   // of all its pointer operands.
924   unsigned NewAS = UninitializedAddressSpace;
925 
926   const Operator &Op = cast<Operator>(V);
927   if (Op.getOpcode() == Instruction::Select) {
928     Value *Src0 = Op.getOperand(1);
929     Value *Src1 = Op.getOperand(2);
930 
931     auto I = InferredAddrSpace.find(Src0);
932     unsigned Src0AS = (I != InferredAddrSpace.end())
933                           ? I->second
934                           : Src0->getType()->getPointerAddressSpace();
935 
936     auto J = InferredAddrSpace.find(Src1);
937     unsigned Src1AS = (J != InferredAddrSpace.end())
938                           ? J->second
939                           : Src1->getType()->getPointerAddressSpace();
940 
941     auto *C0 = dyn_cast<Constant>(Src0);
942     auto *C1 = dyn_cast<Constant>(Src1);
943 
944     // If one of the inputs is a constant, we may be able to do a constant
945     // addrspacecast of it. Defer inferring the address space until the input
946     // address space is known.
947     if ((C1 && Src0AS == UninitializedAddressSpace) ||
948         (C0 && Src1AS == UninitializedAddressSpace))
949       return false;
950 
951     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
952       NewAS = Src1AS;
953     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
954       NewAS = Src0AS;
955     else
956       NewAS = joinAddressSpaces(Src0AS, Src1AS);
957   } else {
958     unsigned AS = TTI->getAssumedAddrSpace(&V);
959     if (AS != UninitializedAddressSpace) {
960       // Use the assumed address space directly.
961       NewAS = AS;
962     } else {
963       // Otherwise, infer the address space from its pointer operands.
964       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
965         auto I = InferredAddrSpace.find(PtrOperand);
966         unsigned OperandAS;
967         if (I == InferredAddrSpace.end()) {
968           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
969           if (OperandAS == FlatAddrSpace) {
970             // Check AC for assumption dominating V.
971             unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
972             if (AS != UninitializedAddressSpace) {
973               LLVM_DEBUG(dbgs()
974                          << "  deduce operand AS from the predicate addrspace "
975                          << AS << '\n');
976               OperandAS = AS;
977               // Record this use with the predicated AS.
978               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
979             }
980           }
981         } else
982           OperandAS = I->second;
983 
984         // join(flat, *) = flat. So we can break if NewAS is already flat.
985         NewAS = joinAddressSpaces(NewAS, OperandAS);
986         if (NewAS == FlatAddrSpace)
987           break;
988       }
989     }
990   }
991 
992   unsigned OldAS = InferredAddrSpace.lookup(&V);
993   assert(OldAS != FlatAddrSpace);
994   if (OldAS == NewAS)
995     return false;
996 
997   // If any updates are made, grabs its users to the worklist because
998   // their address spaces can also be possibly updated.
999   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
1000   InferredAddrSpace[&V] = NewAS;
1001   return true;
1002 }
1003 
1004 /// \p returns true if \p U is the pointer operand of a memory instruction with
1005 /// a single pointer operand that can have its address space changed by simply
1006 /// mutating the use to a new value. If the memory instruction is volatile,
1007 /// return true only if the target allows the memory instruction to be volatile
1008 /// in the new address space.
1009 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
1010                                              Use &U, unsigned AddrSpace) {
1011   User *Inst = U.getUser();
1012   unsigned OpNo = U.getOperandNo();
1013   bool VolatileIsAllowed = false;
1014   if (auto *I = dyn_cast<Instruction>(Inst))
1015     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
1016 
1017   if (auto *LI = dyn_cast<LoadInst>(Inst))
1018     return OpNo == LoadInst::getPointerOperandIndex() &&
1019            (VolatileIsAllowed || !LI->isVolatile());
1020 
1021   if (auto *SI = dyn_cast<StoreInst>(Inst))
1022     return OpNo == StoreInst::getPointerOperandIndex() &&
1023            (VolatileIsAllowed || !SI->isVolatile());
1024 
1025   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1026     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1027            (VolatileIsAllowed || !RMW->isVolatile());
1028 
1029   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1030     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1031            (VolatileIsAllowed || !CmpX->isVolatile());
1032 
1033   return false;
1034 }
1035 
1036 /// Update memory intrinsic uses that require more complex processing than
1037 /// simple memory instructions. These require re-mangling and may have multiple
1038 /// pointer operands.
1039 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1040                                      Value *NewV) {
1041   IRBuilder<> B(MI);
1042   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1043   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1044   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1045 
1046   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1047     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1048                    false, // isVolatile
1049                    TBAA, ScopeMD, NoAliasMD);
1050   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1051     Value *Src = MTI->getRawSource();
1052     Value *Dest = MTI->getRawDest();
1053 
1054     // Be careful in case this is a self-to-self copy.
1055     if (Src == OldV)
1056       Src = NewV;
1057 
1058     if (Dest == OldV)
1059       Dest = NewV;
1060 
1061     if (isa<MemCpyInlineInst>(MTI)) {
1062       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1063       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1064                            MTI->getSourceAlign(), MTI->getLength(),
1065                            false, // isVolatile
1066                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1067     } else if (isa<MemCpyInst>(MTI)) {
1068       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1069       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1070                      MTI->getLength(),
1071                      false, // isVolatile
1072                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1073     } else {
1074       assert(isa<MemMoveInst>(MTI));
1075       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1076                       MTI->getLength(),
1077                       false, // isVolatile
1078                       TBAA, ScopeMD, NoAliasMD);
1079     }
1080   } else
1081     llvm_unreachable("unhandled MemIntrinsic");
1082 
1083   MI->eraseFromParent();
1084   return true;
1085 }
1086 
1087 // \p returns true if it is OK to change the address space of constant \p C with
1088 // a ConstantExpr addrspacecast.
1089 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1090                                                         unsigned NewAS) const {
1091   assert(NewAS != UninitializedAddressSpace);
1092 
1093   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1094   if (SrcAS == NewAS || isa<UndefValue>(C))
1095     return true;
1096 
1097   // Prevent illegal casts between different non-flat address spaces.
1098   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1099     return false;
1100 
1101   if (isa<ConstantPointerNull>(C))
1102     return true;
1103 
1104   if (auto *Op = dyn_cast<Operator>(C)) {
1105     // If we already have a constant addrspacecast, it should be safe to cast it
1106     // off.
1107     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1108       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1109                                         NewAS);
1110 
1111     if (Op->getOpcode() == Instruction::IntToPtr &&
1112         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1113       return true;
1114   }
1115 
1116   return false;
1117 }
1118 
1119 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1120                                           Value::use_iterator End) {
1121   User *CurUser = I->getUser();
1122   ++I;
1123 
1124   while (I != End && I->getUser() == CurUser)
1125     ++I;
1126 
1127   return I;
1128 }
1129 
1130 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1131     ArrayRef<WeakTrackingVH> Postorder,
1132     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1133     const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1134   // For each address expression to be modified, creates a clone of it with its
1135   // pointer operands converted to the new address space. Since the pointer
1136   // operands are converted, the clone is naturally in the new address space by
1137   // construction.
1138   ValueToValueMapTy ValueWithNewAddrSpace;
1139   SmallVector<const Use *, 32> PoisonUsesToFix;
1140   for (Value *V : Postorder) {
1141     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1142 
1143     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1144     // not even infer the value to have its original address space.
1145     if (NewAddrSpace == UninitializedAddressSpace)
1146       continue;
1147 
1148     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1149       Value *New =
1150           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1151                                         PredicatedAS, &PoisonUsesToFix);
1152       if (New)
1153         ValueWithNewAddrSpace[V] = New;
1154     }
1155   }
1156 
1157   if (ValueWithNewAddrSpace.empty())
1158     return false;
1159 
1160   // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1161   for (const Use *PoisonUse : PoisonUsesToFix) {
1162     User *V = PoisonUse->getUser();
1163     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1164     if (!NewV)
1165       continue;
1166 
1167     unsigned OperandNo = PoisonUse->getOperandNo();
1168     assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1169     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1170   }
1171 
1172   SmallVector<Instruction *, 16> DeadInstructions;
1173   ValueToValueMapTy VMap;
1174   ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1175 
1176   // Replaces the uses of the old address expressions with the new ones.
1177   for (const WeakTrackingVH &WVH : Postorder) {
1178     assert(WVH && "value was unexpectedly deleted");
1179     Value *V = WVH;
1180     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1181     if (NewV == nullptr)
1182       continue;
1183 
1184     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1185                       << *NewV << '\n');
1186 
1187     if (Constant *C = dyn_cast<Constant>(V)) {
1188       Constant *Replace =
1189           ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1190       if (C != Replace) {
1191         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1192                           << ": " << *Replace << '\n');
1193         SmallVector<User *, 16> WorkList;
1194         for (User *U : make_early_inc_range(C->users())) {
1195           if (auto *I = dyn_cast<Instruction>(U)) {
1196             if (I->getFunction() == F)
1197               I->replaceUsesOfWith(C, Replace);
1198           } else {
1199             WorkList.append(U->user_begin(), U->user_end());
1200           }
1201         }
1202         if (!WorkList.empty()) {
1203           VMap[C] = Replace;
1204           DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1205           while (!WorkList.empty()) {
1206             User *U = WorkList.pop_back_val();
1207             if (auto *I = dyn_cast<Instruction>(U)) {
1208               if (I->getFunction() == F)
1209                 VMapper.remapInstruction(*I);
1210               continue;
1211             }
1212             for (User *U2 : U->users())
1213               if (Visited.insert(U2).second)
1214                 WorkList.push_back(U2);
1215           }
1216         }
1217         V = Replace;
1218       }
1219     }
1220 
1221     Value::use_iterator I, E, Next;
1222     for (I = V->use_begin(), E = V->use_end(); I != E;) {
1223       Use &U = *I;
1224 
1225       // Some users may see the same pointer operand in multiple operands. Skip
1226       // to the next instruction.
1227       I = skipToNextUser(I, E);
1228 
1229       if (isSimplePointerUseValidToReplace(
1230               *TTI, U, V->getType()->getPointerAddressSpace())) {
1231         // If V is used as the pointer operand of a compatible memory operation,
1232         // sets the pointer operand to NewV. This replacement does not change
1233         // the element type, so the resultant load/store is still valid.
1234         U.set(NewV);
1235         continue;
1236       }
1237 
1238       User *CurUser = U.getUser();
1239       // Skip if the current user is the new value itself.
1240       if (CurUser == NewV)
1241         continue;
1242 
1243       if (auto *CurUserI = dyn_cast<Instruction>(CurUser);
1244           CurUserI && CurUserI->getFunction() != F)
1245         continue;
1246 
1247       // Handle more complex cases like intrinsic that need to be remangled.
1248       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1249         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1250           continue;
1251       }
1252 
1253       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1254         if (rewriteIntrinsicOperands(II, V, NewV))
1255           continue;
1256       }
1257 
1258       if (isa<Instruction>(CurUser)) {
1259         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1260           // If we can infer that both pointers are in the same addrspace,
1261           // transform e.g.
1262           //   %cmp = icmp eq float* %p, %q
1263           // into
1264           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1265 
1266           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1267           int SrcIdx = U.getOperandNo();
1268           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1269           Value *OtherSrc = Cmp->getOperand(OtherIdx);
1270 
1271           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1272             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1273               Cmp->setOperand(OtherIdx, OtherNewV);
1274               Cmp->setOperand(SrcIdx, NewV);
1275               continue;
1276             }
1277           }
1278 
1279           // Even if the type mismatches, we can cast the constant.
1280           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1281             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1282               Cmp->setOperand(SrcIdx, NewV);
1283               Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1284                                             KOtherSrc, NewV->getType()));
1285               continue;
1286             }
1287           }
1288         }
1289 
1290         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1291           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1292           if (ASC->getDestAddressSpace() == NewAS) {
1293             ASC->replaceAllUsesWith(NewV);
1294             DeadInstructions.push_back(ASC);
1295             continue;
1296           }
1297         }
1298 
1299         // Otherwise, replaces the use with flat(NewV).
1300         if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1301           // Don't create a copy of the original addrspacecast.
1302           if (U == V && isa<AddrSpaceCastInst>(V))
1303             continue;
1304 
1305           // Insert the addrspacecast after NewV.
1306           BasicBlock::iterator InsertPos;
1307           if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1308             InsertPos = std::next(NewVInst->getIterator());
1309           else
1310             InsertPos = std::next(VInst->getIterator());
1311 
1312           while (isa<PHINode>(InsertPos))
1313             ++InsertPos;
1314           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1315         } else {
1316           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1317                                                V->getType()));
1318         }
1319       }
1320     }
1321 
1322     if (V->use_empty()) {
1323       if (Instruction *I = dyn_cast<Instruction>(V))
1324         DeadInstructions.push_back(I);
1325     }
1326   }
1327 
1328   for (Instruction *I : DeadInstructions)
1329     RecursivelyDeleteTriviallyDeadInstructions(I);
1330 
1331   return true;
1332 }
1333 
1334 bool InferAddressSpaces::runOnFunction(Function &F) {
1335   if (skipFunction(F))
1336     return false;
1337 
1338   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1339   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1340   return InferAddressSpacesImpl(
1341              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1342              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1343              FlatAddrSpace)
1344       .run(F);
1345 }
1346 
1347 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1348   return new InferAddressSpaces(AddressSpace);
1349 }
1350 
1351 InferAddressSpacesPass::InferAddressSpacesPass()
1352     : FlatAddrSpace(UninitializedAddressSpace) {}
1353 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1354     : FlatAddrSpace(AddressSpace) {}
1355 
1356 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1357                                               FunctionAnalysisManager &AM) {
1358   bool Changed =
1359       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1360                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1361                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1362           .run(F);
1363   if (Changed) {
1364     PreservedAnalyses PA;
1365     PA.preserveSet<CFGAnalyses>();
1366     PA.preserve<DominatorTreeAnalysis>();
1367     return PA;
1368   }
1369   return PreservedAnalyses::all();
1370 }
1371