1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the guard widening pass. The semantics of the 10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails 11 // more often that it did before the transform. This optimization is called 12 // "widening" and can be used hoist and common runtime checks in situations like 13 // these: 14 // 15 // %cmp0 = 7 u< Length 16 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] 17 // call @unknown_side_effects() 18 // %cmp1 = 9 u< Length 19 // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ] 20 // ... 21 // 22 // => 23 // 24 // %cmp0 = 9 u< Length 25 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] 26 // call @unknown_side_effects() 27 // ... 28 // 29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a 30 // generic implementation of the same function, which will have the correct 31 // semantics from that point onward. It is always _legal_ to deoptimize (so 32 // replacing %cmp0 with false is "correct"), though it may not always be 33 // profitable to do so. 34 // 35 // NB! This pass is a work in progress. It hasn't been tuned to be "production 36 // ready" yet. It is known to have quadriatic running time and will not scale 37 // to large numbers of guards 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/Transforms/Scalar/GuardWidening.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/GuardUtils.h" 47 #include "llvm/Analysis/LoopInfo.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/ConstantRange.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/KnownBits.h" 60 #include "llvm/Transforms/Scalar.h" 61 #include "llvm/Transforms/Utils/GuardUtils.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include <functional> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "guard-widening" 68 69 STATISTIC(GuardsEliminated, "Number of eliminated guards"); 70 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches"); 71 72 static cl::opt<bool> 73 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden, 74 cl::desc("Whether or not we should widen guards " 75 "expressed as branches by widenable conditions"), 76 cl::init(true)); 77 78 namespace { 79 80 // Get the condition of \p I. It can either be a guard or a conditional branch. 81 static Value *getCondition(Instruction *I) { 82 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { 83 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && 84 "Bad guard intrinsic?"); 85 return GI->getArgOperand(0); 86 } 87 Value *Cond, *WC; 88 BasicBlock *IfTrueBB, *IfFalseBB; 89 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB)) 90 return Cond; 91 92 return cast<BranchInst>(I)->getCondition(); 93 } 94 95 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a 96 // conditional branch. 97 static void setCondition(Instruction *I, Value *NewCond) { 98 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { 99 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && 100 "Bad guard intrinsic?"); 101 GI->setArgOperand(0, NewCond); 102 return; 103 } 104 cast<BranchInst>(I)->setCondition(NewCond); 105 } 106 107 // Eliminates the guard instruction properly. 108 static void eliminateGuard(Instruction *GuardInst) { 109 GuardInst->eraseFromParent(); 110 ++GuardsEliminated; 111 } 112 113 class GuardWideningImpl { 114 DominatorTree &DT; 115 PostDominatorTree *PDT; 116 LoopInfo &LI; 117 118 /// Together, these describe the region of interest. This might be all of 119 /// the blocks within a function, or only a given loop's blocks and preheader. 120 DomTreeNode *Root; 121 std::function<bool(BasicBlock*)> BlockFilter; 122 123 /// The set of guards and conditional branches whose conditions have been 124 /// widened into dominating guards. 125 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches; 126 127 /// The set of guards which have been widened to include conditions to other 128 /// guards. 129 DenseSet<Instruction *> WidenedGuards; 130 131 /// Try to eliminate instruction \p Instr by widening it into an earlier 132 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that 133 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock 134 /// maps BasicBlocks to the set of guards seen in that block. 135 bool eliminateInstrViaWidening( 136 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI, 137 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & 138 GuardsPerBlock, bool InvertCondition = false); 139 140 /// Used to keep track of which widening potential is more effective. 141 enum WideningScore { 142 /// Don't widen. 143 WS_IllegalOrNegative, 144 145 /// Widening is performance neutral as far as the cycles spent in check 146 /// conditions goes (but can still help, e.g., code layout, having less 147 /// deopt state). 148 WS_Neutral, 149 150 /// Widening is profitable. 151 WS_Positive, 152 153 /// Widening is very profitable. Not significantly different from \c 154 /// WS_Positive, except by the order. 155 WS_VeryPositive 156 }; 157 158 static StringRef scoreTypeToString(WideningScore WS); 159 160 /// Compute the score for widening the condition in \p DominatedInstr 161 /// into \p DominatingGuard. If \p InvertCond is set, then we widen the 162 /// inverted condition of the dominating guard. 163 WideningScore computeWideningScore(Instruction *DominatedInstr, 164 Instruction *DominatingGuard, 165 bool InvertCond); 166 167 /// Helper to check if \p V can be hoisted to \p InsertPos. 168 bool isAvailableAt(const Value *V, const Instruction *InsertPos) const { 169 SmallPtrSet<const Instruction *, 8> Visited; 170 return isAvailableAt(V, InsertPos, Visited); 171 } 172 173 bool isAvailableAt(const Value *V, const Instruction *InsertPos, 174 SmallPtrSetImpl<const Instruction *> &Visited) const; 175 176 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c 177 /// isAvailableAt returned true. 178 void makeAvailableAt(Value *V, Instruction *InsertPos) const; 179 180 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try 181 /// to generate an expression computing the logical AND of \p Cond0 and (\p 182 /// Cond1 XOR \p InvertCondition). 183 /// Return true if the expression computing the AND is only as 184 /// expensive as computing one of the two. If \p InsertPt is true then 185 /// actually generate the resulting expression, make it available at \p 186 /// InsertPt and return it in \p Result (else no change to the IR is made). 187 bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, 188 Value *&Result, bool InvertCondition); 189 190 /// Represents a range check of the form \c Base + \c Offset u< \c Length, 191 /// with the constraint that \c Length is not negative. \c CheckInst is the 192 /// pre-existing instruction in the IR that computes the result of this range 193 /// check. 194 class RangeCheck { 195 const Value *Base; 196 const ConstantInt *Offset; 197 const Value *Length; 198 ICmpInst *CheckInst; 199 200 public: 201 explicit RangeCheck(const Value *Base, const ConstantInt *Offset, 202 const Value *Length, ICmpInst *CheckInst) 203 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {} 204 205 void setBase(const Value *NewBase) { Base = NewBase; } 206 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; } 207 208 const Value *getBase() const { return Base; } 209 const ConstantInt *getOffset() const { return Offset; } 210 const APInt &getOffsetValue() const { return getOffset()->getValue(); } 211 const Value *getLength() const { return Length; }; 212 ICmpInst *getCheckInst() const { return CheckInst; } 213 214 void print(raw_ostream &OS, bool PrintTypes = false) { 215 OS << "Base: "; 216 Base->printAsOperand(OS, PrintTypes); 217 OS << " Offset: "; 218 Offset->printAsOperand(OS, PrintTypes); 219 OS << " Length: "; 220 Length->printAsOperand(OS, PrintTypes); 221 } 222 223 LLVM_DUMP_METHOD void dump() { 224 print(dbgs()); 225 dbgs() << "\n"; 226 } 227 }; 228 229 /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and 230 /// append them to \p Checks. Returns true on success, may clobber \c Checks 231 /// on failure. 232 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) { 233 SmallPtrSet<const Value *, 8> Visited; 234 return parseRangeChecks(CheckCond, Checks, Visited); 235 } 236 237 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks, 238 SmallPtrSetImpl<const Value *> &Visited); 239 240 /// Combine the checks in \p Checks into a smaller set of checks and append 241 /// them into \p CombinedChecks. Return true on success (i.e. all of checks 242 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks 243 /// and \p CombinedChecks on success and on failure. 244 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks, 245 SmallVectorImpl<RangeCheck> &CombinedChecks) const; 246 247 /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of 248 /// computing only one of the two expressions? 249 bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) { 250 Value *ResultUnused; 251 return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused, 252 InvertCond); 253 } 254 255 /// If \p InvertCondition is false, Widen \p ToWiden to fail if 256 /// \p NewCondition is false, otherwise make it fail if \p NewCondition is 257 /// true (in addition to whatever it is already checking). 258 void widenGuard(Instruction *ToWiden, Value *NewCondition, 259 bool InvertCondition) { 260 Value *Result; 261 262 widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result, 263 InvertCondition); 264 if (isGuardAsWidenableBranch(ToWiden)) { 265 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result); 266 return; 267 } 268 setCondition(ToWiden, Result); 269 } 270 271 public: 272 273 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT, 274 LoopInfo &LI, DomTreeNode *Root, 275 std::function<bool(BasicBlock*)> BlockFilter) 276 : DT(DT), PDT(PDT), LI(LI), Root(Root), BlockFilter(BlockFilter) 277 {} 278 279 /// The entry point for this pass. 280 bool run(); 281 }; 282 } 283 284 static bool isSupportedGuardInstruction(const Instruction *Insn) { 285 if (isGuard(Insn)) 286 return true; 287 if (WidenBranchGuards && isGuardAsWidenableBranch(Insn)) 288 return true; 289 return false; 290 } 291 292 bool GuardWideningImpl::run() { 293 DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock; 294 bool Changed = false; 295 for (auto DFI = df_begin(Root), DFE = df_end(Root); 296 DFI != DFE; ++DFI) { 297 auto *BB = (*DFI)->getBlock(); 298 if (!BlockFilter(BB)) 299 continue; 300 301 auto &CurrentList = GuardsInBlock[BB]; 302 303 for (auto &I : *BB) 304 if (isSupportedGuardInstruction(&I)) 305 CurrentList.push_back(cast<Instruction>(&I)); 306 307 for (auto *II : CurrentList) 308 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock); 309 } 310 311 assert(EliminatedGuardsAndBranches.empty() || Changed); 312 for (auto *I : EliminatedGuardsAndBranches) 313 if (!WidenedGuards.count(I)) { 314 assert(isa<ConstantInt>(getCondition(I)) && "Should be!"); 315 if (isSupportedGuardInstruction(I)) 316 eliminateGuard(I); 317 else { 318 assert(isa<BranchInst>(I) && 319 "Eliminated something other than guard or branch?"); 320 ++CondBranchEliminated; 321 } 322 } 323 324 return Changed; 325 } 326 327 bool GuardWideningImpl::eliminateInstrViaWidening( 328 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI, 329 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & 330 GuardsInBlock, bool InvertCondition) { 331 // Ignore trivial true or false conditions. These instructions will be 332 // trivially eliminated by any cleanup pass. Do not erase them because other 333 // guards can possibly be widened into them. 334 if (isa<ConstantInt>(getCondition(Instr))) 335 return false; 336 337 Instruction *BestSoFar = nullptr; 338 auto BestScoreSoFar = WS_IllegalOrNegative; 339 340 // In the set of dominating guards, find the one we can merge GuardInst with 341 // for the most profit. 342 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) { 343 auto *CurBB = DFSI.getPath(i)->getBlock(); 344 if (!BlockFilter(CurBB)) 345 break; 346 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!"); 347 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second; 348 349 auto I = GuardsInCurBB.begin(); 350 auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr) 351 : GuardsInCurBB.end(); 352 353 #ifndef NDEBUG 354 { 355 unsigned Index = 0; 356 for (auto &I : *CurBB) { 357 if (Index == GuardsInCurBB.size()) 358 break; 359 if (GuardsInCurBB[Index] == &I) 360 Index++; 361 } 362 assert(Index == GuardsInCurBB.size() && 363 "Guards expected to be in order!"); 364 } 365 #endif 366 367 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?"); 368 369 for (auto *Candidate : make_range(I, E)) { 370 auto Score = computeWideningScore(Instr, Candidate, InvertCondition); 371 LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr) 372 << " and " << *getCondition(Candidate) << " is " 373 << scoreTypeToString(Score) << "\n"); 374 if (Score > BestScoreSoFar) { 375 BestScoreSoFar = Score; 376 BestSoFar = Candidate; 377 } 378 } 379 } 380 381 if (BestScoreSoFar == WS_IllegalOrNegative) { 382 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n"); 383 return false; 384 } 385 386 assert(BestSoFar != Instr && "Should have never visited same guard!"); 387 assert(DT.dominates(BestSoFar, Instr) && "Should be!"); 388 389 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar 390 << " with score " << scoreTypeToString(BestScoreSoFar) 391 << "\n"); 392 widenGuard(BestSoFar, getCondition(Instr), InvertCondition); 393 auto NewGuardCondition = InvertCondition 394 ? ConstantInt::getFalse(Instr->getContext()) 395 : ConstantInt::getTrue(Instr->getContext()); 396 setCondition(Instr, NewGuardCondition); 397 EliminatedGuardsAndBranches.push_back(Instr); 398 WidenedGuards.insert(BestSoFar); 399 return true; 400 } 401 402 GuardWideningImpl::WideningScore 403 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr, 404 Instruction *DominatingGuard, 405 bool InvertCond) { 406 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent()); 407 Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent()); 408 bool HoistingOutOfLoop = false; 409 410 if (DominatingGuardLoop != DominatedInstrLoop) { 411 // Be conservative and don't widen into a sibling loop. TODO: If the 412 // sibling is colder, we should consider allowing this. 413 if (DominatingGuardLoop && 414 !DominatingGuardLoop->contains(DominatedInstrLoop)) 415 return WS_IllegalOrNegative; 416 417 HoistingOutOfLoop = true; 418 } 419 420 if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard)) 421 return WS_IllegalOrNegative; 422 423 // If the guard was conditional executed, it may never be reached 424 // dynamically. There are two potential downsides to hoisting it out of the 425 // conditionally executed region: 1) we may spuriously deopt without need and 426 // 2) we have the extra cost of computing the guard condition in the common 427 // case. At the moment, we really only consider the second in our heuristic 428 // here. TODO: evaluate cost model for spurious deopt 429 // NOTE: As written, this also lets us hoist right over another guard which 430 // is essentially just another spelling for control flow. 431 if (isWideningCondProfitable(getCondition(DominatedInstr), 432 getCondition(DominatingGuard), InvertCond)) 433 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive; 434 435 if (HoistingOutOfLoop) 436 return WS_Positive; 437 438 // Returns true if we might be hoisting above explicit control flow. Note 439 // that this completely ignores implicit control flow (guards, calls which 440 // throw, etc...). That choice appears arbitrary. 441 auto MaybeHoistingOutOfIf = [&]() { 442 auto *DominatingBlock = DominatingGuard->getParent(); 443 auto *DominatedBlock = DominatedInstr->getParent(); 444 if (isGuardAsWidenableBranch(DominatingGuard)) 445 DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0); 446 447 // Same Block? 448 if (DominatedBlock == DominatingBlock) 449 return false; 450 // Obvious successor (common loop header/preheader case) 451 if (DominatedBlock == DominatingBlock->getUniqueSuccessor()) 452 return false; 453 // TODO: diamond, triangle cases 454 if (!PDT) return true; 455 return !PDT->dominates(DominatedBlock, DominatingBlock); 456 }; 457 458 return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral; 459 } 460 461 bool GuardWideningImpl::isAvailableAt( 462 const Value *V, const Instruction *Loc, 463 SmallPtrSetImpl<const Instruction *> &Visited) const { 464 auto *Inst = dyn_cast<Instruction>(V); 465 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst)) 466 return true; 467 468 if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) || 469 Inst->mayReadFromMemory()) 470 return false; 471 472 Visited.insert(Inst); 473 474 // We only want to go _up_ the dominance chain when recursing. 475 assert(!isa<PHINode>(Loc) && 476 "PHIs should return false for isSafeToSpeculativelyExecute"); 477 assert(DT.isReachableFromEntry(Inst->getParent()) && 478 "We did a DFS from the block entry!"); 479 return all_of(Inst->operands(), 480 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); }); 481 } 482 483 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const { 484 auto *Inst = dyn_cast<Instruction>(V); 485 if (!Inst || DT.dominates(Inst, Loc)) 486 return; 487 488 assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) && 489 !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!"); 490 491 for (Value *Op : Inst->operands()) 492 makeAvailableAt(Op, Loc); 493 494 Inst->moveBefore(Loc); 495 } 496 497 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1, 498 Instruction *InsertPt, Value *&Result, 499 bool InvertCondition) { 500 using namespace llvm::PatternMatch; 501 502 { 503 // L >u C0 && L >u C1 -> L >u max(C0, C1) 504 ConstantInt *RHS0, *RHS1; 505 Value *LHS; 506 ICmpInst::Predicate Pred0, Pred1; 507 if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) && 508 match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) { 509 if (InvertCondition) 510 Pred1 = ICmpInst::getInversePredicate(Pred1); 511 512 ConstantRange CR0 = 513 ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue()); 514 ConstantRange CR1 = 515 ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue()); 516 517 // SubsetIntersect is a subset of the actual mathematical intersection of 518 // CR0 and CR1, while SupersetIntersect is a superset of the actual 519 // mathematical intersection. If these two ConstantRanges are equal, then 520 // we know we were able to represent the actual mathematical intersection 521 // of CR0 and CR1, and can use the same to generate an icmp instruction. 522 // 523 // Given what we're doing here and the semantics of guards, it would 524 // actually be correct to just use SubsetIntersect, but that may be too 525 // aggressive in cases we care about. 526 auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse(); 527 auto SupersetIntersect = CR0.intersectWith(CR1); 528 529 APInt NewRHSAP; 530 CmpInst::Predicate Pred; 531 if (SubsetIntersect == SupersetIntersect && 532 SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) { 533 if (InsertPt) { 534 ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP); 535 Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk"); 536 } 537 return true; 538 } 539 } 540 } 541 542 { 543 SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks; 544 // TODO: Support InvertCondition case? 545 if (!InvertCondition && 546 parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) && 547 combineRangeChecks(Checks, CombinedChecks)) { 548 if (InsertPt) { 549 Result = nullptr; 550 for (auto &RC : CombinedChecks) { 551 makeAvailableAt(RC.getCheckInst(), InsertPt); 552 if (Result) 553 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "", 554 InsertPt); 555 else 556 Result = RC.getCheckInst(); 557 } 558 assert(Result && "Failed to find result value"); 559 Result->setName("wide.chk"); 560 } 561 return true; 562 } 563 } 564 565 // Base case -- just logical-and the two conditions together. 566 567 if (InsertPt) { 568 makeAvailableAt(Cond0, InsertPt); 569 makeAvailableAt(Cond1, InsertPt); 570 if (InvertCondition) 571 Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt); 572 Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt); 573 } 574 575 // We were not able to compute Cond0 AND Cond1 for the price of one. 576 return false; 577 } 578 579 bool GuardWideningImpl::parseRangeChecks( 580 Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, 581 SmallPtrSetImpl<const Value *> &Visited) { 582 if (!Visited.insert(CheckCond).second) 583 return true; 584 585 using namespace llvm::PatternMatch; 586 587 { 588 Value *AndLHS, *AndRHS; 589 if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS)))) 590 return parseRangeChecks(AndLHS, Checks) && 591 parseRangeChecks(AndRHS, Checks); 592 } 593 594 auto *IC = dyn_cast<ICmpInst>(CheckCond); 595 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() || 596 (IC->getPredicate() != ICmpInst::ICMP_ULT && 597 IC->getPredicate() != ICmpInst::ICMP_UGT)) 598 return false; 599 600 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1); 601 if (IC->getPredicate() == ICmpInst::ICMP_UGT) 602 std::swap(CmpLHS, CmpRHS); 603 604 auto &DL = IC->getModule()->getDataLayout(); 605 606 GuardWideningImpl::RangeCheck Check( 607 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())), 608 CmpRHS, IC); 609 610 if (!isKnownNonNegative(Check.getLength(), DL)) 611 return false; 612 613 // What we have in \c Check now is a correct interpretation of \p CheckCond. 614 // Try to see if we can move some constant offsets into the \c Offset field. 615 616 bool Changed; 617 auto &Ctx = CheckCond->getContext(); 618 619 do { 620 Value *OpLHS; 621 ConstantInt *OpRHS; 622 Changed = false; 623 624 #ifndef NDEBUG 625 auto *BaseInst = dyn_cast<Instruction>(Check.getBase()); 626 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) && 627 "Unreachable instruction?"); 628 #endif 629 630 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { 631 Check.setBase(OpLHS); 632 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); 633 Check.setOffset(ConstantInt::get(Ctx, NewOffset)); 634 Changed = true; 635 } else if (match(Check.getBase(), 636 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { 637 KnownBits Known = computeKnownBits(OpLHS, DL); 638 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) { 639 Check.setBase(OpLHS); 640 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); 641 Check.setOffset(ConstantInt::get(Ctx, NewOffset)); 642 Changed = true; 643 } 644 } 645 } while (Changed); 646 647 Checks.push_back(Check); 648 return true; 649 } 650 651 bool GuardWideningImpl::combineRangeChecks( 652 SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, 653 SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const { 654 unsigned OldCount = Checks.size(); 655 while (!Checks.empty()) { 656 // Pick all of the range checks with a specific base and length, and try to 657 // merge them. 658 const Value *CurrentBase = Checks.front().getBase(); 659 const Value *CurrentLength = Checks.front().getLength(); 660 661 SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks; 662 663 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { 664 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; 665 }; 666 667 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); 668 erase_if(Checks, IsCurrentCheck); 669 670 assert(CurrentChecks.size() != 0 && "We know we have at least one!"); 671 672 if (CurrentChecks.size() < 3) { 673 llvm::append_range(RangeChecksOut, CurrentChecks); 674 continue; 675 } 676 677 // CurrentChecks.size() will typically be 3 here, but so far there has been 678 // no need to hard-code that fact. 679 680 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS, 681 const GuardWideningImpl::RangeCheck &RHS) { 682 return LHS.getOffsetValue().slt(RHS.getOffsetValue()); 683 }); 684 685 // Note: std::sort should not invalidate the ChecksStart iterator. 686 687 const ConstantInt *MinOffset = CurrentChecks.front().getOffset(); 688 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset(); 689 690 unsigned BitWidth = MaxOffset->getValue().getBitWidth(); 691 if ((MaxOffset->getValue() - MinOffset->getValue()) 692 .ugt(APInt::getSignedMinValue(BitWidth))) 693 return false; 694 695 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); 696 const APInt &HighOffset = MaxOffset->getValue(); 697 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { 698 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); 699 }; 700 701 if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK)) 702 return false; 703 704 // We have a series of f+1 checks as: 705 // 706 // I+k_0 u< L ... Chk_0 707 // I+k_1 u< L ... Chk_1 708 // ... 709 // I+k_f u< L ... Chk_f 710 // 711 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0 712 // k_f-k_0 u< INT_MIN+k_f ... Precond_1 713 // k_f != k_0 ... Precond_2 714 // 715 // Claim: 716 // Chk_0 AND Chk_f implies all the other checks 717 // 718 // Informal proof sketch: 719 // 720 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap 721 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and 722 // thus I+k_f is the greatest unsigned value in that range. 723 // 724 // This combined with Ckh_(f+1) shows that everything in that range is u< L. 725 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) 726 // lie in [I+k_0,I+k_f], this proving our claim. 727 // 728 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are 729 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal 730 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping 731 // range by definition, and the latter case is impossible: 732 // 733 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) 734 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 735 // 736 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted 737 // with 'x' above) to be at least >u INT_MIN. 738 739 RangeChecksOut.emplace_back(CurrentChecks.front()); 740 RangeChecksOut.emplace_back(CurrentChecks.back()); 741 } 742 743 assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); 744 return RangeChecksOut.size() != OldCount; 745 } 746 747 #ifndef NDEBUG 748 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) { 749 switch (WS) { 750 case WS_IllegalOrNegative: 751 return "IllegalOrNegative"; 752 case WS_Neutral: 753 return "Neutral"; 754 case WS_Positive: 755 return "Positive"; 756 case WS_VeryPositive: 757 return "VeryPositive"; 758 } 759 760 llvm_unreachable("Fully covered switch above!"); 761 } 762 #endif 763 764 PreservedAnalyses GuardWideningPass::run(Function &F, 765 FunctionAnalysisManager &AM) { 766 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 767 auto &LI = AM.getResult<LoopAnalysis>(F); 768 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 769 if (!GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(), 770 [](BasicBlock*) { return true; } ).run()) 771 return PreservedAnalyses::all(); 772 773 PreservedAnalyses PA; 774 PA.preserveSet<CFGAnalyses>(); 775 return PA; 776 } 777 778 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM, 779 LoopStandardAnalysisResults &AR, 780 LPMUpdater &U) { 781 BasicBlock *RootBB = L.getLoopPredecessor(); 782 if (!RootBB) 783 RootBB = L.getHeader(); 784 auto BlockFilter = [&](BasicBlock *BB) { 785 return BB == RootBB || L.contains(BB); 786 }; 787 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.DT.getNode(RootBB), 788 BlockFilter).run()) 789 return PreservedAnalyses::all(); 790 791 return getLoopPassPreservedAnalyses(); 792 } 793 794 namespace { 795 struct GuardWideningLegacyPass : public FunctionPass { 796 static char ID; 797 798 GuardWideningLegacyPass() : FunctionPass(ID) { 799 initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); 800 } 801 802 bool runOnFunction(Function &F) override { 803 if (skipFunction(F)) 804 return false; 805 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 806 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 807 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 808 return GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(), 809 [](BasicBlock*) { return true; } ).run(); 810 } 811 812 void getAnalysisUsage(AnalysisUsage &AU) const override { 813 AU.setPreservesCFG(); 814 AU.addRequired<DominatorTreeWrapperPass>(); 815 AU.addRequired<PostDominatorTreeWrapperPass>(); 816 AU.addRequired<LoopInfoWrapperPass>(); 817 } 818 }; 819 820 /// Same as above, but restricted to a single loop at a time. Can be 821 /// scheduled with other loop passes w/o breaking out of LPM 822 struct LoopGuardWideningLegacyPass : public LoopPass { 823 static char ID; 824 825 LoopGuardWideningLegacyPass() : LoopPass(ID) { 826 initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); 827 } 828 829 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 830 if (skipLoop(L)) 831 return false; 832 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 833 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 834 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 835 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 836 BasicBlock *RootBB = L->getLoopPredecessor(); 837 if (!RootBB) 838 RootBB = L->getHeader(); 839 auto BlockFilter = [&](BasicBlock *BB) { 840 return BB == RootBB || L->contains(BB); 841 }; 842 return GuardWideningImpl(DT, PDT, LI, 843 DT.getNode(RootBB), BlockFilter).run(); 844 } 845 846 void getAnalysisUsage(AnalysisUsage &AU) const override { 847 AU.setPreservesCFG(); 848 getLoopAnalysisUsage(AU); 849 AU.addPreserved<PostDominatorTreeWrapperPass>(); 850 } 851 }; 852 } 853 854 char GuardWideningLegacyPass::ID = 0; 855 char LoopGuardWideningLegacyPass::ID = 0; 856 857 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards", 858 false, false) 859 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 860 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 861 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 862 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards", 863 false, false) 864 865 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening", 866 "Widen guards (within a single loop, as a loop pass)", 867 false, false) 868 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 869 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 870 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 871 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening", 872 "Widen guards (within a single loop, as a loop pass)", 873 false, false) 874 875 FunctionPass *llvm::createGuardWideningPass() { 876 return new GuardWideningLegacyPass(); 877 } 878 879 Pass *llvm::createLoopGuardWideningPass() { 880 return new LoopGuardWideningLegacyPass(); 881 } 882