xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions.  This pass does not modify the CFG.  This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 //    %Y = add i32 %X, 1
15 //    %Z = add i32 %Y, 1
16 // into:
17 //    %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 //    1. If a binary operator has a constant operand, it is moved to the RHS
24 //    2. Bitwise operators with constant operands are always grouped so that
25 //       shifts are performed first, then or's, then and's, then xor's.
26 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 //    4. All cmp instructions on boolean values are replaced with logical ops
28 //    5. add X, X is represented as (X*2) => (X << 1)
29 //    6. Multiplies with a power-of-two constant argument are transformed into
30 //       shifts.
31 //   ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "InstCombineInternal.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CFG.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/MemoryBuiltins.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/ProfileSummaryInfo.h"
55 #include "llvm/Analysis/TargetFolder.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/Analysis/Utils/Local.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Analysis/VectorUtils.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DIBuilder.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Use.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/DebugCounter.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/KnownBits.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Transforms/InstCombine/InstCombine.h"
98 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <memory>
104 #include <optional>
105 #include <string>
106 #include <utility>
107 
108 #define DEBUG_TYPE "instcombine"
109 #include "llvm/Transforms/Utils/InstructionWorklist.h"
110 #include <optional>
111 
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114 
115 STATISTIC(NumWorklistIterations,
116           "Number of instruction combining iterations performed");
117 STATISTIC(NumOneIteration, "Number of functions with one iteration");
118 STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119 STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120 STATISTIC(NumFourOrMoreIterations,
121           "Number of functions with four or more iterations");
122 
123 STATISTIC(NumCombined , "Number of insts combined");
124 STATISTIC(NumConstProp, "Number of constant folds");
125 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126 STATISTIC(NumSunkInst , "Number of instructions sunk");
127 STATISTIC(NumExpand,    "Number of expansions");
128 STATISTIC(NumFactor   , "Number of factorizations");
129 STATISTIC(NumReassoc  , "Number of reassociations");
130 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131               "Controls which instructions are visited");
132 
133 static cl::opt<bool>
134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135                                               cl::init(true));
136 
137 static cl::opt<unsigned> MaxSinkNumUsers(
138     "instcombine-max-sink-users", cl::init(32),
139     cl::desc("Maximum number of undroppable users for instruction sinking"));
140 
141 static cl::opt<unsigned>
142 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143              cl::desc("Maximum array size considered when doing a combine"));
144 
145 // FIXME: Remove this flag when it is no longer necessary to convert
146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147 // increases variable availability at the cost of accuracy. Variables that
148 // cannot be promoted by mem2reg or SROA will be described as living in memory
149 // for their entire lifetime. However, passes like DSE and instcombine can
150 // delete stores to the alloca, leading to misleading and inaccurate debug
151 // information. This flag can be removed when those passes are fixed.
152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153                                                cl::Hidden, cl::init(true));
154 
155 std::optional<Instruction *>
156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
157   // Handle target specific intrinsics
158   if (II.getCalledFunction()->isTargetIntrinsic()) {
159     return TTI.instCombineIntrinsic(*this, II);
160   }
161   return std::nullopt;
162 }
163 
164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165     IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166     bool &KnownBitsComputed) {
167   // Handle target specific intrinsics
168   if (II.getCalledFunction()->isTargetIntrinsic()) {
169     return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170                                                 KnownBitsComputed);
171   }
172   return std::nullopt;
173 }
174 
175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176     IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177     APInt &PoisonElts2, APInt &PoisonElts3,
178     std::function<void(Instruction *, unsigned, APInt, APInt &)>
179         SimplifyAndSetOp) {
180   // Handle target specific intrinsics
181   if (II.getCalledFunction()->isTargetIntrinsic()) {
182     return TTI.simplifyDemandedVectorEltsIntrinsic(
183         *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184         SimplifyAndSetOp);
185   }
186   return std::nullopt;
187 }
188 
189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190   return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191 }
192 
193 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
194   return llvm::emitGEPOffset(&Builder, DL, GEP);
195 }
196 
197 /// Legal integers and common types are considered desirable. This is used to
198 /// avoid creating instructions with types that may not be supported well by the
199 /// the backend.
200 /// NOTE: This treats i8, i16 and i32 specially because they are common
201 ///       types in frontend languages.
202 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
203   switch (BitWidth) {
204   case 8:
205   case 16:
206   case 32:
207     return true;
208   default:
209     return DL.isLegalInteger(BitWidth);
210   }
211 }
212 
213 /// Return true if it is desirable to convert an integer computation from a
214 /// given bit width to a new bit width.
215 /// We don't want to convert from a legal or desirable type (like i8) to an
216 /// illegal type or from a smaller to a larger illegal type. A width of '1'
217 /// is always treated as a desirable type because i1 is a fundamental type in
218 /// IR, and there are many specialized optimizations for i1 types.
219 /// Common/desirable widths are equally treated as legal to convert to, in
220 /// order to open up more combining opportunities.
221 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
222                                         unsigned ToWidth) const {
223   bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
224   bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
225 
226   // Convert to desirable widths even if they are not legal types.
227   // Only shrink types, to prevent infinite loops.
228   if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
229     return true;
230 
231   // If this is a legal or desiable integer from type, and the result would be
232   // an illegal type, don't do the transformation.
233   if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
234     return false;
235 
236   // Otherwise, if both are illegal, do not increase the size of the result. We
237   // do allow things like i160 -> i64, but not i64 -> i160.
238   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
239     return false;
240 
241   return true;
242 }
243 
244 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
245 /// We don't want to convert from a legal to an illegal type or from a smaller
246 /// to a larger illegal type. i1 is always treated as a legal type because it is
247 /// a fundamental type in IR, and there are many specialized optimizations for
248 /// i1 types.
249 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
250   // TODO: This could be extended to allow vectors. Datalayout changes might be
251   // needed to properly support that.
252   if (!From->isIntegerTy() || !To->isIntegerTy())
253     return false;
254 
255   unsigned FromWidth = From->getPrimitiveSizeInBits();
256   unsigned ToWidth = To->getPrimitiveSizeInBits();
257   return shouldChangeType(FromWidth, ToWidth);
258 }
259 
260 // Return true, if No Signed Wrap should be maintained for I.
261 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
262 // where both B and C should be ConstantInts, results in a constant that does
263 // not overflow. This function only handles the Add and Sub opcodes. For
264 // all other opcodes, the function conservatively returns false.
265 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
266   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
267   if (!OBO || !OBO->hasNoSignedWrap())
268     return false;
269 
270   // We reason about Add and Sub Only.
271   Instruction::BinaryOps Opcode = I.getOpcode();
272   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
273     return false;
274 
275   const APInt *BVal, *CVal;
276   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
277     return false;
278 
279   bool Overflow = false;
280   if (Opcode == Instruction::Add)
281     (void)BVal->sadd_ov(*CVal, Overflow);
282   else
283     (void)BVal->ssub_ov(*CVal, Overflow);
284 
285   return !Overflow;
286 }
287 
288 static bool hasNoUnsignedWrap(BinaryOperator &I) {
289   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
290   return OBO && OBO->hasNoUnsignedWrap();
291 }
292 
293 static bool hasNoSignedWrap(BinaryOperator &I) {
294   auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
295   return OBO && OBO->hasNoSignedWrap();
296 }
297 
298 /// Conservatively clears subclassOptionalData after a reassociation or
299 /// commutation. We preserve fast-math flags when applicable as they can be
300 /// preserved.
301 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
302   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
303   if (!FPMO) {
304     I.clearSubclassOptionalData();
305     return;
306   }
307 
308   FastMathFlags FMF = I.getFastMathFlags();
309   I.clearSubclassOptionalData();
310   I.setFastMathFlags(FMF);
311 }
312 
313 /// Combine constant operands of associative operations either before or after a
314 /// cast to eliminate one of the associative operations:
315 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
316 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
317 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
318                                    InstCombinerImpl &IC) {
319   auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
320   if (!Cast || !Cast->hasOneUse())
321     return false;
322 
323   // TODO: Enhance logic for other casts and remove this check.
324   auto CastOpcode = Cast->getOpcode();
325   if (CastOpcode != Instruction::ZExt)
326     return false;
327 
328   // TODO: Enhance logic for other BinOps and remove this check.
329   if (!BinOp1->isBitwiseLogicOp())
330     return false;
331 
332   auto AssocOpcode = BinOp1->getOpcode();
333   auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
334   if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
335     return false;
336 
337   Constant *C1, *C2;
338   if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
339       !match(BinOp2->getOperand(1), m_Constant(C2)))
340     return false;
341 
342   // TODO: This assumes a zext cast.
343   // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
344   // to the destination type might lose bits.
345 
346   // Fold the constants together in the destination type:
347   // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
348   const DataLayout &DL = IC.getDataLayout();
349   Type *DestTy = C1->getType();
350   Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
351   if (!CastC2)
352     return false;
353   Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
354   if (!FoldedC)
355     return false;
356 
357   IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
358   IC.replaceOperand(*BinOp1, 1, FoldedC);
359   BinOp1->dropPoisonGeneratingFlags();
360   Cast->dropPoisonGeneratingFlags();
361   return true;
362 }
363 
364 // Simplifies IntToPtr/PtrToInt RoundTrip Cast.
365 // inttoptr ( ptrtoint (x) ) --> x
366 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
367   auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
368   if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
369                       DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
370     auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
371     Type *CastTy = IntToPtr->getDestTy();
372     if (PtrToInt &&
373         CastTy->getPointerAddressSpace() ==
374             PtrToInt->getSrcTy()->getPointerAddressSpace() &&
375         DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
376             DL.getTypeSizeInBits(PtrToInt->getDestTy()))
377       return PtrToInt->getOperand(0);
378   }
379   return nullptr;
380 }
381 
382 /// This performs a few simplifications for operators that are associative or
383 /// commutative:
384 ///
385 ///  Commutative operators:
386 ///
387 ///  1. Order operands such that they are listed from right (least complex) to
388 ///     left (most complex).  This puts constants before unary operators before
389 ///     binary operators.
390 ///
391 ///  Associative operators:
392 ///
393 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
394 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
395 ///
396 ///  Associative and commutative operators:
397 ///
398 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
399 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
400 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
401 ///     if C1 and C2 are constants.
402 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
403   Instruction::BinaryOps Opcode = I.getOpcode();
404   bool Changed = false;
405 
406   do {
407     // Order operands such that they are listed from right (least complex) to
408     // left (most complex).  This puts constants before unary operators before
409     // binary operators.
410     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
411         getComplexity(I.getOperand(1)))
412       Changed = !I.swapOperands();
413 
414     if (I.isCommutative()) {
415       if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
416         replaceOperand(I, 0, Pair->first);
417         replaceOperand(I, 1, Pair->second);
418         Changed = true;
419       }
420     }
421 
422     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
423     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
424 
425     if (I.isAssociative()) {
426       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
427       if (Op0 && Op0->getOpcode() == Opcode) {
428         Value *A = Op0->getOperand(0);
429         Value *B = Op0->getOperand(1);
430         Value *C = I.getOperand(1);
431 
432         // Does "B op C" simplify?
433         if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
434           // It simplifies to V.  Form "A op V".
435           replaceOperand(I, 0, A);
436           replaceOperand(I, 1, V);
437           bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
438           bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
439 
440           // Conservatively clear all optional flags since they may not be
441           // preserved by the reassociation. Reset nsw/nuw based on the above
442           // analysis.
443           ClearSubclassDataAfterReassociation(I);
444 
445           // Note: this is only valid because SimplifyBinOp doesn't look at
446           // the operands to Op0.
447           if (IsNUW)
448             I.setHasNoUnsignedWrap(true);
449 
450           if (IsNSW)
451             I.setHasNoSignedWrap(true);
452 
453           Changed = true;
454           ++NumReassoc;
455           continue;
456         }
457       }
458 
459       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
460       if (Op1 && Op1->getOpcode() == Opcode) {
461         Value *A = I.getOperand(0);
462         Value *B = Op1->getOperand(0);
463         Value *C = Op1->getOperand(1);
464 
465         // Does "A op B" simplify?
466         if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
467           // It simplifies to V.  Form "V op C".
468           replaceOperand(I, 0, V);
469           replaceOperand(I, 1, C);
470           // Conservatively clear the optional flags, since they may not be
471           // preserved by the reassociation.
472           ClearSubclassDataAfterReassociation(I);
473           Changed = true;
474           ++NumReassoc;
475           continue;
476         }
477       }
478     }
479 
480     if (I.isAssociative() && I.isCommutative()) {
481       if (simplifyAssocCastAssoc(&I, *this)) {
482         Changed = true;
483         ++NumReassoc;
484         continue;
485       }
486 
487       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
488       if (Op0 && Op0->getOpcode() == Opcode) {
489         Value *A = Op0->getOperand(0);
490         Value *B = Op0->getOperand(1);
491         Value *C = I.getOperand(1);
492 
493         // Does "C op A" simplify?
494         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
495           // It simplifies to V.  Form "V op B".
496           replaceOperand(I, 0, V);
497           replaceOperand(I, 1, B);
498           // Conservatively clear the optional flags, since they may not be
499           // preserved by the reassociation.
500           ClearSubclassDataAfterReassociation(I);
501           Changed = true;
502           ++NumReassoc;
503           continue;
504         }
505       }
506 
507       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
508       if (Op1 && Op1->getOpcode() == Opcode) {
509         Value *A = I.getOperand(0);
510         Value *B = Op1->getOperand(0);
511         Value *C = Op1->getOperand(1);
512 
513         // Does "C op A" simplify?
514         if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
515           // It simplifies to V.  Form "B op V".
516           replaceOperand(I, 0, B);
517           replaceOperand(I, 1, V);
518           // Conservatively clear the optional flags, since they may not be
519           // preserved by the reassociation.
520           ClearSubclassDataAfterReassociation(I);
521           Changed = true;
522           ++NumReassoc;
523           continue;
524         }
525       }
526 
527       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
528       // if C1 and C2 are constants.
529       Value *A, *B;
530       Constant *C1, *C2, *CRes;
531       if (Op0 && Op1 &&
532           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
533           match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
534           match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
535           (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
536         bool IsNUW = hasNoUnsignedWrap(I) &&
537            hasNoUnsignedWrap(*Op0) &&
538            hasNoUnsignedWrap(*Op1);
539          BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
540            BinaryOperator::CreateNUW(Opcode, A, B) :
541            BinaryOperator::Create(Opcode, A, B);
542 
543          if (isa<FPMathOperator>(NewBO)) {
544            FastMathFlags Flags = I.getFastMathFlags() &
545                                  Op0->getFastMathFlags() &
546                                  Op1->getFastMathFlags();
547            NewBO->setFastMathFlags(Flags);
548         }
549         InsertNewInstWith(NewBO, I.getIterator());
550         NewBO->takeName(Op1);
551         replaceOperand(I, 0, NewBO);
552         replaceOperand(I, 1, CRes);
553         // Conservatively clear the optional flags, since they may not be
554         // preserved by the reassociation.
555         ClearSubclassDataAfterReassociation(I);
556         if (IsNUW)
557           I.setHasNoUnsignedWrap(true);
558 
559         Changed = true;
560         continue;
561       }
562     }
563 
564     // No further simplifications.
565     return Changed;
566   } while (true);
567 }
568 
569 /// Return whether "X LOp (Y ROp Z)" is always equal to
570 /// "(X LOp Y) ROp (X LOp Z)".
571 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
572                                      Instruction::BinaryOps ROp) {
573   // X & (Y | Z) <--> (X & Y) | (X & Z)
574   // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
575   if (LOp == Instruction::And)
576     return ROp == Instruction::Or || ROp == Instruction::Xor;
577 
578   // X | (Y & Z) <--> (X | Y) & (X | Z)
579   if (LOp == Instruction::Or)
580     return ROp == Instruction::And;
581 
582   // X * (Y + Z) <--> (X * Y) + (X * Z)
583   // X * (Y - Z) <--> (X * Y) - (X * Z)
584   if (LOp == Instruction::Mul)
585     return ROp == Instruction::Add || ROp == Instruction::Sub;
586 
587   return false;
588 }
589 
590 /// Return whether "(X LOp Y) ROp Z" is always equal to
591 /// "(X ROp Z) LOp (Y ROp Z)".
592 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
593                                      Instruction::BinaryOps ROp) {
594   if (Instruction::isCommutative(ROp))
595     return leftDistributesOverRight(ROp, LOp);
596 
597   // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
598   return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
599 
600   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
601   // but this requires knowing that the addition does not overflow and other
602   // such subtleties.
603 }
604 
605 /// This function returns identity value for given opcode, which can be used to
606 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
607 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
608   if (isa<Constant>(V))
609     return nullptr;
610 
611   return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
612 }
613 
614 /// This function predicates factorization using distributive laws. By default,
615 /// it just returns the 'Op' inputs. But for special-cases like
616 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
617 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
618 /// allow more factorization opportunities.
619 static Instruction::BinaryOps
620 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
621                           Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
622   assert(Op && "Expected a binary operator");
623   LHS = Op->getOperand(0);
624   RHS = Op->getOperand(1);
625   if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
626     Constant *C;
627     if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
628       // X << C --> X * (1 << C)
629       RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
630       return Instruction::Mul;
631     }
632     // TODO: We can add other conversions e.g. shr => div etc.
633   }
634   if (Instruction::isBitwiseLogicOp(TopOpcode)) {
635     if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
636         match(Op, m_LShr(m_NonNegative(), m_Value()))) {
637       // lshr nneg C, X --> ashr nneg C, X
638       return Instruction::AShr;
639     }
640   }
641   return Op->getOpcode();
642 }
643 
644 /// This tries to simplify binary operations by factorizing out common terms
645 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
646 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
647                                InstCombiner::BuilderTy &Builder,
648                                Instruction::BinaryOps InnerOpcode, Value *A,
649                                Value *B, Value *C, Value *D) {
650   assert(A && B && C && D && "All values must be provided");
651 
652   Value *V = nullptr;
653   Value *RetVal = nullptr;
654   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
655   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
656 
657   // Does "X op' Y" always equal "Y op' X"?
658   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
659 
660   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
661   if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
662     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
663     // commutative case, "(A op' B) op (C op' A)"?
664     if (A == C || (InnerCommutative && A == D)) {
665       if (A != C)
666         std::swap(C, D);
667       // Consider forming "A op' (B op D)".
668       // If "B op D" simplifies then it can be formed with no cost.
669       V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
670 
671       // If "B op D" doesn't simplify then only go on if one of the existing
672       // operations "A op' B" and "C op' D" will be zapped as no longer used.
673       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
674         V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
675       if (V)
676         RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
677     }
678   }
679 
680   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
681   if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
682     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
683     // commutative case, "(A op' B) op (B op' D)"?
684     if (B == D || (InnerCommutative && B == C)) {
685       if (B != D)
686         std::swap(C, D);
687       // Consider forming "(A op C) op' B".
688       // If "A op C" simplifies then it can be formed with no cost.
689       V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
690 
691       // If "A op C" doesn't simplify then only go on if one of the existing
692       // operations "A op' B" and "C op' D" will be zapped as no longer used.
693       if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694         V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
695       if (V)
696         RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
697     }
698   }
699 
700   if (!RetVal)
701     return nullptr;
702 
703   ++NumFactor;
704   RetVal->takeName(&I);
705 
706   // Try to add no-overflow flags to the final value.
707   if (isa<OverflowingBinaryOperator>(RetVal)) {
708     bool HasNSW = false;
709     bool HasNUW = false;
710     if (isa<OverflowingBinaryOperator>(&I)) {
711       HasNSW = I.hasNoSignedWrap();
712       HasNUW = I.hasNoUnsignedWrap();
713     }
714     if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
715       HasNSW &= LOBO->hasNoSignedWrap();
716       HasNUW &= LOBO->hasNoUnsignedWrap();
717     }
718 
719     if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
720       HasNSW &= ROBO->hasNoSignedWrap();
721       HasNUW &= ROBO->hasNoUnsignedWrap();
722     }
723 
724     if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
725       // We can propagate 'nsw' if we know that
726       //  %Y = mul nsw i16 %X, C
727       //  %Z = add nsw i16 %Y, %X
728       // =>
729       //  %Z = mul nsw i16 %X, C+1
730       //
731       // iff C+1 isn't INT_MIN
732       const APInt *CInt;
733       if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
734         cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
735 
736       // nuw can be propagated with any constant or nuw value.
737       cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
738     }
739   }
740   return RetVal;
741 }
742 
743 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
744 //   IFF
745 //    1) the logic_shifts match
746 //    2) either both binops are binops and one is `and` or
747 //       BinOp1 is `and`
748 //       (logic_shift (inv_logic_shift C1, C), C) == C1 or
749 //
750 //    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
751 //
752 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
753 //   IFF
754 //    1) the logic_shifts match
755 //    2) BinOp1 == BinOp2 (if BinOp ==  `add`, then also requires `shl`).
756 //
757 //    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
758 //
759 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
760 //   IFF
761 //   1) Binop1 is bitwise logical operator `and`, `or` or `xor`
762 //   2) Binop2 is `not`
763 //
764 //   -> (arithmetic_shift Binop1((not X), Y), Amt)
765 
766 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
767   const DataLayout &DL = I.getModule()->getDataLayout();
768   auto IsValidBinOpc = [](unsigned Opc) {
769     switch (Opc) {
770     default:
771       return false;
772     case Instruction::And:
773     case Instruction::Or:
774     case Instruction::Xor:
775     case Instruction::Add:
776       // Skip Sub as we only match constant masks which will canonicalize to use
777       // add.
778       return true;
779     }
780   };
781 
782   // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
783   // constraints.
784   auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
785                                       unsigned ShOpc) {
786     assert(ShOpc != Instruction::AShr);
787     return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
788            ShOpc == Instruction::Shl;
789   };
790 
791   auto GetInvShift = [](unsigned ShOpc) {
792     assert(ShOpc != Instruction::AShr);
793     return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
794   };
795 
796   auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
797                                  unsigned ShOpc, Constant *CMask,
798                                  Constant *CShift) {
799     // If the BinOp1 is `and` we don't need to check the mask.
800     if (BinOpc1 == Instruction::And)
801       return true;
802 
803     // For all other possible transfers we need complete distributable
804     // binop/shift (anything but `add` + `lshr`).
805     if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
806       return false;
807 
808     // If BinOp2 is `and`, any mask works (this only really helps for non-splat
809     // vecs, otherwise the mask will be simplified and the following check will
810     // handle it).
811     if (BinOpc2 == Instruction::And)
812       return true;
813 
814     // Otherwise, need mask that meets the below requirement.
815     // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
816     Constant *MaskInvShift =
817         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
818     return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
819            CMask;
820   };
821 
822   auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
823     Constant *CMask, *CShift;
824     Value *X, *Y, *ShiftedX, *Mask, *Shift;
825     if (!match(I.getOperand(ShOpnum),
826                m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
827       return nullptr;
828     if (!match(I.getOperand(1 - ShOpnum),
829                m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
830       return nullptr;
831 
832     if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
833       return nullptr;
834 
835     // Make sure we are matching instruction shifts and not ConstantExpr
836     auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
837     auto *IX = dyn_cast<Instruction>(ShiftedX);
838     if (!IY || !IX)
839       return nullptr;
840 
841     // LHS and RHS need same shift opcode
842     unsigned ShOpc = IY->getOpcode();
843     if (ShOpc != IX->getOpcode())
844       return nullptr;
845 
846     // Make sure binop is real instruction and not ConstantExpr
847     auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
848     if (!BO2)
849       return nullptr;
850 
851     unsigned BinOpc = BO2->getOpcode();
852     // Make sure we have valid binops.
853     if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
854       return nullptr;
855 
856     if (ShOpc == Instruction::AShr) {
857       if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
858           BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
859         Value *NotX = Builder.CreateNot(X);
860         Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
861         return BinaryOperator::Create(
862             static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
863       }
864 
865       return nullptr;
866     }
867 
868     // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
869     // distribute to drop the shift irrelevant of constants.
870     if (BinOpc == I.getOpcode() &&
871         IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
872       Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
873       Value *NewBinOp1 = Builder.CreateBinOp(
874           static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
875       return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
876     }
877 
878     // Otherwise we can only distribute by constant shifting the mask, so
879     // ensure we have constants.
880     if (!match(Shift, m_ImmConstant(CShift)))
881       return nullptr;
882     if (!match(Mask, m_ImmConstant(CMask)))
883       return nullptr;
884 
885     // Check if we can distribute the binops.
886     if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
887       return nullptr;
888 
889     Constant *NewCMask =
890         ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
891     Value *NewBinOp2 = Builder.CreateBinOp(
892         static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
893     Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
894     return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
895                                   NewBinOp1, CShift);
896   };
897 
898   if (Instruction *R = MatchBinOp(0))
899     return R;
900   return MatchBinOp(1);
901 }
902 
903 // (Binop (zext C), (select C, T, F))
904 //    -> (select C, (binop 1, T), (binop 0, F))
905 //
906 // (Binop (sext C), (select C, T, F))
907 //    -> (select C, (binop -1, T), (binop 0, F))
908 //
909 // Attempt to simplify binary operations into a select with folded args, when
910 // one operand of the binop is a select instruction and the other operand is a
911 // zext/sext extension, whose value is the select condition.
912 Instruction *
913 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
914   // TODO: this simplification may be extended to any speculatable instruction,
915   // not just binops, and would possibly be handled better in FoldOpIntoSelect.
916   Instruction::BinaryOps Opc = I.getOpcode();
917   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
918   Value *A, *CondVal, *TrueVal, *FalseVal;
919   Value *CastOp;
920 
921   auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
922     return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
923            A->getType()->getScalarSizeInBits() == 1 &&
924            match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
925                                     m_Value(FalseVal)));
926   };
927 
928   // Make sure one side of the binop is a select instruction, and the other is a
929   // zero/sign extension operating on a i1.
930   if (MatchSelectAndCast(LHS, RHS))
931     CastOp = LHS;
932   else if (MatchSelectAndCast(RHS, LHS))
933     CastOp = RHS;
934   else
935     return nullptr;
936 
937   auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
938     bool IsCastOpRHS = (CastOp == RHS);
939     bool IsZExt = isa<ZExtInst>(CastOp);
940     Constant *C;
941 
942     if (IsTrueArm) {
943       C = Constant::getNullValue(V->getType());
944     } else if (IsZExt) {
945       unsigned BitWidth = V->getType()->getScalarSizeInBits();
946       C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
947     } else {
948       C = Constant::getAllOnesValue(V->getType());
949     }
950 
951     return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
952                        : Builder.CreateBinOp(Opc, C, V);
953   };
954 
955   // If the value used in the zext/sext is the select condition, or the negated
956   // of the select condition, the binop can be simplified.
957   if (CondVal == A) {
958     Value *NewTrueVal = NewFoldedConst(false, TrueVal);
959     return SelectInst::Create(CondVal, NewTrueVal,
960                               NewFoldedConst(true, FalseVal));
961   }
962 
963   if (match(A, m_Not(m_Specific(CondVal)))) {
964     Value *NewTrueVal = NewFoldedConst(true, TrueVal);
965     return SelectInst::Create(CondVal, NewTrueVal,
966                               NewFoldedConst(false, FalseVal));
967   }
968 
969   return nullptr;
970 }
971 
972 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
973   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
974   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
975   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
976   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
977   Value *A, *B, *C, *D;
978   Instruction::BinaryOps LHSOpcode, RHSOpcode;
979 
980   if (Op0)
981     LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
982   if (Op1)
983     RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
984 
985   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
986   // a common term.
987   if (Op0 && Op1 && LHSOpcode == RHSOpcode)
988     if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
989       return V;
990 
991   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
992   // term.
993   if (Op0)
994     if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
995       if (Value *V =
996               tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
997         return V;
998 
999   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
1000   // term.
1001   if (Op1)
1002     if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1003       if (Value *V =
1004               tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1005         return V;
1006 
1007   return nullptr;
1008 }
1009 
1010 /// This tries to simplify binary operations which some other binary operation
1011 /// distributes over either by factorizing out common terms
1012 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1013 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1014 /// Returns the simplified value, or null if it didn't simplify.
1015 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
1016   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1017   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1018   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1019   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1020 
1021   // Factorization.
1022   if (Value *R = tryFactorizationFolds(I))
1023     return R;
1024 
1025   // Expansion.
1026   if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1027     // The instruction has the form "(A op' B) op C".  See if expanding it out
1028     // to "(A op C) op' (B op C)" results in simplifications.
1029     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1030     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1031 
1032     // Disable the use of undef because it's not safe to distribute undef.
1033     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1034     Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1035     Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1036 
1037     // Do "A op C" and "B op C" both simplify?
1038     if (L && R) {
1039       // They do! Return "L op' R".
1040       ++NumExpand;
1041       C = Builder.CreateBinOp(InnerOpcode, L, R);
1042       C->takeName(&I);
1043       return C;
1044     }
1045 
1046     // Does "A op C" simplify to the identity value for the inner opcode?
1047     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1048       // They do! Return "B op C".
1049       ++NumExpand;
1050       C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1051       C->takeName(&I);
1052       return C;
1053     }
1054 
1055     // Does "B op C" simplify to the identity value for the inner opcode?
1056     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1057       // They do! Return "A op C".
1058       ++NumExpand;
1059       C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1060       C->takeName(&I);
1061       return C;
1062     }
1063   }
1064 
1065   if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1066     // The instruction has the form "A op (B op' C)".  See if expanding it out
1067     // to "(A op B) op' (A op C)" results in simplifications.
1068     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1069     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1070 
1071     // Disable the use of undef because it's not safe to distribute undef.
1072     auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1073     Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1074     Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1075 
1076     // Do "A op B" and "A op C" both simplify?
1077     if (L && R) {
1078       // They do! Return "L op' R".
1079       ++NumExpand;
1080       A = Builder.CreateBinOp(InnerOpcode, L, R);
1081       A->takeName(&I);
1082       return A;
1083     }
1084 
1085     // Does "A op B" simplify to the identity value for the inner opcode?
1086     if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1087       // They do! Return "A op C".
1088       ++NumExpand;
1089       A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1090       A->takeName(&I);
1091       return A;
1092     }
1093 
1094     // Does "A op C" simplify to the identity value for the inner opcode?
1095     if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1096       // They do! Return "A op B".
1097       ++NumExpand;
1098       A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1099       A->takeName(&I);
1100       return A;
1101     }
1102   }
1103 
1104   return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1105 }
1106 
1107 static std::optional<std::pair<Value *, Value *>>
1108 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
1109   if (LHS->getParent() != RHS->getParent())
1110     return std::nullopt;
1111 
1112   if (LHS->getNumIncomingValues() < 2)
1113     return std::nullopt;
1114 
1115   if (!equal(LHS->blocks(), RHS->blocks()))
1116     return std::nullopt;
1117 
1118   Value *L0 = LHS->getIncomingValue(0);
1119   Value *R0 = RHS->getIncomingValue(0);
1120 
1121   for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1122     Value *L1 = LHS->getIncomingValue(I);
1123     Value *R1 = RHS->getIncomingValue(I);
1124 
1125     if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1126       continue;
1127 
1128     return std::nullopt;
1129   }
1130 
1131   return std::optional(std::pair(L0, R0));
1132 }
1133 
1134 std::optional<std::pair<Value *, Value *>>
1135 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1136   Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1137   Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1138   if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1139     return std::nullopt;
1140   switch (LHSInst->getOpcode()) {
1141   case Instruction::PHI:
1142     return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1143   case Instruction::Select: {
1144     Value *Cond = LHSInst->getOperand(0);
1145     Value *TrueVal = LHSInst->getOperand(1);
1146     Value *FalseVal = LHSInst->getOperand(2);
1147     if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1148         FalseVal == RHSInst->getOperand(1))
1149       return std::pair(TrueVal, FalseVal);
1150     return std::nullopt;
1151   }
1152   case Instruction::Call: {
1153     // Match min(a, b) and max(a, b)
1154     MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1155     MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1156     if (LHSMinMax && RHSMinMax &&
1157         LHSMinMax->getPredicate() ==
1158             ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
1159         ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1160           LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1161          (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1162           LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1163       return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1164     return std::nullopt;
1165   }
1166   default:
1167     return std::nullopt;
1168   }
1169 }
1170 
1171 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
1172                                                         Value *LHS,
1173                                                         Value *RHS) {
1174   Value *A, *B, *C, *D, *E, *F;
1175   bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1176   bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1177   if (!LHSIsSelect && !RHSIsSelect)
1178     return nullptr;
1179 
1180   FastMathFlags FMF;
1181   BuilderTy::FastMathFlagGuard Guard(Builder);
1182   if (isa<FPMathOperator>(&I)) {
1183     FMF = I.getFastMathFlags();
1184     Builder.setFastMathFlags(FMF);
1185   }
1186 
1187   Instruction::BinaryOps Opcode = I.getOpcode();
1188   SimplifyQuery Q = SQ.getWithInstruction(&I);
1189 
1190   Value *Cond, *True = nullptr, *False = nullptr;
1191 
1192   // Special-case for add/negate combination. Replace the zero in the negation
1193   // with the trailing add operand:
1194   // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1195   // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1196   auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1197     // We need an 'add' and exactly 1 arm of the select to have been simplified.
1198     if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1199       return nullptr;
1200 
1201     Value *N;
1202     if (True && match(FVal, m_Neg(m_Value(N)))) {
1203       Value *Sub = Builder.CreateSub(Z, N);
1204       return Builder.CreateSelect(Cond, True, Sub, I.getName());
1205     }
1206     if (False && match(TVal, m_Neg(m_Value(N)))) {
1207       Value *Sub = Builder.CreateSub(Z, N);
1208       return Builder.CreateSelect(Cond, Sub, False, I.getName());
1209     }
1210     return nullptr;
1211   };
1212 
1213   if (LHSIsSelect && RHSIsSelect && A == D) {
1214     // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1215     Cond = A;
1216     True = simplifyBinOp(Opcode, B, E, FMF, Q);
1217     False = simplifyBinOp(Opcode, C, F, FMF, Q);
1218 
1219     if (LHS->hasOneUse() && RHS->hasOneUse()) {
1220       if (False && !True)
1221         True = Builder.CreateBinOp(Opcode, B, E);
1222       else if (True && !False)
1223         False = Builder.CreateBinOp(Opcode, C, F);
1224     }
1225   } else if (LHSIsSelect && LHS->hasOneUse()) {
1226     // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1227     Cond = A;
1228     True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1229     False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1230     if (Value *NewSel = foldAddNegate(B, C, RHS))
1231       return NewSel;
1232   } else if (RHSIsSelect && RHS->hasOneUse()) {
1233     // X op (D ? E : F) -> D ? (X op E) : (X op F)
1234     Cond = D;
1235     True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1236     False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1237     if (Value *NewSel = foldAddNegate(E, F, LHS))
1238       return NewSel;
1239   }
1240 
1241   if (!True || !False)
1242     return nullptr;
1243 
1244   Value *SI = Builder.CreateSelect(Cond, True, False);
1245   SI->takeName(&I);
1246   return SI;
1247 }
1248 
1249 /// Freely adapt every user of V as-if V was changed to !V.
1250 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1251 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
1252   assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1253   for (User *U : make_early_inc_range(I->users())) {
1254     if (U == IgnoredUser)
1255       continue; // Don't consider this user.
1256     switch (cast<Instruction>(U)->getOpcode()) {
1257     case Instruction::Select: {
1258       auto *SI = cast<SelectInst>(U);
1259       SI->swapValues();
1260       SI->swapProfMetadata();
1261       break;
1262     }
1263     case Instruction::Br:
1264       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
1265       break;
1266     case Instruction::Xor:
1267       replaceInstUsesWith(cast<Instruction>(*U), I);
1268       // Add to worklist for DCE.
1269       addToWorklist(cast<Instruction>(U));
1270       break;
1271     default:
1272       llvm_unreachable("Got unexpected user - out of sync with "
1273                        "canFreelyInvertAllUsersOf() ?");
1274     }
1275   }
1276 }
1277 
1278 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1279 /// constant zero (which is the 'negate' form).
1280 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1281   Value *NegV;
1282   if (match(V, m_Neg(m_Value(NegV))))
1283     return NegV;
1284 
1285   // Constants can be considered to be negated values if they can be folded.
1286   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1287     return ConstantExpr::getNeg(C);
1288 
1289   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1290     if (C->getType()->getElementType()->isIntegerTy())
1291       return ConstantExpr::getNeg(C);
1292 
1293   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1294     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1295       Constant *Elt = CV->getAggregateElement(i);
1296       if (!Elt)
1297         return nullptr;
1298 
1299       if (isa<UndefValue>(Elt))
1300         continue;
1301 
1302       if (!isa<ConstantInt>(Elt))
1303         return nullptr;
1304     }
1305     return ConstantExpr::getNeg(CV);
1306   }
1307 
1308   // Negate integer vector splats.
1309   if (auto *CV = dyn_cast<Constant>(V))
1310     if (CV->getType()->isVectorTy() &&
1311         CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1312       return ConstantExpr::getNeg(CV);
1313 
1314   return nullptr;
1315 }
1316 
1317 /// A binop with a constant operand and a sign-extended boolean operand may be
1318 /// converted into a select of constants by applying the binary operation to
1319 /// the constant with the two possible values of the extended boolean (0 or -1).
1320 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1321   // TODO: Handle non-commutative binop (constant is operand 0).
1322   // TODO: Handle zext.
1323   // TODO: Peek through 'not' of cast.
1324   Value *BO0 = BO.getOperand(0);
1325   Value *BO1 = BO.getOperand(1);
1326   Value *X;
1327   Constant *C;
1328   if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1329       !X->getType()->isIntOrIntVectorTy(1))
1330     return nullptr;
1331 
1332   // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1333   Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1334   Constant *Zero = ConstantInt::getNullValue(BO.getType());
1335   Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1336   Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1337   return SelectInst::Create(X, TVal, FVal);
1338 }
1339 
1340 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
1341                                                         SelectInst *SI,
1342                                                         bool IsTrueArm) {
1343   SmallVector<Constant *> ConstOps;
1344   for (Value *Op : I.operands()) {
1345     CmpInst::Predicate Pred;
1346     Constant *C = nullptr;
1347     if (Op == SI) {
1348       C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1349                                        : SI->getFalseValue());
1350     } else if (match(SI->getCondition(),
1351                      m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1352                Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1353                isGuaranteedNotToBeUndefOrPoison(C)) {
1354       // Pass
1355     } else {
1356       C = dyn_cast<Constant>(Op);
1357     }
1358     if (C == nullptr)
1359       return nullptr;
1360 
1361     ConstOps.push_back(C);
1362   }
1363 
1364   return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1365 }
1366 
1367 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
1368                                              Value *NewOp, InstCombiner &IC) {
1369   Instruction *Clone = I.clone();
1370   Clone->replaceUsesOfWith(SI, NewOp);
1371   IC.InsertNewInstBefore(Clone, SI->getIterator());
1372   return Clone;
1373 }
1374 
1375 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1376                                                 bool FoldWithMultiUse) {
1377   // Don't modify shared select instructions unless set FoldWithMultiUse
1378   if (!SI->hasOneUse() && !FoldWithMultiUse)
1379     return nullptr;
1380 
1381   Value *TV = SI->getTrueValue();
1382   Value *FV = SI->getFalseValue();
1383   if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1384     return nullptr;
1385 
1386   // Bool selects with constant operands can be folded to logical ops.
1387   if (SI->getType()->isIntOrIntVectorTy(1))
1388     return nullptr;
1389 
1390   // If it's a bitcast involving vectors, make sure it has the same number of
1391   // elements on both sides.
1392   if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1393     VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1394     VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1395 
1396     // Verify that either both or neither are vectors.
1397     if ((SrcTy == nullptr) != (DestTy == nullptr))
1398       return nullptr;
1399 
1400     // If vectors, verify that they have the same number of elements.
1401     if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1402       return nullptr;
1403   }
1404 
1405   // Test if a FCmpInst instruction is used exclusively by a select as
1406   // part of a minimum or maximum operation. If so, refrain from doing
1407   // any other folding. This helps out other analyses which understand
1408   // non-obfuscated minimum and maximum idioms. And in this case, at
1409   // least one of the comparison operands has at least one user besides
1410   // the compare (the select), which would often largely negate the
1411   // benefit of folding anyway.
1412   if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1413     if (CI->hasOneUse()) {
1414       Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1415       if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1416         return nullptr;
1417     }
1418   }
1419 
1420   // Make sure that one of the select arms constant folds successfully.
1421   Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1422   Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1423   if (!NewTV && !NewFV)
1424     return nullptr;
1425 
1426   // Create an instruction for the arm that did not fold.
1427   if (!NewTV)
1428     NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1429   if (!NewFV)
1430     NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1431   return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1432 }
1433 
1434 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
1435                                          Value *InValue, BasicBlock *InBB,
1436                                          const DataLayout &DL,
1437                                          const SimplifyQuery SQ) {
1438   // NB: It is a precondition of this transform that the operands be
1439   // phi translatable! This is usually trivially satisfied by limiting it
1440   // to constant ops, and for selects we do a more sophisticated check.
1441   SmallVector<Value *> Ops;
1442   for (Value *Op : I.operands()) {
1443     if (Op == PN)
1444       Ops.push_back(InValue);
1445     else
1446       Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1447   }
1448 
1449   // Don't consider the simplification successful if we get back a constant
1450   // expression. That's just an instruction in hiding.
1451   // Also reject the case where we simplify back to the phi node. We wouldn't
1452   // be able to remove it in that case.
1453   Value *NewVal = simplifyInstructionWithOperands(
1454       &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1455   if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1456     return NewVal;
1457 
1458   // Check if incoming PHI value can be replaced with constant
1459   // based on implied condition.
1460   BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1461   const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1462   if (TerminatorBI && TerminatorBI->isConditional() &&
1463       TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1464     bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1465     std::optional<bool> ImpliedCond =
1466         isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1467                            Ops[0], Ops[1], DL, LHSIsTrue);
1468     if (ImpliedCond)
1469       return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1470   }
1471 
1472   return nullptr;
1473 }
1474 
1475 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1476   unsigned NumPHIValues = PN->getNumIncomingValues();
1477   if (NumPHIValues == 0)
1478     return nullptr;
1479 
1480   // We normally only transform phis with a single use.  However, if a PHI has
1481   // multiple uses and they are all the same operation, we can fold *all* of the
1482   // uses into the PHI.
1483   if (!PN->hasOneUse()) {
1484     // Walk the use list for the instruction, comparing them to I.
1485     for (User *U : PN->users()) {
1486       Instruction *UI = cast<Instruction>(U);
1487       if (UI != &I && !I.isIdenticalTo(UI))
1488         return nullptr;
1489     }
1490     // Otherwise, we can replace *all* users with the new PHI we form.
1491   }
1492 
1493   // Check to see whether the instruction can be folded into each phi operand.
1494   // If there is one operand that does not fold, remember the BB it is in.
1495   // If there is more than one or if *it* is a PHI, bail out.
1496   SmallVector<Value *> NewPhiValues;
1497   BasicBlock *NonSimplifiedBB = nullptr;
1498   Value *NonSimplifiedInVal = nullptr;
1499   for (unsigned i = 0; i != NumPHIValues; ++i) {
1500     Value *InVal = PN->getIncomingValue(i);
1501     BasicBlock *InBB = PN->getIncomingBlock(i);
1502 
1503     if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1504       NewPhiValues.push_back(NewVal);
1505       continue;
1506     }
1507 
1508     if (NonSimplifiedBB) return nullptr;  // More than one non-simplified value.
1509 
1510     NonSimplifiedBB = InBB;
1511     NonSimplifiedInVal = InVal;
1512     NewPhiValues.push_back(nullptr);
1513 
1514     // If the InVal is an invoke at the end of the pred block, then we can't
1515     // insert a computation after it without breaking the edge.
1516     if (isa<InvokeInst>(InVal))
1517       if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1518         return nullptr;
1519 
1520     // If the incoming non-constant value is reachable from the phis block,
1521     // we'll push the operation across a loop backedge. This could result in
1522     // an infinite combine loop, and is generally non-profitable (especially
1523     // if the operation was originally outside the loop).
1524     if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1525                                LI))
1526       return nullptr;
1527   }
1528 
1529   // If there is exactly one non-simplified value, we can insert a copy of the
1530   // operation in that block.  However, if this is a critical edge, we would be
1531   // inserting the computation on some other paths (e.g. inside a loop).  Only
1532   // do this if the pred block is unconditionally branching into the phi block.
1533   // Also, make sure that the pred block is not dead code.
1534   if (NonSimplifiedBB != nullptr) {
1535     BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1536     if (!BI || !BI->isUnconditional() ||
1537         !DT.isReachableFromEntry(NonSimplifiedBB))
1538       return nullptr;
1539   }
1540 
1541   // Okay, we can do the transformation: create the new PHI node.
1542   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1543   InsertNewInstBefore(NewPN, PN->getIterator());
1544   NewPN->takeName(PN);
1545   NewPN->setDebugLoc(PN->getDebugLoc());
1546 
1547   // If we are going to have to insert a new computation, do so right before the
1548   // predecessor's terminator.
1549   Instruction *Clone = nullptr;
1550   if (NonSimplifiedBB) {
1551     Clone = I.clone();
1552     for (Use &U : Clone->operands()) {
1553       if (U == PN)
1554         U = NonSimplifiedInVal;
1555       else
1556         U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1557     }
1558     InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1559   }
1560 
1561   for (unsigned i = 0; i != NumPHIValues; ++i) {
1562     if (NewPhiValues[i])
1563       NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1564     else
1565       NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1566   }
1567 
1568   for (User *U : make_early_inc_range(PN->users())) {
1569     Instruction *User = cast<Instruction>(U);
1570     if (User == &I) continue;
1571     replaceInstUsesWith(*User, NewPN);
1572     eraseInstFromFunction(*User);
1573   }
1574 
1575   replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1576                         const_cast<PHINode &>(*NewPN),
1577                         const_cast<PHINode &>(*PN), DT);
1578   return replaceInstUsesWith(I, NewPN);
1579 }
1580 
1581 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1582   // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1583   //       we are guarding against replicating the binop in >1 predecessor.
1584   //       This could miss matching a phi with 2 constant incoming values.
1585   auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1586   auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1587   if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1588       Phi0->getNumOperands() != Phi1->getNumOperands())
1589     return nullptr;
1590 
1591   // TODO: Remove the restriction for binop being in the same block as the phis.
1592   if (BO.getParent() != Phi0->getParent() ||
1593       BO.getParent() != Phi1->getParent())
1594     return nullptr;
1595 
1596   // Fold if there is at least one specific constant value in phi0 or phi1's
1597   // incoming values that comes from the same block and this specific constant
1598   // value can be used to do optimization for specific binary operator.
1599   // For example:
1600   // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1601   // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1602   // %add = add i32 %phi0, %phi1
1603   // ==>
1604   // %add = phi i32 [%j, %bb0], [%i, %bb1]
1605   Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
1606                                                /*AllowRHSConstant*/ false);
1607   if (C) {
1608     SmallVector<Value *, 4> NewIncomingValues;
1609     auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1610       auto &Phi0Use = std::get<0>(T);
1611       auto &Phi1Use = std::get<1>(T);
1612       if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1613         return false;
1614       Value *Phi0UseV = Phi0Use.get();
1615       Value *Phi1UseV = Phi1Use.get();
1616       if (Phi0UseV == C)
1617         NewIncomingValues.push_back(Phi1UseV);
1618       else if (Phi1UseV == C)
1619         NewIncomingValues.push_back(Phi0UseV);
1620       else
1621         return false;
1622       return true;
1623     };
1624 
1625     if (all_of(zip(Phi0->operands(), Phi1->operands()),
1626                CanFoldIncomingValuePair)) {
1627       PHINode *NewPhi =
1628           PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1629       assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1630              "The number of collected incoming values should equal the number "
1631              "of the original PHINode operands!");
1632       for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1633         NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1634       return NewPhi;
1635     }
1636   }
1637 
1638   if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1639     return nullptr;
1640 
1641   // Match a pair of incoming constants for one of the predecessor blocks.
1642   BasicBlock *ConstBB, *OtherBB;
1643   Constant *C0, *C1;
1644   if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1645     ConstBB = Phi0->getIncomingBlock(0);
1646     OtherBB = Phi0->getIncomingBlock(1);
1647   } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1648     ConstBB = Phi0->getIncomingBlock(1);
1649     OtherBB = Phi0->getIncomingBlock(0);
1650   } else {
1651     return nullptr;
1652   }
1653   if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1654     return nullptr;
1655 
1656   // The block that we are hoisting to must reach here unconditionally.
1657   // Otherwise, we could be speculatively executing an expensive or
1658   // non-speculative op.
1659   auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1660   if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1661       !DT.isReachableFromEntry(OtherBB))
1662     return nullptr;
1663 
1664   // TODO: This check could be tightened to only apply to binops (div/rem) that
1665   //       are not safe to speculatively execute. But that could allow hoisting
1666   //       potentially expensive instructions (fdiv for example).
1667   for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1668     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1669       return nullptr;
1670 
1671   // Fold constants for the predecessor block with constant incoming values.
1672   Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1673   if (!NewC)
1674     return nullptr;
1675 
1676   // Make a new binop in the predecessor block with the non-constant incoming
1677   // values.
1678   Builder.SetInsertPoint(PredBlockBranch);
1679   Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1680                                      Phi0->getIncomingValueForBlock(OtherBB),
1681                                      Phi1->getIncomingValueForBlock(OtherBB));
1682   if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1683     NotFoldedNewBO->copyIRFlags(&BO);
1684 
1685   // Replace the binop with a phi of the new values. The old phis are dead.
1686   PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1687   NewPhi->addIncoming(NewBO, OtherBB);
1688   NewPhi->addIncoming(NewC, ConstBB);
1689   return NewPhi;
1690 }
1691 
1692 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1693   if (!isa<Constant>(I.getOperand(1)))
1694     return nullptr;
1695 
1696   if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1697     if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1698       return NewSel;
1699   } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1700     if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1701       return NewPhi;
1702   }
1703   return nullptr;
1704 }
1705 
1706 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1707   // If this GEP has only 0 indices, it is the same pointer as
1708   // Src. If Src is not a trivial GEP too, don't combine
1709   // the indices.
1710   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1711       !Src.hasOneUse())
1712     return false;
1713   return true;
1714 }
1715 
1716 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1717   if (!isa<VectorType>(Inst.getType()))
1718     return nullptr;
1719 
1720   BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1721   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1722   assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1723          cast<VectorType>(Inst.getType())->getElementCount());
1724   assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1725          cast<VectorType>(Inst.getType())->getElementCount());
1726 
1727   // If both operands of the binop are vector concatenations, then perform the
1728   // narrow binop on each pair of the source operands followed by concatenation
1729   // of the results.
1730   Value *L0, *L1, *R0, *R1;
1731   ArrayRef<int> Mask;
1732   if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1733       match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1734       LHS->hasOneUse() && RHS->hasOneUse() &&
1735       cast<ShuffleVectorInst>(LHS)->isConcat() &&
1736       cast<ShuffleVectorInst>(RHS)->isConcat()) {
1737     // This transform does not have the speculative execution constraint as
1738     // below because the shuffle is a concatenation. The new binops are
1739     // operating on exactly the same elements as the existing binop.
1740     // TODO: We could ease the mask requirement to allow different undef lanes,
1741     //       but that requires an analysis of the binop-with-undef output value.
1742     Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1743     if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1744       BO->copyIRFlags(&Inst);
1745     Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1746     if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1747       BO->copyIRFlags(&Inst);
1748     return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1749   }
1750 
1751   auto createBinOpReverse = [&](Value *X, Value *Y) {
1752     Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
1753     if (auto *BO = dyn_cast<BinaryOperator>(V))
1754       BO->copyIRFlags(&Inst);
1755     Module *M = Inst.getModule();
1756     Function *F = Intrinsic::getDeclaration(
1757         M, Intrinsic::experimental_vector_reverse, V->getType());
1758     return CallInst::Create(F, V);
1759   };
1760 
1761   // NOTE: Reverse shuffles don't require the speculative execution protection
1762   // below because they don't affect which lanes take part in the computation.
1763 
1764   Value *V1, *V2;
1765   if (match(LHS, m_VecReverse(m_Value(V1)))) {
1766     // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
1767     if (match(RHS, m_VecReverse(m_Value(V2))) &&
1768         (LHS->hasOneUse() || RHS->hasOneUse() ||
1769          (LHS == RHS && LHS->hasNUses(2))))
1770       return createBinOpReverse(V1, V2);
1771 
1772     // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
1773     if (LHS->hasOneUse() && isSplatValue(RHS))
1774       return createBinOpReverse(V1, RHS);
1775   }
1776   // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
1777   else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
1778     return createBinOpReverse(LHS, V2);
1779 
1780   // It may not be safe to reorder shuffles and things like div, urem, etc.
1781   // because we may trap when executing those ops on unknown vector elements.
1782   // See PR20059.
1783   if (!isSafeToSpeculativelyExecute(&Inst))
1784     return nullptr;
1785 
1786   auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1787     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1788     if (auto *BO = dyn_cast<BinaryOperator>(XY))
1789       BO->copyIRFlags(&Inst);
1790     return new ShuffleVectorInst(XY, M);
1791   };
1792 
1793   // If both arguments of the binary operation are shuffles that use the same
1794   // mask and shuffle within a single vector, move the shuffle after the binop.
1795   if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
1796       match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
1797       V1->getType() == V2->getType() &&
1798       (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1799     // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1800     return createBinOpShuffle(V1, V2, Mask);
1801   }
1802 
1803   // If both arguments of a commutative binop are select-shuffles that use the
1804   // same mask with commuted operands, the shuffles are unnecessary.
1805   if (Inst.isCommutative() &&
1806       match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1807       match(RHS,
1808             m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1809     auto *LShuf = cast<ShuffleVectorInst>(LHS);
1810     auto *RShuf = cast<ShuffleVectorInst>(RHS);
1811     // TODO: Allow shuffles that contain undefs in the mask?
1812     //       That is legal, but it reduces undef knowledge.
1813     // TODO: Allow arbitrary shuffles by shuffling after binop?
1814     //       That might be legal, but we have to deal with poison.
1815     if (LShuf->isSelect() &&
1816         !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
1817         RShuf->isSelect() &&
1818         !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
1819       // Example:
1820       // LHS = shuffle V1, V2, <0, 5, 6, 3>
1821       // RHS = shuffle V2, V1, <0, 5, 6, 3>
1822       // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1823       Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1824       NewBO->copyIRFlags(&Inst);
1825       return NewBO;
1826     }
1827   }
1828 
1829   // If one argument is a shuffle within one vector and the other is a constant,
1830   // try moving the shuffle after the binary operation. This canonicalization
1831   // intends to move shuffles closer to other shuffles and binops closer to
1832   // other binops, so they can be folded. It may also enable demanded elements
1833   // transforms.
1834   Constant *C;
1835   auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1836   if (InstVTy &&
1837       match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
1838                                                 m_Mask(Mask))),
1839                              m_ImmConstant(C))) &&
1840       cast<FixedVectorType>(V1->getType())->getNumElements() <=
1841           InstVTy->getNumElements()) {
1842     assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1843            "Shuffle should not change scalar type");
1844 
1845     // Find constant NewC that has property:
1846     //   shuffle(NewC, ShMask) = C
1847     // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1848     // reorder is not possible. A 1-to-1 mapping is not required. Example:
1849     // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1850     bool ConstOp1 = isa<Constant>(RHS);
1851     ArrayRef<int> ShMask = Mask;
1852     unsigned SrcVecNumElts =
1853         cast<FixedVectorType>(V1->getType())->getNumElements();
1854     PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
1855     SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
1856     bool MayChange = true;
1857     unsigned NumElts = InstVTy->getNumElements();
1858     for (unsigned I = 0; I < NumElts; ++I) {
1859       Constant *CElt = C->getAggregateElement(I);
1860       if (ShMask[I] >= 0) {
1861         assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1862         Constant *NewCElt = NewVecC[ShMask[I]];
1863         // Bail out if:
1864         // 1. The constant vector contains a constant expression.
1865         // 2. The shuffle needs an element of the constant vector that can't
1866         //    be mapped to a new constant vector.
1867         // 3. This is a widening shuffle that copies elements of V1 into the
1868         //    extended elements (extending with poison is allowed).
1869         if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
1870             I >= SrcVecNumElts) {
1871           MayChange = false;
1872           break;
1873         }
1874         NewVecC[ShMask[I]] = CElt;
1875       }
1876       // If this is a widening shuffle, we must be able to extend with poison
1877       // elements. If the original binop does not produce a poison in the high
1878       // lanes, then this transform is not safe.
1879       // Similarly for poison lanes due to the shuffle mask, we can only
1880       // transform binops that preserve poison.
1881       // TODO: We could shuffle those non-poison constant values into the
1882       //       result by using a constant vector (rather than an poison vector)
1883       //       as operand 1 of the new binop, but that might be too aggressive
1884       //       for target-independent shuffle creation.
1885       if (I >= SrcVecNumElts || ShMask[I] < 0) {
1886         Constant *MaybePoison =
1887             ConstOp1
1888                 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
1889                 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
1890         if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
1891           MayChange = false;
1892           break;
1893         }
1894       }
1895     }
1896     if (MayChange) {
1897       Constant *NewC = ConstantVector::get(NewVecC);
1898       // It may not be safe to execute a binop on a vector with poison elements
1899       // because the entire instruction can be folded to undef or create poison
1900       // that did not exist in the original code.
1901       // TODO: The shift case should not be necessary.
1902       if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1903         NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1904 
1905       // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1906       // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1907       Value *NewLHS = ConstOp1 ? V1 : NewC;
1908       Value *NewRHS = ConstOp1 ? NewC : V1;
1909       return createBinOpShuffle(NewLHS, NewRHS, Mask);
1910     }
1911   }
1912 
1913   // Try to reassociate to sink a splat shuffle after a binary operation.
1914   if (Inst.isAssociative() && Inst.isCommutative()) {
1915     // Canonicalize shuffle operand as LHS.
1916     if (isa<ShuffleVectorInst>(RHS))
1917       std::swap(LHS, RHS);
1918 
1919     Value *X;
1920     ArrayRef<int> MaskC;
1921     int SplatIndex;
1922     Value *Y, *OtherOp;
1923     if (!match(LHS,
1924                m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1925         !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1926         X->getType() != Inst.getType() ||
1927         !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
1928       return nullptr;
1929 
1930     // FIXME: This may not be safe if the analysis allows undef elements. By
1931     //        moving 'Y' before the splat shuffle, we are implicitly assuming
1932     //        that it is not undef/poison at the splat index.
1933     if (isSplatValue(OtherOp, SplatIndex)) {
1934       std::swap(Y, OtherOp);
1935     } else if (!isSplatValue(Y, SplatIndex)) {
1936       return nullptr;
1937     }
1938 
1939     // X and Y are splatted values, so perform the binary operation on those
1940     // values followed by a splat followed by the 2nd binary operation:
1941     // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1942     Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1943     SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1944     Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1945     Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1946 
1947     // Intersect FMF on both new binops. Other (poison-generating) flags are
1948     // dropped to be safe.
1949     if (isa<FPMathOperator>(R)) {
1950       R->copyFastMathFlags(&Inst);
1951       R->andIRFlags(RHS);
1952     }
1953     if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1954       NewInstBO->copyIRFlags(R);
1955     return R;
1956   }
1957 
1958   return nullptr;
1959 }
1960 
1961 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1962 /// of a value. This requires a potentially expensive known bits check to make
1963 /// sure the narrow op does not overflow.
1964 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1965   // We need at least one extended operand.
1966   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1967 
1968   // If this is a sub, we swap the operands since we always want an extension
1969   // on the RHS. The LHS can be an extension or a constant.
1970   if (BO.getOpcode() == Instruction::Sub)
1971     std::swap(Op0, Op1);
1972 
1973   Value *X;
1974   bool IsSext = match(Op0, m_SExt(m_Value(X)));
1975   if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1976     return nullptr;
1977 
1978   // If both operands are the same extension from the same source type and we
1979   // can eliminate at least one (hasOneUse), this might work.
1980   CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1981   Value *Y;
1982   if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1983         cast<Operator>(Op1)->getOpcode() == CastOpc &&
1984         (Op0->hasOneUse() || Op1->hasOneUse()))) {
1985     // If that did not match, see if we have a suitable constant operand.
1986     // Truncating and extending must produce the same constant.
1987     Constant *WideC;
1988     if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1989       return nullptr;
1990     Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
1991     if (!NarrowC)
1992       return nullptr;
1993     Y = NarrowC;
1994   }
1995 
1996   // Swap back now that we found our operands.
1997   if (BO.getOpcode() == Instruction::Sub)
1998     std::swap(X, Y);
1999 
2000   // Both operands have narrow versions. Last step: the math must not overflow
2001   // in the narrow width.
2002   if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2003     return nullptr;
2004 
2005   // bo (ext X), (ext Y) --> ext (bo X, Y)
2006   // bo (ext X), C       --> ext (bo X, C')
2007   Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2008   if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2009     if (IsSext)
2010       NewBinOp->setHasNoSignedWrap();
2011     else
2012       NewBinOp->setHasNoUnsignedWrap();
2013   }
2014   return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2015 }
2016 
2017 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
2018   // At least one GEP must be inbounds.
2019   if (!GEP1.isInBounds() && !GEP2.isInBounds())
2020     return false;
2021 
2022   return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
2023          (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
2024 }
2025 
2026 /// Thread a GEP operation with constant indices through the constant true/false
2027 /// arms of a select.
2028 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
2029                                   InstCombiner::BuilderTy &Builder) {
2030   if (!GEP.hasAllConstantIndices())
2031     return nullptr;
2032 
2033   Instruction *Sel;
2034   Value *Cond;
2035   Constant *TrueC, *FalseC;
2036   if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2037       !match(Sel,
2038              m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2039     return nullptr;
2040 
2041   // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2042   // Propagate 'inbounds' and metadata from existing instructions.
2043   // Note: using IRBuilder to create the constants for efficiency.
2044   SmallVector<Value *, 4> IndexC(GEP.indices());
2045   bool IsInBounds = GEP.isInBounds();
2046   Type *Ty = GEP.getSourceElementType();
2047   Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
2048   Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
2049   return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2050 }
2051 
2052 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
2053                                              GEPOperator *Src) {
2054   // Combine Indices - If the source pointer to this getelementptr instruction
2055   // is a getelementptr instruction with matching element type, combine the
2056   // indices of the two getelementptr instructions into a single instruction.
2057   if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2058     return nullptr;
2059 
2060   // For constant GEPs, use a more general offset-based folding approach.
2061   Type *PtrTy = Src->getType()->getScalarType();
2062   if (GEP.hasAllConstantIndices() &&
2063       (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2064     // Split Src into a variable part and a constant suffix.
2065     gep_type_iterator GTI = gep_type_begin(*Src);
2066     Type *BaseType = GTI.getIndexedType();
2067     bool IsFirstType = true;
2068     unsigned NumVarIndices = 0;
2069     for (auto Pair : enumerate(Src->indices())) {
2070       if (!isa<ConstantInt>(Pair.value())) {
2071         BaseType = GTI.getIndexedType();
2072         IsFirstType = false;
2073         NumVarIndices = Pair.index() + 1;
2074       }
2075       ++GTI;
2076     }
2077 
2078     // Determine the offset for the constant suffix of Src.
2079     APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2080     if (NumVarIndices != Src->getNumIndices()) {
2081       // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2082       if (BaseType->isScalableTy())
2083         return nullptr;
2084 
2085       SmallVector<Value *> ConstantIndices;
2086       if (!IsFirstType)
2087         ConstantIndices.push_back(
2088             Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2089       append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2090       Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2091     }
2092 
2093     // Add the offset for GEP (which is fully constant).
2094     if (!GEP.accumulateConstantOffset(DL, Offset))
2095       return nullptr;
2096 
2097     APInt OffsetOld = Offset;
2098     // Convert the total offset back into indices.
2099     SmallVector<APInt> ConstIndices =
2100         DL.getGEPIndicesForOffset(BaseType, Offset);
2101     if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2102       // If both GEP are constant-indexed, and cannot be merged in either way,
2103       // convert them to a GEP of i8.
2104       if (Src->hasAllConstantIndices())
2105         return replaceInstUsesWith(
2106             GEP, Builder.CreateGEP(
2107                      Builder.getInt8Ty(), Src->getOperand(0),
2108                      Builder.getInt(OffsetOld), "",
2109                      isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2110       return nullptr;
2111     }
2112 
2113     bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2114     SmallVector<Value *> Indices;
2115     append_range(Indices, drop_end(Src->indices(),
2116                                    Src->getNumIndices() - NumVarIndices));
2117     for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2118       Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2119       // Even if the total offset is inbounds, we may end up representing it
2120       // by first performing a larger negative offset, and then a smaller
2121       // positive one. The large negative offset might go out of bounds. Only
2122       // preserve inbounds if all signs are the same.
2123       IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2124     }
2125 
2126     return replaceInstUsesWith(
2127         GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2128                                Indices, "", IsInBounds));
2129   }
2130 
2131   if (Src->getResultElementType() != GEP.getSourceElementType())
2132     return nullptr;
2133 
2134   SmallVector<Value*, 8> Indices;
2135 
2136   // Find out whether the last index in the source GEP is a sequential idx.
2137   bool EndsWithSequential = false;
2138   for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2139        I != E; ++I)
2140     EndsWithSequential = I.isSequential();
2141 
2142   // Can we combine the two pointer arithmetics offsets?
2143   if (EndsWithSequential) {
2144     // Replace: gep (gep %P, long B), long A, ...
2145     // With:    T = long A+B; gep %P, T, ...
2146     Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2147     Value *GO1 = GEP.getOperand(1);
2148 
2149     // If they aren't the same type, then the input hasn't been processed
2150     // by the loop above yet (which canonicalizes sequential index types to
2151     // intptr_t).  Just avoid transforming this until the input has been
2152     // normalized.
2153     if (SO1->getType() != GO1->getType())
2154       return nullptr;
2155 
2156     Value *Sum =
2157         simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2158     // Only do the combine when we are sure the cost after the
2159     // merge is never more than that before the merge.
2160     if (Sum == nullptr)
2161       return nullptr;
2162 
2163     // Update the GEP in place if possible.
2164     if (Src->getNumOperands() == 2) {
2165       GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2166       replaceOperand(GEP, 0, Src->getOperand(0));
2167       replaceOperand(GEP, 1, Sum);
2168       return &GEP;
2169     }
2170     Indices.append(Src->op_begin()+1, Src->op_end()-1);
2171     Indices.push_back(Sum);
2172     Indices.append(GEP.op_begin()+2, GEP.op_end());
2173   } else if (isa<Constant>(*GEP.idx_begin()) &&
2174              cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2175              Src->getNumOperands() != 1) {
2176     // Otherwise we can do the fold if the first index of the GEP is a zero
2177     Indices.append(Src->op_begin()+1, Src->op_end());
2178     Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2179   }
2180 
2181   if (!Indices.empty())
2182     return replaceInstUsesWith(
2183         GEP, Builder.CreateGEP(
2184                  Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2185                  isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2186 
2187   return nullptr;
2188 }
2189 
2190 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
2191                                            BuilderTy *Builder,
2192                                            bool &DoesConsume, unsigned Depth) {
2193   static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2194   // ~(~(X)) -> X.
2195   Value *A, *B;
2196   if (match(V, m_Not(m_Value(A)))) {
2197     DoesConsume = true;
2198     return A;
2199   }
2200 
2201   Constant *C;
2202   // Constants can be considered to be not'ed values.
2203   if (match(V, m_ImmConstant(C)))
2204     return ConstantExpr::getNot(C);
2205 
2206   if (Depth++ >= MaxAnalysisRecursionDepth)
2207     return nullptr;
2208 
2209   // The rest of the cases require that we invert all uses so don't bother
2210   // doing the analysis if we know we can't use the result.
2211   if (!WillInvertAllUses)
2212     return nullptr;
2213 
2214   // Compares can be inverted if all of their uses are being modified to use
2215   // the ~V.
2216   if (auto *I = dyn_cast<CmpInst>(V)) {
2217     if (Builder != nullptr)
2218       return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2219                                 I->getOperand(1));
2220     return NonNull;
2221   }
2222 
2223   // If `V` is of the form `A + B` then `-1 - V` can be folded into
2224   // `(-1 - B) - A` if we are willing to invert all of the uses.
2225   if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2226     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2227                                          DoesConsume, Depth))
2228       return Builder ? Builder->CreateSub(BV, A) : NonNull;
2229     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2230                                          DoesConsume, Depth))
2231       return Builder ? Builder->CreateSub(AV, B) : NonNull;
2232     return nullptr;
2233   }
2234 
2235   // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2236   // into `A ^ B` if we are willing to invert all of the uses.
2237   if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2238     if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2239                                          DoesConsume, Depth))
2240       return Builder ? Builder->CreateXor(A, BV) : NonNull;
2241     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2242                                          DoesConsume, Depth))
2243       return Builder ? Builder->CreateXor(AV, B) : NonNull;
2244     return nullptr;
2245   }
2246 
2247   // If `V` is of the form `B - A` then `-1 - V` can be folded into
2248   // `A + (-1 - B)` if we are willing to invert all of the uses.
2249   if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2250     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2251                                          DoesConsume, Depth))
2252       return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2253     return nullptr;
2254   }
2255 
2256   // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2257   // into `A s>> B` if we are willing to invert all of the uses.
2258   if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2259     if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2260                                          DoesConsume, Depth))
2261       return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2262     return nullptr;
2263   }
2264 
2265   Value *Cond;
2266   // LogicOps are special in that we canonicalize them at the cost of an
2267   // instruction.
2268   bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2269                   !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2270   // Selects/min/max with invertible operands are freely invertible
2271   if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2272     if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2273                                DoesConsume, Depth))
2274       return nullptr;
2275     if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2276                                             DoesConsume, Depth)) {
2277       if (Builder != nullptr) {
2278         Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2279                                             DoesConsume, Depth);
2280         assert(NotB != nullptr &&
2281                "Unable to build inverted value for known freely invertable op");
2282         if (auto *II = dyn_cast<IntrinsicInst>(V))
2283           return Builder->CreateBinaryIntrinsic(
2284               getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2285         return Builder->CreateSelect(Cond, NotA, NotB);
2286       }
2287       return NonNull;
2288     }
2289   }
2290 
2291   return nullptr;
2292 }
2293 
2294 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2295   Value *PtrOp = GEP.getOperand(0);
2296   SmallVector<Value *, 8> Indices(GEP.indices());
2297   Type *GEPType = GEP.getType();
2298   Type *GEPEltType = GEP.getSourceElementType();
2299   bool IsGEPSrcEleScalable = GEPEltType->isScalableTy();
2300   if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2301                                  SQ.getWithInstruction(&GEP)))
2302     return replaceInstUsesWith(GEP, V);
2303 
2304   // For vector geps, use the generic demanded vector support.
2305   // Skip if GEP return type is scalable. The number of elements is unknown at
2306   // compile-time.
2307   if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2308     auto VWidth = GEPFVTy->getNumElements();
2309     APInt PoisonElts(VWidth, 0);
2310     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2311     if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2312                                               PoisonElts)) {
2313       if (V != &GEP)
2314         return replaceInstUsesWith(GEP, V);
2315       return &GEP;
2316     }
2317 
2318     // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2319     // possible (decide on canonical form for pointer broadcast), 3) exploit
2320     // undef elements to decrease demanded bits
2321   }
2322 
2323   // Eliminate unneeded casts for indices, and replace indices which displace
2324   // by multiples of a zero size type with zero.
2325   bool MadeChange = false;
2326 
2327   // Index width may not be the same width as pointer width.
2328   // Data layout chooses the right type based on supported integer types.
2329   Type *NewScalarIndexTy =
2330       DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2331 
2332   gep_type_iterator GTI = gep_type_begin(GEP);
2333   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2334        ++I, ++GTI) {
2335     // Skip indices into struct types.
2336     if (GTI.isStruct())
2337       continue;
2338 
2339     Type *IndexTy = (*I)->getType();
2340     Type *NewIndexType =
2341         IndexTy->isVectorTy()
2342             ? VectorType::get(NewScalarIndexTy,
2343                               cast<VectorType>(IndexTy)->getElementCount())
2344             : NewScalarIndexTy;
2345 
2346     // If the element type has zero size then any index over it is equivalent
2347     // to an index of zero, so replace it with zero if it is not zero already.
2348     Type *EltTy = GTI.getIndexedType();
2349     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2350       if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2351         *I = Constant::getNullValue(NewIndexType);
2352         MadeChange = true;
2353       }
2354 
2355     if (IndexTy != NewIndexType) {
2356       // If we are using a wider index than needed for this platform, shrink
2357       // it to what we need.  If narrower, sign-extend it to what we need.
2358       // This explicit cast can make subsequent optimizations more obvious.
2359       *I = Builder.CreateIntCast(*I, NewIndexType, true);
2360       MadeChange = true;
2361     }
2362   }
2363   if (MadeChange)
2364     return &GEP;
2365 
2366   // Check to see if the inputs to the PHI node are getelementptr instructions.
2367   if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2368     auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2369     if (!Op1)
2370       return nullptr;
2371 
2372     // Don't fold a GEP into itself through a PHI node. This can only happen
2373     // through the back-edge of a loop. Folding a GEP into itself means that
2374     // the value of the previous iteration needs to be stored in the meantime,
2375     // thus requiring an additional register variable to be live, but not
2376     // actually achieving anything (the GEP still needs to be executed once per
2377     // loop iteration).
2378     if (Op1 == &GEP)
2379       return nullptr;
2380 
2381     int DI = -1;
2382 
2383     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2384       auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2385       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2386           Op1->getSourceElementType() != Op2->getSourceElementType())
2387         return nullptr;
2388 
2389       // As for Op1 above, don't try to fold a GEP into itself.
2390       if (Op2 == &GEP)
2391         return nullptr;
2392 
2393       // Keep track of the type as we walk the GEP.
2394       Type *CurTy = nullptr;
2395 
2396       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2397         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2398           return nullptr;
2399 
2400         if (Op1->getOperand(J) != Op2->getOperand(J)) {
2401           if (DI == -1) {
2402             // We have not seen any differences yet in the GEPs feeding the
2403             // PHI yet, so we record this one if it is allowed to be a
2404             // variable.
2405 
2406             // The first two arguments can vary for any GEP, the rest have to be
2407             // static for struct slots
2408             if (J > 1) {
2409               assert(CurTy && "No current type?");
2410               if (CurTy->isStructTy())
2411                 return nullptr;
2412             }
2413 
2414             DI = J;
2415           } else {
2416             // The GEP is different by more than one input. While this could be
2417             // extended to support GEPs that vary by more than one variable it
2418             // doesn't make sense since it greatly increases the complexity and
2419             // would result in an R+R+R addressing mode which no backend
2420             // directly supports and would need to be broken into several
2421             // simpler instructions anyway.
2422             return nullptr;
2423           }
2424         }
2425 
2426         // Sink down a layer of the type for the next iteration.
2427         if (J > 0) {
2428           if (J == 1) {
2429             CurTy = Op1->getSourceElementType();
2430           } else {
2431             CurTy =
2432                 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2433           }
2434         }
2435       }
2436     }
2437 
2438     // If not all GEPs are identical we'll have to create a new PHI node.
2439     // Check that the old PHI node has only one use so that it will get
2440     // removed.
2441     if (DI != -1 && !PN->hasOneUse())
2442       return nullptr;
2443 
2444     auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2445     if (DI == -1) {
2446       // All the GEPs feeding the PHI are identical. Clone one down into our
2447       // BB so that it can be merged with the current GEP.
2448     } else {
2449       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2450       // into the current block so it can be merged, and create a new PHI to
2451       // set that index.
2452       PHINode *NewPN;
2453       {
2454         IRBuilderBase::InsertPointGuard Guard(Builder);
2455         Builder.SetInsertPoint(PN);
2456         NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2457                                   PN->getNumOperands());
2458       }
2459 
2460       for (auto &I : PN->operands())
2461         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2462                            PN->getIncomingBlock(I));
2463 
2464       NewGEP->setOperand(DI, NewPN);
2465     }
2466 
2467     NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2468     return replaceOperand(GEP, 0, NewGEP);
2469   }
2470 
2471   if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2472     if (Instruction *I = visitGEPOfGEP(GEP, Src))
2473       return I;
2474 
2475   // Skip if GEP source element type is scalable. The type alloc size is unknown
2476   // at compile-time.
2477   if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2478     unsigned AS = GEP.getPointerAddressSpace();
2479     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2480         DL.getIndexSizeInBits(AS)) {
2481       uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2482 
2483       if (TyAllocSize == 1) {
2484         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2485         // but only if the result pointer is only used as if it were an integer,
2486         // or both point to the same underlying object (otherwise provenance is
2487         // not necessarily retained).
2488         Value *X = GEP.getPointerOperand();
2489         Value *Y;
2490         if (match(GEP.getOperand(1),
2491                   m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2492             GEPType == Y->getType()) {
2493           bool HasSameUnderlyingObject =
2494               getUnderlyingObject(X) == getUnderlyingObject(Y);
2495           bool Changed = false;
2496           GEP.replaceUsesWithIf(Y, [&](Use &U) {
2497             bool ShouldReplace = HasSameUnderlyingObject ||
2498                                  isa<ICmpInst>(U.getUser()) ||
2499                                  isa<PtrToIntInst>(U.getUser());
2500             Changed |= ShouldReplace;
2501             return ShouldReplace;
2502           });
2503           return Changed ? &GEP : nullptr;
2504         }
2505       } else {
2506         // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2507         Value *V;
2508         if ((has_single_bit(TyAllocSize) &&
2509              match(GEP.getOperand(1),
2510                    m_Exact(m_AShr(m_Value(V),
2511                                   m_SpecificInt(countr_zero(TyAllocSize)))))) ||
2512             match(GEP.getOperand(1),
2513                   m_Exact(m_SDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) {
2514           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2515               Builder.getInt8Ty(), GEP.getPointerOperand(), V);
2516           NewGEP->setIsInBounds(GEP.isInBounds());
2517           return NewGEP;
2518         }
2519       }
2520     }
2521   }
2522   // We do not handle pointer-vector geps here.
2523   if (GEPType->isVectorTy())
2524     return nullptr;
2525 
2526   if (GEP.getNumIndices() == 1) {
2527     // Try to replace ADD + GEP with GEP + GEP.
2528     Value *Idx1, *Idx2;
2529     if (match(GEP.getOperand(1),
2530               m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
2531       //   %idx = add i64 %idx1, %idx2
2532       //   %gep = getelementptr i32, ptr %ptr, i64 %idx
2533       // as:
2534       //   %newptr = getelementptr i32, ptr %ptr, i64 %idx1
2535       //   %newgep = getelementptr i32, ptr %newptr, i64 %idx2
2536       auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(),
2537                                        GEP.getPointerOperand(), Idx1);
2538       return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr,
2539                                        Idx2);
2540     }
2541     ConstantInt *C;
2542     if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
2543                                      m_Value(Idx1), m_ConstantInt(C))))))) {
2544       // %add = add nsw i32 %idx1, idx2
2545       // %sidx = sext i32 %add to i64
2546       // %gep = getelementptr i32, ptr %ptr, i64 %sidx
2547       // as:
2548       // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
2549       // %newgep = getelementptr i32, ptr %newptr, i32 idx2
2550       auto *NewPtr = Builder.CreateGEP(
2551           GEP.getResultElementType(), GEP.getPointerOperand(),
2552           Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()));
2553       return GetElementPtrInst::Create(
2554           GEP.getResultElementType(), NewPtr,
2555           Builder.CreateSExt(C, GEP.getOperand(1)->getType()));
2556     }
2557   }
2558 
2559   if (!GEP.isInBounds()) {
2560     unsigned IdxWidth =
2561         DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2562     APInt BasePtrOffset(IdxWidth, 0);
2563     Value *UnderlyingPtrOp =
2564             PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2565                                                              BasePtrOffset);
2566     bool CanBeNull, CanBeFreed;
2567     uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
2568         DL, CanBeNull, CanBeFreed);
2569     if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
2570       if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2571           BasePtrOffset.isNonNegative()) {
2572         APInt AllocSize(IdxWidth, DerefBytes);
2573         if (BasePtrOffset.ule(AllocSize)) {
2574           return GetElementPtrInst::CreateInBounds(
2575               GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2576         }
2577       }
2578     }
2579   }
2580 
2581   if (Instruction *R = foldSelectGEP(GEP, Builder))
2582     return R;
2583 
2584   return nullptr;
2585 }
2586 
2587 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2588                                          Instruction *AI) {
2589   if (isa<ConstantPointerNull>(V))
2590     return true;
2591   if (auto *LI = dyn_cast<LoadInst>(V))
2592     return isa<GlobalVariable>(LI->getPointerOperand());
2593   // Two distinct allocations will never be equal.
2594   return isAllocLikeFn(V, &TLI) && V != AI;
2595 }
2596 
2597 /// Given a call CB which uses an address UsedV, return true if we can prove the
2598 /// call's only possible effect is storing to V.
2599 static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2600                              const TargetLibraryInfo &TLI) {
2601   if (!CB.use_empty())
2602     // TODO: add recursion if returned attribute is present
2603     return false;
2604 
2605   if (CB.isTerminator())
2606     // TODO: remove implementation restriction
2607     return false;
2608 
2609   if (!CB.willReturn() || !CB.doesNotThrow())
2610     return false;
2611 
2612   // If the only possible side effect of the call is writing to the alloca,
2613   // and the result isn't used, we can safely remove any reads implied by the
2614   // call including those which might read the alloca itself.
2615   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2616   return Dest && Dest->Ptr == UsedV;
2617 }
2618 
2619 static bool isAllocSiteRemovable(Instruction *AI,
2620                                  SmallVectorImpl<WeakTrackingVH> &Users,
2621                                  const TargetLibraryInfo &TLI) {
2622   SmallVector<Instruction*, 4> Worklist;
2623   const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2624   Worklist.push_back(AI);
2625 
2626   do {
2627     Instruction *PI = Worklist.pop_back_val();
2628     for (User *U : PI->users()) {
2629       Instruction *I = cast<Instruction>(U);
2630       switch (I->getOpcode()) {
2631       default:
2632         // Give up the moment we see something we can't handle.
2633         return false;
2634 
2635       case Instruction::AddrSpaceCast:
2636       case Instruction::BitCast:
2637       case Instruction::GetElementPtr:
2638         Users.emplace_back(I);
2639         Worklist.push_back(I);
2640         continue;
2641 
2642       case Instruction::ICmp: {
2643         ICmpInst *ICI = cast<ICmpInst>(I);
2644         // We can fold eq/ne comparisons with null to false/true, respectively.
2645         // We also fold comparisons in some conditions provided the alloc has
2646         // not escaped (see isNeverEqualToUnescapedAlloc).
2647         if (!ICI->isEquality())
2648           return false;
2649         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2650         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2651           return false;
2652 
2653         // Do not fold compares to aligned_alloc calls, as they may have to
2654         // return null in case the required alignment cannot be satisfied,
2655         // unless we can prove that both alignment and size are valid.
2656         auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
2657           // Check if alignment and size of a call to aligned_alloc is valid,
2658           // that is alignment is a power-of-2 and the size is a multiple of the
2659           // alignment.
2660           const APInt *Alignment;
2661           const APInt *Size;
2662           return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
2663                  match(CB->getArgOperand(1), m_APInt(Size)) &&
2664                  Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
2665         };
2666         auto *CB = dyn_cast<CallBase>(AI);
2667         LibFunc TheLibFunc;
2668         if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
2669             TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
2670             !AlignmentAndSizeKnownValid(CB))
2671           return false;
2672         Users.emplace_back(I);
2673         continue;
2674       }
2675 
2676       case Instruction::Call:
2677         // Ignore no-op and store intrinsics.
2678         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2679           switch (II->getIntrinsicID()) {
2680           default:
2681             return false;
2682 
2683           case Intrinsic::memmove:
2684           case Intrinsic::memcpy:
2685           case Intrinsic::memset: {
2686             MemIntrinsic *MI = cast<MemIntrinsic>(II);
2687             if (MI->isVolatile() || MI->getRawDest() != PI)
2688               return false;
2689             [[fallthrough]];
2690           }
2691           case Intrinsic::assume:
2692           case Intrinsic::invariant_start:
2693           case Intrinsic::invariant_end:
2694           case Intrinsic::lifetime_start:
2695           case Intrinsic::lifetime_end:
2696           case Intrinsic::objectsize:
2697             Users.emplace_back(I);
2698             continue;
2699           case Intrinsic::launder_invariant_group:
2700           case Intrinsic::strip_invariant_group:
2701             Users.emplace_back(I);
2702             Worklist.push_back(I);
2703             continue;
2704           }
2705         }
2706 
2707         if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2708           Users.emplace_back(I);
2709           continue;
2710         }
2711 
2712         if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
2713             getAllocationFamily(I, &TLI) == Family) {
2714           assert(Family);
2715           Users.emplace_back(I);
2716           continue;
2717         }
2718 
2719         if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
2720             getAllocationFamily(I, &TLI) == Family) {
2721           assert(Family);
2722           Users.emplace_back(I);
2723           Worklist.push_back(I);
2724           continue;
2725         }
2726 
2727         return false;
2728 
2729       case Instruction::Store: {
2730         StoreInst *SI = cast<StoreInst>(I);
2731         if (SI->isVolatile() || SI->getPointerOperand() != PI)
2732           return false;
2733         Users.emplace_back(I);
2734         continue;
2735       }
2736       }
2737       llvm_unreachable("missing a return?");
2738     }
2739   } while (!Worklist.empty());
2740   return true;
2741 }
2742 
2743 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2744   assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
2745 
2746   // If we have a malloc call which is only used in any amount of comparisons to
2747   // null and free calls, delete the calls and replace the comparisons with true
2748   // or false as appropriate.
2749 
2750   // This is based on the principle that we can substitute our own allocation
2751   // function (which will never return null) rather than knowledge of the
2752   // specific function being called. In some sense this can change the permitted
2753   // outputs of a program (when we convert a malloc to an alloca, the fact that
2754   // the allocation is now on the stack is potentially visible, for example),
2755   // but we believe in a permissible manner.
2756   SmallVector<WeakTrackingVH, 64> Users;
2757 
2758   // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2759   // before each store.
2760   SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2761   SmallVector<DPValue *, 8> DPVs;
2762   std::unique_ptr<DIBuilder> DIB;
2763   if (isa<AllocaInst>(MI)) {
2764     findDbgUsers(DVIs, &MI, &DPVs);
2765     DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2766   }
2767 
2768   if (isAllocSiteRemovable(&MI, Users, TLI)) {
2769     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2770       // Lowering all @llvm.objectsize calls first because they may
2771       // use a bitcast/GEP of the alloca we are removing.
2772       if (!Users[i])
2773        continue;
2774 
2775       Instruction *I = cast<Instruction>(&*Users[i]);
2776 
2777       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2778         if (II->getIntrinsicID() == Intrinsic::objectsize) {
2779           SmallVector<Instruction *> InsertedInstructions;
2780           Value *Result = lowerObjectSizeCall(
2781               II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
2782           for (Instruction *Inserted : InsertedInstructions)
2783             Worklist.add(Inserted);
2784           replaceInstUsesWith(*I, Result);
2785           eraseInstFromFunction(*I);
2786           Users[i] = nullptr; // Skip examining in the next loop.
2787         }
2788       }
2789     }
2790     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2791       if (!Users[i])
2792         continue;
2793 
2794       Instruction *I = cast<Instruction>(&*Users[i]);
2795 
2796       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2797         replaceInstUsesWith(*C,
2798                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
2799                                              C->isFalseWhenEqual()));
2800       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2801         for (auto *DVI : DVIs)
2802           if (DVI->isAddressOfVariable())
2803             ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2804         for (auto *DPV : DPVs)
2805           if (DPV->isAddressOfVariable())
2806             ConvertDebugDeclareToDebugValue(DPV, SI, *DIB);
2807       } else {
2808         // Casts, GEP, or anything else: we're about to delete this instruction,
2809         // so it can not have any valid uses.
2810         replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2811       }
2812       eraseInstFromFunction(*I);
2813     }
2814 
2815     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2816       // Replace invoke with a NOP intrinsic to maintain the original CFG
2817       Module *M = II->getModule();
2818       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2819       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2820                          std::nullopt, "", II->getParent());
2821     }
2822 
2823     // Remove debug intrinsics which describe the value contained within the
2824     // alloca. In addition to removing dbg.{declare,addr} which simply point to
2825     // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2826     //
2827     // ```
2828     //   define void @foo(i32 %0) {
2829     //     %a = alloca i32                              ; Deleted.
2830     //     store i32 %0, i32* %a
2831     //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2832     //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2833     //     call void @trivially_inlinable_no_op(i32* %a)
2834     //     ret void
2835     //  }
2836     // ```
2837     //
2838     // This may not be required if we stop describing the contents of allocas
2839     // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2840     // the LowerDbgDeclare utility.
2841     //
2842     // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2843     // "arg0" dbg.value may be stale after the call. However, failing to remove
2844     // the DW_OP_deref dbg.value causes large gaps in location coverage.
2845     //
2846     // FIXME: the Assignment Tracking project has now likely made this
2847     // redundant (and it's sometimes harmful).
2848     for (auto *DVI : DVIs)
2849       if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2850         DVI->eraseFromParent();
2851     for (auto *DPV : DPVs)
2852       if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref())
2853         DPV->eraseFromParent();
2854 
2855     return eraseInstFromFunction(MI);
2856   }
2857   return nullptr;
2858 }
2859 
2860 /// Move the call to free before a NULL test.
2861 ///
2862 /// Check if this free is accessed after its argument has been test
2863 /// against NULL (property 0).
2864 /// If yes, it is legal to move this call in its predecessor block.
2865 ///
2866 /// The move is performed only if the block containing the call to free
2867 /// will be removed, i.e.:
2868 /// 1. it has only one predecessor P, and P has two successors
2869 /// 2. it contains the call, noops, and an unconditional branch
2870 /// 3. its successor is the same as its predecessor's successor
2871 ///
2872 /// The profitability is out-of concern here and this function should
2873 /// be called only if the caller knows this transformation would be
2874 /// profitable (e.g., for code size).
2875 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2876                                                 const DataLayout &DL) {
2877   Value *Op = FI.getArgOperand(0);
2878   BasicBlock *FreeInstrBB = FI.getParent();
2879   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2880 
2881   // Validate part of constraint #1: Only one predecessor
2882   // FIXME: We can extend the number of predecessor, but in that case, we
2883   //        would duplicate the call to free in each predecessor and it may
2884   //        not be profitable even for code size.
2885   if (!PredBB)
2886     return nullptr;
2887 
2888   // Validate constraint #2: Does this block contains only the call to
2889   //                         free, noops, and an unconditional branch?
2890   BasicBlock *SuccBB;
2891   Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2892   if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2893     return nullptr;
2894 
2895   // If there are only 2 instructions in the block, at this point,
2896   // this is the call to free and unconditional.
2897   // If there are more than 2 instructions, check that they are noops
2898   // i.e., they won't hurt the performance of the generated code.
2899   if (FreeInstrBB->size() != 2) {
2900     for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2901       if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2902         continue;
2903       auto *Cast = dyn_cast<CastInst>(&Inst);
2904       if (!Cast || !Cast->isNoopCast(DL))
2905         return nullptr;
2906     }
2907   }
2908   // Validate the rest of constraint #1 by matching on the pred branch.
2909   Instruction *TI = PredBB->getTerminator();
2910   BasicBlock *TrueBB, *FalseBB;
2911   ICmpInst::Predicate Pred;
2912   if (!match(TI, m_Br(m_ICmp(Pred,
2913                              m_CombineOr(m_Specific(Op),
2914                                          m_Specific(Op->stripPointerCasts())),
2915                              m_Zero()),
2916                       TrueBB, FalseBB)))
2917     return nullptr;
2918   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2919     return nullptr;
2920 
2921   // Validate constraint #3: Ensure the null case just falls through.
2922   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2923     return nullptr;
2924   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2925          "Broken CFG: missing edge from predecessor to successor");
2926 
2927   // At this point, we know that everything in FreeInstrBB can be moved
2928   // before TI.
2929   for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2930     if (&Instr == FreeInstrBBTerminator)
2931       break;
2932     Instr.moveBeforePreserving(TI);
2933   }
2934   assert(FreeInstrBB->size() == 1 &&
2935          "Only the branch instruction should remain");
2936 
2937   // Now that we've moved the call to free before the NULL check, we have to
2938   // remove any attributes on its parameter that imply it's non-null, because
2939   // those attributes might have only been valid because of the NULL check, and
2940   // we can get miscompiles if we keep them. This is conservative if non-null is
2941   // also implied by something other than the NULL check, but it's guaranteed to
2942   // be correct, and the conservativeness won't matter in practice, since the
2943   // attributes are irrelevant for the call to free itself and the pointer
2944   // shouldn't be used after the call.
2945   AttributeList Attrs = FI.getAttributes();
2946   Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
2947   Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
2948   if (Dereferenceable.isValid()) {
2949     uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
2950     Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
2951                                        Attribute::Dereferenceable);
2952     Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
2953   }
2954   FI.setAttributes(Attrs);
2955 
2956   return &FI;
2957 }
2958 
2959 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
2960   // free undef -> unreachable.
2961   if (isa<UndefValue>(Op)) {
2962     // Leave a marker since we can't modify the CFG here.
2963     CreateNonTerminatorUnreachable(&FI);
2964     return eraseInstFromFunction(FI);
2965   }
2966 
2967   // If we have 'free null' delete the instruction.  This can happen in stl code
2968   // when lots of inlining happens.
2969   if (isa<ConstantPointerNull>(Op))
2970     return eraseInstFromFunction(FI);
2971 
2972   // If we had free(realloc(...)) with no intervening uses, then eliminate the
2973   // realloc() entirely.
2974   CallInst *CI = dyn_cast<CallInst>(Op);
2975   if (CI && CI->hasOneUse())
2976     if (Value *ReallocatedOp = getReallocatedOperand(CI))
2977       return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
2978 
2979   // If we optimize for code size, try to move the call to free before the null
2980   // test so that simplify cfg can remove the empty block and dead code
2981   // elimination the branch. I.e., helps to turn something like:
2982   // if (foo) free(foo);
2983   // into
2984   // free(foo);
2985   //
2986   // Note that we can only do this for 'free' and not for any flavor of
2987   // 'operator delete'; there is no 'operator delete' symbol for which we are
2988   // permitted to invent a call, even if we're passing in a null pointer.
2989   if (MinimizeSize) {
2990     LibFunc Func;
2991     if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2992       if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2993         return I;
2994   }
2995 
2996   return nullptr;
2997 }
2998 
2999 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3000   // Nothing for now.
3001   return nullptr;
3002 }
3003 
3004 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3005 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
3006   // Try to remove the previous instruction if it must lead to unreachable.
3007   // This includes instructions like stores and "llvm.assume" that may not get
3008   // removed by simple dead code elimination.
3009   bool Changed = false;
3010   while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3011     // While we theoretically can erase EH, that would result in a block that
3012     // used to start with an EH no longer starting with EH, which is invalid.
3013     // To make it valid, we'd need to fixup predecessors to no longer refer to
3014     // this block, but that changes CFG, which is not allowed in InstCombine.
3015     if (Prev->isEHPad())
3016       break; // Can not drop any more instructions. We're done here.
3017 
3018     if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3019       break; // Can not drop any more instructions. We're done here.
3020     // Otherwise, this instruction can be freely erased,
3021     // even if it is not side-effect free.
3022 
3023     // A value may still have uses before we process it here (for example, in
3024     // another unreachable block), so convert those to poison.
3025     replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3026     eraseInstFromFunction(*Prev);
3027     Changed = true;
3028   }
3029   return Changed;
3030 }
3031 
3032 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3033   removeInstructionsBeforeUnreachable(I);
3034   return nullptr;
3035 }
3036 
3037 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3038   assert(BI.isUnconditional() && "Only for unconditional branches.");
3039 
3040   // If this store is the second-to-last instruction in the basic block
3041   // (excluding debug info and bitcasts of pointers) and if the block ends with
3042   // an unconditional branch, try to move the store to the successor block.
3043 
3044   auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3045     auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3046       return BBI->isDebugOrPseudoInst() ||
3047              (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3048     };
3049 
3050     BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3051     do {
3052       if (BBI != FirstInstr)
3053         --BBI;
3054     } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3055 
3056     return dyn_cast<StoreInst>(BBI);
3057   };
3058 
3059   if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3060     if (mergeStoreIntoSuccessor(*SI))
3061       return &BI;
3062 
3063   return nullptr;
3064 }
3065 
3066 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
3067                                    SmallVectorImpl<BasicBlock *> &Worklist) {
3068   if (!DeadEdges.insert({From, To}).second)
3069     return;
3070 
3071   // Replace phi node operands in successor with poison.
3072   for (PHINode &PN : To->phis())
3073     for (Use &U : PN.incoming_values())
3074       if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3075         replaceUse(U, PoisonValue::get(PN.getType()));
3076         addToWorklist(&PN);
3077         MadeIRChange = true;
3078       }
3079 
3080   Worklist.push_back(To);
3081 }
3082 
3083 // Under the assumption that I is unreachable, remove it and following
3084 // instructions. Changes are reported directly to MadeIRChange.
3085 void InstCombinerImpl::handleUnreachableFrom(
3086     Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
3087   BasicBlock *BB = I->getParent();
3088   for (Instruction &Inst : make_early_inc_range(
3089            make_range(std::next(BB->getTerminator()->getReverseIterator()),
3090                       std::next(I->getReverseIterator())))) {
3091     if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3092       replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3093       MadeIRChange = true;
3094     }
3095     if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3096       continue;
3097     // RemoveDIs: erase debug-info on this instruction manually.
3098     Inst.dropDbgValues();
3099     eraseInstFromFunction(Inst);
3100     MadeIRChange = true;
3101   }
3102 
3103   // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on
3104   // terminator too.
3105   BB->getTerminator()->dropDbgValues();
3106 
3107   // Handle potentially dead successors.
3108   for (BasicBlock *Succ : successors(BB))
3109     addDeadEdge(BB, Succ, Worklist);
3110 }
3111 
3112 void InstCombinerImpl::handlePotentiallyDeadBlocks(
3113     SmallVectorImpl<BasicBlock *> &Worklist) {
3114   while (!Worklist.empty()) {
3115     BasicBlock *BB = Worklist.pop_back_val();
3116     if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3117           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3118         }))
3119       continue;
3120 
3121     handleUnreachableFrom(&BB->front(), Worklist);
3122   }
3123 }
3124 
3125 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
3126                                                        BasicBlock *LiveSucc) {
3127   SmallVector<BasicBlock *> Worklist;
3128   for (BasicBlock *Succ : successors(BB)) {
3129     // The live successor isn't dead.
3130     if (Succ == LiveSucc)
3131       continue;
3132 
3133     addDeadEdge(BB, Succ, Worklist);
3134   }
3135 
3136   handlePotentiallyDeadBlocks(Worklist);
3137 }
3138 
3139 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3140   if (BI.isUnconditional())
3141     return visitUnconditionalBranchInst(BI);
3142 
3143   // Change br (not X), label True, label False to: br X, label False, True
3144   Value *Cond = BI.getCondition();
3145   Value *X;
3146   if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3147     // Swap Destinations and condition...
3148     BI.swapSuccessors();
3149     return replaceOperand(BI, 0, X);
3150   }
3151 
3152   // Canonicalize logical-and-with-invert as logical-or-with-invert.
3153   // This is done by inverting the condition and swapping successors:
3154   // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3155   Value *Y;
3156   if (isa<SelectInst>(Cond) &&
3157       match(Cond,
3158             m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3159     Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3160     Value *Or = Builder.CreateLogicalOr(NotX, Y);
3161     BI.swapSuccessors();
3162     return replaceOperand(BI, 0, Or);
3163   }
3164 
3165   // If the condition is irrelevant, remove the use so that other
3166   // transforms on the condition become more effective.
3167   if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3168     return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3169 
3170   // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3171   CmpInst::Predicate Pred;
3172   if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3173       !isCanonicalPredicate(Pred)) {
3174     // Swap destinations and condition.
3175     auto *Cmp = cast<CmpInst>(Cond);
3176     Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3177     BI.swapSuccessors();
3178     Worklist.push(Cmp);
3179     return &BI;
3180   }
3181 
3182   if (isa<UndefValue>(Cond)) {
3183     handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3184     return nullptr;
3185   }
3186   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3187     handlePotentiallyDeadSuccessors(BI.getParent(),
3188                                     BI.getSuccessor(!CI->getZExtValue()));
3189     return nullptr;
3190   }
3191 
3192   DC.registerBranch(&BI);
3193   return nullptr;
3194 }
3195 
3196 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3197   Value *Cond = SI.getCondition();
3198   Value *Op0;
3199   ConstantInt *AddRHS;
3200   if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3201     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3202     for (auto Case : SI.cases()) {
3203       Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3204       assert(isa<ConstantInt>(NewCase) &&
3205              "Result of expression should be constant");
3206       Case.setValue(cast<ConstantInt>(NewCase));
3207     }
3208     return replaceOperand(SI, 0, Op0);
3209   }
3210 
3211   ConstantInt *SubLHS;
3212   if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3213     // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3214     for (auto Case : SI.cases()) {
3215       Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3216       assert(isa<ConstantInt>(NewCase) &&
3217              "Result of expression should be constant");
3218       Case.setValue(cast<ConstantInt>(NewCase));
3219     }
3220     return replaceOperand(SI, 0, Op0);
3221   }
3222 
3223   uint64_t ShiftAmt;
3224   if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3225       ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3226       all_of(SI.cases(), [&](const auto &Case) {
3227         return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3228       })) {
3229     // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3230     OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3231     if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3232         Shl->hasOneUse()) {
3233       Value *NewCond = Op0;
3234       if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3235         // If the shift may wrap, we need to mask off the shifted bits.
3236         unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3237         NewCond = Builder.CreateAnd(
3238             Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3239       }
3240       for (auto Case : SI.cases()) {
3241         const APInt &CaseVal = Case.getCaseValue()->getValue();
3242         APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3243                                                    : CaseVal.lshr(ShiftAmt);
3244         Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3245       }
3246       return replaceOperand(SI, 0, NewCond);
3247     }
3248   }
3249 
3250   // Fold switch(zext/sext(X)) into switch(X) if possible.
3251   if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3252     bool IsZExt = isa<ZExtInst>(Cond);
3253     Type *SrcTy = Op0->getType();
3254     unsigned NewWidth = SrcTy->getScalarSizeInBits();
3255 
3256     if (all_of(SI.cases(), [&](const auto &Case) {
3257           const APInt &CaseVal = Case.getCaseValue()->getValue();
3258           return IsZExt ? CaseVal.isIntN(NewWidth)
3259                         : CaseVal.isSignedIntN(NewWidth);
3260         })) {
3261       for (auto &Case : SI.cases()) {
3262         APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3263         Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3264       }
3265       return replaceOperand(SI, 0, Op0);
3266     }
3267   }
3268 
3269   KnownBits Known = computeKnownBits(Cond, 0, &SI);
3270   unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3271   unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3272 
3273   // Compute the number of leading bits we can ignore.
3274   // TODO: A better way to determine this would use ComputeNumSignBits().
3275   for (const auto &C : SI.cases()) {
3276     LeadingKnownZeros =
3277         std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3278     LeadingKnownOnes =
3279         std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3280   }
3281 
3282   unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3283 
3284   // Shrink the condition operand if the new type is smaller than the old type.
3285   // But do not shrink to a non-standard type, because backend can't generate
3286   // good code for that yet.
3287   // TODO: We can make it aggressive again after fixing PR39569.
3288   if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3289       shouldChangeType(Known.getBitWidth(), NewWidth)) {
3290     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3291     Builder.SetInsertPoint(&SI);
3292     Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3293 
3294     for (auto Case : SI.cases()) {
3295       APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3296       Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3297     }
3298     return replaceOperand(SI, 0, NewCond);
3299   }
3300 
3301   if (isa<UndefValue>(Cond)) {
3302     handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3303     return nullptr;
3304   }
3305   if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3306     handlePotentiallyDeadSuccessors(SI.getParent(),
3307                                     SI.findCaseValue(CI)->getCaseSuccessor());
3308     return nullptr;
3309   }
3310 
3311   return nullptr;
3312 }
3313 
3314 Instruction *
3315 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3316   auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3317   if (!WO)
3318     return nullptr;
3319 
3320   Intrinsic::ID OvID = WO->getIntrinsicID();
3321   const APInt *C = nullptr;
3322   if (match(WO->getRHS(), m_APIntAllowUndef(C))) {
3323     if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3324                                  OvID == Intrinsic::umul_with_overflow)) {
3325       // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3326       if (C->isAllOnes())
3327         return BinaryOperator::CreateNeg(WO->getLHS());
3328       // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3329       if (C->isPowerOf2()) {
3330         return BinaryOperator::CreateShl(
3331             WO->getLHS(),
3332             ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3333       }
3334     }
3335   }
3336 
3337   // We're extracting from an overflow intrinsic. See if we're the only user.
3338   // That allows us to simplify multiple result intrinsics to simpler things
3339   // that just get one value.
3340   if (!WO->hasOneUse())
3341     return nullptr;
3342 
3343   // Check if we're grabbing only the result of a 'with overflow' intrinsic
3344   // and replace it with a traditional binary instruction.
3345   if (*EV.idx_begin() == 0) {
3346     Instruction::BinaryOps BinOp = WO->getBinaryOp();
3347     Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3348     // Replace the old instruction's uses with poison.
3349     replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3350     eraseInstFromFunction(*WO);
3351     return BinaryOperator::Create(BinOp, LHS, RHS);
3352   }
3353 
3354   assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3355 
3356   // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3357   if (OvID == Intrinsic::usub_with_overflow)
3358     return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3359 
3360   // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3361   // +1 is not possible because we assume signed values.
3362   if (OvID == Intrinsic::smul_with_overflow &&
3363       WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3364     return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3365 
3366   // If only the overflow result is used, and the right hand side is a
3367   // constant (or constant splat), we can remove the intrinsic by directly
3368   // checking for overflow.
3369   if (C) {
3370     // Compute the no-wrap range for LHS given RHS=C, then construct an
3371     // equivalent icmp, potentially using an offset.
3372     ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3373         WO->getBinaryOp(), *C, WO->getNoWrapKind());
3374 
3375     CmpInst::Predicate Pred;
3376     APInt NewRHSC, Offset;
3377     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3378     auto *OpTy = WO->getRHS()->getType();
3379     auto *NewLHS = WO->getLHS();
3380     if (Offset != 0)
3381       NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3382     return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3383                         ConstantInt::get(OpTy, NewRHSC));
3384   }
3385 
3386   return nullptr;
3387 }
3388 
3389 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3390   Value *Agg = EV.getAggregateOperand();
3391 
3392   if (!EV.hasIndices())
3393     return replaceInstUsesWith(EV, Agg);
3394 
3395   if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3396                                           SQ.getWithInstruction(&EV)))
3397     return replaceInstUsesWith(EV, V);
3398 
3399   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3400     // We're extracting from an insertvalue instruction, compare the indices
3401     const unsigned *exti, *exte, *insi, *inse;
3402     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3403          exte = EV.idx_end(), inse = IV->idx_end();
3404          exti != exte && insi != inse;
3405          ++exti, ++insi) {
3406       if (*insi != *exti)
3407         // The insert and extract both reference distinctly different elements.
3408         // This means the extract is not influenced by the insert, and we can
3409         // replace the aggregate operand of the extract with the aggregate
3410         // operand of the insert. i.e., replace
3411         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3412         // %E = extractvalue { i32, { i32 } } %I, 0
3413         // with
3414         // %E = extractvalue { i32, { i32 } } %A, 0
3415         return ExtractValueInst::Create(IV->getAggregateOperand(),
3416                                         EV.getIndices());
3417     }
3418     if (exti == exte && insi == inse)
3419       // Both iterators are at the end: Index lists are identical. Replace
3420       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3421       // %C = extractvalue { i32, { i32 } } %B, 1, 0
3422       // with "i32 42"
3423       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3424     if (exti == exte) {
3425       // The extract list is a prefix of the insert list. i.e. replace
3426       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3427       // %E = extractvalue { i32, { i32 } } %I, 1
3428       // with
3429       // %X = extractvalue { i32, { i32 } } %A, 1
3430       // %E = insertvalue { i32 } %X, i32 42, 0
3431       // by switching the order of the insert and extract (though the
3432       // insertvalue should be left in, since it may have other uses).
3433       Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3434                                                 EV.getIndices());
3435       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3436                                      ArrayRef(insi, inse));
3437     }
3438     if (insi == inse)
3439       // The insert list is a prefix of the extract list
3440       // We can simply remove the common indices from the extract and make it
3441       // operate on the inserted value instead of the insertvalue result.
3442       // i.e., replace
3443       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3444       // %E = extractvalue { i32, { i32 } } %I, 1, 0
3445       // with
3446       // %E extractvalue { i32 } { i32 42 }, 0
3447       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3448                                       ArrayRef(exti, exte));
3449   }
3450 
3451   if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
3452     return R;
3453 
3454   if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
3455     // Bail out if the aggregate contains scalable vector type
3456     if (auto *STy = dyn_cast<StructType>(Agg->getType());
3457         STy && STy->containsScalableVectorType())
3458       return nullptr;
3459 
3460     // If the (non-volatile) load only has one use, we can rewrite this to a
3461     // load from a GEP. This reduces the size of the load. If a load is used
3462     // only by extractvalue instructions then this either must have been
3463     // optimized before, or it is a struct with padding, in which case we
3464     // don't want to do the transformation as it loses padding knowledge.
3465     if (L->isSimple() && L->hasOneUse()) {
3466       // extractvalue has integer indices, getelementptr has Value*s. Convert.
3467       SmallVector<Value*, 4> Indices;
3468       // Prefix an i32 0 since we need the first element.
3469       Indices.push_back(Builder.getInt32(0));
3470       for (unsigned Idx : EV.indices())
3471         Indices.push_back(Builder.getInt32(Idx));
3472 
3473       // We need to insert these at the location of the old load, not at that of
3474       // the extractvalue.
3475       Builder.SetInsertPoint(L);
3476       Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3477                                              L->getPointerOperand(), Indices);
3478       Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3479       // Whatever aliasing information we had for the orignal load must also
3480       // hold for the smaller load, so propagate the annotations.
3481       NL->setAAMetadata(L->getAAMetadata());
3482       // Returning the load directly will cause the main loop to insert it in
3483       // the wrong spot, so use replaceInstUsesWith().
3484       return replaceInstUsesWith(EV, NL);
3485     }
3486   }
3487 
3488   if (auto *PN = dyn_cast<PHINode>(Agg))
3489     if (Instruction *Res = foldOpIntoPhi(EV, PN))
3490       return Res;
3491 
3492   // We could simplify extracts from other values. Note that nested extracts may
3493   // already be simplified implicitly by the above: extract (extract (insert) )
3494   // will be translated into extract ( insert ( extract ) ) first and then just
3495   // the value inserted, if appropriate. Similarly for extracts from single-use
3496   // loads: extract (extract (load)) will be translated to extract (load (gep))
3497   // and if again single-use then via load (gep (gep)) to load (gep).
3498   // However, double extracts from e.g. function arguments or return values
3499   // aren't handled yet.
3500   return nullptr;
3501 }
3502 
3503 /// Return 'true' if the given typeinfo will match anything.
3504 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3505   switch (Personality) {
3506   case EHPersonality::GNU_C:
3507   case EHPersonality::GNU_C_SjLj:
3508   case EHPersonality::Rust:
3509     // The GCC C EH and Rust personality only exists to support cleanups, so
3510     // it's not clear what the semantics of catch clauses are.
3511     return false;
3512   case EHPersonality::Unknown:
3513     return false;
3514   case EHPersonality::GNU_Ada:
3515     // While __gnat_all_others_value will match any Ada exception, it doesn't
3516     // match foreign exceptions (or didn't, before gcc-4.7).
3517     return false;
3518   case EHPersonality::GNU_CXX:
3519   case EHPersonality::GNU_CXX_SjLj:
3520   case EHPersonality::GNU_ObjC:
3521   case EHPersonality::MSVC_X86SEH:
3522   case EHPersonality::MSVC_TableSEH:
3523   case EHPersonality::MSVC_CXX:
3524   case EHPersonality::CoreCLR:
3525   case EHPersonality::Wasm_CXX:
3526   case EHPersonality::XL_CXX:
3527     return TypeInfo->isNullValue();
3528   }
3529   llvm_unreachable("invalid enum");
3530 }
3531 
3532 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3533   return
3534     cast<ArrayType>(LHS->getType())->getNumElements()
3535   <
3536     cast<ArrayType>(RHS->getType())->getNumElements();
3537 }
3538 
3539 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3540   // The logic here should be correct for any real-world personality function.
3541   // However if that turns out not to be true, the offending logic can always
3542   // be conditioned on the personality function, like the catch-all logic is.
3543   EHPersonality Personality =
3544       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3545 
3546   // Simplify the list of clauses, eg by removing repeated catch clauses
3547   // (these are often created by inlining).
3548   bool MakeNewInstruction = false; // If true, recreate using the following:
3549   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3550   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3551 
3552   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3553   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3554     bool isLastClause = i + 1 == e;
3555     if (LI.isCatch(i)) {
3556       // A catch clause.
3557       Constant *CatchClause = LI.getClause(i);
3558       Constant *TypeInfo = CatchClause->stripPointerCasts();
3559 
3560       // If we already saw this clause, there is no point in having a second
3561       // copy of it.
3562       if (AlreadyCaught.insert(TypeInfo).second) {
3563         // This catch clause was not already seen.
3564         NewClauses.push_back(CatchClause);
3565       } else {
3566         // Repeated catch clause - drop the redundant copy.
3567         MakeNewInstruction = true;
3568       }
3569 
3570       // If this is a catch-all then there is no point in keeping any following
3571       // clauses or marking the landingpad as having a cleanup.
3572       if (isCatchAll(Personality, TypeInfo)) {
3573         if (!isLastClause)
3574           MakeNewInstruction = true;
3575         CleanupFlag = false;
3576         break;
3577       }
3578     } else {
3579       // A filter clause.  If any of the filter elements were already caught
3580       // then they can be dropped from the filter.  It is tempting to try to
3581       // exploit the filter further by saying that any typeinfo that does not
3582       // occur in the filter can't be caught later (and thus can be dropped).
3583       // However this would be wrong, since typeinfos can match without being
3584       // equal (for example if one represents a C++ class, and the other some
3585       // class derived from it).
3586       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3587       Constant *FilterClause = LI.getClause(i);
3588       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3589       unsigned NumTypeInfos = FilterType->getNumElements();
3590 
3591       // An empty filter catches everything, so there is no point in keeping any
3592       // following clauses or marking the landingpad as having a cleanup.  By
3593       // dealing with this case here the following code is made a bit simpler.
3594       if (!NumTypeInfos) {
3595         NewClauses.push_back(FilterClause);
3596         if (!isLastClause)
3597           MakeNewInstruction = true;
3598         CleanupFlag = false;
3599         break;
3600       }
3601 
3602       bool MakeNewFilter = false; // If true, make a new filter.
3603       SmallVector<Constant *, 16> NewFilterElts; // New elements.
3604       if (isa<ConstantAggregateZero>(FilterClause)) {
3605         // Not an empty filter - it contains at least one null typeinfo.
3606         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3607         Constant *TypeInfo =
3608           Constant::getNullValue(FilterType->getElementType());
3609         // If this typeinfo is a catch-all then the filter can never match.
3610         if (isCatchAll(Personality, TypeInfo)) {
3611           // Throw the filter away.
3612           MakeNewInstruction = true;
3613           continue;
3614         }
3615 
3616         // There is no point in having multiple copies of this typeinfo, so
3617         // discard all but the first copy if there is more than one.
3618         NewFilterElts.push_back(TypeInfo);
3619         if (NumTypeInfos > 1)
3620           MakeNewFilter = true;
3621       } else {
3622         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3623         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3624         NewFilterElts.reserve(NumTypeInfos);
3625 
3626         // Remove any filter elements that were already caught or that already
3627         // occurred in the filter.  While there, see if any of the elements are
3628         // catch-alls.  If so, the filter can be discarded.
3629         bool SawCatchAll = false;
3630         for (unsigned j = 0; j != NumTypeInfos; ++j) {
3631           Constant *Elt = Filter->getOperand(j);
3632           Constant *TypeInfo = Elt->stripPointerCasts();
3633           if (isCatchAll(Personality, TypeInfo)) {
3634             // This element is a catch-all.  Bail out, noting this fact.
3635             SawCatchAll = true;
3636             break;
3637           }
3638 
3639           // Even if we've seen a type in a catch clause, we don't want to
3640           // remove it from the filter.  An unexpected type handler may be
3641           // set up for a call site which throws an exception of the same
3642           // type caught.  In order for the exception thrown by the unexpected
3643           // handler to propagate correctly, the filter must be correctly
3644           // described for the call site.
3645           //
3646           // Example:
3647           //
3648           // void unexpected() { throw 1;}
3649           // void foo() throw (int) {
3650           //   std::set_unexpected(unexpected);
3651           //   try {
3652           //     throw 2.0;
3653           //   } catch (int i) {}
3654           // }
3655 
3656           // There is no point in having multiple copies of the same typeinfo in
3657           // a filter, so only add it if we didn't already.
3658           if (SeenInFilter.insert(TypeInfo).second)
3659             NewFilterElts.push_back(cast<Constant>(Elt));
3660         }
3661         // A filter containing a catch-all cannot match anything by definition.
3662         if (SawCatchAll) {
3663           // Throw the filter away.
3664           MakeNewInstruction = true;
3665           continue;
3666         }
3667 
3668         // If we dropped something from the filter, make a new one.
3669         if (NewFilterElts.size() < NumTypeInfos)
3670           MakeNewFilter = true;
3671       }
3672       if (MakeNewFilter) {
3673         FilterType = ArrayType::get(FilterType->getElementType(),
3674                                     NewFilterElts.size());
3675         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3676         MakeNewInstruction = true;
3677       }
3678 
3679       NewClauses.push_back(FilterClause);
3680 
3681       // If the new filter is empty then it will catch everything so there is
3682       // no point in keeping any following clauses or marking the landingpad
3683       // as having a cleanup.  The case of the original filter being empty was
3684       // already handled above.
3685       if (MakeNewFilter && !NewFilterElts.size()) {
3686         assert(MakeNewInstruction && "New filter but not a new instruction!");
3687         CleanupFlag = false;
3688         break;
3689       }
3690     }
3691   }
3692 
3693   // If several filters occur in a row then reorder them so that the shortest
3694   // filters come first (those with the smallest number of elements).  This is
3695   // advantageous because shorter filters are more likely to match, speeding up
3696   // unwinding, but mostly because it increases the effectiveness of the other
3697   // filter optimizations below.
3698   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3699     unsigned j;
3700     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3701     for (j = i; j != e; ++j)
3702       if (!isa<ArrayType>(NewClauses[j]->getType()))
3703         break;
3704 
3705     // Check whether the filters are already sorted by length.  We need to know
3706     // if sorting them is actually going to do anything so that we only make a
3707     // new landingpad instruction if it does.
3708     for (unsigned k = i; k + 1 < j; ++k)
3709       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3710         // Not sorted, so sort the filters now.  Doing an unstable sort would be
3711         // correct too but reordering filters pointlessly might confuse users.
3712         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3713                          shorter_filter);
3714         MakeNewInstruction = true;
3715         break;
3716       }
3717 
3718     // Look for the next batch of filters.
3719     i = j + 1;
3720   }
3721 
3722   // If typeinfos matched if and only if equal, then the elements of a filter L
3723   // that occurs later than a filter F could be replaced by the intersection of
3724   // the elements of F and L.  In reality two typeinfos can match without being
3725   // equal (for example if one represents a C++ class, and the other some class
3726   // derived from it) so it would be wrong to perform this transform in general.
3727   // However the transform is correct and useful if F is a subset of L.  In that
3728   // case L can be replaced by F, and thus removed altogether since repeating a
3729   // filter is pointless.  So here we look at all pairs of filters F and L where
3730   // L follows F in the list of clauses, and remove L if every element of F is
3731   // an element of L.  This can occur when inlining C++ functions with exception
3732   // specifications.
3733   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3734     // Examine each filter in turn.
3735     Value *Filter = NewClauses[i];
3736     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3737     if (!FTy)
3738       // Not a filter - skip it.
3739       continue;
3740     unsigned FElts = FTy->getNumElements();
3741     // Examine each filter following this one.  Doing this backwards means that
3742     // we don't have to worry about filters disappearing under us when removed.
3743     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3744       Value *LFilter = NewClauses[j];
3745       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3746       if (!LTy)
3747         // Not a filter - skip it.
3748         continue;
3749       // If Filter is a subset of LFilter, i.e. every element of Filter is also
3750       // an element of LFilter, then discard LFilter.
3751       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3752       // If Filter is empty then it is a subset of LFilter.
3753       if (!FElts) {
3754         // Discard LFilter.
3755         NewClauses.erase(J);
3756         MakeNewInstruction = true;
3757         // Move on to the next filter.
3758         continue;
3759       }
3760       unsigned LElts = LTy->getNumElements();
3761       // If Filter is longer than LFilter then it cannot be a subset of it.
3762       if (FElts > LElts)
3763         // Move on to the next filter.
3764         continue;
3765       // At this point we know that LFilter has at least one element.
3766       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3767         // Filter is a subset of LFilter iff Filter contains only zeros (as we
3768         // already know that Filter is not longer than LFilter).
3769         if (isa<ConstantAggregateZero>(Filter)) {
3770           assert(FElts <= LElts && "Should have handled this case earlier!");
3771           // Discard LFilter.
3772           NewClauses.erase(J);
3773           MakeNewInstruction = true;
3774         }
3775         // Move on to the next filter.
3776         continue;
3777       }
3778       ConstantArray *LArray = cast<ConstantArray>(LFilter);
3779       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3780         // Since Filter is non-empty and contains only zeros, it is a subset of
3781         // LFilter iff LFilter contains a zero.
3782         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3783         for (unsigned l = 0; l != LElts; ++l)
3784           if (LArray->getOperand(l)->isNullValue()) {
3785             // LFilter contains a zero - discard it.
3786             NewClauses.erase(J);
3787             MakeNewInstruction = true;
3788             break;
3789           }
3790         // Move on to the next filter.
3791         continue;
3792       }
3793       // At this point we know that both filters are ConstantArrays.  Loop over
3794       // operands to see whether every element of Filter is also an element of
3795       // LFilter.  Since filters tend to be short this is probably faster than
3796       // using a method that scales nicely.
3797       ConstantArray *FArray = cast<ConstantArray>(Filter);
3798       bool AllFound = true;
3799       for (unsigned f = 0; f != FElts; ++f) {
3800         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3801         AllFound = false;
3802         for (unsigned l = 0; l != LElts; ++l) {
3803           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3804           if (LTypeInfo == FTypeInfo) {
3805             AllFound = true;
3806             break;
3807           }
3808         }
3809         if (!AllFound)
3810           break;
3811       }
3812       if (AllFound) {
3813         // Discard LFilter.
3814         NewClauses.erase(J);
3815         MakeNewInstruction = true;
3816       }
3817       // Move on to the next filter.
3818     }
3819   }
3820 
3821   // If we changed any of the clauses, replace the old landingpad instruction
3822   // with a new one.
3823   if (MakeNewInstruction) {
3824     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3825                                                  NewClauses.size());
3826     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3827       NLI->addClause(NewClauses[i]);
3828     // A landing pad with no clauses must have the cleanup flag set.  It is
3829     // theoretically possible, though highly unlikely, that we eliminated all
3830     // clauses.  If so, force the cleanup flag to true.
3831     if (NewClauses.empty())
3832       CleanupFlag = true;
3833     NLI->setCleanup(CleanupFlag);
3834     return NLI;
3835   }
3836 
3837   // Even if none of the clauses changed, we may nonetheless have understood
3838   // that the cleanup flag is pointless.  Clear it if so.
3839   if (LI.isCleanup() != CleanupFlag) {
3840     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3841     LI.setCleanup(CleanupFlag);
3842     return &LI;
3843   }
3844 
3845   return nullptr;
3846 }
3847 
3848 Value *
3849 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3850   // Try to push freeze through instructions that propagate but don't produce
3851   // poison as far as possible.  If an operand of freeze follows three
3852   // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3853   // guaranteed-non-poison operands then push the freeze through to the one
3854   // operand that is not guaranteed non-poison.  The actual transform is as
3855   // follows.
3856   //   Op1 = ...                        ; Op1 can be posion
3857   //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3858   //                                    ; single guaranteed-non-poison operands
3859   //   ... = Freeze(Op0)
3860   // =>
3861   //   Op1 = ...
3862   //   Op1.fr = Freeze(Op1)
3863   //   ... = Inst(Op1.fr, NonPoisonOps...)
3864   auto *OrigOp = OrigFI.getOperand(0);
3865   auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3866 
3867   // While we could change the other users of OrigOp to use freeze(OrigOp), that
3868   // potentially reduces their optimization potential, so let's only do this iff
3869   // the OrigOp is only used by the freeze.
3870   if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3871     return nullptr;
3872 
3873   // We can't push the freeze through an instruction which can itself create
3874   // poison.  If the only source of new poison is flags, we can simply
3875   // strip them (since we know the only use is the freeze and nothing can
3876   // benefit from them.)
3877   if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
3878                              /*ConsiderFlagsAndMetadata*/ false))
3879     return nullptr;
3880 
3881   // If operand is guaranteed not to be poison, there is no need to add freeze
3882   // to the operand. So we first find the operand that is not guaranteed to be
3883   // poison.
3884   Use *MaybePoisonOperand = nullptr;
3885   for (Use &U : OrigOpInst->operands()) {
3886     if (isa<MetadataAsValue>(U.get()) ||
3887         isGuaranteedNotToBeUndefOrPoison(U.get()))
3888       continue;
3889     if (!MaybePoisonOperand)
3890       MaybePoisonOperand = &U;
3891     else
3892       return nullptr;
3893   }
3894 
3895   OrigOpInst->dropPoisonGeneratingFlagsAndMetadata();
3896 
3897   // If all operands are guaranteed to be non-poison, we can drop freeze.
3898   if (!MaybePoisonOperand)
3899     return OrigOp;
3900 
3901   Builder.SetInsertPoint(OrigOpInst);
3902   auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
3903       MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3904 
3905   replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3906   return OrigOp;
3907 }
3908 
3909 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
3910                                                         PHINode *PN) {
3911   // Detect whether this is a recurrence with a start value and some number of
3912   // backedge values. We'll check whether we can push the freeze through the
3913   // backedge values (possibly dropping poison flags along the way) until we
3914   // reach the phi again. In that case, we can move the freeze to the start
3915   // value.
3916   Use *StartU = nullptr;
3917   SmallVector<Value *> Worklist;
3918   for (Use &U : PN->incoming_values()) {
3919     if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
3920       // Add backedge value to worklist.
3921       Worklist.push_back(U.get());
3922       continue;
3923     }
3924 
3925     // Don't bother handling multiple start values.
3926     if (StartU)
3927       return nullptr;
3928     StartU = &U;
3929   }
3930 
3931   if (!StartU || Worklist.empty())
3932     return nullptr; // Not a recurrence.
3933 
3934   Value *StartV = StartU->get();
3935   BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
3936   bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
3937   // We can't insert freeze if the start value is the result of the
3938   // terminator (e.g. an invoke).
3939   if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
3940     return nullptr;
3941 
3942   SmallPtrSet<Value *, 32> Visited;
3943   SmallVector<Instruction *> DropFlags;
3944   while (!Worklist.empty()) {
3945     Value *V = Worklist.pop_back_val();
3946     if (!Visited.insert(V).second)
3947       continue;
3948 
3949     if (Visited.size() > 32)
3950       return nullptr; // Limit the total number of values we inspect.
3951 
3952     // Assume that PN is non-poison, because it will be after the transform.
3953     if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
3954       continue;
3955 
3956     Instruction *I = dyn_cast<Instruction>(V);
3957     if (!I || canCreateUndefOrPoison(cast<Operator>(I),
3958                                      /*ConsiderFlagsAndMetadata*/ false))
3959       return nullptr;
3960 
3961     DropFlags.push_back(I);
3962     append_range(Worklist, I->operands());
3963   }
3964 
3965   for (Instruction *I : DropFlags)
3966     I->dropPoisonGeneratingFlagsAndMetadata();
3967 
3968   if (StartNeedsFreeze) {
3969     Builder.SetInsertPoint(StartBB->getTerminator());
3970     Value *FrozenStartV = Builder.CreateFreeze(StartV,
3971                                                StartV->getName() + ".fr");
3972     replaceUse(*StartU, FrozenStartV);
3973   }
3974   return replaceInstUsesWith(FI, PN);
3975 }
3976 
3977 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
3978   Value *Op = FI.getOperand(0);
3979 
3980   if (isa<Constant>(Op) || Op->hasOneUse())
3981     return false;
3982 
3983   // Move the freeze directly after the definition of its operand, so that
3984   // it dominates the maximum number of uses. Note that it may not dominate
3985   // *all* uses if the operand is an invoke/callbr and the use is in a phi on
3986   // the normal/default destination. This is why the domination check in the
3987   // replacement below is still necessary.
3988   BasicBlock::iterator MoveBefore;
3989   if (isa<Argument>(Op)) {
3990     MoveBefore =
3991         FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
3992   } else {
3993     auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
3994     if (!MoveBeforeOpt)
3995       return false;
3996     MoveBefore = *MoveBeforeOpt;
3997   }
3998 
3999   // Don't move to the position of a debug intrinsic.
4000   if (isa<DbgInfoIntrinsic>(MoveBefore))
4001     MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4002   // Re-point iterator to come after any debug-info records, if we're
4003   // running in "RemoveDIs" mode
4004   MoveBefore.setHeadBit(false);
4005 
4006   bool Changed = false;
4007   if (&FI != &*MoveBefore) {
4008     FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4009     Changed = true;
4010   }
4011 
4012   Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4013     bool Dominates = DT.dominates(&FI, U);
4014     Changed |= Dominates;
4015     return Dominates;
4016   });
4017 
4018   return Changed;
4019 }
4020 
4021 // Check if any direct or bitcast user of this value is a shuffle instruction.
4022 static bool isUsedWithinShuffleVector(Value *V) {
4023   for (auto *U : V->users()) {
4024     if (isa<ShuffleVectorInst>(U))
4025       return true;
4026     else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4027       return true;
4028   }
4029   return false;
4030 }
4031 
4032 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
4033   Value *Op0 = I.getOperand(0);
4034 
4035   if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
4036     return replaceInstUsesWith(I, V);
4037 
4038   // freeze (phi const, x) --> phi const, (freeze x)
4039   if (auto *PN = dyn_cast<PHINode>(Op0)) {
4040     if (Instruction *NV = foldOpIntoPhi(I, PN))
4041       return NV;
4042     if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4043       return NV;
4044   }
4045 
4046   if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
4047     return replaceInstUsesWith(I, NI);
4048 
4049   // If I is freeze(undef), check its uses and fold it to a fixed constant.
4050   // - or: pick -1
4051   // - select's condition: if the true value is constant, choose it by making
4052   //                       the condition true.
4053   // - default: pick 0
4054   //
4055   // Note that this transform is intentionally done here rather than
4056   // via an analysis in InstSimplify or at individual user sites. That is
4057   // because we must produce the same value for all uses of the freeze -
4058   // it's the reason "freeze" exists!
4059   //
4060   // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4061   //       duplicating logic for binops at least.
4062   auto getUndefReplacement = [&I](Type *Ty) {
4063     Constant *BestValue = nullptr;
4064     Constant *NullValue = Constant::getNullValue(Ty);
4065     for (const auto *U : I.users()) {
4066       Constant *C = NullValue;
4067       if (match(U, m_Or(m_Value(), m_Value())))
4068         C = ConstantInt::getAllOnesValue(Ty);
4069       else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4070         C = ConstantInt::getTrue(Ty);
4071 
4072       if (!BestValue)
4073         BestValue = C;
4074       else if (BestValue != C)
4075         BestValue = NullValue;
4076     }
4077     assert(BestValue && "Must have at least one use");
4078     return BestValue;
4079   };
4080 
4081   if (match(Op0, m_Undef())) {
4082     // Don't fold freeze(undef/poison) if it's used as a vector operand in
4083     // a shuffle. This may improve codegen for shuffles that allow
4084     // unspecified inputs.
4085     if (isUsedWithinShuffleVector(&I))
4086       return nullptr;
4087     return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4088   }
4089 
4090   Constant *C;
4091   if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4092     Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4093     return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4094   }
4095 
4096   // Replace uses of Op with freeze(Op).
4097   if (freezeOtherUses(I))
4098     return &I;
4099 
4100   return nullptr;
4101 }
4102 
4103 /// Check for case where the call writes to an otherwise dead alloca.  This
4104 /// shows up for unused out-params in idiomatic C/C++ code.   Note that this
4105 /// helper *only* analyzes the write; doesn't check any other legality aspect.
4106 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4107   auto *CB = dyn_cast<CallBase>(I);
4108   if (!CB)
4109     // TODO: handle e.g. store to alloca here - only worth doing if we extend
4110     // to allow reload along used path as described below.  Otherwise, this
4111     // is simply a store to a dead allocation which will be removed.
4112     return false;
4113   std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4114   if (!Dest)
4115     return false;
4116   auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4117   if (!AI)
4118     // TODO: allow malloc?
4119     return false;
4120   // TODO: allow memory access dominated by move point?  Note that since AI
4121   // could have a reference to itself captured by the call, we would need to
4122   // account for cycles in doing so.
4123   SmallVector<const User *> AllocaUsers;
4124   SmallPtrSet<const User *, 4> Visited;
4125   auto pushUsers = [&](const Instruction &I) {
4126     for (const User *U : I.users()) {
4127       if (Visited.insert(U).second)
4128         AllocaUsers.push_back(U);
4129     }
4130   };
4131   pushUsers(*AI);
4132   while (!AllocaUsers.empty()) {
4133     auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4134     if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4135         isa<AddrSpaceCastInst>(UserI)) {
4136       pushUsers(*UserI);
4137       continue;
4138     }
4139     if (UserI == CB)
4140       continue;
4141     // TODO: support lifetime.start/end here
4142     return false;
4143   }
4144   return true;
4145 }
4146 
4147 /// Try to move the specified instruction from its current block into the
4148 /// beginning of DestBlock, which can only happen if it's safe to move the
4149 /// instruction past all of the instructions between it and the end of its
4150 /// block.
4151 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
4152                                             BasicBlock *DestBlock) {
4153   BasicBlock *SrcBlock = I->getParent();
4154 
4155   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4156   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4157       I->isTerminator())
4158     return false;
4159 
4160   // Do not sink static or dynamic alloca instructions. Static allocas must
4161   // remain in the entry block, and dynamic allocas must not be sunk in between
4162   // a stacksave / stackrestore pair, which would incorrectly shorten its
4163   // lifetime.
4164   if (isa<AllocaInst>(I))
4165     return false;
4166 
4167   // Do not sink into catchswitch blocks.
4168   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4169     return false;
4170 
4171   // Do not sink convergent call instructions.
4172   if (auto *CI = dyn_cast<CallInst>(I)) {
4173     if (CI->isConvergent())
4174       return false;
4175   }
4176 
4177   // Unless we can prove that the memory write isn't visibile except on the
4178   // path we're sinking to, we must bail.
4179   if (I->mayWriteToMemory()) {
4180     if (!SoleWriteToDeadLocal(I, TLI))
4181       return false;
4182   }
4183 
4184   // We can only sink load instructions if there is nothing between the load and
4185   // the end of block that could change the value.
4186   if (I->mayReadFromMemory()) {
4187     // We don't want to do any sophisticated alias analysis, so we only check
4188     // the instructions after I in I's parent block if we try to sink to its
4189     // successor block.
4190     if (DestBlock->getUniquePredecessor() != I->getParent())
4191       return false;
4192     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4193                               E = I->getParent()->end();
4194          Scan != E; ++Scan)
4195       if (Scan->mayWriteToMemory())
4196         return false;
4197   }
4198 
4199   I->dropDroppableUses([&](const Use *U) {
4200     auto *I = dyn_cast<Instruction>(U->getUser());
4201     if (I && I->getParent() != DestBlock) {
4202       Worklist.add(I);
4203       return true;
4204     }
4205     return false;
4206   });
4207   /// FIXME: We could remove droppable uses that are not dominated by
4208   /// the new position.
4209 
4210   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4211   I->moveBefore(*DestBlock, InsertPos);
4212   ++NumSunkInst;
4213 
4214   // Also sink all related debug uses from the source basic block. Otherwise we
4215   // get debug use before the def. Attempt to salvage debug uses first, to
4216   // maximise the range variables have location for. If we cannot salvage, then
4217   // mark the location undef: we know it was supposed to receive a new location
4218   // here, but that computation has been sunk.
4219   SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4220   findDbgUsers(DbgUsers, I);
4221 
4222   // For all debug values in the destination block, the sunk instruction
4223   // will still be available, so they do not need to be dropped.
4224   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
4225   SmallVector<DPValue *, 2> DPValuesToSalvage;
4226   for (auto &DbgUser : DbgUsers)
4227     if (DbgUser->getParent() != DestBlock)
4228       DbgUsersToSalvage.push_back(DbgUser);
4229 
4230   // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4231   // to clone the last appearing debug intrinsic for each given variable.
4232   SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4233   for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4234     if (DVI->getParent() == SrcBlock)
4235       DbgUsersToSink.push_back(DVI);
4236   llvm::sort(DbgUsersToSink,
4237              [](auto *A, auto *B) { return B->comesBefore(A); });
4238 
4239   SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4240   SmallSet<DebugVariable, 4> SunkVariables;
4241   for (auto *User : DbgUsersToSink) {
4242     // A dbg.declare instruction should not be cloned, since there can only be
4243     // one per variable fragment. It should be left in the original place
4244     // because the sunk instruction is not an alloca (otherwise we could not be
4245     // here).
4246     if (isa<DbgDeclareInst>(User))
4247       continue;
4248 
4249     DebugVariable DbgUserVariable =
4250         DebugVariable(User->getVariable(), User->getExpression(),
4251                       User->getDebugLoc()->getInlinedAt());
4252 
4253     if (!SunkVariables.insert(DbgUserVariable).second)
4254       continue;
4255 
4256     // Leave dbg.assign intrinsics in their original positions and there should
4257     // be no need to insert a clone.
4258     if (isa<DbgAssignIntrinsic>(User))
4259       continue;
4260 
4261     DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4262     if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4263       DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4264     LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4265   }
4266 
4267   // Perform salvaging without the clones, then sink the clones.
4268   if (!DIIClones.empty()) {
4269     // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting
4270     // this pass.
4271     SmallVector<DPValue *, 1> DummyDPValues;
4272     salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues);
4273     // The clones are in reverse order of original appearance, reverse again to
4274     // maintain the original order.
4275     for (auto &DIIClone : llvm::reverse(DIIClones)) {
4276       DIIClone->insertBefore(&*InsertPos);
4277       LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4278     }
4279   }
4280 
4281   return true;
4282 }
4283 
4284 bool InstCombinerImpl::run() {
4285   while (!Worklist.isEmpty()) {
4286     // Walk deferred instructions in reverse order, and push them to the
4287     // worklist, which means they'll end up popped from the worklist in-order.
4288     while (Instruction *I = Worklist.popDeferred()) {
4289       // Check to see if we can DCE the instruction. We do this already here to
4290       // reduce the number of uses and thus allow other folds to trigger.
4291       // Note that eraseInstFromFunction() may push additional instructions on
4292       // the deferred worklist, so this will DCE whole instruction chains.
4293       if (isInstructionTriviallyDead(I, &TLI)) {
4294         eraseInstFromFunction(*I);
4295         ++NumDeadInst;
4296         continue;
4297       }
4298 
4299       Worklist.push(I);
4300     }
4301 
4302     Instruction *I = Worklist.removeOne();
4303     if (I == nullptr) continue;  // skip null values.
4304 
4305     // Check to see if we can DCE the instruction.
4306     if (isInstructionTriviallyDead(I, &TLI)) {
4307       eraseInstFromFunction(*I);
4308       ++NumDeadInst;
4309       continue;
4310     }
4311 
4312     if (!DebugCounter::shouldExecute(VisitCounter))
4313       continue;
4314 
4315     // See if we can trivially sink this instruction to its user if we can
4316     // prove that the successor is not executed more frequently than our block.
4317     // Return the UserBlock if successful.
4318     auto getOptionalSinkBlockForInst =
4319         [this](Instruction *I) -> std::optional<BasicBlock *> {
4320       if (!EnableCodeSinking)
4321         return std::nullopt;
4322 
4323       BasicBlock *BB = I->getParent();
4324       BasicBlock *UserParent = nullptr;
4325       unsigned NumUsers = 0;
4326 
4327       for (auto *U : I->users()) {
4328         if (U->isDroppable())
4329           continue;
4330         if (NumUsers > MaxSinkNumUsers)
4331           return std::nullopt;
4332 
4333         Instruction *UserInst = cast<Instruction>(U);
4334         // Special handling for Phi nodes - get the block the use occurs in.
4335         if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4336           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4337             if (PN->getIncomingValue(i) == I) {
4338               // Bail out if we have uses in different blocks. We don't do any
4339               // sophisticated analysis (i.e finding NearestCommonDominator of
4340               // these use blocks).
4341               if (UserParent && UserParent != PN->getIncomingBlock(i))
4342                 return std::nullopt;
4343               UserParent = PN->getIncomingBlock(i);
4344             }
4345           }
4346           assert(UserParent && "expected to find user block!");
4347         } else {
4348           if (UserParent && UserParent != UserInst->getParent())
4349             return std::nullopt;
4350           UserParent = UserInst->getParent();
4351         }
4352 
4353         // Make sure these checks are done only once, naturally we do the checks
4354         // the first time we get the userparent, this will save compile time.
4355         if (NumUsers == 0) {
4356           // Try sinking to another block. If that block is unreachable, then do
4357           // not bother. SimplifyCFG should handle it.
4358           if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4359             return std::nullopt;
4360 
4361           auto *Term = UserParent->getTerminator();
4362           // See if the user is one of our successors that has only one
4363           // predecessor, so that we don't have to split the critical edge.
4364           // Another option where we can sink is a block that ends with a
4365           // terminator that does not pass control to other block (such as
4366           // return or unreachable or resume). In this case:
4367           //   - I dominates the User (by SSA form);
4368           //   - the User will be executed at most once.
4369           // So sinking I down to User is always profitable or neutral.
4370           if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4371             return std::nullopt;
4372 
4373           assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4374         }
4375 
4376         NumUsers++;
4377       }
4378 
4379       // No user or only has droppable users.
4380       if (!UserParent)
4381         return std::nullopt;
4382 
4383       return UserParent;
4384     };
4385 
4386     auto OptBB = getOptionalSinkBlockForInst(I);
4387     if (OptBB) {
4388       auto *UserParent = *OptBB;
4389       // Okay, the CFG is simple enough, try to sink this instruction.
4390       if (tryToSinkInstruction(I, UserParent)) {
4391         LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4392         MadeIRChange = true;
4393         // We'll add uses of the sunk instruction below, but since
4394         // sinking can expose opportunities for it's *operands* add
4395         // them to the worklist
4396         for (Use &U : I->operands())
4397           if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4398             Worklist.push(OpI);
4399       }
4400     }
4401 
4402     // Now that we have an instruction, try combining it to simplify it.
4403     Builder.SetInsertPoint(I);
4404     Builder.CollectMetadataToCopy(
4405         I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4406 
4407 #ifndef NDEBUG
4408     std::string OrigI;
4409 #endif
4410     LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4411     LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4412 
4413     if (Instruction *Result = visit(*I)) {
4414       ++NumCombined;
4415       // Should we replace the old instruction with a new one?
4416       if (Result != I) {
4417         LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4418                           << "    New = " << *Result << '\n');
4419 
4420         Result->copyMetadata(*I,
4421                              {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4422         // Everything uses the new instruction now.
4423         I->replaceAllUsesWith(Result);
4424 
4425         // Move the name to the new instruction first.
4426         Result->takeName(I);
4427 
4428         // Insert the new instruction into the basic block...
4429         BasicBlock *InstParent = I->getParent();
4430         BasicBlock::iterator InsertPos = I->getIterator();
4431 
4432         // Are we replace a PHI with something that isn't a PHI, or vice versa?
4433         if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4434           // We need to fix up the insertion point.
4435           if (isa<PHINode>(I)) // PHI -> Non-PHI
4436             InsertPos = InstParent->getFirstInsertionPt();
4437           else // Non-PHI -> PHI
4438             InsertPos = InstParent->getFirstNonPHI()->getIterator();
4439         }
4440 
4441         Result->insertInto(InstParent, InsertPos);
4442 
4443         // Push the new instruction and any users onto the worklist.
4444         Worklist.pushUsersToWorkList(*Result);
4445         Worklist.push(Result);
4446 
4447         eraseInstFromFunction(*I);
4448       } else {
4449         LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4450                           << "    New = " << *I << '\n');
4451 
4452         // If the instruction was modified, it's possible that it is now dead.
4453         // if so, remove it.
4454         if (isInstructionTriviallyDead(I, &TLI)) {
4455           eraseInstFromFunction(*I);
4456         } else {
4457           Worklist.pushUsersToWorkList(*I);
4458           Worklist.push(I);
4459         }
4460       }
4461       MadeIRChange = true;
4462     }
4463   }
4464 
4465   Worklist.zap();
4466   return MadeIRChange;
4467 }
4468 
4469 // Track the scopes used by !alias.scope and !noalias. In a function, a
4470 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4471 // by both sets. If not, the declaration of the scope can be safely omitted.
4472 // The MDNode of the scope can be omitted as well for the instructions that are
4473 // part of this function. We do not do that at this point, as this might become
4474 // too time consuming to do.
4475 class AliasScopeTracker {
4476   SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4477   SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4478 
4479 public:
4480   void analyse(Instruction *I) {
4481     // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4482     if (!I->hasMetadataOtherThanDebugLoc())
4483       return;
4484 
4485     auto Track = [](Metadata *ScopeList, auto &Container) {
4486       const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4487       if (!MDScopeList || !Container.insert(MDScopeList).second)
4488         return;
4489       for (const auto &MDOperand : MDScopeList->operands())
4490         if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4491           Container.insert(MDScope);
4492     };
4493 
4494     Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4495     Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4496   }
4497 
4498   bool isNoAliasScopeDeclDead(Instruction *Inst) {
4499     NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4500     if (!Decl)
4501       return false;
4502 
4503     assert(Decl->use_empty() &&
4504            "llvm.experimental.noalias.scope.decl in use ?");
4505     const MDNode *MDSL = Decl->getScopeList();
4506     assert(MDSL->getNumOperands() == 1 &&
4507            "llvm.experimental.noalias.scope should refer to a single scope");
4508     auto &MDOperand = MDSL->getOperand(0);
4509     if (auto *MD = dyn_cast<MDNode>(MDOperand))
4510       return !UsedAliasScopesAndLists.contains(MD) ||
4511              !UsedNoAliasScopesAndLists.contains(MD);
4512 
4513     // Not an MDNode ? throw away.
4514     return true;
4515   }
4516 };
4517 
4518 /// Populate the IC worklist from a function, by walking it in reverse
4519 /// post-order and adding all reachable code to the worklist.
4520 ///
4521 /// This has a couple of tricks to make the code faster and more powerful.  In
4522 /// particular, we constant fold and DCE instructions as we go, to avoid adding
4523 /// them to the worklist (this significantly speeds up instcombine on code where
4524 /// many instructions are dead or constant).  Additionally, if we find a branch
4525 /// whose condition is a known constant, we only visit the reachable successors.
4526 bool InstCombinerImpl::prepareWorklist(
4527     Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
4528   bool MadeIRChange = false;
4529   SmallPtrSet<BasicBlock *, 32> LiveBlocks;
4530   SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4531   DenseMap<Constant *, Constant *> FoldedConstants;
4532   AliasScopeTracker SeenAliasScopes;
4533 
4534   auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
4535     for (BasicBlock *Succ : successors(BB))
4536       if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
4537         for (PHINode &PN : Succ->phis())
4538           for (Use &U : PN.incoming_values())
4539             if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
4540               U.set(PoisonValue::get(PN.getType()));
4541               MadeIRChange = true;
4542             }
4543   };
4544 
4545   for (BasicBlock *BB : RPOT) {
4546     if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
4547           return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4548         })) {
4549       HandleOnlyLiveSuccessor(BB, nullptr);
4550       continue;
4551     }
4552     LiveBlocks.insert(BB);
4553 
4554     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4555       // ConstantProp instruction if trivially constant.
4556       if (!Inst.use_empty() &&
4557           (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4558         if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
4559           LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4560                             << '\n');
4561           Inst.replaceAllUsesWith(C);
4562           ++NumConstProp;
4563           if (isInstructionTriviallyDead(&Inst, &TLI))
4564             Inst.eraseFromParent();
4565           MadeIRChange = true;
4566           continue;
4567         }
4568 
4569       // See if we can constant fold its operands.
4570       for (Use &U : Inst.operands()) {
4571         if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4572           continue;
4573 
4574         auto *C = cast<Constant>(U);
4575         Constant *&FoldRes = FoldedConstants[C];
4576         if (!FoldRes)
4577           FoldRes = ConstantFoldConstant(C, DL, &TLI);
4578 
4579         if (FoldRes != C) {
4580           LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4581                             << "\n    Old = " << *C
4582                             << "\n    New = " << *FoldRes << '\n');
4583           U = FoldRes;
4584           MadeIRChange = true;
4585         }
4586       }
4587 
4588       // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4589       // these call instructions consumes non-trivial amount of time and
4590       // provides no value for the optimization.
4591       if (!Inst.isDebugOrPseudoInst()) {
4592         InstrsForInstructionWorklist.push_back(&Inst);
4593         SeenAliasScopes.analyse(&Inst);
4594       }
4595     }
4596 
4597     // If this is a branch or switch on a constant, mark only the single
4598     // live successor. Otherwise assume all successors are live.
4599     Instruction *TI = BB->getTerminator();
4600     if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
4601       if (isa<UndefValue>(BI->getCondition())) {
4602         // Branch on undef is UB.
4603         HandleOnlyLiveSuccessor(BB, nullptr);
4604         continue;
4605       }
4606       if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
4607         bool CondVal = Cond->getZExtValue();
4608         HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
4609         continue;
4610       }
4611     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4612       if (isa<UndefValue>(SI->getCondition())) {
4613         // Switch on undef is UB.
4614         HandleOnlyLiveSuccessor(BB, nullptr);
4615         continue;
4616       }
4617       if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4618         HandleOnlyLiveSuccessor(BB,
4619                                 SI->findCaseValue(Cond)->getCaseSuccessor());
4620         continue;
4621       }
4622     }
4623   }
4624 
4625   // Remove instructions inside unreachable blocks. This prevents the
4626   // instcombine code from having to deal with some bad special cases, and
4627   // reduces use counts of instructions.
4628   for (BasicBlock &BB : F) {
4629     if (LiveBlocks.count(&BB))
4630       continue;
4631 
4632     unsigned NumDeadInstInBB;
4633     unsigned NumDeadDbgInstInBB;
4634     std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4635         removeAllNonTerminatorAndEHPadInstructions(&BB);
4636 
4637     MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4638     NumDeadInst += NumDeadInstInBB;
4639   }
4640 
4641   // Once we've found all of the instructions to add to instcombine's worklist,
4642   // add them in reverse order.  This way instcombine will visit from the top
4643   // of the function down.  This jives well with the way that it adds all uses
4644   // of instructions to the worklist after doing a transformation, thus avoiding
4645   // some N^2 behavior in pathological cases.
4646   Worklist.reserve(InstrsForInstructionWorklist.size());
4647   for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4648     // DCE instruction if trivially dead. As we iterate in reverse program
4649     // order here, we will clean up whole chains of dead instructions.
4650     if (isInstructionTriviallyDead(Inst, &TLI) ||
4651         SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4652       ++NumDeadInst;
4653       LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4654       salvageDebugInfo(*Inst);
4655       Inst->eraseFromParent();
4656       MadeIRChange = true;
4657       continue;
4658     }
4659 
4660     Worklist.push(Inst);
4661   }
4662 
4663   return MadeIRChange;
4664 }
4665 
4666 static bool combineInstructionsOverFunction(
4667     Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4668     AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4669     DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4670     ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) {
4671   auto &DL = F.getParent()->getDataLayout();
4672 
4673   /// Builder - This is an IRBuilder that automatically inserts new
4674   /// instructions into the worklist when they are created.
4675   IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4676       F.getContext(), TargetFolder(DL),
4677       IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4678         Worklist.add(I);
4679         if (auto *Assume = dyn_cast<AssumeInst>(I))
4680           AC.registerAssumption(Assume);
4681       }));
4682 
4683   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
4684 
4685   // Lower dbg.declare intrinsics otherwise their value may be clobbered
4686   // by instcombiner.
4687   bool MadeIRChange = false;
4688   if (ShouldLowerDbgDeclare)
4689     MadeIRChange = LowerDbgDeclare(F);
4690 
4691   // Iterate while there is work to do.
4692   unsigned Iteration = 0;
4693   while (true) {
4694     ++Iteration;
4695 
4696     if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
4697       LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
4698                         << " on " << F.getName()
4699                         << " reached; stopping without verifying fixpoint\n");
4700       break;
4701     }
4702 
4703     ++NumWorklistIterations;
4704     LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4705                       << F.getName() << "\n");
4706 
4707     InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4708                         ORE, BFI, PSI, DL, LI);
4709     IC.MaxArraySizeForCombine = MaxArraySize;
4710     bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
4711     MadeChangeInThisIteration |= IC.run();
4712     if (!MadeChangeInThisIteration)
4713       break;
4714 
4715     MadeIRChange = true;
4716     if (Iteration > Opts.MaxIterations) {
4717       report_fatal_error(
4718           "Instruction Combining did not reach a fixpoint after " +
4719           Twine(Opts.MaxIterations) + " iterations");
4720     }
4721   }
4722 
4723   if (Iteration == 1)
4724     ++NumOneIteration;
4725   else if (Iteration == 2)
4726     ++NumTwoIterations;
4727   else if (Iteration == 3)
4728     ++NumThreeIterations;
4729   else
4730     ++NumFourOrMoreIterations;
4731 
4732   return MadeIRChange;
4733 }
4734 
4735 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
4736 
4737 void InstCombinePass::printPipeline(
4738     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
4739   static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
4740       OS, MapClassName2PassName);
4741   OS << '<';
4742   OS << "max-iterations=" << Options.MaxIterations << ";";
4743   OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
4744   OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
4745   OS << '>';
4746 }
4747 
4748 PreservedAnalyses InstCombinePass::run(Function &F,
4749                                        FunctionAnalysisManager &AM) {
4750   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4751   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4752   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4753   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4754   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4755 
4756   // TODO: Only use LoopInfo when the option is set. This requires that the
4757   //       callers in the pass pipeline explicitly set the option.
4758   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4759   if (!LI && Options.UseLoopInfo)
4760     LI = &AM.getResult<LoopAnalysis>(F);
4761 
4762   auto *AA = &AM.getResult<AAManager>(F);
4763   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4764   ProfileSummaryInfo *PSI =
4765       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4766   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4767       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4768 
4769   if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4770                                        BFI, PSI, LI, Options))
4771     // No changes, all analyses are preserved.
4772     return PreservedAnalyses::all();
4773 
4774   // Mark all the analyses that instcombine updates as preserved.
4775   PreservedAnalyses PA;
4776   PA.preserveSet<CFGAnalyses>();
4777   return PA;
4778 }
4779 
4780 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4781   AU.setPreservesCFG();
4782   AU.addRequired<AAResultsWrapperPass>();
4783   AU.addRequired<AssumptionCacheTracker>();
4784   AU.addRequired<TargetLibraryInfoWrapperPass>();
4785   AU.addRequired<TargetTransformInfoWrapperPass>();
4786   AU.addRequired<DominatorTreeWrapperPass>();
4787   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4788   AU.addPreserved<DominatorTreeWrapperPass>();
4789   AU.addPreserved<AAResultsWrapperPass>();
4790   AU.addPreserved<BasicAAWrapperPass>();
4791   AU.addPreserved<GlobalsAAWrapperPass>();
4792   AU.addRequired<ProfileSummaryInfoWrapperPass>();
4793   LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4794 }
4795 
4796 bool InstructionCombiningPass::runOnFunction(Function &F) {
4797   if (skipFunction(F))
4798     return false;
4799 
4800   // Required analyses.
4801   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4802   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4803   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4804   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4805   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4806   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4807 
4808   // Optional analyses.
4809   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4810   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4811   ProfileSummaryInfo *PSI =
4812       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4813   BlockFrequencyInfo *BFI =
4814       (PSI && PSI->hasProfileSummary()) ?
4815       &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4816       nullptr;
4817 
4818   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4819                                          BFI, PSI, LI, InstCombineOptions());
4820 }
4821 
4822 char InstructionCombiningPass::ID = 0;
4823 
4824 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
4825   initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4826 }
4827 
4828 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4829                       "Combine redundant instructions", false, false)
4830 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4831 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4832 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4833 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4834 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4835 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4836 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4837 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4838 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4839 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4840                     "Combine redundant instructions", false, false)
4841 
4842 // Initialization Routines
4843 void llvm::initializeInstCombine(PassRegistry &Registry) {
4844   initializeInstructionCombiningPassPass(Registry);
4845 }
4846 
4847 FunctionPass *llvm::createInstructionCombiningPass() {
4848   return new InstructionCombiningPass();
4849 }
4850