xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp (revision 61ba55bcf70f2340f9c943c9571113b3fd8eda69)
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/OverflowInstAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
45 
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56                                             const TargetLibraryInfo &TLI,
57                                             InstCombinerImpl &IC) {
58   // The select condition must be an equality compare with a constant operand.
59   Value *X;
60   Constant *C;
61   CmpInst::Predicate Pred;
62   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63     return nullptr;
64 
65   bool IsEq;
66   if (ICmpInst::isEquality(Pred))
67     IsEq = Pred == ICmpInst::ICMP_EQ;
68   else if (Pred == FCmpInst::FCMP_OEQ)
69     IsEq = true;
70   else if (Pred == FCmpInst::FCMP_UNE)
71     IsEq = false;
72   else
73     return nullptr;
74 
75   // A select operand must be a binop.
76   BinaryOperator *BO;
77   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78     return nullptr;
79 
80   // The compare constant must be the identity constant for that binop.
81   // If this a floating-point compare with 0.0, any zero constant will do.
82   Type *Ty = BO->getType();
83   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84   if (IdC != C) {
85     if (!IdC || !CmpInst::isFPPredicate(Pred))
86       return nullptr;
87     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88       return nullptr;
89   }
90 
91   // Last, match the compare variable operand with a binop operand.
92   Value *Y;
93   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94     return nullptr;
95   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97 
98   // +0.0 compares equal to -0.0, and so it does not behave as required for this
99   // transform. Bail out if we can not exclude that possibility.
100   if (isa<FPMathOperator>(BO))
101     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
102       return nullptr;
103 
104   // BO = binop Y, X
105   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
106   // =>
107   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
108   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
109 }
110 
111 /// This folds:
112 ///  select (icmp eq (and X, C1)), TC, FC
113 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
114 /// To something like:
115 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
116 /// Or:
117 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
118 /// With some variations depending if FC is larger than TC, or the shift
119 /// isn't needed, or the bit widths don't match.
120 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
121                                 InstCombiner::BuilderTy &Builder) {
122   const APInt *SelTC, *SelFC;
123   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
124       !match(Sel.getFalseValue(), m_APInt(SelFC)))
125     return nullptr;
126 
127   // If this is a vector select, we need a vector compare.
128   Type *SelType = Sel.getType();
129   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
130     return nullptr;
131 
132   Value *V;
133   APInt AndMask;
134   bool CreateAnd = false;
135   ICmpInst::Predicate Pred = Cmp->getPredicate();
136   if (ICmpInst::isEquality(Pred)) {
137     if (!match(Cmp->getOperand(1), m_Zero()))
138       return nullptr;
139 
140     V = Cmp->getOperand(0);
141     const APInt *AndRHS;
142     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
143       return nullptr;
144 
145     AndMask = *AndRHS;
146   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
147                                   Pred, V, AndMask)) {
148     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
149     if (!AndMask.isPowerOf2())
150       return nullptr;
151 
152     CreateAnd = true;
153   } else {
154     return nullptr;
155   }
156 
157   // In general, when both constants are non-zero, we would need an offset to
158   // replace the select. This would require more instructions than we started
159   // with. But there's one special-case that we handle here because it can
160   // simplify/reduce the instructions.
161   APInt TC = *SelTC;
162   APInt FC = *SelFC;
163   if (!TC.isZero() && !FC.isZero()) {
164     // If the select constants differ by exactly one bit and that's the same
165     // bit that is masked and checked by the select condition, the select can
166     // be replaced by bitwise logic to set/clear one bit of the constant result.
167     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
168       return nullptr;
169     if (CreateAnd) {
170       // If we have to create an 'and', then we must kill the cmp to not
171       // increase the instruction count.
172       if (!Cmp->hasOneUse())
173         return nullptr;
174       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
175     }
176     bool ExtraBitInTC = TC.ugt(FC);
177     if (Pred == ICmpInst::ICMP_EQ) {
178       // If the masked bit in V is clear, clear or set the bit in the result:
179       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
180       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
181       Constant *C = ConstantInt::get(SelType, TC);
182       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
183     }
184     if (Pred == ICmpInst::ICMP_NE) {
185       // If the masked bit in V is set, set or clear the bit in the result:
186       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
187       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
188       Constant *C = ConstantInt::get(SelType, FC);
189       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
190     }
191     llvm_unreachable("Only expecting equality predicates");
192   }
193 
194   // Make sure one of the select arms is a power-of-2.
195   if (!TC.isPowerOf2() && !FC.isPowerOf2())
196     return nullptr;
197 
198   // Determine which shift is needed to transform result of the 'and' into the
199   // desired result.
200   const APInt &ValC = !TC.isZero() ? TC : FC;
201   unsigned ValZeros = ValC.logBase2();
202   unsigned AndZeros = AndMask.logBase2();
203 
204   // Insert the 'and' instruction on the input to the truncate.
205   if (CreateAnd)
206     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
207 
208   // If types don't match, we can still convert the select by introducing a zext
209   // or a trunc of the 'and'.
210   if (ValZeros > AndZeros) {
211     V = Builder.CreateZExtOrTrunc(V, SelType);
212     V = Builder.CreateShl(V, ValZeros - AndZeros);
213   } else if (ValZeros < AndZeros) {
214     V = Builder.CreateLShr(V, AndZeros - ValZeros);
215     V = Builder.CreateZExtOrTrunc(V, SelType);
216   } else {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218   }
219 
220   // Okay, now we know that everything is set up, we just don't know whether we
221   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
222   bool ShouldNotVal = !TC.isZero();
223   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
224   if (ShouldNotVal)
225     V = Builder.CreateXor(V, ValC);
226 
227   return V;
228 }
229 
230 /// We want to turn code that looks like this:
231 ///   %C = or %A, %B
232 ///   %D = select %cond, %C, %A
233 /// into:
234 ///   %C = select %cond, %B, 0
235 ///   %D = or %A, %C
236 ///
237 /// Assuming that the specified instruction is an operand to the select, return
238 /// a bitmask indicating which operands of this instruction are foldable if they
239 /// equal the other incoming value of the select.
240 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
241   switch (I->getOpcode()) {
242   case Instruction::Add:
243   case Instruction::FAdd:
244   case Instruction::Mul:
245   case Instruction::FMul:
246   case Instruction::And:
247   case Instruction::Or:
248   case Instruction::Xor:
249     return 3;              // Can fold through either operand.
250   case Instruction::Sub:   // Can only fold on the amount subtracted.
251   case Instruction::FSub:
252   case Instruction::FDiv:  // Can only fold on the divisor amount.
253   case Instruction::Shl:   // Can only fold on the shift amount.
254   case Instruction::LShr:
255   case Instruction::AShr:
256     return 1;
257   default:
258     return 0;              // Cannot fold
259   }
260 }
261 
262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
264                                               Instruction *FI) {
265   // Don't break up min/max patterns. The hasOneUse checks below prevent that
266   // for most cases, but vector min/max with bitcasts can be transformed. If the
267   // one-use restrictions are eased for other patterns, we still don't want to
268   // obfuscate min/max.
269   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
270        match(&SI, m_SMax(m_Value(), m_Value())) ||
271        match(&SI, m_UMin(m_Value(), m_Value())) ||
272        match(&SI, m_UMax(m_Value(), m_Value()))))
273     return nullptr;
274 
275   // If this is a cast from the same type, merge.
276   Value *Cond = SI.getCondition();
277   Type *CondTy = Cond->getType();
278   if (TI->getNumOperands() == 1 && TI->isCast()) {
279     Type *FIOpndTy = FI->getOperand(0)->getType();
280     if (TI->getOperand(0)->getType() != FIOpndTy)
281       return nullptr;
282 
283     // The select condition may be a vector. We may only change the operand
284     // type if the vector width remains the same (and matches the condition).
285     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
286       if (!FIOpndTy->isVectorTy() ||
287           CondVTy->getElementCount() !=
288               cast<VectorType>(FIOpndTy)->getElementCount())
289         return nullptr;
290 
291       // TODO: If the backend knew how to deal with casts better, we could
292       // remove this limitation. For now, there's too much potential to create
293       // worse codegen by promoting the select ahead of size-altering casts
294       // (PR28160).
295       //
296       // Note that ValueTracking's matchSelectPattern() looks through casts
297       // without checking 'hasOneUse' when it matches min/max patterns, so this
298       // transform may end up happening anyway.
299       if (TI->getOpcode() != Instruction::BitCast &&
300           (!TI->hasOneUse() || !FI->hasOneUse()))
301         return nullptr;
302     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
303       // TODO: The one-use restrictions for a scalar select could be eased if
304       // the fold of a select in visitLoadInst() was enhanced to match a pattern
305       // that includes a cast.
306       return nullptr;
307     }
308 
309     // Fold this by inserting a select from the input values.
310     Value *NewSI =
311         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
312                              SI.getName() + ".v", &SI);
313     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
314                             TI->getType());
315   }
316 
317   Value *OtherOpT, *OtherOpF;
318   bool MatchIsOpZero;
319   auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
320                          bool Swapped = false) -> Value * {
321     assert(!(Commute && Swapped) &&
322            "Commute and Swapped can't set at the same time");
323     if (!Swapped) {
324       if (TI->getOperand(0) == FI->getOperand(0)) {
325         OtherOpT = TI->getOperand(1);
326         OtherOpF = FI->getOperand(1);
327         MatchIsOpZero = true;
328         return TI->getOperand(0);
329       } else if (TI->getOperand(1) == FI->getOperand(1)) {
330         OtherOpT = TI->getOperand(0);
331         OtherOpF = FI->getOperand(0);
332         MatchIsOpZero = false;
333         return TI->getOperand(1);
334       }
335     }
336 
337     if (!Commute && !Swapped)
338       return nullptr;
339 
340     // If we are allowing commute or swap of operands, then
341     // allow a cross-operand match. In that case, MatchIsOpZero
342     // means that TI's operand 0 (FI's operand 1) is the common op.
343     if (TI->getOperand(0) == FI->getOperand(1)) {
344       OtherOpT = TI->getOperand(1);
345       OtherOpF = FI->getOperand(0);
346       MatchIsOpZero = true;
347       return TI->getOperand(0);
348     } else if (TI->getOperand(1) == FI->getOperand(0)) {
349       OtherOpT = TI->getOperand(0);
350       OtherOpF = FI->getOperand(1);
351       MatchIsOpZero = false;
352       return TI->getOperand(1);
353     }
354     return nullptr;
355   };
356 
357   if (TI->hasOneUse() || FI->hasOneUse()) {
358     // Cond ? -X : -Y --> -(Cond ? X : Y)
359     Value *X, *Y;
360     if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
361       // Intersect FMF from the fneg instructions and union those with the
362       // select.
363       FastMathFlags FMF = TI->getFastMathFlags();
364       FMF &= FI->getFastMathFlags();
365       FMF |= SI.getFastMathFlags();
366       Value *NewSel =
367           Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
368       if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
369         NewSelI->setFastMathFlags(FMF);
370       Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
371       NewFNeg->setFastMathFlags(FMF);
372       return NewFNeg;
373     }
374 
375     // Min/max intrinsic with a common operand can have the common operand
376     // pulled after the select. This is the same transform as below for binops,
377     // but specialized for intrinsic matching and without the restrictive uses
378     // clause.
379     auto *TII = dyn_cast<IntrinsicInst>(TI);
380     auto *FII = dyn_cast<IntrinsicInst>(FI);
381     if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
382       if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
383         if (Value *MatchOp = getCommonOp(TI, FI, true)) {
384           Value *NewSel =
385               Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
386           return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
387         }
388       }
389     }
390 
391     // icmp with a common operand also can have the common operand
392     // pulled after the select.
393     ICmpInst::Predicate TPred, FPred;
394     if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
395         match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
396       if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
397         bool Swapped = TPred != FPred;
398         if (Value *MatchOp =
399                 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
400           Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
401                                                SI.getName() + ".v", &SI);
402           return new ICmpInst(
403               MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
404               MatchOp, NewSel);
405         }
406       }
407     }
408   }
409 
410   // Only handle binary operators (including two-operand getelementptr) with
411   // one-use here. As with the cast case above, it may be possible to relax the
412   // one-use constraint, but that needs be examined carefully since it may not
413   // reduce the total number of instructions.
414   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
415       !TI->isSameOperationAs(FI) ||
416       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
417       !TI->hasOneUse() || !FI->hasOneUse())
418     return nullptr;
419 
420   // Figure out if the operations have any operands in common.
421   Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
422   if (!MatchOp)
423     return nullptr;
424 
425   // If the select condition is a vector, the operands of the original select's
426   // operands also must be vectors. This may not be the case for getelementptr
427   // for example.
428   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
429                                !OtherOpF->getType()->isVectorTy()))
430     return nullptr;
431 
432   // If we reach here, they do have operations in common.
433   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
434                                       SI.getName() + ".v", &SI);
435   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
436   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
437   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
438     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
439     NewBO->copyIRFlags(TI);
440     NewBO->andIRFlags(FI);
441     return NewBO;
442   }
443   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
444     auto *FGEP = cast<GetElementPtrInst>(FI);
445     Type *ElementType = TGEP->getResultElementType();
446     return TGEP->isInBounds() && FGEP->isInBounds()
447                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
448                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
449   }
450   llvm_unreachable("Expected BinaryOperator or GEP");
451   return nullptr;
452 }
453 
454 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
455   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
456     return false;
457   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
458 }
459 
460 /// Try to fold the select into one of the operands to allow further
461 /// optimization.
462 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
463                                                 Value *FalseVal) {
464   // See the comment above GetSelectFoldableOperands for a description of the
465   // transformation we are doing here.
466   auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
467                                  Value *FalseVal,
468                                  bool Swapped) -> Instruction * {
469     auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
470     if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
471       return nullptr;
472 
473     unsigned SFO = getSelectFoldableOperands(TVI);
474     unsigned OpToFold = 0;
475     if ((SFO & 1) && FalseVal == TVI->getOperand(0))
476       OpToFold = 1;
477     else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
478       OpToFold = 2;
479 
480     if (!OpToFold)
481       return nullptr;
482 
483     // TODO: We probably ought to revisit cases where the select and FP
484     // instructions have different flags and add tests to ensure the
485     // behaviour is correct.
486     FastMathFlags FMF;
487     if (isa<FPMathOperator>(&SI))
488       FMF = SI.getFastMathFlags();
489     Constant *C = ConstantExpr::getBinOpIdentity(
490         TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
491     Value *OOp = TVI->getOperand(2 - OpToFold);
492     // Avoid creating select between 2 constants unless it's selecting
493     // between 0, 1 and -1.
494     const APInt *OOpC;
495     bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
496     if (!isa<Constant>(OOp) ||
497         (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
498       Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
499                                            Swapped ? OOp : C);
500       if (isa<FPMathOperator>(&SI))
501         cast<Instruction>(NewSel)->setFastMathFlags(FMF);
502       NewSel->takeName(TVI);
503       BinaryOperator *BO =
504           BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
505       BO->copyIRFlags(TVI);
506       return BO;
507     }
508     return nullptr;
509   };
510 
511   if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
512     return R;
513 
514   if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
515     return R;
516 
517   return nullptr;
518 }
519 
520 /// We want to turn:
521 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
522 /// into:
523 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
524 /// Note:
525 ///   Z may be 0 if lshr is missing.
526 /// Worst-case scenario is that we will replace 5 instructions with 5 different
527 /// instructions, but we got rid of select.
528 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
529                                          Value *TVal, Value *FVal,
530                                          InstCombiner::BuilderTy &Builder) {
531   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
532         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
533         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
534     return nullptr;
535 
536   // The TrueVal has general form of:  and %B, 1
537   Value *B;
538   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
539     return nullptr;
540 
541   // Where %B may be optionally shifted:  lshr %X, %Z.
542   Value *X, *Z;
543   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
544 
545   // The shift must be valid.
546   // TODO: This restricts the fold to constant shift amounts. Is there a way to
547   //       handle variable shifts safely? PR47012
548   if (HasShift &&
549       !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
550                                    APInt(SelType->getScalarSizeInBits(),
551                                          SelType->getScalarSizeInBits()))))
552     return nullptr;
553 
554   if (!HasShift)
555     X = B;
556 
557   Value *Y;
558   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
559     return nullptr;
560 
561   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
562   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
563   Constant *One = ConstantInt::get(SelType, 1);
564   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
565   Value *FullMask = Builder.CreateOr(Y, MaskB);
566   Value *MaskedX = Builder.CreateAnd(X, FullMask);
567   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
568   return new ZExtInst(ICmpNeZero, SelType);
569 }
570 
571 /// We want to turn:
572 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
573 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
574 /// into:
575 ///   ashr (X, Y)
576 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
577                                      Value *FalseVal,
578                                      InstCombiner::BuilderTy &Builder) {
579   ICmpInst::Predicate Pred = IC->getPredicate();
580   Value *CmpLHS = IC->getOperand(0);
581   Value *CmpRHS = IC->getOperand(1);
582   if (!CmpRHS->getType()->isIntOrIntVectorTy())
583     return nullptr;
584 
585   Value *X, *Y;
586   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
587   if ((Pred != ICmpInst::ICMP_SGT ||
588        !match(CmpRHS,
589               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
590       (Pred != ICmpInst::ICMP_SLT ||
591        !match(CmpRHS,
592               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
593     return nullptr;
594 
595   // Canonicalize so that ashr is in FalseVal.
596   if (Pred == ICmpInst::ICMP_SLT)
597     std::swap(TrueVal, FalseVal);
598 
599   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
600       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
601       match(CmpLHS, m_Specific(X))) {
602     const auto *Ashr = cast<Instruction>(FalseVal);
603     // if lshr is not exact and ashr is, this new ashr must not be exact.
604     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
605     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
606   }
607 
608   return nullptr;
609 }
610 
611 /// We want to turn:
612 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
613 /// into:
614 ///   (or (shl (and X, C1), C3), Y)
615 /// iff:
616 ///   C1 and C2 are both powers of 2
617 /// where:
618 ///   C3 = Log(C2) - Log(C1)
619 ///
620 /// This transform handles cases where:
621 /// 1. The icmp predicate is inverted
622 /// 2. The select operands are reversed
623 /// 3. The magnitude of C2 and C1 are flipped
624 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
625                                   Value *FalseVal,
626                                   InstCombiner::BuilderTy &Builder) {
627   // Only handle integer compares. Also, if this is a vector select, we need a
628   // vector compare.
629   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
630       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
631     return nullptr;
632 
633   Value *CmpLHS = IC->getOperand(0);
634   Value *CmpRHS = IC->getOperand(1);
635 
636   Value *V;
637   unsigned C1Log;
638   bool IsEqualZero;
639   bool NeedAnd = false;
640   if (IC->isEquality()) {
641     if (!match(CmpRHS, m_Zero()))
642       return nullptr;
643 
644     const APInt *C1;
645     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
646       return nullptr;
647 
648     V = CmpLHS;
649     C1Log = C1->logBase2();
650     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
651   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
652              IC->getPredicate() == ICmpInst::ICMP_SGT) {
653     // We also need to recognize (icmp slt (trunc (X)), 0) and
654     // (icmp sgt (trunc (X)), -1).
655     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
656     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
657         (!IsEqualZero && !match(CmpRHS, m_Zero())))
658       return nullptr;
659 
660     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
661       return nullptr;
662 
663     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
664     NeedAnd = true;
665   } else {
666     return nullptr;
667   }
668 
669   const APInt *C2;
670   bool OrOnTrueVal = false;
671   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
672   if (!OrOnFalseVal)
673     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
674 
675   if (!OrOnFalseVal && !OrOnTrueVal)
676     return nullptr;
677 
678   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
679 
680   unsigned C2Log = C2->logBase2();
681 
682   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
683   bool NeedShift = C1Log != C2Log;
684   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
685                        V->getType()->getScalarSizeInBits();
686 
687   // Make sure we don't create more instructions than we save.
688   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
689   if ((NeedShift + NeedXor + NeedZExtTrunc) >
690       (IC->hasOneUse() + Or->hasOneUse()))
691     return nullptr;
692 
693   if (NeedAnd) {
694     // Insert the AND instruction on the input to the truncate.
695     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
696     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
697   }
698 
699   if (C2Log > C1Log) {
700     V = Builder.CreateZExtOrTrunc(V, Y->getType());
701     V = Builder.CreateShl(V, C2Log - C1Log);
702   } else if (C1Log > C2Log) {
703     V = Builder.CreateLShr(V, C1Log - C2Log);
704     V = Builder.CreateZExtOrTrunc(V, Y->getType());
705   } else
706     V = Builder.CreateZExtOrTrunc(V, Y->getType());
707 
708   if (NeedXor)
709     V = Builder.CreateXor(V, *C2);
710 
711   return Builder.CreateOr(V, Y);
712 }
713 
714 /// Canonicalize a set or clear of a masked set of constant bits to
715 /// select-of-constants form.
716 static Instruction *foldSetClearBits(SelectInst &Sel,
717                                      InstCombiner::BuilderTy &Builder) {
718   Value *Cond = Sel.getCondition();
719   Value *T = Sel.getTrueValue();
720   Value *F = Sel.getFalseValue();
721   Type *Ty = Sel.getType();
722   Value *X;
723   const APInt *NotC, *C;
724 
725   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
726   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
727       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
728     Constant *Zero = ConstantInt::getNullValue(Ty);
729     Constant *OrC = ConstantInt::get(Ty, *C);
730     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
731     return BinaryOperator::CreateOr(T, NewSel);
732   }
733 
734   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
735   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
736       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
737     Constant *Zero = ConstantInt::getNullValue(Ty);
738     Constant *OrC = ConstantInt::get(Ty, *C);
739     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
740     return BinaryOperator::CreateOr(F, NewSel);
741   }
742 
743   return nullptr;
744 }
745 
746 //   select (x == 0), 0, x * y --> freeze(y) * x
747 //   select (y == 0), 0, x * y --> freeze(x) * y
748 //   select (x == 0), undef, x * y --> freeze(y) * x
749 //   select (x == undef), 0, x * y --> freeze(y) * x
750 // Usage of mul instead of 0 will make the result more poisonous,
751 // so the operand that was not checked in the condition should be frozen.
752 // The latter folding is applied only when a constant compared with x is
753 // is a vector consisting of 0 and undefs. If a constant compared with x
754 // is a scalar undefined value or undefined vector then an expression
755 // should be already folded into a constant.
756 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
757   auto *CondVal = SI.getCondition();
758   auto *TrueVal = SI.getTrueValue();
759   auto *FalseVal = SI.getFalseValue();
760   Value *X, *Y;
761   ICmpInst::Predicate Predicate;
762 
763   // Assuming that constant compared with zero is not undef (but it may be
764   // a vector with some undef elements). Otherwise (when a constant is undef)
765   // the select expression should be already simplified.
766   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
767       !ICmpInst::isEquality(Predicate))
768     return nullptr;
769 
770   if (Predicate == ICmpInst::ICMP_NE)
771     std::swap(TrueVal, FalseVal);
772 
773   // Check that TrueVal is a constant instead of matching it with m_Zero()
774   // to handle the case when it is a scalar undef value or a vector containing
775   // non-zero elements that are masked by undef elements in the compare
776   // constant.
777   auto *TrueValC = dyn_cast<Constant>(TrueVal);
778   if (TrueValC == nullptr ||
779       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
780       !isa<Instruction>(FalseVal))
781     return nullptr;
782 
783   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
784   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
785   // If X is compared with 0 then TrueVal could be either zero or undef.
786   // m_Zero match vectors containing some undef elements, but for scalars
787   // m_Undef should be used explicitly.
788   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
789     return nullptr;
790 
791   auto *FalseValI = cast<Instruction>(FalseVal);
792   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
793                                      *FalseValI);
794   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
795   return IC.replaceInstUsesWith(SI, FalseValI);
796 }
797 
798 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
799 /// There are 8 commuted/swapped variants of this pattern.
800 /// TODO: Also support a - UMIN(a,b) patterns.
801 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
802                                             const Value *TrueVal,
803                                             const Value *FalseVal,
804                                             InstCombiner::BuilderTy &Builder) {
805   ICmpInst::Predicate Pred = ICI->getPredicate();
806   Value *A = ICI->getOperand(0);
807   Value *B = ICI->getOperand(1);
808 
809   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
810   // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
811   if (match(TrueVal, m_Zero())) {
812     Pred = ICmpInst::getInversePredicate(Pred);
813     std::swap(TrueVal, FalseVal);
814   }
815 
816   if (!match(FalseVal, m_Zero()))
817     return nullptr;
818 
819   // ugt 0 is canonicalized to ne 0 and requires special handling
820   // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
821   if (Pred == ICmpInst::ICMP_NE) {
822     if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
823       return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
824                                            ConstantInt::get(A->getType(), 1));
825     return nullptr;
826   }
827 
828   if (!ICmpInst::isUnsigned(Pred))
829     return nullptr;
830 
831   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
832     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
833     std::swap(A, B);
834     Pred = ICmpInst::getSwappedPredicate(Pred);
835   }
836 
837   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
838          "Unexpected isUnsigned predicate!");
839 
840   // Ensure the sub is of the form:
841   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
842   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
843   // Checking for both a-b and a+(-b) as a constant.
844   bool IsNegative = false;
845   const APInt *C;
846   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
847       (match(A, m_APInt(C)) &&
848        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
849     IsNegative = true;
850   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
851            !(match(B, m_APInt(C)) &&
852              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
853     return nullptr;
854 
855   // If we are adding a negate and the sub and icmp are used anywhere else, we
856   // would end up with more instructions.
857   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
858     return nullptr;
859 
860   // (a > b) ? a - b : 0 -> usub.sat(a, b)
861   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
862   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
863   if (IsNegative)
864     Result = Builder.CreateNeg(Result);
865   return Result;
866 }
867 
868 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
869                                        InstCombiner::BuilderTy &Builder) {
870   if (!Cmp->hasOneUse())
871     return nullptr;
872 
873   // Match unsigned saturated add with constant.
874   Value *Cmp0 = Cmp->getOperand(0);
875   Value *Cmp1 = Cmp->getOperand(1);
876   ICmpInst::Predicate Pred = Cmp->getPredicate();
877   Value *X;
878   const APInt *C, *CmpC;
879   if (Pred == ICmpInst::ICMP_ULT &&
880       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
881       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
882     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
883     return Builder.CreateBinaryIntrinsic(
884         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
885   }
886 
887   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
888   // There are 8 commuted variants.
889   // Canonicalize -1 (saturated result) to true value of the select.
890   if (match(FVal, m_AllOnes())) {
891     std::swap(TVal, FVal);
892     Pred = CmpInst::getInversePredicate(Pred);
893   }
894   if (!match(TVal, m_AllOnes()))
895     return nullptr;
896 
897   // Canonicalize predicate to less-than or less-or-equal-than.
898   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
899     std::swap(Cmp0, Cmp1);
900     Pred = CmpInst::getSwappedPredicate(Pred);
901   }
902   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
903     return nullptr;
904 
905   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
906   // Strictness of the comparison is irrelevant.
907   Value *Y;
908   if (match(Cmp0, m_Not(m_Value(X))) &&
909       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
910     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
911     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
912     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
913   }
914   // The 'not' op may be included in the sum but not the compare.
915   // Strictness of the comparison is irrelevant.
916   X = Cmp0;
917   Y = Cmp1;
918   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
919     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
920     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
921     BinaryOperator *BO = cast<BinaryOperator>(FVal);
922     return Builder.CreateBinaryIntrinsic(
923         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
924   }
925   // The overflow may be detected via the add wrapping round.
926   // This is only valid for strict comparison!
927   if (Pred == ICmpInst::ICMP_ULT &&
928       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
929       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
930     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
931     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
932     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
933   }
934 
935   return nullptr;
936 }
937 
938 /// Fold the following code sequence:
939 /// \code
940 ///   int a = ctlz(x & -x);
941 //    x ? 31 - a : a;
942 /// \code
943 ///
944 /// into:
945 ///   cttz(x)
946 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
947                                          Value *FalseVal,
948                                          InstCombiner::BuilderTy &Builder) {
949   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
950   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
951     return nullptr;
952 
953   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
954     std::swap(TrueVal, FalseVal);
955 
956   if (!match(FalseVal,
957              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
958     return nullptr;
959 
960   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
961     return nullptr;
962 
963   Value *X = ICI->getOperand(0);
964   auto *II = cast<IntrinsicInst>(TrueVal);
965   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
966     return nullptr;
967 
968   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
969                                           II->getType());
970   return CallInst::Create(F, {X, II->getArgOperand(1)});
971 }
972 
973 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
974 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
975 ///
976 /// For example, we can fold the following code sequence:
977 /// \code
978 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
979 ///   %1 = icmp ne i32 %x, 0
980 ///   %2 = select i1 %1, i32 %0, i32 32
981 /// \code
982 ///
983 /// into:
984 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
985 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
986                                  InstCombiner::BuilderTy &Builder) {
987   ICmpInst::Predicate Pred = ICI->getPredicate();
988   Value *CmpLHS = ICI->getOperand(0);
989   Value *CmpRHS = ICI->getOperand(1);
990 
991   // Check if the select condition compares a value for equality.
992   if (!ICI->isEquality())
993     return nullptr;
994 
995   Value *SelectArg = FalseVal;
996   Value *ValueOnZero = TrueVal;
997   if (Pred == ICmpInst::ICMP_NE)
998     std::swap(SelectArg, ValueOnZero);
999 
1000   // Skip zero extend/truncate.
1001   Value *Count = nullptr;
1002   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1003       !match(SelectArg, m_Trunc(m_Value(Count))))
1004     Count = SelectArg;
1005 
1006   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1007   // input to the cttz/ctlz is used as LHS for the compare instruction.
1008   Value *X;
1009   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1010       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1011     return nullptr;
1012 
1013   // (X == 0) ? BitWidth : ctz(X)
1014   // (X == -1) ? BitWidth : ctz(~X)
1015   if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1016       (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1017     return nullptr;
1018 
1019   IntrinsicInst *II = cast<IntrinsicInst>(Count);
1020 
1021   // Check if the value propagated on zero is a constant number equal to the
1022   // sizeof in bits of 'Count'.
1023   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1024   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1025     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1026     // true to false on this flag, so we can replace it for all users.
1027     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1028     return SelectArg;
1029   }
1030 
1031   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1032   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1033   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1034   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1035       !match(II->getArgOperand(1), m_One()))
1036     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1037 
1038   return nullptr;
1039 }
1040 
1041 /// Return true if we find and adjust an icmp+select pattern where the compare
1042 /// is with a constant that can be incremented or decremented to match the
1043 /// minimum or maximum idiom.
1044 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1045   ICmpInst::Predicate Pred = Cmp.getPredicate();
1046   Value *CmpLHS = Cmp.getOperand(0);
1047   Value *CmpRHS = Cmp.getOperand(1);
1048   Value *TrueVal = Sel.getTrueValue();
1049   Value *FalseVal = Sel.getFalseValue();
1050 
1051   // We may move or edit the compare, so make sure the select is the only user.
1052   const APInt *CmpC;
1053   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1054     return false;
1055 
1056   // These transforms only work for selects of integers or vector selects of
1057   // integer vectors.
1058   Type *SelTy = Sel.getType();
1059   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1060   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1061     return false;
1062 
1063   Constant *AdjustedRHS;
1064   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1065     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1066   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1067     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1068   else
1069     return false;
1070 
1071   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1072   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1073   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1074       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1075     ; // Nothing to do here. Values match without any sign/zero extension.
1076   }
1077   // Types do not match. Instead of calculating this with mixed types, promote
1078   // all to the larger type. This enables scalar evolution to analyze this
1079   // expression.
1080   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1081     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1082 
1083     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1084     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1085     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1086     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1087     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1088       CmpLHS = TrueVal;
1089       AdjustedRHS = SextRHS;
1090     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1091                SextRHS == TrueVal) {
1092       CmpLHS = FalseVal;
1093       AdjustedRHS = SextRHS;
1094     } else if (Cmp.isUnsigned()) {
1095       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1096       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1097       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1098       // zext + signed compare cannot be changed:
1099       //    0xff <s 0x00, but 0x00ff >s 0x0000
1100       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1101         CmpLHS = TrueVal;
1102         AdjustedRHS = ZextRHS;
1103       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1104                  ZextRHS == TrueVal) {
1105         CmpLHS = FalseVal;
1106         AdjustedRHS = ZextRHS;
1107       } else {
1108         return false;
1109       }
1110     } else {
1111       return false;
1112     }
1113   } else {
1114     return false;
1115   }
1116 
1117   Pred = ICmpInst::getSwappedPredicate(Pred);
1118   CmpRHS = AdjustedRHS;
1119   std::swap(FalseVal, TrueVal);
1120   Cmp.setPredicate(Pred);
1121   Cmp.setOperand(0, CmpLHS);
1122   Cmp.setOperand(1, CmpRHS);
1123   Sel.setOperand(1, TrueVal);
1124   Sel.setOperand(2, FalseVal);
1125   Sel.swapProfMetadata();
1126 
1127   // Move the compare instruction right before the select instruction. Otherwise
1128   // the sext/zext value may be defined after the compare instruction uses it.
1129   Cmp.moveBefore(&Sel);
1130 
1131   return true;
1132 }
1133 
1134 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1135                                     InstCombinerImpl &IC) {
1136   Value *LHS, *RHS;
1137   // TODO: What to do with pointer min/max patterns?
1138   if (!Sel.getType()->isIntOrIntVectorTy())
1139     return nullptr;
1140 
1141   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1142   if (SPF == SelectPatternFlavor::SPF_ABS ||
1143       SPF == SelectPatternFlavor::SPF_NABS) {
1144     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1145       return nullptr; // TODO: Relax this restriction.
1146 
1147     // Note that NSW flag can only be propagated for normal, non-negated abs!
1148     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1149                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1150     Constant *IntMinIsPoisonC =
1151         ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1152     Instruction *Abs =
1153         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1154 
1155     if (SPF == SelectPatternFlavor::SPF_NABS)
1156       return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1157     return IC.replaceInstUsesWith(Sel, Abs);
1158   }
1159 
1160   if (SelectPatternResult::isMinOrMax(SPF)) {
1161     Intrinsic::ID IntrinsicID;
1162     switch (SPF) {
1163     case SelectPatternFlavor::SPF_UMIN:
1164       IntrinsicID = Intrinsic::umin;
1165       break;
1166     case SelectPatternFlavor::SPF_UMAX:
1167       IntrinsicID = Intrinsic::umax;
1168       break;
1169     case SelectPatternFlavor::SPF_SMIN:
1170       IntrinsicID = Intrinsic::smin;
1171       break;
1172     case SelectPatternFlavor::SPF_SMAX:
1173       IntrinsicID = Intrinsic::smax;
1174       break;
1175     default:
1176       llvm_unreachable("Unexpected SPF");
1177     }
1178     return IC.replaceInstUsesWith(
1179         Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1180   }
1181 
1182   return nullptr;
1183 }
1184 
1185 static bool replaceInInstruction(Value *V, Value *Old, Value *New,
1186                                  InstCombiner &IC, unsigned Depth = 0) {
1187   // Conservatively limit replacement to two instructions upwards.
1188   if (Depth == 2)
1189     return false;
1190 
1191   auto *I = dyn_cast<Instruction>(V);
1192   if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1193     return false;
1194 
1195   bool Changed = false;
1196   for (Use &U : I->operands()) {
1197     if (U == Old) {
1198       IC.replaceUse(U, New);
1199       Changed = true;
1200     } else {
1201       Changed |= replaceInInstruction(U, Old, New, IC, Depth + 1);
1202     }
1203   }
1204   return Changed;
1205 }
1206 
1207 /// If we have a select with an equality comparison, then we know the value in
1208 /// one of the arms of the select. See if substituting this value into an arm
1209 /// and simplifying the result yields the same value as the other arm.
1210 ///
1211 /// To make this transform safe, we must drop poison-generating flags
1212 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1213 /// that poison from propagating. If the existing binop already had no
1214 /// poison-generating flags, then this transform can be done by instsimplify.
1215 ///
1216 /// Consider:
1217 ///   %cmp = icmp eq i32 %x, 2147483647
1218 ///   %add = add nsw i32 %x, 1
1219 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1220 ///
1221 /// We can't replace %sel with %add unless we strip away the flags.
1222 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1223 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1224                                                           ICmpInst &Cmp) {
1225   if (!Cmp.isEquality())
1226     return nullptr;
1227 
1228   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1229   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1230   bool Swapped = false;
1231   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1232     std::swap(TrueVal, FalseVal);
1233     Swapped = true;
1234   }
1235 
1236   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1237   // Make sure Y cannot be undef though, as we might pick different values for
1238   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1239   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1240   // replacement cycle.
1241   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1242   if (TrueVal != CmpLHS &&
1243       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1244     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1245                                           /* AllowRefinement */ true))
1246       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1247 
1248     // Even if TrueVal does not simplify, we can directly replace a use of
1249     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1250     // else and is safe to speculatively execute (we may end up executing it
1251     // with different operands, which should not cause side-effects or trigger
1252     // undefined behavior). Only do this if CmpRHS is a constant, as
1253     // profitability is not clear for other cases.
1254     // FIXME: Support vectors.
1255     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1256         !Cmp.getType()->isVectorTy())
1257       if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS, *this))
1258         return &Sel;
1259   }
1260   if (TrueVal != CmpRHS &&
1261       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1262     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1263                                           /* AllowRefinement */ true))
1264       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1265 
1266   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1267   if (!FalseInst)
1268     return nullptr;
1269 
1270   // InstSimplify already performed this fold if it was possible subject to
1271   // current poison-generating flags. Try the transform again with
1272   // poison-generating flags temporarily dropped.
1273   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1274   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1275     WasNUW = OBO->hasNoUnsignedWrap();
1276     WasNSW = OBO->hasNoSignedWrap();
1277     FalseInst->setHasNoUnsignedWrap(false);
1278     FalseInst->setHasNoSignedWrap(false);
1279   }
1280   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1281     WasExact = PEO->isExact();
1282     FalseInst->setIsExact(false);
1283   }
1284   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1285     WasInBounds = GEP->isInBounds();
1286     GEP->setIsInBounds(false);
1287   }
1288 
1289   // Try each equivalence substitution possibility.
1290   // We have an 'EQ' comparison, so the select's false value will propagate.
1291   // Example:
1292   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1293   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1294                              /* AllowRefinement */ false) == TrueVal ||
1295       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1296                              /* AllowRefinement */ false) == TrueVal) {
1297     return replaceInstUsesWith(Sel, FalseVal);
1298   }
1299 
1300   // Restore poison-generating flags if the transform did not apply.
1301   if (WasNUW)
1302     FalseInst->setHasNoUnsignedWrap();
1303   if (WasNSW)
1304     FalseInst->setHasNoSignedWrap();
1305   if (WasExact)
1306     FalseInst->setIsExact();
1307   if (WasInBounds)
1308     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1309 
1310   return nullptr;
1311 }
1312 
1313 // See if this is a pattern like:
1314 //   %old_cmp1 = icmp slt i32 %x, C2
1315 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1316 //   %old_x_offseted = add i32 %x, C1
1317 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1318 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1319 // This can be rewritten as more canonical pattern:
1320 //   %new_cmp1 = icmp slt i32 %x, -C1
1321 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1322 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1323 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1324 // Iff -C1 s<= C2 s<= C0-C1
1325 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1326 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1327 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1328                                     InstCombiner::BuilderTy &Builder) {
1329   Value *X = Sel0.getTrueValue();
1330   Value *Sel1 = Sel0.getFalseValue();
1331 
1332   // First match the condition of the outermost select.
1333   // Said condition must be one-use.
1334   if (!Cmp0.hasOneUse())
1335     return nullptr;
1336   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1337   Value *Cmp00 = Cmp0.getOperand(0);
1338   Constant *C0;
1339   if (!match(Cmp0.getOperand(1),
1340              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1341     return nullptr;
1342 
1343   if (!isa<SelectInst>(Sel1)) {
1344     Pred0 = ICmpInst::getInversePredicate(Pred0);
1345     std::swap(X, Sel1);
1346   }
1347 
1348   // Canonicalize Cmp0 into ult or uge.
1349   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1350   switch (Pred0) {
1351   case ICmpInst::Predicate::ICMP_ULT:
1352   case ICmpInst::Predicate::ICMP_UGE:
1353     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1354     // have been simplified, it does not verify with undef inputs so ensure we
1355     // are not in a strange state.
1356     if (!match(C0, m_SpecificInt_ICMP(
1357                        ICmpInst::Predicate::ICMP_NE,
1358                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1359       return nullptr;
1360     break; // Great!
1361   case ICmpInst::Predicate::ICMP_ULE:
1362   case ICmpInst::Predicate::ICMP_UGT:
1363     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1364     // C0, which again means it must not have any all-ones elements.
1365     if (!match(C0,
1366                m_SpecificInt_ICMP(
1367                    ICmpInst::Predicate::ICMP_NE,
1368                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1369       return nullptr; // Can't do, have all-ones element[s].
1370     Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1371     C0 = InstCombiner::AddOne(C0);
1372     break;
1373   default:
1374     return nullptr; // Unknown predicate.
1375   }
1376 
1377   // Now that we've canonicalized the ICmp, we know the X we expect;
1378   // the select in other hand should be one-use.
1379   if (!Sel1->hasOneUse())
1380     return nullptr;
1381 
1382   // If the types do not match, look through any truncs to the underlying
1383   // instruction.
1384   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1385     match(X, m_TruncOrSelf(m_Value(X)));
1386 
1387   // We now can finish matching the condition of the outermost select:
1388   // it should either be the X itself, or an addition of some constant to X.
1389   Constant *C1;
1390   if (Cmp00 == X)
1391     C1 = ConstantInt::getNullValue(X->getType());
1392   else if (!match(Cmp00,
1393                   m_Add(m_Specific(X),
1394                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1395     return nullptr;
1396 
1397   Value *Cmp1;
1398   ICmpInst::Predicate Pred1;
1399   Constant *C2;
1400   Value *ReplacementLow, *ReplacementHigh;
1401   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1402                             m_Value(ReplacementHigh))) ||
1403       !match(Cmp1,
1404              m_ICmp(Pred1, m_Specific(X),
1405                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1406     return nullptr;
1407 
1408   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1409     return nullptr; // Not enough one-use instructions for the fold.
1410   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1411   //        two comparisons we'll need to build.
1412 
1413   // Canonicalize Cmp1 into the form we expect.
1414   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1415   switch (Pred1) {
1416   case ICmpInst::Predicate::ICMP_SLT:
1417     break;
1418   case ICmpInst::Predicate::ICMP_SLE:
1419     // We'd have to increment C2 by one, and for that it must not have signed
1420     // max element, but then it would have been canonicalized to 'slt' before
1421     // we get here. So we can't do anything useful with 'sle'.
1422     return nullptr;
1423   case ICmpInst::Predicate::ICMP_SGT:
1424     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1425     // which again means it must not have any signed max elements.
1426     if (!match(C2,
1427                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1428                                   APInt::getSignedMaxValue(
1429                                       C2->getType()->getScalarSizeInBits()))))
1430       return nullptr; // Can't do, have signed max element[s].
1431     C2 = InstCombiner::AddOne(C2);
1432     [[fallthrough]];
1433   case ICmpInst::Predicate::ICMP_SGE:
1434     // Also non-canonical, but here we don't need to change C2,
1435     // so we don't have any restrictions on C2, so we can just handle it.
1436     Pred1 = ICmpInst::Predicate::ICMP_SLT;
1437     std::swap(ReplacementLow, ReplacementHigh);
1438     break;
1439   default:
1440     return nullptr; // Unknown predicate.
1441   }
1442   assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1443          "Unexpected predicate type.");
1444 
1445   // The thresholds of this clamp-like pattern.
1446   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1447   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1448 
1449   assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1450           Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1451          "Unexpected predicate type.");
1452   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1453     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1454 
1455   // The fold has a precondition 1: C2 s>= ThresholdLow
1456   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1457                                          ThresholdLowIncl);
1458   if (!match(Precond1, m_One()))
1459     return nullptr;
1460   // The fold has a precondition 2: C2 s<= ThresholdHigh
1461   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1462                                          ThresholdHighExcl);
1463   if (!match(Precond2, m_One()))
1464     return nullptr;
1465 
1466   // If we are matching from a truncated input, we need to sext the
1467   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1468   // are free to extend due to being constants.
1469   if (X->getType() != Sel0.getType()) {
1470     Constant *LowC, *HighC;
1471     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1472         !match(ReplacementHigh, m_ImmConstant(HighC)))
1473       return nullptr;
1474     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1475     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1476   }
1477 
1478   // All good, finally emit the new pattern.
1479   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1480   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1481   Value *MaybeReplacedLow =
1482       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1483 
1484   // Create the final select. If we looked through a truncate above, we will
1485   // need to retruncate the result.
1486   Value *MaybeReplacedHigh = Builder.CreateSelect(
1487       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1488   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1489 }
1490 
1491 // If we have
1492 //  %cmp = icmp [canonical predicate] i32 %x, C0
1493 //  %r = select i1 %cmp, i32 %y, i32 C1
1494 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1495 // will have if we flip the strictness of the predicate (i.e. without changing
1496 // the result) is identical to the C1 in select. If it matches we can change
1497 // original comparison to one with swapped predicate, reuse the constant,
1498 // and swap the hands of select.
1499 static Instruction *
1500 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1501                                          InstCombinerImpl &IC) {
1502   ICmpInst::Predicate Pred;
1503   Value *X;
1504   Constant *C0;
1505   if (!match(&Cmp, m_OneUse(m_ICmp(
1506                        Pred, m_Value(X),
1507                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1508     return nullptr;
1509 
1510   // If comparison predicate is non-relational, we won't be able to do anything.
1511   if (ICmpInst::isEquality(Pred))
1512     return nullptr;
1513 
1514   // If comparison predicate is non-canonical, then we certainly won't be able
1515   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1516   if (!InstCombiner::isCanonicalPredicate(Pred))
1517     return nullptr;
1518 
1519   // If the [input] type of comparison and select type are different, lets abort
1520   // for now. We could try to compare constants with trunc/[zs]ext though.
1521   if (C0->getType() != Sel.getType())
1522     return nullptr;
1523 
1524   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1525   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1526   //        Or should we just abandon this transform entirely?
1527   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1528     return nullptr;
1529 
1530 
1531   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1532   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1533   // At least one of these values we are selecting between must be a constant
1534   // else we'll never succeed.
1535   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1536       !match(SelVal1, m_AnyIntegralConstant()))
1537     return nullptr;
1538 
1539   // Does this constant C match any of the `select` values?
1540   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1541     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1542   };
1543 
1544   // If C0 *already* matches true/false value of select, we are done.
1545   if (MatchesSelectValue(C0))
1546     return nullptr;
1547 
1548   // Check the constant we'd have with flipped-strictness predicate.
1549   auto FlippedStrictness =
1550       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1551   if (!FlippedStrictness)
1552     return nullptr;
1553 
1554   // If said constant doesn't match either, then there is no hope,
1555   if (!MatchesSelectValue(FlippedStrictness->second))
1556     return nullptr;
1557 
1558   // It matched! Lets insert the new comparison just before select.
1559   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1560   IC.Builder.SetInsertPoint(&Sel);
1561 
1562   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1563   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1564                                         Cmp.getName() + ".inv");
1565   IC.replaceOperand(Sel, 0, NewCmp);
1566   Sel.swapValues();
1567   Sel.swapProfMetadata();
1568 
1569   return &Sel;
1570 }
1571 
1572 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1573                                          Value *FVal,
1574                                          InstCombiner::BuilderTy &Builder) {
1575   if (!Cmp->hasOneUse())
1576     return nullptr;
1577 
1578   const APInt *CmpC;
1579   if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1580     return nullptr;
1581 
1582   // (X u< 2) ? -X : -1 --> sext (X != 0)
1583   Value *X = Cmp->getOperand(0);
1584   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1585       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1586     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1587 
1588   // (X u> 1) ? -1 : -X --> sext (X != 0)
1589   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1590       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1591     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1592 
1593   return nullptr;
1594 }
1595 
1596 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) {
1597   const APInt *CmpC;
1598   Value *V;
1599   CmpInst::Predicate Pred;
1600   if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1601     return nullptr;
1602 
1603   BinaryOperator *BO;
1604   const APInt *C;
1605   CmpInst::Predicate CPred;
1606   if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1607     CPred = ICI->getPredicate();
1608   else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1609     CPred = ICI->getInversePredicate();
1610   else
1611     return nullptr;
1612 
1613   const APInt *BinOpC;
1614   if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1615     return nullptr;
1616 
1617   ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1618                         .binaryOp(BO->getOpcode(), *BinOpC);
1619   if (R == *C) {
1620     BO->dropPoisonGeneratingFlags();
1621     return BO;
1622   }
1623   return nullptr;
1624 }
1625 
1626 /// Visit a SelectInst that has an ICmpInst as its first operand.
1627 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1628                                                       ICmpInst *ICI) {
1629   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1630     return NewSel;
1631 
1632   if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1633     return NewSPF;
1634 
1635   if (Value *V = foldSelectInstWithICmpConst(SI, ICI))
1636     return replaceInstUsesWith(SI, V);
1637 
1638   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1639     return replaceInstUsesWith(SI, V);
1640 
1641   if (Instruction *NewSel =
1642           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1643     return NewSel;
1644 
1645   bool Changed = adjustMinMax(SI, *ICI);
1646 
1647   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1648     return replaceInstUsesWith(SI, V);
1649 
1650   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1651   Value *TrueVal = SI.getTrueValue();
1652   Value *FalseVal = SI.getFalseValue();
1653   ICmpInst::Predicate Pred = ICI->getPredicate();
1654   Value *CmpLHS = ICI->getOperand(0);
1655   Value *CmpRHS = ICI->getOperand(1);
1656   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1657     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1658       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1659       SI.setOperand(1, CmpRHS);
1660       Changed = true;
1661     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1662       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1663       SI.setOperand(2, CmpRHS);
1664       Changed = true;
1665     }
1666   }
1667 
1668   // Canonicalize a signbit condition to use zero constant by swapping:
1669   // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1670   // To avoid conflicts (infinite loops) with other canonicalizations, this is
1671   // not applied with any constant select arm.
1672   if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1673       !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1674       ICI->hasOneUse()) {
1675     InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1676     Builder.SetInsertPoint(&SI);
1677     Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1678     replaceOperand(SI, 0, IsNeg);
1679     SI.swapValues();
1680     SI.swapProfMetadata();
1681     return &SI;
1682   }
1683 
1684   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1685   // decomposeBitTestICmp() might help.
1686   {
1687     unsigned BitWidth =
1688         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1689     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1690     Value *X;
1691     const APInt *Y, *C;
1692     bool TrueWhenUnset;
1693     bool IsBitTest = false;
1694     if (ICmpInst::isEquality(Pred) &&
1695         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1696         match(CmpRHS, m_Zero())) {
1697       IsBitTest = true;
1698       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1699     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1700       X = CmpLHS;
1701       Y = &MinSignedValue;
1702       IsBitTest = true;
1703       TrueWhenUnset = false;
1704     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1705       X = CmpLHS;
1706       Y = &MinSignedValue;
1707       IsBitTest = true;
1708       TrueWhenUnset = true;
1709     }
1710     if (IsBitTest) {
1711       Value *V = nullptr;
1712       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1713       if (TrueWhenUnset && TrueVal == X &&
1714           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1715         V = Builder.CreateAnd(X, ~(*Y));
1716       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1717       else if (!TrueWhenUnset && FalseVal == X &&
1718                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1719         V = Builder.CreateAnd(X, ~(*Y));
1720       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1721       else if (TrueWhenUnset && FalseVal == X &&
1722                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1723         V = Builder.CreateOr(X, *Y);
1724       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1725       else if (!TrueWhenUnset && TrueVal == X &&
1726                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1727         V = Builder.CreateOr(X, *Y);
1728 
1729       if (V)
1730         return replaceInstUsesWith(SI, V);
1731     }
1732   }
1733 
1734   if (Instruction *V =
1735           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1736     return V;
1737 
1738   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1739     return V;
1740 
1741   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1742     return V;
1743 
1744   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1745     return replaceInstUsesWith(SI, V);
1746 
1747   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1748     return replaceInstUsesWith(SI, V);
1749 
1750   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1751     return replaceInstUsesWith(SI, V);
1752 
1753   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1754     return replaceInstUsesWith(SI, V);
1755 
1756   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1757     return replaceInstUsesWith(SI, V);
1758 
1759   return Changed ? &SI : nullptr;
1760 }
1761 
1762 /// SI is a select whose condition is a PHI node (but the two may be in
1763 /// different blocks). See if the true/false values (V) are live in all of the
1764 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1765 ///
1766 ///   X = phi [ C1, BB1], [C2, BB2]
1767 ///   Y = add
1768 ///   Z = select X, Y, 0
1769 ///
1770 /// because Y is not live in BB1/BB2.
1771 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1772                                                    const SelectInst &SI) {
1773   // If the value is a non-instruction value like a constant or argument, it
1774   // can always be mapped.
1775   const Instruction *I = dyn_cast<Instruction>(V);
1776   if (!I) return true;
1777 
1778   // If V is a PHI node defined in the same block as the condition PHI, we can
1779   // map the arguments.
1780   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1781 
1782   if (const PHINode *VP = dyn_cast<PHINode>(I))
1783     if (VP->getParent() == CondPHI->getParent())
1784       return true;
1785 
1786   // Otherwise, if the PHI and select are defined in the same block and if V is
1787   // defined in a different block, then we can transform it.
1788   if (SI.getParent() == CondPHI->getParent() &&
1789       I->getParent() != CondPHI->getParent())
1790     return true;
1791 
1792   // Otherwise we have a 'hard' case and we can't tell without doing more
1793   // detailed dominator based analysis, punt.
1794   return false;
1795 }
1796 
1797 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1798 ///   SPF2(SPF1(A, B), C)
1799 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1800                                             SelectPatternFlavor SPF1, Value *A,
1801                                             Value *B, Instruction &Outer,
1802                                             SelectPatternFlavor SPF2,
1803                                             Value *C) {
1804   if (Outer.getType() != Inner->getType())
1805     return nullptr;
1806 
1807   if (C == A || C == B) {
1808     // MAX(MAX(A, B), B) -> MAX(A, B)
1809     // MIN(MIN(a, b), a) -> MIN(a, b)
1810     // TODO: This could be done in instsimplify.
1811     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1812       return replaceInstUsesWith(Outer, Inner);
1813   }
1814 
1815   return nullptr;
1816 }
1817 
1818 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1819 /// This is even legal for FP.
1820 static Instruction *foldAddSubSelect(SelectInst &SI,
1821                                      InstCombiner::BuilderTy &Builder) {
1822   Value *CondVal = SI.getCondition();
1823   Value *TrueVal = SI.getTrueValue();
1824   Value *FalseVal = SI.getFalseValue();
1825   auto *TI = dyn_cast<Instruction>(TrueVal);
1826   auto *FI = dyn_cast<Instruction>(FalseVal);
1827   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1828     return nullptr;
1829 
1830   Instruction *AddOp = nullptr, *SubOp = nullptr;
1831   if ((TI->getOpcode() == Instruction::Sub &&
1832        FI->getOpcode() == Instruction::Add) ||
1833       (TI->getOpcode() == Instruction::FSub &&
1834        FI->getOpcode() == Instruction::FAdd)) {
1835     AddOp = FI;
1836     SubOp = TI;
1837   } else if ((FI->getOpcode() == Instruction::Sub &&
1838               TI->getOpcode() == Instruction::Add) ||
1839              (FI->getOpcode() == Instruction::FSub &&
1840               TI->getOpcode() == Instruction::FAdd)) {
1841     AddOp = TI;
1842     SubOp = FI;
1843   }
1844 
1845   if (AddOp) {
1846     Value *OtherAddOp = nullptr;
1847     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1848       OtherAddOp = AddOp->getOperand(1);
1849     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1850       OtherAddOp = AddOp->getOperand(0);
1851     }
1852 
1853     if (OtherAddOp) {
1854       // So at this point we know we have (Y -> OtherAddOp):
1855       //        select C, (add X, Y), (sub X, Z)
1856       Value *NegVal; // Compute -Z
1857       if (SI.getType()->isFPOrFPVectorTy()) {
1858         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1859         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1860           FastMathFlags Flags = AddOp->getFastMathFlags();
1861           Flags &= SubOp->getFastMathFlags();
1862           NegInst->setFastMathFlags(Flags);
1863         }
1864       } else {
1865         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1866       }
1867 
1868       Value *NewTrueOp = OtherAddOp;
1869       Value *NewFalseOp = NegVal;
1870       if (AddOp != TI)
1871         std::swap(NewTrueOp, NewFalseOp);
1872       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1873                                            SI.getName() + ".p", &SI);
1874 
1875       if (SI.getType()->isFPOrFPVectorTy()) {
1876         Instruction *RI =
1877             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1878 
1879         FastMathFlags Flags = AddOp->getFastMathFlags();
1880         Flags &= SubOp->getFastMathFlags();
1881         RI->setFastMathFlags(Flags);
1882         return RI;
1883       } else
1884         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1885     }
1886   }
1887   return nullptr;
1888 }
1889 
1890 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1891 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1892 /// Along with a number of patterns similar to:
1893 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1894 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1895 static Instruction *
1896 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1897   Value *CondVal = SI.getCondition();
1898   Value *TrueVal = SI.getTrueValue();
1899   Value *FalseVal = SI.getFalseValue();
1900 
1901   WithOverflowInst *II;
1902   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1903       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1904     return nullptr;
1905 
1906   Value *X = II->getLHS();
1907   Value *Y = II->getRHS();
1908 
1909   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1910     Type *Ty = Limit->getType();
1911 
1912     ICmpInst::Predicate Pred;
1913     Value *TrueVal, *FalseVal, *Op;
1914     const APInt *C;
1915     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1916                                m_Value(TrueVal), m_Value(FalseVal))))
1917       return false;
1918 
1919     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1920     auto IsMinMax = [&](Value *Min, Value *Max) {
1921       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1922       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1923       return match(Min, m_SpecificInt(MinVal)) &&
1924              match(Max, m_SpecificInt(MaxVal));
1925     };
1926 
1927     if (Op != X && Op != Y)
1928       return false;
1929 
1930     if (IsAdd) {
1931       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1932       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1933       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1934       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1935       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1936           IsMinMax(TrueVal, FalseVal))
1937         return true;
1938       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1939       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1940       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1941       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1942       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1943           IsMinMax(FalseVal, TrueVal))
1944         return true;
1945     } else {
1946       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1947       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1948       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1949           IsMinMax(TrueVal, FalseVal))
1950         return true;
1951       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1952       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1953       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1954           IsMinMax(FalseVal, TrueVal))
1955         return true;
1956       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1957       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1958       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1959           IsMinMax(FalseVal, TrueVal))
1960         return true;
1961       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1962       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1963       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1964           IsMinMax(TrueVal, FalseVal))
1965         return true;
1966     }
1967 
1968     return false;
1969   };
1970 
1971   Intrinsic::ID NewIntrinsicID;
1972   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1973       match(TrueVal, m_AllOnes()))
1974     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1975     NewIntrinsicID = Intrinsic::uadd_sat;
1976   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1977            match(TrueVal, m_Zero()))
1978     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1979     NewIntrinsicID = Intrinsic::usub_sat;
1980   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1981            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1982     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1983     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1984     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1985     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1986     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1987     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1988     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1989     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1990     NewIntrinsicID = Intrinsic::sadd_sat;
1991   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1992            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1993     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1994     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1995     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1996     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1997     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1998     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1999     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2000     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2001     NewIntrinsicID = Intrinsic::ssub_sat;
2002   else
2003     return nullptr;
2004 
2005   Function *F =
2006       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2007   return CallInst::Create(F, {X, Y});
2008 }
2009 
2010 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2011   Constant *C;
2012   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2013       !match(Sel.getFalseValue(), m_Constant(C)))
2014     return nullptr;
2015 
2016   Instruction *ExtInst;
2017   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2018       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2019     return nullptr;
2020 
2021   auto ExtOpcode = ExtInst->getOpcode();
2022   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2023     return nullptr;
2024 
2025   // If we are extending from a boolean type or if we can create a select that
2026   // has the same size operands as its condition, try to narrow the select.
2027   Value *X = ExtInst->getOperand(0);
2028   Type *SmallType = X->getType();
2029   Value *Cond = Sel.getCondition();
2030   auto *Cmp = dyn_cast<CmpInst>(Cond);
2031   if (!SmallType->isIntOrIntVectorTy(1) &&
2032       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2033     return nullptr;
2034 
2035   // If the constant is the same after truncation to the smaller type and
2036   // extension to the original type, we can narrow the select.
2037   Type *SelType = Sel.getType();
2038   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2039   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2040   if (ExtC == C && ExtInst->hasOneUse()) {
2041     Value *TruncCVal = cast<Value>(TruncC);
2042     if (ExtInst == Sel.getFalseValue())
2043       std::swap(X, TruncCVal);
2044 
2045     // select Cond, (ext X), C --> ext(select Cond, X, C')
2046     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2047     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2048     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2049   }
2050 
2051   // If one arm of the select is the extend of the condition, replace that arm
2052   // with the extension of the appropriate known bool value.
2053   if (Cond == X) {
2054     if (ExtInst == Sel.getTrueValue()) {
2055       // select X, (sext X), C --> select X, -1, C
2056       // select X, (zext X), C --> select X,  1, C
2057       Constant *One = ConstantInt::getTrue(SmallType);
2058       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2059       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2060     } else {
2061       // select X, C, (sext X) --> select X, C, 0
2062       // select X, C, (zext X) --> select X, C, 0
2063       Constant *Zero = ConstantInt::getNullValue(SelType);
2064       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2065     }
2066   }
2067 
2068   return nullptr;
2069 }
2070 
2071 /// Try to transform a vector select with a constant condition vector into a
2072 /// shuffle for easier combining with other shuffles and insert/extract.
2073 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2074   Value *CondVal = SI.getCondition();
2075   Constant *CondC;
2076   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2077   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2078     return nullptr;
2079 
2080   unsigned NumElts = CondValTy->getNumElements();
2081   SmallVector<int, 16> Mask;
2082   Mask.reserve(NumElts);
2083   for (unsigned i = 0; i != NumElts; ++i) {
2084     Constant *Elt = CondC->getAggregateElement(i);
2085     if (!Elt)
2086       return nullptr;
2087 
2088     if (Elt->isOneValue()) {
2089       // If the select condition element is true, choose from the 1st vector.
2090       Mask.push_back(i);
2091     } else if (Elt->isNullValue()) {
2092       // If the select condition element is false, choose from the 2nd vector.
2093       Mask.push_back(i + NumElts);
2094     } else if (isa<UndefValue>(Elt)) {
2095       // Undef in a select condition (choose one of the operands) does not mean
2096       // the same thing as undef in a shuffle mask (any value is acceptable), so
2097       // give up.
2098       return nullptr;
2099     } else {
2100       // Bail out on a constant expression.
2101       return nullptr;
2102     }
2103   }
2104 
2105   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2106 }
2107 
2108 /// If we have a select of vectors with a scalar condition, try to convert that
2109 /// to a vector select by splatting the condition. A splat may get folded with
2110 /// other operations in IR and having all operands of a select be vector types
2111 /// is likely better for vector codegen.
2112 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2113                                                    InstCombinerImpl &IC) {
2114   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2115   if (!Ty)
2116     return nullptr;
2117 
2118   // We can replace a single-use extract with constant index.
2119   Value *Cond = Sel.getCondition();
2120   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2121     return nullptr;
2122 
2123   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2124   // Splatting the extracted condition reduces code (we could directly create a
2125   // splat shuffle of the source vector to eliminate the intermediate step).
2126   return IC.replaceOperand(
2127       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2128 }
2129 
2130 /// Reuse bitcasted operands between a compare and select:
2131 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2132 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2133 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2134                                           InstCombiner::BuilderTy &Builder) {
2135   Value *Cond = Sel.getCondition();
2136   Value *TVal = Sel.getTrueValue();
2137   Value *FVal = Sel.getFalseValue();
2138 
2139   CmpInst::Predicate Pred;
2140   Value *A, *B;
2141   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2142     return nullptr;
2143 
2144   // The select condition is a compare instruction. If the select's true/false
2145   // values are already the same as the compare operands, there's nothing to do.
2146   if (TVal == A || TVal == B || FVal == A || FVal == B)
2147     return nullptr;
2148 
2149   Value *C, *D;
2150   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2151     return nullptr;
2152 
2153   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2154   Value *TSrc, *FSrc;
2155   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2156       !match(FVal, m_BitCast(m_Value(FSrc))))
2157     return nullptr;
2158 
2159   // If the select true/false values are *different bitcasts* of the same source
2160   // operands, make the select operands the same as the compare operands and
2161   // cast the result. This is the canonical select form for min/max.
2162   Value *NewSel;
2163   if (TSrc == C && FSrc == D) {
2164     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2165     // bitcast (select (cmp A, B), A, B)
2166     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2167   } else if (TSrc == D && FSrc == C) {
2168     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2169     // bitcast (select (cmp A, B), B, A)
2170     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2171   } else {
2172     return nullptr;
2173   }
2174   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2175 }
2176 
2177 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2178 /// instructions.
2179 ///
2180 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2181 /// selects between the returned value of the cmpxchg instruction its compare
2182 /// operand, the result of the select will always be equal to its false value.
2183 /// For example:
2184 ///
2185 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2186 ///   %1 = extractvalue { i64, i1 } %0, 1
2187 ///   %2 = extractvalue { i64, i1 } %0, 0
2188 ///   %3 = select i1 %1, i64 %compare, i64 %2
2189 ///   ret i64 %3
2190 ///
2191 /// The returned value of the cmpxchg instruction (%2) is the original value
2192 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2193 /// must have been equal to %compare. Thus, the result of the select is always
2194 /// equal to %2, and the code can be simplified to:
2195 ///
2196 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2197 ///   %1 = extractvalue { i64, i1 } %0, 0
2198 ///   ret i64 %1
2199 ///
2200 static Value *foldSelectCmpXchg(SelectInst &SI) {
2201   // A helper that determines if V is an extractvalue instruction whose
2202   // aggregate operand is a cmpxchg instruction and whose single index is equal
2203   // to I. If such conditions are true, the helper returns the cmpxchg
2204   // instruction; otherwise, a nullptr is returned.
2205   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2206     auto *Extract = dyn_cast<ExtractValueInst>(V);
2207     if (!Extract)
2208       return nullptr;
2209     if (Extract->getIndices()[0] != I)
2210       return nullptr;
2211     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2212   };
2213 
2214   // If the select has a single user, and this user is a select instruction that
2215   // we can simplify, skip the cmpxchg simplification for now.
2216   if (SI.hasOneUse())
2217     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2218       if (Select->getCondition() == SI.getCondition())
2219         if (Select->getFalseValue() == SI.getTrueValue() ||
2220             Select->getTrueValue() == SI.getFalseValue())
2221           return nullptr;
2222 
2223   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2224   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2225   if (!CmpXchg)
2226     return nullptr;
2227 
2228   // Check the true value case: The true value of the select is the returned
2229   // value of the same cmpxchg used by the condition, and the false value is the
2230   // cmpxchg instruction's compare operand.
2231   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2232     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2233       return SI.getFalseValue();
2234 
2235   // Check the false value case: The false value of the select is the returned
2236   // value of the same cmpxchg used by the condition, and the true value is the
2237   // cmpxchg instruction's compare operand.
2238   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2239     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2240       return SI.getFalseValue();
2241 
2242   return nullptr;
2243 }
2244 
2245 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2246 /// into a funnel shift intrinsic. Example:
2247 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2248 ///              --> call llvm.fshl.i32(a, a, b)
2249 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2250 ///                 --> call llvm.fshl.i32(a, b, c)
2251 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2252 ///                 --> call llvm.fshr.i32(a, b, c)
2253 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2254                                           InstCombiner::BuilderTy &Builder) {
2255   // This must be a power-of-2 type for a bitmasking transform to be valid.
2256   unsigned Width = Sel.getType()->getScalarSizeInBits();
2257   if (!isPowerOf2_32(Width))
2258     return nullptr;
2259 
2260   BinaryOperator *Or0, *Or1;
2261   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2262     return nullptr;
2263 
2264   Value *SV0, *SV1, *SA0, *SA1;
2265   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2266                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2267       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2268                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2269       Or0->getOpcode() == Or1->getOpcode())
2270     return nullptr;
2271 
2272   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2273   if (Or0->getOpcode() == BinaryOperator::LShr) {
2274     std::swap(Or0, Or1);
2275     std::swap(SV0, SV1);
2276     std::swap(SA0, SA1);
2277   }
2278   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2279          Or1->getOpcode() == BinaryOperator::LShr &&
2280          "Illegal or(shift,shift) pair");
2281 
2282   // Check the shift amounts to see if they are an opposite pair.
2283   Value *ShAmt;
2284   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2285     ShAmt = SA0;
2286   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2287     ShAmt = SA1;
2288   else
2289     return nullptr;
2290 
2291   // We should now have this pattern:
2292   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2293   // The false value of the select must be a funnel-shift of the true value:
2294   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2295   bool IsFshl = (ShAmt == SA0);
2296   Value *TVal = Sel.getTrueValue();
2297   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2298     return nullptr;
2299 
2300   // Finally, see if the select is filtering out a shift-by-zero.
2301   Value *Cond = Sel.getCondition();
2302   ICmpInst::Predicate Pred;
2303   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2304       Pred != ICmpInst::ICMP_EQ)
2305     return nullptr;
2306 
2307   // If this is not a rotate then the select was blocking poison from the
2308   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2309   if (SV0 != SV1) {
2310     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2311       SV1 = Builder.CreateFreeze(SV1);
2312     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2313       SV0 = Builder.CreateFreeze(SV0);
2314   }
2315 
2316   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2317   // Convert to funnel shift intrinsic.
2318   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2319   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2320   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2321   return CallInst::Create(F, { SV0, SV1, ShAmt });
2322 }
2323 
2324 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2325                                          InstCombiner::BuilderTy &Builder) {
2326   Value *Cond = Sel.getCondition();
2327   Value *TVal = Sel.getTrueValue();
2328   Value *FVal = Sel.getFalseValue();
2329   Type *SelType = Sel.getType();
2330 
2331   // Match select ?, TC, FC where the constants are equal but negated.
2332   // TODO: Generalize to handle a negated variable operand?
2333   const APFloat *TC, *FC;
2334   if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2335       !match(FVal, m_APFloatAllowUndef(FC)) ||
2336       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2337     return nullptr;
2338 
2339   assert(TC != FC && "Expected equal select arms to simplify");
2340 
2341   Value *X;
2342   const APInt *C;
2343   bool IsTrueIfSignSet;
2344   ICmpInst::Predicate Pred;
2345   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2346       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2347       X->getType() != SelType)
2348     return nullptr;
2349 
2350   // If needed, negate the value that will be the sign argument of the copysign:
2351   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2352   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2353   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2354   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2355   // Note: FMF from the select can not be propagated to the new instructions.
2356   if (IsTrueIfSignSet ^ TC->isNegative())
2357     X = Builder.CreateFNeg(X);
2358 
2359   // Canonicalize the magnitude argument as the positive constant since we do
2360   // not care about its sign.
2361   Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2362   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2363                                           Sel.getType());
2364   return CallInst::Create(F, { MagArg, X });
2365 }
2366 
2367 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2368   if (!isa<VectorType>(Sel.getType()))
2369     return nullptr;
2370 
2371   Value *Cond = Sel.getCondition();
2372   Value *TVal = Sel.getTrueValue();
2373   Value *FVal = Sel.getFalseValue();
2374   Value *C, *X, *Y;
2375 
2376   if (match(Cond, m_VecReverse(m_Value(C)))) {
2377     auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2378       Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2379       if (auto *I = dyn_cast<Instruction>(V))
2380         I->copyIRFlags(&Sel);
2381       Module *M = Sel.getModule();
2382       Function *F = Intrinsic::getDeclaration(
2383           M, Intrinsic::experimental_vector_reverse, V->getType());
2384       return CallInst::Create(F, V);
2385     };
2386 
2387     if (match(TVal, m_VecReverse(m_Value(X)))) {
2388       // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2389       if (match(FVal, m_VecReverse(m_Value(Y))) &&
2390           (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2391         return createSelReverse(C, X, Y);
2392 
2393       // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2394       if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2395         return createSelReverse(C, X, FVal);
2396     }
2397     // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2398     else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2399              (Cond->hasOneUse() || FVal->hasOneUse()))
2400       return createSelReverse(C, TVal, Y);
2401   }
2402 
2403   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2404   if (!VecTy)
2405     return nullptr;
2406 
2407   unsigned NumElts = VecTy->getNumElements();
2408   APInt UndefElts(NumElts, 0);
2409   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2410   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2411     if (V != &Sel)
2412       return replaceInstUsesWith(Sel, V);
2413     return &Sel;
2414   }
2415 
2416   // A select of a "select shuffle" with a common operand can be rearranged
2417   // to select followed by "select shuffle". Because of poison, this only works
2418   // in the case of a shuffle with no undefined mask elements.
2419   ArrayRef<int> Mask;
2420   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2421       !is_contained(Mask, UndefMaskElem) &&
2422       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2423     if (X == FVal) {
2424       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2425       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2426       return new ShuffleVectorInst(X, NewSel, Mask);
2427     }
2428     if (Y == FVal) {
2429       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2430       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2431       return new ShuffleVectorInst(NewSel, Y, Mask);
2432     }
2433   }
2434   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2435       !is_contained(Mask, UndefMaskElem) &&
2436       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2437     if (X == TVal) {
2438       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2439       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2440       return new ShuffleVectorInst(X, NewSel, Mask);
2441     }
2442     if (Y == TVal) {
2443       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2444       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2445       return new ShuffleVectorInst(NewSel, Y, Mask);
2446     }
2447   }
2448 
2449   return nullptr;
2450 }
2451 
2452 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2453                                         const DominatorTree &DT,
2454                                         InstCombiner::BuilderTy &Builder) {
2455   // Find the block's immediate dominator that ends with a conditional branch
2456   // that matches select's condition (maybe inverted).
2457   auto *IDomNode = DT[BB]->getIDom();
2458   if (!IDomNode)
2459     return nullptr;
2460   BasicBlock *IDom = IDomNode->getBlock();
2461 
2462   Value *Cond = Sel.getCondition();
2463   Value *IfTrue, *IfFalse;
2464   BasicBlock *TrueSucc, *FalseSucc;
2465   if (match(IDom->getTerminator(),
2466             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2467                  m_BasicBlock(FalseSucc)))) {
2468     IfTrue = Sel.getTrueValue();
2469     IfFalse = Sel.getFalseValue();
2470   } else if (match(IDom->getTerminator(),
2471                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2472                         m_BasicBlock(FalseSucc)))) {
2473     IfTrue = Sel.getFalseValue();
2474     IfFalse = Sel.getTrueValue();
2475   } else
2476     return nullptr;
2477 
2478   // Make sure the branches are actually different.
2479   if (TrueSucc == FalseSucc)
2480     return nullptr;
2481 
2482   // We want to replace select %cond, %a, %b with a phi that takes value %a
2483   // for all incoming edges that are dominated by condition `%cond == true`,
2484   // and value %b for edges dominated by condition `%cond == false`. If %a
2485   // or %b are also phis from the same basic block, we can go further and take
2486   // their incoming values from the corresponding blocks.
2487   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2488   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2489   DenseMap<BasicBlock *, Value *> Inputs;
2490   for (auto *Pred : predecessors(BB)) {
2491     // Check implication.
2492     BasicBlockEdge Incoming(Pred, BB);
2493     if (DT.dominates(TrueEdge, Incoming))
2494       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2495     else if (DT.dominates(FalseEdge, Incoming))
2496       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2497     else
2498       return nullptr;
2499     // Check availability.
2500     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2501       if (!DT.dominates(Insn, Pred->getTerminator()))
2502         return nullptr;
2503   }
2504 
2505   Builder.SetInsertPoint(&*BB->begin());
2506   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2507   for (auto *Pred : predecessors(BB))
2508     PN->addIncoming(Inputs[Pred], Pred);
2509   PN->takeName(&Sel);
2510   return PN;
2511 }
2512 
2513 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2514                                     InstCombiner::BuilderTy &Builder) {
2515   // Try to replace this select with Phi in one of these blocks.
2516   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2517   CandidateBlocks.insert(Sel.getParent());
2518   for (Value *V : Sel.operands())
2519     if (auto *I = dyn_cast<Instruction>(V))
2520       CandidateBlocks.insert(I->getParent());
2521 
2522   for (BasicBlock *BB : CandidateBlocks)
2523     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2524       return PN;
2525   return nullptr;
2526 }
2527 
2528 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2529   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2530   if (!FI)
2531     return nullptr;
2532 
2533   Value *Cond = FI->getOperand(0);
2534   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2535 
2536   //   select (freeze(x == y)), x, y --> y
2537   //   select (freeze(x != y)), x, y --> x
2538   // The freeze should be only used by this select. Otherwise, remaining uses of
2539   // the freeze can observe a contradictory value.
2540   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2541   //   a = select c, x, y   ;
2542   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2543   //                        ; to y, this can happen.
2544   CmpInst::Predicate Pred;
2545   if (FI->hasOneUse() &&
2546       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2547       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2548     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2549   }
2550 
2551   return nullptr;
2552 }
2553 
2554 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2555                                                                  SelectInst &SI,
2556                                                                  bool IsAnd) {
2557   Value *CondVal = SI.getCondition();
2558   Value *A = SI.getTrueValue();
2559   Value *B = SI.getFalseValue();
2560 
2561   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2562          "Op must be either i1 or vector of i1.");
2563 
2564   std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2565   if (!Res)
2566     return nullptr;
2567 
2568   Value *Zero = Constant::getNullValue(A->getType());
2569   Value *One = Constant::getAllOnesValue(A->getType());
2570 
2571   if (*Res == true) {
2572     if (IsAnd)
2573       // select op, (select cond, A, B), false => select op, A, false
2574       // and    op, (select cond, A, B)        => select op, A, false
2575       //   if op = true implies condval = true.
2576       return SelectInst::Create(Op, A, Zero);
2577     else
2578       // select op, true, (select cond, A, B) => select op, true, A
2579       // or     op, (select cond, A, B)       => select op, true, A
2580       //   if op = false implies condval = true.
2581       return SelectInst::Create(Op, One, A);
2582   } else {
2583     if (IsAnd)
2584       // select op, (select cond, A, B), false => select op, B, false
2585       // and    op, (select cond, A, B)        => select op, B, false
2586       //   if op = true implies condval = false.
2587       return SelectInst::Create(Op, B, Zero);
2588     else
2589       // select op, true, (select cond, A, B) => select op, true, B
2590       // or     op, (select cond, A, B)       => select op, true, B
2591       //   if op = false implies condval = false.
2592       return SelectInst::Create(Op, One, B);
2593   }
2594 }
2595 
2596 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2597 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2598 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2599                                              InstCombinerImpl &IC) {
2600   Value *CondVal = SI.getCondition();
2601 
2602   bool ChangedFMF = false;
2603   for (bool Swap : {false, true}) {
2604     Value *TrueVal = SI.getTrueValue();
2605     Value *X = SI.getFalseValue();
2606     CmpInst::Predicate Pred;
2607 
2608     if (Swap)
2609       std::swap(TrueVal, X);
2610 
2611     if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2612       continue;
2613 
2614     // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2615     // fold (X >  +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2616     if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2617       if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2618         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2619         return IC.replaceInstUsesWith(SI, Fabs);
2620       }
2621       if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2622         Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2623         return IC.replaceInstUsesWith(SI, Fabs);
2624       }
2625     }
2626 
2627     if (!match(TrueVal, m_FNeg(m_Specific(X))))
2628       return nullptr;
2629 
2630     // Forward-propagate nnan and ninf from the fneg to the select.
2631     // If all inputs are not those values, then the select is not either.
2632     // Note: nsz is defined differently, so it may not be correct to propagate.
2633     FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2634     if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2635       SI.setHasNoNaNs(true);
2636       ChangedFMF = true;
2637     }
2638     if (FMF.noInfs() && !SI.hasNoInfs()) {
2639       SI.setHasNoInfs(true);
2640       ChangedFMF = true;
2641     }
2642 
2643     // With nsz, when 'Swap' is false:
2644     // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2645     // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2646     // when 'Swap' is true:
2647     // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2648     // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2649     //
2650     // Note: We require "nnan" for this fold because fcmp ignores the signbit
2651     //       of NAN, but IEEE-754 specifies the signbit of NAN values with
2652     //       fneg/fabs operations.
2653     if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2654       return nullptr;
2655 
2656     if (Swap)
2657       Pred = FCmpInst::getSwappedPredicate(Pred);
2658 
2659     bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2660                     Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2661     bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2662                     Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2663 
2664     if (IsLTOrLE) {
2665       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2666       return IC.replaceInstUsesWith(SI, Fabs);
2667     }
2668     if (IsGTOrGE) {
2669       Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2670       Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2671       NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2672       return NewFNeg;
2673     }
2674   }
2675 
2676   return ChangedFMF ? &SI : nullptr;
2677 }
2678 
2679 // Match the following IR pattern:
2680 //   %x.lowbits = and i8 %x, %lowbitmask
2681 //   %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2682 //   %x.biased = add i8 %x, %bias
2683 //   %x.biased.highbits = and i8 %x.biased, %highbitmask
2684 //   %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2685 // Define:
2686 //   %alignment = add i8 %lowbitmask, 1
2687 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2688 // and 2. %bias is equal to either %lowbitmask or %alignment,
2689 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2690 // then this pattern can be transformed into:
2691 //   %x.offset = add i8 %x, %lowbitmask
2692 //   %x.roundedup = and i8 %x.offset, %highbitmask
2693 static Value *
2694 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2695                                     InstCombiner::BuilderTy &Builder) {
2696   Value *Cond = SI.getCondition();
2697   Value *X = SI.getTrueValue();
2698   Value *XBiasedHighBits = SI.getFalseValue();
2699 
2700   ICmpInst::Predicate Pred;
2701   Value *XLowBits;
2702   if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2703       !ICmpInst::isEquality(Pred))
2704     return nullptr;
2705 
2706   if (Pred == ICmpInst::Predicate::ICMP_NE)
2707     std::swap(X, XBiasedHighBits);
2708 
2709   // FIXME: we could support non non-splats here.
2710 
2711   const APInt *LowBitMaskCst;
2712   if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2713     return nullptr;
2714 
2715   // Match even if the AND and ADD are swapped.
2716   const APInt *BiasCst, *HighBitMaskCst;
2717   if (!match(XBiasedHighBits,
2718              m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2719                    m_APIntAllowUndef(HighBitMaskCst))) &&
2720       !match(XBiasedHighBits,
2721              m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2722                    m_APIntAllowUndef(BiasCst))))
2723     return nullptr;
2724 
2725   if (!LowBitMaskCst->isMask())
2726     return nullptr;
2727 
2728   APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2729   if (InvertedLowBitMaskCst != *HighBitMaskCst)
2730     return nullptr;
2731 
2732   APInt AlignmentCst = *LowBitMaskCst + 1;
2733 
2734   if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2735     return nullptr;
2736 
2737   if (!XBiasedHighBits->hasOneUse()) {
2738     if (*BiasCst == *LowBitMaskCst)
2739       return XBiasedHighBits;
2740     return nullptr;
2741   }
2742 
2743   // FIXME: could we preserve undef's here?
2744   Type *Ty = X->getType();
2745   Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2746                                      X->getName() + ".biased");
2747   Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2748   R->takeName(&SI);
2749   return R;
2750 }
2751 
2752 namespace {
2753 struct DecomposedSelect {
2754   Value *Cond = nullptr;
2755   Value *TrueVal = nullptr;
2756   Value *FalseVal = nullptr;
2757 };
2758 } // namespace
2759 
2760 /// Look for patterns like
2761 ///   %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2762 ///   %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2763 ///   %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2764 /// and rewrite it as
2765 ///   %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2766 ///   %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
2767 static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2768                                       InstCombiner::BuilderTy &Builder) {
2769   // We must start with a `select`.
2770   DecomposedSelect OuterSel;
2771   match(&OuterSelVal,
2772         m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2773                  m_Value(OuterSel.FalseVal)));
2774 
2775   // Canonicalize inversion of the outermost `select`'s condition.
2776   if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2777     std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2778 
2779   // The condition of the outermost select must be an `and`/`or`.
2780   if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2781     return nullptr;
2782 
2783   // Depending on the logical op, inner select might be in different hand.
2784   bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2785   Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2786 
2787   // Profitability check - avoid increasing instruction count.
2788   if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2789               [](Value *V) { return V->hasOneUse(); }))
2790     return nullptr;
2791 
2792   // The appropriate hand of the outermost `select` must be a select itself.
2793   DecomposedSelect InnerSel;
2794   if (!match(InnerSelVal,
2795              m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2796                       m_Value(InnerSel.FalseVal))))
2797     return nullptr;
2798 
2799   // Canonicalize inversion of the innermost `select`'s condition.
2800   if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2801     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2802 
2803   Value *AltCond = nullptr;
2804   auto matchOuterCond = [OuterSel, &AltCond](auto m_InnerCond) {
2805     return match(OuterSel.Cond, m_c_LogicalOp(m_InnerCond, m_Value(AltCond)));
2806   };
2807 
2808   // Finally, match the condition that was driving the outermost `select`,
2809   // it should be a logical operation between the condition that was driving
2810   // the innermost `select` (after accounting for the possible inversions
2811   // of the condition), and some other condition.
2812   if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2813     // Done!
2814   } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2815                  m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2816     // Done!
2817     std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2818     InnerSel.Cond = NotInnerCond;
2819   } else // Not the pattern we were looking for.
2820     return nullptr;
2821 
2822   Value *SelInner = Builder.CreateSelect(
2823       AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2824       IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2825   SelInner->takeName(InnerSelVal);
2826   return SelectInst::Create(InnerSel.Cond,
2827                             IsAndVariant ? SelInner : InnerSel.TrueVal,
2828                             !IsAndVariant ? SelInner : InnerSel.FalseVal);
2829 }
2830 
2831 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2832   Value *CondVal = SI.getCondition();
2833   Value *TrueVal = SI.getTrueValue();
2834   Value *FalseVal = SI.getFalseValue();
2835   Type *SelType = SI.getType();
2836 
2837   // Avoid potential infinite loops by checking for non-constant condition.
2838   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2839   //       Scalar select must have simplified?
2840   if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2841       TrueVal->getType() != CondVal->getType())
2842     return nullptr;
2843 
2844   auto *One = ConstantInt::getTrue(SelType);
2845   auto *Zero = ConstantInt::getFalse(SelType);
2846   Value *A, *B, *C, *D;
2847 
2848   // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2849   // checks whether folding it does not convert a well-defined value into
2850   // poison.
2851   if (match(TrueVal, m_One())) {
2852     if (impliesPoison(FalseVal, CondVal)) {
2853       // Change: A = select B, true, C --> A = or B, C
2854       return BinaryOperator::CreateOr(CondVal, FalseVal);
2855     }
2856 
2857     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2858       if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2859         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2860                                         /*IsSelectLogical*/ true))
2861           return replaceInstUsesWith(SI, V);
2862 
2863     // (A && B) || (C && B) --> (A || C) && B
2864     if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2865         match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2866         (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2867       bool CondLogicAnd = isa<SelectInst>(CondVal);
2868       bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2869       auto AndFactorization = [&](Value *Common, Value *InnerCond,
2870                                   Value *InnerVal,
2871                                   bool SelFirst = false) -> Instruction * {
2872         Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2873         if (SelFirst)
2874           std::swap(Common, InnerSel);
2875         if (FalseLogicAnd || (CondLogicAnd && Common == A))
2876           return SelectInst::Create(Common, InnerSel, Zero);
2877         else
2878           return BinaryOperator::CreateAnd(Common, InnerSel);
2879       };
2880 
2881       if (A == C)
2882         return AndFactorization(A, B, D);
2883       if (A == D)
2884         return AndFactorization(A, B, C);
2885       if (B == C)
2886         return AndFactorization(B, A, D);
2887       if (B == D)
2888         return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2889     }
2890   }
2891 
2892   if (match(FalseVal, m_Zero())) {
2893     if (impliesPoison(TrueVal, CondVal)) {
2894       // Change: A = select B, C, false --> A = and B, C
2895       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2896     }
2897 
2898     if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2899       if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
2900         if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
2901                                         /*IsSelectLogical*/ true))
2902           return replaceInstUsesWith(SI, V);
2903 
2904     // (A || B) && (C || B) --> (A && C) || B
2905     if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
2906         match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
2907         (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
2908       bool CondLogicOr = isa<SelectInst>(CondVal);
2909       bool TrueLogicOr = isa<SelectInst>(TrueVal);
2910       auto OrFactorization = [&](Value *Common, Value *InnerCond,
2911                                  Value *InnerVal,
2912                                  bool SelFirst = false) -> Instruction * {
2913         Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
2914         if (SelFirst)
2915           std::swap(Common, InnerSel);
2916         if (TrueLogicOr || (CondLogicOr && Common == A))
2917           return SelectInst::Create(Common, One, InnerSel);
2918         else
2919           return BinaryOperator::CreateOr(Common, InnerSel);
2920       };
2921 
2922       if (A == C)
2923         return OrFactorization(A, B, D);
2924       if (A == D)
2925         return OrFactorization(A, B, C);
2926       if (B == C)
2927         return OrFactorization(B, A, D);
2928       if (B == D)
2929         return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
2930     }
2931   }
2932 
2933   // We match the "full" 0 or 1 constant here to avoid a potential infinite
2934   // loop with vectors that may have undefined/poison elements.
2935   // select a, false, b -> select !a, b, false
2936   if (match(TrueVal, m_Specific(Zero))) {
2937     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2938     return SelectInst::Create(NotCond, FalseVal, Zero);
2939   }
2940   // select a, b, true -> select !a, true, b
2941   if (match(FalseVal, m_Specific(One))) {
2942     Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2943     return SelectInst::Create(NotCond, One, TrueVal);
2944   }
2945 
2946   // DeMorgan in select form: !a && !b --> !(a || b)
2947   // select !a, !b, false --> not (select a, true, b)
2948   if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2949       (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2950       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2951     return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2952 
2953   // DeMorgan in select form: !a || !b --> !(a && b)
2954   // select !a, true, !b --> not (select a, b, false)
2955   if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2956       (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2957       !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2958     return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2959 
2960   // select (select a, true, b), true, b -> select a, true, b
2961   if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2962       match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2963     return replaceOperand(SI, 0, A);
2964   // select (select a, b, false), b, false -> select a, b, false
2965   if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2966       match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2967     return replaceOperand(SI, 0, A);
2968 
2969   // ~(A & B) & (A | B) --> A ^ B
2970   if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
2971                                 m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
2972     return BinaryOperator::CreateXor(A, B);
2973 
2974   // select (~a | c), a, b -> and a, (or c, freeze(b))
2975   if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
2976       CondVal->hasOneUse()) {
2977     FalseVal = Builder.CreateFreeze(FalseVal);
2978     return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
2979   }
2980   // select (~c & b), a, b -> and b, (or freeze(a), c)
2981   if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
2982       CondVal->hasOneUse()) {
2983     TrueVal = Builder.CreateFreeze(TrueVal);
2984     return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
2985   }
2986 
2987   if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2988     Use *Y = nullptr;
2989     bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2990     Value *Op1 = IsAnd ? TrueVal : FalseVal;
2991     if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2992       auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2993       InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2994       replaceUse(*Y, FI);
2995       return replaceInstUsesWith(SI, Op1);
2996     }
2997 
2998     if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2999       if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3000                                                       /* IsAnd */ IsAnd))
3001         return I;
3002 
3003     if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3004       if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3005         if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3006                                        /* IsLogical */ true))
3007           return replaceInstUsesWith(SI, V);
3008   }
3009 
3010   // select (a || b), c, false -> select a, c, false
3011   // select c, (a || b), false -> select c, a, false
3012   //   if c implies that b is false.
3013   if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3014       match(FalseVal, m_Zero())) {
3015     std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3016     if (Res && *Res == false)
3017       return replaceOperand(SI, 0, A);
3018   }
3019   if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3020       match(FalseVal, m_Zero())) {
3021     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3022     if (Res && *Res == false)
3023       return replaceOperand(SI, 1, A);
3024   }
3025   // select c, true, (a && b)  -> select c, true, a
3026   // select (a && b), true, c  -> select a, true, c
3027   //   if c = false implies that b = true
3028   if (match(TrueVal, m_One()) &&
3029       match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3030     std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3031     if (Res && *Res == true)
3032       return replaceOperand(SI, 2, A);
3033   }
3034   if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3035       match(TrueVal, m_One())) {
3036     std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3037     if (Res && *Res == true)
3038       return replaceOperand(SI, 0, A);
3039   }
3040 
3041   if (match(TrueVal, m_One())) {
3042     Value *C;
3043 
3044     // (C && A) || (!C && B) --> sel C, A, B
3045     // (A && C) || (!C && B) --> sel C, A, B
3046     // (C && A) || (B && !C) --> sel C, A, B
3047     // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3048     if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3049         match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3050       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3051       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3052       bool MayNeedFreeze = SelCond && SelFVal &&
3053                            match(SelFVal->getTrueValue(),
3054                                  m_Not(m_Specific(SelCond->getTrueValue())));
3055       if (MayNeedFreeze)
3056         C = Builder.CreateFreeze(C);
3057       return SelectInst::Create(C, A, B);
3058     }
3059 
3060     // (!C && A) || (C && B) --> sel C, B, A
3061     // (A && !C) || (C && B) --> sel C, B, A
3062     // (!C && A) || (B && C) --> sel C, B, A
3063     // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3064     if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3065         match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3066       auto *SelCond = dyn_cast<SelectInst>(CondVal);
3067       auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3068       bool MayNeedFreeze = SelCond && SelFVal &&
3069                            match(SelCond->getTrueValue(),
3070                                  m_Not(m_Specific(SelFVal->getTrueValue())));
3071       if (MayNeedFreeze)
3072         C = Builder.CreateFreeze(C);
3073       return SelectInst::Create(C, B, A);
3074     }
3075   }
3076 
3077   return nullptr;
3078 }
3079 
3080 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3081   Value *CondVal = SI.getCondition();
3082   Value *TrueVal = SI.getTrueValue();
3083   Value *FalseVal = SI.getFalseValue();
3084   Type *SelType = SI.getType();
3085 
3086   if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3087                                     SQ.getWithInstruction(&SI)))
3088     return replaceInstUsesWith(SI, V);
3089 
3090   if (Instruction *I = canonicalizeSelectToShuffle(SI))
3091     return I;
3092 
3093   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3094     return I;
3095 
3096   // If the type of select is not an integer type or if the condition and
3097   // the selection type are not both scalar nor both vector types, there is no
3098   // point in attempting to match these patterns.
3099   Type *CondType = CondVal->getType();
3100   if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3101       CondType->isVectorTy() == SelType->isVectorTy()) {
3102     if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3103                                           ConstantInt::getTrue(CondType), SQ,
3104                                           /* AllowRefinement */ true))
3105       return replaceOperand(SI, 1, S);
3106 
3107     if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3108                                           ConstantInt::getFalse(CondType), SQ,
3109                                           /* AllowRefinement */ true))
3110       return replaceOperand(SI, 2, S);
3111 
3112     // Handle patterns involving sext/zext + not explicitly,
3113     // as simplifyWithOpReplaced() only looks past one instruction.
3114     Value *NotCond;
3115 
3116     // select a, sext(!a), b -> select !a, b, 0
3117     // select a, zext(!a), b -> select !a, b, 0
3118     if (match(TrueVal, m_ZExtOrSExt(m_CombineAnd(m_Value(NotCond),
3119                                                  m_Not(m_Specific(CondVal))))))
3120       return SelectInst::Create(NotCond, FalseVal,
3121                                 Constant::getNullValue(SelType));
3122 
3123     // select a, b, zext(!a) -> select !a, 1, b
3124     if (match(FalseVal, m_ZExt(m_CombineAnd(m_Value(NotCond),
3125                                             m_Not(m_Specific(CondVal))))))
3126       return SelectInst::Create(NotCond, ConstantInt::get(SelType, 1), TrueVal);
3127 
3128     // select a, b, sext(!a) -> select !a, -1, b
3129     if (match(FalseVal, m_SExt(m_CombineAnd(m_Value(NotCond),
3130                                             m_Not(m_Specific(CondVal))))))
3131       return SelectInst::Create(NotCond, Constant::getAllOnesValue(SelType),
3132                                 TrueVal);
3133   }
3134 
3135   if (Instruction *R = foldSelectOfBools(SI))
3136     return R;
3137 
3138   // Selecting between two integer or vector splat integer constants?
3139   //
3140   // Note that we don't handle a scalar select of vectors:
3141   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3142   // because that may need 3 instructions to splat the condition value:
3143   // extend, insertelement, shufflevector.
3144   //
3145   // Do not handle i1 TrueVal and FalseVal otherwise would result in
3146   // zext/sext i1 to i1.
3147   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3148       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3149     // select C, 1, 0 -> zext C to int
3150     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3151       return new ZExtInst(CondVal, SelType);
3152 
3153     // select C, -1, 0 -> sext C to int
3154     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3155       return new SExtInst(CondVal, SelType);
3156 
3157     // select C, 0, 1 -> zext !C to int
3158     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3159       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3160       return new ZExtInst(NotCond, SelType);
3161     }
3162 
3163     // select C, 0, -1 -> sext !C to int
3164     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3165       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3166       return new SExtInst(NotCond, SelType);
3167     }
3168   }
3169 
3170   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3171     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3172     // Are we selecting a value based on a comparison of the two values?
3173     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3174         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3175       // Canonicalize to use ordered comparisons by swapping the select
3176       // operands.
3177       //
3178       // e.g.
3179       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3180       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
3181         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3182         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3183         // FIXME: The FMF should propagate from the select, not the fcmp.
3184         Builder.setFastMathFlags(FCmp->getFastMathFlags());
3185         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3186                                             FCmp->getName() + ".inv");
3187         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3188         return replaceInstUsesWith(SI, NewSel);
3189       }
3190     }
3191   }
3192 
3193   if (isa<FPMathOperator>(SI)) {
3194     // TODO: Try to forward-propagate FMF from select arms to the select.
3195 
3196     // Canonicalize select of FP values where NaN and -0.0 are not valid as
3197     // minnum/maxnum intrinsics.
3198     if (SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3199       Value *X, *Y;
3200       if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3201         return replaceInstUsesWith(
3202             SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3203 
3204       if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3205         return replaceInstUsesWith(
3206             SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3207     }
3208   }
3209 
3210   // Fold selecting to fabs.
3211   if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3212     return Fabs;
3213 
3214   // See if we are selecting two values based on a comparison of the two values.
3215   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3216     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3217       return Result;
3218 
3219   if (Instruction *Add = foldAddSubSelect(SI, Builder))
3220     return Add;
3221   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3222     return Add;
3223   if (Instruction *Or = foldSetClearBits(SI, Builder))
3224     return Or;
3225   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3226     return Mul;
3227 
3228   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3229   auto *TI = dyn_cast<Instruction>(TrueVal);
3230   auto *FI = dyn_cast<Instruction>(FalseVal);
3231   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3232     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3233       return IV;
3234 
3235   if (Instruction *I = foldSelectExtConst(SI))
3236     return I;
3237 
3238   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3239   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3240   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3241                                bool Swap) -> GetElementPtrInst * {
3242     Value *Ptr = Gep->getPointerOperand();
3243     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3244         !Gep->hasOneUse())
3245       return nullptr;
3246     Value *Idx = Gep->getOperand(1);
3247     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3248       return nullptr;
3249     Type *ElementType = Gep->getResultElementType();
3250     Value *NewT = Idx;
3251     Value *NewF = Constant::getNullValue(Idx->getType());
3252     if (Swap)
3253       std::swap(NewT, NewF);
3254     Value *NewSI =
3255         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3256     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3257   };
3258   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3259     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3260       return NewGep;
3261   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3262     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3263       return NewGep;
3264 
3265   // See if we can fold the select into one of our operands.
3266   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3267     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3268       return FoldI;
3269 
3270     Value *LHS, *RHS;
3271     Instruction::CastOps CastOp;
3272     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3273     auto SPF = SPR.Flavor;
3274     if (SPF) {
3275       Value *LHS2, *RHS2;
3276       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3277         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3278                                           RHS2, SI, SPF, RHS))
3279           return R;
3280       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3281         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3282                                           RHS2, SI, SPF, LHS))
3283           return R;
3284     }
3285 
3286     if (SelectPatternResult::isMinOrMax(SPF)) {
3287       // Canonicalize so that
3288       // - type casts are outside select patterns.
3289       // - float clamp is transformed to min/max pattern
3290 
3291       bool IsCastNeeded = LHS->getType() != SelType;
3292       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3293       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3294       if (IsCastNeeded ||
3295           (LHS->getType()->isFPOrFPVectorTy() &&
3296            ((CmpLHS != LHS && CmpLHS != RHS) ||
3297             (CmpRHS != LHS && CmpRHS != RHS)))) {
3298         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3299 
3300         Value *Cmp;
3301         if (CmpInst::isIntPredicate(MinMaxPred)) {
3302           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3303         } else {
3304           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3305           auto FMF =
3306               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3307           Builder.setFastMathFlags(FMF);
3308           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3309         }
3310 
3311         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3312         if (!IsCastNeeded)
3313           return replaceInstUsesWith(SI, NewSI);
3314 
3315         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3316         return replaceInstUsesWith(SI, NewCast);
3317       }
3318     }
3319   }
3320 
3321   // See if we can fold the select into a phi node if the condition is a select.
3322   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3323     // The true/false values have to be live in the PHI predecessor's blocks.
3324     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3325         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3326       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3327         return NV;
3328 
3329   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3330     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3331       // select(C, select(C, a, b), c) -> select(C, a, c)
3332       if (TrueSI->getCondition() == CondVal) {
3333         if (SI.getTrueValue() == TrueSI->getTrueValue())
3334           return nullptr;
3335         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3336       }
3337       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3338       // We choose this as normal form to enable folding on the And and
3339       // shortening paths for the values (this helps getUnderlyingObjects() for
3340       // example).
3341       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3342         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3343         replaceOperand(SI, 0, And);
3344         replaceOperand(SI, 1, TrueSI->getTrueValue());
3345         return &SI;
3346       }
3347     }
3348   }
3349   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3350     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3351       // select(C, a, select(C, b, c)) -> select(C, a, c)
3352       if (FalseSI->getCondition() == CondVal) {
3353         if (SI.getFalseValue() == FalseSI->getFalseValue())
3354           return nullptr;
3355         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3356       }
3357       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3358       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3359         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3360         replaceOperand(SI, 0, Or);
3361         replaceOperand(SI, 2, FalseSI->getFalseValue());
3362         return &SI;
3363       }
3364     }
3365   }
3366 
3367   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3368     // The select might be preventing a division by 0.
3369     switch (BO->getOpcode()) {
3370     default:
3371       return true;
3372     case Instruction::SRem:
3373     case Instruction::URem:
3374     case Instruction::SDiv:
3375     case Instruction::UDiv:
3376       return false;
3377     }
3378   };
3379 
3380   // Try to simplify a binop sandwiched between 2 selects with the same
3381   // condition.
3382   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3383   BinaryOperator *TrueBO;
3384   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3385       canMergeSelectThroughBinop(TrueBO)) {
3386     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3387       if (TrueBOSI->getCondition() == CondVal) {
3388         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3389         Worklist.push(TrueBO);
3390         return &SI;
3391       }
3392     }
3393     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3394       if (TrueBOSI->getCondition() == CondVal) {
3395         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3396         Worklist.push(TrueBO);
3397         return &SI;
3398       }
3399     }
3400   }
3401 
3402   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3403   BinaryOperator *FalseBO;
3404   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3405       canMergeSelectThroughBinop(FalseBO)) {
3406     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3407       if (FalseBOSI->getCondition() == CondVal) {
3408         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3409         Worklist.push(FalseBO);
3410         return &SI;
3411       }
3412     }
3413     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3414       if (FalseBOSI->getCondition() == CondVal) {
3415         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3416         Worklist.push(FalseBO);
3417         return &SI;
3418       }
3419     }
3420   }
3421 
3422   Value *NotCond;
3423   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3424       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3425     replaceOperand(SI, 0, NotCond);
3426     SI.swapValues();
3427     SI.swapProfMetadata();
3428     return &SI;
3429   }
3430 
3431   if (Instruction *I = foldVectorSelect(SI))
3432     return I;
3433 
3434   // If we can compute the condition, there's no need for a select.
3435   // Like the above fold, we are attempting to reduce compile-time cost by
3436   // putting this fold here with limitations rather than in InstSimplify.
3437   // The motivation for this call into value tracking is to take advantage of
3438   // the assumption cache, so make sure that is populated.
3439   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3440     KnownBits Known(1);
3441     computeKnownBits(CondVal, Known, 0, &SI);
3442     if (Known.One.isOne())
3443       return replaceInstUsesWith(SI, TrueVal);
3444     if (Known.Zero.isOne())
3445       return replaceInstUsesWith(SI, FalseVal);
3446   }
3447 
3448   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3449     return BitCastSel;
3450 
3451   // Simplify selects that test the returned flag of cmpxchg instructions.
3452   if (Value *V = foldSelectCmpXchg(SI))
3453     return replaceInstUsesWith(SI, V);
3454 
3455   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3456     return Select;
3457 
3458   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3459     return Funnel;
3460 
3461   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3462     return Copysign;
3463 
3464   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3465     return replaceInstUsesWith(SI, PN);
3466 
3467   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3468     return replaceInstUsesWith(SI, Fr);
3469 
3470   if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3471     return replaceInstUsesWith(SI, V);
3472 
3473   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3474   // Load inst is intentionally not checked for hasOneUse()
3475   if (match(FalseVal, m_Zero()) &&
3476       (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3477                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3478        match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3479                                      m_CombineOr(m_Undef(), m_Zero()))))) {
3480     auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3481     if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3482       MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3483     return replaceInstUsesWith(SI, MaskedInst);
3484   }
3485 
3486   Value *Mask;
3487   if (match(TrueVal, m_Zero()) &&
3488       (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3489                                     m_CombineOr(m_Undef(), m_Zero()))) ||
3490        match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3491                                       m_CombineOr(m_Undef(), m_Zero())))) &&
3492       (CondVal->getType() == Mask->getType())) {
3493     // We can remove the select by ensuring the load zeros all lanes the
3494     // select would have.  We determine this by proving there is no overlap
3495     // between the load and select masks.
3496     // (i.e (load_mask & select_mask) == 0 == no overlap)
3497     bool CanMergeSelectIntoLoad = false;
3498     if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3499       CanMergeSelectIntoLoad = match(V, m_Zero());
3500 
3501     if (CanMergeSelectIntoLoad) {
3502       auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3503       if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3504         MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3505       return replaceInstUsesWith(SI, MaskedInst);
3506     }
3507   }
3508 
3509   if (Instruction *I = foldNestedSelects(SI, Builder))
3510     return I;
3511 
3512   // Match logical variants of the pattern,
3513   // and transform them iff that gets rid of inversions.
3514   //   (~x) | y  -->  ~(x & (~y))
3515   //   (~x) & y  -->  ~(x | (~y))
3516   if (sinkNotIntoOtherHandOfLogicalOp(SI))
3517     return &SI;
3518 
3519   return nullptr;
3520 }
3521