1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/CaptureTracking.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/Utils/Local.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/KnownBits.h" 29 #include "llvm/Transforms/InstCombine/InstCombiner.h" 30 #include <bitset> 31 32 using namespace llvm; 33 using namespace PatternMatch; 34 35 #define DEBUG_TYPE "instcombine" 36 37 // How many times is a select replaced by one of its operands? 38 STATISTIC(NumSel, "Number of select opts"); 39 40 41 /// Compute Result = In1+In2, returning true if the result overflowed for this 42 /// type. 43 static bool addWithOverflow(APInt &Result, const APInt &In1, 44 const APInt &In2, bool IsSigned = false) { 45 bool Overflow; 46 if (IsSigned) 47 Result = In1.sadd_ov(In2, Overflow); 48 else 49 Result = In1.uadd_ov(In2, Overflow); 50 51 return Overflow; 52 } 53 54 /// Compute Result = In1-In2, returning true if the result overflowed for this 55 /// type. 56 static bool subWithOverflow(APInt &Result, const APInt &In1, 57 const APInt &In2, bool IsSigned = false) { 58 bool Overflow; 59 if (IsSigned) 60 Result = In1.ssub_ov(In2, Overflow); 61 else 62 Result = In1.usub_ov(In2, Overflow); 63 64 return Overflow; 65 } 66 67 /// Given an icmp instruction, return true if any use of this comparison is a 68 /// branch on sign bit comparison. 69 static bool hasBranchUse(ICmpInst &I) { 70 for (auto *U : I.users()) 71 if (isa<BranchInst>(U)) 72 return true; 73 return false; 74 } 75 76 /// Returns true if the exploded icmp can be expressed as a signed comparison 77 /// to zero and updates the predicate accordingly. 78 /// The signedness of the comparison is preserved. 79 /// TODO: Refactor with decomposeBitTestICmp()? 80 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 81 if (!ICmpInst::isSigned(Pred)) 82 return false; 83 84 if (C.isZero()) 85 return ICmpInst::isRelational(Pred); 86 87 if (C.isOne()) { 88 if (Pred == ICmpInst::ICMP_SLT) { 89 Pred = ICmpInst::ICMP_SLE; 90 return true; 91 } 92 } else if (C.isAllOnes()) { 93 if (Pred == ICmpInst::ICMP_SGT) { 94 Pred = ICmpInst::ICMP_SGE; 95 return true; 96 } 97 } 98 99 return false; 100 } 101 102 /// This is called when we see this pattern: 103 /// cmp pred (load (gep GV, ...)), cmpcst 104 /// where GV is a global variable with a constant initializer. Try to simplify 105 /// this into some simple computation that does not need the load. For example 106 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 107 /// 108 /// If AndCst is non-null, then the loaded value is masked with that constant 109 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 110 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 111 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 112 ConstantInt *AndCst) { 113 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 114 GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() || 115 !GV->hasDefinitiveInitializer()) 116 return nullptr; 117 118 Constant *Init = GV->getInitializer(); 119 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 120 return nullptr; 121 122 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 123 // Don't blow up on huge arrays. 124 if (ArrayElementCount > MaxArraySizeForCombine) 125 return nullptr; 126 127 // There are many forms of this optimization we can handle, for now, just do 128 // the simple index into a single-dimensional array. 129 // 130 // Require: GEP GV, 0, i {{, constant indices}} 131 if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) || 132 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 133 isa<Constant>(GEP->getOperand(2))) 134 return nullptr; 135 136 // Check that indices after the variable are constants and in-range for the 137 // type they index. Collect the indices. This is typically for arrays of 138 // structs. 139 SmallVector<unsigned, 4> LaterIndices; 140 141 Type *EltTy = Init->getType()->getArrayElementType(); 142 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 143 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 144 if (!Idx) 145 return nullptr; // Variable index. 146 147 uint64_t IdxVal = Idx->getZExtValue(); 148 if ((unsigned)IdxVal != IdxVal) 149 return nullptr; // Too large array index. 150 151 if (StructType *STy = dyn_cast<StructType>(EltTy)) 152 EltTy = STy->getElementType(IdxVal); 153 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 154 if (IdxVal >= ATy->getNumElements()) 155 return nullptr; 156 EltTy = ATy->getElementType(); 157 } else { 158 return nullptr; // Unknown type. 159 } 160 161 LaterIndices.push_back(IdxVal); 162 } 163 164 enum { Overdefined = -3, Undefined = -2 }; 165 166 // Variables for our state machines. 167 168 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 169 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 170 // and 87 is the second (and last) index. FirstTrueElement is -2 when 171 // undefined, otherwise set to the first true element. SecondTrueElement is 172 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 173 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 174 175 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 176 // form "i != 47 & i != 87". Same state transitions as for true elements. 177 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 178 179 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 180 /// define a state machine that triggers for ranges of values that the index 181 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 182 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 183 /// index in the range (inclusive). We use -2 for undefined here because we 184 /// use relative comparisons and don't want 0-1 to match -1. 185 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 186 187 // MagicBitvector - This is a magic bitvector where we set a bit if the 188 // comparison is true for element 'i'. If there are 64 elements or less in 189 // the array, this will fully represent all the comparison results. 190 uint64_t MagicBitvector = 0; 191 192 // Scan the array and see if one of our patterns matches. 193 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 194 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 195 Constant *Elt = Init->getAggregateElement(i); 196 if (!Elt) 197 return nullptr; 198 199 // If this is indexing an array of structures, get the structure element. 200 if (!LaterIndices.empty()) { 201 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 202 if (!Elt) 203 return nullptr; 204 } 205 206 // If the element is masked, handle it. 207 if (AndCst) { 208 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL); 209 if (!Elt) 210 return nullptr; 211 } 212 213 // Find out if the comparison would be true or false for the i'th element. 214 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 215 CompareRHS, DL, &TLI); 216 // If the result is undef for this element, ignore it. 217 if (isa<UndefValue>(C)) { 218 // Extend range state machines to cover this element in case there is an 219 // undef in the middle of the range. 220 if (TrueRangeEnd == (int)i - 1) 221 TrueRangeEnd = i; 222 if (FalseRangeEnd == (int)i - 1) 223 FalseRangeEnd = i; 224 continue; 225 } 226 227 // If we can't compute the result for any of the elements, we have to give 228 // up evaluating the entire conditional. 229 if (!isa<ConstantInt>(C)) 230 return nullptr; 231 232 // Otherwise, we know if the comparison is true or false for this element, 233 // update our state machines. 234 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 235 236 // State machine for single/double/range index comparison. 237 if (IsTrueForElt) { 238 // Update the TrueElement state machine. 239 if (FirstTrueElement == Undefined) 240 FirstTrueElement = TrueRangeEnd = i; // First true element. 241 else { 242 // Update double-compare state machine. 243 if (SecondTrueElement == Undefined) 244 SecondTrueElement = i; 245 else 246 SecondTrueElement = Overdefined; 247 248 // Update range state machine. 249 if (TrueRangeEnd == (int)i - 1) 250 TrueRangeEnd = i; 251 else 252 TrueRangeEnd = Overdefined; 253 } 254 } else { 255 // Update the FalseElement state machine. 256 if (FirstFalseElement == Undefined) 257 FirstFalseElement = FalseRangeEnd = i; // First false element. 258 else { 259 // Update double-compare state machine. 260 if (SecondFalseElement == Undefined) 261 SecondFalseElement = i; 262 else 263 SecondFalseElement = Overdefined; 264 265 // Update range state machine. 266 if (FalseRangeEnd == (int)i - 1) 267 FalseRangeEnd = i; 268 else 269 FalseRangeEnd = Overdefined; 270 } 271 } 272 273 // If this element is in range, update our magic bitvector. 274 if (i < 64 && IsTrueForElt) 275 MagicBitvector |= 1ULL << i; 276 277 // If all of our states become overdefined, bail out early. Since the 278 // predicate is expensive, only check it every 8 elements. This is only 279 // really useful for really huge arrays. 280 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 281 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 282 FalseRangeEnd == Overdefined) 283 return nullptr; 284 } 285 286 // Now that we've scanned the entire array, emit our new comparison(s). We 287 // order the state machines in complexity of the generated code. 288 Value *Idx = GEP->getOperand(2); 289 290 // If the index is larger than the pointer offset size of the target, truncate 291 // the index down like the GEP would do implicitly. We don't have to do this 292 // for an inbounds GEP because the index can't be out of range. 293 if (!GEP->isInBounds()) { 294 Type *PtrIdxTy = DL.getIndexType(GEP->getType()); 295 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth(); 296 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize) 297 Idx = Builder.CreateTrunc(Idx, PtrIdxTy); 298 } 299 300 // If inbounds keyword is not present, Idx * ElementSize can overflow. 301 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 302 // Then, there are two possible values for Idx to match offset 0: 303 // 0x00..00, 0x80..00. 304 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 305 // comparison is false if Idx was 0x80..00. 306 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 307 unsigned ElementSize = 308 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 309 auto MaskIdx = [&](Value *Idx) { 310 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) { 311 Value *Mask = ConstantInt::get(Idx->getType(), -1); 312 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize)); 313 Idx = Builder.CreateAnd(Idx, Mask); 314 } 315 return Idx; 316 }; 317 318 // If the comparison is only true for one or two elements, emit direct 319 // comparisons. 320 if (SecondTrueElement != Overdefined) { 321 Idx = MaskIdx(Idx); 322 // None true -> false. 323 if (FirstTrueElement == Undefined) 324 return replaceInstUsesWith(ICI, Builder.getFalse()); 325 326 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 327 328 // True for one element -> 'i == 47'. 329 if (SecondTrueElement == Undefined) 330 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 331 332 // True for two elements -> 'i == 47 | i == 72'. 333 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 334 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 335 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 336 return BinaryOperator::CreateOr(C1, C2); 337 } 338 339 // If the comparison is only false for one or two elements, emit direct 340 // comparisons. 341 if (SecondFalseElement != Overdefined) { 342 Idx = MaskIdx(Idx); 343 // None false -> true. 344 if (FirstFalseElement == Undefined) 345 return replaceInstUsesWith(ICI, Builder.getTrue()); 346 347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 348 349 // False for one element -> 'i != 47'. 350 if (SecondFalseElement == Undefined) 351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 352 353 // False for two elements -> 'i != 47 & i != 72'. 354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 355 Value *SecondFalseIdx = 356 ConstantInt::get(Idx->getType(), SecondFalseElement); 357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 358 return BinaryOperator::CreateAnd(C1, C2); 359 } 360 361 // If the comparison can be replaced with a range comparison for the elements 362 // where it is true, emit the range check. 363 if (TrueRangeEnd != Overdefined) { 364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 365 Idx = MaskIdx(Idx); 366 367 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 368 if (FirstTrueElement) { 369 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 370 Idx = Builder.CreateAdd(Idx, Offs); 371 } 372 373 Value *End = 374 ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1); 375 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 376 } 377 378 // False range check. 379 if (FalseRangeEnd != Overdefined) { 380 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 381 Idx = MaskIdx(Idx); 382 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 383 if (FirstFalseElement) { 384 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 385 Idx = Builder.CreateAdd(Idx, Offs); 386 } 387 388 Value *End = 389 ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement); 390 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 391 } 392 393 // If a magic bitvector captures the entire comparison state 394 // of this load, replace it with computation that does: 395 // ((magic_cst >> i) & 1) != 0 396 { 397 Type *Ty = nullptr; 398 399 // Look for an appropriate type: 400 // - The type of Idx if the magic fits 401 // - The smallest fitting legal type 402 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 403 Ty = Idx->getType(); 404 else 405 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 406 407 if (Ty) { 408 Idx = MaskIdx(Idx); 409 Value *V = Builder.CreateIntCast(Idx, Ty, false); 410 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 411 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 412 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 413 } 414 } 415 416 return nullptr; 417 } 418 419 /// Returns true if we can rewrite Start as a GEP with pointer Base 420 /// and some integer offset. The nodes that need to be re-written 421 /// for this transformation will be added to Explored. 422 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 423 const DataLayout &DL, 424 SetVector<Value *> &Explored) { 425 SmallVector<Value *, 16> WorkList(1, Start); 426 Explored.insert(Base); 427 428 // The following traversal gives us an order which can be used 429 // when doing the final transformation. Since in the final 430 // transformation we create the PHI replacement instructions first, 431 // we don't have to get them in any particular order. 432 // 433 // However, for other instructions we will have to traverse the 434 // operands of an instruction first, which means that we have to 435 // do a post-order traversal. 436 while (!WorkList.empty()) { 437 SetVector<PHINode *> PHIs; 438 439 while (!WorkList.empty()) { 440 if (Explored.size() >= 100) 441 return false; 442 443 Value *V = WorkList.back(); 444 445 if (Explored.contains(V)) { 446 WorkList.pop_back(); 447 continue; 448 } 449 450 if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 451 // We've found some value that we can't explore which is different from 452 // the base. Therefore we can't do this transformation. 453 return false; 454 455 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 456 // Only allow inbounds GEPs with at most one variable offset. 457 auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); }; 458 if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1) 459 return false; 460 461 if (!Explored.contains(GEP->getOperand(0))) 462 WorkList.push_back(GEP->getOperand(0)); 463 } 464 465 if (WorkList.back() == V) { 466 WorkList.pop_back(); 467 // We've finished visiting this node, mark it as such. 468 Explored.insert(V); 469 } 470 471 if (auto *PN = dyn_cast<PHINode>(V)) { 472 // We cannot transform PHIs on unsplittable basic blocks. 473 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 474 return false; 475 Explored.insert(PN); 476 PHIs.insert(PN); 477 } 478 } 479 480 // Explore the PHI nodes further. 481 for (auto *PN : PHIs) 482 for (Value *Op : PN->incoming_values()) 483 if (!Explored.contains(Op)) 484 WorkList.push_back(Op); 485 } 486 487 // Make sure that we can do this. Since we can't insert GEPs in a basic 488 // block before a PHI node, we can't easily do this transformation if 489 // we have PHI node users of transformed instructions. 490 for (Value *Val : Explored) { 491 for (Value *Use : Val->uses()) { 492 493 auto *PHI = dyn_cast<PHINode>(Use); 494 auto *Inst = dyn_cast<Instruction>(Val); 495 496 if (Inst == Base || Inst == PHI || !Inst || !PHI || 497 !Explored.contains(PHI)) 498 continue; 499 500 if (PHI->getParent() == Inst->getParent()) 501 return false; 502 } 503 } 504 return true; 505 } 506 507 // Sets the appropriate insert point on Builder where we can add 508 // a replacement Instruction for V (if that is possible). 509 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 510 bool Before = true) { 511 if (auto *PHI = dyn_cast<PHINode>(V)) { 512 BasicBlock *Parent = PHI->getParent(); 513 Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt()); 514 return; 515 } 516 if (auto *I = dyn_cast<Instruction>(V)) { 517 if (!Before) 518 I = &*std::next(I->getIterator()); 519 Builder.SetInsertPoint(I); 520 return; 521 } 522 if (auto *A = dyn_cast<Argument>(V)) { 523 // Set the insertion point in the entry block. 524 BasicBlock &Entry = A->getParent()->getEntryBlock(); 525 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt()); 526 return; 527 } 528 // Otherwise, this is a constant and we don't need to set a new 529 // insertion point. 530 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 531 } 532 533 /// Returns a re-written value of Start as an indexed GEP using Base as a 534 /// pointer. 535 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 536 const DataLayout &DL, 537 SetVector<Value *> &Explored, 538 InstCombiner &IC) { 539 // Perform all the substitutions. This is a bit tricky because we can 540 // have cycles in our use-def chains. 541 // 1. Create the PHI nodes without any incoming values. 542 // 2. Create all the other values. 543 // 3. Add the edges for the PHI nodes. 544 // 4. Emit GEPs to get the original pointers. 545 // 5. Remove the original instructions. 546 Type *IndexType = IntegerType::get( 547 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 548 549 DenseMap<Value *, Value *> NewInsts; 550 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 551 552 // Create the new PHI nodes, without adding any incoming values. 553 for (Value *Val : Explored) { 554 if (Val == Base) 555 continue; 556 // Create empty phi nodes. This avoids cyclic dependencies when creating 557 // the remaining instructions. 558 if (auto *PHI = dyn_cast<PHINode>(Val)) 559 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 560 PHI->getName() + ".idx", PHI); 561 } 562 IRBuilder<> Builder(Base->getContext()); 563 564 // Create all the other instructions. 565 for (Value *Val : Explored) { 566 if (NewInsts.contains(Val)) 567 continue; 568 569 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 570 setInsertionPoint(Builder, GEP); 571 Value *Op = NewInsts[GEP->getOperand(0)]; 572 Value *OffsetV = emitGEPOffset(&Builder, DL, GEP); 573 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 574 NewInsts[GEP] = OffsetV; 575 else 576 NewInsts[GEP] = Builder.CreateNSWAdd( 577 Op, OffsetV, GEP->getOperand(0)->getName() + ".add"); 578 continue; 579 } 580 if (isa<PHINode>(Val)) 581 continue; 582 583 llvm_unreachable("Unexpected instruction type"); 584 } 585 586 // Add the incoming values to the PHI nodes. 587 for (Value *Val : Explored) { 588 if (Val == Base) 589 continue; 590 // All the instructions have been created, we can now add edges to the 591 // phi nodes. 592 if (auto *PHI = dyn_cast<PHINode>(Val)) { 593 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 594 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 595 Value *NewIncoming = PHI->getIncomingValue(I); 596 597 if (NewInsts.contains(NewIncoming)) 598 NewIncoming = NewInsts[NewIncoming]; 599 600 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 601 } 602 } 603 } 604 605 for (Value *Val : Explored) { 606 if (Val == Base) 607 continue; 608 609 setInsertionPoint(Builder, Val, false); 610 // Create GEP for external users. 611 Value *NewVal = Builder.CreateInBoundsGEP( 612 Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr"); 613 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal); 614 // Add old instruction to worklist for DCE. We don't directly remove it 615 // here because the original compare is one of the users. 616 IC.addToWorklist(cast<Instruction>(Val)); 617 } 618 619 return NewInsts[Start]; 620 } 621 622 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 623 /// We can look through PHIs, GEPs and casts in order to determine a common base 624 /// between GEPLHS and RHS. 625 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 626 ICmpInst::Predicate Cond, 627 const DataLayout &DL, 628 InstCombiner &IC) { 629 // FIXME: Support vector of pointers. 630 if (GEPLHS->getType()->isVectorTy()) 631 return nullptr; 632 633 if (!GEPLHS->hasAllConstantIndices()) 634 return nullptr; 635 636 APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0); 637 Value *PtrBase = 638 GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset, 639 /*AllowNonInbounds*/ false); 640 641 // Bail if we looked through addrspacecast. 642 if (PtrBase->getType() != GEPLHS->getType()) 643 return nullptr; 644 645 // The set of nodes that will take part in this transformation. 646 SetVector<Value *> Nodes; 647 648 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 649 return nullptr; 650 651 // We know we can re-write this as 652 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 653 // Since we've only looked through inbouds GEPs we know that we 654 // can't have overflow on either side. We can therefore re-write 655 // this as: 656 // OFFSET1 cmp OFFSET2 657 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC); 658 659 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 660 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 661 // offset. Since Index is the offset of LHS to the base pointer, we will now 662 // compare the offsets instead of comparing the pointers. 663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 664 IC.Builder.getInt(Offset), NewRHS); 665 } 666 667 /// Fold comparisons between a GEP instruction and something else. At this point 668 /// we know that the GEP is on the LHS of the comparison. 669 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 670 ICmpInst::Predicate Cond, 671 Instruction &I) { 672 // Don't transform signed compares of GEPs into index compares. Even if the 673 // GEP is inbounds, the final add of the base pointer can have signed overflow 674 // and would change the result of the icmp. 675 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 676 // the maximum signed value for the pointer type. 677 if (ICmpInst::isSigned(Cond)) 678 return nullptr; 679 680 // Look through bitcasts and addrspacecasts. We do not however want to remove 681 // 0 GEPs. 682 if (!isa<GetElementPtrInst>(RHS)) 683 RHS = RHS->stripPointerCasts(); 684 685 Value *PtrBase = GEPLHS->getOperand(0); 686 if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) { 687 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 688 Value *Offset = EmitGEPOffset(GEPLHS); 689 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 690 Constant::getNullValue(Offset->getType())); 691 } 692 693 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 694 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 695 !NullPointerIsDefined(I.getFunction(), 696 RHS->getType()->getPointerAddressSpace())) { 697 // For most address spaces, an allocation can't be placed at null, but null 698 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 699 // the only valid inbounds address derived from null, is null itself. 700 // Thus, we have four cases to consider: 701 // 1) Base == nullptr, Offset == 0 -> inbounds, null 702 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 703 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 704 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 705 // 706 // (Note if we're indexing a type of size 0, that simply collapses into one 707 // of the buckets above.) 708 // 709 // In general, we're allowed to make values less poison (i.e. remove 710 // sources of full UB), so in this case, we just select between the two 711 // non-poison cases (1 and 4 above). 712 // 713 // For vectors, we apply the same reasoning on a per-lane basis. 714 auto *Base = GEPLHS->getPointerOperand(); 715 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 716 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 717 Base = Builder.CreateVectorSplat(EC, Base); 718 } 719 return new ICmpInst(Cond, Base, 720 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 721 cast<Constant>(RHS), Base->getType())); 722 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 723 // If the base pointers are different, but the indices are the same, just 724 // compare the base pointer. 725 if (PtrBase != GEPRHS->getOperand(0)) { 726 bool IndicesTheSame = 727 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 728 GEPLHS->getPointerOperand()->getType() == 729 GEPRHS->getPointerOperand()->getType() && 730 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 731 if (IndicesTheSame) 732 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 733 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 734 IndicesTheSame = false; 735 break; 736 } 737 738 // If all indices are the same, just compare the base pointers. 739 Type *BaseType = GEPLHS->getOperand(0)->getType(); 740 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 741 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 742 743 // If we're comparing GEPs with two base pointers that only differ in type 744 // and both GEPs have only constant indices or just one use, then fold 745 // the compare with the adjusted indices. 746 // FIXME: Support vector of pointers. 747 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 748 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 749 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 750 PtrBase->stripPointerCasts() == 751 GEPRHS->getOperand(0)->stripPointerCasts() && 752 !GEPLHS->getType()->isVectorTy()) { 753 Value *LOffset = EmitGEPOffset(GEPLHS); 754 Value *ROffset = EmitGEPOffset(GEPRHS); 755 756 // If we looked through an addrspacecast between different sized address 757 // spaces, the LHS and RHS pointers are different sized 758 // integers. Truncate to the smaller one. 759 Type *LHSIndexTy = LOffset->getType(); 760 Type *RHSIndexTy = ROffset->getType(); 761 if (LHSIndexTy != RHSIndexTy) { 762 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < 763 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { 764 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 765 } else 766 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 767 } 768 769 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 770 LOffset, ROffset); 771 return replaceInstUsesWith(I, Cmp); 772 } 773 774 // Otherwise, the base pointers are different and the indices are 775 // different. Try convert this to an indexed compare by looking through 776 // PHIs/casts. 777 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 778 } 779 780 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 781 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 782 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 783 // If the GEPs only differ by one index, compare it. 784 unsigned NumDifferences = 0; // Keep track of # differences. 785 unsigned DiffOperand = 0; // The operand that differs. 786 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 787 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 788 Type *LHSType = GEPLHS->getOperand(i)->getType(); 789 Type *RHSType = GEPRHS->getOperand(i)->getType(); 790 // FIXME: Better support for vector of pointers. 791 if (LHSType->getPrimitiveSizeInBits() != 792 RHSType->getPrimitiveSizeInBits() || 793 (GEPLHS->getType()->isVectorTy() && 794 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 795 // Irreconcilable differences. 796 NumDifferences = 2; 797 break; 798 } 799 800 if (NumDifferences++) break; 801 DiffOperand = i; 802 } 803 804 if (NumDifferences == 0) // SAME GEP? 805 return replaceInstUsesWith(I, // No comparison is needed here. 806 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 807 808 else if (NumDifferences == 1 && GEPsInBounds) { 809 Value *LHSV = GEPLHS->getOperand(DiffOperand); 810 Value *RHSV = GEPRHS->getOperand(DiffOperand); 811 // Make sure we do a signed comparison here. 812 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 813 } 814 } 815 816 // Only lower this if the icmp is the only user of the GEP or if we expect 817 // the result to fold to a constant! 818 if ((GEPsInBounds || CmpInst::isEquality(Cond)) && 819 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 820 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse())) { 821 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 822 Value *L = EmitGEPOffset(GEPLHS); 823 Value *R = EmitGEPOffset(GEPRHS); 824 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 825 } 826 } 827 828 // Try convert this to an indexed compare by looking through PHIs/casts as a 829 // last resort. 830 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 831 } 832 833 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { 834 // It would be tempting to fold away comparisons between allocas and any 835 // pointer not based on that alloca (e.g. an argument). However, even 836 // though such pointers cannot alias, they can still compare equal. 837 // 838 // But LLVM doesn't specify where allocas get their memory, so if the alloca 839 // doesn't escape we can argue that it's impossible to guess its value, and we 840 // can therefore act as if any such guesses are wrong. 841 // 842 // However, we need to ensure that this folding is consistent: We can't fold 843 // one comparison to false, and then leave a different comparison against the 844 // same value alone (as it might evaluate to true at runtime, leading to a 845 // contradiction). As such, this code ensures that all comparisons are folded 846 // at the same time, and there are no other escapes. 847 848 struct CmpCaptureTracker : public CaptureTracker { 849 AllocaInst *Alloca; 850 bool Captured = false; 851 /// The value of the map is a bit mask of which icmp operands the alloca is 852 /// used in. 853 SmallMapVector<ICmpInst *, unsigned, 4> ICmps; 854 855 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} 856 857 void tooManyUses() override { Captured = true; } 858 859 bool captured(const Use *U) override { 860 auto *ICmp = dyn_cast<ICmpInst>(U->getUser()); 861 // We need to check that U is based *only* on the alloca, and doesn't 862 // have other contributions from a select/phi operand. 863 // TODO: We could check whether getUnderlyingObjects() reduces to one 864 // object, which would allow looking through phi nodes. 865 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) { 866 // Collect equality icmps of the alloca, and don't treat them as 867 // captures. 868 auto Res = ICmps.insert({ICmp, 0}); 869 Res.first->second |= 1u << U->getOperandNo(); 870 return false; 871 } 872 873 Captured = true; 874 return true; 875 } 876 }; 877 878 CmpCaptureTracker Tracker(Alloca); 879 PointerMayBeCaptured(Alloca, &Tracker); 880 if (Tracker.Captured) 881 return false; 882 883 bool Changed = false; 884 for (auto [ICmp, Operands] : Tracker.ICmps) { 885 switch (Operands) { 886 case 1: 887 case 2: { 888 // The alloca is only used in one icmp operand. Assume that the 889 // equality is false. 890 auto *Res = ConstantInt::get( 891 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE); 892 replaceInstUsesWith(*ICmp, Res); 893 eraseInstFromFunction(*ICmp); 894 Changed = true; 895 break; 896 } 897 case 3: 898 // Both icmp operands are based on the alloca, so this is comparing 899 // pointer offsets, without leaking any information about the address 900 // of the alloca. Ignore such comparisons. 901 break; 902 default: 903 llvm_unreachable("Cannot happen"); 904 } 905 } 906 907 return Changed; 908 } 909 910 /// Fold "icmp pred (X+C), X". 911 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 912 ICmpInst::Predicate Pred) { 913 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 914 // so the values can never be equal. Similarly for all other "or equals" 915 // operators. 916 assert(!!C && "C should not be zero!"); 917 918 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 919 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 920 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 921 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 922 Constant *R = ConstantInt::get(X->getType(), 923 APInt::getMaxValue(C.getBitWidth()) - C); 924 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 925 } 926 927 // (X+1) >u X --> X <u (0-1) --> X != 255 928 // (X+2) >u X --> X <u (0-2) --> X <u 254 929 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 930 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 931 return new ICmpInst(ICmpInst::ICMP_ULT, X, 932 ConstantInt::get(X->getType(), -C)); 933 934 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 935 936 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 937 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 938 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 939 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 940 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 941 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 942 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 943 return new ICmpInst(ICmpInst::ICMP_SGT, X, 944 ConstantInt::get(X->getType(), SMax - C)); 945 946 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 947 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 948 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 949 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 950 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 951 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 952 953 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 954 return new ICmpInst(ICmpInst::ICMP_SLT, X, 955 ConstantInt::get(X->getType(), SMax - (C - 1))); 956 } 957 958 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 959 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 960 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 961 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 962 const APInt &AP1, 963 const APInt &AP2) { 964 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 965 966 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 967 if (I.getPredicate() == I.ICMP_NE) 968 Pred = CmpInst::getInversePredicate(Pred); 969 return new ICmpInst(Pred, LHS, RHS); 970 }; 971 972 // Don't bother doing any work for cases which InstSimplify handles. 973 if (AP2.isZero()) 974 return nullptr; 975 976 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 977 if (IsAShr) { 978 if (AP2.isAllOnes()) 979 return nullptr; 980 if (AP2.isNegative() != AP1.isNegative()) 981 return nullptr; 982 if (AP2.sgt(AP1)) 983 return nullptr; 984 } 985 986 if (!AP1) 987 // 'A' must be large enough to shift out the highest set bit. 988 return getICmp(I.ICMP_UGT, A, 989 ConstantInt::get(A->getType(), AP2.logBase2())); 990 991 if (AP1 == AP2) 992 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 993 994 int Shift; 995 if (IsAShr && AP1.isNegative()) 996 Shift = AP1.countl_one() - AP2.countl_one(); 997 else 998 Shift = AP1.countl_zero() - AP2.countl_zero(); 999 1000 if (Shift > 0) { 1001 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1002 // There are multiple solutions if we are comparing against -1 and the LHS 1003 // of the ashr is not a power of two. 1004 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1005 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1006 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1007 } else if (AP1 == AP2.lshr(Shift)) { 1008 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1009 } 1010 } 1011 1012 // Shifting const2 will never be equal to const1. 1013 // FIXME: This should always be handled by InstSimplify? 1014 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1015 return replaceInstUsesWith(I, TorF); 1016 } 1017 1018 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1019 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1020 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1021 const APInt &AP1, 1022 const APInt &AP2) { 1023 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1024 1025 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1026 if (I.getPredicate() == I.ICMP_NE) 1027 Pred = CmpInst::getInversePredicate(Pred); 1028 return new ICmpInst(Pred, LHS, RHS); 1029 }; 1030 1031 // Don't bother doing any work for cases which InstSimplify handles. 1032 if (AP2.isZero()) 1033 return nullptr; 1034 1035 unsigned AP2TrailingZeros = AP2.countr_zero(); 1036 1037 if (!AP1 && AP2TrailingZeros != 0) 1038 return getICmp( 1039 I.ICMP_UGE, A, 1040 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1041 1042 if (AP1 == AP2) 1043 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1044 1045 // Get the distance between the lowest bits that are set. 1046 int Shift = AP1.countr_zero() - AP2TrailingZeros; 1047 1048 if (Shift > 0 && AP2.shl(Shift) == AP1) 1049 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1050 1051 // Shifting const2 will never be equal to const1. 1052 // FIXME: This should always be handled by InstSimplify? 1053 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1054 return replaceInstUsesWith(I, TorF); 1055 } 1056 1057 /// The caller has matched a pattern of the form: 1058 /// I = icmp ugt (add (add A, B), CI2), CI1 1059 /// If this is of the form: 1060 /// sum = a + b 1061 /// if (sum+128 >u 255) 1062 /// Then replace it with llvm.sadd.with.overflow.i8. 1063 /// 1064 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1065 ConstantInt *CI2, ConstantInt *CI1, 1066 InstCombinerImpl &IC) { 1067 // The transformation we're trying to do here is to transform this into an 1068 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1069 // with a narrower add, and discard the add-with-constant that is part of the 1070 // range check (if we can't eliminate it, this isn't profitable). 1071 1072 // In order to eliminate the add-with-constant, the compare can be its only 1073 // use. 1074 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1075 if (!AddWithCst->hasOneUse()) 1076 return nullptr; 1077 1078 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1079 if (!CI2->getValue().isPowerOf2()) 1080 return nullptr; 1081 unsigned NewWidth = CI2->getValue().countr_zero(); 1082 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1083 return nullptr; 1084 1085 // The width of the new add formed is 1 more than the bias. 1086 ++NewWidth; 1087 1088 // Check to see that CI1 is an all-ones value with NewWidth bits. 1089 if (CI1->getBitWidth() == NewWidth || 1090 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1091 return nullptr; 1092 1093 // This is only really a signed overflow check if the inputs have been 1094 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1095 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1096 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1097 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1098 return nullptr; 1099 1100 // In order to replace the original add with a narrower 1101 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1102 // and truncates that discard the high bits of the add. Verify that this is 1103 // the case. 1104 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1105 for (User *U : OrigAdd->users()) { 1106 if (U == AddWithCst) 1107 continue; 1108 1109 // Only accept truncates for now. We would really like a nice recursive 1110 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1111 // chain to see which bits of a value are actually demanded. If the 1112 // original add had another add which was then immediately truncated, we 1113 // could still do the transformation. 1114 TruncInst *TI = dyn_cast<TruncInst>(U); 1115 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1116 return nullptr; 1117 } 1118 1119 // If the pattern matches, truncate the inputs to the narrower type and 1120 // use the sadd_with_overflow intrinsic to efficiently compute both the 1121 // result and the overflow bit. 1122 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1123 Function *F = Intrinsic::getDeclaration( 1124 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1125 1126 InstCombiner::BuilderTy &Builder = IC.Builder; 1127 1128 // Put the new code above the original add, in case there are any uses of the 1129 // add between the add and the compare. 1130 Builder.SetInsertPoint(OrigAdd); 1131 1132 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1133 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1134 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1135 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1136 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1137 1138 // The inner add was the result of the narrow add, zero extended to the 1139 // wider type. Replace it with the result computed by the intrinsic. 1140 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1141 IC.eraseInstFromFunction(*OrigAdd); 1142 1143 // The original icmp gets replaced with the overflow value. 1144 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1145 } 1146 1147 /// If we have: 1148 /// icmp eq/ne (urem/srem %x, %y), 0 1149 /// iff %y is a power-of-two, we can replace this with a bit test: 1150 /// icmp eq/ne (and %x, (add %y, -1)), 0 1151 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1152 // This fold is only valid for equality predicates. 1153 if (!I.isEquality()) 1154 return nullptr; 1155 ICmpInst::Predicate Pred; 1156 Value *X, *Y, *Zero; 1157 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1158 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1159 return nullptr; 1160 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1161 return nullptr; 1162 // This may increase instruction count, we don't enforce that Y is a constant. 1163 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1164 Value *Masked = Builder.CreateAnd(X, Mask); 1165 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1166 } 1167 1168 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1169 /// by one-less-than-bitwidth into a sign test on the original value. 1170 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1171 Instruction *Val; 1172 ICmpInst::Predicate Pred; 1173 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1174 return nullptr; 1175 1176 Value *X; 1177 Type *XTy; 1178 1179 Constant *C; 1180 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1181 XTy = X->getType(); 1182 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1183 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1184 APInt(XBitWidth, XBitWidth - 1)))) 1185 return nullptr; 1186 } else if (isa<BinaryOperator>(Val) && 1187 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1188 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1189 /*AnalyzeForSignBitExtraction=*/true))) { 1190 XTy = X->getType(); 1191 } else 1192 return nullptr; 1193 1194 return ICmpInst::Create(Instruction::ICmp, 1195 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1196 : ICmpInst::ICMP_SLT, 1197 X, ConstantInt::getNullValue(XTy)); 1198 } 1199 1200 // Handle icmp pred X, 0 1201 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1202 CmpInst::Predicate Pred = Cmp.getPredicate(); 1203 if (!match(Cmp.getOperand(1), m_Zero())) 1204 return nullptr; 1205 1206 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1207 if (Pred == ICmpInst::ICMP_SGT) { 1208 Value *A, *B; 1209 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1210 if (isKnownPositive(A, SQ.getWithInstruction(&Cmp))) 1211 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1212 if (isKnownPositive(B, SQ.getWithInstruction(&Cmp))) 1213 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1214 } 1215 } 1216 1217 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1218 return New; 1219 1220 // Given: 1221 // icmp eq/ne (urem %x, %y), 0 1222 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1223 // icmp eq/ne %x, 0 1224 Value *X, *Y; 1225 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1226 ICmpInst::isEquality(Pred)) { 1227 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1228 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1229 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1230 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1231 } 1232 1233 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are 1234 // odd/non-zero/there is no overflow. 1235 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) && 1236 ICmpInst::isEquality(Pred)) { 1237 1238 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1239 // if X % 2 != 0 1240 // (icmp eq/ne Y) 1241 if (XKnown.countMaxTrailingZeros() == 0) 1242 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1243 1244 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1245 // if Y % 2 != 0 1246 // (icmp eq/ne X) 1247 if (YKnown.countMaxTrailingZeros() == 0) 1248 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1249 1250 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0)); 1251 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { 1252 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 1253 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` 1254 // but to avoid unnecessary work, first just if this is an obvious case. 1255 1256 // if X non-zero and NoOverflow(X * Y) 1257 // (icmp eq/ne Y) 1258 if (!XKnown.One.isZero() || isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1259 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1260 1261 // if Y non-zero and NoOverflow(X * Y) 1262 // (icmp eq/ne X) 1263 if (!YKnown.One.isZero() || isKnownNonZero(Y, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1264 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1265 } 1266 // Note, we are skipping cases: 1267 // if Y % 2 != 0 AND X % 2 != 0 1268 // (false/true) 1269 // if X non-zero and Y non-zero and NoOverflow(X * Y) 1270 // (false/true) 1271 // Those can be simplified later as we would have already replaced the (icmp 1272 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that 1273 // will fold to a constant elsewhere. 1274 } 1275 return nullptr; 1276 } 1277 1278 /// Fold icmp Pred X, C. 1279 /// TODO: This code structure does not make sense. The saturating add fold 1280 /// should be moved to some other helper and extended as noted below (it is also 1281 /// possible that code has been made unnecessary - do we canonicalize IR to 1282 /// overflow/saturating intrinsics or not?). 1283 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1284 // Match the following pattern, which is a common idiom when writing 1285 // overflow-safe integer arithmetic functions. The source performs an addition 1286 // in wider type and explicitly checks for overflow using comparisons against 1287 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1288 // 1289 // TODO: This could probably be generalized to handle other overflow-safe 1290 // operations if we worked out the formulas to compute the appropriate magic 1291 // constants. 1292 // 1293 // sum = a + b 1294 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1295 CmpInst::Predicate Pred = Cmp.getPredicate(); 1296 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1297 Value *A, *B; 1298 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1299 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1300 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1301 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1302 return Res; 1303 1304 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1305 Constant *C = dyn_cast<Constant>(Op1); 1306 if (!C) 1307 return nullptr; 1308 1309 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1310 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1311 SmallVector<Constant *> Ops; 1312 for (Value *V : Phi->incoming_values()) { 1313 Constant *Res = 1314 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL); 1315 if (!Res) 1316 return nullptr; 1317 Ops.push_back(Res); 1318 } 1319 Builder.SetInsertPoint(Phi); 1320 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands()); 1321 for (auto [V, Pred] : zip(Ops, Phi->blocks())) 1322 NewPhi->addIncoming(V, Pred); 1323 return replaceInstUsesWith(Cmp, NewPhi); 1324 } 1325 1326 return nullptr; 1327 } 1328 1329 /// Canonicalize icmp instructions based on dominating conditions. 1330 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1331 // We already checked simple implication in InstSimplify, only handle complex 1332 // cases here. 1333 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1334 ICmpInst::Predicate DomPred; 1335 const APInt *C; 1336 if (!match(Y, m_APInt(C))) 1337 return nullptr; 1338 1339 CmpInst::Predicate Pred = Cmp.getPredicate(); 1340 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1341 1342 auto handleDomCond = [&](Value *DomCond, bool CondIsTrue) -> Instruction * { 1343 const APInt *DomC; 1344 if (!match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC)))) 1345 return nullptr; 1346 // We have 2 compares of a variable with constants. Calculate the constant 1347 // ranges of those compares to see if we can transform the 2nd compare: 1348 // DomBB: 1349 // DomCond = icmp DomPred X, DomC 1350 // br DomCond, CmpBB, FalseBB 1351 // CmpBB: 1352 // Cmp = icmp Pred X, C 1353 if (!CondIsTrue) 1354 DomPred = CmpInst::getInversePredicate(DomPred); 1355 ConstantRange DominatingCR = 1356 ConstantRange::makeExactICmpRegion(DomPred, *DomC); 1357 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1358 ConstantRange Difference = DominatingCR.difference(CR); 1359 if (Intersection.isEmptySet()) 1360 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1361 if (Difference.isEmptySet()) 1362 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1363 1364 // Canonicalizing a sign bit comparison that gets used in a branch, 1365 // pessimizes codegen by generating branch on zero instruction instead 1366 // of a test and branch. So we avoid canonicalizing in such situations 1367 // because test and branch instruction has better branch displacement 1368 // than compare and branch instruction. 1369 bool UnusedBit; 1370 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1371 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1372 return nullptr; 1373 1374 // Avoid an infinite loop with min/max canonicalization. 1375 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1376 if (Cmp.hasOneUse() && 1377 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1378 return nullptr; 1379 1380 if (const APInt *EqC = Intersection.getSingleElement()) 1381 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1382 if (const APInt *NeC = Difference.getSingleElement()) 1383 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1384 return nullptr; 1385 }; 1386 1387 for (BranchInst *BI : DC.conditionsFor(X)) { 1388 auto *Cond = BI->getCondition(); 1389 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 1390 if (DT.dominates(Edge0, Cmp.getParent())) { 1391 if (auto *V = handleDomCond(Cond, true)) 1392 return V; 1393 } else { 1394 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 1395 if (DT.dominates(Edge1, Cmp.getParent())) 1396 if (auto *V = handleDomCond(Cond, false)) 1397 return V; 1398 } 1399 } 1400 1401 return nullptr; 1402 } 1403 1404 /// Fold icmp (trunc X), C. 1405 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1406 TruncInst *Trunc, 1407 const APInt &C) { 1408 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1409 Value *X = Trunc->getOperand(0); 1410 if (C.isOne() && C.getBitWidth() > 1) { 1411 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1412 Value *V = nullptr; 1413 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1414 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1415 ConstantInt::get(V->getType(), 1)); 1416 } 1417 1418 Type *SrcTy = X->getType(); 1419 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1420 SrcBits = SrcTy->getScalarSizeInBits(); 1421 1422 // TODO: Handle any shifted constant by subtracting trailing zeros. 1423 // TODO: Handle non-equality predicates. 1424 Value *Y; 1425 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) { 1426 // (trunc (1 << Y) to iN) == 0 --> Y u>= N 1427 // (trunc (1 << Y) to iN) != 0 --> Y u< N 1428 if (C.isZero()) { 1429 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; 1430 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits)); 1431 } 1432 // (trunc (1 << Y) to iN) == 2**C --> Y == C 1433 // (trunc (1 << Y) to iN) != 2**C --> Y != C 1434 if (C.isPowerOf2()) 1435 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2())); 1436 } 1437 1438 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1439 // Canonicalize to a mask and wider compare if the wide type is suitable: 1440 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1441 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1442 Constant *Mask = 1443 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits)); 1444 Value *And = Builder.CreateAnd(X, Mask); 1445 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits)); 1446 return new ICmpInst(Pred, And, WideC); 1447 } 1448 1449 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1450 // of the high bits truncated out of x are known. 1451 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1452 1453 // If all the high bits are known, we can do this xform. 1454 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { 1455 // Pull in the high bits from known-ones set. 1456 APInt NewRHS = C.zext(SrcBits); 1457 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1458 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS)); 1459 } 1460 } 1461 1462 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1463 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1464 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1465 Value *ShOp; 1466 const APInt *ShAmtC; 1467 bool TrueIfSigned; 1468 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1469 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1470 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1471 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1472 ConstantInt::getNullValue(SrcTy)) 1473 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1474 ConstantInt::getAllOnesValue(SrcTy)); 1475 } 1476 1477 return nullptr; 1478 } 1479 1480 /// Fold icmp (trunc X), (trunc Y). 1481 /// Fold icmp (trunc X), (zext Y). 1482 Instruction * 1483 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, 1484 const SimplifyQuery &Q) { 1485 if (Cmp.isSigned()) 1486 return nullptr; 1487 1488 Value *X, *Y; 1489 ICmpInst::Predicate Pred; 1490 bool YIsZext = false; 1491 // Try to match icmp (trunc X), (trunc Y) 1492 if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) { 1493 if (X->getType() != Y->getType() && 1494 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse())) 1495 return nullptr; 1496 if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) && 1497 isDesirableIntType(Y->getType()->getScalarSizeInBits())) { 1498 std::swap(X, Y); 1499 Pred = Cmp.getSwappedPredicate(Pred); 1500 } 1501 } 1502 // Try to match icmp (trunc X), (zext Y) 1503 else if (match(&Cmp, m_c_ICmp(Pred, m_Trunc(m_Value(X)), 1504 m_OneUse(m_ZExt(m_Value(Y)))))) 1505 1506 YIsZext = true; 1507 else 1508 return nullptr; 1509 1510 Type *TruncTy = Cmp.getOperand(0)->getType(); 1511 unsigned TruncBits = TruncTy->getScalarSizeInBits(); 1512 1513 // If this transform will end up changing from desirable types -> undesirable 1514 // types skip it. 1515 if (isDesirableIntType(TruncBits) && 1516 !isDesirableIntType(X->getType()->getScalarSizeInBits())) 1517 return nullptr; 1518 1519 // Check if the trunc is unneeded. 1520 KnownBits KnownX = llvm::computeKnownBits(X, /*Depth*/ 0, Q); 1521 if (KnownX.countMaxActiveBits() > TruncBits) 1522 return nullptr; 1523 1524 if (!YIsZext) { 1525 // If Y is also a trunc, make sure it is unneeded. 1526 KnownBits KnownY = llvm::computeKnownBits(Y, /*Depth*/ 0, Q); 1527 if (KnownY.countMaxActiveBits() > TruncBits) 1528 return nullptr; 1529 } 1530 1531 Value *NewY = Builder.CreateZExtOrTrunc(Y, X->getType()); 1532 return new ICmpInst(Pred, X, NewY); 1533 } 1534 1535 /// Fold icmp (xor X, Y), C. 1536 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1537 BinaryOperator *Xor, 1538 const APInt &C) { 1539 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) 1540 return I; 1541 1542 Value *X = Xor->getOperand(0); 1543 Value *Y = Xor->getOperand(1); 1544 const APInt *XorC; 1545 if (!match(Y, m_APInt(XorC))) 1546 return nullptr; 1547 1548 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1549 // fold the xor. 1550 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1551 bool TrueIfSigned = false; 1552 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1553 1554 // If the sign bit of the XorCst is not set, there is no change to 1555 // the operation, just stop using the Xor. 1556 if (!XorC->isNegative()) 1557 return replaceOperand(Cmp, 0, X); 1558 1559 // Emit the opposite comparison. 1560 if (TrueIfSigned) 1561 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1562 ConstantInt::getAllOnesValue(X->getType())); 1563 else 1564 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1565 ConstantInt::getNullValue(X->getType())); 1566 } 1567 1568 if (Xor->hasOneUse()) { 1569 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1570 if (!Cmp.isEquality() && XorC->isSignMask()) { 1571 Pred = Cmp.getFlippedSignednessPredicate(); 1572 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1573 } 1574 1575 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1576 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1577 Pred = Cmp.getFlippedSignednessPredicate(); 1578 Pred = Cmp.getSwappedPredicate(Pred); 1579 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1580 } 1581 } 1582 1583 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1584 if (Pred == ICmpInst::ICMP_UGT) { 1585 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1586 if (*XorC == ~C && (C + 1).isPowerOf2()) 1587 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1588 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1589 if (*XorC == C && (C + 1).isPowerOf2()) 1590 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1591 } 1592 if (Pred == ICmpInst::ICMP_ULT) { 1593 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1594 if (*XorC == -C && C.isPowerOf2()) 1595 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1596 ConstantInt::get(X->getType(), ~C)); 1597 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1598 if (*XorC == C && (-C).isPowerOf2()) 1599 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1600 ConstantInt::get(X->getType(), ~C)); 1601 } 1602 return nullptr; 1603 } 1604 1605 /// For power-of-2 C: 1606 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) 1607 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) 1608 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, 1609 BinaryOperator *Xor, 1610 const APInt &C) { 1611 CmpInst::Predicate Pred = Cmp.getPredicate(); 1612 APInt PowerOf2; 1613 if (Pred == ICmpInst::ICMP_ULT) 1614 PowerOf2 = C; 1615 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) 1616 PowerOf2 = C + 1; 1617 else 1618 return nullptr; 1619 if (!PowerOf2.isPowerOf2()) 1620 return nullptr; 1621 Value *X; 1622 const APInt *ShiftC; 1623 if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X), 1624 m_AShr(m_Deferred(X), m_APInt(ShiftC)))))) 1625 return nullptr; 1626 uint64_t Shift = ShiftC->getLimitedValue(); 1627 Type *XType = X->getType(); 1628 if (Shift == 0 || PowerOf2.isMinSignedValue()) 1629 return nullptr; 1630 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2)); 1631 APInt Bound = 1632 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); 1633 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound)); 1634 } 1635 1636 /// Fold icmp (and (sh X, Y), C2), C1. 1637 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1638 BinaryOperator *And, 1639 const APInt &C1, 1640 const APInt &C2) { 1641 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1642 if (!Shift || !Shift->isShift()) 1643 return nullptr; 1644 1645 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1646 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1647 // code produced by the clang front-end, for bitfield access. 1648 // This seemingly simple opportunity to fold away a shift turns out to be 1649 // rather complicated. See PR17827 for details. 1650 unsigned ShiftOpcode = Shift->getOpcode(); 1651 bool IsShl = ShiftOpcode == Instruction::Shl; 1652 const APInt *C3; 1653 if (match(Shift->getOperand(1), m_APInt(C3))) { 1654 APInt NewAndCst, NewCmpCst; 1655 bool AnyCmpCstBitsShiftedOut; 1656 if (ShiftOpcode == Instruction::Shl) { 1657 // For a left shift, we can fold if the comparison is not signed. We can 1658 // also fold a signed comparison if the mask value and comparison value 1659 // are not negative. These constraints may not be obvious, but we can 1660 // prove that they are correct using an SMT solver. 1661 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1662 return nullptr; 1663 1664 NewCmpCst = C1.lshr(*C3); 1665 NewAndCst = C2.lshr(*C3); 1666 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1667 } else if (ShiftOpcode == Instruction::LShr) { 1668 // For a logical right shift, we can fold if the comparison is not signed. 1669 // We can also fold a signed comparison if the shifted mask value and the 1670 // shifted comparison value are not negative. These constraints may not be 1671 // obvious, but we can prove that they are correct using an SMT solver. 1672 NewCmpCst = C1.shl(*C3); 1673 NewAndCst = C2.shl(*C3); 1674 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1675 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1676 return nullptr; 1677 } else { 1678 // For an arithmetic shift, check that both constants don't use (in a 1679 // signed sense) the top bits being shifted out. 1680 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1681 NewCmpCst = C1.shl(*C3); 1682 NewAndCst = C2.shl(*C3); 1683 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1684 if (NewAndCst.ashr(*C3) != C2) 1685 return nullptr; 1686 } 1687 1688 if (AnyCmpCstBitsShiftedOut) { 1689 // If we shifted bits out, the fold is not going to work out. As a 1690 // special case, check to see if this means that the result is always 1691 // true or false now. 1692 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1693 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1694 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1695 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1696 } else { 1697 Value *NewAnd = Builder.CreateAnd( 1698 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1699 return new ICmpInst(Cmp.getPredicate(), 1700 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1701 } 1702 } 1703 1704 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1705 // preferable because it allows the C2 << Y expression to be hoisted out of a 1706 // loop if Y is invariant and X is not. 1707 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1708 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1709 // Compute C2 << Y. 1710 Value *NewShift = 1711 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1712 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1713 1714 // Compute X & (C2 << Y). 1715 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1716 return replaceOperand(Cmp, 0, NewAnd); 1717 } 1718 1719 return nullptr; 1720 } 1721 1722 /// Fold icmp (and X, C2), C1. 1723 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1724 BinaryOperator *And, 1725 const APInt &C1) { 1726 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1727 1728 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1729 // TODO: We canonicalize to the longer form for scalars because we have 1730 // better analysis/folds for icmp, and codegen may be better with icmp. 1731 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1732 match(And->getOperand(1), m_One())) 1733 return new TruncInst(And->getOperand(0), Cmp.getType()); 1734 1735 const APInt *C2; 1736 Value *X; 1737 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1738 return nullptr; 1739 1740 // Don't perform the following transforms if the AND has multiple uses 1741 if (!And->hasOneUse()) 1742 return nullptr; 1743 1744 if (Cmp.isEquality() && C1.isZero()) { 1745 // Restrict this fold to single-use 'and' (PR10267). 1746 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1747 if (C2->isSignMask()) { 1748 Constant *Zero = Constant::getNullValue(X->getType()); 1749 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1750 return new ICmpInst(NewPred, X, Zero); 1751 } 1752 1753 APInt NewC2 = *C2; 1754 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1755 // Set high zeros of C2 to allow matching negated power-of-2. 1756 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(), 1757 Know.countMinLeadingZeros()); 1758 1759 // Restrict this fold only for single-use 'and' (PR10267). 1760 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1761 if (NewC2.isNegatedPowerOf2()) { 1762 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1763 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1764 return new ICmpInst(NewPred, X, NegBOC); 1765 } 1766 } 1767 1768 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1769 // the input width without changing the value produced, eliminate the cast: 1770 // 1771 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1772 // 1773 // We can do this transformation if the constants do not have their sign bits 1774 // set or if it is an equality comparison. Extending a relational comparison 1775 // when we're checking the sign bit would not work. 1776 Value *W; 1777 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1778 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1779 // TODO: Is this a good transform for vectors? Wider types may reduce 1780 // throughput. Should this transform be limited (even for scalars) by using 1781 // shouldChangeType()? 1782 if (!Cmp.getType()->isVectorTy()) { 1783 Type *WideType = W->getType(); 1784 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1785 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1786 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1787 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1788 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1789 } 1790 } 1791 1792 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1793 return I; 1794 1795 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1796 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1797 // 1798 // iff pred isn't signed 1799 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1800 match(And->getOperand(1), m_One())) { 1801 Constant *One = cast<Constant>(And->getOperand(1)); 1802 Value *Or = And->getOperand(0); 1803 Value *A, *B, *LShr; 1804 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1805 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1806 unsigned UsesRemoved = 0; 1807 if (And->hasOneUse()) 1808 ++UsesRemoved; 1809 if (Or->hasOneUse()) 1810 ++UsesRemoved; 1811 if (LShr->hasOneUse()) 1812 ++UsesRemoved; 1813 1814 // Compute A & ((1 << B) | 1) 1815 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3; 1816 if (UsesRemoved >= RequireUsesRemoved) { 1817 Value *NewOr = 1818 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1819 /*HasNUW=*/true), 1820 One, Or->getName()); 1821 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1822 return replaceOperand(Cmp, 0, NewAnd); 1823 } 1824 } 1825 } 1826 1827 return nullptr; 1828 } 1829 1830 /// Fold icmp (and X, Y), C. 1831 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1832 BinaryOperator *And, 1833 const APInt &C) { 1834 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1835 return I; 1836 1837 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1838 bool TrueIfNeg; 1839 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1840 // ((X - 1) & ~X) < 0 --> X == 0 1841 // ((X - 1) & ~X) >= 0 --> X != 0 1842 Value *X; 1843 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1844 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1845 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1846 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1847 } 1848 // (X & X) < 0 --> X == MinSignedC 1849 // (X & X) > -1 --> X != MinSignedC 1850 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) { 1851 Constant *MinSignedC = ConstantInt::get( 1852 X->getType(), 1853 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits())); 1854 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1855 return new ICmpInst(NewPred, X, MinSignedC); 1856 } 1857 } 1858 1859 // TODO: These all require that Y is constant too, so refactor with the above. 1860 1861 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1862 Value *X = And->getOperand(0); 1863 Value *Y = And->getOperand(1); 1864 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1865 if (auto *LI = dyn_cast<LoadInst>(X)) 1866 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1867 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1868 if (Instruction *Res = 1869 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1870 return Res; 1871 1872 if (!Cmp.isEquality()) 1873 return nullptr; 1874 1875 // X & -C == -C -> X > u ~C 1876 // X & -C != -C -> X <= u ~C 1877 // iff C is a power of 2 1878 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1879 auto NewPred = 1880 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1881 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1882 } 1883 1884 // If we are testing the intersection of 2 select-of-nonzero-constants with no 1885 // common bits set, it's the same as checking if exactly one select condition 1886 // is set: 1887 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B 1888 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B) 1889 // TODO: Generalize for non-constant values. 1890 // TODO: Handle signed/unsigned predicates. 1891 // TODO: Handle other bitwise logic connectors. 1892 // TODO: Extend to handle a non-zero compare constant. 1893 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) { 1894 assert(Cmp.isEquality() && "Not expecting non-equality predicates"); 1895 Value *A, *B; 1896 const APInt *TC, *FC; 1897 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) && 1898 match(Y, 1899 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) && 1900 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) { 1901 Value *R = Builder.CreateXor(A, B); 1902 if (Pred == CmpInst::ICMP_NE) 1903 R = Builder.CreateNot(R); 1904 return replaceInstUsesWith(Cmp, R); 1905 } 1906 } 1907 1908 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) 1909 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) 1910 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) 1911 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) 1912 if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) && 1913 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) { 1914 Value *TruncY = Builder.CreateTrunc(Y, X->getType()); 1915 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { 1916 Value *And = Builder.CreateAnd(TruncY, X); 1917 return BinaryOperator::CreateNot(And); 1918 } 1919 return BinaryOperator::CreateAnd(TruncY, X); 1920 } 1921 1922 return nullptr; 1923 } 1924 1925 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0. 1926 static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, 1927 InstCombiner::BuilderTy &Builder) { 1928 // Are we using xors or subs to bitwise check for a pair or pairs of 1929 // (in)equalities? Convert to a shorter form that has more potential to be 1930 // folded even further. 1931 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4) 1932 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4) 1933 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 --> 1934 // (X1 == X2) && (X3 == X4) && (X5 == X6) 1935 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 --> 1936 // (X1 != X2) || (X3 != X4) || (X5 != X6) 1937 SmallVector<std::pair<Value *, Value *>, 2> CmpValues; 1938 SmallVector<Value *, 16> WorkList(1, Or); 1939 1940 while (!WorkList.empty()) { 1941 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { 1942 Value *Lhs, *Rhs; 1943 1944 if (match(OrOperatorArgument, 1945 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) { 1946 CmpValues.emplace_back(Lhs, Rhs); 1947 return; 1948 } 1949 1950 if (match(OrOperatorArgument, 1951 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) { 1952 CmpValues.emplace_back(Lhs, Rhs); 1953 return; 1954 } 1955 1956 WorkList.push_back(OrOperatorArgument); 1957 }; 1958 1959 Value *CurrentValue = WorkList.pop_back_val(); 1960 Value *OrOperatorLhs, *OrOperatorRhs; 1961 1962 if (!match(CurrentValue, 1963 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) { 1964 return nullptr; 1965 } 1966 1967 MatchOrOperatorArgument(OrOperatorRhs); 1968 MatchOrOperatorArgument(OrOperatorLhs); 1969 } 1970 1971 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1972 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1973 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first, 1974 CmpValues.rbegin()->second); 1975 1976 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { 1977 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second); 1978 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp); 1979 } 1980 1981 return LhsCmp; 1982 } 1983 1984 /// Fold icmp (or X, Y), C. 1985 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1986 BinaryOperator *Or, 1987 const APInt &C) { 1988 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1989 if (C.isOne()) { 1990 // icmp slt signum(V) 1 --> icmp slt V, 1 1991 Value *V = nullptr; 1992 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1993 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1994 ConstantInt::get(V->getType(), 1)); 1995 } 1996 1997 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1998 const APInt *MaskC; 1999 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 2000 if (*MaskC == C && (C + 1).isPowerOf2()) { 2001 // X | C == C --> X <=u C 2002 // X | C != C --> X >u C 2003 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 2004 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 2005 return new ICmpInst(Pred, OrOp0, OrOp1); 2006 } 2007 2008 // More general: canonicalize 'equality with set bits mask' to 2009 // 'equality with clear bits mask'. 2010 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 2011 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 2012 if (Or->hasOneUse()) { 2013 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 2014 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 2015 return new ICmpInst(Pred, And, NewC); 2016 } 2017 } 2018 2019 // (X | (X-1)) s< 0 --> X s< 1 2020 // (X | (X-1)) s> -1 --> X s> 0 2021 Value *X; 2022 bool TrueIfSigned; 2023 if (isSignBitCheck(Pred, C, TrueIfSigned) && 2024 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 2025 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 2026 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 2027 return new ICmpInst(NewPred, X, NewC); 2028 } 2029 2030 const APInt *OrC; 2031 // icmp(X | OrC, C) --> icmp(X, 0) 2032 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) { 2033 switch (Pred) { 2034 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 2035 case ICmpInst::ICMP_SLT: 2036 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 2037 case ICmpInst::ICMP_SGE: 2038 if (OrC->sge(C)) 2039 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2040 break; 2041 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 2042 case ICmpInst::ICMP_SLE: 2043 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 2044 case ICmpInst::ICMP_SGT: 2045 if (OrC->sgt(C)) 2046 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X, 2047 ConstantInt::getNullValue(X->getType())); 2048 break; 2049 default: 2050 break; 2051 } 2052 } 2053 2054 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 2055 return nullptr; 2056 2057 Value *P, *Q; 2058 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 2059 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 2060 // -> and (icmp eq P, null), (icmp eq Q, null). 2061 Value *CmpP = 2062 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 2063 Value *CmpQ = 2064 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 2065 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2066 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 2067 } 2068 2069 if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder)) 2070 return replaceInstUsesWith(Cmp, V); 2071 2072 return nullptr; 2073 } 2074 2075 /// Fold icmp (mul X, Y), C. 2076 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 2077 BinaryOperator *Mul, 2078 const APInt &C) { 2079 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2080 Type *MulTy = Mul->getType(); 2081 Value *X = Mul->getOperand(0); 2082 2083 // If there's no overflow: 2084 // X * X == 0 --> X == 0 2085 // X * X != 0 --> X != 0 2086 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) && 2087 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) 2088 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2089 2090 const APInt *MulC; 2091 if (!match(Mul->getOperand(1), m_APInt(MulC))) 2092 return nullptr; 2093 2094 // If this is a test of the sign bit and the multiply is sign-preserving with 2095 // a constant operand, use the multiply LHS operand instead: 2096 // (X * +MulC) < 0 --> X < 0 2097 // (X * -MulC) < 0 --> X > 0 2098 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 2099 if (MulC->isNegative()) 2100 Pred = ICmpInst::getSwappedPredicate(Pred); 2101 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2102 } 2103 2104 if (MulC->isZero()) 2105 return nullptr; 2106 2107 // If the multiply does not wrap or the constant is odd, try to divide the 2108 // compare constant by the multiplication factor. 2109 if (Cmp.isEquality()) { 2110 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC 2111 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2112 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC)); 2113 return new ICmpInst(Pred, X, NewC); 2114 } 2115 2116 // C % MulC == 0 is weaker than we could use if MulC is odd because it 2117 // correct to transform if MulC * N == C including overflow. I.e with i8 2118 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we 2119 // miss that case. 2120 if (C.urem(*MulC).isZero()) { 2121 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC 2122 // (mul X, OddC) eq/ne N * C --> X eq/ne N 2123 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { 2124 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC)); 2125 return new ICmpInst(Pred, X, NewC); 2126 } 2127 } 2128 } 2129 2130 // With a matching no-overflow guarantee, fold the constants: 2131 // (X * MulC) < C --> X < (C / MulC) 2132 // (X * MulC) > C --> X > (C / MulC) 2133 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? 2134 Constant *NewC = nullptr; 2135 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) { 2136 // MININT / -1 --> overflow. 2137 if (C.isMinSignedValue() && MulC->isAllOnes()) 2138 return nullptr; 2139 if (MulC->isNegative()) 2140 Pred = ICmpInst::getSwappedPredicate(Pred); 2141 2142 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2143 NewC = ConstantInt::get( 2144 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2145 } else { 2146 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && 2147 "Unexpected predicate"); 2148 NewC = ConstantInt::get( 2149 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2150 } 2151 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) { 2152 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { 2153 NewC = ConstantInt::get( 2154 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2155 } else { 2156 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 2157 "Unexpected predicate"); 2158 NewC = ConstantInt::get( 2159 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2160 } 2161 } 2162 2163 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; 2164 } 2165 2166 /// Fold icmp (shl 1, Y), C. 2167 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2168 const APInt &C) { 2169 Value *Y; 2170 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2171 return nullptr; 2172 2173 Type *ShiftType = Shl->getType(); 2174 unsigned TypeBits = C.getBitWidth(); 2175 bool CIsPowerOf2 = C.isPowerOf2(); 2176 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2177 if (Cmp.isUnsigned()) { 2178 // (1 << Y) pred C -> Y pred Log2(C) 2179 if (!CIsPowerOf2) { 2180 // (1 << Y) < 30 -> Y <= 4 2181 // (1 << Y) <= 30 -> Y <= 4 2182 // (1 << Y) >= 30 -> Y > 4 2183 // (1 << Y) > 30 -> Y > 4 2184 if (Pred == ICmpInst::ICMP_ULT) 2185 Pred = ICmpInst::ICMP_ULE; 2186 else if (Pred == ICmpInst::ICMP_UGE) 2187 Pred = ICmpInst::ICMP_UGT; 2188 } 2189 2190 unsigned CLog2 = C.logBase2(); 2191 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2192 } else if (Cmp.isSigned()) { 2193 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2194 // (1 << Y) > 0 -> Y != 31 2195 // (1 << Y) > C -> Y != 31 if C is negative. 2196 if (Pred == ICmpInst::ICMP_SGT && C.sle(0)) 2197 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2198 2199 // (1 << Y) < 0 -> Y == 31 2200 // (1 << Y) < 1 -> Y == 31 2201 // (1 << Y) < C -> Y == 31 if C is negative and not signed min. 2202 // Exclude signed min by subtracting 1 and lower the upper bound to 0. 2203 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0)) 2204 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2205 } 2206 2207 return nullptr; 2208 } 2209 2210 /// Fold icmp (shl X, Y), C. 2211 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2212 BinaryOperator *Shl, 2213 const APInt &C) { 2214 const APInt *ShiftVal; 2215 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2216 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2217 2218 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2219 // (icmp pred (shl nuw&nsw X, Y), Csle0) 2220 // -> (icmp pred X, Csle0) 2221 // 2222 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op 2223 // so X's must be what is used. 2224 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) 2225 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2226 2227 // (icmp eq/ne (shl nuw|nsw X, Y), 0) 2228 // -> (icmp eq/ne X, 0) 2229 if (ICmpInst::isEquality(Pred) && C.isZero() && 2230 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) 2231 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2232 2233 // (icmp slt (shl nsw X, Y), 0/1) 2234 // -> (icmp slt X, 0/1) 2235 // (icmp sgt (shl nsw X, Y), 0/-1) 2236 // -> (icmp sgt X, 0/-1) 2237 // 2238 // NB: sge/sle with a constant will canonicalize to sgt/slt. 2239 if (Shl->hasNoSignedWrap() && 2240 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) 2241 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) 2242 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2243 2244 const APInt *ShiftAmt; 2245 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2246 return foldICmpShlOne(Cmp, Shl, C); 2247 2248 // Check that the shift amount is in range. If not, don't perform undefined 2249 // shifts. When the shift is visited, it will be simplified. 2250 unsigned TypeBits = C.getBitWidth(); 2251 if (ShiftAmt->uge(TypeBits)) 2252 return nullptr; 2253 2254 Value *X = Shl->getOperand(0); 2255 Type *ShType = Shl->getType(); 2256 2257 // NSW guarantees that we are only shifting out sign bits from the high bits, 2258 // so we can ASHR the compare constant without needing a mask and eliminate 2259 // the shift. 2260 if (Shl->hasNoSignedWrap()) { 2261 if (Pred == ICmpInst::ICMP_SGT) { 2262 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2263 APInt ShiftedC = C.ashr(*ShiftAmt); 2264 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2265 } 2266 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2267 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2268 APInt ShiftedC = C.ashr(*ShiftAmt); 2269 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2270 } 2271 if (Pred == ICmpInst::ICMP_SLT) { 2272 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2273 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2274 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2275 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2276 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2277 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2278 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2279 } 2280 } 2281 2282 // NUW guarantees that we are only shifting out zero bits from the high bits, 2283 // so we can LSHR the compare constant without needing a mask and eliminate 2284 // the shift. 2285 if (Shl->hasNoUnsignedWrap()) { 2286 if (Pred == ICmpInst::ICMP_UGT) { 2287 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2288 APInt ShiftedC = C.lshr(*ShiftAmt); 2289 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2290 } 2291 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2292 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2293 APInt ShiftedC = C.lshr(*ShiftAmt); 2294 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2295 } 2296 if (Pred == ICmpInst::ICMP_ULT) { 2297 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2298 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2299 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2300 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2301 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2302 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2303 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2304 } 2305 } 2306 2307 if (Cmp.isEquality() && Shl->hasOneUse()) { 2308 // Strength-reduce the shift into an 'and'. 2309 Constant *Mask = ConstantInt::get( 2310 ShType, 2311 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2312 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2313 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2314 return new ICmpInst(Pred, And, LShrC); 2315 } 2316 2317 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2318 bool TrueIfSigned = false; 2319 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2320 // (X << 31) <s 0 --> (X & 1) != 0 2321 Constant *Mask = ConstantInt::get( 2322 ShType, 2323 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2324 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2325 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2326 And, Constant::getNullValue(ShType)); 2327 } 2328 2329 // Simplify 'shl' inequality test into 'and' equality test. 2330 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2331 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2332 if ((C + 1).isPowerOf2() && 2333 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2334 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2335 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2336 : ICmpInst::ICMP_NE, 2337 And, Constant::getNullValue(ShType)); 2338 } 2339 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2340 if (C.isPowerOf2() && 2341 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2342 Value *And = 2343 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2344 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2345 : ICmpInst::ICMP_NE, 2346 And, Constant::getNullValue(ShType)); 2347 } 2348 } 2349 2350 // Transform (icmp pred iM (shl iM %v, N), C) 2351 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2352 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2353 // This enables us to get rid of the shift in favor of a trunc that may be 2354 // free on the target. It has the additional benefit of comparing to a 2355 // smaller constant that may be more target-friendly. 2356 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2357 if (Shl->hasOneUse() && Amt != 0 && C.countr_zero() >= Amt && 2358 DL.isLegalInteger(TypeBits - Amt)) { 2359 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2360 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2361 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2362 Constant *NewC = 2363 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2364 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2365 } 2366 2367 return nullptr; 2368 } 2369 2370 /// Fold icmp ({al}shr X, Y), C. 2371 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2372 BinaryOperator *Shr, 2373 const APInt &C) { 2374 // An exact shr only shifts out zero bits, so: 2375 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2376 Value *X = Shr->getOperand(0); 2377 CmpInst::Predicate Pred = Cmp.getPredicate(); 2378 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2379 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2380 2381 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2382 const APInt *ShiftValC; 2383 if (match(X, m_APInt(ShiftValC))) { 2384 if (Cmp.isEquality()) 2385 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2386 2387 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2388 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2389 bool TrueIfSigned; 2390 if (!IsAShr && ShiftValC->isNegative() && 2391 isSignBitCheck(Pred, C, TrueIfSigned)) 2392 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2393 Shr->getOperand(1), 2394 ConstantInt::getNullValue(X->getType())); 2395 2396 // If the shifted constant is a power-of-2, test the shift amount directly: 2397 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2398 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2399 if (!IsAShr && ShiftValC->isPowerOf2() && 2400 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2401 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2402 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2403 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2404 2405 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); 2406 unsigned ShiftLZ = ShiftValC->countl_zero(); 2407 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2408 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2409 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2410 } 2411 } 2412 2413 const APInt *ShiftAmtC; 2414 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2415 return nullptr; 2416 2417 // Check that the shift amount is in range. If not, don't perform undefined 2418 // shifts. When the shift is visited it will be simplified. 2419 unsigned TypeBits = C.getBitWidth(); 2420 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2421 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2422 return nullptr; 2423 2424 bool IsExact = Shr->isExact(); 2425 Type *ShrTy = Shr->getType(); 2426 // TODO: If we could guarantee that InstSimplify would handle all of the 2427 // constant-value-based preconditions in the folds below, then we could assert 2428 // those conditions rather than checking them. This is difficult because of 2429 // undef/poison (PR34838). 2430 if (IsAShr && Shr->hasOneUse()) { 2431 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2432 // When ShAmtC can be shifted losslessly: 2433 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2434 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2435 APInt ShiftedC = C.shl(ShAmtVal); 2436 if (ShiftedC.ashr(ShAmtVal) == C) 2437 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2438 } 2439 if (Pred == CmpInst::ICMP_SGT) { 2440 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2441 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2442 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2443 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2444 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2445 } 2446 if (Pred == CmpInst::ICMP_UGT) { 2447 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2448 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2449 // clause accounts for that pattern. 2450 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2451 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2452 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2453 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2454 } 2455 2456 // If the compare constant has significant bits above the lowest sign-bit, 2457 // then convert an unsigned cmp to a test of the sign-bit: 2458 // (ashr X, ShiftC) u> C --> X s< 0 2459 // (ashr X, ShiftC) u< C --> X s> -1 2460 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2461 if (Pred == CmpInst::ICMP_UGT) { 2462 return new ICmpInst(CmpInst::ICMP_SLT, X, 2463 ConstantInt::getNullValue(ShrTy)); 2464 } 2465 if (Pred == CmpInst::ICMP_ULT) { 2466 return new ICmpInst(CmpInst::ICMP_SGT, X, 2467 ConstantInt::getAllOnesValue(ShrTy)); 2468 } 2469 } 2470 } else if (!IsAShr) { 2471 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2472 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2473 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2474 APInt ShiftedC = C.shl(ShAmtVal); 2475 if (ShiftedC.lshr(ShAmtVal) == C) 2476 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2477 } 2478 if (Pred == CmpInst::ICMP_UGT) { 2479 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2480 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2481 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2482 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2483 } 2484 } 2485 2486 if (!Cmp.isEquality()) 2487 return nullptr; 2488 2489 // Handle equality comparisons of shift-by-constant. 2490 2491 // If the comparison constant changes with the shift, the comparison cannot 2492 // succeed (bits of the comparison constant cannot match the shifted value). 2493 // This should be known by InstSimplify and already be folded to true/false. 2494 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2495 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2496 "Expected icmp+shr simplify did not occur."); 2497 2498 // If the bits shifted out are known zero, compare the unshifted value: 2499 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2500 if (Shr->isExact()) 2501 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2502 2503 if (C.isZero()) { 2504 // == 0 is u< 1. 2505 if (Pred == CmpInst::ICMP_EQ) 2506 return new ICmpInst(CmpInst::ICMP_ULT, X, 2507 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2508 else 2509 return new ICmpInst(CmpInst::ICMP_UGT, X, 2510 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2511 } 2512 2513 if (Shr->hasOneUse()) { 2514 // Canonicalize the shift into an 'and': 2515 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2516 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2517 Constant *Mask = ConstantInt::get(ShrTy, Val); 2518 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2519 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2520 } 2521 2522 return nullptr; 2523 } 2524 2525 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2526 BinaryOperator *SRem, 2527 const APInt &C) { 2528 // Match an 'is positive' or 'is negative' comparison of remainder by a 2529 // constant power-of-2 value: 2530 // (X % pow2C) sgt/slt 0 2531 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2532 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2533 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2534 return nullptr; 2535 2536 // TODO: The one-use check is standard because we do not typically want to 2537 // create longer instruction sequences, but this might be a special-case 2538 // because srem is not good for analysis or codegen. 2539 if (!SRem->hasOneUse()) 2540 return nullptr; 2541 2542 const APInt *DivisorC; 2543 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2544 return nullptr; 2545 2546 // For cmp_sgt/cmp_slt only zero valued C is handled. 2547 // For cmp_eq/cmp_ne only positive valued C is handled. 2548 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2549 !C.isZero()) || 2550 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2551 !C.isStrictlyPositive())) 2552 return nullptr; 2553 2554 // Mask off the sign bit and the modulo bits (low-bits). 2555 Type *Ty = SRem->getType(); 2556 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2557 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2558 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2559 2560 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2561 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2562 2563 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2564 // bit is set. Example: 2565 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2566 if (Pred == ICmpInst::ICMP_SGT) 2567 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2568 2569 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2570 // bit is set. Example: 2571 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2572 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2573 } 2574 2575 /// Fold icmp (udiv X, Y), C. 2576 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2577 BinaryOperator *UDiv, 2578 const APInt &C) { 2579 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2580 Value *X = UDiv->getOperand(0); 2581 Value *Y = UDiv->getOperand(1); 2582 Type *Ty = UDiv->getType(); 2583 2584 const APInt *C2; 2585 if (!match(X, m_APInt(C2))) 2586 return nullptr; 2587 2588 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2589 2590 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2591 if (Pred == ICmpInst::ICMP_UGT) { 2592 assert(!C.isMaxValue() && 2593 "icmp ugt X, UINT_MAX should have been simplified already."); 2594 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2595 ConstantInt::get(Ty, C2->udiv(C + 1))); 2596 } 2597 2598 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2599 if (Pred == ICmpInst::ICMP_ULT) { 2600 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2601 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2602 ConstantInt::get(Ty, C2->udiv(C))); 2603 } 2604 2605 return nullptr; 2606 } 2607 2608 /// Fold icmp ({su}div X, Y), C. 2609 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2610 BinaryOperator *Div, 2611 const APInt &C) { 2612 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2613 Value *X = Div->getOperand(0); 2614 Value *Y = Div->getOperand(1); 2615 Type *Ty = Div->getType(); 2616 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2617 2618 // If unsigned division and the compare constant is bigger than 2619 // UMAX/2 (negative), there's only one pair of values that satisfies an 2620 // equality check, so eliminate the division: 2621 // (X u/ Y) == C --> (X == C) && (Y == 1) 2622 // (X u/ Y) != C --> (X != C) || (Y != 1) 2623 // Similarly, if signed division and the compare constant is exactly SMIN: 2624 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2625 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2626 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2627 (!DivIsSigned || C.isMinSignedValue())) { 2628 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2629 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2630 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2631 return BinaryOperator::Create(Logic, XBig, YOne); 2632 } 2633 2634 // Fold: icmp pred ([us]div X, C2), C -> range test 2635 // Fold this div into the comparison, producing a range check. 2636 // Determine, based on the divide type, what the range is being 2637 // checked. If there is an overflow on the low or high side, remember 2638 // it, otherwise compute the range [low, hi) bounding the new value. 2639 // See: InsertRangeTest above for the kinds of replacements possible. 2640 const APInt *C2; 2641 if (!match(Y, m_APInt(C2))) 2642 return nullptr; 2643 2644 // FIXME: If the operand types don't match the type of the divide 2645 // then don't attempt this transform. The code below doesn't have the 2646 // logic to deal with a signed divide and an unsigned compare (and 2647 // vice versa). This is because (x /s C2) <s C produces different 2648 // results than (x /s C2) <u C or (x /u C2) <s C or even 2649 // (x /u C2) <u C. Simply casting the operands and result won't 2650 // work. :( The if statement below tests that condition and bails 2651 // if it finds it. 2652 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2653 return nullptr; 2654 2655 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2656 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2657 // division-by-constant cases should be present, we can not assert that they 2658 // have happened before we reach this icmp instruction. 2659 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2660 return nullptr; 2661 2662 // Compute Prod = C * C2. We are essentially solving an equation of 2663 // form X / C2 = C. We solve for X by multiplying C2 and C. 2664 // By solving for X, we can turn this into a range check instead of computing 2665 // a divide. 2666 APInt Prod = C * *C2; 2667 2668 // Determine if the product overflows by seeing if the product is not equal to 2669 // the divide. Make sure we do the same kind of divide as in the LHS 2670 // instruction that we're folding. 2671 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2672 2673 // If the division is known to be exact, then there is no remainder from the 2674 // divide, so the covered range size is unit, otherwise it is the divisor. 2675 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2676 2677 // Figure out the interval that is being checked. For example, a comparison 2678 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2679 // Compute this interval based on the constants involved and the signedness of 2680 // the compare/divide. This computes a half-open interval, keeping track of 2681 // whether either value in the interval overflows. After analysis each 2682 // overflow variable is set to 0 if it's corresponding bound variable is valid 2683 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2684 int LoOverflow = 0, HiOverflow = 0; 2685 APInt LoBound, HiBound; 2686 2687 if (!DivIsSigned) { // udiv 2688 // e.g. X/5 op 3 --> [15, 20) 2689 LoBound = Prod; 2690 HiOverflow = LoOverflow = ProdOV; 2691 if (!HiOverflow) { 2692 // If this is not an exact divide, then many values in the range collapse 2693 // to the same result value. 2694 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2695 } 2696 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2697 if (C.isZero()) { // (X / pos) op 0 2698 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2699 LoBound = -(RangeSize - 1); 2700 HiBound = RangeSize; 2701 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2702 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2703 HiOverflow = LoOverflow = ProdOV; 2704 if (!HiOverflow) 2705 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2706 } else { // (X / pos) op neg 2707 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2708 HiBound = Prod + 1; 2709 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2710 if (!LoOverflow) { 2711 APInt DivNeg = -RangeSize; 2712 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2713 } 2714 } 2715 } else if (C2->isNegative()) { // Divisor is < 0. 2716 if (Div->isExact()) 2717 RangeSize.negate(); 2718 if (C.isZero()) { // (X / neg) op 0 2719 // e.g. X/-5 op 0 --> [-4, 5) 2720 LoBound = RangeSize + 1; 2721 HiBound = -RangeSize; 2722 if (HiBound == *C2) { // -INTMIN = INTMIN 2723 HiOverflow = 1; // [INTMIN+1, overflow) 2724 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2725 } 2726 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2727 // e.g. X/-5 op 3 --> [-19, -14) 2728 HiBound = Prod + 1; 2729 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2730 if (!LoOverflow) 2731 LoOverflow = 2732 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2733 } else { // (X / neg) op neg 2734 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2735 LoOverflow = HiOverflow = ProdOV; 2736 if (!HiOverflow) 2737 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2738 } 2739 2740 // Dividing by a negative swaps the condition. LT <-> GT 2741 Pred = ICmpInst::getSwappedPredicate(Pred); 2742 } 2743 2744 switch (Pred) { 2745 default: 2746 llvm_unreachable("Unhandled icmp predicate!"); 2747 case ICmpInst::ICMP_EQ: 2748 if (LoOverflow && HiOverflow) 2749 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2750 if (HiOverflow) 2751 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2752 X, ConstantInt::get(Ty, LoBound)); 2753 if (LoOverflow) 2754 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2755 X, ConstantInt::get(Ty, HiBound)); 2756 return replaceInstUsesWith( 2757 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2758 case ICmpInst::ICMP_NE: 2759 if (LoOverflow && HiOverflow) 2760 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2761 if (HiOverflow) 2762 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2763 X, ConstantInt::get(Ty, LoBound)); 2764 if (LoOverflow) 2765 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2766 X, ConstantInt::get(Ty, HiBound)); 2767 return replaceInstUsesWith( 2768 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2769 case ICmpInst::ICMP_ULT: 2770 case ICmpInst::ICMP_SLT: 2771 if (LoOverflow == +1) // Low bound is greater than input range. 2772 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2773 if (LoOverflow == -1) // Low bound is less than input range. 2774 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2775 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2776 case ICmpInst::ICMP_UGT: 2777 case ICmpInst::ICMP_SGT: 2778 if (HiOverflow == +1) // High bound greater than input range. 2779 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2780 if (HiOverflow == -1) // High bound less than input range. 2781 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2782 if (Pred == ICmpInst::ICMP_UGT) 2783 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2784 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2785 } 2786 2787 return nullptr; 2788 } 2789 2790 /// Fold icmp (sub X, Y), C. 2791 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2792 BinaryOperator *Sub, 2793 const APInt &C) { 2794 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2795 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2796 Type *Ty = Sub->getType(); 2797 2798 // (SubC - Y) == C) --> Y == (SubC - C) 2799 // (SubC - Y) != C) --> Y != (SubC - C) 2800 Constant *SubC; 2801 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2802 return new ICmpInst(Pred, Y, 2803 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2804 } 2805 2806 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2807 const APInt *C2; 2808 APInt SubResult; 2809 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2810 bool HasNSW = Sub->hasNoSignedWrap(); 2811 bool HasNUW = Sub->hasNoUnsignedWrap(); 2812 if (match(X, m_APInt(C2)) && 2813 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2814 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2815 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2816 2817 // X - Y == 0 --> X == Y. 2818 // X - Y != 0 --> X != Y. 2819 // TODO: We allow this with multiple uses as long as the other uses are not 2820 // in phis. The phi use check is guarding against a codegen regression 2821 // for a loop test. If the backend could undo this (and possibly 2822 // subsequent transforms), we would not need this hack. 2823 if (Cmp.isEquality() && C.isZero() && 2824 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2825 return new ICmpInst(Pred, X, Y); 2826 2827 // The following transforms are only worth it if the only user of the subtract 2828 // is the icmp. 2829 // TODO: This is an artificial restriction for all of the transforms below 2830 // that only need a single replacement icmp. Can these use the phi test 2831 // like the transform above here? 2832 if (!Sub->hasOneUse()) 2833 return nullptr; 2834 2835 if (Sub->hasNoSignedWrap()) { 2836 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2837 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2838 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2839 2840 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2841 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2842 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2843 2844 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2845 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2846 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2847 2848 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2849 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2850 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2851 } 2852 2853 if (!match(X, m_APInt(C2))) 2854 return nullptr; 2855 2856 // C2 - Y <u C -> (Y | (C - 1)) == C2 2857 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2858 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2859 (*C2 & (C - 1)) == (C - 1)) 2860 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2861 2862 // C2 - Y >u C -> (Y | C) != C2 2863 // iff C2 & C == C and C + 1 is a power of 2 2864 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2865 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2866 2867 // We have handled special cases that reduce. 2868 // Canonicalize any remaining sub to add as: 2869 // (C2 - Y) > C --> (Y + ~C2) < ~C 2870 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2871 HasNUW, HasNSW); 2872 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2873 } 2874 2875 static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0, 2876 Value *Op1, IRBuilderBase &Builder, 2877 bool HasOneUse) { 2878 auto FoldConstant = [&](bool Val) { 2879 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse(); 2880 if (Op0->getType()->isVectorTy()) 2881 Res = ConstantVector::getSplat( 2882 cast<VectorType>(Op0->getType())->getElementCount(), Res); 2883 return Res; 2884 }; 2885 2886 switch (Table.to_ulong()) { 2887 case 0: // 0 0 0 0 2888 return FoldConstant(false); 2889 case 1: // 0 0 0 1 2890 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr; 2891 case 2: // 0 0 1 0 2892 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr; 2893 case 3: // 0 0 1 1 2894 return Builder.CreateNot(Op0); 2895 case 4: // 0 1 0 0 2896 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr; 2897 case 5: // 0 1 0 1 2898 return Builder.CreateNot(Op1); 2899 case 6: // 0 1 1 0 2900 return Builder.CreateXor(Op0, Op1); 2901 case 7: // 0 1 1 1 2902 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr; 2903 case 8: // 1 0 0 0 2904 return Builder.CreateAnd(Op0, Op1); 2905 case 9: // 1 0 0 1 2906 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr; 2907 case 10: // 1 0 1 0 2908 return Op1; 2909 case 11: // 1 0 1 1 2910 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr; 2911 case 12: // 1 1 0 0 2912 return Op0; 2913 case 13: // 1 1 0 1 2914 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr; 2915 case 14: // 1 1 1 0 2916 return Builder.CreateOr(Op0, Op1); 2917 case 15: // 1 1 1 1 2918 return FoldConstant(true); 2919 default: 2920 llvm_unreachable("Invalid Operation"); 2921 } 2922 return nullptr; 2923 } 2924 2925 /// Fold icmp (add X, Y), C. 2926 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2927 BinaryOperator *Add, 2928 const APInt &C) { 2929 Value *Y = Add->getOperand(1); 2930 Value *X = Add->getOperand(0); 2931 2932 Value *Op0, *Op1; 2933 Instruction *Ext0, *Ext1; 2934 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2935 if (match(Add, 2936 m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))), 2937 m_CombineAnd(m_Instruction(Ext1), 2938 m_ZExtOrSExt(m_Value(Op1))))) && 2939 Op0->getType()->isIntOrIntVectorTy(1) && 2940 Op1->getType()->isIntOrIntVectorTy(1)) { 2941 unsigned BW = C.getBitWidth(); 2942 std::bitset<4> Table; 2943 auto ComputeTable = [&](bool Op0Val, bool Op1Val) { 2944 int Res = 0; 2945 if (Op0Val) 2946 Res += isa<ZExtInst>(Ext0) ? 1 : -1; 2947 if (Op1Val) 2948 Res += isa<ZExtInst>(Ext1) ? 1 : -1; 2949 return ICmpInst::compare(APInt(BW, Res, true), C, Pred); 2950 }; 2951 2952 Table[0] = ComputeTable(false, false); 2953 Table[1] = ComputeTable(false, true); 2954 Table[2] = ComputeTable(true, false); 2955 Table[3] = ComputeTable(true, true); 2956 if (auto *Cond = 2957 createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse())) 2958 return replaceInstUsesWith(Cmp, Cond); 2959 } 2960 const APInt *C2; 2961 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2962 return nullptr; 2963 2964 // Fold icmp pred (add X, C2), C. 2965 Type *Ty = Add->getType(); 2966 2967 // If the add does not wrap, we can always adjust the compare by subtracting 2968 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2969 // are canonicalized to SGT/SLT/UGT/ULT. 2970 if ((Add->hasNoSignedWrap() && 2971 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2972 (Add->hasNoUnsignedWrap() && 2973 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2974 bool Overflow; 2975 APInt NewC = 2976 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2977 // If there is overflow, the result must be true or false. 2978 // TODO: Can we assert there is no overflow because InstSimplify always 2979 // handles those cases? 2980 if (!Overflow) 2981 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2982 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2983 } 2984 2985 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2986 const APInt &Upper = CR.getUpper(); 2987 const APInt &Lower = CR.getLower(); 2988 if (Cmp.isSigned()) { 2989 if (Lower.isSignMask()) 2990 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2991 if (Upper.isSignMask()) 2992 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2993 } else { 2994 if (Lower.isMinValue()) 2995 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2996 if (Upper.isMinValue()) 2997 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2998 } 2999 3000 // This set of folds is intentionally placed after folds that use no-wrapping 3001 // flags because those folds are likely better for later analysis/codegen. 3002 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 3003 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 3004 3005 // Fold compare with offset to opposite sign compare if it eliminates offset: 3006 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 3007 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 3008 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 3009 3010 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 3011 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 3012 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 3013 3014 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 3015 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 3016 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 3017 3018 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 3019 if (Pred == CmpInst::ICMP_SLT && C == *C2) 3020 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 3021 3022 // (X + -1) <u C --> X <=u C (if X is never null) 3023 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { 3024 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3025 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 3026 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C)); 3027 } 3028 3029 if (!Add->hasOneUse()) 3030 return nullptr; 3031 3032 // X+C <u C2 -> (X & -C2) == C 3033 // iff C & (C2-1) == 0 3034 // C2 is a power of 2 3035 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 3036 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 3037 ConstantExpr::getNeg(cast<Constant>(Y))); 3038 3039 // X+C >u C2 -> (X & ~C2) != C 3040 // iff C & C2 == 0 3041 // C2+1 is a power of 2 3042 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 3043 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 3044 ConstantExpr::getNeg(cast<Constant>(Y))); 3045 3046 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 3047 // to the ult form. 3048 // X+C2 >u C -> X+(C2-C-1) <u ~C 3049 if (Pred == ICmpInst::ICMP_UGT) 3050 return new ICmpInst(ICmpInst::ICMP_ULT, 3051 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 3052 ConstantInt::get(Ty, ~C)); 3053 3054 return nullptr; 3055 } 3056 3057 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 3058 Value *&RHS, ConstantInt *&Less, 3059 ConstantInt *&Equal, 3060 ConstantInt *&Greater) { 3061 // TODO: Generalize this to work with other comparison idioms or ensure 3062 // they get canonicalized into this form. 3063 3064 // select i1 (a == b), 3065 // i32 Equal, 3066 // i32 (select i1 (a < b), i32 Less, i32 Greater) 3067 // where Equal, Less and Greater are placeholders for any three constants. 3068 ICmpInst::Predicate PredA; 3069 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 3070 !ICmpInst::isEquality(PredA)) 3071 return false; 3072 Value *EqualVal = SI->getTrueValue(); 3073 Value *UnequalVal = SI->getFalseValue(); 3074 // We still can get non-canonical predicate here, so canonicalize. 3075 if (PredA == ICmpInst::ICMP_NE) 3076 std::swap(EqualVal, UnequalVal); 3077 if (!match(EqualVal, m_ConstantInt(Equal))) 3078 return false; 3079 ICmpInst::Predicate PredB; 3080 Value *LHS2, *RHS2; 3081 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 3082 m_ConstantInt(Less), m_ConstantInt(Greater)))) 3083 return false; 3084 // We can get predicate mismatch here, so canonicalize if possible: 3085 // First, ensure that 'LHS' match. 3086 if (LHS2 != LHS) { 3087 // x sgt y <--> y slt x 3088 std::swap(LHS2, RHS2); 3089 PredB = ICmpInst::getSwappedPredicate(PredB); 3090 } 3091 if (LHS2 != LHS) 3092 return false; 3093 // We also need to canonicalize 'RHS'. 3094 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 3095 // x sgt C-1 <--> x sge C <--> not(x slt C) 3096 auto FlippedStrictness = 3097 InstCombiner::getFlippedStrictnessPredicateAndConstant( 3098 PredB, cast<Constant>(RHS2)); 3099 if (!FlippedStrictness) 3100 return false; 3101 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 3102 "basic correctness failure"); 3103 RHS2 = FlippedStrictness->second; 3104 // And kind-of perform the result swap. 3105 std::swap(Less, Greater); 3106 PredB = ICmpInst::ICMP_SLT; 3107 } 3108 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 3109 } 3110 3111 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 3112 SelectInst *Select, 3113 ConstantInt *C) { 3114 3115 assert(C && "Cmp RHS should be a constant int!"); 3116 // If we're testing a constant value against the result of a three way 3117 // comparison, the result can be expressed directly in terms of the 3118 // original values being compared. Note: We could possibly be more 3119 // aggressive here and remove the hasOneUse test. The original select is 3120 // really likely to simplify or sink when we remove a test of the result. 3121 Value *OrigLHS, *OrigRHS; 3122 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 3123 if (Cmp.hasOneUse() && 3124 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 3125 C3GreaterThan)) { 3126 assert(C1LessThan && C2Equal && C3GreaterThan); 3127 3128 bool TrueWhenLessThan = 3129 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 3130 ->isAllOnesValue(); 3131 bool TrueWhenEqual = 3132 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 3133 ->isAllOnesValue(); 3134 bool TrueWhenGreaterThan = 3135 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 3136 ->isAllOnesValue(); 3137 3138 // This generates the new instruction that will replace the original Cmp 3139 // Instruction. Instead of enumerating the various combinations when 3140 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 3141 // false, we rely on chaining of ORs and future passes of InstCombine to 3142 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 3143 3144 // When none of the three constants satisfy the predicate for the RHS (C), 3145 // the entire original Cmp can be simplified to a false. 3146 Value *Cond = Builder.getFalse(); 3147 if (TrueWhenLessThan) 3148 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 3149 OrigLHS, OrigRHS)); 3150 if (TrueWhenEqual) 3151 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 3152 OrigLHS, OrigRHS)); 3153 if (TrueWhenGreaterThan) 3154 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 3155 OrigLHS, OrigRHS)); 3156 3157 return replaceInstUsesWith(Cmp, Cond); 3158 } 3159 return nullptr; 3160 } 3161 3162 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 3163 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 3164 if (!Bitcast) 3165 return nullptr; 3166 3167 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3168 Value *Op1 = Cmp.getOperand(1); 3169 Value *BCSrcOp = Bitcast->getOperand(0); 3170 Type *SrcType = Bitcast->getSrcTy(); 3171 Type *DstType = Bitcast->getType(); 3172 3173 // Make sure the bitcast doesn't change between scalar and vector and 3174 // doesn't change the number of vector elements. 3175 if (SrcType->isVectorTy() == DstType->isVectorTy() && 3176 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 3177 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 3178 Value *X; 3179 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 3180 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 3181 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 3182 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 3183 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 3184 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 3185 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 3186 match(Op1, m_Zero())) 3187 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3188 3189 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 3190 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 3191 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 3192 3193 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 3194 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3195 return new ICmpInst(Pred, X, 3196 ConstantInt::getAllOnesValue(X->getType())); 3197 } 3198 3199 // Zero-equality checks are preserved through unsigned floating-point casts: 3200 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3201 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3202 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3203 if (Cmp.isEquality() && match(Op1, m_Zero())) 3204 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3205 3206 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3207 // the FP extend/truncate because that cast does not change the sign-bit. 3208 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3209 // The sign-bit is always the most significant bit in those types. 3210 const APInt *C; 3211 bool TrueIfSigned; 3212 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 3213 isSignBitCheck(Pred, *C, TrueIfSigned)) { 3214 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 3215 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 3216 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3217 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3218 Type *XType = X->getType(); 3219 3220 // We can't currently handle Power style floating point operations here. 3221 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3222 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3223 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3224 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3225 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3226 if (TrueIfSigned) 3227 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3228 ConstantInt::getNullValue(NewType)); 3229 else 3230 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3231 ConstantInt::getAllOnesValue(NewType)); 3232 } 3233 } 3234 } 3235 } 3236 3237 const APInt *C; 3238 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3239 !SrcType->isIntOrIntVectorTy()) 3240 return nullptr; 3241 3242 // If this is checking if all elements of a vector compare are set or not, 3243 // invert the casted vector equality compare and test if all compare 3244 // elements are clear or not. Compare against zero is generally easier for 3245 // analysis and codegen. 3246 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3247 // Example: are all elements equal? --> are zero elements not equal? 3248 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3249 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) { 3250 if (Value *NotBCSrcOp = 3251 getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) { 3252 Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType); 3253 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3254 } 3255 } 3256 3257 // If this is checking if all elements of an extended vector are clear or not, 3258 // compare in a narrow type to eliminate the extend: 3259 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3260 Value *X; 3261 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3262 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3263 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3264 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3265 Value *NewCast = Builder.CreateBitCast(X, NewType); 3266 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3267 } 3268 } 3269 3270 // Folding: icmp <pred> iN X, C 3271 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3272 // and C is a splat of a K-bit pattern 3273 // and SC is a constant vector = <C', C', C', ..., C'> 3274 // Into: 3275 // %E = extractelement <M x iK> %vec, i32 C' 3276 // icmp <pred> iK %E, trunc(C) 3277 Value *Vec; 3278 ArrayRef<int> Mask; 3279 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3280 // Check whether every element of Mask is the same constant 3281 if (all_equal(Mask)) { 3282 auto *VecTy = cast<VectorType>(SrcType); 3283 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3284 if (C->isSplat(EltTy->getBitWidth())) { 3285 // Fold the icmp based on the value of C 3286 // If C is M copies of an iK sized bit pattern, 3287 // then: 3288 // => %E = extractelement <N x iK> %vec, i32 Elem 3289 // icmp <pred> iK %SplatVal, <pattern> 3290 Value *Elem = Builder.getInt32(Mask[0]); 3291 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3292 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3293 return new ICmpInst(Pred, Extract, NewC); 3294 } 3295 } 3296 } 3297 return nullptr; 3298 } 3299 3300 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3301 /// where X is some kind of instruction. 3302 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3303 const APInt *C; 3304 3305 if (match(Cmp.getOperand(1), m_APInt(C))) { 3306 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3307 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3308 return I; 3309 3310 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3311 // For now, we only support constant integers while folding the 3312 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3313 // similar to the cases handled by binary ops above. 3314 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3315 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3316 return I; 3317 3318 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3319 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3320 return I; 3321 3322 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3323 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3324 return I; 3325 3326 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y 3327 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y 3328 // TODO: This checks one-use, but that is not strictly necessary. 3329 Value *Cmp0 = Cmp.getOperand(0); 3330 Value *X, *Y; 3331 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && 3332 (match(Cmp0, 3333 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>( 3334 m_Value(X), m_Value(Y)))) || 3335 match(Cmp0, 3336 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 3337 m_Value(X), m_Value(Y)))))) 3338 return new ICmpInst(Cmp.getPredicate(), X, Y); 3339 } 3340 3341 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3342 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3343 3344 return nullptr; 3345 } 3346 3347 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3348 /// icmp eq/ne BO, C. 3349 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3350 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3351 // TODO: Some of these folds could work with arbitrary constants, but this 3352 // function is limited to scalar and vector splat constants. 3353 if (!Cmp.isEquality()) 3354 return nullptr; 3355 3356 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3357 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3358 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3359 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3360 3361 switch (BO->getOpcode()) { 3362 case Instruction::SRem: 3363 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3364 if (C.isZero() && BO->hasOneUse()) { 3365 const APInt *BOC; 3366 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3367 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3368 return new ICmpInst(Pred, NewRem, 3369 Constant::getNullValue(BO->getType())); 3370 } 3371 } 3372 break; 3373 case Instruction::Add: { 3374 // (A + C2) == C --> A == (C - C2) 3375 // (A + C2) != C --> A != (C - C2) 3376 // TODO: Remove the one-use limitation? See discussion in D58633. 3377 if (Constant *C2 = dyn_cast<Constant>(BOp1)) { 3378 if (BO->hasOneUse()) 3379 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2)); 3380 } else if (C.isZero()) { 3381 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3382 // efficiently invertible, or if the add has just this one use. 3383 if (Value *NegVal = dyn_castNegVal(BOp1)) 3384 return new ICmpInst(Pred, BOp0, NegVal); 3385 if (Value *NegVal = dyn_castNegVal(BOp0)) 3386 return new ICmpInst(Pred, NegVal, BOp1); 3387 if (BO->hasOneUse()) { 3388 Value *Neg = Builder.CreateNeg(BOp1); 3389 Neg->takeName(BO); 3390 return new ICmpInst(Pred, BOp0, Neg); 3391 } 3392 } 3393 break; 3394 } 3395 case Instruction::Xor: 3396 if (BO->hasOneUse()) { 3397 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3398 // For the xor case, we can xor two constants together, eliminating 3399 // the explicit xor. 3400 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3401 } else if (C.isZero()) { 3402 // Replace ((xor A, B) != 0) with (A != B) 3403 return new ICmpInst(Pred, BOp0, BOp1); 3404 } 3405 } 3406 break; 3407 case Instruction::Or: { 3408 const APInt *BOC; 3409 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3410 // Comparing if all bits outside of a constant mask are set? 3411 // Replace (X | C) == -1 with (X & ~C) == ~C. 3412 // This removes the -1 constant. 3413 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3414 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3415 return new ICmpInst(Pred, And, NotBOC); 3416 } 3417 break; 3418 } 3419 case Instruction::UDiv: 3420 case Instruction::SDiv: 3421 if (BO->isExact()) { 3422 // div exact X, Y eq/ne 0 -> X eq/ne 0 3423 // div exact X, Y eq/ne 1 -> X eq/ne Y 3424 // div exact X, Y eq/ne C -> 3425 // if Y * C never-overflow && OneUse: 3426 // -> Y * C eq/ne X 3427 if (C.isZero()) 3428 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType())); 3429 else if (C.isOne()) 3430 return new ICmpInst(Pred, BOp0, BOp1); 3431 else if (BO->hasOneUse()) { 3432 OverflowResult OR = computeOverflow( 3433 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1, 3434 Cmp.getOperand(1), BO); 3435 if (OR == OverflowResult::NeverOverflows) { 3436 Value *YC = 3437 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C)); 3438 return new ICmpInst(Pred, YC, BOp0); 3439 } 3440 } 3441 } 3442 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { 3443 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3444 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3445 return new ICmpInst(NewPred, BOp1, BOp0); 3446 } 3447 break; 3448 default: 3449 break; 3450 } 3451 return nullptr; 3452 } 3453 3454 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, 3455 const APInt &CRhs, 3456 InstCombiner::BuilderTy &Builder, 3457 const SimplifyQuery &Q) { 3458 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && 3459 "Non-ctpop intrin in ctpop fold"); 3460 if (!CtpopLhs->hasOneUse()) 3461 return nullptr; 3462 3463 // Power of 2 test: 3464 // isPow2OrZero : ctpop(X) u< 2 3465 // isPow2 : ctpop(X) == 1 3466 // NotPow2OrZero: ctpop(X) u> 1 3467 // NotPow2 : ctpop(X) != 1 3468 // If we know any bit of X can be folded to: 3469 // IsPow2 : X & (~Bit) == 0 3470 // NotPow2 : X & (~Bit) != 0 3471 const ICmpInst::Predicate Pred = I.getPredicate(); 3472 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || 3473 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { 3474 Value *Op = CtpopLhs->getArgOperand(0); 3475 KnownBits OpKnown = computeKnownBits(Op, Q.DL, 3476 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT); 3477 // No need to check for count > 1, that should be already constant folded. 3478 if (OpKnown.countMinPopulation() == 1) { 3479 Value *And = Builder.CreateAnd( 3480 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One))); 3481 return new ICmpInst( 3482 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) 3483 ? ICmpInst::ICMP_EQ 3484 : ICmpInst::ICMP_NE, 3485 And, Constant::getNullValue(Op->getType())); 3486 } 3487 } 3488 3489 return nullptr; 3490 } 3491 3492 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3493 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3494 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3495 Type *Ty = II->getType(); 3496 unsigned BitWidth = C.getBitWidth(); 3497 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3498 3499 switch (II->getIntrinsicID()) { 3500 case Intrinsic::abs: 3501 // abs(A) == 0 -> A == 0 3502 // abs(A) == INT_MIN -> A == INT_MIN 3503 if (C.isZero() || C.isMinSignedValue()) 3504 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3505 break; 3506 3507 case Intrinsic::bswap: 3508 // bswap(A) == C -> A == bswap(C) 3509 return new ICmpInst(Pred, II->getArgOperand(0), 3510 ConstantInt::get(Ty, C.byteSwap())); 3511 3512 case Intrinsic::bitreverse: 3513 // bitreverse(A) == C -> A == bitreverse(C) 3514 return new ICmpInst(Pred, II->getArgOperand(0), 3515 ConstantInt::get(Ty, C.reverseBits())); 3516 3517 case Intrinsic::ctlz: 3518 case Intrinsic::cttz: { 3519 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3520 if (C == BitWidth) 3521 return new ICmpInst(Pred, II->getArgOperand(0), 3522 ConstantInt::getNullValue(Ty)); 3523 3524 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3525 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3526 // Limit to one use to ensure we don't increase instruction count. 3527 unsigned Num = C.getLimitedValue(BitWidth); 3528 if (Num != BitWidth && II->hasOneUse()) { 3529 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3530 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3531 : APInt::getHighBitsSet(BitWidth, Num + 1); 3532 APInt Mask2 = IsTrailing 3533 ? APInt::getOneBitSet(BitWidth, Num) 3534 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3535 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3536 ConstantInt::get(Ty, Mask2)); 3537 } 3538 break; 3539 } 3540 3541 case Intrinsic::ctpop: { 3542 // popcount(A) == 0 -> A == 0 and likewise for != 3543 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3544 bool IsZero = C.isZero(); 3545 if (IsZero || C == BitWidth) 3546 return new ICmpInst(Pred, II->getArgOperand(0), 3547 IsZero ? Constant::getNullValue(Ty) 3548 : Constant::getAllOnesValue(Ty)); 3549 3550 break; 3551 } 3552 3553 case Intrinsic::fshl: 3554 case Intrinsic::fshr: 3555 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3556 const APInt *RotAmtC; 3557 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3558 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3559 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3560 return new ICmpInst(Pred, II->getArgOperand(0), 3561 II->getIntrinsicID() == Intrinsic::fshl 3562 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3563 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3564 } 3565 break; 3566 3567 case Intrinsic::umax: 3568 case Intrinsic::uadd_sat: { 3569 // uadd.sat(a, b) == 0 -> (a | b) == 0 3570 // umax(a, b) == 0 -> (a | b) == 0 3571 if (C.isZero() && II->hasOneUse()) { 3572 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3573 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3574 } 3575 break; 3576 } 3577 3578 case Intrinsic::ssub_sat: 3579 // ssub.sat(a, b) == 0 -> a == b 3580 if (C.isZero()) 3581 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3582 break; 3583 case Intrinsic::usub_sat: { 3584 // usub.sat(a, b) == 0 -> a <= b 3585 if (C.isZero()) { 3586 ICmpInst::Predicate NewPred = 3587 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3588 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3589 } 3590 break; 3591 } 3592 default: 3593 break; 3594 } 3595 3596 return nullptr; 3597 } 3598 3599 /// Fold an icmp with LLVM intrinsics 3600 static Instruction * 3601 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, 3602 InstCombiner::BuilderTy &Builder) { 3603 assert(Cmp.isEquality()); 3604 3605 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3606 Value *Op0 = Cmp.getOperand(0); 3607 Value *Op1 = Cmp.getOperand(1); 3608 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3609 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3610 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3611 return nullptr; 3612 3613 switch (IIOp0->getIntrinsicID()) { 3614 case Intrinsic::bswap: 3615 case Intrinsic::bitreverse: 3616 // If both operands are byte-swapped or bit-reversed, just compare the 3617 // original values. 3618 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3619 case Intrinsic::fshl: 3620 case Intrinsic::fshr: { 3621 // If both operands are rotated by same amount, just compare the 3622 // original values. 3623 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3624 break; 3625 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3626 break; 3627 if (IIOp0->getOperand(2) == IIOp1->getOperand(2)) 3628 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3629 3630 // rotate(X, AmtX) == rotate(Y, AmtY) 3631 // -> rotate(X, AmtX - AmtY) == Y 3632 // Do this if either both rotates have one use or if only one has one use 3633 // and AmtX/AmtY are constants. 3634 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); 3635 if (OneUses == 2 || 3636 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) && 3637 match(IIOp1->getOperand(2), m_ImmConstant()))) { 3638 Value *SubAmt = 3639 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2)); 3640 Value *CombinedRotate = Builder.CreateIntrinsic( 3641 Op0->getType(), IIOp0->getIntrinsicID(), 3642 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt}); 3643 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate); 3644 } 3645 } break; 3646 default: 3647 break; 3648 } 3649 3650 return nullptr; 3651 } 3652 3653 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3654 /// where X is some kind of instruction and C is AllowUndef. 3655 /// TODO: Move more folds which allow undef to this function. 3656 Instruction * 3657 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3658 const APInt &C) { 3659 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3660 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3661 switch (II->getIntrinsicID()) { 3662 default: 3663 break; 3664 case Intrinsic::fshl: 3665 case Intrinsic::fshr: 3666 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3667 // (rot X, ?) == 0/-1 --> X == 0/-1 3668 if (C.isZero() || C.isAllOnes()) 3669 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3670 } 3671 break; 3672 } 3673 } 3674 3675 return nullptr; 3676 } 3677 3678 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3679 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3680 BinaryOperator *BO, 3681 const APInt &C) { 3682 switch (BO->getOpcode()) { 3683 case Instruction::Xor: 3684 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3685 return I; 3686 break; 3687 case Instruction::And: 3688 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3689 return I; 3690 break; 3691 case Instruction::Or: 3692 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3693 return I; 3694 break; 3695 case Instruction::Mul: 3696 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3697 return I; 3698 break; 3699 case Instruction::Shl: 3700 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3701 return I; 3702 break; 3703 case Instruction::LShr: 3704 case Instruction::AShr: 3705 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3706 return I; 3707 break; 3708 case Instruction::SRem: 3709 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3710 return I; 3711 break; 3712 case Instruction::UDiv: 3713 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3714 return I; 3715 [[fallthrough]]; 3716 case Instruction::SDiv: 3717 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3718 return I; 3719 break; 3720 case Instruction::Sub: 3721 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3722 return I; 3723 break; 3724 case Instruction::Add: 3725 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3726 return I; 3727 break; 3728 default: 3729 break; 3730 } 3731 3732 // TODO: These folds could be refactored to be part of the above calls. 3733 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3734 } 3735 3736 static Instruction * 3737 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred, 3738 SaturatingInst *II, const APInt &C, 3739 InstCombiner::BuilderTy &Builder) { 3740 // This transform may end up producing more than one instruction for the 3741 // intrinsic, so limit it to one user of the intrinsic. 3742 if (!II->hasOneUse()) 3743 return nullptr; 3744 3745 // Let Y = [add/sub]_sat(X, C) pred C2 3746 // SatVal = The saturating value for the operation 3747 // WillWrap = Whether or not the operation will underflow / overflow 3748 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 3749 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) 3750 // 3751 // When (SatVal pred C2) is true, then 3752 // Y = WillWrap ? true : ((X binop C) pred C2) 3753 // => Y = WillWrap || ((X binop C) pred C2) 3754 // else 3755 // Y = WillWrap ? false : ((X binop C) pred C2) 3756 // => Y = !WillWrap ? ((X binop C) pred C2) : false 3757 // => Y = !WillWrap && ((X binop C) pred C2) 3758 Value *Op0 = II->getOperand(0); 3759 Value *Op1 = II->getOperand(1); 3760 3761 const APInt *COp1; 3762 // This transform only works when the intrinsic has an integral constant or 3763 // splat vector as the second operand. 3764 if (!match(Op1, m_APInt(COp1))) 3765 return nullptr; 3766 3767 APInt SatVal; 3768 switch (II->getIntrinsicID()) { 3769 default: 3770 llvm_unreachable( 3771 "This function only works with usub_sat and uadd_sat for now!"); 3772 case Intrinsic::uadd_sat: 3773 SatVal = APInt::getAllOnes(C.getBitWidth()); 3774 break; 3775 case Intrinsic::usub_sat: 3776 SatVal = APInt::getZero(C.getBitWidth()); 3777 break; 3778 } 3779 3780 // Check (SatVal pred C2) 3781 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred); 3782 3783 // !WillWrap. 3784 ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( 3785 II->getBinaryOp(), *COp1, II->getNoWrapKind()); 3786 3787 // WillWrap. 3788 if (SatValCheck) 3789 C1 = C1.inverse(); 3790 3791 ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C); 3792 if (II->getBinaryOp() == Instruction::Add) 3793 C2 = C2.sub(*COp1); 3794 else 3795 C2 = C2.add(*COp1); 3796 3797 Instruction::BinaryOps CombiningOp = 3798 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; 3799 3800 std::optional<ConstantRange> Combination; 3801 if (CombiningOp == Instruction::BinaryOps::Or) 3802 Combination = C1.exactUnionWith(C2); 3803 else /* CombiningOp == Instruction::BinaryOps::And */ 3804 Combination = C1.exactIntersectWith(C2); 3805 3806 if (!Combination) 3807 return nullptr; 3808 3809 CmpInst::Predicate EquivPred; 3810 APInt EquivInt; 3811 APInt EquivOffset; 3812 3813 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset); 3814 3815 return new ICmpInst( 3816 EquivPred, 3817 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)), 3818 ConstantInt::get(Op1->getType(), EquivInt)); 3819 } 3820 3821 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3822 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3823 IntrinsicInst *II, 3824 const APInt &C) { 3825 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3826 3827 // Handle folds that apply for any kind of icmp. 3828 switch (II->getIntrinsicID()) { 3829 default: 3830 break; 3831 case Intrinsic::uadd_sat: 3832 case Intrinsic::usub_sat: 3833 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( 3834 Pred, cast<SaturatingInst>(II), C, Builder)) 3835 return Folded; 3836 break; 3837 case Intrinsic::ctpop: { 3838 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3839 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q)) 3840 return R; 3841 } break; 3842 } 3843 3844 if (Cmp.isEquality()) 3845 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3846 3847 Type *Ty = II->getType(); 3848 unsigned BitWidth = C.getBitWidth(); 3849 switch (II->getIntrinsicID()) { 3850 case Intrinsic::ctpop: { 3851 // (ctpop X > BitWidth - 1) --> X == -1 3852 Value *X = II->getArgOperand(0); 3853 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3854 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3855 ConstantInt::getAllOnesValue(Ty)); 3856 // (ctpop X < BitWidth) --> X != -1 3857 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3858 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3859 ConstantInt::getAllOnesValue(Ty)); 3860 break; 3861 } 3862 case Intrinsic::ctlz: { 3863 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3864 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3865 unsigned Num = C.getLimitedValue(); 3866 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3867 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3868 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3869 } 3870 3871 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3872 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3873 unsigned Num = C.getLimitedValue(); 3874 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3875 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3876 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3877 } 3878 break; 3879 } 3880 case Intrinsic::cttz: { 3881 // Limit to one use to ensure we don't increase instruction count. 3882 if (!II->hasOneUse()) 3883 return nullptr; 3884 3885 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3886 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3887 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3888 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3889 Builder.CreateAnd(II->getArgOperand(0), Mask), 3890 ConstantInt::getNullValue(Ty)); 3891 } 3892 3893 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3894 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3895 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3896 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3897 Builder.CreateAnd(II->getArgOperand(0), Mask), 3898 ConstantInt::getNullValue(Ty)); 3899 } 3900 break; 3901 } 3902 case Intrinsic::ssub_sat: 3903 // ssub.sat(a, b) spred 0 -> a spred b 3904 if (ICmpInst::isSigned(Pred)) { 3905 if (C.isZero()) 3906 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3907 // X s<= 0 is cannonicalized to X s< 1 3908 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 3909 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0), 3910 II->getArgOperand(1)); 3911 // X s>= 0 is cannonicalized to X s> -1 3912 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 3913 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0), 3914 II->getArgOperand(1)); 3915 } 3916 break; 3917 default: 3918 break; 3919 } 3920 3921 return nullptr; 3922 } 3923 3924 /// Handle icmp with constant (but not simple integer constant) RHS. 3925 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3926 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3927 Constant *RHSC = dyn_cast<Constant>(Op1); 3928 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3929 if (!RHSC || !LHSI) 3930 return nullptr; 3931 3932 switch (LHSI->getOpcode()) { 3933 case Instruction::PHI: 3934 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3935 return NV; 3936 break; 3937 case Instruction::IntToPtr: 3938 // icmp pred inttoptr(X), null -> icmp pred X, 0 3939 if (RHSC->isNullValue() && 3940 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3941 return new ICmpInst( 3942 I.getPredicate(), LHSI->getOperand(0), 3943 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3944 break; 3945 3946 case Instruction::Load: 3947 // Try to optimize things like "A[i] > 4" to index computations. 3948 if (GetElementPtrInst *GEP = 3949 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3950 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3951 if (Instruction *Res = 3952 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3953 return Res; 3954 break; 3955 } 3956 3957 return nullptr; 3958 } 3959 3960 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3961 SelectInst *SI, Value *RHS, 3962 const ICmpInst &I) { 3963 // Try to fold the comparison into the select arms, which will cause the 3964 // select to be converted into a logical and/or. 3965 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3966 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3967 return Res; 3968 if (std::optional<bool> Impl = isImpliedCondition( 3969 SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue)) 3970 return ConstantInt::get(I.getType(), *Impl); 3971 return nullptr; 3972 }; 3973 3974 ConstantInt *CI = nullptr; 3975 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3976 if (Op1) 3977 CI = dyn_cast<ConstantInt>(Op1); 3978 3979 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3980 if (Op2) 3981 CI = dyn_cast<ConstantInt>(Op2); 3982 3983 // We only want to perform this transformation if it will not lead to 3984 // additional code. This is true if either both sides of the select 3985 // fold to a constant (in which case the icmp is replaced with a select 3986 // which will usually simplify) or this is the only user of the 3987 // select (in which case we are trading a select+icmp for a simpler 3988 // select+icmp) or all uses of the select can be replaced based on 3989 // dominance information ("Global cases"). 3990 bool Transform = false; 3991 if (Op1 && Op2) 3992 Transform = true; 3993 else if (Op1 || Op2) { 3994 // Local case 3995 if (SI->hasOneUse()) 3996 Transform = true; 3997 // Global cases 3998 else if (CI && !CI->isZero()) 3999 // When Op1 is constant try replacing select with second operand. 4000 // Otherwise Op2 is constant and try replacing select with first 4001 // operand. 4002 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 4003 } 4004 if (Transform) { 4005 if (!Op1) 4006 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 4007 if (!Op2) 4008 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 4009 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 4010 } 4011 4012 return nullptr; 4013 } 4014 4015 /// Some comparisons can be simplified. 4016 /// In this case, we are looking for comparisons that look like 4017 /// a check for a lossy truncation. 4018 /// Folds: 4019 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 4020 /// Where Mask is some pattern that produces all-ones in low bits: 4021 /// (-1 >> y) 4022 /// ((-1 << y) >> y) <- non-canonical, has extra uses 4023 /// ~(-1 << y) 4024 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 4025 /// The Mask can be a constant, too. 4026 /// For some predicates, the operands are commutative. 4027 /// For others, x can only be on a specific side. 4028 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 4029 InstCombiner::BuilderTy &Builder) { 4030 ICmpInst::Predicate SrcPred; 4031 Value *X, *M, *Y; 4032 auto m_VariableMask = m_CombineOr( 4033 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 4034 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 4035 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 4036 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 4037 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 4038 if (!match(&I, m_c_ICmp(SrcPred, 4039 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 4040 m_Deferred(X)))) 4041 return nullptr; 4042 4043 ICmpInst::Predicate DstPred; 4044 switch (SrcPred) { 4045 case ICmpInst::Predicate::ICMP_EQ: 4046 // x & (-1 >> y) == x -> x u<= (-1 >> y) 4047 DstPred = ICmpInst::Predicate::ICMP_ULE; 4048 break; 4049 case ICmpInst::Predicate::ICMP_NE: 4050 // x & (-1 >> y) != x -> x u> (-1 >> y) 4051 DstPred = ICmpInst::Predicate::ICMP_UGT; 4052 break; 4053 case ICmpInst::Predicate::ICMP_ULT: 4054 // x & (-1 >> y) u< x -> x u> (-1 >> y) 4055 // x u> x & (-1 >> y) -> x u> (-1 >> y) 4056 DstPred = ICmpInst::Predicate::ICMP_UGT; 4057 break; 4058 case ICmpInst::Predicate::ICMP_UGE: 4059 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 4060 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 4061 DstPred = ICmpInst::Predicate::ICMP_ULE; 4062 break; 4063 case ICmpInst::Predicate::ICMP_SLT: 4064 // x & (-1 >> y) s< x -> x s> (-1 >> y) 4065 // x s> x & (-1 >> y) -> x s> (-1 >> y) 4066 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4067 return nullptr; 4068 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4069 return nullptr; 4070 DstPred = ICmpInst::Predicate::ICMP_SGT; 4071 break; 4072 case ICmpInst::Predicate::ICMP_SGE: 4073 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 4074 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 4075 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4076 return nullptr; 4077 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4078 return nullptr; 4079 DstPred = ICmpInst::Predicate::ICMP_SLE; 4080 break; 4081 case ICmpInst::Predicate::ICMP_SGT: 4082 case ICmpInst::Predicate::ICMP_SLE: 4083 return nullptr; 4084 case ICmpInst::Predicate::ICMP_UGT: 4085 case ICmpInst::Predicate::ICMP_ULE: 4086 llvm_unreachable("Instsimplify took care of commut. variant"); 4087 break; 4088 default: 4089 llvm_unreachable("All possible folds are handled."); 4090 } 4091 4092 // The mask value may be a vector constant that has undefined elements. But it 4093 // may not be safe to propagate those undefs into the new compare, so replace 4094 // those elements by copying an existing, defined, and safe scalar constant. 4095 Type *OpTy = M->getType(); 4096 auto *VecC = dyn_cast<Constant>(M); 4097 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 4098 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 4099 Constant *SafeReplacementConstant = nullptr; 4100 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 4101 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 4102 SafeReplacementConstant = VecC->getAggregateElement(i); 4103 break; 4104 } 4105 } 4106 assert(SafeReplacementConstant && "Failed to find undef replacement"); 4107 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 4108 } 4109 4110 return Builder.CreateICmp(DstPred, X, M); 4111 } 4112 4113 /// Some comparisons can be simplified. 4114 /// In this case, we are looking for comparisons that look like 4115 /// a check for a lossy signed truncation. 4116 /// Folds: (MaskedBits is a constant.) 4117 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 4118 /// Into: 4119 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 4120 /// Where KeptBits = bitwidth(%x) - MaskedBits 4121 static Value * 4122 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 4123 InstCombiner::BuilderTy &Builder) { 4124 ICmpInst::Predicate SrcPred; 4125 Value *X; 4126 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 4127 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 4128 if (!match(&I, m_c_ICmp(SrcPred, 4129 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 4130 m_APInt(C1))), 4131 m_Deferred(X)))) 4132 return nullptr; 4133 4134 // Potential handling of non-splats: for each element: 4135 // * if both are undef, replace with constant 0. 4136 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 4137 // * if both are not undef, and are different, bailout. 4138 // * else, only one is undef, then pick the non-undef one. 4139 4140 // The shift amount must be equal. 4141 if (*C0 != *C1) 4142 return nullptr; 4143 const APInt &MaskedBits = *C0; 4144 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 4145 4146 ICmpInst::Predicate DstPred; 4147 switch (SrcPred) { 4148 case ICmpInst::Predicate::ICMP_EQ: 4149 // ((%x << MaskedBits) a>> MaskedBits) == %x 4150 // => 4151 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 4152 DstPred = ICmpInst::Predicate::ICMP_ULT; 4153 break; 4154 case ICmpInst::Predicate::ICMP_NE: 4155 // ((%x << MaskedBits) a>> MaskedBits) != %x 4156 // => 4157 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 4158 DstPred = ICmpInst::Predicate::ICMP_UGE; 4159 break; 4160 // FIXME: are more folds possible? 4161 default: 4162 return nullptr; 4163 } 4164 4165 auto *XType = X->getType(); 4166 const unsigned XBitWidth = XType->getScalarSizeInBits(); 4167 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 4168 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 4169 4170 // KeptBits = bitwidth(%x) - MaskedBits 4171 const APInt KeptBits = BitWidth - MaskedBits; 4172 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 4173 // ICmpCst = (1 << KeptBits) 4174 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 4175 assert(ICmpCst.isPowerOf2()); 4176 // AddCst = (1 << (KeptBits-1)) 4177 const APInt AddCst = ICmpCst.lshr(1); 4178 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 4179 4180 // T0 = add %x, AddCst 4181 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 4182 // T1 = T0 DstPred ICmpCst 4183 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 4184 4185 return T1; 4186 } 4187 4188 // Given pattern: 4189 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4190 // we should move shifts to the same hand of 'and', i.e. rewrite as 4191 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4192 // We are only interested in opposite logical shifts here. 4193 // One of the shifts can be truncated. 4194 // If we can, we want to end up creating 'lshr' shift. 4195 static Value * 4196 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 4197 InstCombiner::BuilderTy &Builder) { 4198 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 4199 !I.getOperand(0)->hasOneUse()) 4200 return nullptr; 4201 4202 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 4203 4204 // Look for an 'and' of two logical shifts, one of which may be truncated. 4205 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 4206 Instruction *XShift, *MaybeTruncation, *YShift; 4207 if (!match( 4208 I.getOperand(0), 4209 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 4210 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 4211 m_AnyLogicalShift, m_Instruction(YShift))), 4212 m_Instruction(MaybeTruncation))))) 4213 return nullptr; 4214 4215 // We potentially looked past 'trunc', but only when matching YShift, 4216 // therefore YShift must have the widest type. 4217 Instruction *WidestShift = YShift; 4218 // Therefore XShift must have the shallowest type. 4219 // Or they both have identical types if there was no truncation. 4220 Instruction *NarrowestShift = XShift; 4221 4222 Type *WidestTy = WidestShift->getType(); 4223 Type *NarrowestTy = NarrowestShift->getType(); 4224 assert(NarrowestTy == I.getOperand(0)->getType() && 4225 "We did not look past any shifts while matching XShift though."); 4226 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 4227 4228 // If YShift is a 'lshr', swap the shifts around. 4229 if (match(YShift, m_LShr(m_Value(), m_Value()))) 4230 std::swap(XShift, YShift); 4231 4232 // The shifts must be in opposite directions. 4233 auto XShiftOpcode = XShift->getOpcode(); 4234 if (XShiftOpcode == YShift->getOpcode()) 4235 return nullptr; // Do not care about same-direction shifts here. 4236 4237 Value *X, *XShAmt, *Y, *YShAmt; 4238 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 4239 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 4240 4241 // If one of the values being shifted is a constant, then we will end with 4242 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 4243 // however, we will need to ensure that we won't increase instruction count. 4244 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 4245 // At least one of the hands of the 'and' should be one-use shift. 4246 if (!match(I.getOperand(0), 4247 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 4248 return nullptr; 4249 if (HadTrunc) { 4250 // Due to the 'trunc', we will need to widen X. For that either the old 4251 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 4252 if (!MaybeTruncation->hasOneUse() && 4253 !NarrowestShift->getOperand(1)->hasOneUse()) 4254 return nullptr; 4255 } 4256 } 4257 4258 // We have two shift amounts from two different shifts. The types of those 4259 // shift amounts may not match. If that's the case let's bailout now. 4260 if (XShAmt->getType() != YShAmt->getType()) 4261 return nullptr; 4262 4263 // As input, we have the following pattern: 4264 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4265 // We want to rewrite that as: 4266 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4267 // While we know that originally (Q+K) would not overflow 4268 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 4269 // shift amounts. so it may now overflow in smaller bitwidth. 4270 // To ensure that does not happen, we need to ensure that the total maximal 4271 // shift amount is still representable in that smaller bit width. 4272 unsigned MaximalPossibleTotalShiftAmount = 4273 (WidestTy->getScalarSizeInBits() - 1) + 4274 (NarrowestTy->getScalarSizeInBits() - 1); 4275 APInt MaximalRepresentableShiftAmount = 4276 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 4277 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 4278 return nullptr; 4279 4280 // Can we fold (XShAmt+YShAmt) ? 4281 auto *NewShAmt = dyn_cast_or_null<Constant>( 4282 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 4283 /*isNUW=*/false, SQ.getWithInstruction(&I))); 4284 if (!NewShAmt) 4285 return nullptr; 4286 if (NewShAmt->getType() != WidestTy) { 4287 NewShAmt = 4288 ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL); 4289 if (!NewShAmt) 4290 return nullptr; 4291 } 4292 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 4293 4294 // Is the new shift amount smaller than the bit width? 4295 // FIXME: could also rely on ConstantRange. 4296 if (!match(NewShAmt, 4297 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 4298 APInt(WidestBitWidth, WidestBitWidth)))) 4299 return nullptr; 4300 4301 // An extra legality check is needed if we had trunc-of-lshr. 4302 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 4303 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 4304 WidestShift]() { 4305 // It isn't obvious whether it's worth it to analyze non-constants here. 4306 // Also, let's basically give up on non-splat cases, pessimizing vectors. 4307 // If *any* of these preconditions matches we can perform the fold. 4308 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 4309 ? NewShAmt->getSplatValue() 4310 : NewShAmt; 4311 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 4312 if (NewShAmtSplat && 4313 (NewShAmtSplat->isNullValue() || 4314 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 4315 return true; 4316 // We consider *min* leading zeros so a single outlier 4317 // blocks the transform as opposed to allowing it. 4318 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 4319 KnownBits Known = computeKnownBits(C, SQ.DL); 4320 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4321 // If the value being shifted has at most lowest bit set we can fold. 4322 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4323 if (MaxActiveBits <= 1) 4324 return true; 4325 // Precondition: NewShAmt u<= countLeadingZeros(C) 4326 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 4327 return true; 4328 } 4329 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 4330 KnownBits Known = computeKnownBits(C, SQ.DL); 4331 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4332 // If the value being shifted has at most lowest bit set we can fold. 4333 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4334 if (MaxActiveBits <= 1) 4335 return true; 4336 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 4337 if (NewShAmtSplat) { 4338 APInt AdjNewShAmt = 4339 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 4340 if (AdjNewShAmt.ule(MinLeadZero)) 4341 return true; 4342 } 4343 } 4344 return false; // Can't tell if it's ok. 4345 }; 4346 if (!CanFold()) 4347 return nullptr; 4348 } 4349 4350 // All good, we can do this fold. 4351 X = Builder.CreateZExt(X, WidestTy); 4352 Y = Builder.CreateZExt(Y, WidestTy); 4353 // The shift is the same that was for X. 4354 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 4355 ? Builder.CreateLShr(X, NewShAmt) 4356 : Builder.CreateShl(X, NewShAmt); 4357 Value *T1 = Builder.CreateAnd(T0, Y); 4358 return Builder.CreateICmp(I.getPredicate(), T1, 4359 Constant::getNullValue(WidestTy)); 4360 } 4361 4362 /// Fold 4363 /// (-1 u/ x) u< y 4364 /// ((x * y) ?/ x) != y 4365 /// to 4366 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 4367 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 4368 /// will mean that we are looking for the opposite answer. 4369 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 4370 ICmpInst::Predicate Pred; 4371 Value *X, *Y; 4372 Instruction *Mul; 4373 Instruction *Div; 4374 bool NeedNegation; 4375 // Look for: (-1 u/ x) u</u>= y 4376 if (!I.isEquality() && 4377 match(&I, m_c_ICmp(Pred, 4378 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 4379 m_Instruction(Div)), 4380 m_Value(Y)))) { 4381 Mul = nullptr; 4382 4383 // Are we checking that overflow does not happen, or does happen? 4384 switch (Pred) { 4385 case ICmpInst::Predicate::ICMP_ULT: 4386 NeedNegation = false; 4387 break; // OK 4388 case ICmpInst::Predicate::ICMP_UGE: 4389 NeedNegation = true; 4390 break; // OK 4391 default: 4392 return nullptr; // Wrong predicate. 4393 } 4394 } else // Look for: ((x * y) / x) !=/== y 4395 if (I.isEquality() && 4396 match(&I, 4397 m_c_ICmp(Pred, m_Value(Y), 4398 m_CombineAnd( 4399 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4400 m_Value(X)), 4401 m_Instruction(Mul)), 4402 m_Deferred(X))), 4403 m_Instruction(Div))))) { 4404 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4405 } else 4406 return nullptr; 4407 4408 BuilderTy::InsertPointGuard Guard(Builder); 4409 // If the pattern included (x * y), we'll want to insert new instructions 4410 // right before that original multiplication so that we can replace it. 4411 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4412 if (MulHadOtherUses) 4413 Builder.SetInsertPoint(Mul); 4414 4415 Function *F = Intrinsic::getDeclaration(I.getModule(), 4416 Div->getOpcode() == Instruction::UDiv 4417 ? Intrinsic::umul_with_overflow 4418 : Intrinsic::smul_with_overflow, 4419 X->getType()); 4420 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4421 4422 // If the multiplication was used elsewhere, to ensure that we don't leave 4423 // "duplicate" instructions, replace uses of that original multiplication 4424 // with the multiplication result from the with.overflow intrinsic. 4425 if (MulHadOtherUses) 4426 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4427 4428 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4429 if (NeedNegation) // This technically increases instruction count. 4430 Res = Builder.CreateNot(Res, "mul.not.ov"); 4431 4432 // If we replaced the mul, erase it. Do this after all uses of Builder, 4433 // as the mul is used as insertion point. 4434 if (MulHadOtherUses) 4435 eraseInstFromFunction(*Mul); 4436 4437 return Res; 4438 } 4439 4440 static Instruction *foldICmpXNegX(ICmpInst &I, 4441 InstCombiner::BuilderTy &Builder) { 4442 CmpInst::Predicate Pred; 4443 Value *X; 4444 if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) { 4445 4446 if (ICmpInst::isSigned(Pred)) 4447 Pred = ICmpInst::getSwappedPredicate(Pred); 4448 else if (ICmpInst::isUnsigned(Pred)) 4449 Pred = ICmpInst::getSignedPredicate(Pred); 4450 // else for equality-comparisons just keep the predicate. 4451 4452 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4453 Constant::getNullValue(X->getType()), I.getName()); 4454 } 4455 4456 // A value is not equal to its negation unless that value is 0 or 4457 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 4458 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) && 4459 ICmpInst::isEquality(Pred)) { 4460 Type *Ty = X->getType(); 4461 uint32_t BitWidth = Ty->getScalarSizeInBits(); 4462 Constant *MaxSignedVal = 4463 ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 4464 Value *And = Builder.CreateAnd(X, MaxSignedVal); 4465 Constant *Zero = Constant::getNullValue(Ty); 4466 return CmpInst::Create(Instruction::ICmp, Pred, And, Zero); 4467 } 4468 4469 return nullptr; 4470 } 4471 4472 static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, 4473 InstCombinerImpl &IC) { 4474 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4475 // Normalize and operand as operand 0. 4476 CmpInst::Predicate Pred = I.getPredicate(); 4477 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) { 4478 std::swap(Op0, Op1); 4479 Pred = ICmpInst::getSwappedPredicate(Pred); 4480 } 4481 4482 if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A)))) 4483 return nullptr; 4484 4485 // (icmp (X & Y) u< X --> (X & Y) != X 4486 if (Pred == ICmpInst::ICMP_ULT) 4487 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4488 4489 // (icmp (X & Y) u>= X --> (X & Y) == X 4490 if (Pred == ICmpInst::ICMP_UGE) 4491 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4492 4493 return nullptr; 4494 } 4495 4496 static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, 4497 InstCombinerImpl &IC) { 4498 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4499 4500 // Normalize or operand as operand 0. 4501 CmpInst::Predicate Pred = I.getPredicate(); 4502 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) { 4503 std::swap(Op0, Op1); 4504 Pred = ICmpInst::getSwappedPredicate(Pred); 4505 } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) { 4506 return nullptr; 4507 } 4508 4509 // icmp (X | Y) u<= X --> (X | Y) == X 4510 if (Pred == ICmpInst::ICMP_ULE) 4511 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4512 4513 // icmp (X | Y) u> X --> (X | Y) != X 4514 if (Pred == ICmpInst::ICMP_UGT) 4515 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4516 4517 if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { 4518 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible 4519 if (Value *NotOp1 = 4520 IC.getFreelyInverted(Op1, Op1->hasOneUse(), &IC.Builder)) 4521 return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1), 4522 Constant::getNullValue(Op1->getType())); 4523 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible. 4524 if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) 4525 return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA), 4526 Constant::getAllOnesValue(Op1->getType())); 4527 } 4528 return nullptr; 4529 } 4530 4531 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, 4532 InstCombinerImpl &IC) { 4533 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4534 // Normalize xor operand as operand 0. 4535 CmpInst::Predicate Pred = I.getPredicate(); 4536 if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) { 4537 std::swap(Op0, Op1); 4538 Pred = ICmpInst::getSwappedPredicate(Pred); 4539 } 4540 if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A)))) 4541 return nullptr; 4542 4543 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X 4544 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X 4545 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X 4546 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X 4547 CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred); 4548 if (PredOut != Pred && 4549 isKnownNonZero(A, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4550 return new ICmpInst(PredOut, Op0, Op1); 4551 4552 return nullptr; 4553 } 4554 4555 /// Try to fold icmp (binop), X or icmp X, (binop). 4556 /// TODO: A large part of this logic is duplicated in InstSimplify's 4557 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4558 /// duplication. 4559 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4560 const SimplifyQuery &SQ) { 4561 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4562 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4563 4564 // Special logic for binary operators. 4565 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4566 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4567 if (!BO0 && !BO1) 4568 return nullptr; 4569 4570 if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) 4571 return NewICmp; 4572 4573 const CmpInst::Predicate Pred = I.getPredicate(); 4574 Value *X; 4575 4576 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4577 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4578 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4579 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4580 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4581 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4582 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4583 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4584 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4585 4586 { 4587 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4588 Constant *C; 4589 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4590 m_ImmConstant(C)))) && 4591 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4592 Constant *C2 = ConstantExpr::getNot(C); 4593 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4594 } 4595 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4596 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4597 m_ImmConstant(C)))) && 4598 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4599 Constant *C2 = ConstantExpr::getNot(C); 4600 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4601 } 4602 } 4603 4604 { 4605 // Similar to above: an unsigned overflow comparison may use offset + mask: 4606 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4607 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4608 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4609 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4610 BinaryOperator *BO; 4611 const APInt *C; 4612 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4613 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4614 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4615 CmpInst::Predicate NewPred = 4616 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4617 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4618 return new ICmpInst(NewPred, Op1, Zero); 4619 } 4620 4621 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4622 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4623 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4624 CmpInst::Predicate NewPred = 4625 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4626 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4627 return new ICmpInst(NewPred, Op0, Zero); 4628 } 4629 } 4630 4631 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4632 bool Op0HasNUW = false, Op1HasNUW = false; 4633 bool Op0HasNSW = false, Op1HasNSW = false; 4634 // Analyze the case when either Op0 or Op1 is an add instruction. 4635 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4636 auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred, 4637 bool &HasNSW, bool &HasNUW) -> bool { 4638 if (isa<OverflowingBinaryOperator>(BO)) { 4639 HasNUW = BO.hasNoUnsignedWrap(); 4640 HasNSW = BO.hasNoSignedWrap(); 4641 return ICmpInst::isEquality(Pred) || 4642 (CmpInst::isUnsigned(Pred) && HasNUW) || 4643 (CmpInst::isSigned(Pred) && HasNSW); 4644 } else if (BO.getOpcode() == Instruction::Or) { 4645 HasNUW = true; 4646 HasNSW = true; 4647 return true; 4648 } else { 4649 return false; 4650 } 4651 }; 4652 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4653 4654 if (BO0) { 4655 match(BO0, m_AddLike(m_Value(A), m_Value(B))); 4656 NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW); 4657 } 4658 if (BO1) { 4659 match(BO1, m_AddLike(m_Value(C), m_Value(D))); 4660 NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW); 4661 } 4662 4663 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4664 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4665 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4666 return new ICmpInst(Pred, A == Op1 ? B : A, 4667 Constant::getNullValue(Op1->getType())); 4668 4669 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4670 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4671 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4672 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4673 C == Op0 ? D : C); 4674 4675 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4676 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4677 NoOp1WrapProblem) { 4678 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4679 Value *Y, *Z; 4680 if (A == C) { 4681 // C + B == C + D -> B == D 4682 Y = B; 4683 Z = D; 4684 } else if (A == D) { 4685 // D + B == C + D -> B == C 4686 Y = B; 4687 Z = C; 4688 } else if (B == C) { 4689 // A + C == C + D -> A == D 4690 Y = A; 4691 Z = D; 4692 } else { 4693 assert(B == D); 4694 // A + D == C + D -> A == C 4695 Y = A; 4696 Z = C; 4697 } 4698 return new ICmpInst(Pred, Y, Z); 4699 } 4700 4701 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4702 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4703 match(B, m_AllOnes())) 4704 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4705 4706 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4707 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4708 match(B, m_AllOnes())) 4709 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4710 4711 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4712 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4713 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4714 4715 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4716 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4717 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4718 4719 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4720 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4721 match(D, m_AllOnes())) 4722 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4723 4724 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4725 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4726 match(D, m_AllOnes())) 4727 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4728 4729 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4730 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4731 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4732 4733 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4734 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4735 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4736 4737 // TODO: The subtraction-related identities shown below also hold, but 4738 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4739 // wouldn't happen even if they were implemented. 4740 // 4741 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4742 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4743 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4744 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4745 4746 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4747 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4748 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4749 4750 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4751 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4752 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4753 4754 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4755 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4756 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4757 4758 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4759 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4760 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4761 4762 // if C1 has greater magnitude than C2: 4763 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4764 // s.t. C3 = C1 - C2 4765 // 4766 // if C2 has greater magnitude than C1: 4767 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4768 // s.t. C3 = C2 - C1 4769 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4770 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4771 const APInt *AP1, *AP2; 4772 // TODO: Support non-uniform vectors. 4773 // TODO: Allow undef passthrough if B AND D's element is undef. 4774 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4775 AP1->isNegative() == AP2->isNegative()) { 4776 APInt AP1Abs = AP1->abs(); 4777 APInt AP2Abs = AP2->abs(); 4778 if (AP1Abs.uge(AP2Abs)) { 4779 APInt Diff = *AP1 - *AP2; 4780 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4781 Value *NewAdd = Builder.CreateAdd( 4782 A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW); 4783 return new ICmpInst(Pred, NewAdd, C); 4784 } else { 4785 APInt Diff = *AP2 - *AP1; 4786 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4787 Value *NewAdd = Builder.CreateAdd( 4788 C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW); 4789 return new ICmpInst(Pred, A, NewAdd); 4790 } 4791 } 4792 Constant *Cst1, *Cst2; 4793 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4794 ICmpInst::isEquality(Pred)) { 4795 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4796 Value *NewAdd = Builder.CreateAdd(C, Diff); 4797 return new ICmpInst(Pred, A, NewAdd); 4798 } 4799 } 4800 4801 // Analyze the case when either Op0 or Op1 is a sub instruction. 4802 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4803 A = nullptr; 4804 B = nullptr; 4805 C = nullptr; 4806 D = nullptr; 4807 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4808 A = BO0->getOperand(0); 4809 B = BO0->getOperand(1); 4810 } 4811 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4812 C = BO1->getOperand(0); 4813 D = BO1->getOperand(1); 4814 } 4815 4816 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4817 if (A == Op1 && NoOp0WrapProblem) 4818 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4819 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4820 if (C == Op0 && NoOp1WrapProblem) 4821 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4822 4823 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4824 // (A - B) u>/u<= A --> B u>/u<= A 4825 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4826 return new ICmpInst(Pred, B, A); 4827 // C u</u>= (C - D) --> C u</u>= D 4828 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4829 return new ICmpInst(Pred, C, D); 4830 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4831 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4832 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4833 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4834 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4835 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4836 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4837 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4838 4839 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4840 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4841 return new ICmpInst(Pred, A, C); 4842 4843 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4844 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4845 return new ICmpInst(Pred, D, B); 4846 4847 // icmp (0-X) < cst --> x > -cst 4848 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4849 Value *X; 4850 if (match(BO0, m_Neg(m_Value(X)))) 4851 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4852 if (RHSC->isNotMinSignedValue()) 4853 return new ICmpInst(I.getSwappedPredicate(), X, 4854 ConstantExpr::getNeg(RHSC)); 4855 } 4856 4857 if (Instruction * R = foldICmpXorXX(I, Q, *this)) 4858 return R; 4859 if (Instruction *R = foldICmpOrXX(I, Q, *this)) 4860 return R; 4861 4862 { 4863 // Try to remove shared multiplier from comparison: 4864 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z 4865 Value *X, *Y, *Z; 4866 if (Pred == ICmpInst::getUnsignedPredicate(Pred) && 4867 ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) && 4868 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) || 4869 (match(Op0, m_Mul(m_Value(Z), m_Value(X))) && 4870 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) { 4871 bool NonZero; 4872 if (ICmpInst::isEquality(Pred)) { 4873 KnownBits ZKnown = computeKnownBits(Z, 0, &I); 4874 // if Z % 2 != 0 4875 // X * Z eq/ne Y * Z -> X eq/ne Y 4876 if (ZKnown.countMaxTrailingZeros() == 0) 4877 return new ICmpInst(Pred, X, Y); 4878 NonZero = !ZKnown.One.isZero() || 4879 isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4880 // if Z != 0 and nsw(X * Z) and nsw(Y * Z) 4881 // X * Z eq/ne Y * Z -> X eq/ne Y 4882 if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW) 4883 return new ICmpInst(Pred, X, Y); 4884 } else 4885 NonZero = isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4886 4887 // If Z != 0 and nuw(X * Z) and nuw(Y * Z) 4888 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y 4889 if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW) 4890 return new ICmpInst(Pred, X, Y); 4891 } 4892 } 4893 4894 BinaryOperator *SRem = nullptr; 4895 // icmp (srem X, Y), Y 4896 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4897 SRem = BO0; 4898 // icmp Y, (srem X, Y) 4899 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4900 Op0 == BO1->getOperand(1)) 4901 SRem = BO1; 4902 if (SRem) { 4903 // We don't check hasOneUse to avoid increasing register pressure because 4904 // the value we use is the same value this instruction was already using. 4905 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4906 default: 4907 break; 4908 case ICmpInst::ICMP_EQ: 4909 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4910 case ICmpInst::ICMP_NE: 4911 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4912 case ICmpInst::ICMP_SGT: 4913 case ICmpInst::ICMP_SGE: 4914 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4915 Constant::getAllOnesValue(SRem->getType())); 4916 case ICmpInst::ICMP_SLT: 4917 case ICmpInst::ICMP_SLE: 4918 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4919 Constant::getNullValue(SRem->getType())); 4920 } 4921 } 4922 4923 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 4924 (BO0->hasOneUse() || BO1->hasOneUse()) && 4925 BO0->getOperand(1) == BO1->getOperand(1)) { 4926 switch (BO0->getOpcode()) { 4927 default: 4928 break; 4929 case Instruction::Add: 4930 case Instruction::Sub: 4931 case Instruction::Xor: { 4932 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4933 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4934 4935 const APInt *C; 4936 if (match(BO0->getOperand(1), m_APInt(C))) { 4937 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4938 if (C->isSignMask()) { 4939 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4940 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4941 } 4942 4943 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4944 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4945 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4946 NewPred = I.getSwappedPredicate(NewPred); 4947 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4948 } 4949 } 4950 break; 4951 } 4952 case Instruction::Mul: { 4953 if (!I.isEquality()) 4954 break; 4955 4956 const APInt *C; 4957 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4958 !C->isOne()) { 4959 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4960 // Mask = -1 >> count-trailing-zeros(C). 4961 if (unsigned TZs = C->countr_zero()) { 4962 Constant *Mask = ConstantInt::get( 4963 BO0->getType(), 4964 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4965 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4966 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4967 return new ICmpInst(Pred, And1, And2); 4968 } 4969 } 4970 break; 4971 } 4972 case Instruction::UDiv: 4973 case Instruction::LShr: 4974 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4975 break; 4976 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4977 4978 case Instruction::SDiv: 4979 if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) || 4980 !BO0->isExact() || !BO1->isExact()) 4981 break; 4982 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4983 4984 case Instruction::AShr: 4985 if (!BO0->isExact() || !BO1->isExact()) 4986 break; 4987 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4988 4989 case Instruction::Shl: { 4990 bool NUW = Op0HasNUW && Op1HasNUW; 4991 bool NSW = Op0HasNSW && Op1HasNSW; 4992 if (!NUW && !NSW) 4993 break; 4994 if (!NSW && I.isSigned()) 4995 break; 4996 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4997 } 4998 } 4999 } 5000 5001 if (BO0) { 5002 // Transform A & (L - 1) `ult` L --> L != 0 5003 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 5004 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 5005 5006 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 5007 auto *Zero = Constant::getNullValue(BO0->getType()); 5008 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 5009 } 5010 } 5011 5012 // For unsigned predicates / eq / ne: 5013 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 5014 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x 5015 if (!ICmpInst::isSigned(Pred)) { 5016 if (match(Op0, m_Shl(m_Specific(Op1), m_One()))) 5017 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, 5018 Constant::getNullValue(Op1->getType())); 5019 else if (match(Op1, m_Shl(m_Specific(Op0), m_One()))) 5020 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), 5021 Constant::getNullValue(Op0->getType()), Op0); 5022 } 5023 5024 if (Value *V = foldMultiplicationOverflowCheck(I)) 5025 return replaceInstUsesWith(I, V); 5026 5027 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 5028 return replaceInstUsesWith(I, V); 5029 5030 if (Instruction *R = foldICmpAndXX(I, Q, *this)) 5031 return R; 5032 5033 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 5034 return replaceInstUsesWith(I, V); 5035 5036 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 5037 return replaceInstUsesWith(I, V); 5038 5039 return nullptr; 5040 } 5041 5042 /// Fold icmp Pred min|max(X, Y), Z. 5043 Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I, 5044 MinMaxIntrinsic *MinMax, 5045 Value *Z, 5046 ICmpInst::Predicate Pred) { 5047 Value *X = MinMax->getLHS(); 5048 Value *Y = MinMax->getRHS(); 5049 if (ICmpInst::isSigned(Pred) && !MinMax->isSigned()) 5050 return nullptr; 5051 if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) { 5052 // Revert the transform signed pred -> unsigned pred 5053 // TODO: We can flip the signedness of predicate if both operands of icmp 5054 // are negative. 5055 if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) && 5056 isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) { 5057 Pred = ICmpInst::getFlippedSignednessPredicate(Pred); 5058 } else 5059 return nullptr; 5060 } 5061 SimplifyQuery Q = SQ.getWithInstruction(&I); 5062 auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> { 5063 if (!Val) 5064 return std::nullopt; 5065 if (match(Val, m_One())) 5066 return true; 5067 if (match(Val, m_Zero())) 5068 return false; 5069 return std::nullopt; 5070 }; 5071 auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q)); 5072 auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q)); 5073 if (!CmpXZ.has_value() && !CmpYZ.has_value()) 5074 return nullptr; 5075 if (!CmpXZ.has_value()) { 5076 std::swap(X, Y); 5077 std::swap(CmpXZ, CmpYZ); 5078 } 5079 5080 auto FoldIntoCmpYZ = [&]() -> Instruction * { 5081 if (CmpYZ.has_value()) 5082 return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ)); 5083 return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z); 5084 }; 5085 5086 switch (Pred) { 5087 case ICmpInst::ICMP_EQ: 5088 case ICmpInst::ICMP_NE: { 5089 // If X == Z: 5090 // Expr Result 5091 // min(X, Y) == Z X <= Y 5092 // max(X, Y) == Z X >= Y 5093 // min(X, Y) != Z X > Y 5094 // max(X, Y) != Z X < Y 5095 if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) { 5096 ICmpInst::Predicate NewPred = 5097 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 5098 if (Pred == ICmpInst::ICMP_NE) 5099 NewPred = ICmpInst::getInversePredicate(NewPred); 5100 return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y); 5101 } 5102 // Otherwise (X != Z): 5103 ICmpInst::Predicate NewPred = MinMax->getPredicate(); 5104 auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5105 if (!MinMaxCmpXZ.has_value()) { 5106 std::swap(X, Y); 5107 std::swap(CmpXZ, CmpYZ); 5108 // Re-check pre-condition X != Z 5109 if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ) 5110 break; 5111 MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5112 } 5113 if (!MinMaxCmpXZ.has_value()) 5114 break; 5115 if (*MinMaxCmpXZ) { 5116 // Expr Fact Result 5117 // min(X, Y) == Z X < Z false 5118 // max(X, Y) == Z X > Z false 5119 // min(X, Y) != Z X < Z true 5120 // max(X, Y) != Z X > Z true 5121 return replaceInstUsesWith( 5122 I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE)); 5123 } else { 5124 // Expr Fact Result 5125 // min(X, Y) == Z X > Z Y == Z 5126 // max(X, Y) == Z X < Z Y == Z 5127 // min(X, Y) != Z X > Z Y != Z 5128 // max(X, Y) != Z X < Z Y != Z 5129 return FoldIntoCmpYZ(); 5130 } 5131 break; 5132 } 5133 case ICmpInst::ICMP_SLT: 5134 case ICmpInst::ICMP_ULT: 5135 case ICmpInst::ICMP_SLE: 5136 case ICmpInst::ICMP_ULE: 5137 case ICmpInst::ICMP_SGT: 5138 case ICmpInst::ICMP_UGT: 5139 case ICmpInst::ICMP_SGE: 5140 case ICmpInst::ICMP_UGE: { 5141 bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred); 5142 if (*CmpXZ) { 5143 if (IsSame) { 5144 // Expr Fact Result 5145 // min(X, Y) < Z X < Z true 5146 // min(X, Y) <= Z X <= Z true 5147 // max(X, Y) > Z X > Z true 5148 // max(X, Y) >= Z X >= Z true 5149 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5150 } else { 5151 // Expr Fact Result 5152 // max(X, Y) < Z X < Z Y < Z 5153 // max(X, Y) <= Z X <= Z Y <= Z 5154 // min(X, Y) > Z X > Z Y > Z 5155 // min(X, Y) >= Z X >= Z Y >= Z 5156 return FoldIntoCmpYZ(); 5157 } 5158 } else { 5159 if (IsSame) { 5160 // Expr Fact Result 5161 // min(X, Y) < Z X >= Z Y < Z 5162 // min(X, Y) <= Z X > Z Y <= Z 5163 // max(X, Y) > Z X <= Z Y > Z 5164 // max(X, Y) >= Z X < Z Y >= Z 5165 return FoldIntoCmpYZ(); 5166 } else { 5167 // Expr Fact Result 5168 // max(X, Y) < Z X >= Z false 5169 // max(X, Y) <= Z X > Z false 5170 // min(X, Y) > Z X <= Z false 5171 // min(X, Y) >= Z X < Z false 5172 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5173 } 5174 } 5175 break; 5176 } 5177 default: 5178 break; 5179 } 5180 5181 return nullptr; 5182 } 5183 5184 // Canonicalize checking for a power-of-2-or-zero value: 5185 static Instruction *foldICmpPow2Test(ICmpInst &I, 5186 InstCombiner::BuilderTy &Builder) { 5187 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5188 const CmpInst::Predicate Pred = I.getPredicate(); 5189 Value *A = nullptr; 5190 bool CheckIs; 5191 if (I.isEquality()) { 5192 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 5193 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 5194 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 5195 m_Deferred(A)))) || 5196 !match(Op1, m_ZeroInt())) 5197 A = nullptr; 5198 5199 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 5200 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 5201 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 5202 A = Op1; 5203 else if (match(Op1, 5204 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 5205 A = Op0; 5206 5207 CheckIs = Pred == ICmpInst::ICMP_EQ; 5208 } else if (ICmpInst::isUnsigned(Pred)) { 5209 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) 5210 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) 5211 5212 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 5213 match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()), 5214 m_Specific(Op1))))) { 5215 A = Op1; 5216 CheckIs = Pred == ICmpInst::ICMP_UGE; 5217 } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 5218 match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()), 5219 m_Specific(Op0))))) { 5220 A = Op0; 5221 CheckIs = Pred == ICmpInst::ICMP_ULE; 5222 } 5223 } 5224 5225 if (A) { 5226 Type *Ty = A->getType(); 5227 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 5228 return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, 5229 ConstantInt::get(Ty, 2)) 5230 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, 5231 ConstantInt::get(Ty, 1)); 5232 } 5233 5234 return nullptr; 5235 } 5236 5237 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 5238 if (!I.isEquality()) 5239 return nullptr; 5240 5241 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5242 const CmpInst::Predicate Pred = I.getPredicate(); 5243 Value *A, *B, *C, *D; 5244 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 5245 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 5246 Value *OtherVal = A == Op1 ? B : A; 5247 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5248 } 5249 5250 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 5251 // A^c1 == C^c2 --> A == C^(c1^c2) 5252 ConstantInt *C1, *C2; 5253 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 5254 Op1->hasOneUse()) { 5255 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 5256 Value *Xor = Builder.CreateXor(C, NC); 5257 return new ICmpInst(Pred, A, Xor); 5258 } 5259 5260 // A^B == A^D -> B == D 5261 if (A == C) 5262 return new ICmpInst(Pred, B, D); 5263 if (A == D) 5264 return new ICmpInst(Pred, B, C); 5265 if (B == C) 5266 return new ICmpInst(Pred, A, D); 5267 if (B == D) 5268 return new ICmpInst(Pred, A, C); 5269 } 5270 } 5271 5272 // canoncalize: 5273 // (icmp eq/ne (and X, C), X) 5274 // -> (icmp eq/ne (and X, ~C), 0) 5275 { 5276 Constant *CMask; 5277 A = nullptr; 5278 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_ImmConstant(CMask))))) 5279 A = Op1; 5280 else if (match(Op1, m_OneUse(m_And(m_Specific(Op0), m_ImmConstant(CMask))))) 5281 A = Op0; 5282 if (A) 5283 return new ICmpInst(Pred, Builder.CreateAnd(A, Builder.CreateNot(CMask)), 5284 Constant::getNullValue(A->getType())); 5285 } 5286 5287 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 5288 // A == (A^B) -> B == 0 5289 Value *OtherVal = A == Op0 ? B : A; 5290 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5291 } 5292 5293 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 5294 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 5295 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 5296 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 5297 5298 if (A == C) { 5299 X = B; 5300 Y = D; 5301 Z = A; 5302 } else if (A == D) { 5303 X = B; 5304 Y = C; 5305 Z = A; 5306 } else if (B == C) { 5307 X = A; 5308 Y = D; 5309 Z = B; 5310 } else if (B == D) { 5311 X = A; 5312 Y = C; 5313 Z = B; 5314 } 5315 5316 if (X) { // Build (X^Y) & Z 5317 Op1 = Builder.CreateXor(X, Y); 5318 Op1 = Builder.CreateAnd(Op1, Z); 5319 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 5320 } 5321 } 5322 5323 { 5324 // Similar to above, but specialized for constant because invert is needed: 5325 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 5326 Value *X, *Y; 5327 Constant *C; 5328 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 5329 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 5330 Value *Xor = Builder.CreateXor(X, Y); 5331 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 5332 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 5333 } 5334 } 5335 5336 if (match(Op1, m_ZExt(m_Value(A))) && 5337 (Op0->hasOneUse() || Op1->hasOneUse())) { 5338 // (B & (Pow2C-1)) == zext A --> A == trunc B 5339 // (B & (Pow2C-1)) != zext A --> A != trunc B 5340 const APInt *MaskC; 5341 if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) && 5342 MaskC->countr_one() == A->getType()->getScalarSizeInBits()) 5343 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 5344 } 5345 5346 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 5347 // For lshr and ashr pairs. 5348 const APInt *AP1, *AP2; 5349 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5350 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 5351 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5352 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 5353 if (AP1 != AP2) 5354 return nullptr; 5355 unsigned TypeBits = AP1->getBitWidth(); 5356 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 5357 if (ShAmt < TypeBits && ShAmt != 0) { 5358 ICmpInst::Predicate NewPred = 5359 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 5360 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5361 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 5362 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 5363 } 5364 } 5365 5366 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 5367 ConstantInt *Cst1; 5368 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 5369 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 5370 unsigned TypeBits = Cst1->getBitWidth(); 5371 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 5372 if (ShAmt < TypeBits && ShAmt != 0) { 5373 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5374 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 5375 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 5376 I.getName() + ".mask"); 5377 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 5378 } 5379 } 5380 5381 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 5382 // "icmp (and X, mask), cst" 5383 uint64_t ShAmt = 0; 5384 if (Op0->hasOneUse() && 5385 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 5386 match(Op1, m_ConstantInt(Cst1)) && 5387 // Only do this when A has multiple uses. This is most important to do 5388 // when it exposes other optimizations. 5389 !A->hasOneUse()) { 5390 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 5391 5392 if (ShAmt < ASize) { 5393 APInt MaskV = 5394 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 5395 MaskV <<= ShAmt; 5396 5397 APInt CmpV = Cst1->getValue().zext(ASize); 5398 CmpV <<= ShAmt; 5399 5400 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 5401 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 5402 } 5403 } 5404 5405 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder)) 5406 return ICmp; 5407 5408 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 5409 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 5410 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 5411 // of instcombine. 5412 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5413 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 5414 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 5415 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 5416 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 5417 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 5418 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 5419 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 5420 : ICmpInst::ICMP_UGE, 5421 Add, ConstantInt::get(A->getType(), C.shl(1))); 5422 } 5423 5424 // Canonicalize: 5425 // Assume B_Pow2 != 0 5426 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 5427 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 5428 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) && 5429 isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I)) 5430 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 5431 ConstantInt::getNullValue(Op0->getType())); 5432 5433 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) && 5434 isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I)) 5435 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1, 5436 ConstantInt::getNullValue(Op1->getType())); 5437 5438 // Canonicalize: 5439 // icmp eq/ne X, OneUse(rotate-right(X)) 5440 // -> icmp eq/ne X, rotate-left(X) 5441 // We generally try to convert rotate-right -> rotate-left, this just 5442 // canonicalizes another case. 5443 CmpInst::Predicate PredUnused = Pred; 5444 if (match(&I, m_c_ICmp(PredUnused, m_Value(A), 5445 m_OneUse(m_Intrinsic<Intrinsic::fshr>( 5446 m_Deferred(A), m_Deferred(A), m_Value(B)))))) 5447 return new ICmpInst( 5448 Pred, A, 5449 Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B})); 5450 5451 // Canonicalize: 5452 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst 5453 Constant *Cst; 5454 if (match(&I, m_c_ICmp(PredUnused, 5455 m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))), 5456 m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant()))))) 5457 return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst); 5458 5459 { 5460 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5461 auto m_Matcher = 5462 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)), 5463 m_c_Xor(m_Value(B), m_Deferred(A))), 5464 m_Sub(m_Value(B), m_Deferred(A))); 5465 std::optional<bool> IsZero = std::nullopt; 5466 if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5467 m_Deferred(A)))) 5468 IsZero = false; 5469 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5470 else if (match(&I, 5471 m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5472 m_Zero()))) 5473 IsZero = true; 5474 5475 if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I)) 5476 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5477 // -> (icmp eq/ne (and X, P2), 0) 5478 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5479 // -> (icmp eq/ne (and X, P2), P2) 5480 return new ICmpInst(Pred, Builder.CreateAnd(B, A), 5481 *IsZero ? A 5482 : ConstantInt::getNullValue(A->getType())); 5483 } 5484 5485 return nullptr; 5486 } 5487 5488 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { 5489 ICmpInst::Predicate Pred = ICmp.getPredicate(); 5490 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 5491 5492 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 5493 // The trunc masks high bits while the compare may effectively mask low bits. 5494 Value *X; 5495 const APInt *C; 5496 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 5497 return nullptr; 5498 5499 // This matches patterns corresponding to tests of the signbit as well as: 5500 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 5501 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 5502 APInt Mask; 5503 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 5504 Value *And = Builder.CreateAnd(X, Mask); 5505 Constant *Zero = ConstantInt::getNullValue(X->getType()); 5506 return new ICmpInst(Pred, And, Zero); 5507 } 5508 5509 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 5510 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 5511 // If C is a negative power-of-2 (high-bit mask): 5512 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 5513 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 5514 Value *And = Builder.CreateAnd(X, MaskC); 5515 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 5516 } 5517 5518 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 5519 // If C is not-of-power-of-2 (one clear bit): 5520 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 5521 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 5522 Value *And = Builder.CreateAnd(X, MaskC); 5523 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 5524 } 5525 5526 if (auto *II = dyn_cast<IntrinsicInst>(X)) { 5527 if (II->getIntrinsicID() == Intrinsic::cttz || 5528 II->getIntrinsicID() == Intrinsic::ctlz) { 5529 unsigned MaxRet = SrcBits; 5530 // If the "is_zero_poison" argument is set, then we know at least 5531 // one bit is set in the input, so the result is always at least one 5532 // less than the full bitwidth of that input. 5533 if (match(II->getArgOperand(1), m_One())) 5534 MaxRet--; 5535 5536 // Make sure the destination is wide enough to hold the largest output of 5537 // the intrinsic. 5538 if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) 5539 if (Instruction *I = 5540 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits))) 5541 return I; 5542 } 5543 } 5544 5545 return nullptr; 5546 } 5547 5548 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 5549 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 5550 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 5551 Value *X; 5552 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 5553 return nullptr; 5554 5555 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 5556 bool IsSignedCmp = ICmp.isSigned(); 5557 5558 // icmp Pred (ext X), (ext Y) 5559 Value *Y; 5560 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 5561 bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0)); 5562 bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1)); 5563 5564 if (IsZext0 != IsZext1) { 5565 // If X and Y and both i1 5566 // (icmp eq/ne (zext X) (sext Y)) 5567 // eq -> (icmp eq (or X, Y), 0) 5568 // ne -> (icmp ne (or X, Y), 0) 5569 if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) && 5570 Y->getType()->isIntOrIntVectorTy(1)) 5571 return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y), 5572 Constant::getNullValue(X->getType())); 5573 5574 // If we have mismatched casts and zext has the nneg flag, we can 5575 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit. 5576 5577 auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0)); 5578 auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1)); 5579 5580 bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg(); 5581 bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg(); 5582 5583 if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1)) 5584 IsSignedExt = true; 5585 else 5586 return nullptr; 5587 } 5588 5589 // Not an extension from the same type? 5590 Type *XTy = X->getType(), *YTy = Y->getType(); 5591 if (XTy != YTy) { 5592 // One of the casts must have one use because we are creating a new cast. 5593 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 5594 return nullptr; 5595 // Extend the narrower operand to the type of the wider operand. 5596 CastInst::CastOps CastOpcode = 5597 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 5598 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 5599 X = Builder.CreateCast(CastOpcode, X, YTy); 5600 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 5601 Y = Builder.CreateCast(CastOpcode, Y, XTy); 5602 else 5603 return nullptr; 5604 } 5605 5606 // (zext X) == (zext Y) --> X == Y 5607 // (sext X) == (sext Y) --> X == Y 5608 if (ICmp.isEquality()) 5609 return new ICmpInst(ICmp.getPredicate(), X, Y); 5610 5611 // A signed comparison of sign extended values simplifies into a 5612 // signed comparison. 5613 if (IsSignedCmp && IsSignedExt) 5614 return new ICmpInst(ICmp.getPredicate(), X, Y); 5615 5616 // The other three cases all fold into an unsigned comparison. 5617 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 5618 } 5619 5620 // Below here, we are only folding a compare with constant. 5621 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 5622 if (!C) 5623 return nullptr; 5624 5625 // If a lossless truncate is possible... 5626 Type *SrcTy = CastOp0->getSrcTy(); 5627 Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode()); 5628 if (Res) { 5629 if (ICmp.isEquality()) 5630 return new ICmpInst(ICmp.getPredicate(), X, Res); 5631 5632 // A signed comparison of sign extended values simplifies into a 5633 // signed comparison. 5634 if (IsSignedExt && IsSignedCmp) 5635 return new ICmpInst(ICmp.getPredicate(), X, Res); 5636 5637 // The other three cases all fold into an unsigned comparison. 5638 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res); 5639 } 5640 5641 // The re-extended constant changed, partly changed (in the case of a vector), 5642 // or could not be determined to be equal (in the case of a constant 5643 // expression), so the constant cannot be represented in the shorter type. 5644 // All the cases that fold to true or false will have already been handled 5645 // by simplifyICmpInst, so only deal with the tricky case. 5646 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 5647 return nullptr; 5648 5649 // Is source op positive? 5650 // icmp ult (sext X), C --> icmp sgt X, -1 5651 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 5652 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 5653 5654 // Is source op negative? 5655 // icmp ugt (sext X), C --> icmp slt X, 0 5656 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 5657 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 5658 } 5659 5660 /// Handle icmp (cast x), (cast or constant). 5661 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 5662 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 5663 // icmp compares only pointer's value. 5664 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 5665 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 5666 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 5667 if (SimplifiedOp0 || SimplifiedOp1) 5668 return new ICmpInst(ICmp.getPredicate(), 5669 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 5670 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 5671 5672 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 5673 if (!CastOp0) 5674 return nullptr; 5675 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 5676 return nullptr; 5677 5678 Value *Op0Src = CastOp0->getOperand(0); 5679 Type *SrcTy = CastOp0->getSrcTy(); 5680 Type *DestTy = CastOp0->getDestTy(); 5681 5682 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 5683 // integer type is the same size as the pointer type. 5684 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 5685 if (isa<VectorType>(SrcTy)) { 5686 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 5687 DestTy = cast<VectorType>(DestTy)->getElementType(); 5688 } 5689 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 5690 }; 5691 if (CastOp0->getOpcode() == Instruction::PtrToInt && 5692 CompatibleSizes(SrcTy, DestTy)) { 5693 Value *NewOp1 = nullptr; 5694 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 5695 Value *PtrSrc = PtrToIntOp1->getOperand(0); 5696 if (PtrSrc->getType() == Op0Src->getType()) 5697 NewOp1 = PtrToIntOp1->getOperand(0); 5698 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 5699 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 5700 } 5701 5702 if (NewOp1) 5703 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 5704 } 5705 5706 if (Instruction *R = foldICmpWithTrunc(ICmp)) 5707 return R; 5708 5709 return foldICmpWithZextOrSext(ICmp); 5710 } 5711 5712 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) { 5713 switch (BinaryOp) { 5714 default: 5715 llvm_unreachable("Unsupported binary op"); 5716 case Instruction::Add: 5717 case Instruction::Sub: 5718 return match(RHS, m_Zero()); 5719 case Instruction::Mul: 5720 return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) && 5721 match(RHS, m_One()); 5722 } 5723 } 5724 5725 OverflowResult 5726 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 5727 bool IsSigned, Value *LHS, Value *RHS, 5728 Instruction *CxtI) const { 5729 switch (BinaryOp) { 5730 default: 5731 llvm_unreachable("Unsupported binary op"); 5732 case Instruction::Add: 5733 if (IsSigned) 5734 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 5735 else 5736 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 5737 case Instruction::Sub: 5738 if (IsSigned) 5739 return computeOverflowForSignedSub(LHS, RHS, CxtI); 5740 else 5741 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 5742 case Instruction::Mul: 5743 if (IsSigned) 5744 return computeOverflowForSignedMul(LHS, RHS, CxtI); 5745 else 5746 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 5747 } 5748 } 5749 5750 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 5751 bool IsSigned, Value *LHS, 5752 Value *RHS, Instruction &OrigI, 5753 Value *&Result, 5754 Constant *&Overflow) { 5755 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 5756 std::swap(LHS, RHS); 5757 5758 // If the overflow check was an add followed by a compare, the insertion point 5759 // may be pointing to the compare. We want to insert the new instructions 5760 // before the add in case there are uses of the add between the add and the 5761 // compare. 5762 Builder.SetInsertPoint(&OrigI); 5763 5764 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 5765 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 5766 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 5767 5768 if (isNeutralValue(BinaryOp, RHS, IsSigned)) { 5769 Result = LHS; 5770 Overflow = ConstantInt::getFalse(OverflowTy); 5771 return true; 5772 } 5773 5774 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 5775 case OverflowResult::MayOverflow: 5776 return false; 5777 case OverflowResult::AlwaysOverflowsLow: 5778 case OverflowResult::AlwaysOverflowsHigh: 5779 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5780 Result->takeName(&OrigI); 5781 Overflow = ConstantInt::getTrue(OverflowTy); 5782 return true; 5783 case OverflowResult::NeverOverflows: 5784 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5785 Result->takeName(&OrigI); 5786 Overflow = ConstantInt::getFalse(OverflowTy); 5787 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5788 if (IsSigned) 5789 Inst->setHasNoSignedWrap(); 5790 else 5791 Inst->setHasNoUnsignedWrap(); 5792 } 5793 return true; 5794 } 5795 5796 llvm_unreachable("Unexpected overflow result"); 5797 } 5798 5799 /// Recognize and process idiom involving test for multiplication 5800 /// overflow. 5801 /// 5802 /// The caller has matched a pattern of the form: 5803 /// I = cmp u (mul(zext A, zext B), V 5804 /// The function checks if this is a test for overflow and if so replaces 5805 /// multiplication with call to 'mul.with.overflow' intrinsic. 5806 /// 5807 /// \param I Compare instruction. 5808 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5809 /// the compare instruction. Must be of integer type. 5810 /// \param OtherVal The other argument of compare instruction. 5811 /// \returns Instruction which must replace the compare instruction, NULL if no 5812 /// replacement required. 5813 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5814 const APInt *OtherVal, 5815 InstCombinerImpl &IC) { 5816 // Don't bother doing this transformation for pointers, don't do it for 5817 // vectors. 5818 if (!isa<IntegerType>(MulVal->getType())) 5819 return nullptr; 5820 5821 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5822 if (!MulInstr) 5823 return nullptr; 5824 assert(MulInstr->getOpcode() == Instruction::Mul); 5825 5826 auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)), 5827 *RHS = cast<ZExtInst>(MulInstr->getOperand(1)); 5828 assert(LHS->getOpcode() == Instruction::ZExt); 5829 assert(RHS->getOpcode() == Instruction::ZExt); 5830 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5831 5832 // Calculate type and width of the result produced by mul.with.overflow. 5833 Type *TyA = A->getType(), *TyB = B->getType(); 5834 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5835 WidthB = TyB->getPrimitiveSizeInBits(); 5836 unsigned MulWidth; 5837 Type *MulType; 5838 if (WidthB > WidthA) { 5839 MulWidth = WidthB; 5840 MulType = TyB; 5841 } else { 5842 MulWidth = WidthA; 5843 MulType = TyA; 5844 } 5845 5846 // In order to replace the original mul with a narrower mul.with.overflow, 5847 // all uses must ignore upper bits of the product. The number of used low 5848 // bits must be not greater than the width of mul.with.overflow. 5849 if (MulVal->hasNUsesOrMore(2)) 5850 for (User *U : MulVal->users()) { 5851 if (U == &I) 5852 continue; 5853 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5854 // Check if truncation ignores bits above MulWidth. 5855 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5856 if (TruncWidth > MulWidth) 5857 return nullptr; 5858 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5859 // Check if AND ignores bits above MulWidth. 5860 if (BO->getOpcode() != Instruction::And) 5861 return nullptr; 5862 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5863 const APInt &CVal = CI->getValue(); 5864 if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) 5865 return nullptr; 5866 } else { 5867 // In this case we could have the operand of the binary operation 5868 // being defined in another block, and performing the replacement 5869 // could break the dominance relation. 5870 return nullptr; 5871 } 5872 } else { 5873 // Other uses prohibit this transformation. 5874 return nullptr; 5875 } 5876 } 5877 5878 // Recognize patterns 5879 switch (I.getPredicate()) { 5880 case ICmpInst::ICMP_UGT: { 5881 // Recognize pattern: 5882 // mulval = mul(zext A, zext B) 5883 // cmp ugt mulval, max 5884 APInt MaxVal = APInt::getMaxValue(MulWidth); 5885 MaxVal = MaxVal.zext(OtherVal->getBitWidth()); 5886 if (MaxVal.eq(*OtherVal)) 5887 break; // Recognized 5888 return nullptr; 5889 } 5890 5891 case ICmpInst::ICMP_ULT: { 5892 // Recognize pattern: 5893 // mulval = mul(zext A, zext B) 5894 // cmp ule mulval, max + 1 5895 APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth); 5896 if (MaxVal.eq(*OtherVal)) 5897 break; // Recognized 5898 return nullptr; 5899 } 5900 5901 default: 5902 return nullptr; 5903 } 5904 5905 InstCombiner::BuilderTy &Builder = IC.Builder; 5906 Builder.SetInsertPoint(MulInstr); 5907 5908 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5909 Value *MulA = A, *MulB = B; 5910 if (WidthA < MulWidth) 5911 MulA = Builder.CreateZExt(A, MulType); 5912 if (WidthB < MulWidth) 5913 MulB = Builder.CreateZExt(B, MulType); 5914 Function *F = Intrinsic::getDeclaration( 5915 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5916 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5917 IC.addToWorklist(MulInstr); 5918 5919 // If there are uses of mul result other than the comparison, we know that 5920 // they are truncation or binary AND. Change them to use result of 5921 // mul.with.overflow and adjust properly mask/size. 5922 if (MulVal->hasNUsesOrMore(2)) { 5923 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5924 for (User *U : make_early_inc_range(MulVal->users())) { 5925 if (U == &I) 5926 continue; 5927 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5928 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5929 IC.replaceInstUsesWith(*TI, Mul); 5930 else 5931 TI->setOperand(0, Mul); 5932 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5933 assert(BO->getOpcode() == Instruction::And); 5934 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5935 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5936 APInt ShortMask = CI->getValue().trunc(MulWidth); 5937 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5938 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5939 IC.replaceInstUsesWith(*BO, Zext); 5940 } else { 5941 llvm_unreachable("Unexpected Binary operation"); 5942 } 5943 IC.addToWorklist(cast<Instruction>(U)); 5944 } 5945 } 5946 5947 // The original icmp gets replaced with the overflow value, maybe inverted 5948 // depending on predicate. 5949 if (I.getPredicate() == ICmpInst::ICMP_ULT) { 5950 Value *Res = Builder.CreateExtractValue(Call, 1); 5951 return BinaryOperator::CreateNot(Res); 5952 } 5953 5954 return ExtractValueInst::Create(Call, 1); 5955 } 5956 5957 /// When performing a comparison against a constant, it is possible that not all 5958 /// the bits in the LHS are demanded. This helper method computes the mask that 5959 /// IS demanded. 5960 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5961 const APInt *RHS; 5962 if (!match(I.getOperand(1), m_APInt(RHS))) 5963 return APInt::getAllOnes(BitWidth); 5964 5965 // If this is a normal comparison, it demands all bits. If it is a sign bit 5966 // comparison, it only demands the sign bit. 5967 bool UnusedBit; 5968 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5969 return APInt::getSignMask(BitWidth); 5970 5971 switch (I.getPredicate()) { 5972 // For a UGT comparison, we don't care about any bits that 5973 // correspond to the trailing ones of the comparand. The value of these 5974 // bits doesn't impact the outcome of the comparison, because any value 5975 // greater than the RHS must differ in a bit higher than these due to carry. 5976 case ICmpInst::ICMP_UGT: 5977 return APInt::getBitsSetFrom(BitWidth, RHS->countr_one()); 5978 5979 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5980 // Any value less than the RHS must differ in a higher bit because of carries. 5981 case ICmpInst::ICMP_ULT: 5982 return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero()); 5983 5984 default: 5985 return APInt::getAllOnes(BitWidth); 5986 } 5987 } 5988 5989 /// Check that one use is in the same block as the definition and all 5990 /// other uses are in blocks dominated by a given block. 5991 /// 5992 /// \param DI Definition 5993 /// \param UI Use 5994 /// \param DB Block that must dominate all uses of \p DI outside 5995 /// the parent block 5996 /// \return true when \p UI is the only use of \p DI in the parent block 5997 /// and all other uses of \p DI are in blocks dominated by \p DB. 5998 /// 5999 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 6000 const Instruction *UI, 6001 const BasicBlock *DB) const { 6002 assert(DI && UI && "Instruction not defined\n"); 6003 // Ignore incomplete definitions. 6004 if (!DI->getParent()) 6005 return false; 6006 // DI and UI must be in the same block. 6007 if (DI->getParent() != UI->getParent()) 6008 return false; 6009 // Protect from self-referencing blocks. 6010 if (DI->getParent() == DB) 6011 return false; 6012 for (const User *U : DI->users()) { 6013 auto *Usr = cast<Instruction>(U); 6014 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 6015 return false; 6016 } 6017 return true; 6018 } 6019 6020 /// Return true when the instruction sequence within a block is select-cmp-br. 6021 static bool isChainSelectCmpBranch(const SelectInst *SI) { 6022 const BasicBlock *BB = SI->getParent(); 6023 if (!BB) 6024 return false; 6025 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 6026 if (!BI || BI->getNumSuccessors() != 2) 6027 return false; 6028 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 6029 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 6030 return false; 6031 return true; 6032 } 6033 6034 /// True when a select result is replaced by one of its operands 6035 /// in select-icmp sequence. This will eventually result in the elimination 6036 /// of the select. 6037 /// 6038 /// \param SI Select instruction 6039 /// \param Icmp Compare instruction 6040 /// \param SIOpd Operand that replaces the select 6041 /// 6042 /// Notes: 6043 /// - The replacement is global and requires dominator information 6044 /// - The caller is responsible for the actual replacement 6045 /// 6046 /// Example: 6047 /// 6048 /// entry: 6049 /// %4 = select i1 %3, %C* %0, %C* null 6050 /// %5 = icmp eq %C* %4, null 6051 /// br i1 %5, label %9, label %7 6052 /// ... 6053 /// ; <label>:7 ; preds = %entry 6054 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 6055 /// ... 6056 /// 6057 /// can be transformed to 6058 /// 6059 /// %5 = icmp eq %C* %0, null 6060 /// %6 = select i1 %3, i1 %5, i1 true 6061 /// br i1 %6, label %9, label %7 6062 /// ... 6063 /// ; <label>:7 ; preds = %entry 6064 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 6065 /// 6066 /// Similar when the first operand of the select is a constant or/and 6067 /// the compare is for not equal rather than equal. 6068 /// 6069 /// NOTE: The function is only called when the select and compare constants 6070 /// are equal, the optimization can work only for EQ predicates. This is not a 6071 /// major restriction since a NE compare should be 'normalized' to an equal 6072 /// compare, which usually happens in the combiner and test case 6073 /// select-cmp-br.ll checks for it. 6074 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 6075 const ICmpInst *Icmp, 6076 const unsigned SIOpd) { 6077 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 6078 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 6079 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 6080 // The check for the single predecessor is not the best that can be 6081 // done. But it protects efficiently against cases like when SI's 6082 // home block has two successors, Succ and Succ1, and Succ1 predecessor 6083 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 6084 // replaced can be reached on either path. So the uniqueness check 6085 // guarantees that the path all uses of SI (outside SI's parent) are on 6086 // is disjoint from all other paths out of SI. But that information 6087 // is more expensive to compute, and the trade-off here is in favor 6088 // of compile-time. It should also be noticed that we check for a single 6089 // predecessor and not only uniqueness. This to handle the situation when 6090 // Succ and Succ1 points to the same basic block. 6091 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 6092 NumSel++; 6093 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 6094 return true; 6095 } 6096 } 6097 return false; 6098 } 6099 6100 /// Try to fold the comparison based on range information we can get by checking 6101 /// whether bits are known to be zero or one in the inputs. 6102 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 6103 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6104 Type *Ty = Op0->getType(); 6105 ICmpInst::Predicate Pred = I.getPredicate(); 6106 6107 // Get scalar or pointer size. 6108 unsigned BitWidth = Ty->isIntOrIntVectorTy() 6109 ? Ty->getScalarSizeInBits() 6110 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 6111 6112 if (!BitWidth) 6113 return nullptr; 6114 6115 KnownBits Op0Known(BitWidth); 6116 KnownBits Op1Known(BitWidth); 6117 6118 { 6119 // Don't use dominating conditions when folding icmp using known bits. This 6120 // may convert signed into unsigned predicates in ways that other passes 6121 // (especially IndVarSimplify) may not be able to reliably undo. 6122 SQ.DC = nullptr; 6123 auto _ = make_scope_exit([&]() { SQ.DC = &DC; }); 6124 if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth), 6125 Op0Known, 0)) 6126 return &I; 6127 6128 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 6129 return &I; 6130 } 6131 6132 // Given the known and unknown bits, compute a range that the LHS could be 6133 // in. Compute the Min, Max and RHS values based on the known bits. For the 6134 // EQ and NE we use unsigned values. 6135 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 6136 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 6137 if (I.isSigned()) { 6138 Op0Min = Op0Known.getSignedMinValue(); 6139 Op0Max = Op0Known.getSignedMaxValue(); 6140 Op1Min = Op1Known.getSignedMinValue(); 6141 Op1Max = Op1Known.getSignedMaxValue(); 6142 } else { 6143 Op0Min = Op0Known.getMinValue(); 6144 Op0Max = Op0Known.getMaxValue(); 6145 Op1Min = Op1Known.getMinValue(); 6146 Op1Max = Op1Known.getMaxValue(); 6147 } 6148 6149 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 6150 // out that the LHS or RHS is a constant. Constant fold this now, so that 6151 // code below can assume that Min != Max. 6152 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 6153 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 6154 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 6155 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 6156 6157 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 6158 // min/max canonical compare with some other compare. That could lead to 6159 // conflict with select canonicalization and infinite looping. 6160 // FIXME: This constraint may go away if min/max intrinsics are canonical. 6161 auto isMinMaxCmp = [&](Instruction &Cmp) { 6162 if (!Cmp.hasOneUse()) 6163 return false; 6164 Value *A, *B; 6165 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 6166 if (!SelectPatternResult::isMinOrMax(SPF)) 6167 return false; 6168 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 6169 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 6170 }; 6171 if (!isMinMaxCmp(I)) { 6172 switch (Pred) { 6173 default: 6174 break; 6175 case ICmpInst::ICMP_ULT: { 6176 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 6177 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6178 const APInt *CmpC; 6179 if (match(Op1, m_APInt(CmpC))) { 6180 // A <u C -> A == C-1 if min(A)+1 == C 6181 if (*CmpC == Op0Min + 1) 6182 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6183 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6184 // X <u C --> X == 0, if the number of zero bits in the bottom of X 6185 // exceeds the log2 of C. 6186 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 6187 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6188 Constant::getNullValue(Op1->getType())); 6189 } 6190 break; 6191 } 6192 case ICmpInst::ICMP_UGT: { 6193 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 6194 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6195 const APInt *CmpC; 6196 if (match(Op1, m_APInt(CmpC))) { 6197 // A >u C -> A == C+1 if max(a)-1 == C 6198 if (*CmpC == Op0Max - 1) 6199 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6200 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6201 // X >u C --> X != 0, if the number of zero bits in the bottom of X 6202 // exceeds the log2 of C. 6203 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 6204 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 6205 Constant::getNullValue(Op1->getType())); 6206 } 6207 break; 6208 } 6209 case ICmpInst::ICMP_SLT: { 6210 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 6211 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6212 const APInt *CmpC; 6213 if (match(Op1, m_APInt(CmpC))) { 6214 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 6215 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6216 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6217 } 6218 break; 6219 } 6220 case ICmpInst::ICMP_SGT: { 6221 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 6222 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6223 const APInt *CmpC; 6224 if (match(Op1, m_APInt(CmpC))) { 6225 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 6226 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6227 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6228 } 6229 break; 6230 } 6231 } 6232 } 6233 6234 // Based on the range information we know about the LHS, see if we can 6235 // simplify this comparison. For example, (x&4) < 8 is always true. 6236 switch (Pred) { 6237 default: 6238 llvm_unreachable("Unknown icmp opcode!"); 6239 case ICmpInst::ICMP_EQ: 6240 case ICmpInst::ICMP_NE: { 6241 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 6242 return replaceInstUsesWith( 6243 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 6244 6245 // If all bits are known zero except for one, then we know at most one bit 6246 // is set. If the comparison is against zero, then this is a check to see if 6247 // *that* bit is set. 6248 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 6249 if (Op1Known.isZero()) { 6250 // If the LHS is an AND with the same constant, look through it. 6251 Value *LHS = nullptr; 6252 const APInt *LHSC; 6253 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 6254 *LHSC != Op0KnownZeroInverted) 6255 LHS = Op0; 6256 6257 Value *X; 6258 const APInt *C1; 6259 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 6260 Type *XTy = X->getType(); 6261 unsigned Log2C1 = C1->countr_zero(); 6262 APInt C2 = Op0KnownZeroInverted; 6263 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 6264 if (C2Pow2.isPowerOf2()) { 6265 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 6266 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 6267 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 6268 unsigned Log2C2 = C2Pow2.countr_zero(); 6269 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 6270 auto NewPred = 6271 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 6272 return new ICmpInst(NewPred, X, CmpC); 6273 } 6274 } 6275 } 6276 6277 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero. 6278 if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() && 6279 (Op0Known & Op1Known) == Op0Known) 6280 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 6281 ConstantInt::getNullValue(Op1->getType())); 6282 break; 6283 } 6284 case ICmpInst::ICMP_ULT: { 6285 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 6286 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6287 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 6288 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6289 break; 6290 } 6291 case ICmpInst::ICMP_UGT: { 6292 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 6293 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6294 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 6295 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6296 break; 6297 } 6298 case ICmpInst::ICMP_SLT: { 6299 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 6300 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6301 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 6302 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6303 break; 6304 } 6305 case ICmpInst::ICMP_SGT: { 6306 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 6307 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6308 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 6309 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6310 break; 6311 } 6312 case ICmpInst::ICMP_SGE: 6313 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 6314 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 6315 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6316 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 6317 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6318 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 6319 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6320 break; 6321 case ICmpInst::ICMP_SLE: 6322 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 6323 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 6324 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6325 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 6326 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6327 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 6328 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6329 break; 6330 case ICmpInst::ICMP_UGE: 6331 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 6332 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 6333 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6334 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 6335 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6336 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 6337 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6338 break; 6339 case ICmpInst::ICMP_ULE: 6340 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 6341 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 6342 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6343 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 6344 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6345 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 6346 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6347 break; 6348 } 6349 6350 // Turn a signed comparison into an unsigned one if both operands are known to 6351 // have the same sign. 6352 if (I.isSigned() && 6353 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 6354 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 6355 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 6356 6357 return nullptr; 6358 } 6359 6360 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 6361 /// then try to reduce patterns based on that limit. 6362 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) { 6363 Value *X, *Y; 6364 ICmpInst::Predicate Pred; 6365 6366 // X must be 0 and bool must be true for "ULT": 6367 // X <u (zext i1 Y) --> (X == 0) & Y 6368 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 6369 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 6370 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 6371 6372 // X must be 0 or bool must be true for "ULE": 6373 // X <=u (sext i1 Y) --> (X == 0) | Y 6374 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 6375 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 6376 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 6377 6378 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C)) 6379 ICmpInst::Predicate Pred1, Pred2; 6380 const APInt *C; 6381 Instruction *ExtI; 6382 if (match(&I, m_c_ICmp(Pred1, m_Value(X), 6383 m_CombineAnd(m_Instruction(ExtI), 6384 m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X), 6385 m_APInt(C)))))) && 6386 ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) { 6387 bool IsSExt = ExtI->getOpcode() == Instruction::SExt; 6388 bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse(); 6389 auto CreateRangeCheck = [&] { 6390 Value *CmpV1 = 6391 Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType())); 6392 Value *CmpV2 = Builder.CreateICmp( 6393 Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1)); 6394 return BinaryOperator::Create( 6395 Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And, 6396 CmpV1, CmpV2); 6397 }; 6398 if (C->isZero()) { 6399 if (Pred2 == ICmpInst::ICMP_EQ) { 6400 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false 6401 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true 6402 return replaceInstUsesWith( 6403 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6404 } else if (!IsSExt || HasOneUse) { 6405 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1 6406 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1 6407 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1 6408 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1 6409 return CreateRangeCheck(); 6410 } 6411 } else if (IsSExt ? C->isAllOnes() : C->isOne()) { 6412 if (Pred2 == ICmpInst::ICMP_NE) { 6413 // icmp eq X, (zext (icmp ne X, 1)) --> false 6414 // icmp ne X, (zext (icmp ne X, 1)) --> true 6415 // icmp eq X, (sext (icmp ne X, -1)) --> false 6416 // icmp ne X, (sext (icmp ne X, -1)) --> true 6417 return replaceInstUsesWith( 6418 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6419 } else if (!IsSExt || HasOneUse) { 6420 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1 6421 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1 6422 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1 6423 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1 6424 return CreateRangeCheck(); 6425 } 6426 } else { 6427 // when C != 0 && C != 1: 6428 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0 6429 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1 6430 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0 6431 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1 6432 // when C != 0 && C != -1: 6433 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0 6434 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1 6435 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0 6436 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1 6437 return ICmpInst::Create( 6438 Instruction::ICmp, Pred1, X, 6439 ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE 6440 ? (IsSExt ? -1 : 1) 6441 : 0)); 6442 } 6443 } 6444 6445 return nullptr; 6446 } 6447 6448 std::optional<std::pair<CmpInst::Predicate, Constant *>> 6449 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 6450 Constant *C) { 6451 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 6452 "Only for relational integer predicates."); 6453 6454 Type *Type = C->getType(); 6455 bool IsSigned = ICmpInst::isSigned(Pred); 6456 6457 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 6458 bool WillIncrement = 6459 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 6460 6461 // Check if the constant operand can be safely incremented/decremented 6462 // without overflowing/underflowing. 6463 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 6464 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 6465 }; 6466 6467 Constant *SafeReplacementConstant = nullptr; 6468 if (auto *CI = dyn_cast<ConstantInt>(C)) { 6469 // Bail out if the constant can't be safely incremented/decremented. 6470 if (!ConstantIsOk(CI)) 6471 return std::nullopt; 6472 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 6473 unsigned NumElts = FVTy->getNumElements(); 6474 for (unsigned i = 0; i != NumElts; ++i) { 6475 Constant *Elt = C->getAggregateElement(i); 6476 if (!Elt) 6477 return std::nullopt; 6478 6479 if (isa<UndefValue>(Elt)) 6480 continue; 6481 6482 // Bail out if we can't determine if this constant is min/max or if we 6483 // know that this constant is min/max. 6484 auto *CI = dyn_cast<ConstantInt>(Elt); 6485 if (!CI || !ConstantIsOk(CI)) 6486 return std::nullopt; 6487 6488 if (!SafeReplacementConstant) 6489 SafeReplacementConstant = CI; 6490 } 6491 } else { 6492 // ConstantExpr? 6493 return std::nullopt; 6494 } 6495 6496 // It may not be safe to change a compare predicate in the presence of 6497 // undefined elements, so replace those elements with the first safe constant 6498 // that we found. 6499 // TODO: in case of poison, it is safe; let's replace undefs only. 6500 if (C->containsUndefOrPoisonElement()) { 6501 assert(SafeReplacementConstant && "Replacement constant not set"); 6502 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 6503 } 6504 6505 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 6506 6507 // Increment or decrement the constant. 6508 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 6509 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 6510 6511 return std::make_pair(NewPred, NewC); 6512 } 6513 6514 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 6515 /// it into the appropriate icmp lt or icmp gt instruction. This transform 6516 /// allows them to be folded in visitICmpInst. 6517 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 6518 ICmpInst::Predicate Pred = I.getPredicate(); 6519 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 6520 InstCombiner::isCanonicalPredicate(Pred)) 6521 return nullptr; 6522 6523 Value *Op0 = I.getOperand(0); 6524 Value *Op1 = I.getOperand(1); 6525 auto *Op1C = dyn_cast<Constant>(Op1); 6526 if (!Op1C) 6527 return nullptr; 6528 6529 auto FlippedStrictness = 6530 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 6531 if (!FlippedStrictness) 6532 return nullptr; 6533 6534 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 6535 } 6536 6537 /// If we have a comparison with a non-canonical predicate, if we can update 6538 /// all the users, invert the predicate and adjust all the users. 6539 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 6540 // Is the predicate already canonical? 6541 CmpInst::Predicate Pred = I.getPredicate(); 6542 if (InstCombiner::isCanonicalPredicate(Pred)) 6543 return nullptr; 6544 6545 // Can all users be adjusted to predicate inversion? 6546 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 6547 return nullptr; 6548 6549 // Ok, we can canonicalize comparison! 6550 // Let's first invert the comparison's predicate. 6551 I.setPredicate(CmpInst::getInversePredicate(Pred)); 6552 I.setName(I.getName() + ".not"); 6553 6554 // And, adapt users. 6555 freelyInvertAllUsersOf(&I); 6556 6557 return &I; 6558 } 6559 6560 /// Integer compare with boolean values can always be turned into bitwise ops. 6561 static Instruction *canonicalizeICmpBool(ICmpInst &I, 6562 InstCombiner::BuilderTy &Builder) { 6563 Value *A = I.getOperand(0), *B = I.getOperand(1); 6564 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 6565 6566 // A boolean compared to true/false can be simplified to Op0/true/false in 6567 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 6568 // Cases not handled by InstSimplify are always 'not' of Op0. 6569 if (match(B, m_Zero())) { 6570 switch (I.getPredicate()) { 6571 case CmpInst::ICMP_EQ: // A == 0 -> !A 6572 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 6573 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 6574 return BinaryOperator::CreateNot(A); 6575 default: 6576 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6577 } 6578 } else if (match(B, m_One())) { 6579 switch (I.getPredicate()) { 6580 case CmpInst::ICMP_NE: // A != 1 -> !A 6581 case CmpInst::ICMP_ULT: // A <u 1 -> !A 6582 case CmpInst::ICMP_SGT: // A >s -1 -> !A 6583 return BinaryOperator::CreateNot(A); 6584 default: 6585 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6586 } 6587 } 6588 6589 switch (I.getPredicate()) { 6590 default: 6591 llvm_unreachable("Invalid icmp instruction!"); 6592 case ICmpInst::ICMP_EQ: 6593 // icmp eq i1 A, B -> ~(A ^ B) 6594 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 6595 6596 case ICmpInst::ICMP_NE: 6597 // icmp ne i1 A, B -> A ^ B 6598 return BinaryOperator::CreateXor(A, B); 6599 6600 case ICmpInst::ICMP_UGT: 6601 // icmp ugt -> icmp ult 6602 std::swap(A, B); 6603 [[fallthrough]]; 6604 case ICmpInst::ICMP_ULT: 6605 // icmp ult i1 A, B -> ~A & B 6606 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 6607 6608 case ICmpInst::ICMP_SGT: 6609 // icmp sgt -> icmp slt 6610 std::swap(A, B); 6611 [[fallthrough]]; 6612 case ICmpInst::ICMP_SLT: 6613 // icmp slt i1 A, B -> A & ~B 6614 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 6615 6616 case ICmpInst::ICMP_UGE: 6617 // icmp uge -> icmp ule 6618 std::swap(A, B); 6619 [[fallthrough]]; 6620 case ICmpInst::ICMP_ULE: 6621 // icmp ule i1 A, B -> ~A | B 6622 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 6623 6624 case ICmpInst::ICMP_SGE: 6625 // icmp sge -> icmp sle 6626 std::swap(A, B); 6627 [[fallthrough]]; 6628 case ICmpInst::ICMP_SLE: 6629 // icmp sle i1 A, B -> A | ~B 6630 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 6631 } 6632 } 6633 6634 // Transform pattern like: 6635 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 6636 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 6637 // Into: 6638 // (X l>> Y) != 0 6639 // (X l>> Y) == 0 6640 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 6641 InstCombiner::BuilderTy &Builder) { 6642 ICmpInst::Predicate Pred, NewPred; 6643 Value *X, *Y; 6644 if (match(&Cmp, 6645 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 6646 switch (Pred) { 6647 case ICmpInst::ICMP_ULE: 6648 NewPred = ICmpInst::ICMP_NE; 6649 break; 6650 case ICmpInst::ICMP_UGT: 6651 NewPred = ICmpInst::ICMP_EQ; 6652 break; 6653 default: 6654 return nullptr; 6655 } 6656 } else if (match(&Cmp, m_c_ICmp(Pred, 6657 m_OneUse(m_CombineOr( 6658 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 6659 m_Add(m_Shl(m_One(), m_Value(Y)), 6660 m_AllOnes()))), 6661 m_Value(X)))) { 6662 // The variant with 'add' is not canonical, (the variant with 'not' is) 6663 // we only get it because it has extra uses, and can't be canonicalized, 6664 6665 switch (Pred) { 6666 case ICmpInst::ICMP_ULT: 6667 NewPred = ICmpInst::ICMP_NE; 6668 break; 6669 case ICmpInst::ICMP_UGE: 6670 NewPred = ICmpInst::ICMP_EQ; 6671 break; 6672 default: 6673 return nullptr; 6674 } 6675 } else 6676 return nullptr; 6677 6678 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 6679 Constant *Zero = Constant::getNullValue(NewX->getType()); 6680 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 6681 } 6682 6683 static Instruction *foldVectorCmp(CmpInst &Cmp, 6684 InstCombiner::BuilderTy &Builder) { 6685 const CmpInst::Predicate Pred = Cmp.getPredicate(); 6686 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 6687 Value *V1, *V2; 6688 6689 auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) { 6690 Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName()); 6691 if (auto *I = dyn_cast<Instruction>(V)) 6692 I->copyIRFlags(&Cmp); 6693 Module *M = Cmp.getModule(); 6694 Function *F = Intrinsic::getDeclaration( 6695 M, Intrinsic::experimental_vector_reverse, V->getType()); 6696 return CallInst::Create(F, V); 6697 }; 6698 6699 if (match(LHS, m_VecReverse(m_Value(V1)))) { 6700 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2) 6701 if (match(RHS, m_VecReverse(m_Value(V2))) && 6702 (LHS->hasOneUse() || RHS->hasOneUse())) 6703 return createCmpReverse(Pred, V1, V2); 6704 6705 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat) 6706 if (LHS->hasOneUse() && isSplatValue(RHS)) 6707 return createCmpReverse(Pred, V1, RHS); 6708 } 6709 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2) 6710 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 6711 return createCmpReverse(Pred, LHS, V2); 6712 6713 ArrayRef<int> M; 6714 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 6715 return nullptr; 6716 6717 // If both arguments of the cmp are shuffles that use the same mask and 6718 // shuffle within a single vector, move the shuffle after the cmp: 6719 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 6720 Type *V1Ty = V1->getType(); 6721 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 6722 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 6723 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 6724 return new ShuffleVectorInst(NewCmp, M); 6725 } 6726 6727 // Try to canonicalize compare with splatted operand and splat constant. 6728 // TODO: We could generalize this for more than splats. See/use the code in 6729 // InstCombiner::foldVectorBinop(). 6730 Constant *C; 6731 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 6732 return nullptr; 6733 6734 // Length-changing splats are ok, so adjust the constants as needed: 6735 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 6736 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 6737 int MaskSplatIndex; 6738 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 6739 // We allow undefs in matching, but this transform removes those for safety. 6740 // Demanded elements analysis should be able to recover some/all of that. 6741 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 6742 ScalarC); 6743 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 6744 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 6745 return new ShuffleVectorInst(NewCmp, NewM); 6746 } 6747 6748 return nullptr; 6749 } 6750 6751 // extract(uadd.with.overflow(A, B), 0) ult A 6752 // -> extract(uadd.with.overflow(A, B), 1) 6753 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 6754 CmpInst::Predicate Pred = I.getPredicate(); 6755 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6756 6757 Value *UAddOv; 6758 Value *A, *B; 6759 auto UAddOvResultPat = m_ExtractValue<0>( 6760 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 6761 if (match(Op0, UAddOvResultPat) && 6762 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 6763 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 6764 (match(A, m_One()) || match(B, m_One()))) || 6765 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 6766 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 6767 // extract(uadd.with.overflow(A, B), 0) < A 6768 // extract(uadd.with.overflow(A, 1), 0) == 0 6769 // extract(uadd.with.overflow(A, -1), 0) != -1 6770 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 6771 else if (match(Op1, UAddOvResultPat) && 6772 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 6773 // A > extract(uadd.with.overflow(A, B), 0) 6774 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 6775 else 6776 return nullptr; 6777 6778 return ExtractValueInst::Create(UAddOv, 1); 6779 } 6780 6781 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 6782 if (!I.getOperand(0)->getType()->isPointerTy() || 6783 NullPointerIsDefined( 6784 I.getParent()->getParent(), 6785 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6786 return nullptr; 6787 } 6788 Instruction *Op; 6789 if (match(I.getOperand(0), m_Instruction(Op)) && 6790 match(I.getOperand(1), m_Zero()) && 6791 Op->isLaunderOrStripInvariantGroup()) { 6792 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6793 Op->getOperand(0), I.getOperand(1)); 6794 } 6795 return nullptr; 6796 } 6797 6798 /// This function folds patterns produced by lowering of reduce idioms, such as 6799 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6800 /// attempts to generate fewer number of scalar comparisons instead of vector 6801 /// comparisons when possible. 6802 static Instruction *foldReductionIdiom(ICmpInst &I, 6803 InstCombiner::BuilderTy &Builder, 6804 const DataLayout &DL) { 6805 if (I.getType()->isVectorTy()) 6806 return nullptr; 6807 ICmpInst::Predicate OuterPred, InnerPred; 6808 Value *LHS, *RHS; 6809 6810 // Match lowering of @llvm.vector.reduce.and. Turn 6811 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6812 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6813 /// %res = icmp <pred> i8 %scalar_ne, 0 6814 /// 6815 /// into 6816 /// 6817 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6818 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6819 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6820 /// 6821 /// for <pred> in {ne, eq}. 6822 if (!match(&I, m_ICmp(OuterPred, 6823 m_OneUse(m_BitCast(m_OneUse( 6824 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6825 m_Zero()))) 6826 return nullptr; 6827 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6828 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6829 return nullptr; 6830 unsigned NumBits = 6831 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6832 // TODO: Relax this to "not wider than max legal integer type"? 6833 if (!DL.isLegalInteger(NumBits)) 6834 return nullptr; 6835 6836 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6837 auto *ScalarTy = Builder.getIntNTy(NumBits); 6838 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6839 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6840 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6841 I.getName()); 6842 } 6843 6844 return nullptr; 6845 } 6846 6847 // This helper will be called with icmp operands in both orders. 6848 Instruction *InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred, 6849 Value *Op0, Value *Op1, 6850 ICmpInst &CxtI) { 6851 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6852 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6853 if (Instruction *NI = foldGEPICmp(GEP, Op1, Pred, CxtI)) 6854 return NI; 6855 6856 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6857 if (Instruction *NI = foldSelectICmp(Pred, SI, Op1, CxtI)) 6858 return NI; 6859 6860 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op0)) 6861 if (Instruction *Res = foldICmpWithMinMax(CxtI, MinMax, Op1, Pred)) 6862 return Res; 6863 6864 { 6865 Value *X; 6866 const APInt *C; 6867 // icmp X+Cst, X 6868 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6869 return foldICmpAddOpConst(X, *C, Pred); 6870 } 6871 6872 // abs(X) >= X --> true 6873 // abs(X) u<= X --> true 6874 // abs(X) < X --> false 6875 // abs(X) u> X --> false 6876 // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 6877 // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 6878 // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 6879 // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 6880 // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 6881 // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 6882 { 6883 Value *X; 6884 Constant *C; 6885 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X), m_Constant(C))) && 6886 match(Op1, m_Specific(X))) { 6887 Value *NullValue = Constant::getNullValue(X->getType()); 6888 Value *AllOnesValue = Constant::getAllOnesValue(X->getType()); 6889 const APInt SMin = 6890 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()); 6891 bool IsIntMinPosion = C->isAllOnesValue(); 6892 switch (Pred) { 6893 case CmpInst::ICMP_ULE: 6894 case CmpInst::ICMP_SGE: 6895 return replaceInstUsesWith(CxtI, ConstantInt::getTrue(CxtI.getType())); 6896 case CmpInst::ICMP_UGT: 6897 case CmpInst::ICMP_SLT: 6898 return replaceInstUsesWith(CxtI, ConstantInt::getFalse(CxtI.getType())); 6899 case CmpInst::ICMP_UGE: 6900 case CmpInst::ICMP_SLE: 6901 case CmpInst::ICMP_EQ: { 6902 return replaceInstUsesWith( 6903 CxtI, IsIntMinPosion 6904 ? Builder.CreateICmpSGT(X, AllOnesValue) 6905 : Builder.CreateICmpULT( 6906 X, ConstantInt::get(X->getType(), SMin + 1))); 6907 } 6908 case CmpInst::ICMP_ULT: 6909 case CmpInst::ICMP_SGT: 6910 case CmpInst::ICMP_NE: { 6911 return replaceInstUsesWith( 6912 CxtI, IsIntMinPosion 6913 ? Builder.CreateICmpSLT(X, NullValue) 6914 : Builder.CreateICmpUGT( 6915 X, ConstantInt::get(X->getType(), SMin))); 6916 } 6917 default: 6918 llvm_unreachable("Invalid predicate!"); 6919 } 6920 } 6921 } 6922 6923 return nullptr; 6924 } 6925 6926 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6927 bool Changed = false; 6928 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6929 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6930 unsigned Op0Cplxity = getComplexity(Op0); 6931 unsigned Op1Cplxity = getComplexity(Op1); 6932 6933 /// Orders the operands of the compare so that they are listed from most 6934 /// complex to least complex. This puts constants before unary operators, 6935 /// before binary operators. 6936 if (Op0Cplxity < Op1Cplxity) { 6937 I.swapOperands(); 6938 std::swap(Op0, Op1); 6939 Changed = true; 6940 } 6941 6942 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6943 return replaceInstUsesWith(I, V); 6944 6945 // Comparing -val or val with non-zero is the same as just comparing val 6946 // ie, abs(val) != 0 -> val != 0 6947 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6948 Value *Cond, *SelectTrue, *SelectFalse; 6949 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6950 m_Value(SelectFalse)))) { 6951 if (Value *V = dyn_castNegVal(SelectTrue)) { 6952 if (V == SelectFalse) 6953 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6954 } 6955 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6956 if (V == SelectTrue) 6957 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6958 } 6959 } 6960 } 6961 6962 if (Op0->getType()->isIntOrIntVectorTy(1)) 6963 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6964 return Res; 6965 6966 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6967 return Res; 6968 6969 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6970 return Res; 6971 6972 if (Instruction *Res = foldICmpWithConstant(I)) 6973 return Res; 6974 6975 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6976 return Res; 6977 6978 if (Instruction *Res = foldICmpUsingBoolRange(I)) 6979 return Res; 6980 6981 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6982 return Res; 6983 6984 if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q)) 6985 return Res; 6986 6987 // Test if the ICmpInst instruction is used exclusively by a select as 6988 // part of a minimum or maximum operation. If so, refrain from doing 6989 // any other folding. This helps out other analyses which understand 6990 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6991 // and CodeGen. And in this case, at least one of the comparison 6992 // operands has at least one user besides the compare (the select), 6993 // which would often largely negate the benefit of folding anyway. 6994 // 6995 // Do the same for the other patterns recognized by matchSelectPattern. 6996 if (I.hasOneUse()) 6997 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6998 Value *A, *B; 6999 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 7000 if (SPR.Flavor != SPF_UNKNOWN) 7001 return nullptr; 7002 } 7003 7004 // Do this after checking for min/max to prevent infinite looping. 7005 if (Instruction *Res = foldICmpWithZero(I)) 7006 return Res; 7007 7008 // FIXME: We only do this after checking for min/max to prevent infinite 7009 // looping caused by a reverse canonicalization of these patterns for min/max. 7010 // FIXME: The organization of folds is a mess. These would naturally go into 7011 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 7012 // down here after the min/max restriction. 7013 ICmpInst::Predicate Pred = I.getPredicate(); 7014 const APInt *C; 7015 if (match(Op1, m_APInt(C))) { 7016 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 7017 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 7018 Constant *Zero = Constant::getNullValue(Op0->getType()); 7019 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 7020 } 7021 7022 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 7023 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 7024 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 7025 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 7026 } 7027 } 7028 7029 // The folds in here may rely on wrapping flags and special constants, so 7030 // they can break up min/max idioms in some cases but not seemingly similar 7031 // patterns. 7032 // FIXME: It may be possible to enhance select folding to make this 7033 // unnecessary. It may also be moot if we canonicalize to min/max 7034 // intrinsics. 7035 if (Instruction *Res = foldICmpBinOp(I, Q)) 7036 return Res; 7037 7038 if (Instruction *Res = foldICmpInstWithConstant(I)) 7039 return Res; 7040 7041 // Try to match comparison as a sign bit test. Intentionally do this after 7042 // foldICmpInstWithConstant() to potentially let other folds to happen first. 7043 if (Instruction *New = foldSignBitTest(I)) 7044 return New; 7045 7046 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 7047 return Res; 7048 7049 if (Instruction *Res = foldICmpCommutative(I.getPredicate(), Op0, Op1, I)) 7050 return Res; 7051 if (Instruction *Res = 7052 foldICmpCommutative(I.getSwappedPredicate(), Op1, Op0, I)) 7053 return Res; 7054 7055 // In case of a comparison with two select instructions having the same 7056 // condition, check whether one of the resulting branches can be simplified. 7057 // If so, just compare the other branch and select the appropriate result. 7058 // For example: 7059 // %tmp1 = select i1 %cmp, i32 %y, i32 %x 7060 // %tmp2 = select i1 %cmp, i32 %z, i32 %x 7061 // %cmp2 = icmp slt i32 %tmp2, %tmp1 7062 // The icmp will result false for the false value of selects and the result 7063 // will depend upon the comparison of true values of selects if %cmp is 7064 // true. Thus, transform this into: 7065 // %cmp = icmp slt i32 %y, %z 7066 // %sel = select i1 %cond, i1 %cmp, i1 false 7067 // This handles similar cases to transform. 7068 { 7069 Value *Cond, *A, *B, *C, *D; 7070 if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 7071 match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) && 7072 (Op0->hasOneUse() || Op1->hasOneUse())) { 7073 // Check whether comparison of TrueValues can be simplified 7074 if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) { 7075 Value *NewICMP = Builder.CreateICmp(Pred, B, D); 7076 return SelectInst::Create(Cond, Res, NewICMP); 7077 } 7078 // Check whether comparison of FalseValues can be simplified 7079 if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) { 7080 Value *NewICMP = Builder.CreateICmp(Pred, A, C); 7081 return SelectInst::Create(Cond, NewICMP, Res); 7082 } 7083 } 7084 } 7085 7086 // Try to optimize equality comparisons against alloca-based pointers. 7087 if (Op0->getType()->isPointerTy() && I.isEquality()) { 7088 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 7089 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 7090 if (foldAllocaCmp(Alloca)) 7091 return nullptr; 7092 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 7093 if (foldAllocaCmp(Alloca)) 7094 return nullptr; 7095 } 7096 7097 if (Instruction *Res = foldICmpBitCast(I)) 7098 return Res; 7099 7100 // TODO: Hoist this above the min/max bailout. 7101 if (Instruction *R = foldICmpWithCastOp(I)) 7102 return R; 7103 7104 { 7105 Value *X, *Y; 7106 // Transform (X & ~Y) == 0 --> (X & Y) != 0 7107 // and (X & ~Y) != 0 --> (X & Y) == 0 7108 // if A is a power of 2. 7109 if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) && 7110 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) && 7111 I.isEquality()) 7112 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y), 7113 Op1); 7114 7115 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction. 7116 if (Op0->getType()->isIntOrIntVectorTy()) { 7117 bool ConsumesOp0, ConsumesOp1; 7118 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 7119 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 7120 (ConsumesOp0 || ConsumesOp1)) { 7121 Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 7122 Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 7123 assert(InvOp0 && InvOp1 && 7124 "Mismatch between isFreeToInvert and getFreelyInverted"); 7125 return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1); 7126 } 7127 } 7128 7129 Instruction *AddI = nullptr; 7130 if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y), 7131 m_Instruction(AddI))) && 7132 isa<IntegerType>(X->getType())) { 7133 Value *Result; 7134 Constant *Overflow; 7135 // m_UAddWithOverflow can match patterns that do not include an explicit 7136 // "add" instruction, so check the opcode of the matched op. 7137 if (AddI->getOpcode() == Instruction::Add && 7138 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI, 7139 Result, Overflow)) { 7140 replaceInstUsesWith(*AddI, Result); 7141 eraseInstFromFunction(*AddI); 7142 return replaceInstUsesWith(I, Overflow); 7143 } 7144 } 7145 7146 // (zext X) * (zext Y) --> llvm.umul.with.overflow. 7147 if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) && 7148 match(Op1, m_APInt(C))) { 7149 if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this)) 7150 return R; 7151 } 7152 7153 // Signbit test folds 7154 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1 7155 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1 7156 Instruction *ExtI; 7157 if ((I.isUnsigned() || I.isEquality()) && 7158 match(Op1, 7159 m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) && 7160 Y->getType()->getScalarSizeInBits() == 1 && 7161 (Op0->hasOneUse() || Op1->hasOneUse())) { 7162 unsigned OpWidth = Op0->getType()->getScalarSizeInBits(); 7163 Instruction *ShiftI; 7164 if (match(Op0, m_CombineAnd(m_Instruction(ShiftI), 7165 m_Shr(m_Value(X), m_SpecificIntAllowUndef( 7166 OpWidth - 1))))) { 7167 unsigned ExtOpc = ExtI->getOpcode(); 7168 unsigned ShiftOpc = ShiftI->getOpcode(); 7169 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) || 7170 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) { 7171 Value *SLTZero = 7172 Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 7173 Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName()); 7174 return replaceInstUsesWith(I, Cmp); 7175 } 7176 } 7177 } 7178 } 7179 7180 if (Instruction *Res = foldICmpEquality(I)) 7181 return Res; 7182 7183 if (Instruction *Res = foldICmpPow2Test(I, Builder)) 7184 return Res; 7185 7186 if (Instruction *Res = foldICmpOfUAddOv(I)) 7187 return Res; 7188 7189 // The 'cmpxchg' instruction returns an aggregate containing the old value and 7190 // an i1 which indicates whether or not we successfully did the swap. 7191 // 7192 // Replace comparisons between the old value and the expected value with the 7193 // indicator that 'cmpxchg' returns. 7194 // 7195 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 7196 // spuriously fail. In those cases, the old value may equal the expected 7197 // value but it is possible for the swap to not occur. 7198 if (I.getPredicate() == ICmpInst::ICMP_EQ) 7199 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 7200 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 7201 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 7202 !ACXI->isWeak()) 7203 return ExtractValueInst::Create(ACXI, 1); 7204 7205 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 7206 return Res; 7207 7208 if (I.getType()->isVectorTy()) 7209 if (Instruction *Res = foldVectorCmp(I, Builder)) 7210 return Res; 7211 7212 if (Instruction *Res = foldICmpInvariantGroup(I)) 7213 return Res; 7214 7215 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 7216 return Res; 7217 7218 return Changed ? &I : nullptr; 7219 } 7220 7221 /// Fold fcmp ([us]itofp x, cst) if possible. 7222 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 7223 Instruction *LHSI, 7224 Constant *RHSC) { 7225 if (!isa<ConstantFP>(RHSC)) return nullptr; 7226 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 7227 7228 // Get the width of the mantissa. We don't want to hack on conversions that 7229 // might lose information from the integer, e.g. "i64 -> float" 7230 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 7231 if (MantissaWidth == -1) return nullptr; // Unknown. 7232 7233 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 7234 7235 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 7236 7237 if (I.isEquality()) { 7238 FCmpInst::Predicate P = I.getPredicate(); 7239 bool IsExact = false; 7240 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 7241 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 7242 7243 // If the floating point constant isn't an integer value, we know if we will 7244 // ever compare equal / not equal to it. 7245 if (!IsExact) { 7246 // TODO: Can never be -0.0 and other non-representable values 7247 APFloat RHSRoundInt(RHS); 7248 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 7249 if (RHS != RHSRoundInt) { 7250 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 7251 return replaceInstUsesWith(I, Builder.getFalse()); 7252 7253 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 7254 return replaceInstUsesWith(I, Builder.getTrue()); 7255 } 7256 } 7257 7258 // TODO: If the constant is exactly representable, is it always OK to do 7259 // equality compares as integer? 7260 } 7261 7262 // Check to see that the input is converted from an integer type that is small 7263 // enough that preserves all bits. TODO: check here for "known" sign bits. 7264 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 7265 unsigned InputSize = IntTy->getScalarSizeInBits(); 7266 7267 // Following test does NOT adjust InputSize downwards for signed inputs, 7268 // because the most negative value still requires all the mantissa bits 7269 // to distinguish it from one less than that value. 7270 if ((int)InputSize > MantissaWidth) { 7271 // Conversion would lose accuracy. Check if loss can impact comparison. 7272 int Exp = ilogb(RHS); 7273 if (Exp == APFloat::IEK_Inf) { 7274 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 7275 if (MaxExponent < (int)InputSize - !LHSUnsigned) 7276 // Conversion could create infinity. 7277 return nullptr; 7278 } else { 7279 // Note that if RHS is zero or NaN, then Exp is negative 7280 // and first condition is trivially false. 7281 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 7282 // Conversion could affect comparison. 7283 return nullptr; 7284 } 7285 } 7286 7287 // Otherwise, we can potentially simplify the comparison. We know that it 7288 // will always come through as an integer value and we know the constant is 7289 // not a NAN (it would have been previously simplified). 7290 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 7291 7292 ICmpInst::Predicate Pred; 7293 switch (I.getPredicate()) { 7294 default: llvm_unreachable("Unexpected predicate!"); 7295 case FCmpInst::FCMP_UEQ: 7296 case FCmpInst::FCMP_OEQ: 7297 Pred = ICmpInst::ICMP_EQ; 7298 break; 7299 case FCmpInst::FCMP_UGT: 7300 case FCmpInst::FCMP_OGT: 7301 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 7302 break; 7303 case FCmpInst::FCMP_UGE: 7304 case FCmpInst::FCMP_OGE: 7305 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 7306 break; 7307 case FCmpInst::FCMP_ULT: 7308 case FCmpInst::FCMP_OLT: 7309 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 7310 break; 7311 case FCmpInst::FCMP_ULE: 7312 case FCmpInst::FCMP_OLE: 7313 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 7314 break; 7315 case FCmpInst::FCMP_UNE: 7316 case FCmpInst::FCMP_ONE: 7317 Pred = ICmpInst::ICMP_NE; 7318 break; 7319 case FCmpInst::FCMP_ORD: 7320 return replaceInstUsesWith(I, Builder.getTrue()); 7321 case FCmpInst::FCMP_UNO: 7322 return replaceInstUsesWith(I, Builder.getFalse()); 7323 } 7324 7325 // Now we know that the APFloat is a normal number, zero or inf. 7326 7327 // See if the FP constant is too large for the integer. For example, 7328 // comparing an i8 to 300.0. 7329 unsigned IntWidth = IntTy->getScalarSizeInBits(); 7330 7331 if (!LHSUnsigned) { 7332 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 7333 // and large values. 7334 APFloat SMax(RHS.getSemantics()); 7335 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 7336 APFloat::rmNearestTiesToEven); 7337 if (SMax < RHS) { // smax < 13123.0 7338 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 7339 Pred == ICmpInst::ICMP_SLE) 7340 return replaceInstUsesWith(I, Builder.getTrue()); 7341 return replaceInstUsesWith(I, Builder.getFalse()); 7342 } 7343 } else { 7344 // If the RHS value is > UnsignedMax, fold the comparison. This handles 7345 // +INF and large values. 7346 APFloat UMax(RHS.getSemantics()); 7347 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 7348 APFloat::rmNearestTiesToEven); 7349 if (UMax < RHS) { // umax < 13123.0 7350 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 7351 Pred == ICmpInst::ICMP_ULE) 7352 return replaceInstUsesWith(I, Builder.getTrue()); 7353 return replaceInstUsesWith(I, Builder.getFalse()); 7354 } 7355 } 7356 7357 if (!LHSUnsigned) { 7358 // See if the RHS value is < SignedMin. 7359 APFloat SMin(RHS.getSemantics()); 7360 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 7361 APFloat::rmNearestTiesToEven); 7362 if (SMin > RHS) { // smin > 12312.0 7363 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 7364 Pred == ICmpInst::ICMP_SGE) 7365 return replaceInstUsesWith(I, Builder.getTrue()); 7366 return replaceInstUsesWith(I, Builder.getFalse()); 7367 } 7368 } else { 7369 // See if the RHS value is < UnsignedMin. 7370 APFloat UMin(RHS.getSemantics()); 7371 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 7372 APFloat::rmNearestTiesToEven); 7373 if (UMin > RHS) { // umin > 12312.0 7374 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 7375 Pred == ICmpInst::ICMP_UGE) 7376 return replaceInstUsesWith(I, Builder.getTrue()); 7377 return replaceInstUsesWith(I, Builder.getFalse()); 7378 } 7379 } 7380 7381 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 7382 // [0, UMAX], but it may still be fractional. Check whether this is the case 7383 // using the IsExact flag. 7384 // Don't do this for zero, because -0.0 is not fractional. 7385 APSInt RHSInt(IntWidth, LHSUnsigned); 7386 bool IsExact; 7387 RHS.convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact); 7388 if (!RHS.isZero()) { 7389 if (!IsExact) { 7390 // If we had a comparison against a fractional value, we have to adjust 7391 // the compare predicate and sometimes the value. RHSC is rounded towards 7392 // zero at this point. 7393 switch (Pred) { 7394 default: llvm_unreachable("Unexpected integer comparison!"); 7395 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 7396 return replaceInstUsesWith(I, Builder.getTrue()); 7397 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 7398 return replaceInstUsesWith(I, Builder.getFalse()); 7399 case ICmpInst::ICMP_ULE: 7400 // (float)int <= 4.4 --> int <= 4 7401 // (float)int <= -4.4 --> false 7402 if (RHS.isNegative()) 7403 return replaceInstUsesWith(I, Builder.getFalse()); 7404 break; 7405 case ICmpInst::ICMP_SLE: 7406 // (float)int <= 4.4 --> int <= 4 7407 // (float)int <= -4.4 --> int < -4 7408 if (RHS.isNegative()) 7409 Pred = ICmpInst::ICMP_SLT; 7410 break; 7411 case ICmpInst::ICMP_ULT: 7412 // (float)int < -4.4 --> false 7413 // (float)int < 4.4 --> int <= 4 7414 if (RHS.isNegative()) 7415 return replaceInstUsesWith(I, Builder.getFalse()); 7416 Pred = ICmpInst::ICMP_ULE; 7417 break; 7418 case ICmpInst::ICMP_SLT: 7419 // (float)int < -4.4 --> int < -4 7420 // (float)int < 4.4 --> int <= 4 7421 if (!RHS.isNegative()) 7422 Pred = ICmpInst::ICMP_SLE; 7423 break; 7424 case ICmpInst::ICMP_UGT: 7425 // (float)int > 4.4 --> int > 4 7426 // (float)int > -4.4 --> true 7427 if (RHS.isNegative()) 7428 return replaceInstUsesWith(I, Builder.getTrue()); 7429 break; 7430 case ICmpInst::ICMP_SGT: 7431 // (float)int > 4.4 --> int > 4 7432 // (float)int > -4.4 --> int >= -4 7433 if (RHS.isNegative()) 7434 Pred = ICmpInst::ICMP_SGE; 7435 break; 7436 case ICmpInst::ICMP_UGE: 7437 // (float)int >= -4.4 --> true 7438 // (float)int >= 4.4 --> int > 4 7439 if (RHS.isNegative()) 7440 return replaceInstUsesWith(I, Builder.getTrue()); 7441 Pred = ICmpInst::ICMP_UGT; 7442 break; 7443 case ICmpInst::ICMP_SGE: 7444 // (float)int >= -4.4 --> int >= -4 7445 // (float)int >= 4.4 --> int > 4 7446 if (!RHS.isNegative()) 7447 Pred = ICmpInst::ICMP_SGT; 7448 break; 7449 } 7450 } 7451 } 7452 7453 // Lower this FP comparison into an appropriate integer version of the 7454 // comparison. 7455 return new ICmpInst(Pred, LHSI->getOperand(0), Builder.getInt(RHSInt)); 7456 } 7457 7458 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 7459 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 7460 Constant *RHSC) { 7461 // When C is not 0.0 and infinities are not allowed: 7462 // (C / X) < 0.0 is a sign-bit test of X 7463 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 7464 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 7465 // 7466 // Proof: 7467 // Multiply (C / X) < 0.0 by X * X / C. 7468 // - X is non zero, if it is the flag 'ninf' is violated. 7469 // - C defines the sign of X * X * C. Thus it also defines whether to swap 7470 // the predicate. C is also non zero by definition. 7471 // 7472 // Thus X * X / C is non zero and the transformation is valid. [qed] 7473 7474 FCmpInst::Predicate Pred = I.getPredicate(); 7475 7476 // Check that predicates are valid. 7477 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 7478 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 7479 return nullptr; 7480 7481 // Check that RHS operand is zero. 7482 if (!match(RHSC, m_AnyZeroFP())) 7483 return nullptr; 7484 7485 // Check fastmath flags ('ninf'). 7486 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 7487 return nullptr; 7488 7489 // Check the properties of the dividend. It must not be zero to avoid a 7490 // division by zero (see Proof). 7491 const APFloat *C; 7492 if (!match(LHSI->getOperand(0), m_APFloat(C))) 7493 return nullptr; 7494 7495 if (C->isZero()) 7496 return nullptr; 7497 7498 // Get swapped predicate if necessary. 7499 if (C->isNegative()) 7500 Pred = I.getSwappedPredicate(); 7501 7502 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 7503 } 7504 7505 /// Optimize fabs(X) compared with zero. 7506 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 7507 Value *X; 7508 if (!match(I.getOperand(0), m_FAbs(m_Value(X)))) 7509 return nullptr; 7510 7511 const APFloat *C; 7512 if (!match(I.getOperand(1), m_APFloat(C))) 7513 return nullptr; 7514 7515 if (!C->isPosZero()) { 7516 if (!C->isSmallestNormalized()) 7517 return nullptr; 7518 7519 const Function *F = I.getFunction(); 7520 DenormalMode Mode = F->getDenormalMode(C->getSemantics()); 7521 if (Mode.Input == DenormalMode::PreserveSign || 7522 Mode.Input == DenormalMode::PositiveZero) { 7523 7524 auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7525 Constant *Zero = ConstantFP::getZero(X->getType()); 7526 return new FCmpInst(P, X, Zero, "", I); 7527 }; 7528 7529 switch (I.getPredicate()) { 7530 case FCmpInst::FCMP_OLT: 7531 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0 7532 return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X); 7533 case FCmpInst::FCMP_UGE: 7534 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0 7535 return replaceFCmp(&I, FCmpInst::FCMP_UNE, X); 7536 case FCmpInst::FCMP_OGE: 7537 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0 7538 return replaceFCmp(&I, FCmpInst::FCMP_ONE, X); 7539 case FCmpInst::FCMP_ULT: 7540 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0 7541 return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X); 7542 default: 7543 break; 7544 } 7545 } 7546 7547 return nullptr; 7548 } 7549 7550 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7551 I->setPredicate(P); 7552 return IC.replaceOperand(*I, 0, X); 7553 }; 7554 7555 switch (I.getPredicate()) { 7556 case FCmpInst::FCMP_UGE: 7557 case FCmpInst::FCMP_OLT: 7558 // fabs(X) >= 0.0 --> true 7559 // fabs(X) < 0.0 --> false 7560 llvm_unreachable("fcmp should have simplified"); 7561 7562 case FCmpInst::FCMP_OGT: 7563 // fabs(X) > 0.0 --> X != 0.0 7564 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 7565 7566 case FCmpInst::FCMP_UGT: 7567 // fabs(X) u> 0.0 --> X u!= 0.0 7568 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 7569 7570 case FCmpInst::FCMP_OLE: 7571 // fabs(X) <= 0.0 --> X == 0.0 7572 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 7573 7574 case FCmpInst::FCMP_ULE: 7575 // fabs(X) u<= 0.0 --> X u== 0.0 7576 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 7577 7578 case FCmpInst::FCMP_OGE: 7579 // fabs(X) >= 0.0 --> !isnan(X) 7580 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7581 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 7582 7583 case FCmpInst::FCMP_ULT: 7584 // fabs(X) u< 0.0 --> isnan(X) 7585 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7586 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 7587 7588 case FCmpInst::FCMP_OEQ: 7589 case FCmpInst::FCMP_UEQ: 7590 case FCmpInst::FCMP_ONE: 7591 case FCmpInst::FCMP_UNE: 7592 case FCmpInst::FCMP_ORD: 7593 case FCmpInst::FCMP_UNO: 7594 // Look through the fabs() because it doesn't change anything but the sign. 7595 // fabs(X) == 0.0 --> X == 0.0, 7596 // fabs(X) != 0.0 --> X != 0.0 7597 // isnan(fabs(X)) --> isnan(X) 7598 // !isnan(fabs(X) --> !isnan(X) 7599 return replacePredAndOp0(&I, I.getPredicate(), X); 7600 7601 default: 7602 return nullptr; 7603 } 7604 } 7605 7606 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 7607 CmpInst::Predicate Pred = I.getPredicate(); 7608 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7609 7610 // Canonicalize fneg as Op1. 7611 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 7612 std::swap(Op0, Op1); 7613 Pred = I.getSwappedPredicate(); 7614 } 7615 7616 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 7617 return nullptr; 7618 7619 // Replace the negated operand with 0.0: 7620 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 7621 Constant *Zero = ConstantFP::getZero(Op0->getType()); 7622 return new FCmpInst(Pred, Op0, Zero, "", &I); 7623 } 7624 7625 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 7626 bool Changed = false; 7627 7628 /// Orders the operands of the compare so that they are listed from most 7629 /// complex to least complex. This puts constants before unary operators, 7630 /// before binary operators. 7631 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 7632 I.swapOperands(); 7633 Changed = true; 7634 } 7635 7636 const CmpInst::Predicate Pred = I.getPredicate(); 7637 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7638 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 7639 SQ.getWithInstruction(&I))) 7640 return replaceInstUsesWith(I, V); 7641 7642 // Simplify 'fcmp pred X, X' 7643 Type *OpType = Op0->getType(); 7644 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 7645 if (Op0 == Op1) { 7646 switch (Pred) { 7647 default: break; 7648 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 7649 case FCmpInst::FCMP_ULT: // True if unordered or less than 7650 case FCmpInst::FCMP_UGT: // True if unordered or greater than 7651 case FCmpInst::FCMP_UNE: // True if unordered or not equal 7652 // Canonicalize these to be 'fcmp uno %X, 0.0'. 7653 I.setPredicate(FCmpInst::FCMP_UNO); 7654 I.setOperand(1, Constant::getNullValue(OpType)); 7655 return &I; 7656 7657 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 7658 case FCmpInst::FCMP_OEQ: // True if ordered and equal 7659 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 7660 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 7661 // Canonicalize these to be 'fcmp ord %X, 0.0'. 7662 I.setPredicate(FCmpInst::FCMP_ORD); 7663 I.setOperand(1, Constant::getNullValue(OpType)); 7664 return &I; 7665 } 7666 } 7667 7668 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 7669 // then canonicalize the operand to 0.0. 7670 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 7671 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, DL, &TLI, 0, 7672 &AC, &I, &DT)) 7673 return replaceOperand(I, 0, ConstantFP::getZero(OpType)); 7674 7675 if (!match(Op1, m_PosZeroFP()) && 7676 isKnownNeverNaN(Op1, DL, &TLI, 0, &AC, &I, &DT)) 7677 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7678 } 7679 7680 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 7681 Value *X, *Y; 7682 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 7683 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 7684 7685 if (Instruction *R = foldFCmpFNegCommonOp(I)) 7686 return R; 7687 7688 // Test if the FCmpInst instruction is used exclusively by a select as 7689 // part of a minimum or maximum operation. If so, refrain from doing 7690 // any other folding. This helps out other analyses which understand 7691 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 7692 // and CodeGen. And in this case, at least one of the comparison 7693 // operands has at least one user besides the compare (the select), 7694 // which would often largely negate the benefit of folding anyway. 7695 if (I.hasOneUse()) 7696 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 7697 Value *A, *B; 7698 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 7699 if (SPR.Flavor != SPF_UNKNOWN) 7700 return nullptr; 7701 } 7702 7703 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 7704 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 7705 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 7706 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7707 7708 // Ignore signbit of bitcasted int when comparing equality to FP 0.0: 7709 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0 7710 if (match(Op1, m_PosZeroFP()) && 7711 match(Op0, m_OneUse(m_BitCast(m_Value(X)))) && 7712 X->getType()->isVectorTy() == OpType->isVectorTy() && 7713 X->getType()->getScalarSizeInBits() == OpType->getScalarSizeInBits()) { 7714 ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE; 7715 if (Pred == FCmpInst::FCMP_OEQ) 7716 IntPred = ICmpInst::ICMP_EQ; 7717 else if (Pred == FCmpInst::FCMP_UNE) 7718 IntPred = ICmpInst::ICMP_NE; 7719 7720 if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) { 7721 Type *IntTy = X->getType(); 7722 const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits()); 7723 Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask)); 7724 return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy)); 7725 } 7726 } 7727 7728 // Handle fcmp with instruction LHS and constant RHS. 7729 Instruction *LHSI; 7730 Constant *RHSC; 7731 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 7732 switch (LHSI->getOpcode()) { 7733 case Instruction::PHI: 7734 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 7735 return NV; 7736 break; 7737 case Instruction::SIToFP: 7738 case Instruction::UIToFP: 7739 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 7740 return NV; 7741 break; 7742 case Instruction::FDiv: 7743 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 7744 return NV; 7745 break; 7746 case Instruction::Load: 7747 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 7748 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 7749 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 7750 cast<LoadInst>(LHSI), GEP, GV, I)) 7751 return Res; 7752 break; 7753 } 7754 } 7755 7756 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 7757 return R; 7758 7759 if (match(Op0, m_FNeg(m_Value(X)))) { 7760 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 7761 Constant *C; 7762 if (match(Op1, m_Constant(C))) 7763 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 7764 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 7765 } 7766 7767 if (match(Op0, m_FPExt(m_Value(X)))) { 7768 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 7769 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 7770 return new FCmpInst(Pred, X, Y, "", &I); 7771 7772 const APFloat *C; 7773 if (match(Op1, m_APFloat(C))) { 7774 const fltSemantics &FPSem = 7775 X->getType()->getScalarType()->getFltSemantics(); 7776 bool Lossy; 7777 APFloat TruncC = *C; 7778 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 7779 7780 if (Lossy) { 7781 // X can't possibly equal the higher-precision constant, so reduce any 7782 // equality comparison. 7783 // TODO: Other predicates can be handled via getFCmpCode(). 7784 switch (Pred) { 7785 case FCmpInst::FCMP_OEQ: 7786 // X is ordered and equal to an impossible constant --> false 7787 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7788 case FCmpInst::FCMP_ONE: 7789 // X is ordered and not equal to an impossible constant --> ordered 7790 return new FCmpInst(FCmpInst::FCMP_ORD, X, 7791 ConstantFP::getZero(X->getType())); 7792 case FCmpInst::FCMP_UEQ: 7793 // X is unordered or equal to an impossible constant --> unordered 7794 return new FCmpInst(FCmpInst::FCMP_UNO, X, 7795 ConstantFP::getZero(X->getType())); 7796 case FCmpInst::FCMP_UNE: 7797 // X is unordered or not equal to an impossible constant --> true 7798 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7799 default: 7800 break; 7801 } 7802 } 7803 7804 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 7805 // Avoid lossy conversions and denormals. 7806 // Zero is a special case that's OK to convert. 7807 APFloat Fabs = TruncC; 7808 Fabs.clearSign(); 7809 if (!Lossy && 7810 (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) { 7811 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 7812 return new FCmpInst(Pred, X, NewC, "", &I); 7813 } 7814 } 7815 } 7816 7817 // Convert a sign-bit test of an FP value into a cast and integer compare. 7818 // TODO: Simplify if the copysign constant is 0.0 or NaN. 7819 // TODO: Handle non-zero compare constants. 7820 // TODO: Handle other predicates. 7821 const APFloat *C; 7822 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 7823 m_Value(X)))) && 7824 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 7825 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 7826 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 7827 IntType = VectorType::get(IntType, VecTy->getElementCount()); 7828 7829 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 7830 if (Pred == FCmpInst::FCMP_OLT) { 7831 Value *IntX = Builder.CreateBitCast(X, IntType); 7832 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 7833 ConstantInt::getNullValue(IntType)); 7834 } 7835 } 7836 7837 { 7838 Value *CanonLHS = nullptr, *CanonRHS = nullptr; 7839 match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS))); 7840 match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS))); 7841 7842 // (canonicalize(x) == x) => (x == x) 7843 if (CanonLHS == Op1) 7844 return new FCmpInst(Pred, Op1, Op1, "", &I); 7845 7846 // (x == canonicalize(x)) => (x == x) 7847 if (CanonRHS == Op0) 7848 return new FCmpInst(Pred, Op0, Op0, "", &I); 7849 7850 // (canonicalize(x) == canonicalize(y)) => (x == y) 7851 if (CanonLHS && CanonRHS) 7852 return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I); 7853 } 7854 7855 if (I.getType()->isVectorTy()) 7856 if (Instruction *Res = foldVectorCmp(I, Builder)) 7857 return Res; 7858 7859 return Changed ? &I : nullptr; 7860 } 7861