1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 #include <optional> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 29 /// true for, actually insert the code to evaluate the expression. 30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 31 bool isSigned) { 32 if (Constant *C = dyn_cast<Constant>(V)) 33 return ConstantFoldIntegerCast(C, Ty, isSigned, DL); 34 35 // Otherwise, it must be an instruction. 36 Instruction *I = cast<Instruction>(V); 37 Instruction *Res = nullptr; 38 unsigned Opc = I->getOpcode(); 39 switch (Opc) { 40 case Instruction::Add: 41 case Instruction::Sub: 42 case Instruction::Mul: 43 case Instruction::And: 44 case Instruction::Or: 45 case Instruction::Xor: 46 case Instruction::AShr: 47 case Instruction::LShr: 48 case Instruction::Shl: 49 case Instruction::UDiv: 50 case Instruction::URem: { 51 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 52 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 53 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 54 break; 55 } 56 case Instruction::Trunc: 57 case Instruction::ZExt: 58 case Instruction::SExt: 59 // If the source type of the cast is the type we're trying for then we can 60 // just return the source. There's no need to insert it because it is not 61 // new. 62 if (I->getOperand(0)->getType() == Ty) 63 return I->getOperand(0); 64 65 // Otherwise, must be the same type of cast, so just reinsert a new one. 66 // This also handles the case of zext(trunc(x)) -> zext(x). 67 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 68 Opc == Instruction::SExt); 69 break; 70 case Instruction::Select: { 71 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 72 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 73 Res = SelectInst::Create(I->getOperand(0), True, False); 74 break; 75 } 76 case Instruction::PHI: { 77 PHINode *OPN = cast<PHINode>(I); 78 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 79 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 80 Value *V = 81 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 82 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 83 } 84 Res = NPN; 85 break; 86 } 87 case Instruction::FPToUI: 88 case Instruction::FPToSI: 89 Res = CastInst::Create( 90 static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty); 91 break; 92 case Instruction::Call: 93 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 94 switch (II->getIntrinsicID()) { 95 default: 96 llvm_unreachable("Unsupported call!"); 97 case Intrinsic::vscale: { 98 Function *Fn = 99 Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty}); 100 Res = CallInst::Create(Fn->getFunctionType(), Fn); 101 break; 102 } 103 } 104 } 105 break; 106 case Instruction::ShuffleVector: { 107 auto *ScalarTy = cast<VectorType>(Ty)->getElementType(); 108 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 109 auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount()); 110 Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned); 111 Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned); 112 Res = new ShuffleVectorInst(Op0, Op1, 113 cast<ShuffleVectorInst>(I)->getShuffleMask()); 114 break; 115 } 116 default: 117 // TODO: Can handle more cases here. 118 llvm_unreachable("Unreachable!"); 119 } 120 121 Res->takeName(I); 122 return InsertNewInstWith(Res, I->getIterator()); 123 } 124 125 Instruction::CastOps 126 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 127 const CastInst *CI2) { 128 Type *SrcTy = CI1->getSrcTy(); 129 Type *MidTy = CI1->getDestTy(); 130 Type *DstTy = CI2->getDestTy(); 131 132 Instruction::CastOps firstOp = CI1->getOpcode(); 133 Instruction::CastOps secondOp = CI2->getOpcode(); 134 Type *SrcIntPtrTy = 135 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 136 Type *MidIntPtrTy = 137 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 138 Type *DstIntPtrTy = 139 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 140 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 141 DstTy, SrcIntPtrTy, MidIntPtrTy, 142 DstIntPtrTy); 143 144 // We don't want to form an inttoptr or ptrtoint that converts to an integer 145 // type that differs from the pointer size. 146 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 147 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 148 Res = 0; 149 150 return Instruction::CastOps(Res); 151 } 152 153 /// Implement the transforms common to all CastInst visitors. 154 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 155 Value *Src = CI.getOperand(0); 156 Type *Ty = CI.getType(); 157 158 if (auto *SrcC = dyn_cast<Constant>(Src)) 159 if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL)) 160 return replaceInstUsesWith(CI, Res); 161 162 // Try to eliminate a cast of a cast. 163 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 164 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 165 // The first cast (CSrc) is eliminable so we need to fix up or replace 166 // the second cast (CI). CSrc will then have a good chance of being dead. 167 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 168 // Point debug users of the dying cast to the new one. 169 if (CSrc->hasOneUse()) 170 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 171 return Res; 172 } 173 } 174 175 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 176 // We are casting a select. Try to fold the cast into the select if the 177 // select does not have a compare instruction with matching operand types 178 // or the select is likely better done in a narrow type. 179 // Creating a select with operands that are different sizes than its 180 // condition may inhibit other folds and lead to worse codegen. 181 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 182 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 183 (CI.getOpcode() == Instruction::Trunc && 184 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 185 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 186 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 187 return NV; 188 } 189 } 190 } 191 192 // If we are casting a PHI, then fold the cast into the PHI. 193 if (auto *PN = dyn_cast<PHINode>(Src)) { 194 // Don't do this if it would create a PHI node with an illegal type from a 195 // legal type. 196 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 197 shouldChangeType(CI.getSrcTy(), CI.getType())) 198 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 199 return NV; 200 } 201 202 // Canonicalize a unary shuffle after the cast if neither operation changes 203 // the size or element size of the input vector. 204 // TODO: We could allow size-changing ops if that doesn't harm codegen. 205 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 206 Value *X; 207 ArrayRef<int> Mask; 208 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 209 // TODO: Allow scalable vectors? 210 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 211 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 212 if (SrcTy && DestTy && 213 SrcTy->getNumElements() == DestTy->getNumElements() && 214 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 215 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 216 return new ShuffleVectorInst(CastX, Mask); 217 } 218 } 219 220 return nullptr; 221 } 222 223 /// Constants and extensions/truncates from the destination type are always 224 /// free to be evaluated in that type. This is a helper for canEvaluate*. 225 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 226 if (isa<Constant>(V)) 227 return match(V, m_ImmConstant()); 228 229 Value *X; 230 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 231 X->getType() == Ty) 232 return true; 233 234 return false; 235 } 236 237 /// Filter out values that we can not evaluate in the destination type for free. 238 /// This is a helper for canEvaluate*. 239 static bool canNotEvaluateInType(Value *V, Type *Ty) { 240 if (!isa<Instruction>(V)) 241 return true; 242 // We don't extend or shrink something that has multiple uses -- doing so 243 // would require duplicating the instruction which isn't profitable. 244 if (!V->hasOneUse()) 245 return true; 246 247 return false; 248 } 249 250 /// Return true if we can evaluate the specified expression tree as type Ty 251 /// instead of its larger type, and arrive with the same value. 252 /// This is used by code that tries to eliminate truncates. 253 /// 254 /// Ty will always be a type smaller than V. We should return true if trunc(V) 255 /// can be computed by computing V in the smaller type. If V is an instruction, 256 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 257 /// makes sense if x and y can be efficiently truncated. 258 /// 259 /// This function works on both vectors and scalars. 260 /// 261 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 262 Instruction *CxtI) { 263 if (canAlwaysEvaluateInType(V, Ty)) 264 return true; 265 if (canNotEvaluateInType(V, Ty)) 266 return false; 267 268 auto *I = cast<Instruction>(V); 269 Type *OrigTy = V->getType(); 270 switch (I->getOpcode()) { 271 case Instruction::Add: 272 case Instruction::Sub: 273 case Instruction::Mul: 274 case Instruction::And: 275 case Instruction::Or: 276 case Instruction::Xor: 277 // These operators can all arbitrarily be extended or truncated. 278 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 279 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 280 281 case Instruction::UDiv: 282 case Instruction::URem: { 283 // UDiv and URem can be truncated if all the truncated bits are zero. 284 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 285 uint32_t BitWidth = Ty->getScalarSizeInBits(); 286 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 287 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 288 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 289 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 290 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 291 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 292 } 293 break; 294 } 295 case Instruction::Shl: { 296 // If we are truncating the result of this SHL, and if it's a shift of an 297 // inrange amount, we can always perform a SHL in a smaller type. 298 uint32_t BitWidth = Ty->getScalarSizeInBits(); 299 KnownBits AmtKnownBits = 300 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 301 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 302 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 303 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 304 break; 305 } 306 case Instruction::LShr: { 307 // If this is a truncate of a logical shr, we can truncate it to a smaller 308 // lshr iff we know that the bits we would otherwise be shifting in are 309 // already zeros. 310 // TODO: It is enough to check that the bits we would be shifting in are 311 // zero - use AmtKnownBits.getMaxValue(). 312 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 313 uint32_t BitWidth = Ty->getScalarSizeInBits(); 314 KnownBits AmtKnownBits = 315 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 316 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 317 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 318 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 319 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 320 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 321 } 322 break; 323 } 324 case Instruction::AShr: { 325 // If this is a truncate of an arithmetic shr, we can truncate it to a 326 // smaller ashr iff we know that all the bits from the sign bit of the 327 // original type and the sign bit of the truncate type are similar. 328 // TODO: It is enough to check that the bits we would be shifting in are 329 // similar to sign bit of the truncate type. 330 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 331 uint32_t BitWidth = Ty->getScalarSizeInBits(); 332 KnownBits AmtKnownBits = 333 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 334 unsigned ShiftedBits = OrigBitWidth - BitWidth; 335 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 336 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 337 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 338 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 339 break; 340 } 341 case Instruction::Trunc: 342 // trunc(trunc(x)) -> trunc(x) 343 return true; 344 case Instruction::ZExt: 345 case Instruction::SExt: 346 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 347 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 348 return true; 349 case Instruction::Select: { 350 SelectInst *SI = cast<SelectInst>(I); 351 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 352 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 353 } 354 case Instruction::PHI: { 355 // We can change a phi if we can change all operands. Note that we never 356 // get into trouble with cyclic PHIs here because we only consider 357 // instructions with a single use. 358 PHINode *PN = cast<PHINode>(I); 359 for (Value *IncValue : PN->incoming_values()) 360 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 361 return false; 362 return true; 363 } 364 case Instruction::FPToUI: 365 case Instruction::FPToSI: { 366 // If the integer type can hold the max FP value, it is safe to cast 367 // directly to that type. Otherwise, we may create poison via overflow 368 // that did not exist in the original code. 369 Type *InputTy = I->getOperand(0)->getType()->getScalarType(); 370 const fltSemantics &Semantics = InputTy->getFltSemantics(); 371 uint32_t MinBitWidth = 372 APFloatBase::semanticsIntSizeInBits(Semantics, 373 I->getOpcode() == Instruction::FPToSI); 374 return Ty->getScalarSizeInBits() >= MinBitWidth; 375 } 376 case Instruction::ShuffleVector: 377 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 378 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 379 default: 380 // TODO: Can handle more cases here. 381 break; 382 } 383 384 return false; 385 } 386 387 /// Given a vector that is bitcast to an integer, optionally logically 388 /// right-shifted, and truncated, convert it to an extractelement. 389 /// Example (big endian): 390 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 391 /// ---> 392 /// extractelement <4 x i32> %X, 1 393 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 394 InstCombinerImpl &IC) { 395 Value *TruncOp = Trunc.getOperand(0); 396 Type *DestType = Trunc.getType(); 397 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 398 return nullptr; 399 400 Value *VecInput = nullptr; 401 ConstantInt *ShiftVal = nullptr; 402 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 403 m_LShr(m_BitCast(m_Value(VecInput)), 404 m_ConstantInt(ShiftVal)))) || 405 !isa<VectorType>(VecInput->getType())) 406 return nullptr; 407 408 VectorType *VecType = cast<VectorType>(VecInput->getType()); 409 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 410 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 411 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 412 413 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 414 return nullptr; 415 416 // If the element type of the vector doesn't match the result type, 417 // bitcast it to a vector type that we can extract from. 418 unsigned NumVecElts = VecWidth / DestWidth; 419 if (VecType->getElementType() != DestType) { 420 VecType = FixedVectorType::get(DestType, NumVecElts); 421 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 422 } 423 424 unsigned Elt = ShiftAmount / DestWidth; 425 if (IC.getDataLayout().isBigEndian()) 426 Elt = NumVecElts - 1 - Elt; 427 428 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 429 } 430 431 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 432 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 433 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 434 assert((isa<VectorType>(Trunc.getSrcTy()) || 435 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 436 "Don't narrow to an illegal scalar type"); 437 438 // Bail out on strange types. It is possible to handle some of these patterns 439 // even with non-power-of-2 sizes, but it is not a likely scenario. 440 Type *DestTy = Trunc.getType(); 441 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 442 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 443 if (!isPowerOf2_32(NarrowWidth)) 444 return nullptr; 445 446 // First, find an or'd pair of opposite shifts: 447 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 448 BinaryOperator *Or0, *Or1; 449 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 450 return nullptr; 451 452 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 453 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 454 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 455 Or0->getOpcode() == Or1->getOpcode()) 456 return nullptr; 457 458 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 459 if (Or0->getOpcode() == BinaryOperator::LShr) { 460 std::swap(Or0, Or1); 461 std::swap(ShVal0, ShVal1); 462 std::swap(ShAmt0, ShAmt1); 463 } 464 assert(Or0->getOpcode() == BinaryOperator::Shl && 465 Or1->getOpcode() == BinaryOperator::LShr && 466 "Illegal or(shift,shift) pair"); 467 468 // Match the shift amount operands for a funnel/rotate pattern. This always 469 // matches a subtraction on the R operand. 470 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 471 // The shift amounts may add up to the narrow bit width: 472 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 473 // If this is a funnel shift (different operands are shifted), then the 474 // shift amount can not over-shift (create poison) in the narrow type. 475 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 476 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 477 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 478 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 479 return L; 480 481 // The following patterns currently only work for rotation patterns. 482 // TODO: Add more general funnel-shift compatible patterns. 483 if (ShVal0 != ShVal1) 484 return nullptr; 485 486 // The shift amount may be masked with negation: 487 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 488 Value *X; 489 unsigned Mask = Width - 1; 490 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 491 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 492 return X; 493 494 // Same as above, but the shift amount may be extended after masking: 495 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 496 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 497 return X; 498 499 return nullptr; 500 }; 501 502 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 503 bool IsFshl = true; // Sub on LSHR. 504 if (!ShAmt) { 505 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 506 IsFshl = false; // Sub on SHL. 507 } 508 if (!ShAmt) 509 return nullptr; 510 511 // The right-shifted value must have high zeros in the wide type (for example 512 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 513 // truncated, so those do not matter. 514 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 515 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 516 return nullptr; 517 518 // Adjust the width of ShAmt for narrowed funnel shift operation: 519 // - Zero-extend if ShAmt is narrower than the destination type. 520 // - Truncate if ShAmt is wider, discarding non-significant high-order bits. 521 // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal), 522 // zext/trunc(ShAmt)). 523 Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy); 524 525 Value *X, *Y; 526 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 527 if (ShVal0 != ShVal1) 528 Y = Builder.CreateTrunc(ShVal1, DestTy); 529 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 530 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 531 return CallInst::Create(F, {X, Y, NarrowShAmt}); 532 } 533 534 /// Try to narrow the width of math or bitwise logic instructions by pulling a 535 /// truncate ahead of binary operators. 536 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 537 Type *SrcTy = Trunc.getSrcTy(); 538 Type *DestTy = Trunc.getType(); 539 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 540 unsigned DestWidth = DestTy->getScalarSizeInBits(); 541 542 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 543 return nullptr; 544 545 BinaryOperator *BinOp; 546 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 547 return nullptr; 548 549 Value *BinOp0 = BinOp->getOperand(0); 550 Value *BinOp1 = BinOp->getOperand(1); 551 switch (BinOp->getOpcode()) { 552 case Instruction::And: 553 case Instruction::Or: 554 case Instruction::Xor: 555 case Instruction::Add: 556 case Instruction::Sub: 557 case Instruction::Mul: { 558 Constant *C; 559 if (match(BinOp0, m_Constant(C))) { 560 // trunc (binop C, X) --> binop (trunc C', X) 561 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 562 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 563 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 564 } 565 if (match(BinOp1, m_Constant(C))) { 566 // trunc (binop X, C) --> binop (trunc X, C') 567 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 568 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 569 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 570 } 571 Value *X; 572 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 573 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 574 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 575 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 576 } 577 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 578 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 579 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 580 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 581 } 582 break; 583 } 584 case Instruction::LShr: 585 case Instruction::AShr: { 586 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 587 Value *A; 588 Constant *C; 589 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 590 unsigned MaxShiftAmt = SrcWidth - DestWidth; 591 // If the shift is small enough, all zero/sign bits created by the shift 592 // are removed by the trunc. 593 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 594 APInt(SrcWidth, MaxShiftAmt)))) { 595 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 596 bool IsExact = OldShift->isExact(); 597 if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(), 598 /*IsSigned*/ true, DL)) { 599 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 600 Value *Shift = 601 OldShift->getOpcode() == Instruction::AShr 602 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 603 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 604 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 605 } 606 } 607 } 608 break; 609 } 610 default: break; 611 } 612 613 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 614 return NarrowOr; 615 616 return nullptr; 617 } 618 619 /// Try to narrow the width of a splat shuffle. This could be generalized to any 620 /// shuffle with a constant operand, but we limit the transform to avoid 621 /// creating a shuffle type that targets may not be able to lower effectively. 622 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 623 InstCombiner::BuilderTy &Builder) { 624 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 625 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 626 all_equal(Shuf->getShuffleMask()) && 627 Shuf->getType() == Shuf->getOperand(0)->getType()) { 628 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 629 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 630 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 631 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 632 } 633 634 return nullptr; 635 } 636 637 /// Try to narrow the width of an insert element. This could be generalized for 638 /// any vector constant, but we limit the transform to insertion into undef to 639 /// avoid potential backend problems from unsupported insertion widths. This 640 /// could also be extended to handle the case of inserting a scalar constant 641 /// into a vector variable. 642 static Instruction *shrinkInsertElt(CastInst &Trunc, 643 InstCombiner::BuilderTy &Builder) { 644 Instruction::CastOps Opcode = Trunc.getOpcode(); 645 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 646 "Unexpected instruction for shrinking"); 647 648 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 649 if (!InsElt || !InsElt->hasOneUse()) 650 return nullptr; 651 652 Type *DestTy = Trunc.getType(); 653 Type *DestScalarTy = DestTy->getScalarType(); 654 Value *VecOp = InsElt->getOperand(0); 655 Value *ScalarOp = InsElt->getOperand(1); 656 Value *Index = InsElt->getOperand(2); 657 658 if (match(VecOp, m_Undef())) { 659 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 660 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 661 UndefValue *NarrowUndef = UndefValue::get(DestTy); 662 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 663 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 664 } 665 666 return nullptr; 667 } 668 669 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 670 if (Instruction *Result = commonCastTransforms(Trunc)) 671 return Result; 672 673 Value *Src = Trunc.getOperand(0); 674 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 675 unsigned DestWidth = DestTy->getScalarSizeInBits(); 676 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 677 678 // Attempt to truncate the entire input expression tree to the destination 679 // type. Only do this if the dest type is a simple type, don't convert the 680 // expression tree to something weird like i93 unless the source is also 681 // strange. 682 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 683 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 684 685 // If this cast is a truncate, evaluting in a different type always 686 // eliminates the cast, so it is always a win. 687 LLVM_DEBUG( 688 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 689 " to avoid cast: " 690 << Trunc << '\n'); 691 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 692 assert(Res->getType() == DestTy); 693 return replaceInstUsesWith(Trunc, Res); 694 } 695 696 // For integer types, check if we can shorten the entire input expression to 697 // DestWidth * 2, which won't allow removing the truncate, but reducing the 698 // width may enable further optimizations, e.g. allowing for larger 699 // vectorization factors. 700 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 701 if (DestWidth * 2 < SrcWidth) { 702 auto *NewDestTy = DestITy->getExtendedType(); 703 if (shouldChangeType(SrcTy, NewDestTy) && 704 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 705 LLVM_DEBUG( 706 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 707 " to reduce the width of operand of" 708 << Trunc << '\n'); 709 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 710 return new TruncInst(Res, DestTy); 711 } 712 } 713 } 714 715 // Test if the trunc is the user of a select which is part of a 716 // minimum or maximum operation. If so, don't do any more simplification. 717 // Even simplifying demanded bits can break the canonical form of a 718 // min/max. 719 Value *LHS, *RHS; 720 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 721 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 722 return nullptr; 723 724 // See if we can simplify any instructions used by the input whose sole 725 // purpose is to compute bits we don't care about. 726 if (SimplifyDemandedInstructionBits(Trunc)) 727 return &Trunc; 728 729 if (DestWidth == 1) { 730 Value *Zero = Constant::getNullValue(SrcTy); 731 if (DestTy->isIntegerTy()) { 732 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 733 // TODO: We canonicalize to more instructions here because we are probably 734 // lacking equivalent analysis for trunc relative to icmp. There may also 735 // be codegen concerns. If those trunc limitations were removed, we could 736 // remove this transform. 737 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 738 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 739 } 740 741 // For vectors, we do not canonicalize all truncs to icmp, so optimize 742 // patterns that would be covered within visitICmpInst. 743 Value *X; 744 Constant *C; 745 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 746 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 747 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 748 Constant *MaskC = ConstantExpr::getShl(One, C); 749 Value *And = Builder.CreateAnd(X, MaskC); 750 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 751 } 752 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)), 753 m_Deferred(X))))) { 754 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 755 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 756 Constant *MaskC = ConstantExpr::getShl(One, C); 757 Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One)); 758 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 759 } 760 } 761 762 Value *A, *B; 763 Constant *C; 764 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 765 unsigned AWidth = A->getType()->getScalarSizeInBits(); 766 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 767 auto *OldSh = cast<Instruction>(Src); 768 bool IsExact = OldSh->isExact(); 769 770 // If the shift is small enough, all zero bits created by the shift are 771 // removed by the trunc. 772 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 773 APInt(SrcWidth, MaxShiftAmt)))) { 774 auto GetNewShAmt = [&](unsigned Width) { 775 Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false); 776 Constant *Cmp = 777 ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL); 778 Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt); 779 return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(), 780 DL); 781 }; 782 783 // trunc (lshr (sext A), C) --> ashr A, C 784 if (A->getType() == DestTy) { 785 Constant *ShAmt = GetNewShAmt(DestWidth); 786 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 787 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 788 : BinaryOperator::CreateAShr(A, ShAmt); 789 } 790 // The types are mismatched, so create a cast after shifting: 791 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 792 if (Src->hasOneUse()) { 793 Constant *ShAmt = GetNewShAmt(AWidth); 794 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 795 return CastInst::CreateIntegerCast(Shift, DestTy, true); 796 } 797 } 798 // TODO: Mask high bits with 'and'. 799 } 800 801 if (Instruction *I = narrowBinOp(Trunc)) 802 return I; 803 804 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 805 return I; 806 807 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 808 return I; 809 810 if (Src->hasOneUse() && 811 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 812 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 813 // dest type is native and cst < dest size. 814 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 815 !match(A, m_Shr(m_Value(), m_Constant()))) { 816 // Skip shifts of shift by constants. It undoes a combine in 817 // FoldShiftByConstant and is the extend in reg pattern. 818 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 819 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 820 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 821 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 822 ConstantExpr::getTrunc(C, DestTy)); 823 } 824 } 825 } 826 827 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 828 return I; 829 830 // Whenever an element is extracted from a vector, and then truncated, 831 // canonicalize by converting it to a bitcast followed by an 832 // extractelement. 833 // 834 // Example (little endian): 835 // trunc (extractelement <4 x i64> %X, 0) to i32 836 // ---> 837 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 838 Value *VecOp; 839 ConstantInt *Cst; 840 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 841 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 842 auto VecElts = VecOpTy->getElementCount(); 843 844 // A badly fit destination size would result in an invalid cast. 845 if (SrcWidth % DestWidth == 0) { 846 uint64_t TruncRatio = SrcWidth / DestWidth; 847 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 848 uint64_t VecOpIdx = Cst->getZExtValue(); 849 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 850 : VecOpIdx * TruncRatio; 851 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 852 "overflow 32-bits"); 853 854 auto *BitCastTo = 855 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 856 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 857 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 858 } 859 } 860 861 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 862 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 863 m_Value(B))))) { 864 unsigned AWidth = A->getType()->getScalarSizeInBits(); 865 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 866 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 867 Value *NarrowCtlz = 868 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 869 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 870 } 871 } 872 873 if (match(Src, m_VScale())) { 874 if (Trunc.getFunction() && 875 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 876 Attribute Attr = 877 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 878 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 879 if (Log2_32(*MaxVScale) < DestWidth) { 880 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 881 return replaceInstUsesWith(Trunc, VScale); 882 } 883 } 884 } 885 } 886 887 return nullptr; 888 } 889 890 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, 891 ZExtInst &Zext) { 892 // If we are just checking for a icmp eq of a single bit and zext'ing it 893 // to an integer, then shift the bit to the appropriate place and then 894 // cast to integer to avoid the comparison. 895 896 // FIXME: This set of transforms does not check for extra uses and/or creates 897 // an extra instruction (an optional final cast is not included 898 // in the transform comments). We may also want to favor icmp over 899 // shifts in cases of equal instructions because icmp has better 900 // analysis in general (invert the transform). 901 902 const APInt *Op1CV; 903 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 904 905 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 906 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 907 Value *In = Cmp->getOperand(0); 908 Value *Sh = ConstantInt::get(In->getType(), 909 In->getType()->getScalarSizeInBits() - 1); 910 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 911 if (In->getType() != Zext.getType()) 912 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 913 914 return replaceInstUsesWith(Zext, In); 915 } 916 917 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 918 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 919 // zext (X != 0) to i32 --> X iff X has only the low bit set. 920 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 921 922 if (Op1CV->isZero() && Cmp->isEquality()) { 923 // Exactly 1 possible 1? But not the high-bit because that is 924 // canonicalized to this form. 925 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 926 APInt KnownZeroMask(~Known.Zero); 927 uint32_t ShAmt = KnownZeroMask.logBase2(); 928 bool IsExpectShAmt = KnownZeroMask.isPowerOf2() && 929 (Zext.getType()->getScalarSizeInBits() != ShAmt + 1); 930 if (IsExpectShAmt && 931 (Cmp->getOperand(0)->getType() == Zext.getType() || 932 Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) { 933 Value *In = Cmp->getOperand(0); 934 if (ShAmt) { 935 // Perform a logical shr by shiftamt. 936 // Insert the shift to put the result in the low bit. 937 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 938 In->getName() + ".lobit"); 939 } 940 941 // Toggle the low bit for "X == 0". 942 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 943 In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1)); 944 945 if (Zext.getType() == In->getType()) 946 return replaceInstUsesWith(Zext, In); 947 948 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 949 return replaceInstUsesWith(Zext, IntCast); 950 } 951 } 952 } 953 954 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 955 // Test if a bit is clear/set using a shifted-one mask: 956 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 957 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 958 Value *X, *ShAmt; 959 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 960 match(Cmp->getOperand(0), 961 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 962 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 963 X = Builder.CreateNot(X); 964 Value *Lshr = Builder.CreateLShr(X, ShAmt); 965 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 966 return replaceInstUsesWith(Zext, And1); 967 } 968 } 969 970 return nullptr; 971 } 972 973 /// Determine if the specified value can be computed in the specified wider type 974 /// and produce the same low bits. If not, return false. 975 /// 976 /// If this function returns true, it can also return a non-zero number of bits 977 /// (in BitsToClear) which indicates that the value it computes is correct for 978 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 979 /// out. For example, to promote something like: 980 /// 981 /// %B = trunc i64 %A to i32 982 /// %C = lshr i32 %B, 8 983 /// %E = zext i32 %C to i64 984 /// 985 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 986 /// set to 8 to indicate that the promoted value needs to have bits 24-31 987 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 988 /// clear the top bits anyway, doing this has no extra cost. 989 /// 990 /// This function works on both vectors and scalars. 991 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 992 InstCombinerImpl &IC, Instruction *CxtI) { 993 BitsToClear = 0; 994 if (canAlwaysEvaluateInType(V, Ty)) 995 return true; 996 if (canNotEvaluateInType(V, Ty)) 997 return false; 998 999 auto *I = cast<Instruction>(V); 1000 unsigned Tmp; 1001 switch (I->getOpcode()) { 1002 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1003 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1004 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1005 return true; 1006 case Instruction::And: 1007 case Instruction::Or: 1008 case Instruction::Xor: 1009 case Instruction::Add: 1010 case Instruction::Sub: 1011 case Instruction::Mul: 1012 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1013 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1014 return false; 1015 // These can all be promoted if neither operand has 'bits to clear'. 1016 if (BitsToClear == 0 && Tmp == 0) 1017 return true; 1018 1019 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1020 // other side, BitsToClear is ok. 1021 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1022 // We use MaskedValueIsZero here for generality, but the case we care 1023 // about the most is constant RHS. 1024 unsigned VSize = V->getType()->getScalarSizeInBits(); 1025 if (IC.MaskedValueIsZero(I->getOperand(1), 1026 APInt::getHighBitsSet(VSize, BitsToClear), 1027 0, CxtI)) { 1028 // If this is an And instruction and all of the BitsToClear are 1029 // known to be zero we can reset BitsToClear. 1030 if (I->getOpcode() == Instruction::And) 1031 BitsToClear = 0; 1032 return true; 1033 } 1034 } 1035 1036 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1037 return false; 1038 1039 case Instruction::Shl: { 1040 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1041 // upper bits we can reduce BitsToClear by the shift amount. 1042 const APInt *Amt; 1043 if (match(I->getOperand(1), m_APInt(Amt))) { 1044 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1045 return false; 1046 uint64_t ShiftAmt = Amt->getZExtValue(); 1047 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1048 return true; 1049 } 1050 return false; 1051 } 1052 case Instruction::LShr: { 1053 // We can promote lshr(x, cst) if we can promote x. This requires the 1054 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1055 const APInt *Amt; 1056 if (match(I->getOperand(1), m_APInt(Amt))) { 1057 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1058 return false; 1059 BitsToClear += Amt->getZExtValue(); 1060 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1061 BitsToClear = V->getType()->getScalarSizeInBits(); 1062 return true; 1063 } 1064 // Cannot promote variable LSHR. 1065 return false; 1066 } 1067 case Instruction::Select: 1068 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1069 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1070 // TODO: If important, we could handle the case when the BitsToClear are 1071 // known zero in the disagreeing side. 1072 Tmp != BitsToClear) 1073 return false; 1074 return true; 1075 1076 case Instruction::PHI: { 1077 // We can change a phi if we can change all operands. Note that we never 1078 // get into trouble with cyclic PHIs here because we only consider 1079 // instructions with a single use. 1080 PHINode *PN = cast<PHINode>(I); 1081 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1082 return false; 1083 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1084 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1085 // TODO: If important, we could handle the case when the BitsToClear 1086 // are known zero in the disagreeing input. 1087 Tmp != BitsToClear) 1088 return false; 1089 return true; 1090 } 1091 case Instruction::Call: 1092 // llvm.vscale() can always be executed in larger type, because the 1093 // value is automatically zero-extended. 1094 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1095 if (II->getIntrinsicID() == Intrinsic::vscale) 1096 return true; 1097 return false; 1098 default: 1099 // TODO: Can handle more cases here. 1100 return false; 1101 } 1102 } 1103 1104 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) { 1105 // If this zero extend is only used by a truncate, let the truncate be 1106 // eliminated before we try to optimize this zext. 1107 if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) && 1108 !isa<Constant>(Zext.getOperand(0))) 1109 return nullptr; 1110 1111 // If one of the common conversion will work, do it. 1112 if (Instruction *Result = commonCastTransforms(Zext)) 1113 return Result; 1114 1115 Value *Src = Zext.getOperand(0); 1116 Type *SrcTy = Src->getType(), *DestTy = Zext.getType(); 1117 1118 // Try to extend the entire expression tree to the wide destination type. 1119 unsigned BitsToClear; 1120 if (shouldChangeType(SrcTy, DestTy) && 1121 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) { 1122 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1123 "Can't clear more bits than in SrcTy"); 1124 1125 // Okay, we can transform this! Insert the new expression now. 1126 LLVM_DEBUG( 1127 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1128 " to avoid zero extend: " 1129 << Zext << '\n'); 1130 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1131 assert(Res->getType() == DestTy); 1132 1133 // Preserve debug values referring to Src if the zext is its last use. 1134 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1135 if (SrcOp->hasOneUse()) 1136 replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT); 1137 1138 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear; 1139 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1140 1141 // If the high bits are already filled with zeros, just replace this 1142 // cast with the result. 1143 if (MaskedValueIsZero(Res, 1144 APInt::getHighBitsSet(DestBitSize, 1145 DestBitSize - SrcBitsKept), 1146 0, &Zext)) 1147 return replaceInstUsesWith(Zext, Res); 1148 1149 // We need to emit an AND to clear the high bits. 1150 Constant *C = ConstantInt::get(Res->getType(), 1151 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1152 return BinaryOperator::CreateAnd(Res, C); 1153 } 1154 1155 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1156 // types and if the sizes are just right we can convert this into a logical 1157 // 'and' which will be much cheaper than the pair of casts. 1158 if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1159 // TODO: Subsume this into EvaluateInDifferentType. 1160 1161 // Get the sizes of the types involved. We know that the intermediate type 1162 // will be smaller than A or C, but don't know the relation between A and C. 1163 Value *A = CSrc->getOperand(0); 1164 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1165 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1166 unsigned DstSize = DestTy->getScalarSizeInBits(); 1167 // If we're actually extending zero bits, then if 1168 // SrcSize < DstSize: zext(a & mask) 1169 // SrcSize == DstSize: a & mask 1170 // SrcSize > DstSize: trunc(a) & mask 1171 if (SrcSize < DstSize) { 1172 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1173 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1174 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1175 return new ZExtInst(And, DestTy); 1176 } 1177 1178 if (SrcSize == DstSize) { 1179 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1180 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1181 AndValue)); 1182 } 1183 if (SrcSize > DstSize) { 1184 Value *Trunc = Builder.CreateTrunc(A, DestTy); 1185 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1186 return BinaryOperator::CreateAnd(Trunc, 1187 ConstantInt::get(Trunc->getType(), 1188 AndValue)); 1189 } 1190 } 1191 1192 if (auto *Cmp = dyn_cast<ICmpInst>(Src)) 1193 return transformZExtICmp(Cmp, Zext); 1194 1195 // zext(trunc(X) & C) -> (X & zext(C)). 1196 Constant *C; 1197 Value *X; 1198 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1199 X->getType() == DestTy) 1200 return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy)); 1201 1202 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1203 Value *And; 1204 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1205 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1206 X->getType() == DestTy) { 1207 Value *ZC = Builder.CreateZExt(C, DestTy); 1208 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1209 } 1210 1211 // If we are truncating, masking, and then zexting back to the original type, 1212 // that's just a mask. This is not handled by canEvaluateZextd if the 1213 // intermediate values have extra uses. This could be generalized further for 1214 // a non-constant mask operand. 1215 // zext (and (trunc X), C) --> and X, (zext C) 1216 if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) && 1217 X->getType() == DestTy) { 1218 Value *ZextC = Builder.CreateZExt(C, DestTy); 1219 return BinaryOperator::CreateAnd(X, ZextC); 1220 } 1221 1222 if (match(Src, m_VScale())) { 1223 if (Zext.getFunction() && 1224 Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1225 Attribute Attr = 1226 Zext.getFunction()->getFnAttribute(Attribute::VScaleRange); 1227 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1228 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1229 if (Log2_32(*MaxVScale) < TypeWidth) { 1230 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1231 return replaceInstUsesWith(Zext, VScale); 1232 } 1233 } 1234 } 1235 } 1236 1237 if (!Zext.hasNonNeg()) { 1238 // If this zero extend is only used by a shift, add nneg flag. 1239 if (Zext.hasOneUse() && 1240 SrcTy->getScalarSizeInBits() > 1241 Log2_64_Ceil(DestTy->getScalarSizeInBits()) && 1242 match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) { 1243 Zext.setNonNeg(); 1244 return &Zext; 1245 } 1246 1247 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) { 1248 Zext.setNonNeg(); 1249 return &Zext; 1250 } 1251 } 1252 1253 return nullptr; 1254 } 1255 1256 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1257 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp, 1258 SExtInst &Sext) { 1259 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 1260 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1261 1262 // Don't bother if Op1 isn't of vector or integer type. 1263 if (!Op1->getType()->isIntOrIntVectorTy()) 1264 return nullptr; 1265 1266 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) { 1267 // sext (x <s 0) --> ashr x, 31 (all ones if negative) 1268 Value *Sh = ConstantInt::get(Op0->getType(), 1269 Op0->getType()->getScalarSizeInBits() - 1); 1270 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1271 if (In->getType() != Sext.getType()) 1272 In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/); 1273 1274 return replaceInstUsesWith(Sext, In); 1275 } 1276 1277 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1278 // If we know that only one bit of the LHS of the icmp can be set and we 1279 // have an equality comparison with zero or a power of 2, we can transform 1280 // the icmp and sext into bitwise/integer operations. 1281 if (Cmp->hasOneUse() && 1282 Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1283 KnownBits Known = computeKnownBits(Op0, 0, &Sext); 1284 1285 APInt KnownZeroMask(~Known.Zero); 1286 if (KnownZeroMask.isPowerOf2()) { 1287 Value *In = Cmp->getOperand(0); 1288 1289 // If the icmp tests for a known zero bit we can constant fold it. 1290 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1291 Value *V = Pred == ICmpInst::ICMP_NE ? 1292 ConstantInt::getAllOnesValue(Sext.getType()) : 1293 ConstantInt::getNullValue(Sext.getType()); 1294 return replaceInstUsesWith(Sext, V); 1295 } 1296 1297 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1298 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1299 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1300 unsigned ShiftAmt = KnownZeroMask.countr_zero(); 1301 // Perform a right shift to place the desired bit in the LSB. 1302 if (ShiftAmt) 1303 In = Builder.CreateLShr(In, 1304 ConstantInt::get(In->getType(), ShiftAmt)); 1305 1306 // At this point "In" is either 1 or 0. Subtract 1 to turn 1307 // {1, 0} -> {0, -1}. 1308 In = Builder.CreateAdd(In, 1309 ConstantInt::getAllOnesValue(In->getType()), 1310 "sext"); 1311 } else { 1312 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1313 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1314 unsigned ShiftAmt = KnownZeroMask.countl_zero(); 1315 // Perform a left shift to place the desired bit in the MSB. 1316 if (ShiftAmt) 1317 In = Builder.CreateShl(In, 1318 ConstantInt::get(In->getType(), ShiftAmt)); 1319 1320 // Distribute the bit over the whole bit width. 1321 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1322 KnownZeroMask.getBitWidth() - 1), "sext"); 1323 } 1324 1325 if (Sext.getType() == In->getType()) 1326 return replaceInstUsesWith(Sext, In); 1327 return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/); 1328 } 1329 } 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 /// Return true if we can take the specified value and return it as type Ty 1336 /// without inserting any new casts and without changing the value of the common 1337 /// low bits. This is used by code that tries to promote integer operations to 1338 /// a wider types will allow us to eliminate the extension. 1339 /// 1340 /// This function works on both vectors and scalars. 1341 /// 1342 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1343 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1344 "Can't sign extend type to a smaller type"); 1345 if (canAlwaysEvaluateInType(V, Ty)) 1346 return true; 1347 if (canNotEvaluateInType(V, Ty)) 1348 return false; 1349 1350 auto *I = cast<Instruction>(V); 1351 switch (I->getOpcode()) { 1352 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1353 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1354 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1355 return true; 1356 case Instruction::And: 1357 case Instruction::Or: 1358 case Instruction::Xor: 1359 case Instruction::Add: 1360 case Instruction::Sub: 1361 case Instruction::Mul: 1362 // These operators can all arbitrarily be extended if their inputs can. 1363 return canEvaluateSExtd(I->getOperand(0), Ty) && 1364 canEvaluateSExtd(I->getOperand(1), Ty); 1365 1366 //case Instruction::Shl: TODO 1367 //case Instruction::LShr: TODO 1368 1369 case Instruction::Select: 1370 return canEvaluateSExtd(I->getOperand(1), Ty) && 1371 canEvaluateSExtd(I->getOperand(2), Ty); 1372 1373 case Instruction::PHI: { 1374 // We can change a phi if we can change all operands. Note that we never 1375 // get into trouble with cyclic PHIs here because we only consider 1376 // instructions with a single use. 1377 PHINode *PN = cast<PHINode>(I); 1378 for (Value *IncValue : PN->incoming_values()) 1379 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1380 return true; 1381 } 1382 default: 1383 // TODO: Can handle more cases here. 1384 break; 1385 } 1386 1387 return false; 1388 } 1389 1390 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) { 1391 // If this sign extend is only used by a truncate, let the truncate be 1392 // eliminated before we try to optimize this sext. 1393 if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back())) 1394 return nullptr; 1395 1396 if (Instruction *I = commonCastTransforms(Sext)) 1397 return I; 1398 1399 Value *Src = Sext.getOperand(0); 1400 Type *SrcTy = Src->getType(), *DestTy = Sext.getType(); 1401 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1402 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1403 1404 // If the value being extended is zero or positive, use a zext instead. 1405 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) { 1406 auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy); 1407 CI->setNonNeg(true); 1408 return CI; 1409 } 1410 1411 // Try to extend the entire expression tree to the wide destination type. 1412 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1413 // Okay, we can transform this! Insert the new expression now. 1414 LLVM_DEBUG( 1415 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1416 " to avoid sign extend: " 1417 << Sext << '\n'); 1418 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1419 assert(Res->getType() == DestTy); 1420 1421 // If the high bits are already filled with sign bit, just replace this 1422 // cast with the result. 1423 if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize) 1424 return replaceInstUsesWith(Sext, Res); 1425 1426 // We need to emit a shl + ashr to do the sign extend. 1427 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1428 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1429 ShAmt); 1430 } 1431 1432 Value *X; 1433 if (match(Src, m_Trunc(m_Value(X)))) { 1434 // If the input has more sign bits than bits truncated, then convert 1435 // directly to final type. 1436 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1437 if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize) 1438 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1439 1440 // If input is a trunc from the destination type, then convert into shifts. 1441 if (Src->hasOneUse() && X->getType() == DestTy) { 1442 // sext (trunc X) --> ashr (shl X, C), C 1443 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1444 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1445 } 1446 1447 // If we are replacing shifted-in high zero bits with sign bits, convert 1448 // the logic shift to arithmetic shift and eliminate the cast to 1449 // intermediate type: 1450 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1451 Value *Y; 1452 if (Src->hasOneUse() && 1453 match(X, m_LShr(m_Value(Y), 1454 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1455 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1456 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1457 } 1458 } 1459 1460 if (auto *Cmp = dyn_cast<ICmpInst>(Src)) 1461 return transformSExtICmp(Cmp, Sext); 1462 1463 // If the input is a shl/ashr pair of a same constant, then this is a sign 1464 // extension from a smaller value. If we could trust arbitrary bitwidth 1465 // integers, we could turn this into a truncate to the smaller bit and then 1466 // use a sext for the whole extension. Since we don't, look deeper and check 1467 // for a truncate. If the source and dest are the same type, eliminate the 1468 // trunc and extend and just do shifts. For example, turn: 1469 // %a = trunc i32 %i to i8 1470 // %b = shl i8 %a, C 1471 // %c = ashr i8 %b, C 1472 // %d = sext i8 %c to i32 1473 // into: 1474 // %a = shl i32 %i, 32-(8-C) 1475 // %d = ashr i32 %a, 32-(8-C) 1476 Value *A = nullptr; 1477 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1478 Constant *BA = nullptr, *CA = nullptr; 1479 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1480 m_ImmConstant(CA))) && 1481 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1482 Constant *WideCurrShAmt = 1483 ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL); 1484 assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail"); 1485 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1486 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1487 Constant *NewShAmt = ConstantExpr::getSub( 1488 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1489 NumLowbitsLeft); 1490 NewShAmt = 1491 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1492 A = Builder.CreateShl(A, NewShAmt, Sext.getName()); 1493 return BinaryOperator::CreateAShr(A, NewShAmt); 1494 } 1495 1496 // Splatting a bit of constant-index across a value: 1497 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1498 // If the dest type is different, use a cast (adjust use check). 1499 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1500 m_SpecificInt(SrcBitSize - 1))))) { 1501 Type *XTy = X->getType(); 1502 unsigned XBitSize = XTy->getScalarSizeInBits(); 1503 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1504 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1505 if (XTy == DestTy) 1506 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1507 AshrAmtC); 1508 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1509 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1510 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1511 } 1512 } 1513 1514 if (match(Src, m_VScale())) { 1515 if (Sext.getFunction() && 1516 Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1517 Attribute Attr = 1518 Sext.getFunction()->getFnAttribute(Attribute::VScaleRange); 1519 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1520 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { 1521 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1522 return replaceInstUsesWith(Sext, VScale); 1523 } 1524 } 1525 } 1526 } 1527 1528 return nullptr; 1529 } 1530 1531 /// Return a Constant* for the specified floating-point constant if it fits 1532 /// in the specified FP type without changing its value. 1533 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1534 bool losesInfo; 1535 APFloat F = CFP->getValueAPF(); 1536 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1537 return !losesInfo; 1538 } 1539 1540 static Type *shrinkFPConstant(ConstantFP *CFP) { 1541 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1542 return nullptr; // No constant folding of this. 1543 // See if the value can be truncated to half and then reextended. 1544 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1545 return Type::getHalfTy(CFP->getContext()); 1546 // See if the value can be truncated to float and then reextended. 1547 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1548 return Type::getFloatTy(CFP->getContext()); 1549 if (CFP->getType()->isDoubleTy()) 1550 return nullptr; // Won't shrink. 1551 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1552 return Type::getDoubleTy(CFP->getContext()); 1553 // Don't try to shrink to various long double types. 1554 return nullptr; 1555 } 1556 1557 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1558 // type we can safely truncate all elements to. 1559 static Type *shrinkFPConstantVector(Value *V) { 1560 auto *CV = dyn_cast<Constant>(V); 1561 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1562 if (!CV || !CVVTy) 1563 return nullptr; 1564 1565 Type *MinType = nullptr; 1566 1567 unsigned NumElts = CVVTy->getNumElements(); 1568 1569 // For fixed-width vectors we find the minimal type by looking 1570 // through the constant values of the vector. 1571 for (unsigned i = 0; i != NumElts; ++i) { 1572 if (isa<UndefValue>(CV->getAggregateElement(i))) 1573 continue; 1574 1575 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1576 if (!CFP) 1577 return nullptr; 1578 1579 Type *T = shrinkFPConstant(CFP); 1580 if (!T) 1581 return nullptr; 1582 1583 // If we haven't found a type yet or this type has a larger mantissa than 1584 // our previous type, this is our new minimal type. 1585 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1586 MinType = T; 1587 } 1588 1589 // Make a vector type from the minimal type. 1590 return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr; 1591 } 1592 1593 /// Find the minimum FP type we can safely truncate to. 1594 static Type *getMinimumFPType(Value *V) { 1595 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1596 return FPExt->getOperand(0)->getType(); 1597 1598 // If this value is a constant, return the constant in the smallest FP type 1599 // that can accurately represent it. This allows us to turn 1600 // (float)((double)X+2.0) into x+2.0f. 1601 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1602 if (Type *T = shrinkFPConstant(CFP)) 1603 return T; 1604 1605 // We can only correctly find a minimum type for a scalable vector when it is 1606 // a splat. For splats of constant values the fpext is wrapped up as a 1607 // ConstantExpr. 1608 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1609 if (FPCExt->getOpcode() == Instruction::FPExt) 1610 return FPCExt->getOperand(0)->getType(); 1611 1612 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1613 // vectors 1614 if (Type *T = shrinkFPConstantVector(V)) 1615 return T; 1616 1617 return V->getType(); 1618 } 1619 1620 /// Return true if the cast from integer to FP can be proven to be exact for all 1621 /// possible inputs (the conversion does not lose any precision). 1622 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { 1623 CastInst::CastOps Opcode = I.getOpcode(); 1624 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1625 "Unexpected cast"); 1626 Value *Src = I.getOperand(0); 1627 Type *SrcTy = Src->getType(); 1628 Type *FPTy = I.getType(); 1629 bool IsSigned = Opcode == Instruction::SIToFP; 1630 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1631 1632 // Easy case - if the source integer type has less bits than the FP mantissa, 1633 // then the cast must be exact. 1634 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1635 if (SrcSize <= DestNumSigBits) 1636 return true; 1637 1638 // Cast from FP to integer and back to FP is independent of the intermediate 1639 // integer width because of poison on overflow. 1640 Value *F; 1641 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1642 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1643 // potential rounding of negative FP input values. 1644 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1645 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1646 SrcNumSigBits++; 1647 1648 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1649 // significant bits than the destination (and make sure neither type is 1650 // weird -- ppc_fp128). 1651 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1652 SrcNumSigBits <= DestNumSigBits) 1653 return true; 1654 } 1655 1656 // TODO: 1657 // Try harder to find if the source integer type has less significant bits. 1658 // For example, compute number of sign bits. 1659 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); 1660 int SigBits = (int)SrcTy->getScalarSizeInBits() - 1661 SrcKnown.countMinLeadingZeros() - 1662 SrcKnown.countMinTrailingZeros(); 1663 if (SigBits <= DestNumSigBits) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1670 if (Instruction *I = commonCastTransforms(FPT)) 1671 return I; 1672 1673 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1674 // simplify this expression to avoid one or more of the trunc/extend 1675 // operations if we can do so without changing the numerical results. 1676 // 1677 // The exact manner in which the widths of the operands interact to limit 1678 // what we can and cannot do safely varies from operation to operation, and 1679 // is explained below in the various case statements. 1680 Type *Ty = FPT.getType(); 1681 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1682 if (BO && BO->hasOneUse()) { 1683 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1684 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1685 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1686 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1687 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1688 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1689 unsigned DstWidth = Ty->getFPMantissaWidth(); 1690 switch (BO->getOpcode()) { 1691 default: break; 1692 case Instruction::FAdd: 1693 case Instruction::FSub: 1694 // For addition and subtraction, the infinitely precise result can 1695 // essentially be arbitrarily wide; proving that double rounding 1696 // will not occur because the result of OpI is exact (as we will for 1697 // FMul, for example) is hopeless. However, we *can* nonetheless 1698 // frequently know that double rounding cannot occur (or that it is 1699 // innocuous) by taking advantage of the specific structure of 1700 // infinitely-precise results that admit double rounding. 1701 // 1702 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1703 // to represent both sources, we can guarantee that the double 1704 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1705 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1706 // for proof of this fact). 1707 // 1708 // Note: Figueroa does not consider the case where DstFormat != 1709 // SrcFormat. It's possible (likely even!) that this analysis 1710 // could be tightened for those cases, but they are rare (the main 1711 // case of interest here is (float)((double)float + float)). 1712 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1713 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1714 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1715 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1716 RI->copyFastMathFlags(BO); 1717 return RI; 1718 } 1719 break; 1720 case Instruction::FMul: 1721 // For multiplication, the infinitely precise result has at most 1722 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1723 // that such a value can be exactly represented, then no double 1724 // rounding can possibly occur; we can safely perform the operation 1725 // in the destination format if it can represent both sources. 1726 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1727 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1728 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1729 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1730 } 1731 break; 1732 case Instruction::FDiv: 1733 // For division, we use again use the bound from Figueroa's 1734 // dissertation. I am entirely certain that this bound can be 1735 // tightened in the unbalanced operand case by an analysis based on 1736 // the diophantine rational approximation bound, but the well-known 1737 // condition used here is a good conservative first pass. 1738 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1739 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1740 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1741 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1742 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1743 } 1744 break; 1745 case Instruction::FRem: { 1746 // Remainder is straightforward. Remainder is always exact, so the 1747 // type of OpI doesn't enter into things at all. We simply evaluate 1748 // in whichever source type is larger, then convert to the 1749 // destination type. 1750 if (SrcWidth == OpWidth) 1751 break; 1752 Value *LHS, *RHS; 1753 if (LHSWidth == SrcWidth) { 1754 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1755 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1756 } else { 1757 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1758 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1759 } 1760 1761 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1762 return CastInst::CreateFPCast(ExactResult, Ty); 1763 } 1764 } 1765 } 1766 1767 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1768 Value *X; 1769 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1770 if (Op && Op->hasOneUse()) { 1771 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1772 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1773 if (isa<FPMathOperator>(Op)) 1774 Builder.setFastMathFlags(Op->getFastMathFlags()); 1775 1776 if (match(Op, m_FNeg(m_Value(X)))) { 1777 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1778 1779 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1780 } 1781 1782 // If we are truncating a select that has an extended operand, we can 1783 // narrow the other operand and do the select as a narrow op. 1784 Value *Cond, *X, *Y; 1785 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1786 X->getType() == Ty) { 1787 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1788 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1789 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1790 return replaceInstUsesWith(FPT, Sel); 1791 } 1792 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1793 X->getType() == Ty) { 1794 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1795 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1796 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1797 return replaceInstUsesWith(FPT, Sel); 1798 } 1799 } 1800 1801 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1802 switch (II->getIntrinsicID()) { 1803 default: break; 1804 case Intrinsic::ceil: 1805 case Intrinsic::fabs: 1806 case Intrinsic::floor: 1807 case Intrinsic::nearbyint: 1808 case Intrinsic::rint: 1809 case Intrinsic::round: 1810 case Intrinsic::roundeven: 1811 case Intrinsic::trunc: { 1812 Value *Src = II->getArgOperand(0); 1813 if (!Src->hasOneUse()) 1814 break; 1815 1816 // Except for fabs, this transformation requires the input of the unary FP 1817 // operation to be itself an fpext from the type to which we're 1818 // truncating. 1819 if (II->getIntrinsicID() != Intrinsic::fabs) { 1820 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1821 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1822 break; 1823 } 1824 1825 // Do unary FP operation on smaller type. 1826 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1827 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1828 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1829 II->getIntrinsicID(), Ty); 1830 SmallVector<OperandBundleDef, 1> OpBundles; 1831 II->getOperandBundlesAsDefs(OpBundles); 1832 CallInst *NewCI = 1833 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1834 NewCI->copyFastMathFlags(II); 1835 return NewCI; 1836 } 1837 } 1838 } 1839 1840 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1841 return I; 1842 1843 Value *Src = FPT.getOperand(0); 1844 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1845 auto *FPCast = cast<CastInst>(Src); 1846 if (isKnownExactCastIntToFP(*FPCast, *this)) 1847 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1848 } 1849 1850 return nullptr; 1851 } 1852 1853 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1854 // If the source operand is a cast from integer to FP and known exact, then 1855 // cast the integer operand directly to the destination type. 1856 Type *Ty = FPExt.getType(); 1857 Value *Src = FPExt.getOperand(0); 1858 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1859 auto *FPCast = cast<CastInst>(Src); 1860 if (isKnownExactCastIntToFP(*FPCast, *this)) 1861 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1862 } 1863 1864 return commonCastTransforms(FPExt); 1865 } 1866 1867 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1868 /// This is safe if the intermediate type has enough bits in its mantissa to 1869 /// accurately represent all values of X. For example, this won't work with 1870 /// i64 -> float -> i64. 1871 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1872 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1873 return nullptr; 1874 1875 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1876 Value *X = OpI->getOperand(0); 1877 Type *XType = X->getType(); 1878 Type *DestType = FI.getType(); 1879 bool IsOutputSigned = isa<FPToSIInst>(FI); 1880 1881 // Since we can assume the conversion won't overflow, our decision as to 1882 // whether the input will fit in the float should depend on the minimum 1883 // of the input range and output range. 1884 1885 // This means this is also safe for a signed input and unsigned output, since 1886 // a negative input would lead to undefined behavior. 1887 if (!isKnownExactCastIntToFP(*OpI, *this)) { 1888 // The first cast may not round exactly based on the source integer width 1889 // and FP width, but the overflow UB rules can still allow this to fold. 1890 // If the destination type is narrow, that means the intermediate FP value 1891 // must be large enough to hold the source value exactly. 1892 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1893 int OutputSize = (int)DestType->getScalarSizeInBits(); 1894 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1895 return nullptr; 1896 } 1897 1898 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1899 bool IsInputSigned = isa<SIToFPInst>(OpI); 1900 if (IsInputSigned && IsOutputSigned) 1901 return new SExtInst(X, DestType); 1902 return new ZExtInst(X, DestType); 1903 } 1904 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1905 return new TruncInst(X, DestType); 1906 1907 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1908 return replaceInstUsesWith(FI, X); 1909 } 1910 1911 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1912 if (Instruction *I = foldItoFPtoI(FI)) 1913 return I; 1914 1915 return commonCastTransforms(FI); 1916 } 1917 1918 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 1919 if (Instruction *I = foldItoFPtoI(FI)) 1920 return I; 1921 1922 return commonCastTransforms(FI); 1923 } 1924 1925 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 1926 return commonCastTransforms(CI); 1927 } 1928 1929 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 1930 return commonCastTransforms(CI); 1931 } 1932 1933 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 1934 // If the source integer type is not the intptr_t type for this target, do a 1935 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1936 // cast to be exposed to other transforms. 1937 unsigned AS = CI.getAddressSpace(); 1938 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1939 DL.getPointerSizeInBits(AS)) { 1940 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 1941 DL.getIntPtrType(CI.getContext(), AS)); 1942 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1943 return new IntToPtrInst(P, CI.getType()); 1944 } 1945 1946 if (Instruction *I = commonCastTransforms(CI)) 1947 return I; 1948 1949 return nullptr; 1950 } 1951 1952 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 1953 // If the destination integer type is not the intptr_t type for this target, 1954 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1955 // to be exposed to other transforms. 1956 Value *SrcOp = CI.getPointerOperand(); 1957 Type *SrcTy = SrcOp->getType(); 1958 Type *Ty = CI.getType(); 1959 unsigned AS = CI.getPointerAddressSpace(); 1960 unsigned TySize = Ty->getScalarSizeInBits(); 1961 unsigned PtrSize = DL.getPointerSizeInBits(AS); 1962 if (TySize != PtrSize) { 1963 Type *IntPtrTy = 1964 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 1965 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 1966 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1967 } 1968 1969 // (ptrtoint (ptrmask P, M)) 1970 // -> (and (ptrtoint P), M) 1971 // This is generally beneficial as `and` is better supported than `ptrmask`. 1972 Value *Ptr, *Mask; 1973 if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr), 1974 m_Value(Mask)))) && 1975 Mask->getType() == Ty) 1976 return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask); 1977 1978 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 1979 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 1980 // While this can increase the number of instructions it doesn't actually 1981 // increase the overall complexity since the arithmetic is just part of 1982 // the GEP otherwise. 1983 if (GEP->hasOneUse() && 1984 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 1985 return replaceInstUsesWith(CI, 1986 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 1987 /*isSigned=*/false)); 1988 } 1989 } 1990 1991 Value *Vec, *Scalar, *Index; 1992 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 1993 m_Value(Scalar), m_Value(Index)))) && 1994 Vec->getType() == Ty) { 1995 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 1996 // Convert the scalar to int followed by insert to eliminate one cast: 1997 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 1998 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 1999 return InsertElementInst::Create(Vec, NewCast, Index); 2000 } 2001 2002 return commonCastTransforms(CI); 2003 } 2004 2005 /// This input value (which is known to have vector type) is being zero extended 2006 /// or truncated to the specified vector type. Since the zext/trunc is done 2007 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2008 /// endianness will impact which end of the vector that is extended or 2009 /// truncated. 2010 /// 2011 /// A vector is always stored with index 0 at the lowest address, which 2012 /// corresponds to the most significant bits for a big endian stored integer and 2013 /// the least significant bits for little endian. A trunc/zext of an integer 2014 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2015 /// the front of the vector for big endian targets, and the back of the vector 2016 /// for little endian targets. 2017 /// 2018 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2019 /// 2020 /// The source and destination vector types may have different element types. 2021 static Instruction * 2022 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2023 InstCombinerImpl &IC) { 2024 // We can only do this optimization if the output is a multiple of the input 2025 // element size, or the input is a multiple of the output element size. 2026 // Convert the input type to have the same element type as the output. 2027 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2028 2029 if (SrcTy->getElementType() != DestTy->getElementType()) { 2030 // The input types don't need to be identical, but for now they must be the 2031 // same size. There is no specific reason we couldn't handle things like 2032 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2033 // there yet. 2034 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2035 DestTy->getElementType()->getPrimitiveSizeInBits()) 2036 return nullptr; 2037 2038 SrcTy = 2039 FixedVectorType::get(DestTy->getElementType(), 2040 cast<FixedVectorType>(SrcTy)->getNumElements()); 2041 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2042 } 2043 2044 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2045 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2046 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2047 2048 assert(SrcElts != DestElts && "Element counts should be different."); 2049 2050 // Now that the element types match, get the shuffle mask and RHS of the 2051 // shuffle to use, which depends on whether we're increasing or decreasing the 2052 // size of the input. 2053 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2054 ArrayRef<int> ShuffleMask; 2055 Value *V2; 2056 2057 if (SrcElts > DestElts) { 2058 // If we're shrinking the number of elements (rewriting an integer 2059 // truncate), just shuffle in the elements corresponding to the least 2060 // significant bits from the input and use poison as the second shuffle 2061 // input. 2062 V2 = PoisonValue::get(SrcTy); 2063 // Make sure the shuffle mask selects the "least significant bits" by 2064 // keeping elements from back of the src vector for big endian, and from the 2065 // front for little endian. 2066 ShuffleMask = ShuffleMaskStorage; 2067 if (IsBigEndian) 2068 ShuffleMask = ShuffleMask.take_back(DestElts); 2069 else 2070 ShuffleMask = ShuffleMask.take_front(DestElts); 2071 } else { 2072 // If we're increasing the number of elements (rewriting an integer zext), 2073 // shuffle in all of the elements from InVal. Fill the rest of the result 2074 // elements with zeros from a constant zero. 2075 V2 = Constant::getNullValue(SrcTy); 2076 // Use first elt from V2 when indicating zero in the shuffle mask. 2077 uint32_t NullElt = SrcElts; 2078 // Extend with null values in the "most significant bits" by adding elements 2079 // in front of the src vector for big endian, and at the back for little 2080 // endian. 2081 unsigned DeltaElts = DestElts - SrcElts; 2082 if (IsBigEndian) 2083 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2084 else 2085 ShuffleMaskStorage.append(DeltaElts, NullElt); 2086 ShuffleMask = ShuffleMaskStorage; 2087 } 2088 2089 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2090 } 2091 2092 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2093 return Value % Ty->getPrimitiveSizeInBits() == 0; 2094 } 2095 2096 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2097 return Value / Ty->getPrimitiveSizeInBits(); 2098 } 2099 2100 /// V is a value which is inserted into a vector of VecEltTy. 2101 /// Look through the value to see if we can decompose it into 2102 /// insertions into the vector. See the example in the comment for 2103 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2104 /// The type of V is always a non-zero multiple of VecEltTy's size. 2105 /// Shift is the number of bits between the lsb of V and the lsb of 2106 /// the vector. 2107 /// 2108 /// This returns false if the pattern can't be matched or true if it can, 2109 /// filling in Elements with the elements found here. 2110 static bool collectInsertionElements(Value *V, unsigned Shift, 2111 SmallVectorImpl<Value *> &Elements, 2112 Type *VecEltTy, bool isBigEndian) { 2113 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2114 "Shift should be a multiple of the element type size"); 2115 2116 // Undef values never contribute useful bits to the result. 2117 if (isa<UndefValue>(V)) return true; 2118 2119 // If we got down to a value of the right type, we win, try inserting into the 2120 // right element. 2121 if (V->getType() == VecEltTy) { 2122 // Inserting null doesn't actually insert any elements. 2123 if (Constant *C = dyn_cast<Constant>(V)) 2124 if (C->isNullValue()) 2125 return true; 2126 2127 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2128 if (isBigEndian) 2129 ElementIndex = Elements.size() - ElementIndex - 1; 2130 2131 // Fail if multiple elements are inserted into this slot. 2132 if (Elements[ElementIndex]) 2133 return false; 2134 2135 Elements[ElementIndex] = V; 2136 return true; 2137 } 2138 2139 if (Constant *C = dyn_cast<Constant>(V)) { 2140 // Figure out the # elements this provides, and bitcast it or slice it up 2141 // as required. 2142 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2143 VecEltTy); 2144 // If the constant is the size of a vector element, we just need to bitcast 2145 // it to the right type so it gets properly inserted. 2146 if (NumElts == 1) 2147 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2148 Shift, Elements, VecEltTy, isBigEndian); 2149 2150 // Okay, this is a constant that covers multiple elements. Slice it up into 2151 // pieces and insert each element-sized piece into the vector. 2152 if (!isa<IntegerType>(C->getType())) 2153 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2154 C->getType()->getPrimitiveSizeInBits())); 2155 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2156 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2157 2158 for (unsigned i = 0; i != NumElts; ++i) { 2159 unsigned ShiftI = i * ElementSize; 2160 Constant *Piece = ConstantFoldBinaryInstruction( 2161 Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI)); 2162 if (!Piece) 2163 return false; 2164 2165 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2166 if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy, 2167 isBigEndian)) 2168 return false; 2169 } 2170 return true; 2171 } 2172 2173 if (!V->hasOneUse()) return false; 2174 2175 Instruction *I = dyn_cast<Instruction>(V); 2176 if (!I) return false; 2177 switch (I->getOpcode()) { 2178 default: return false; // Unhandled case. 2179 case Instruction::BitCast: 2180 if (I->getOperand(0)->getType()->isVectorTy()) 2181 return false; 2182 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2183 isBigEndian); 2184 case Instruction::ZExt: 2185 if (!isMultipleOfTypeSize( 2186 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2187 VecEltTy)) 2188 return false; 2189 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2190 isBigEndian); 2191 case Instruction::Or: 2192 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2193 isBigEndian) && 2194 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2195 isBigEndian); 2196 case Instruction::Shl: { 2197 // Must be shifting by a constant that is a multiple of the element size. 2198 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2199 if (!CI) return false; 2200 Shift += CI->getZExtValue(); 2201 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2202 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2203 isBigEndian); 2204 } 2205 2206 } 2207 } 2208 2209 2210 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2211 /// assemble the elements of the vector manually. 2212 /// Try to rip the code out and replace it with insertelements. This is to 2213 /// optimize code like this: 2214 /// 2215 /// %tmp37 = bitcast float %inc to i32 2216 /// %tmp38 = zext i32 %tmp37 to i64 2217 /// %tmp31 = bitcast float %inc5 to i32 2218 /// %tmp32 = zext i32 %tmp31 to i64 2219 /// %tmp33 = shl i64 %tmp32, 32 2220 /// %ins35 = or i64 %tmp33, %tmp38 2221 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2222 /// 2223 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2224 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2225 InstCombinerImpl &IC) { 2226 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2227 Value *IntInput = CI.getOperand(0); 2228 2229 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2230 if (!collectInsertionElements(IntInput, 0, Elements, 2231 DestVecTy->getElementType(), 2232 IC.getDataLayout().isBigEndian())) 2233 return nullptr; 2234 2235 // If we succeeded, we know that all of the element are specified by Elements 2236 // or are zero if Elements has a null entry. Recast this as a set of 2237 // insertions. 2238 Value *Result = Constant::getNullValue(CI.getType()); 2239 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2240 if (!Elements[i]) continue; // Unset element. 2241 2242 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2243 IC.Builder.getInt32(i)); 2244 } 2245 2246 return Result; 2247 } 2248 2249 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2250 /// vector followed by extract element. The backend tends to handle bitcasts of 2251 /// vectors better than bitcasts of scalars because vector registers are 2252 /// usually not type-specific like scalar integer or scalar floating-point. 2253 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2254 InstCombinerImpl &IC) { 2255 Value *VecOp, *Index; 2256 if (!match(BitCast.getOperand(0), 2257 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2258 return nullptr; 2259 2260 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2261 // type to extract from. 2262 Type *DestType = BitCast.getType(); 2263 VectorType *VecType = cast<VectorType>(VecOp->getType()); 2264 if (VectorType::isValidElementType(DestType)) { 2265 auto *NewVecType = VectorType::get(DestType, VecType); 2266 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2267 return ExtractElementInst::Create(NewBC, Index); 2268 } 2269 2270 // Only solve DestType is vector to avoid inverse transform in visitBitCast. 2271 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) 2272 auto *FixedVType = dyn_cast<FixedVectorType>(VecType); 2273 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) 2274 return CastInst::Create(Instruction::BitCast, VecOp, DestType); 2275 2276 return nullptr; 2277 } 2278 2279 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2280 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2281 InstCombiner::BuilderTy &Builder) { 2282 Type *DestTy = BitCast.getType(); 2283 BinaryOperator *BO; 2284 2285 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2286 !BO->isBitwiseLogicOp()) 2287 return nullptr; 2288 2289 // FIXME: This transform is restricted to vector types to avoid backend 2290 // problems caused by creating potentially illegal operations. If a fix-up is 2291 // added to handle that situation, we can remove this check. 2292 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2293 return nullptr; 2294 2295 if (DestTy->isFPOrFPVectorTy()) { 2296 Value *X, *Y; 2297 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) 2298 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2299 match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { 2300 if (X->getType()->isFPOrFPVectorTy() && 2301 Y->getType()->isIntOrIntVectorTy()) { 2302 Value *CastedOp = 2303 Builder.CreateBitCast(BO->getOperand(0), Y->getType()); 2304 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); 2305 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2306 } 2307 if (X->getType()->isIntOrIntVectorTy() && 2308 Y->getType()->isFPOrFPVectorTy()) { 2309 Value *CastedOp = 2310 Builder.CreateBitCast(BO->getOperand(1), X->getType()); 2311 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); 2312 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2313 } 2314 } 2315 return nullptr; 2316 } 2317 2318 if (!DestTy->isIntOrIntVectorTy()) 2319 return nullptr; 2320 2321 Value *X; 2322 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2323 X->getType() == DestTy && !isa<Constant>(X)) { 2324 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2325 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2326 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2327 } 2328 2329 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2330 X->getType() == DestTy && !isa<Constant>(X)) { 2331 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2332 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2333 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2334 } 2335 2336 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2337 // constant. This eases recognition of special constants for later ops. 2338 // Example: 2339 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2340 Constant *C; 2341 if (match(BO->getOperand(1), m_Constant(C))) { 2342 // bitcast (logic X, C) --> logic (bitcast X, C') 2343 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2344 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2345 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2346 } 2347 2348 return nullptr; 2349 } 2350 2351 /// Change the type of a select if we can eliminate a bitcast. 2352 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2353 InstCombiner::BuilderTy &Builder) { 2354 Value *Cond, *TVal, *FVal; 2355 if (!match(BitCast.getOperand(0), 2356 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2357 return nullptr; 2358 2359 // A vector select must maintain the same number of elements in its operands. 2360 Type *CondTy = Cond->getType(); 2361 Type *DestTy = BitCast.getType(); 2362 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2363 if (!DestTy->isVectorTy() || 2364 CondVTy->getElementCount() != 2365 cast<VectorType>(DestTy)->getElementCount()) 2366 return nullptr; 2367 2368 // FIXME: This transform is restricted from changing the select between 2369 // scalars and vectors to avoid backend problems caused by creating 2370 // potentially illegal operations. If a fix-up is added to handle that 2371 // situation, we can remove this check. 2372 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2373 return nullptr; 2374 2375 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2376 Value *X; 2377 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2378 !isa<Constant>(X)) { 2379 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2380 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2381 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2382 } 2383 2384 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2385 !isa<Constant>(X)) { 2386 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2387 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2388 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2389 } 2390 2391 return nullptr; 2392 } 2393 2394 /// Check if all users of CI are StoreInsts. 2395 static bool hasStoreUsersOnly(CastInst &CI) { 2396 for (User *U : CI.users()) { 2397 if (!isa<StoreInst>(U)) 2398 return false; 2399 } 2400 return true; 2401 } 2402 2403 /// This function handles following case 2404 /// 2405 /// A -> B cast 2406 /// PHI 2407 /// B -> A cast 2408 /// 2409 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2410 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2411 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2412 PHINode *PN) { 2413 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2414 if (hasStoreUsersOnly(CI)) 2415 return nullptr; 2416 2417 Value *Src = CI.getOperand(0); 2418 Type *SrcTy = Src->getType(); // Type B 2419 Type *DestTy = CI.getType(); // Type A 2420 2421 SmallVector<PHINode *, 4> PhiWorklist; 2422 SmallSetVector<PHINode *, 4> OldPhiNodes; 2423 2424 // Find all of the A->B casts and PHI nodes. 2425 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2426 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2427 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2428 PhiWorklist.push_back(PN); 2429 OldPhiNodes.insert(PN); 2430 while (!PhiWorklist.empty()) { 2431 auto *OldPN = PhiWorklist.pop_back_val(); 2432 for (Value *IncValue : OldPN->incoming_values()) { 2433 if (isa<Constant>(IncValue)) 2434 continue; 2435 2436 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2437 // If there is a sequence of one or more load instructions, each loaded 2438 // value is used as address of later load instruction, bitcast is 2439 // necessary to change the value type, don't optimize it. For 2440 // simplicity we give up if the load address comes from another load. 2441 Value *Addr = LI->getOperand(0); 2442 if (Addr == &CI || isa<LoadInst>(Addr)) 2443 return nullptr; 2444 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2445 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2446 // TODO: Remove this check when bitcast between vector and x86_amx 2447 // is replaced with a specific intrinsic. 2448 if (DestTy->isX86_AMXTy()) 2449 return nullptr; 2450 if (LI->hasOneUse() && LI->isSimple()) 2451 continue; 2452 // If a LoadInst has more than one use, changing the type of loaded 2453 // value may create another bitcast. 2454 return nullptr; 2455 } 2456 2457 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2458 if (OldPhiNodes.insert(PNode)) 2459 PhiWorklist.push_back(PNode); 2460 continue; 2461 } 2462 2463 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2464 // We can't handle other instructions. 2465 if (!BCI) 2466 return nullptr; 2467 2468 // Verify it's a A->B cast. 2469 Type *TyA = BCI->getOperand(0)->getType(); 2470 Type *TyB = BCI->getType(); 2471 if (TyA != DestTy || TyB != SrcTy) 2472 return nullptr; 2473 } 2474 } 2475 2476 // Check that each user of each old PHI node is something that we can 2477 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2478 for (auto *OldPN : OldPhiNodes) { 2479 for (User *V : OldPN->users()) { 2480 if (auto *SI = dyn_cast<StoreInst>(V)) { 2481 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2482 return nullptr; 2483 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2484 // Verify it's a B->A cast. 2485 Type *TyB = BCI->getOperand(0)->getType(); 2486 Type *TyA = BCI->getType(); 2487 if (TyA != DestTy || TyB != SrcTy) 2488 return nullptr; 2489 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2490 // As long as the user is another old PHI node, then even if we don't 2491 // rewrite it, the PHI web we're considering won't have any users 2492 // outside itself, so it'll be dead. 2493 if (!OldPhiNodes.contains(PHI)) 2494 return nullptr; 2495 } else { 2496 return nullptr; 2497 } 2498 } 2499 } 2500 2501 // For each old PHI node, create a corresponding new PHI node with a type A. 2502 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2503 for (auto *OldPN : OldPhiNodes) { 2504 Builder.SetInsertPoint(OldPN); 2505 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2506 NewPNodes[OldPN] = NewPN; 2507 } 2508 2509 // Fill in the operands of new PHI nodes. 2510 for (auto *OldPN : OldPhiNodes) { 2511 PHINode *NewPN = NewPNodes[OldPN]; 2512 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2513 Value *V = OldPN->getOperand(j); 2514 Value *NewV = nullptr; 2515 if (auto *C = dyn_cast<Constant>(V)) { 2516 NewV = ConstantExpr::getBitCast(C, DestTy); 2517 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2518 // Explicitly perform load combine to make sure no opposing transform 2519 // can remove the bitcast in the meantime and trigger an infinite loop. 2520 Builder.SetInsertPoint(LI); 2521 NewV = combineLoadToNewType(*LI, DestTy); 2522 // Remove the old load and its use in the old phi, which itself becomes 2523 // dead once the whole transform finishes. 2524 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2525 eraseInstFromFunction(*LI); 2526 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2527 NewV = BCI->getOperand(0); 2528 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2529 NewV = NewPNodes[PrevPN]; 2530 } 2531 assert(NewV); 2532 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2533 } 2534 } 2535 2536 // Traverse all accumulated PHI nodes and process its users, 2537 // which are Stores and BitcCasts. Without this processing 2538 // NewPHI nodes could be replicated and could lead to extra 2539 // moves generated after DeSSA. 2540 // If there is a store with type B, change it to type A. 2541 2542 2543 // Replace users of BitCast B->A with NewPHI. These will help 2544 // later to get rid off a closure formed by OldPHI nodes. 2545 Instruction *RetVal = nullptr; 2546 for (auto *OldPN : OldPhiNodes) { 2547 PHINode *NewPN = NewPNodes[OldPN]; 2548 for (User *V : make_early_inc_range(OldPN->users())) { 2549 if (auto *SI = dyn_cast<StoreInst>(V)) { 2550 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2551 Builder.SetInsertPoint(SI); 2552 auto *NewBC = 2553 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2554 SI->setOperand(0, NewBC); 2555 Worklist.push(SI); 2556 assert(hasStoreUsersOnly(*NewBC)); 2557 } 2558 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2559 Type *TyB = BCI->getOperand(0)->getType(); 2560 Type *TyA = BCI->getType(); 2561 assert(TyA == DestTy && TyB == SrcTy); 2562 (void) TyA; 2563 (void) TyB; 2564 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2565 if (BCI == &CI) 2566 RetVal = I; 2567 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2568 assert(OldPhiNodes.contains(PHI)); 2569 (void) PHI; 2570 } else { 2571 llvm_unreachable("all uses should be handled"); 2572 } 2573 } 2574 } 2575 2576 return RetVal; 2577 } 2578 2579 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2580 // If the operands are integer typed then apply the integer transforms, 2581 // otherwise just apply the common ones. 2582 Value *Src = CI.getOperand(0); 2583 Type *SrcTy = Src->getType(); 2584 Type *DestTy = CI.getType(); 2585 2586 // Get rid of casts from one type to the same type. These are useless and can 2587 // be replaced by the operand. 2588 if (DestTy == Src->getType()) 2589 return replaceInstUsesWith(CI, Src); 2590 2591 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2592 // Beware: messing with this target-specific oddity may cause trouble. 2593 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2594 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2595 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2596 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2597 } 2598 2599 if (isa<IntegerType>(SrcTy)) { 2600 // If this is a cast from an integer to vector, check to see if the input 2601 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2602 // the casts with a shuffle and (potentially) a bitcast. 2603 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2604 CastInst *SrcCast = cast<CastInst>(Src); 2605 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2606 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2607 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2608 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2609 return I; 2610 } 2611 2612 // If the input is an 'or' instruction, we may be doing shifts and ors to 2613 // assemble the elements of the vector manually. Try to rip the code out 2614 // and replace it with insertelements. 2615 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2616 return replaceInstUsesWith(CI, V); 2617 } 2618 } 2619 2620 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2621 if (SrcVTy->getNumElements() == 1) { 2622 // If our destination is not a vector, then make this a straight 2623 // scalar-scalar cast. 2624 if (!DestTy->isVectorTy()) { 2625 Value *Elem = 2626 Builder.CreateExtractElement(Src, 2627 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2628 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2629 } 2630 2631 // Otherwise, see if our source is an insert. If so, then use the scalar 2632 // component directly: 2633 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2634 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2635 return new BitCastInst(InsElt->getOperand(1), DestTy); 2636 } 2637 2638 // Convert an artificial vector insert into more analyzable bitwise logic. 2639 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2640 Value *X, *Y; 2641 uint64_t IndexC; 2642 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2643 m_Value(Y), m_ConstantInt(IndexC)))) && 2644 DestTy->isIntegerTy() && X->getType() == DestTy && 2645 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2646 // Adjust for big endian - the LSBs are at the high index. 2647 if (DL.isBigEndian()) 2648 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2649 2650 // We only handle (endian-normalized) insert to index 0. Any other insert 2651 // would require a left-shift, so that is an extra instruction. 2652 if (IndexC == 0) { 2653 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2654 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2655 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2656 Value *AndX = Builder.CreateAnd(X, MaskC); 2657 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2658 return BinaryOperator::CreateOr(AndX, ZextY); 2659 } 2660 } 2661 } 2662 2663 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2664 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2665 // a bitcast to a vector with the same # elts. 2666 Value *ShufOp0 = Shuf->getOperand(0); 2667 Value *ShufOp1 = Shuf->getOperand(1); 2668 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2669 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2670 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2671 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2672 ShufElts == SrcVecElts) { 2673 BitCastInst *Tmp; 2674 // If either of the operands is a cast from CI.getType(), then 2675 // evaluating the shuffle in the casted destination's type will allow 2676 // us to eliminate at least one cast. 2677 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2678 Tmp->getOperand(0)->getType() == DestTy) || 2679 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2680 Tmp->getOperand(0)->getType() == DestTy)) { 2681 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2682 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2683 // Return a new shuffle vector. Use the same element ID's, as we 2684 // know the vector types match #elts. 2685 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2686 } 2687 } 2688 2689 // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized 2690 // as a byte/bit swap: 2691 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) 2692 // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) 2693 if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && 2694 Shuf->hasOneUse() && Shuf->isReverse()) { 2695 unsigned IntrinsicNum = 0; 2696 if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2697 SrcTy->getScalarSizeInBits() == 8) { 2698 IntrinsicNum = Intrinsic::bswap; 2699 } else if (SrcTy->getScalarSizeInBits() == 1) { 2700 IntrinsicNum = Intrinsic::bitreverse; 2701 } 2702 if (IntrinsicNum != 0) { 2703 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2704 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2705 Function *BswapOrBitreverse = 2706 Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy); 2707 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2708 return CallInst::Create(BswapOrBitreverse, {ScalarX}); 2709 } 2710 } 2711 } 2712 2713 // Handle the A->B->A cast, and there is an intervening PHI node. 2714 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2715 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2716 return I; 2717 2718 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2719 return I; 2720 2721 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2722 return I; 2723 2724 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2725 return I; 2726 2727 return commonCastTransforms(CI); 2728 } 2729 2730 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2731 return commonCastTransforms(CI); 2732 } 2733