1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DIBuilder.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include <numeric> 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 43 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 44 Scale = 1; 45 Offset = 0; 46 return Val; 47 } 48 49 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 50 if (I->getOpcode() == Instruction::Shl) { 51 // This is a value scaled by '1 << the shift amt'. 52 Scale = UINT64_C(1) << RHS->getZExtValue(); 53 Offset = 0; 54 return I->getOperand(0); 55 } 56 57 if (I->getOpcode() == Instruction::Mul) { 58 // This value is scaled by 'RHS'. 59 Scale = RHS->getZExtValue(); 60 Offset = 0; 61 return I->getOperand(0); 62 } 63 64 if (I->getOpcode() == Instruction::Add) { 65 // We have X+C. Check to see if we really have (X*C2)+C1, 66 // where C1 is divisible by C2. 67 unsigned SubScale; 68 Value *SubVal = 69 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 70 Offset += RHS->getZExtValue(); 71 Scale = SubScale; 72 return SubVal; 73 } 74 } 75 } 76 77 // Otherwise, we can't look past this. 78 Scale = 1; 79 Offset = 0; 80 return Val; 81 } 82 83 /// If we find a cast of an allocation instruction, try to eliminate the cast by 84 /// moving the type information into the alloc. 85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 86 AllocaInst &AI) { 87 PointerType *PTy = cast<PointerType>(CI.getType()); 88 // Opaque pointers don't have an element type we could replace with. 89 if (PTy->isOpaque()) 90 return nullptr; 91 92 IRBuilderBase::InsertPointGuard Guard(Builder); 93 Builder.SetInsertPoint(&AI); 94 95 // Get the type really allocated and the type casted to. 96 Type *AllocElTy = AI.getAllocatedType(); 97 Type *CastElTy = PTy->getNonOpaquePointerElementType(); 98 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 99 100 // This optimisation does not work for cases where the cast type 101 // is scalable and the allocated type is not. This because we need to 102 // know how many times the casted type fits into the allocated type. 103 // For the opposite case where the allocated type is scalable and the 104 // cast type is not this leads to poor code quality due to the 105 // introduction of 'vscale' into the calculations. It seems better to 106 // bail out for this case too until we've done a proper cost-benefit 107 // analysis. 108 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 109 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 110 if (AllocIsScalable != CastIsScalable) return nullptr; 111 112 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 113 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 114 if (CastElTyAlign < AllocElTyAlign) return nullptr; 115 116 // If the allocation has multiple uses, only promote it if we are strictly 117 // increasing the alignment of the resultant allocation. If we keep it the 118 // same, we open the door to infinite loops of various kinds. 119 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 120 121 // The alloc and cast types should be either both fixed or both scalable. 122 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 123 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 124 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 125 126 // If the allocation has multiple uses, only promote it if we're not 127 // shrinking the amount of memory being allocated. 128 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 129 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 130 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 131 132 // See if we can satisfy the modulus by pulling a scale out of the array 133 // size argument. 134 unsigned ArraySizeScale; 135 uint64_t ArrayOffset; 136 Value *NumElements = // See if the array size is a decomposable linear expr. 137 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 138 139 // If we can now satisfy the modulus, by using a non-1 scale, we really can 140 // do the xform. 141 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 142 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 143 144 // We don't currently support arrays of scalable types. 145 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 146 147 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 148 Value *Amt = nullptr; 149 if (Scale == 1) { 150 Amt = NumElements; 151 } else { 152 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 153 // Insert before the alloca, not before the cast. 154 Amt = Builder.CreateMul(Amt, NumElements); 155 } 156 157 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 158 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 159 Offset, true); 160 Amt = Builder.CreateAdd(Amt, Off); 161 } 162 163 AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt); 164 New->setAlignment(AI.getAlign()); 165 New->takeName(&AI); 166 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 167 168 // If the allocation has multiple real uses, insert a cast and change all 169 // things that used it to use the new cast. This will also hack on CI, but it 170 // will die soon. 171 if (!AI.hasOneUse()) { 172 // New is the allocation instruction, pointer typed. AI is the original 173 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 174 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 175 replaceInstUsesWith(AI, NewCast); 176 eraseInstFromFunction(AI); 177 } 178 return replaceInstUsesWith(CI, New); 179 } 180 181 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 182 /// true for, actually insert the code to evaluate the expression. 183 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 184 bool isSigned) { 185 if (Constant *C = dyn_cast<Constant>(V)) { 186 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 187 // If we got a constantexpr back, try to simplify it with DL info. 188 return ConstantFoldConstant(C, DL, &TLI); 189 } 190 191 // Otherwise, it must be an instruction. 192 Instruction *I = cast<Instruction>(V); 193 Instruction *Res = nullptr; 194 unsigned Opc = I->getOpcode(); 195 switch (Opc) { 196 case Instruction::Add: 197 case Instruction::Sub: 198 case Instruction::Mul: 199 case Instruction::And: 200 case Instruction::Or: 201 case Instruction::Xor: 202 case Instruction::AShr: 203 case Instruction::LShr: 204 case Instruction::Shl: 205 case Instruction::UDiv: 206 case Instruction::URem: { 207 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 208 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 210 break; 211 } 212 case Instruction::Trunc: 213 case Instruction::ZExt: 214 case Instruction::SExt: 215 // If the source type of the cast is the type we're trying for then we can 216 // just return the source. There's no need to insert it because it is not 217 // new. 218 if (I->getOperand(0)->getType() == Ty) 219 return I->getOperand(0); 220 221 // Otherwise, must be the same type of cast, so just reinsert a new one. 222 // This also handles the case of zext(trunc(x)) -> zext(x). 223 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 224 Opc == Instruction::SExt); 225 break; 226 case Instruction::Select: { 227 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 228 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 229 Res = SelectInst::Create(I->getOperand(0), True, False); 230 break; 231 } 232 case Instruction::PHI: { 233 PHINode *OPN = cast<PHINode>(I); 234 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 235 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 236 Value *V = 237 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 238 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 239 } 240 Res = NPN; 241 break; 242 } 243 default: 244 // TODO: Can handle more cases here. 245 llvm_unreachable("Unreachable!"); 246 } 247 248 Res->takeName(I); 249 return InsertNewInstWith(Res, *I); 250 } 251 252 Instruction::CastOps 253 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 254 const CastInst *CI2) { 255 Type *SrcTy = CI1->getSrcTy(); 256 Type *MidTy = CI1->getDestTy(); 257 Type *DstTy = CI2->getDestTy(); 258 259 Instruction::CastOps firstOp = CI1->getOpcode(); 260 Instruction::CastOps secondOp = CI2->getOpcode(); 261 Type *SrcIntPtrTy = 262 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 263 Type *MidIntPtrTy = 264 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 265 Type *DstIntPtrTy = 266 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 267 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 268 DstTy, SrcIntPtrTy, MidIntPtrTy, 269 DstIntPtrTy); 270 271 // We don't want to form an inttoptr or ptrtoint that converts to an integer 272 // type that differs from the pointer size. 273 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 274 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 275 Res = 0; 276 277 return Instruction::CastOps(Res); 278 } 279 280 /// Implement the transforms common to all CastInst visitors. 281 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 282 Value *Src = CI.getOperand(0); 283 Type *Ty = CI.getType(); 284 285 // Try to eliminate a cast of a cast. 286 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 287 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 288 // The first cast (CSrc) is eliminable so we need to fix up or replace 289 // the second cast (CI). CSrc will then have a good chance of being dead. 290 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 291 // Point debug users of the dying cast to the new one. 292 if (CSrc->hasOneUse()) 293 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 294 return Res; 295 } 296 } 297 298 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 299 // We are casting a select. Try to fold the cast into the select if the 300 // select does not have a compare instruction with matching operand types 301 // or the select is likely better done in a narrow type. 302 // Creating a select with operands that are different sizes than its 303 // condition may inhibit other folds and lead to worse codegen. 304 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 305 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 306 (CI.getOpcode() == Instruction::Trunc && 307 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 308 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 309 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 310 return NV; 311 } 312 } 313 } 314 315 // If we are casting a PHI, then fold the cast into the PHI. 316 if (auto *PN = dyn_cast<PHINode>(Src)) { 317 // Don't do this if it would create a PHI node with an illegal type from a 318 // legal type. 319 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 320 shouldChangeType(CI.getSrcTy(), CI.getType())) 321 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 322 return NV; 323 } 324 325 // Canonicalize a unary shuffle after the cast if neither operation changes 326 // the size or element size of the input vector. 327 // TODO: We could allow size-changing ops if that doesn't harm codegen. 328 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 329 Value *X; 330 ArrayRef<int> Mask; 331 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 332 // TODO: Allow scalable vectors? 333 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 334 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 335 if (SrcTy && DestTy && 336 SrcTy->getNumElements() == DestTy->getNumElements() && 337 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 338 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 339 return new ShuffleVectorInst(CastX, Mask); 340 } 341 } 342 343 return nullptr; 344 } 345 346 /// Constants and extensions/truncates from the destination type are always 347 /// free to be evaluated in that type. This is a helper for canEvaluate*. 348 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 349 if (isa<Constant>(V)) 350 return true; 351 Value *X; 352 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 353 X->getType() == Ty) 354 return true; 355 356 return false; 357 } 358 359 /// Filter out values that we can not evaluate in the destination type for free. 360 /// This is a helper for canEvaluate*. 361 static bool canNotEvaluateInType(Value *V, Type *Ty) { 362 assert(!isa<Constant>(V) && "Constant should already be handled."); 363 if (!isa<Instruction>(V)) 364 return true; 365 // We don't extend or shrink something that has multiple uses -- doing so 366 // would require duplicating the instruction which isn't profitable. 367 if (!V->hasOneUse()) 368 return true; 369 370 return false; 371 } 372 373 /// Return true if we can evaluate the specified expression tree as type Ty 374 /// instead of its larger type, and arrive with the same value. 375 /// This is used by code that tries to eliminate truncates. 376 /// 377 /// Ty will always be a type smaller than V. We should return true if trunc(V) 378 /// can be computed by computing V in the smaller type. If V is an instruction, 379 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 380 /// makes sense if x and y can be efficiently truncated. 381 /// 382 /// This function works on both vectors and scalars. 383 /// 384 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 385 Instruction *CxtI) { 386 if (canAlwaysEvaluateInType(V, Ty)) 387 return true; 388 if (canNotEvaluateInType(V, Ty)) 389 return false; 390 391 auto *I = cast<Instruction>(V); 392 Type *OrigTy = V->getType(); 393 switch (I->getOpcode()) { 394 case Instruction::Add: 395 case Instruction::Sub: 396 case Instruction::Mul: 397 case Instruction::And: 398 case Instruction::Or: 399 case Instruction::Xor: 400 // These operators can all arbitrarily be extended or truncated. 401 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 402 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 403 404 case Instruction::UDiv: 405 case Instruction::URem: { 406 // UDiv and URem can be truncated if all the truncated bits are zero. 407 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 408 uint32_t BitWidth = Ty->getScalarSizeInBits(); 409 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 410 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 411 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 412 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 413 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 414 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 415 } 416 break; 417 } 418 case Instruction::Shl: { 419 // If we are truncating the result of this SHL, and if it's a shift of an 420 // inrange amount, we can always perform a SHL in a smaller type. 421 uint32_t BitWidth = Ty->getScalarSizeInBits(); 422 KnownBits AmtKnownBits = 423 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 424 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 425 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 426 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 427 break; 428 } 429 case Instruction::LShr: { 430 // If this is a truncate of a logical shr, we can truncate it to a smaller 431 // lshr iff we know that the bits we would otherwise be shifting in are 432 // already zeros. 433 // TODO: It is enough to check that the bits we would be shifting in are 434 // zero - use AmtKnownBits.getMaxValue(). 435 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 436 uint32_t BitWidth = Ty->getScalarSizeInBits(); 437 KnownBits AmtKnownBits = 438 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 439 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 440 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 441 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 442 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 443 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 444 } 445 break; 446 } 447 case Instruction::AShr: { 448 // If this is a truncate of an arithmetic shr, we can truncate it to a 449 // smaller ashr iff we know that all the bits from the sign bit of the 450 // original type and the sign bit of the truncate type are similar. 451 // TODO: It is enough to check that the bits we would be shifting in are 452 // similar to sign bit of the truncate type. 453 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 454 uint32_t BitWidth = Ty->getScalarSizeInBits(); 455 KnownBits AmtKnownBits = 456 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 457 unsigned ShiftedBits = OrigBitWidth - BitWidth; 458 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 459 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 460 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 461 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 462 break; 463 } 464 case Instruction::Trunc: 465 // trunc(trunc(x)) -> trunc(x) 466 return true; 467 case Instruction::ZExt: 468 case Instruction::SExt: 469 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 470 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 471 return true; 472 case Instruction::Select: { 473 SelectInst *SI = cast<SelectInst>(I); 474 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 475 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 476 } 477 case Instruction::PHI: { 478 // We can change a phi if we can change all operands. Note that we never 479 // get into trouble with cyclic PHIs here because we only consider 480 // instructions with a single use. 481 PHINode *PN = cast<PHINode>(I); 482 for (Value *IncValue : PN->incoming_values()) 483 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 484 return false; 485 return true; 486 } 487 default: 488 // TODO: Can handle more cases here. 489 break; 490 } 491 492 return false; 493 } 494 495 /// Given a vector that is bitcast to an integer, optionally logically 496 /// right-shifted, and truncated, convert it to an extractelement. 497 /// Example (big endian): 498 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 499 /// ---> 500 /// extractelement <4 x i32> %X, 1 501 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 502 InstCombinerImpl &IC) { 503 Value *TruncOp = Trunc.getOperand(0); 504 Type *DestType = Trunc.getType(); 505 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 506 return nullptr; 507 508 Value *VecInput = nullptr; 509 ConstantInt *ShiftVal = nullptr; 510 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 511 m_LShr(m_BitCast(m_Value(VecInput)), 512 m_ConstantInt(ShiftVal)))) || 513 !isa<VectorType>(VecInput->getType())) 514 return nullptr; 515 516 VectorType *VecType = cast<VectorType>(VecInput->getType()); 517 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 518 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 519 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 520 521 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 522 return nullptr; 523 524 // If the element type of the vector doesn't match the result type, 525 // bitcast it to a vector type that we can extract from. 526 unsigned NumVecElts = VecWidth / DestWidth; 527 if (VecType->getElementType() != DestType) { 528 VecType = FixedVectorType::get(DestType, NumVecElts); 529 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 530 } 531 532 unsigned Elt = ShiftAmount / DestWidth; 533 if (IC.getDataLayout().isBigEndian()) 534 Elt = NumVecElts - 1 - Elt; 535 536 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 537 } 538 539 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 540 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 541 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 542 assert((isa<VectorType>(Trunc.getSrcTy()) || 543 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 544 "Don't narrow to an illegal scalar type"); 545 546 // Bail out on strange types. It is possible to handle some of these patterns 547 // even with non-power-of-2 sizes, but it is not a likely scenario. 548 Type *DestTy = Trunc.getType(); 549 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 550 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 551 if (!isPowerOf2_32(NarrowWidth)) 552 return nullptr; 553 554 // First, find an or'd pair of opposite shifts: 555 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 556 BinaryOperator *Or0, *Or1; 557 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 558 return nullptr; 559 560 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 561 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 562 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 563 Or0->getOpcode() == Or1->getOpcode()) 564 return nullptr; 565 566 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 567 if (Or0->getOpcode() == BinaryOperator::LShr) { 568 std::swap(Or0, Or1); 569 std::swap(ShVal0, ShVal1); 570 std::swap(ShAmt0, ShAmt1); 571 } 572 assert(Or0->getOpcode() == BinaryOperator::Shl && 573 Or1->getOpcode() == BinaryOperator::LShr && 574 "Illegal or(shift,shift) pair"); 575 576 // Match the shift amount operands for a funnel/rotate pattern. This always 577 // matches a subtraction on the R operand. 578 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 579 // The shift amounts may add up to the narrow bit width: 580 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 581 // If this is a funnel shift (different operands are shifted), then the 582 // shift amount can not over-shift (create poison) in the narrow type. 583 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 584 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 585 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 586 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 587 return L; 588 589 // The following patterns currently only work for rotation patterns. 590 // TODO: Add more general funnel-shift compatible patterns. 591 if (ShVal0 != ShVal1) 592 return nullptr; 593 594 // The shift amount may be masked with negation: 595 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 596 Value *X; 597 unsigned Mask = Width - 1; 598 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 599 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 600 return X; 601 602 // Same as above, but the shift amount may be extended after masking: 603 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 604 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 605 return X; 606 607 return nullptr; 608 }; 609 610 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 611 bool IsFshl = true; // Sub on LSHR. 612 if (!ShAmt) { 613 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 614 IsFshl = false; // Sub on SHL. 615 } 616 if (!ShAmt) 617 return nullptr; 618 619 // The right-shifted value must have high zeros in the wide type (for example 620 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 621 // truncated, so those do not matter. 622 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 623 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 624 return nullptr; 625 626 // We have an unnecessarily wide rotate! 627 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 628 // Narrow the inputs and convert to funnel shift intrinsic: 629 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 630 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 631 Value *X, *Y; 632 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 633 if (ShVal0 != ShVal1) 634 Y = Builder.CreateTrunc(ShVal1, DestTy); 635 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 636 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 637 return CallInst::Create(F, {X, Y, NarrowShAmt}); 638 } 639 640 /// Try to narrow the width of math or bitwise logic instructions by pulling a 641 /// truncate ahead of binary operators. 642 /// TODO: Transforms for truncated shifts should be moved into here. 643 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 644 Type *SrcTy = Trunc.getSrcTy(); 645 Type *DestTy = Trunc.getType(); 646 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 647 return nullptr; 648 649 BinaryOperator *BinOp; 650 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 651 return nullptr; 652 653 Value *BinOp0 = BinOp->getOperand(0); 654 Value *BinOp1 = BinOp->getOperand(1); 655 switch (BinOp->getOpcode()) { 656 case Instruction::And: 657 case Instruction::Or: 658 case Instruction::Xor: 659 case Instruction::Add: 660 case Instruction::Sub: 661 case Instruction::Mul: { 662 Constant *C; 663 if (match(BinOp0, m_Constant(C))) { 664 // trunc (binop C, X) --> binop (trunc C', X) 665 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 666 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 667 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 668 } 669 if (match(BinOp1, m_Constant(C))) { 670 // trunc (binop X, C) --> binop (trunc X, C') 671 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 672 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 673 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 674 } 675 Value *X; 676 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 677 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 678 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 679 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 680 } 681 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 682 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 683 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 684 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 685 } 686 break; 687 } 688 689 default: break; 690 } 691 692 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 693 return NarrowOr; 694 695 return nullptr; 696 } 697 698 /// Try to narrow the width of a splat shuffle. This could be generalized to any 699 /// shuffle with a constant operand, but we limit the transform to avoid 700 /// creating a shuffle type that targets may not be able to lower effectively. 701 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 702 InstCombiner::BuilderTy &Builder) { 703 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 704 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 705 is_splat(Shuf->getShuffleMask()) && 706 Shuf->getType() == Shuf->getOperand(0)->getType()) { 707 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 708 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 709 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 710 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 711 } 712 713 return nullptr; 714 } 715 716 /// Try to narrow the width of an insert element. This could be generalized for 717 /// any vector constant, but we limit the transform to insertion into undef to 718 /// avoid potential backend problems from unsupported insertion widths. This 719 /// could also be extended to handle the case of inserting a scalar constant 720 /// into a vector variable. 721 static Instruction *shrinkInsertElt(CastInst &Trunc, 722 InstCombiner::BuilderTy &Builder) { 723 Instruction::CastOps Opcode = Trunc.getOpcode(); 724 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 725 "Unexpected instruction for shrinking"); 726 727 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 728 if (!InsElt || !InsElt->hasOneUse()) 729 return nullptr; 730 731 Type *DestTy = Trunc.getType(); 732 Type *DestScalarTy = DestTy->getScalarType(); 733 Value *VecOp = InsElt->getOperand(0); 734 Value *ScalarOp = InsElt->getOperand(1); 735 Value *Index = InsElt->getOperand(2); 736 737 if (match(VecOp, m_Undef())) { 738 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 739 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 740 UndefValue *NarrowUndef = UndefValue::get(DestTy); 741 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 742 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 743 } 744 745 return nullptr; 746 } 747 748 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 749 if (Instruction *Result = commonCastTransforms(Trunc)) 750 return Result; 751 752 Value *Src = Trunc.getOperand(0); 753 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 754 unsigned DestWidth = DestTy->getScalarSizeInBits(); 755 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 756 757 // Attempt to truncate the entire input expression tree to the destination 758 // type. Only do this if the dest type is a simple type, don't convert the 759 // expression tree to something weird like i93 unless the source is also 760 // strange. 761 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 762 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 763 764 // If this cast is a truncate, evaluting in a different type always 765 // eliminates the cast, so it is always a win. 766 LLVM_DEBUG( 767 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 768 " to avoid cast: " 769 << Trunc << '\n'); 770 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 771 assert(Res->getType() == DestTy); 772 return replaceInstUsesWith(Trunc, Res); 773 } 774 775 // For integer types, check if we can shorten the entire input expression to 776 // DestWidth * 2, which won't allow removing the truncate, but reducing the 777 // width may enable further optimizations, e.g. allowing for larger 778 // vectorization factors. 779 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 780 if (DestWidth * 2 < SrcWidth) { 781 auto *NewDestTy = DestITy->getExtendedType(); 782 if (shouldChangeType(SrcTy, NewDestTy) && 783 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 784 LLVM_DEBUG( 785 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 786 " to reduce the width of operand of" 787 << Trunc << '\n'); 788 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 789 return new TruncInst(Res, DestTy); 790 } 791 } 792 } 793 794 // Test if the trunc is the user of a select which is part of a 795 // minimum or maximum operation. If so, don't do any more simplification. 796 // Even simplifying demanded bits can break the canonical form of a 797 // min/max. 798 Value *LHS, *RHS; 799 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 800 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 801 return nullptr; 802 803 // See if we can simplify any instructions used by the input whose sole 804 // purpose is to compute bits we don't care about. 805 if (SimplifyDemandedInstructionBits(Trunc)) 806 return &Trunc; 807 808 if (DestWidth == 1) { 809 Value *Zero = Constant::getNullValue(SrcTy); 810 if (DestTy->isIntegerTy()) { 811 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 812 // TODO: We canonicalize to more instructions here because we are probably 813 // lacking equivalent analysis for trunc relative to icmp. There may also 814 // be codegen concerns. If those trunc limitations were removed, we could 815 // remove this transform. 816 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 817 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 818 } 819 820 // For vectors, we do not canonicalize all truncs to icmp, so optimize 821 // patterns that would be covered within visitICmpInst. 822 Value *X; 823 Constant *C; 824 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 825 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 826 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 827 Constant *MaskC = ConstantExpr::getShl(One, C); 828 Value *And = Builder.CreateAnd(X, MaskC); 829 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 830 } 831 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 832 m_Deferred(X))))) { 833 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 834 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 835 Constant *MaskC = ConstantExpr::getShl(One, C); 836 MaskC = ConstantExpr::getOr(MaskC, One); 837 Value *And = Builder.CreateAnd(X, MaskC); 838 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 839 } 840 } 841 842 Value *A, *B; 843 Constant *C; 844 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 845 unsigned AWidth = A->getType()->getScalarSizeInBits(); 846 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 847 auto *OldSh = cast<Instruction>(Src); 848 bool IsExact = OldSh->isExact(); 849 850 // If the shift is small enough, all zero bits created by the shift are 851 // removed by the trunc. 852 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 853 APInt(SrcWidth, MaxShiftAmt)))) { 854 // trunc (lshr (sext A), C) --> ashr A, C 855 if (A->getType() == DestTy) { 856 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 857 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 858 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 859 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 860 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 861 : BinaryOperator::CreateAShr(A, ShAmt); 862 } 863 // The types are mismatched, so create a cast after shifting: 864 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 865 if (Src->hasOneUse()) { 866 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 867 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 868 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 869 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 870 return CastInst::CreateIntegerCast(Shift, DestTy, true); 871 } 872 } 873 // TODO: Mask high bits with 'and'. 874 } 875 876 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 877 if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) { 878 unsigned MaxShiftAmt = SrcWidth - DestWidth; 879 880 // If the shift is small enough, all zero/sign bits created by the shift are 881 // removed by the trunc. 882 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 883 APInt(SrcWidth, MaxShiftAmt)))) { 884 auto *OldShift = cast<Instruction>(Src); 885 bool IsExact = OldShift->isExact(); 886 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 887 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 888 Value *Shift = 889 OldShift->getOpcode() == Instruction::AShr 890 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 891 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 892 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 893 } 894 } 895 896 if (Instruction *I = narrowBinOp(Trunc)) 897 return I; 898 899 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 900 return I; 901 902 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 903 return I; 904 905 if (Src->hasOneUse() && 906 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 907 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 908 // dest type is native and cst < dest size. 909 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 910 !match(A, m_Shr(m_Value(), m_Constant()))) { 911 // Skip shifts of shift by constants. It undoes a combine in 912 // FoldShiftByConstant and is the extend in reg pattern. 913 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 914 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 915 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 916 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 917 ConstantExpr::getTrunc(C, DestTy)); 918 } 919 } 920 } 921 922 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 923 return I; 924 925 // Whenever an element is extracted from a vector, and then truncated, 926 // canonicalize by converting it to a bitcast followed by an 927 // extractelement. 928 // 929 // Example (little endian): 930 // trunc (extractelement <4 x i64> %X, 0) to i32 931 // ---> 932 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 933 Value *VecOp; 934 ConstantInt *Cst; 935 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 936 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 937 auto VecElts = VecOpTy->getElementCount(); 938 939 // A badly fit destination size would result in an invalid cast. 940 if (SrcWidth % DestWidth == 0) { 941 uint64_t TruncRatio = SrcWidth / DestWidth; 942 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 943 uint64_t VecOpIdx = Cst->getZExtValue(); 944 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 945 : VecOpIdx * TruncRatio; 946 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 947 "overflow 32-bits"); 948 949 auto *BitCastTo = 950 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 951 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 952 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 953 } 954 } 955 956 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 957 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 958 m_Value(B))))) { 959 unsigned AWidth = A->getType()->getScalarSizeInBits(); 960 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 961 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 962 Value *NarrowCtlz = 963 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 964 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 965 } 966 } 967 968 if (match(Src, m_VScale(DL))) { 969 if (Trunc.getFunction() && 970 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 971 Attribute Attr = 972 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 973 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 974 if (Log2_32(MaxVScale.getValue()) < DestWidth) { 975 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 976 return replaceInstUsesWith(Trunc, VScale); 977 } 978 } 979 } 980 } 981 982 return nullptr; 983 } 984 985 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) { 986 // If we are just checking for a icmp eq of a single bit and zext'ing it 987 // to an integer, then shift the bit to the appropriate place and then 988 // cast to integer to avoid the comparison. 989 const APInt *Op1CV; 990 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 991 992 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 993 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 994 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) || 995 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnes())) { 996 Value *In = Cmp->getOperand(0); 997 Value *Sh = ConstantInt::get(In->getType(), 998 In->getType()->getScalarSizeInBits() - 1); 999 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 1000 if (In->getType() != Zext.getType()) 1001 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 1002 1003 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 1004 Constant *One = ConstantInt::get(In->getType(), 1); 1005 In = Builder.CreateXor(In, One, In->getName() + ".not"); 1006 } 1007 1008 return replaceInstUsesWith(Zext, In); 1009 } 1010 1011 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 1012 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1013 // zext (X == 1) to i32 --> X iff X has only the low bit set. 1014 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 1015 // zext (X != 0) to i32 --> X iff X has only the low bit set. 1016 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 1017 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 1018 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1019 if ((Op1CV->isZero() || Op1CV->isPowerOf2()) && 1020 // This only works for EQ and NE 1021 Cmp->isEquality()) { 1022 // If Op1C some other power of two, convert: 1023 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1024 1025 APInt KnownZeroMask(~Known.Zero); 1026 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1027 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1028 if (!Op1CV->isZero() && (*Op1CV != KnownZeroMask)) { 1029 // (X&4) == 2 --> false 1030 // (X&4) != 2 --> true 1031 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 1032 return replaceInstUsesWith(Zext, Res); 1033 } 1034 1035 uint32_t ShAmt = KnownZeroMask.logBase2(); 1036 Value *In = Cmp->getOperand(0); 1037 if (ShAmt) { 1038 // Perform a logical shr by shiftamt. 1039 // Insert the shift to put the result in the low bit. 1040 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1041 In->getName() + ".lobit"); 1042 } 1043 1044 if (!Op1CV->isZero() == isNE) { // Toggle the low bit. 1045 Constant *One = ConstantInt::get(In->getType(), 1); 1046 In = Builder.CreateXor(In, One); 1047 } 1048 1049 if (Zext.getType() == In->getType()) 1050 return replaceInstUsesWith(Zext, In); 1051 1052 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1053 return replaceInstUsesWith(Zext, IntCast); 1054 } 1055 } 1056 } 1057 1058 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1059 // Test if a bit is clear/set using a shifted-one mask: 1060 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1061 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1062 Value *X, *ShAmt; 1063 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1064 match(Cmp->getOperand(0), 1065 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1066 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1067 X = Builder.CreateNot(X); 1068 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1069 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1070 return replaceInstUsesWith(Zext, And1); 1071 } 1072 1073 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1074 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1075 // that may lead to additional simplifications. 1076 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1077 Value *LHS = Cmp->getOperand(0); 1078 Value *RHS = Cmp->getOperand(1); 1079 1080 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1081 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1082 1083 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 1084 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1085 APInt UnknownBit = ~KnownBits; 1086 if (UnknownBit.countPopulation() == 1) { 1087 Value *Result = Builder.CreateXor(LHS, RHS); 1088 1089 // Mask off any bits that are set and won't be shifted away. 1090 if (KnownLHS.One.uge(UnknownBit)) 1091 Result = Builder.CreateAnd(Result, 1092 ConstantInt::get(ITy, UnknownBit)); 1093 1094 // Shift the bit we're testing down to the lsb. 1095 Result = Builder.CreateLShr( 1096 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1097 1098 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1099 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1100 Result->takeName(Cmp); 1101 return replaceInstUsesWith(Zext, Result); 1102 } 1103 } 1104 } 1105 } 1106 1107 return nullptr; 1108 } 1109 1110 /// Determine if the specified value can be computed in the specified wider type 1111 /// and produce the same low bits. If not, return false. 1112 /// 1113 /// If this function returns true, it can also return a non-zero number of bits 1114 /// (in BitsToClear) which indicates that the value it computes is correct for 1115 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1116 /// out. For example, to promote something like: 1117 /// 1118 /// %B = trunc i64 %A to i32 1119 /// %C = lshr i32 %B, 8 1120 /// %E = zext i32 %C to i64 1121 /// 1122 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1123 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1124 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1125 /// clear the top bits anyway, doing this has no extra cost. 1126 /// 1127 /// This function works on both vectors and scalars. 1128 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1129 InstCombinerImpl &IC, Instruction *CxtI) { 1130 BitsToClear = 0; 1131 if (canAlwaysEvaluateInType(V, Ty)) 1132 return true; 1133 if (canNotEvaluateInType(V, Ty)) 1134 return false; 1135 1136 auto *I = cast<Instruction>(V); 1137 unsigned Tmp; 1138 switch (I->getOpcode()) { 1139 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1140 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1141 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1142 return true; 1143 case Instruction::And: 1144 case Instruction::Or: 1145 case Instruction::Xor: 1146 case Instruction::Add: 1147 case Instruction::Sub: 1148 case Instruction::Mul: 1149 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1150 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1151 return false; 1152 // These can all be promoted if neither operand has 'bits to clear'. 1153 if (BitsToClear == 0 && Tmp == 0) 1154 return true; 1155 1156 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1157 // other side, BitsToClear is ok. 1158 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1159 // We use MaskedValueIsZero here for generality, but the case we care 1160 // about the most is constant RHS. 1161 unsigned VSize = V->getType()->getScalarSizeInBits(); 1162 if (IC.MaskedValueIsZero(I->getOperand(1), 1163 APInt::getHighBitsSet(VSize, BitsToClear), 1164 0, CxtI)) { 1165 // If this is an And instruction and all of the BitsToClear are 1166 // known to be zero we can reset BitsToClear. 1167 if (I->getOpcode() == Instruction::And) 1168 BitsToClear = 0; 1169 return true; 1170 } 1171 } 1172 1173 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1174 return false; 1175 1176 case Instruction::Shl: { 1177 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1178 // upper bits we can reduce BitsToClear by the shift amount. 1179 const APInt *Amt; 1180 if (match(I->getOperand(1), m_APInt(Amt))) { 1181 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1182 return false; 1183 uint64_t ShiftAmt = Amt->getZExtValue(); 1184 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1185 return true; 1186 } 1187 return false; 1188 } 1189 case Instruction::LShr: { 1190 // We can promote lshr(x, cst) if we can promote x. This requires the 1191 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1192 const APInt *Amt; 1193 if (match(I->getOperand(1), m_APInt(Amt))) { 1194 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1195 return false; 1196 BitsToClear += Amt->getZExtValue(); 1197 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1198 BitsToClear = V->getType()->getScalarSizeInBits(); 1199 return true; 1200 } 1201 // Cannot promote variable LSHR. 1202 return false; 1203 } 1204 case Instruction::Select: 1205 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1206 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1207 // TODO: If important, we could handle the case when the BitsToClear are 1208 // known zero in the disagreeing side. 1209 Tmp != BitsToClear) 1210 return false; 1211 return true; 1212 1213 case Instruction::PHI: { 1214 // We can change a phi if we can change all operands. Note that we never 1215 // get into trouble with cyclic PHIs here because we only consider 1216 // instructions with a single use. 1217 PHINode *PN = cast<PHINode>(I); 1218 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1219 return false; 1220 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1221 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1222 // TODO: If important, we could handle the case when the BitsToClear 1223 // are known zero in the disagreeing input. 1224 Tmp != BitsToClear) 1225 return false; 1226 return true; 1227 } 1228 default: 1229 // TODO: Can handle more cases here. 1230 return false; 1231 } 1232 } 1233 1234 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1235 // If this zero extend is only used by a truncate, let the truncate be 1236 // eliminated before we try to optimize this zext. 1237 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1238 return nullptr; 1239 1240 // If one of the common conversion will work, do it. 1241 if (Instruction *Result = commonCastTransforms(CI)) 1242 return Result; 1243 1244 Value *Src = CI.getOperand(0); 1245 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1246 1247 // Try to extend the entire expression tree to the wide destination type. 1248 unsigned BitsToClear; 1249 if (shouldChangeType(SrcTy, DestTy) && 1250 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1251 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1252 "Can't clear more bits than in SrcTy"); 1253 1254 // Okay, we can transform this! Insert the new expression now. 1255 LLVM_DEBUG( 1256 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1257 " to avoid zero extend: " 1258 << CI << '\n'); 1259 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1260 assert(Res->getType() == DestTy); 1261 1262 // Preserve debug values referring to Src if the zext is its last use. 1263 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1264 if (SrcOp->hasOneUse()) 1265 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1266 1267 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1268 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1269 1270 // If the high bits are already filled with zeros, just replace this 1271 // cast with the result. 1272 if (MaskedValueIsZero(Res, 1273 APInt::getHighBitsSet(DestBitSize, 1274 DestBitSize-SrcBitsKept), 1275 0, &CI)) 1276 return replaceInstUsesWith(CI, Res); 1277 1278 // We need to emit an AND to clear the high bits. 1279 Constant *C = ConstantInt::get(Res->getType(), 1280 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1281 return BinaryOperator::CreateAnd(Res, C); 1282 } 1283 1284 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1285 // types and if the sizes are just right we can convert this into a logical 1286 // 'and' which will be much cheaper than the pair of casts. 1287 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1288 // TODO: Subsume this into EvaluateInDifferentType. 1289 1290 // Get the sizes of the types involved. We know that the intermediate type 1291 // will be smaller than A or C, but don't know the relation between A and C. 1292 Value *A = CSrc->getOperand(0); 1293 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1294 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1295 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1296 // If we're actually extending zero bits, then if 1297 // SrcSize < DstSize: zext(a & mask) 1298 // SrcSize == DstSize: a & mask 1299 // SrcSize > DstSize: trunc(a) & mask 1300 if (SrcSize < DstSize) { 1301 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1302 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1303 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1304 return new ZExtInst(And, CI.getType()); 1305 } 1306 1307 if (SrcSize == DstSize) { 1308 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1309 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1310 AndValue)); 1311 } 1312 if (SrcSize > DstSize) { 1313 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1314 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1315 return BinaryOperator::CreateAnd(Trunc, 1316 ConstantInt::get(Trunc->getType(), 1317 AndValue)); 1318 } 1319 } 1320 1321 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1322 return transformZExtICmp(Cmp, CI); 1323 1324 // zext(trunc(X) & C) -> (X & zext(C)). 1325 Constant *C; 1326 Value *X; 1327 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1328 X->getType() == CI.getType()) 1329 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1330 1331 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1332 Value *And; 1333 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1334 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1335 X->getType() == CI.getType()) { 1336 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1337 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1338 } 1339 1340 if (match(Src, m_VScale(DL))) { 1341 if (CI.getFunction() && 1342 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1343 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1344 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1345 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1346 if (Log2_32(MaxVScale.getValue()) < TypeWidth) { 1347 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1348 return replaceInstUsesWith(CI, VScale); 1349 } 1350 } 1351 } 1352 } 1353 1354 return nullptr; 1355 } 1356 1357 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1358 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1359 Instruction &CI) { 1360 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1361 ICmpInst::Predicate Pred = ICI->getPredicate(); 1362 1363 // Don't bother if Op1 isn't of vector or integer type. 1364 if (!Op1->getType()->isIntOrIntVectorTy()) 1365 return nullptr; 1366 1367 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1368 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1369 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1370 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1371 Value *Sh = ConstantInt::get(Op0->getType(), 1372 Op0->getType()->getScalarSizeInBits() - 1); 1373 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1374 if (In->getType() != CI.getType()) 1375 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1376 1377 if (Pred == ICmpInst::ICMP_SGT) 1378 In = Builder.CreateNot(In, In->getName() + ".not"); 1379 return replaceInstUsesWith(CI, In); 1380 } 1381 1382 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1383 // If we know that only one bit of the LHS of the icmp can be set and we 1384 // have an equality comparison with zero or a power of 2, we can transform 1385 // the icmp and sext into bitwise/integer operations. 1386 if (ICI->hasOneUse() && 1387 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1388 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1389 1390 APInt KnownZeroMask(~Known.Zero); 1391 if (KnownZeroMask.isPowerOf2()) { 1392 Value *In = ICI->getOperand(0); 1393 1394 // If the icmp tests for a known zero bit we can constant fold it. 1395 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1396 Value *V = Pred == ICmpInst::ICMP_NE ? 1397 ConstantInt::getAllOnesValue(CI.getType()) : 1398 ConstantInt::getNullValue(CI.getType()); 1399 return replaceInstUsesWith(CI, V); 1400 } 1401 1402 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1403 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1404 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1405 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1406 // Perform a right shift to place the desired bit in the LSB. 1407 if (ShiftAmt) 1408 In = Builder.CreateLShr(In, 1409 ConstantInt::get(In->getType(), ShiftAmt)); 1410 1411 // At this point "In" is either 1 or 0. Subtract 1 to turn 1412 // {1, 0} -> {0, -1}. 1413 In = Builder.CreateAdd(In, 1414 ConstantInt::getAllOnesValue(In->getType()), 1415 "sext"); 1416 } else { 1417 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1418 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1419 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1420 // Perform a left shift to place the desired bit in the MSB. 1421 if (ShiftAmt) 1422 In = Builder.CreateShl(In, 1423 ConstantInt::get(In->getType(), ShiftAmt)); 1424 1425 // Distribute the bit over the whole bit width. 1426 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1427 KnownZeroMask.getBitWidth() - 1), "sext"); 1428 } 1429 1430 if (CI.getType() == In->getType()) 1431 return replaceInstUsesWith(CI, In); 1432 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1433 } 1434 } 1435 } 1436 1437 return nullptr; 1438 } 1439 1440 /// Return true if we can take the specified value and return it as type Ty 1441 /// without inserting any new casts and without changing the value of the common 1442 /// low bits. This is used by code that tries to promote integer operations to 1443 /// a wider types will allow us to eliminate the extension. 1444 /// 1445 /// This function works on both vectors and scalars. 1446 /// 1447 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1448 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1449 "Can't sign extend type to a smaller type"); 1450 if (canAlwaysEvaluateInType(V, Ty)) 1451 return true; 1452 if (canNotEvaluateInType(V, Ty)) 1453 return false; 1454 1455 auto *I = cast<Instruction>(V); 1456 switch (I->getOpcode()) { 1457 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1458 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1459 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1460 return true; 1461 case Instruction::And: 1462 case Instruction::Or: 1463 case Instruction::Xor: 1464 case Instruction::Add: 1465 case Instruction::Sub: 1466 case Instruction::Mul: 1467 // These operators can all arbitrarily be extended if their inputs can. 1468 return canEvaluateSExtd(I->getOperand(0), Ty) && 1469 canEvaluateSExtd(I->getOperand(1), Ty); 1470 1471 //case Instruction::Shl: TODO 1472 //case Instruction::LShr: TODO 1473 1474 case Instruction::Select: 1475 return canEvaluateSExtd(I->getOperand(1), Ty) && 1476 canEvaluateSExtd(I->getOperand(2), Ty); 1477 1478 case Instruction::PHI: { 1479 // We can change a phi if we can change all operands. Note that we never 1480 // get into trouble with cyclic PHIs here because we only consider 1481 // instructions with a single use. 1482 PHINode *PN = cast<PHINode>(I); 1483 for (Value *IncValue : PN->incoming_values()) 1484 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1485 return true; 1486 } 1487 default: 1488 // TODO: Can handle more cases here. 1489 break; 1490 } 1491 1492 return false; 1493 } 1494 1495 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1496 // If this sign extend is only used by a truncate, let the truncate be 1497 // eliminated before we try to optimize this sext. 1498 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1499 return nullptr; 1500 1501 if (Instruction *I = commonCastTransforms(CI)) 1502 return I; 1503 1504 Value *Src = CI.getOperand(0); 1505 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1506 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1507 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1508 1509 // If we know that the value being extended is positive, we can use a zext 1510 // instead. 1511 KnownBits Known = computeKnownBits(Src, 0, &CI); 1512 if (Known.isNonNegative()) 1513 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1514 1515 // Try to extend the entire expression tree to the wide destination type. 1516 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1517 // Okay, we can transform this! Insert the new expression now. 1518 LLVM_DEBUG( 1519 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1520 " to avoid sign extend: " 1521 << CI << '\n'); 1522 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1523 assert(Res->getType() == DestTy); 1524 1525 // If the high bits are already filled with sign bit, just replace this 1526 // cast with the result. 1527 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1528 return replaceInstUsesWith(CI, Res); 1529 1530 // We need to emit a shl + ashr to do the sign extend. 1531 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1532 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1533 ShAmt); 1534 } 1535 1536 Value *X; 1537 if (match(Src, m_Trunc(m_Value(X)))) { 1538 // If the input has more sign bits than bits truncated, then convert 1539 // directly to final type. 1540 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1541 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1542 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1543 1544 // If input is a trunc from the destination type, then convert into shifts. 1545 if (Src->hasOneUse() && X->getType() == DestTy) { 1546 // sext (trunc X) --> ashr (shl X, C), C 1547 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1548 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1549 } 1550 1551 // If we are replacing shifted-in high zero bits with sign bits, convert 1552 // the logic shift to arithmetic shift and eliminate the cast to 1553 // intermediate type: 1554 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1555 Value *Y; 1556 if (Src->hasOneUse() && 1557 match(X, m_LShr(m_Value(Y), 1558 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1559 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1560 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1561 } 1562 } 1563 1564 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1565 return transformSExtICmp(ICI, CI); 1566 1567 // If the input is a shl/ashr pair of a same constant, then this is a sign 1568 // extension from a smaller value. If we could trust arbitrary bitwidth 1569 // integers, we could turn this into a truncate to the smaller bit and then 1570 // use a sext for the whole extension. Since we don't, look deeper and check 1571 // for a truncate. If the source and dest are the same type, eliminate the 1572 // trunc and extend and just do shifts. For example, turn: 1573 // %a = trunc i32 %i to i8 1574 // %b = shl i8 %a, C 1575 // %c = ashr i8 %b, C 1576 // %d = sext i8 %c to i32 1577 // into: 1578 // %a = shl i32 %i, 32-(8-C) 1579 // %d = ashr i32 %a, 32-(8-C) 1580 Value *A = nullptr; 1581 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1582 Constant *BA = nullptr, *CA = nullptr; 1583 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1584 m_Constant(CA))) && 1585 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1586 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1587 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1588 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1589 Constant *NewShAmt = ConstantExpr::getSub( 1590 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1591 NumLowbitsLeft); 1592 NewShAmt = 1593 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1594 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1595 return BinaryOperator::CreateAShr(A, NewShAmt); 1596 } 1597 1598 // Splatting a bit of constant-index across a value: 1599 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1600 // TODO: If the dest type is different, use a cast (adjust use check). 1601 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1602 m_SpecificInt(SrcBitSize - 1)))) && 1603 X->getType() == DestTy) { 1604 Constant *ShlAmtC = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1605 Constant *AshrAmtC = ConstantInt::get(DestTy, DestBitSize - 1); 1606 Value *Shl = Builder.CreateShl(X, ShlAmtC); 1607 return BinaryOperator::CreateAShr(Shl, AshrAmtC); 1608 } 1609 1610 if (match(Src, m_VScale(DL))) { 1611 if (CI.getFunction() && 1612 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1613 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1614 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1615 if (Log2_32(MaxVScale.getValue()) < (SrcBitSize - 1)) { 1616 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1617 return replaceInstUsesWith(CI, VScale); 1618 } 1619 } 1620 } 1621 } 1622 1623 return nullptr; 1624 } 1625 1626 /// Return a Constant* for the specified floating-point constant if it fits 1627 /// in the specified FP type without changing its value. 1628 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1629 bool losesInfo; 1630 APFloat F = CFP->getValueAPF(); 1631 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1632 return !losesInfo; 1633 } 1634 1635 static Type *shrinkFPConstant(ConstantFP *CFP) { 1636 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1637 return nullptr; // No constant folding of this. 1638 // See if the value can be truncated to half and then reextended. 1639 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1640 return Type::getHalfTy(CFP->getContext()); 1641 // See if the value can be truncated to float and then reextended. 1642 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1643 return Type::getFloatTy(CFP->getContext()); 1644 if (CFP->getType()->isDoubleTy()) 1645 return nullptr; // Won't shrink. 1646 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1647 return Type::getDoubleTy(CFP->getContext()); 1648 // Don't try to shrink to various long double types. 1649 return nullptr; 1650 } 1651 1652 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1653 // type we can safely truncate all elements to. 1654 // TODO: Make these support undef elements. 1655 static Type *shrinkFPConstantVector(Value *V) { 1656 auto *CV = dyn_cast<Constant>(V); 1657 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1658 if (!CV || !CVVTy) 1659 return nullptr; 1660 1661 Type *MinType = nullptr; 1662 1663 unsigned NumElts = CVVTy->getNumElements(); 1664 1665 // For fixed-width vectors we find the minimal type by looking 1666 // through the constant values of the vector. 1667 for (unsigned i = 0; i != NumElts; ++i) { 1668 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1669 if (!CFP) 1670 return nullptr; 1671 1672 Type *T = shrinkFPConstant(CFP); 1673 if (!T) 1674 return nullptr; 1675 1676 // If we haven't found a type yet or this type has a larger mantissa than 1677 // our previous type, this is our new minimal type. 1678 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1679 MinType = T; 1680 } 1681 1682 // Make a vector type from the minimal type. 1683 return FixedVectorType::get(MinType, NumElts); 1684 } 1685 1686 /// Find the minimum FP type we can safely truncate to. 1687 static Type *getMinimumFPType(Value *V) { 1688 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1689 return FPExt->getOperand(0)->getType(); 1690 1691 // If this value is a constant, return the constant in the smallest FP type 1692 // that can accurately represent it. This allows us to turn 1693 // (float)((double)X+2.0) into x+2.0f. 1694 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1695 if (Type *T = shrinkFPConstant(CFP)) 1696 return T; 1697 1698 // We can only correctly find a minimum type for a scalable vector when it is 1699 // a splat. For splats of constant values the fpext is wrapped up as a 1700 // ConstantExpr. 1701 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1702 if (FPCExt->getOpcode() == Instruction::FPExt) 1703 return FPCExt->getOperand(0)->getType(); 1704 1705 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1706 // vectors 1707 if (Type *T = shrinkFPConstantVector(V)) 1708 return T; 1709 1710 return V->getType(); 1711 } 1712 1713 /// Return true if the cast from integer to FP can be proven to be exact for all 1714 /// possible inputs (the conversion does not lose any precision). 1715 static bool isKnownExactCastIntToFP(CastInst &I) { 1716 CastInst::CastOps Opcode = I.getOpcode(); 1717 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1718 "Unexpected cast"); 1719 Value *Src = I.getOperand(0); 1720 Type *SrcTy = Src->getType(); 1721 Type *FPTy = I.getType(); 1722 bool IsSigned = Opcode == Instruction::SIToFP; 1723 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1724 1725 // Easy case - if the source integer type has less bits than the FP mantissa, 1726 // then the cast must be exact. 1727 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1728 if (SrcSize <= DestNumSigBits) 1729 return true; 1730 1731 // Cast from FP to integer and back to FP is independent of the intermediate 1732 // integer width because of poison on overflow. 1733 Value *F; 1734 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1735 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1736 // potential rounding of negative FP input values. 1737 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1738 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1739 SrcNumSigBits++; 1740 1741 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1742 // significant bits than the destination (and make sure neither type is 1743 // weird -- ppc_fp128). 1744 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1745 SrcNumSigBits <= DestNumSigBits) 1746 return true; 1747 } 1748 1749 // TODO: 1750 // Try harder to find if the source integer type has less significant bits. 1751 // For example, compute number of sign bits or compute low bit mask. 1752 return false; 1753 } 1754 1755 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1756 if (Instruction *I = commonCastTransforms(FPT)) 1757 return I; 1758 1759 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1760 // simplify this expression to avoid one or more of the trunc/extend 1761 // operations if we can do so without changing the numerical results. 1762 // 1763 // The exact manner in which the widths of the operands interact to limit 1764 // what we can and cannot do safely varies from operation to operation, and 1765 // is explained below in the various case statements. 1766 Type *Ty = FPT.getType(); 1767 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1768 if (BO && BO->hasOneUse()) { 1769 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1770 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1771 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1772 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1773 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1774 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1775 unsigned DstWidth = Ty->getFPMantissaWidth(); 1776 switch (BO->getOpcode()) { 1777 default: break; 1778 case Instruction::FAdd: 1779 case Instruction::FSub: 1780 // For addition and subtraction, the infinitely precise result can 1781 // essentially be arbitrarily wide; proving that double rounding 1782 // will not occur because the result of OpI is exact (as we will for 1783 // FMul, for example) is hopeless. However, we *can* nonetheless 1784 // frequently know that double rounding cannot occur (or that it is 1785 // innocuous) by taking advantage of the specific structure of 1786 // infinitely-precise results that admit double rounding. 1787 // 1788 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1789 // to represent both sources, we can guarantee that the double 1790 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1791 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1792 // for proof of this fact). 1793 // 1794 // Note: Figueroa does not consider the case where DstFormat != 1795 // SrcFormat. It's possible (likely even!) that this analysis 1796 // could be tightened for those cases, but they are rare (the main 1797 // case of interest here is (float)((double)float + float)). 1798 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1799 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1800 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1801 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1802 RI->copyFastMathFlags(BO); 1803 return RI; 1804 } 1805 break; 1806 case Instruction::FMul: 1807 // For multiplication, the infinitely precise result has at most 1808 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1809 // that such a value can be exactly represented, then no double 1810 // rounding can possibly occur; we can safely perform the operation 1811 // in the destination format if it can represent both sources. 1812 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1813 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1814 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1815 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1816 } 1817 break; 1818 case Instruction::FDiv: 1819 // For division, we use again use the bound from Figueroa's 1820 // dissertation. I am entirely certain that this bound can be 1821 // tightened in the unbalanced operand case by an analysis based on 1822 // the diophantine rational approximation bound, but the well-known 1823 // condition used here is a good conservative first pass. 1824 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1825 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1826 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1827 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1828 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1829 } 1830 break; 1831 case Instruction::FRem: { 1832 // Remainder is straightforward. Remainder is always exact, so the 1833 // type of OpI doesn't enter into things at all. We simply evaluate 1834 // in whichever source type is larger, then convert to the 1835 // destination type. 1836 if (SrcWidth == OpWidth) 1837 break; 1838 Value *LHS, *RHS; 1839 if (LHSWidth == SrcWidth) { 1840 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1841 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1842 } else { 1843 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1844 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1845 } 1846 1847 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1848 return CastInst::CreateFPCast(ExactResult, Ty); 1849 } 1850 } 1851 } 1852 1853 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1854 Value *X; 1855 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1856 if (Op && Op->hasOneUse()) { 1857 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1858 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1859 if (isa<FPMathOperator>(Op)) 1860 Builder.setFastMathFlags(Op->getFastMathFlags()); 1861 1862 if (match(Op, m_FNeg(m_Value(X)))) { 1863 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1864 1865 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1866 } 1867 1868 // If we are truncating a select that has an extended operand, we can 1869 // narrow the other operand and do the select as a narrow op. 1870 Value *Cond, *X, *Y; 1871 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1872 X->getType() == Ty) { 1873 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1874 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1875 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1876 return replaceInstUsesWith(FPT, Sel); 1877 } 1878 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1879 X->getType() == Ty) { 1880 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1881 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1882 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1883 return replaceInstUsesWith(FPT, Sel); 1884 } 1885 } 1886 1887 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1888 switch (II->getIntrinsicID()) { 1889 default: break; 1890 case Intrinsic::ceil: 1891 case Intrinsic::fabs: 1892 case Intrinsic::floor: 1893 case Intrinsic::nearbyint: 1894 case Intrinsic::rint: 1895 case Intrinsic::round: 1896 case Intrinsic::roundeven: 1897 case Intrinsic::trunc: { 1898 Value *Src = II->getArgOperand(0); 1899 if (!Src->hasOneUse()) 1900 break; 1901 1902 // Except for fabs, this transformation requires the input of the unary FP 1903 // operation to be itself an fpext from the type to which we're 1904 // truncating. 1905 if (II->getIntrinsicID() != Intrinsic::fabs) { 1906 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1907 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1908 break; 1909 } 1910 1911 // Do unary FP operation on smaller type. 1912 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1913 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1914 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1915 II->getIntrinsicID(), Ty); 1916 SmallVector<OperandBundleDef, 1> OpBundles; 1917 II->getOperandBundlesAsDefs(OpBundles); 1918 CallInst *NewCI = 1919 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1920 NewCI->copyFastMathFlags(II); 1921 return NewCI; 1922 } 1923 } 1924 } 1925 1926 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1927 return I; 1928 1929 Value *Src = FPT.getOperand(0); 1930 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1931 auto *FPCast = cast<CastInst>(Src); 1932 if (isKnownExactCastIntToFP(*FPCast)) 1933 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1934 } 1935 1936 return nullptr; 1937 } 1938 1939 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1940 // If the source operand is a cast from integer to FP and known exact, then 1941 // cast the integer operand directly to the destination type. 1942 Type *Ty = FPExt.getType(); 1943 Value *Src = FPExt.getOperand(0); 1944 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1945 auto *FPCast = cast<CastInst>(Src); 1946 if (isKnownExactCastIntToFP(*FPCast)) 1947 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1948 } 1949 1950 return commonCastTransforms(FPExt); 1951 } 1952 1953 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1954 /// This is safe if the intermediate type has enough bits in its mantissa to 1955 /// accurately represent all values of X. For example, this won't work with 1956 /// i64 -> float -> i64. 1957 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1958 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1959 return nullptr; 1960 1961 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1962 Value *X = OpI->getOperand(0); 1963 Type *XType = X->getType(); 1964 Type *DestType = FI.getType(); 1965 bool IsOutputSigned = isa<FPToSIInst>(FI); 1966 1967 // Since we can assume the conversion won't overflow, our decision as to 1968 // whether the input will fit in the float should depend on the minimum 1969 // of the input range and output range. 1970 1971 // This means this is also safe for a signed input and unsigned output, since 1972 // a negative input would lead to undefined behavior. 1973 if (!isKnownExactCastIntToFP(*OpI)) { 1974 // The first cast may not round exactly based on the source integer width 1975 // and FP width, but the overflow UB rules can still allow this to fold. 1976 // If the destination type is narrow, that means the intermediate FP value 1977 // must be large enough to hold the source value exactly. 1978 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1979 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; 1980 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1981 return nullptr; 1982 } 1983 1984 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1985 bool IsInputSigned = isa<SIToFPInst>(OpI); 1986 if (IsInputSigned && IsOutputSigned) 1987 return new SExtInst(X, DestType); 1988 return new ZExtInst(X, DestType); 1989 } 1990 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1991 return new TruncInst(X, DestType); 1992 1993 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1994 return replaceInstUsesWith(FI, X); 1995 } 1996 1997 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1998 if (Instruction *I = foldItoFPtoI(FI)) 1999 return I; 2000 2001 return commonCastTransforms(FI); 2002 } 2003 2004 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 2005 if (Instruction *I = foldItoFPtoI(FI)) 2006 return I; 2007 2008 return commonCastTransforms(FI); 2009 } 2010 2011 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 2012 return commonCastTransforms(CI); 2013 } 2014 2015 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 2016 return commonCastTransforms(CI); 2017 } 2018 2019 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2020 // If the source integer type is not the intptr_t type for this target, do a 2021 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2022 // cast to be exposed to other transforms. 2023 unsigned AS = CI.getAddressSpace(); 2024 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2025 DL.getPointerSizeInBits(AS)) { 2026 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2027 DL.getIntPtrType(CI.getContext(), AS)); 2028 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2029 return new IntToPtrInst(P, CI.getType()); 2030 } 2031 2032 if (Instruction *I = commonCastTransforms(CI)) 2033 return I; 2034 2035 return nullptr; 2036 } 2037 2038 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2039 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2040 Value *Src = CI.getOperand(0); 2041 2042 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2043 // If casting the result of a getelementptr instruction with no offset, turn 2044 // this into a cast of the original pointer! 2045 if (GEP->hasAllZeroIndices() && 2046 // If CI is an addrspacecast and GEP changes the poiner type, merging 2047 // GEP into CI would undo canonicalizing addrspacecast with different 2048 // pointer types, causing infinite loops. 2049 (!isa<AddrSpaceCastInst>(CI) || 2050 GEP->getType() == GEP->getPointerOperandType())) { 2051 // Changing the cast operand is usually not a good idea but it is safe 2052 // here because the pointer operand is being replaced with another 2053 // pointer operand so the opcode doesn't need to change. 2054 return replaceOperand(CI, 0, GEP->getOperand(0)); 2055 } 2056 } 2057 2058 return commonCastTransforms(CI); 2059 } 2060 2061 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2062 // If the destination integer type is not the intptr_t type for this target, 2063 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2064 // to be exposed to other transforms. 2065 Value *SrcOp = CI.getPointerOperand(); 2066 Type *SrcTy = SrcOp->getType(); 2067 Type *Ty = CI.getType(); 2068 unsigned AS = CI.getPointerAddressSpace(); 2069 unsigned TySize = Ty->getScalarSizeInBits(); 2070 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2071 if (TySize != PtrSize) { 2072 Type *IntPtrTy = 2073 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2074 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2075 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2076 } 2077 2078 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 2079 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2080 // While this can increase the number of instructions it doesn't actually 2081 // increase the overall complexity since the arithmetic is just part of 2082 // the GEP otherwise. 2083 if (GEP->hasOneUse() && 2084 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2085 return replaceInstUsesWith(CI, 2086 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2087 /*isSigned=*/false)); 2088 } 2089 } 2090 2091 Value *Vec, *Scalar, *Index; 2092 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2093 m_Value(Scalar), m_Value(Index)))) && 2094 Vec->getType() == Ty) { 2095 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2096 // Convert the scalar to int followed by insert to eliminate one cast: 2097 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2098 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2099 return InsertElementInst::Create(Vec, NewCast, Index); 2100 } 2101 2102 return commonPointerCastTransforms(CI); 2103 } 2104 2105 /// This input value (which is known to have vector type) is being zero extended 2106 /// or truncated to the specified vector type. Since the zext/trunc is done 2107 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2108 /// endianness will impact which end of the vector that is extended or 2109 /// truncated. 2110 /// 2111 /// A vector is always stored with index 0 at the lowest address, which 2112 /// corresponds to the most significant bits for a big endian stored integer and 2113 /// the least significant bits for little endian. A trunc/zext of an integer 2114 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2115 /// the front of the vector for big endian targets, and the back of the vector 2116 /// for little endian targets. 2117 /// 2118 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2119 /// 2120 /// The source and destination vector types may have different element types. 2121 static Instruction * 2122 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2123 InstCombinerImpl &IC) { 2124 // We can only do this optimization if the output is a multiple of the input 2125 // element size, or the input is a multiple of the output element size. 2126 // Convert the input type to have the same element type as the output. 2127 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2128 2129 if (SrcTy->getElementType() != DestTy->getElementType()) { 2130 // The input types don't need to be identical, but for now they must be the 2131 // same size. There is no specific reason we couldn't handle things like 2132 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2133 // there yet. 2134 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2135 DestTy->getElementType()->getPrimitiveSizeInBits()) 2136 return nullptr; 2137 2138 SrcTy = 2139 FixedVectorType::get(DestTy->getElementType(), 2140 cast<FixedVectorType>(SrcTy)->getNumElements()); 2141 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2142 } 2143 2144 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2145 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2146 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2147 2148 assert(SrcElts != DestElts && "Element counts should be different."); 2149 2150 // Now that the element types match, get the shuffle mask and RHS of the 2151 // shuffle to use, which depends on whether we're increasing or decreasing the 2152 // size of the input. 2153 SmallVector<int, 16> ShuffleMaskStorage; 2154 ArrayRef<int> ShuffleMask; 2155 Value *V2; 2156 2157 // Produce an identify shuffle mask for the src vector. 2158 ShuffleMaskStorage.resize(SrcElts); 2159 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 2160 2161 if (SrcElts > DestElts) { 2162 // If we're shrinking the number of elements (rewriting an integer 2163 // truncate), just shuffle in the elements corresponding to the least 2164 // significant bits from the input and use poison as the second shuffle 2165 // input. 2166 V2 = PoisonValue::get(SrcTy); 2167 // Make sure the shuffle mask selects the "least significant bits" by 2168 // keeping elements from back of the src vector for big endian, and from the 2169 // front for little endian. 2170 ShuffleMask = ShuffleMaskStorage; 2171 if (IsBigEndian) 2172 ShuffleMask = ShuffleMask.take_back(DestElts); 2173 else 2174 ShuffleMask = ShuffleMask.take_front(DestElts); 2175 } else { 2176 // If we're increasing the number of elements (rewriting an integer zext), 2177 // shuffle in all of the elements from InVal. Fill the rest of the result 2178 // elements with zeros from a constant zero. 2179 V2 = Constant::getNullValue(SrcTy); 2180 // Use first elt from V2 when indicating zero in the shuffle mask. 2181 uint32_t NullElt = SrcElts; 2182 // Extend with null values in the "most significant bits" by adding elements 2183 // in front of the src vector for big endian, and at the back for little 2184 // endian. 2185 unsigned DeltaElts = DestElts - SrcElts; 2186 if (IsBigEndian) 2187 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2188 else 2189 ShuffleMaskStorage.append(DeltaElts, NullElt); 2190 ShuffleMask = ShuffleMaskStorage; 2191 } 2192 2193 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2194 } 2195 2196 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2197 return Value % Ty->getPrimitiveSizeInBits() == 0; 2198 } 2199 2200 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2201 return Value / Ty->getPrimitiveSizeInBits(); 2202 } 2203 2204 /// V is a value which is inserted into a vector of VecEltTy. 2205 /// Look through the value to see if we can decompose it into 2206 /// insertions into the vector. See the example in the comment for 2207 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2208 /// The type of V is always a non-zero multiple of VecEltTy's size. 2209 /// Shift is the number of bits between the lsb of V and the lsb of 2210 /// the vector. 2211 /// 2212 /// This returns false if the pattern can't be matched or true if it can, 2213 /// filling in Elements with the elements found here. 2214 static bool collectInsertionElements(Value *V, unsigned Shift, 2215 SmallVectorImpl<Value *> &Elements, 2216 Type *VecEltTy, bool isBigEndian) { 2217 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2218 "Shift should be a multiple of the element type size"); 2219 2220 // Undef values never contribute useful bits to the result. 2221 if (isa<UndefValue>(V)) return true; 2222 2223 // If we got down to a value of the right type, we win, try inserting into the 2224 // right element. 2225 if (V->getType() == VecEltTy) { 2226 // Inserting null doesn't actually insert any elements. 2227 if (Constant *C = dyn_cast<Constant>(V)) 2228 if (C->isNullValue()) 2229 return true; 2230 2231 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2232 if (isBigEndian) 2233 ElementIndex = Elements.size() - ElementIndex - 1; 2234 2235 // Fail if multiple elements are inserted into this slot. 2236 if (Elements[ElementIndex]) 2237 return false; 2238 2239 Elements[ElementIndex] = V; 2240 return true; 2241 } 2242 2243 if (Constant *C = dyn_cast<Constant>(V)) { 2244 // Figure out the # elements this provides, and bitcast it or slice it up 2245 // as required. 2246 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2247 VecEltTy); 2248 // If the constant is the size of a vector element, we just need to bitcast 2249 // it to the right type so it gets properly inserted. 2250 if (NumElts == 1) 2251 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2252 Shift, Elements, VecEltTy, isBigEndian); 2253 2254 // Okay, this is a constant that covers multiple elements. Slice it up into 2255 // pieces and insert each element-sized piece into the vector. 2256 if (!isa<IntegerType>(C->getType())) 2257 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2258 C->getType()->getPrimitiveSizeInBits())); 2259 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2260 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2261 2262 for (unsigned i = 0; i != NumElts; ++i) { 2263 unsigned ShiftI = Shift+i*ElementSize; 2264 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2265 ShiftI)); 2266 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2267 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2268 isBigEndian)) 2269 return false; 2270 } 2271 return true; 2272 } 2273 2274 if (!V->hasOneUse()) return false; 2275 2276 Instruction *I = dyn_cast<Instruction>(V); 2277 if (!I) return false; 2278 switch (I->getOpcode()) { 2279 default: return false; // Unhandled case. 2280 case Instruction::BitCast: 2281 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2282 isBigEndian); 2283 case Instruction::ZExt: 2284 if (!isMultipleOfTypeSize( 2285 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2286 VecEltTy)) 2287 return false; 2288 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2289 isBigEndian); 2290 case Instruction::Or: 2291 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2292 isBigEndian) && 2293 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2294 isBigEndian); 2295 case Instruction::Shl: { 2296 // Must be shifting by a constant that is a multiple of the element size. 2297 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2298 if (!CI) return false; 2299 Shift += CI->getZExtValue(); 2300 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2301 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2302 isBigEndian); 2303 } 2304 2305 } 2306 } 2307 2308 2309 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2310 /// assemble the elements of the vector manually. 2311 /// Try to rip the code out and replace it with insertelements. This is to 2312 /// optimize code like this: 2313 /// 2314 /// %tmp37 = bitcast float %inc to i32 2315 /// %tmp38 = zext i32 %tmp37 to i64 2316 /// %tmp31 = bitcast float %inc5 to i32 2317 /// %tmp32 = zext i32 %tmp31 to i64 2318 /// %tmp33 = shl i64 %tmp32, 32 2319 /// %ins35 = or i64 %tmp33, %tmp38 2320 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2321 /// 2322 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2323 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2324 InstCombinerImpl &IC) { 2325 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2326 Value *IntInput = CI.getOperand(0); 2327 2328 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2329 if (!collectInsertionElements(IntInput, 0, Elements, 2330 DestVecTy->getElementType(), 2331 IC.getDataLayout().isBigEndian())) 2332 return nullptr; 2333 2334 // If we succeeded, we know that all of the element are specified by Elements 2335 // or are zero if Elements has a null entry. Recast this as a set of 2336 // insertions. 2337 Value *Result = Constant::getNullValue(CI.getType()); 2338 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2339 if (!Elements[i]) continue; // Unset element. 2340 2341 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2342 IC.Builder.getInt32(i)); 2343 } 2344 2345 return Result; 2346 } 2347 2348 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2349 /// vector followed by extract element. The backend tends to handle bitcasts of 2350 /// vectors better than bitcasts of scalars because vector registers are 2351 /// usually not type-specific like scalar integer or scalar floating-point. 2352 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2353 InstCombinerImpl &IC) { 2354 // TODO: Create and use a pattern matcher for ExtractElementInst. 2355 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2356 if (!ExtElt || !ExtElt->hasOneUse()) 2357 return nullptr; 2358 2359 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2360 // type to extract from. 2361 Type *DestType = BitCast.getType(); 2362 if (!VectorType::isValidElementType(DestType)) 2363 return nullptr; 2364 2365 auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType()); 2366 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2367 NewVecType, "bc"); 2368 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2369 } 2370 2371 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2372 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2373 InstCombiner::BuilderTy &Builder) { 2374 Type *DestTy = BitCast.getType(); 2375 BinaryOperator *BO; 2376 if (!DestTy->isIntOrIntVectorTy() || 2377 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2378 !BO->isBitwiseLogicOp()) 2379 return nullptr; 2380 2381 // FIXME: This transform is restricted to vector types to avoid backend 2382 // problems caused by creating potentially illegal operations. If a fix-up is 2383 // added to handle that situation, we can remove this check. 2384 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2385 return nullptr; 2386 2387 Value *X; 2388 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2389 X->getType() == DestTy && !isa<Constant>(X)) { 2390 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2391 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2392 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2393 } 2394 2395 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2396 X->getType() == DestTy && !isa<Constant>(X)) { 2397 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2398 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2399 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2400 } 2401 2402 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2403 // constant. This eases recognition of special constants for later ops. 2404 // Example: 2405 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2406 Constant *C; 2407 if (match(BO->getOperand(1), m_Constant(C))) { 2408 // bitcast (logic X, C) --> logic (bitcast X, C') 2409 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2410 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2411 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2412 } 2413 2414 return nullptr; 2415 } 2416 2417 /// Change the type of a select if we can eliminate a bitcast. 2418 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2419 InstCombiner::BuilderTy &Builder) { 2420 Value *Cond, *TVal, *FVal; 2421 if (!match(BitCast.getOperand(0), 2422 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2423 return nullptr; 2424 2425 // A vector select must maintain the same number of elements in its operands. 2426 Type *CondTy = Cond->getType(); 2427 Type *DestTy = BitCast.getType(); 2428 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2429 if (!DestTy->isVectorTy() || 2430 CondVTy->getElementCount() != 2431 cast<VectorType>(DestTy)->getElementCount()) 2432 return nullptr; 2433 2434 // FIXME: This transform is restricted from changing the select between 2435 // scalars and vectors to avoid backend problems caused by creating 2436 // potentially illegal operations. If a fix-up is added to handle that 2437 // situation, we can remove this check. 2438 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2439 return nullptr; 2440 2441 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2442 Value *X; 2443 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2444 !isa<Constant>(X)) { 2445 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2446 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2447 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2448 } 2449 2450 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2451 !isa<Constant>(X)) { 2452 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2453 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2454 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2455 } 2456 2457 return nullptr; 2458 } 2459 2460 /// Check if all users of CI are StoreInsts. 2461 static bool hasStoreUsersOnly(CastInst &CI) { 2462 for (User *U : CI.users()) { 2463 if (!isa<StoreInst>(U)) 2464 return false; 2465 } 2466 return true; 2467 } 2468 2469 /// This function handles following case 2470 /// 2471 /// A -> B cast 2472 /// PHI 2473 /// B -> A cast 2474 /// 2475 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2476 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2477 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2478 PHINode *PN) { 2479 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2480 if (hasStoreUsersOnly(CI)) 2481 return nullptr; 2482 2483 Value *Src = CI.getOperand(0); 2484 Type *SrcTy = Src->getType(); // Type B 2485 Type *DestTy = CI.getType(); // Type A 2486 2487 SmallVector<PHINode *, 4> PhiWorklist; 2488 SmallSetVector<PHINode *, 4> OldPhiNodes; 2489 2490 // Find all of the A->B casts and PHI nodes. 2491 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2492 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2493 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2494 PhiWorklist.push_back(PN); 2495 OldPhiNodes.insert(PN); 2496 while (!PhiWorklist.empty()) { 2497 auto *OldPN = PhiWorklist.pop_back_val(); 2498 for (Value *IncValue : OldPN->incoming_values()) { 2499 if (isa<Constant>(IncValue)) 2500 continue; 2501 2502 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2503 // If there is a sequence of one or more load instructions, each loaded 2504 // value is used as address of later load instruction, bitcast is 2505 // necessary to change the value type, don't optimize it. For 2506 // simplicity we give up if the load address comes from another load. 2507 Value *Addr = LI->getOperand(0); 2508 if (Addr == &CI || isa<LoadInst>(Addr)) 2509 return nullptr; 2510 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2511 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2512 // TODO: Remove this check when bitcast between vector and x86_amx 2513 // is replaced with a specific intrinsic. 2514 if (DestTy->isX86_AMXTy()) 2515 return nullptr; 2516 if (LI->hasOneUse() && LI->isSimple()) 2517 continue; 2518 // If a LoadInst has more than one use, changing the type of loaded 2519 // value may create another bitcast. 2520 return nullptr; 2521 } 2522 2523 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2524 if (OldPhiNodes.insert(PNode)) 2525 PhiWorklist.push_back(PNode); 2526 continue; 2527 } 2528 2529 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2530 // We can't handle other instructions. 2531 if (!BCI) 2532 return nullptr; 2533 2534 // Verify it's a A->B cast. 2535 Type *TyA = BCI->getOperand(0)->getType(); 2536 Type *TyB = BCI->getType(); 2537 if (TyA != DestTy || TyB != SrcTy) 2538 return nullptr; 2539 } 2540 } 2541 2542 // Check that each user of each old PHI node is something that we can 2543 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2544 for (auto *OldPN : OldPhiNodes) { 2545 for (User *V : OldPN->users()) { 2546 if (auto *SI = dyn_cast<StoreInst>(V)) { 2547 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2548 return nullptr; 2549 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2550 // Verify it's a B->A cast. 2551 Type *TyB = BCI->getOperand(0)->getType(); 2552 Type *TyA = BCI->getType(); 2553 if (TyA != DestTy || TyB != SrcTy) 2554 return nullptr; 2555 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2556 // As long as the user is another old PHI node, then even if we don't 2557 // rewrite it, the PHI web we're considering won't have any users 2558 // outside itself, so it'll be dead. 2559 if (!OldPhiNodes.contains(PHI)) 2560 return nullptr; 2561 } else { 2562 return nullptr; 2563 } 2564 } 2565 } 2566 2567 // For each old PHI node, create a corresponding new PHI node with a type A. 2568 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2569 for (auto *OldPN : OldPhiNodes) { 2570 Builder.SetInsertPoint(OldPN); 2571 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2572 NewPNodes[OldPN] = NewPN; 2573 } 2574 2575 // Fill in the operands of new PHI nodes. 2576 for (auto *OldPN : OldPhiNodes) { 2577 PHINode *NewPN = NewPNodes[OldPN]; 2578 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2579 Value *V = OldPN->getOperand(j); 2580 Value *NewV = nullptr; 2581 if (auto *C = dyn_cast<Constant>(V)) { 2582 NewV = ConstantExpr::getBitCast(C, DestTy); 2583 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2584 // Explicitly perform load combine to make sure no opposing transform 2585 // can remove the bitcast in the meantime and trigger an infinite loop. 2586 Builder.SetInsertPoint(LI); 2587 NewV = combineLoadToNewType(*LI, DestTy); 2588 // Remove the old load and its use in the old phi, which itself becomes 2589 // dead once the whole transform finishes. 2590 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2591 eraseInstFromFunction(*LI); 2592 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2593 NewV = BCI->getOperand(0); 2594 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2595 NewV = NewPNodes[PrevPN]; 2596 } 2597 assert(NewV); 2598 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2599 } 2600 } 2601 2602 // Traverse all accumulated PHI nodes and process its users, 2603 // which are Stores and BitcCasts. Without this processing 2604 // NewPHI nodes could be replicated and could lead to extra 2605 // moves generated after DeSSA. 2606 // If there is a store with type B, change it to type A. 2607 2608 2609 // Replace users of BitCast B->A with NewPHI. These will help 2610 // later to get rid off a closure formed by OldPHI nodes. 2611 Instruction *RetVal = nullptr; 2612 for (auto *OldPN : OldPhiNodes) { 2613 PHINode *NewPN = NewPNodes[OldPN]; 2614 for (User *V : make_early_inc_range(OldPN->users())) { 2615 if (auto *SI = dyn_cast<StoreInst>(V)) { 2616 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2617 Builder.SetInsertPoint(SI); 2618 auto *NewBC = 2619 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2620 SI->setOperand(0, NewBC); 2621 Worklist.push(SI); 2622 assert(hasStoreUsersOnly(*NewBC)); 2623 } 2624 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2625 Type *TyB = BCI->getOperand(0)->getType(); 2626 Type *TyA = BCI->getType(); 2627 assert(TyA == DestTy && TyB == SrcTy); 2628 (void) TyA; 2629 (void) TyB; 2630 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2631 if (BCI == &CI) 2632 RetVal = I; 2633 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2634 assert(OldPhiNodes.contains(PHI)); 2635 (void) PHI; 2636 } else { 2637 llvm_unreachable("all uses should be handled"); 2638 } 2639 } 2640 } 2641 2642 return RetVal; 2643 } 2644 2645 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2646 const DataLayout &DL) { 2647 Value *Src = CI.getOperand(0); 2648 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2649 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2650 2651 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2652 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2653 return nullptr; 2654 2655 Type *DstElTy = DstPTy->getNonOpaquePointerElementType(); 2656 Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType(); 2657 2658 // When the type pointed to is not sized the cast cannot be 2659 // turned into a gep. 2660 if (!SrcElTy->isSized()) 2661 return nullptr; 2662 2663 // If the source and destination are pointers, and this cast is equivalent 2664 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2665 // This can enhance SROA and other transforms that want type-safe pointers. 2666 unsigned NumZeros = 0; 2667 while (SrcElTy && SrcElTy != DstElTy) { 2668 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2669 ++NumZeros; 2670 } 2671 2672 // If we found a path from the src to dest, create the getelementptr now. 2673 if (SrcElTy == DstElTy) { 2674 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2675 GetElementPtrInst *GEP = GetElementPtrInst::Create( 2676 SrcPTy->getNonOpaquePointerElementType(), Src, Idxs); 2677 2678 // If the source pointer is dereferenceable, then assume it points to an 2679 // allocated object and apply "inbounds" to the GEP. 2680 bool CanBeNull, CanBeFreed; 2681 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2682 // In a non-default address space (not 0), a null pointer can not be 2683 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2684 // The reason is that 'null' is not treated differently in these address 2685 // spaces, and we consequently ignore the 'gep inbounds' special case 2686 // for 'null' which allows 'inbounds' on 'null' if the indices are 2687 // zeros. 2688 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2689 GEP->setIsInBounds(); 2690 } 2691 return GEP; 2692 } 2693 return nullptr; 2694 } 2695 2696 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2697 // If the operands are integer typed then apply the integer transforms, 2698 // otherwise just apply the common ones. 2699 Value *Src = CI.getOperand(0); 2700 Type *SrcTy = Src->getType(); 2701 Type *DestTy = CI.getType(); 2702 2703 // Get rid of casts from one type to the same type. These are useless and can 2704 // be replaced by the operand. 2705 if (DestTy == Src->getType()) 2706 return replaceInstUsesWith(CI, Src); 2707 2708 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2709 // If we are casting a alloca to a pointer to a type of the same 2710 // size, rewrite the allocation instruction to allocate the "right" type. 2711 // There is no need to modify malloc calls because it is their bitcast that 2712 // needs to be cleaned up. 2713 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2714 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2715 return V; 2716 2717 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2718 return I; 2719 } 2720 2721 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2722 // Beware: messing with this target-specific oddity may cause trouble. 2723 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2724 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2725 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2726 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2727 } 2728 2729 if (isa<IntegerType>(SrcTy)) { 2730 // If this is a cast from an integer to vector, check to see if the input 2731 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2732 // the casts with a shuffle and (potentially) a bitcast. 2733 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2734 CastInst *SrcCast = cast<CastInst>(Src); 2735 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2736 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2737 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2738 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2739 return I; 2740 } 2741 2742 // If the input is an 'or' instruction, we may be doing shifts and ors to 2743 // assemble the elements of the vector manually. Try to rip the code out 2744 // and replace it with insertelements. 2745 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2746 return replaceInstUsesWith(CI, V); 2747 } 2748 } 2749 2750 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2751 if (SrcVTy->getNumElements() == 1) { 2752 // If our destination is not a vector, then make this a straight 2753 // scalar-scalar cast. 2754 if (!DestTy->isVectorTy()) { 2755 Value *Elem = 2756 Builder.CreateExtractElement(Src, 2757 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2758 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2759 } 2760 2761 // Otherwise, see if our source is an insert. If so, then use the scalar 2762 // component directly: 2763 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2764 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2765 return new BitCastInst(InsElt->getOperand(1), DestTy); 2766 } 2767 2768 // Convert an artificial vector insert into more analyzable bitwise logic. 2769 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2770 Value *X, *Y; 2771 uint64_t IndexC; 2772 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2773 m_Value(Y), m_ConstantInt(IndexC)))) && 2774 DestTy->isIntegerTy() && X->getType() == DestTy && 2775 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2776 // Adjust for big endian - the LSBs are at the high index. 2777 if (DL.isBigEndian()) 2778 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2779 2780 // We only handle (endian-normalized) insert to index 0. Any other insert 2781 // would require a left-shift, so that is an extra instruction. 2782 if (IndexC == 0) { 2783 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2784 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2785 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2786 Value *AndX = Builder.CreateAnd(X, MaskC); 2787 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2788 return BinaryOperator::CreateOr(AndX, ZextY); 2789 } 2790 } 2791 } 2792 2793 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2794 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2795 // a bitcast to a vector with the same # elts. 2796 Value *ShufOp0 = Shuf->getOperand(0); 2797 Value *ShufOp1 = Shuf->getOperand(1); 2798 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2799 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2800 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2801 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2802 ShufElts == SrcVecElts) { 2803 BitCastInst *Tmp; 2804 // If either of the operands is a cast from CI.getType(), then 2805 // evaluating the shuffle in the casted destination's type will allow 2806 // us to eliminate at least one cast. 2807 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2808 Tmp->getOperand(0)->getType() == DestTy) || 2809 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2810 Tmp->getOperand(0)->getType() == DestTy)) { 2811 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2812 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2813 // Return a new shuffle vector. Use the same element ID's, as we 2814 // know the vector types match #elts. 2815 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2816 } 2817 } 2818 2819 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2820 // a byte-swap: 2821 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2822 // TODO: We should match the related pattern for bitreverse. 2823 if (DestTy->isIntegerTy() && 2824 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2825 SrcTy->getScalarSizeInBits() == 8 && 2826 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2827 Shuf->isReverse()) { 2828 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2829 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2830 Function *Bswap = 2831 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2832 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2833 return CallInst::Create(Bswap, { ScalarX }); 2834 } 2835 } 2836 2837 // Handle the A->B->A cast, and there is an intervening PHI node. 2838 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2839 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2840 return I; 2841 2842 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2843 return I; 2844 2845 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2846 return I; 2847 2848 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2849 return I; 2850 2851 if (SrcTy->isPointerTy()) 2852 return commonPointerCastTransforms(CI); 2853 return commonCastTransforms(CI); 2854 } 2855 2856 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2857 // If the destination pointer element type is not the same as the source's 2858 // first do a bitcast to the destination type, and then the addrspacecast. 2859 // This allows the cast to be exposed to other transforms. 2860 Value *Src = CI.getOperand(0); 2861 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2862 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2863 2864 if (!SrcTy->hasSameElementTypeAs(DestTy)) { 2865 Type *MidTy = 2866 PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace()); 2867 // Handle vectors of pointers. 2868 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2869 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2870 2871 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2872 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2873 } 2874 2875 return commonPointerCastTransforms(CI); 2876 } 2877