xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision 5f4c09dd85bff675e0ca63c55ea3c517e0fddfcc)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsHexagon.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/InstCombine/InstCombiner.h"
67 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <optional>
74 #include <utility>
75 #include <vector>
76 
77 #define DEBUG_TYPE "instcombine"
78 #include "llvm/Transforms/Utils/InstructionWorklist.h"
79 
80 using namespace llvm;
81 using namespace PatternMatch;
82 
83 STATISTIC(NumSimplified, "Number of library calls simplified");
84 
85 static cl::opt<unsigned> GuardWideningWindow(
86     "instcombine-guard-widening-window",
87     cl::init(3),
88     cl::desc("How wide an instruction window to bypass looking for "
89              "another guard"));
90 
91 namespace llvm {
92 /// enable preservation of attributes in assume like:
93 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
94 extern cl::opt<bool> EnableKnowledgeRetention;
95 } // namespace llvm
96 
97 /// Return the specified type promoted as it would be to pass though a va_arg
98 /// area.
99 static Type *getPromotedType(Type *Ty) {
100   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
101     if (ITy->getBitWidth() < 32)
102       return Type::getInt32Ty(Ty->getContext());
103   }
104   return Ty;
105 }
106 
107 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
108 /// TODO: This should probably be integrated with visitAllocSites, but that
109 /// requires a deeper change to allow either unread or unwritten objects.
110 static bool hasUndefSource(AnyMemTransferInst *MI) {
111   auto *Src = MI->getRawSource();
112   while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
113     if (!Src->hasOneUse())
114       return false;
115     Src = cast<Instruction>(Src)->getOperand(0);
116   }
117   return isa<AllocaInst>(Src) && Src->hasOneUse();
118 }
119 
120 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
121   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
122   MaybeAlign CopyDstAlign = MI->getDestAlign();
123   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
124     MI->setDestAlignment(DstAlign);
125     return MI;
126   }
127 
128   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
129   MaybeAlign CopySrcAlign = MI->getSourceAlign();
130   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
131     MI->setSourceAlignment(SrcAlign);
132     return MI;
133   }
134 
135   // If we have a store to a location which is known constant, we can conclude
136   // that the store must be storing the constant value (else the memory
137   // wouldn't be constant), and this must be a noop.
138   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
139     // Set the size of the copy to 0, it will be deleted on the next iteration.
140     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
141     return MI;
142   }
143 
144   // If the source is provably undef, the memcpy/memmove doesn't do anything
145   // (unless the transfer is volatile).
146   if (hasUndefSource(MI) && !MI->isVolatile()) {
147     // Set the size of the copy to 0, it will be deleted on the next iteration.
148     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
149     return MI;
150   }
151 
152   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
153   // load/store.
154   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
155   if (!MemOpLength) return nullptr;
156 
157   // Source and destination pointer types are always "i8*" for intrinsic.  See
158   // if the size is something we can handle with a single primitive load/store.
159   // A single load+store correctly handles overlapping memory in the memmove
160   // case.
161   uint64_t Size = MemOpLength->getLimitedValue();
162   assert(Size && "0-sized memory transferring should be removed already.");
163 
164   if (Size > 8 || (Size&(Size-1)))
165     return nullptr;  // If not 1/2/4/8 bytes, exit.
166 
167   // If it is an atomic and alignment is less than the size then we will
168   // introduce the unaligned memory access which will be later transformed
169   // into libcall in CodeGen. This is not evident performance gain so disable
170   // it now.
171   if (isa<AtomicMemTransferInst>(MI))
172     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
173       return nullptr;
174 
175   // Use an integer load+store unless we can find something better.
176   unsigned SrcAddrSp =
177     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
178   unsigned DstAddrSp =
179     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
180 
181   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
182   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
183   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
184 
185   // If the memcpy has metadata describing the members, see if we can get the
186   // TBAA tag describing our copy.
187   MDNode *CopyMD = nullptr;
188   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
189     CopyMD = M;
190   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
191     if (M->getNumOperands() == 3 && M->getOperand(0) &&
192         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
193         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
194         M->getOperand(1) &&
195         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
196         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
197         Size &&
198         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
199       CopyMD = cast<MDNode>(M->getOperand(2));
200   }
201 
202   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
203   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
204   LoadInst *L = Builder.CreateLoad(IntType, Src);
205   // Alignment from the mem intrinsic will be better, so use it.
206   L->setAlignment(*CopySrcAlign);
207   if (CopyMD)
208     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
209   MDNode *LoopMemParallelMD =
210     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
211   if (LoopMemParallelMD)
212     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
213   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
214   if (AccessGroupMD)
215     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
216 
217   StoreInst *S = Builder.CreateStore(L, Dest);
218   // Alignment from the mem intrinsic will be better, so use it.
219   S->setAlignment(*CopyDstAlign);
220   if (CopyMD)
221     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
222   if (LoopMemParallelMD)
223     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
224   if (AccessGroupMD)
225     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
226   S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
227 
228   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
229     // non-atomics can be volatile
230     L->setVolatile(MT->isVolatile());
231     S->setVolatile(MT->isVolatile());
232   }
233   if (isa<AtomicMemTransferInst>(MI)) {
234     // atomics have to be unordered
235     L->setOrdering(AtomicOrdering::Unordered);
236     S->setOrdering(AtomicOrdering::Unordered);
237   }
238 
239   // Set the size of the copy to 0, it will be deleted on the next iteration.
240   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
241   return MI;
242 }
243 
244 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
245   const Align KnownAlignment =
246       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
247   MaybeAlign MemSetAlign = MI->getDestAlign();
248   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
249     MI->setDestAlignment(KnownAlignment);
250     return MI;
251   }
252 
253   // If we have a store to a location which is known constant, we can conclude
254   // that the store must be storing the constant value (else the memory
255   // wouldn't be constant), and this must be a noop.
256   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
257     // Set the size of the copy to 0, it will be deleted on the next iteration.
258     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
259     return MI;
260   }
261 
262   // Remove memset with an undef value.
263   // FIXME: This is technically incorrect because it might overwrite a poison
264   // value. Change to PoisonValue once #52930 is resolved.
265   if (isa<UndefValue>(MI->getValue())) {
266     // Set the size of the copy to 0, it will be deleted on the next iteration.
267     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
268     return MI;
269   }
270 
271   // Extract the length and alignment and fill if they are constant.
272   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
273   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
274   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
275     return nullptr;
276   const uint64_t Len = LenC->getLimitedValue();
277   assert(Len && "0-sized memory setting should be removed already.");
278   const Align Alignment = MI->getDestAlign().valueOrOne();
279 
280   // If it is an atomic and alignment is less than the size then we will
281   // introduce the unaligned memory access which will be later transformed
282   // into libcall in CodeGen. This is not evident performance gain so disable
283   // it now.
284   if (isa<AtomicMemSetInst>(MI))
285     if (Alignment < Len)
286       return nullptr;
287 
288   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
289   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
290     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
291 
292     Value *Dest = MI->getDest();
293     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
294     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
295     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
296 
297     // Extract the fill value and store.
298     const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
299     Constant *FillVal = ConstantInt::get(ITy, Fill);
300     StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
301     S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
302     for (auto *DAI : at::getAssignmentMarkers(S)) {
303       if (any_of(DAI->location_ops(), [&](Value *V) { return V == FillC; }))
304         DAI->replaceVariableLocationOp(FillC, FillVal);
305     }
306 
307     S->setAlignment(Alignment);
308     if (isa<AtomicMemSetInst>(MI))
309       S->setOrdering(AtomicOrdering::Unordered);
310 
311     // Set the size of the copy to 0, it will be deleted on the next iteration.
312     MI->setLength(Constant::getNullValue(LenC->getType()));
313     return MI;
314   }
315 
316   return nullptr;
317 }
318 
319 // TODO, Obvious Missing Transforms:
320 // * Narrow width by halfs excluding zero/undef lanes
321 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
322   Value *LoadPtr = II.getArgOperand(0);
323   const Align Alignment =
324       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
325 
326   // If the mask is all ones or undefs, this is a plain vector load of the 1st
327   // argument.
328   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
329     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
330                                             "unmaskedload");
331     L->copyMetadata(II);
332     return L;
333   }
334 
335   // If we can unconditionally load from this address, replace with a
336   // load/select idiom. TODO: use DT for context sensitive query
337   if (isDereferenceablePointer(LoadPtr, II.getType(),
338                                II.getModule()->getDataLayout(), &II, &AC)) {
339     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
340                                              "unmaskedload");
341     LI->copyMetadata(II);
342     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
343   }
344 
345   return nullptr;
346 }
347 
348 // TODO, Obvious Missing Transforms:
349 // * Single constant active lane -> store
350 // * Narrow width by halfs excluding zero/undef lanes
351 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
352   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
353   if (!ConstMask)
354     return nullptr;
355 
356   // If the mask is all zeros, this instruction does nothing.
357   if (ConstMask->isNullValue())
358     return eraseInstFromFunction(II);
359 
360   // If the mask is all ones, this is a plain vector store of the 1st argument.
361   if (ConstMask->isAllOnesValue()) {
362     Value *StorePtr = II.getArgOperand(1);
363     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
364     StoreInst *S =
365         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
366     S->copyMetadata(II);
367     return S;
368   }
369 
370   if (isa<ScalableVectorType>(ConstMask->getType()))
371     return nullptr;
372 
373   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
374   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
375   APInt UndefElts(DemandedElts.getBitWidth(), 0);
376   if (Value *V =
377           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
378     return replaceOperand(II, 0, V);
379 
380   return nullptr;
381 }
382 
383 // TODO, Obvious Missing Transforms:
384 // * Single constant active lane load -> load
385 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
386 // * Adjacent vector addresses -> masked.load
387 // * Narrow width by halfs excluding zero/undef lanes
388 // * Vector incrementing address -> vector masked load
389 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
390   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
391   if (!ConstMask)
392     return nullptr;
393 
394   // Vector splat address w/known mask -> scalar load
395   // Fold the gather to load the source vector first lane
396   // because it is reloading the same value each time
397   if (ConstMask->isAllOnesValue())
398     if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
399       auto *VecTy = cast<VectorType>(II.getType());
400       const Align Alignment =
401           cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
402       LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
403                                               Alignment, "load.scalar");
404       Value *Shuf =
405           Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
406       return replaceInstUsesWith(II, cast<Instruction>(Shuf));
407     }
408 
409   return nullptr;
410 }
411 
412 // TODO, Obvious Missing Transforms:
413 // * Single constant active lane -> store
414 // * Adjacent vector addresses -> masked.store
415 // * Narrow store width by halfs excluding zero/undef lanes
416 // * Vector incrementing address -> vector masked store
417 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
418   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
419   if (!ConstMask)
420     return nullptr;
421 
422   // If the mask is all zeros, a scatter does nothing.
423   if (ConstMask->isNullValue())
424     return eraseInstFromFunction(II);
425 
426   // Vector splat address -> scalar store
427   if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
428     // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
429     if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
430       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
431       StoreInst *S =
432           new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
433       S->copyMetadata(II);
434       return S;
435     }
436     // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
437     // lastlane), ptr
438     if (ConstMask->isAllOnesValue()) {
439       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
440       VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
441       ElementCount VF = WideLoadTy->getElementCount();
442       Constant *EC =
443           ConstantInt::get(Builder.getInt32Ty(), VF.getKnownMinValue());
444       Value *RunTimeVF = VF.isScalable() ? Builder.CreateVScale(EC) : EC;
445       Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
446       Value *Extract =
447           Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
448       StoreInst *S =
449           new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
450       S->copyMetadata(II);
451       return S;
452     }
453   }
454   if (isa<ScalableVectorType>(ConstMask->getType()))
455     return nullptr;
456 
457   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
458   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
459   APInt UndefElts(DemandedElts.getBitWidth(), 0);
460   if (Value *V =
461           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
462     return replaceOperand(II, 0, V);
463   if (Value *V =
464           SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
465     return replaceOperand(II, 1, V);
466 
467   return nullptr;
468 }
469 
470 /// This function transforms launder.invariant.group and strip.invariant.group
471 /// like:
472 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
473 /// launder(strip(%x)) -> launder(%x)
474 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
475 /// strip(launder(%x)) -> strip(%x)
476 /// This is legal because it preserves the most recent information about
477 /// the presence or absence of invariant.group.
478 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
479                                                     InstCombinerImpl &IC) {
480   auto *Arg = II.getArgOperand(0);
481   auto *StrippedArg = Arg->stripPointerCasts();
482   auto *StrippedInvariantGroupsArg = StrippedArg;
483   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
484     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
485         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
486       break;
487     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
488   }
489   if (StrippedArg == StrippedInvariantGroupsArg)
490     return nullptr; // No launders/strips to remove.
491 
492   Value *Result = nullptr;
493 
494   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
495     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
496   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
497     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
498   else
499     llvm_unreachable(
500         "simplifyInvariantGroupIntrinsic only handles launder and strip");
501   if (Result->getType()->getPointerAddressSpace() !=
502       II.getType()->getPointerAddressSpace())
503     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
504   if (Result->getType() != II.getType())
505     Result = IC.Builder.CreateBitCast(Result, II.getType());
506 
507   return cast<Instruction>(Result);
508 }
509 
510 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
511   assert((II.getIntrinsicID() == Intrinsic::cttz ||
512           II.getIntrinsicID() == Intrinsic::ctlz) &&
513          "Expected cttz or ctlz intrinsic");
514   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
515   Value *Op0 = II.getArgOperand(0);
516   Value *Op1 = II.getArgOperand(1);
517   Value *X;
518   // ctlz(bitreverse(x)) -> cttz(x)
519   // cttz(bitreverse(x)) -> ctlz(x)
520   if (match(Op0, m_BitReverse(m_Value(X)))) {
521     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
522     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
523     return CallInst::Create(F, {X, II.getArgOperand(1)});
524   }
525 
526   if (II.getType()->isIntOrIntVectorTy(1)) {
527     // ctlz/cttz i1 Op0 --> not Op0
528     if (match(Op1, m_Zero()))
529       return BinaryOperator::CreateNot(Op0);
530     // If zero is poison, then the input can be assumed to be "true", so the
531     // instruction simplifies to "false".
532     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
533     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
534   }
535 
536   // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
537   if (auto *Sel = dyn_cast<SelectInst>(Op0))
538     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
539       return R;
540 
541   if (IsTZ) {
542     // cttz(-x) -> cttz(x)
543     if (match(Op0, m_Neg(m_Value(X))))
544       return IC.replaceOperand(II, 0, X);
545 
546     // cttz(sext(x)) -> cttz(zext(x))
547     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
548       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
549       auto *CttzZext =
550           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
551       return IC.replaceInstUsesWith(II, CttzZext);
552     }
553 
554     // Zext doesn't change the number of trailing zeros, so narrow:
555     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
556     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
557       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
558                                                     IC.Builder.getTrue());
559       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
560       return IC.replaceInstUsesWith(II, ZextCttz);
561     }
562 
563     // cttz(abs(x)) -> cttz(x)
564     // cttz(nabs(x)) -> cttz(x)
565     Value *Y;
566     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
567     if (SPF == SPF_ABS || SPF == SPF_NABS)
568       return IC.replaceOperand(II, 0, X);
569 
570     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
571       return IC.replaceOperand(II, 0, X);
572   }
573 
574   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
575 
576   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
577   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
578                                 : Known.countMaxLeadingZeros();
579   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
580                                 : Known.countMinLeadingZeros();
581 
582   // If all bits above (ctlz) or below (cttz) the first known one are known
583   // zero, this value is constant.
584   // FIXME: This should be in InstSimplify because we're replacing an
585   // instruction with a constant.
586   if (PossibleZeros == DefiniteZeros) {
587     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
588     return IC.replaceInstUsesWith(II, C);
589   }
590 
591   // If the input to cttz/ctlz is known to be non-zero,
592   // then change the 'ZeroIsPoison' parameter to 'true'
593   // because we know the zero behavior can't affect the result.
594   if (!Known.One.isZero() ||
595       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
596                      &IC.getDominatorTree())) {
597     if (!match(II.getArgOperand(1), m_One()))
598       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
599   }
600 
601   // Add range metadata since known bits can't completely reflect what we know.
602   // TODO: Handle splat vectors.
603   auto *IT = dyn_cast<IntegerType>(Op0->getType());
604   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
605     Metadata *LowAndHigh[] = {
606         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
607         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
608     II.setMetadata(LLVMContext::MD_range,
609                    MDNode::get(II.getContext(), LowAndHigh));
610     return &II;
611   }
612 
613   return nullptr;
614 }
615 
616 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
617   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
618          "Expected ctpop intrinsic");
619   Type *Ty = II.getType();
620   unsigned BitWidth = Ty->getScalarSizeInBits();
621   Value *Op0 = II.getArgOperand(0);
622   Value *X, *Y;
623 
624   // ctpop(bitreverse(x)) -> ctpop(x)
625   // ctpop(bswap(x)) -> ctpop(x)
626   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
627     return IC.replaceOperand(II, 0, X);
628 
629   // ctpop(rot(x)) -> ctpop(x)
630   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
631        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
632       X == Y)
633     return IC.replaceOperand(II, 0, X);
634 
635   // ctpop(x | -x) -> bitwidth - cttz(x, false)
636   if (Op0->hasOneUse() &&
637       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
638     Function *F =
639         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
640     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
641     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
642     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
643   }
644 
645   // ctpop(~x & (x - 1)) -> cttz(x, false)
646   if (match(Op0,
647             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
648     Function *F =
649         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
650     return CallInst::Create(F, {X, IC.Builder.getFalse()});
651   }
652 
653   // Zext doesn't change the number of set bits, so narrow:
654   // ctpop (zext X) --> zext (ctpop X)
655   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
656     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
657     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
658   }
659 
660   // If the operand is a select with constant arm(s), try to hoist ctpop.
661   if (auto *Sel = dyn_cast<SelectInst>(Op0))
662     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
663       return R;
664 
665   KnownBits Known(BitWidth);
666   IC.computeKnownBits(Op0, Known, 0, &II);
667 
668   // If all bits are zero except for exactly one fixed bit, then the result
669   // must be 0 or 1, and we can get that answer by shifting to LSB:
670   // ctpop (X & 32) --> (X & 32) >> 5
671   // TODO: Investigate removing this as its likely unnecessary given the below
672   // `isKnownToBeAPowerOfTwo` check.
673   if ((~Known.Zero).isPowerOf2())
674     return BinaryOperator::CreateLShr(
675         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
676 
677   // More generally we can also handle non-constant power of 2 patterns such as
678   // shl/shr(Pow2, X), (X & -X), etc... by transforming:
679   // ctpop(Pow2OrZero) --> icmp ne X, 0
680   if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
681     return CastInst::Create(Instruction::ZExt,
682                             IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
683                                                   Constant::getNullValue(Ty)),
684                             Ty);
685 
686   // FIXME: Try to simplify vectors of integers.
687   auto *IT = dyn_cast<IntegerType>(Ty);
688   if (!IT)
689     return nullptr;
690 
691   // Add range metadata since known bits can't completely reflect what we know.
692   unsigned MinCount = Known.countMinPopulation();
693   unsigned MaxCount = Known.countMaxPopulation();
694   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
695     Metadata *LowAndHigh[] = {
696         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
697         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
698     II.setMetadata(LLVMContext::MD_range,
699                    MDNode::get(II.getContext(), LowAndHigh));
700     return &II;
701   }
702 
703   return nullptr;
704 }
705 
706 /// Convert a table lookup to shufflevector if the mask is constant.
707 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
708 /// which case we could lower the shufflevector with rev64 instructions
709 /// as it's actually a byte reverse.
710 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
711                                InstCombiner::BuilderTy &Builder) {
712   // Bail out if the mask is not a constant.
713   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
714   if (!C)
715     return nullptr;
716 
717   auto *VecTy = cast<FixedVectorType>(II.getType());
718   unsigned NumElts = VecTy->getNumElements();
719 
720   // Only perform this transformation for <8 x i8> vector types.
721   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
722     return nullptr;
723 
724   int Indexes[8];
725 
726   for (unsigned I = 0; I < NumElts; ++I) {
727     Constant *COp = C->getAggregateElement(I);
728 
729     if (!COp || !isa<ConstantInt>(COp))
730       return nullptr;
731 
732     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
733 
734     // Make sure the mask indices are in range.
735     if ((unsigned)Indexes[I] >= NumElts)
736       return nullptr;
737   }
738 
739   auto *V1 = II.getArgOperand(0);
740   auto *V2 = Constant::getNullValue(V1->getType());
741   return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
742 }
743 
744 // Returns true iff the 2 intrinsics have the same operands, limiting the
745 // comparison to the first NumOperands.
746 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
747                              unsigned NumOperands) {
748   assert(I.arg_size() >= NumOperands && "Not enough operands");
749   assert(E.arg_size() >= NumOperands && "Not enough operands");
750   for (unsigned i = 0; i < NumOperands; i++)
751     if (I.getArgOperand(i) != E.getArgOperand(i))
752       return false;
753   return true;
754 }
755 
756 // Remove trivially empty start/end intrinsic ranges, i.e. a start
757 // immediately followed by an end (ignoring debuginfo or other
758 // start/end intrinsics in between). As this handles only the most trivial
759 // cases, tracking the nesting level is not needed:
760 //
761 //   call @llvm.foo.start(i1 0)
762 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
763 //   call @llvm.foo.end(i1 0)
764 //   call @llvm.foo.end(i1 0) ; &I
765 static bool
766 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
767                           std::function<bool(const IntrinsicInst &)> IsStart) {
768   // We start from the end intrinsic and scan backwards, so that InstCombine
769   // has already processed (and potentially removed) all the instructions
770   // before the end intrinsic.
771   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
772   for (; BI != BE; ++BI) {
773     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
774       if (I->isDebugOrPseudoInst() ||
775           I->getIntrinsicID() == EndI.getIntrinsicID())
776         continue;
777       if (IsStart(*I)) {
778         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
779           IC.eraseInstFromFunction(*I);
780           IC.eraseInstFromFunction(EndI);
781           return true;
782         }
783         // Skip start intrinsics that don't pair with this end intrinsic.
784         continue;
785       }
786     }
787     break;
788   }
789 
790   return false;
791 }
792 
793 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
794   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
795     return I.getIntrinsicID() == Intrinsic::vastart ||
796            I.getIntrinsicID() == Intrinsic::vacopy;
797   });
798   return nullptr;
799 }
800 
801 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
802   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
803   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
804   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
805     Call.setArgOperand(0, Arg1);
806     Call.setArgOperand(1, Arg0);
807     return &Call;
808   }
809   return nullptr;
810 }
811 
812 /// Creates a result tuple for an overflow intrinsic \p II with a given
813 /// \p Result and a constant \p Overflow value.
814 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
815                                         Constant *Overflow) {
816   Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
817   StructType *ST = cast<StructType>(II->getType());
818   Constant *Struct = ConstantStruct::get(ST, V);
819   return InsertValueInst::Create(Struct, Result, 0);
820 }
821 
822 Instruction *
823 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
824   WithOverflowInst *WO = cast<WithOverflowInst>(II);
825   Value *OperationResult = nullptr;
826   Constant *OverflowResult = nullptr;
827   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
828                             WO->getRHS(), *WO, OperationResult, OverflowResult))
829     return createOverflowTuple(WO, OperationResult, OverflowResult);
830   return nullptr;
831 }
832 
833 static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
834                                         const DataLayout &DL,
835                                         AssumptionCache *AC,
836                                         DominatorTree *DT) {
837   KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
838   if (Known.isNonNegative())
839     return false;
840   if (Known.isNegative())
841     return true;
842 
843   Value *X, *Y;
844   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
845     return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
846 
847   return isImpliedByDomCondition(
848       ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
849 }
850 
851 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
852 /// can trigger other combines.
853 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
854                                        InstCombiner::BuilderTy &Builder) {
855   Intrinsic::ID MinMaxID = II->getIntrinsicID();
856   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
857           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
858          "Expected a min or max intrinsic");
859 
860   // TODO: Match vectors with undef elements, but undef may not propagate.
861   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
862   Value *X;
863   const APInt *C0, *C1;
864   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
865       !match(Op1, m_APInt(C1)))
866     return nullptr;
867 
868   // Check for necessary no-wrap and overflow constraints.
869   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
870   auto *Add = cast<BinaryOperator>(Op0);
871   if ((IsSigned && !Add->hasNoSignedWrap()) ||
872       (!IsSigned && !Add->hasNoUnsignedWrap()))
873     return nullptr;
874 
875   // If the constant difference overflows, then instsimplify should reduce the
876   // min/max to the add or C1.
877   bool Overflow;
878   APInt CDiff =
879       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
880   assert(!Overflow && "Expected simplify of min/max");
881 
882   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
883   // Note: the "mismatched" no-overflow setting does not propagate.
884   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
885   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
886   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
887                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
888 }
889 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
890 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
891   Type *Ty = MinMax1.getType();
892 
893   // We are looking for a tree of:
894   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
895   // Where the min and max could be reversed
896   Instruction *MinMax2;
897   BinaryOperator *AddSub;
898   const APInt *MinValue, *MaxValue;
899   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
900     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
901       return nullptr;
902   } else if (match(&MinMax1,
903                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
904     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
905       return nullptr;
906   } else
907     return nullptr;
908 
909   // Check that the constants clamp a saturate, and that the new type would be
910   // sensible to convert to.
911   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
912     return nullptr;
913   // In what bitwidth can this be treated as saturating arithmetics?
914   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
915   // FIXME: This isn't quite right for vectors, but using the scalar type is a
916   // good first approximation for what should be done there.
917   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
918     return nullptr;
919 
920   // Also make sure that the inner min/max and the add/sub have one use.
921   if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
922     return nullptr;
923 
924   // Create the new type (which can be a vector type)
925   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
926 
927   Intrinsic::ID IntrinsicID;
928   if (AddSub->getOpcode() == Instruction::Add)
929     IntrinsicID = Intrinsic::sadd_sat;
930   else if (AddSub->getOpcode() == Instruction::Sub)
931     IntrinsicID = Intrinsic::ssub_sat;
932   else
933     return nullptr;
934 
935   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
936   // is usually achieved via a sext from a smaller type.
937   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
938           NewBitWidth ||
939       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
940     return nullptr;
941 
942   // Finally create and return the sat intrinsic, truncated to the new type
943   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
944   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
945   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
946   Value *Sat = Builder.CreateCall(F, {AT, BT});
947   return CastInst::Create(Instruction::SExt, Sat, Ty);
948 }
949 
950 
951 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
952 /// can only be one of two possible constant values -- turn that into a select
953 /// of constants.
954 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
955                                         InstCombiner::BuilderTy &Builder) {
956   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
957   Value *X;
958   const APInt *C0, *C1;
959   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
960     return nullptr;
961 
962   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
963   switch (II->getIntrinsicID()) {
964   case Intrinsic::smax:
965     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
966       Pred = ICmpInst::ICMP_SGT;
967     break;
968   case Intrinsic::smin:
969     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
970       Pred = ICmpInst::ICMP_SLT;
971     break;
972   case Intrinsic::umax:
973     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
974       Pred = ICmpInst::ICMP_UGT;
975     break;
976   case Intrinsic::umin:
977     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
978       Pred = ICmpInst::ICMP_ULT;
979     break;
980   default:
981     llvm_unreachable("Expected min/max intrinsic");
982   }
983   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
984     return nullptr;
985 
986   // max (min X, 42), 41 --> X > 41 ? 42 : 41
987   // min (max X, 42), 43 --> X < 43 ? 42 : 43
988   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
989   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
990 }
991 
992 /// If this min/max has a constant operand and an operand that is a matching
993 /// min/max with a constant operand, constant-fold the 2 constant operands.
994 static Instruction *reassociateMinMaxWithConstants(IntrinsicInst *II) {
995   Intrinsic::ID MinMaxID = II->getIntrinsicID();
996   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
997   if (!LHS || LHS->getIntrinsicID() != MinMaxID)
998     return nullptr;
999 
1000   Constant *C0, *C1;
1001   if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1002       !match(II->getArgOperand(1), m_ImmConstant(C1)))
1003     return nullptr;
1004 
1005   // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
1006   ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
1007   Constant *CondC = ConstantExpr::getICmp(Pred, C0, C1);
1008   Constant *NewC = ConstantExpr::getSelect(CondC, C0, C1);
1009 
1010   Module *Mod = II->getModule();
1011   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1012   return CallInst::Create(MinMax, {LHS->getArgOperand(0), NewC});
1013 }
1014 
1015 /// If this min/max has a matching min/max operand with a constant, try to push
1016 /// the constant operand into this instruction. This can enable more folds.
1017 static Instruction *
1018 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1019                                        InstCombiner::BuilderTy &Builder) {
1020   // Match and capture a min/max operand candidate.
1021   Value *X, *Y;
1022   Constant *C;
1023   Instruction *Inner;
1024   if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1025                                   m_Instruction(Inner),
1026                                   m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1027                               m_Value(Y))))
1028     return nullptr;
1029 
1030   // The inner op must match. Check for constants to avoid infinite loops.
1031   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1032   auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1033   if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1034       match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1035     return nullptr;
1036 
1037   // max (max X, C), Y --> max (max X, Y), C
1038   Function *MinMax =
1039       Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1040   Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1041   NewInner->takeName(Inner);
1042   return CallInst::Create(MinMax, {NewInner, C});
1043 }
1044 
1045 /// Reduce a sequence of min/max intrinsics with a common operand.
1046 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1047   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1048   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1049   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1050   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1051   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1052       RHS->getIntrinsicID() != MinMaxID ||
1053       (!LHS->hasOneUse() && !RHS->hasOneUse()))
1054     return nullptr;
1055 
1056   Value *A = LHS->getArgOperand(0);
1057   Value *B = LHS->getArgOperand(1);
1058   Value *C = RHS->getArgOperand(0);
1059   Value *D = RHS->getArgOperand(1);
1060 
1061   // Look for a common operand.
1062   Value *MinMaxOp = nullptr;
1063   Value *ThirdOp = nullptr;
1064   if (LHS->hasOneUse()) {
1065     // If the LHS is only used in this chain and the RHS is used outside of it,
1066     // reuse the RHS min/max because that will eliminate the LHS.
1067     if (D == A || C == A) {
1068       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1069       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1070       MinMaxOp = RHS;
1071       ThirdOp = B;
1072     } else if (D == B || C == B) {
1073       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1074       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1075       MinMaxOp = RHS;
1076       ThirdOp = A;
1077     }
1078   } else {
1079     assert(RHS->hasOneUse() && "Expected one-use operand");
1080     // Reuse the LHS. This will eliminate the RHS.
1081     if (D == A || D == B) {
1082       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1083       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1084       MinMaxOp = LHS;
1085       ThirdOp = C;
1086     } else if (C == A || C == B) {
1087       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1088       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1089       MinMaxOp = LHS;
1090       ThirdOp = D;
1091     }
1092   }
1093 
1094   if (!MinMaxOp || !ThirdOp)
1095     return nullptr;
1096 
1097   Module *Mod = II->getModule();
1098   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1099   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1100 }
1101 
1102 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1103 /// try to shuffle after the intrinsic.
1104 static Instruction *
1105 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1106                               InstCombiner::BuilderTy &Builder) {
1107   // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1108   //       etc. Use llvm::isTriviallyVectorizable() and related to determine
1109   //       which intrinsics are safe to shuffle?
1110   switch (II->getIntrinsicID()) {
1111   case Intrinsic::smax:
1112   case Intrinsic::smin:
1113   case Intrinsic::umax:
1114   case Intrinsic::umin:
1115   case Intrinsic::fma:
1116   case Intrinsic::fshl:
1117   case Intrinsic::fshr:
1118     break;
1119   default:
1120     return nullptr;
1121   }
1122 
1123   Value *X;
1124   ArrayRef<int> Mask;
1125   if (!match(II->getArgOperand(0),
1126              m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1127     return nullptr;
1128 
1129   // At least 1 operand must have 1 use because we are creating 2 instructions.
1130   if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1131     return nullptr;
1132 
1133   // See if all arguments are shuffled with the same mask.
1134   SmallVector<Value *, 4> NewArgs(II->arg_size());
1135   NewArgs[0] = X;
1136   Type *SrcTy = X->getType();
1137   for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1138     if (!match(II->getArgOperand(i),
1139                m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1140         X->getType() != SrcTy)
1141       return nullptr;
1142     NewArgs[i] = X;
1143   }
1144 
1145   // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1146   Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1147   Value *NewIntrinsic =
1148       Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1149   return new ShuffleVectorInst(NewIntrinsic, Mask);
1150 }
1151 
1152 /// CallInst simplification. This mostly only handles folding of intrinsic
1153 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1154 /// lifting.
1155 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1156   // Don't try to simplify calls without uses. It will not do anything useful,
1157   // but will result in the following folds being skipped.
1158   if (!CI.use_empty())
1159     if (Value *V = simplifyCall(&CI, SQ.getWithInstruction(&CI)))
1160       return replaceInstUsesWith(CI, V);
1161 
1162   if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1163     return visitFree(CI, FreedOp);
1164 
1165   // If the caller function (i.e. us, the function that contains this CallInst)
1166   // is nounwind, mark the call as nounwind, even if the callee isn't.
1167   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1168     CI.setDoesNotThrow();
1169     return &CI;
1170   }
1171 
1172   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1173   if (!II) return visitCallBase(CI);
1174 
1175   // For atomic unordered mem intrinsics if len is not a positive or
1176   // not a multiple of element size then behavior is undefined.
1177   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1178     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1179       if (NumBytes->getSExtValue() < 0 ||
1180           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1181         CreateNonTerminatorUnreachable(AMI);
1182         assert(AMI->getType()->isVoidTy() &&
1183                "non void atomic unordered mem intrinsic");
1184         return eraseInstFromFunction(*AMI);
1185       }
1186 
1187   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1188   // instead of in visitCallBase.
1189   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1190     bool Changed = false;
1191 
1192     // memmove/cpy/set of zero bytes is a noop.
1193     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1194       if (NumBytes->isNullValue())
1195         return eraseInstFromFunction(CI);
1196     }
1197 
1198     // No other transformations apply to volatile transfers.
1199     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1200       if (M->isVolatile())
1201         return nullptr;
1202 
1203     // If we have a memmove and the source operation is a constant global,
1204     // then the source and dest pointers can't alias, so we can change this
1205     // into a call to memcpy.
1206     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1207       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1208         if (GVSrc->isConstant()) {
1209           Module *M = CI.getModule();
1210           Intrinsic::ID MemCpyID =
1211               isa<AtomicMemMoveInst>(MMI)
1212                   ? Intrinsic::memcpy_element_unordered_atomic
1213                   : Intrinsic::memcpy;
1214           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1215                            CI.getArgOperand(1)->getType(),
1216                            CI.getArgOperand(2)->getType() };
1217           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1218           Changed = true;
1219         }
1220     }
1221 
1222     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1223       // memmove(x,x,size) -> noop.
1224       if (MTI->getSource() == MTI->getDest())
1225         return eraseInstFromFunction(CI);
1226     }
1227 
1228     // If we can determine a pointer alignment that is bigger than currently
1229     // set, update the alignment.
1230     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1231       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1232         return I;
1233     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1234       if (Instruction *I = SimplifyAnyMemSet(MSI))
1235         return I;
1236     }
1237 
1238     if (Changed) return II;
1239   }
1240 
1241   // For fixed width vector result intrinsics, use the generic demanded vector
1242   // support.
1243   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1244     auto VWidth = IIFVTy->getNumElements();
1245     APInt UndefElts(VWidth, 0);
1246     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1247     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1248       if (V != II)
1249         return replaceInstUsesWith(*II, V);
1250       return II;
1251     }
1252   }
1253 
1254   if (II->isCommutative()) {
1255     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1256       return NewCall;
1257   }
1258 
1259   // Unused constrained FP intrinsic calls may have declared side effect, which
1260   // prevents it from being removed. In some cases however the side effect is
1261   // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1262   // returns a replacement, the call may be removed.
1263   if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1264     if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1265       return eraseInstFromFunction(CI);
1266   }
1267 
1268   Intrinsic::ID IID = II->getIntrinsicID();
1269   switch (IID) {
1270   case Intrinsic::objectsize:
1271     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false))
1272       return replaceInstUsesWith(CI, V);
1273     return nullptr;
1274   case Intrinsic::abs: {
1275     Value *IIOperand = II->getArgOperand(0);
1276     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1277 
1278     // abs(-x) -> abs(x)
1279     // TODO: Copy nsw if it was present on the neg?
1280     Value *X;
1281     if (match(IIOperand, m_Neg(m_Value(X))))
1282       return replaceOperand(*II, 0, X);
1283     if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1284       return replaceOperand(*II, 0, X);
1285     if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1286       return replaceOperand(*II, 0, X);
1287 
1288     if (std::optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
1289       // abs(x) -> x if x >= 0
1290       if (!*Sign)
1291         return replaceInstUsesWith(*II, IIOperand);
1292 
1293       // abs(x) -> -x if x < 0
1294       if (IntMinIsPoison)
1295         return BinaryOperator::CreateNSWNeg(IIOperand);
1296       return BinaryOperator::CreateNeg(IIOperand);
1297     }
1298 
1299     // abs (sext X) --> zext (abs X*)
1300     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1301     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1302       Value *NarrowAbs =
1303           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1304       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1305     }
1306 
1307     // Match a complicated way to check if a number is odd/even:
1308     // abs (srem X, 2) --> and X, 1
1309     const APInt *C;
1310     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1311       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1312 
1313     break;
1314   }
1315   case Intrinsic::umin: {
1316     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1317     // umin(x, 1) == zext(x != 0)
1318     if (match(I1, m_One())) {
1319       assert(II->getType()->getScalarSizeInBits() != 1 &&
1320              "Expected simplify of umin with max constant");
1321       Value *Zero = Constant::getNullValue(I0->getType());
1322       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1323       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1324     }
1325     [[fallthrough]];
1326   }
1327   case Intrinsic::umax: {
1328     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1329     Value *X, *Y;
1330     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1331         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1332       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1333       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1334     }
1335     Constant *C;
1336     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1337         I0->hasOneUse()) {
1338       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1339       if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
1340         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1341         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1342       }
1343     }
1344     // If both operands of unsigned min/max are sign-extended, it is still ok
1345     // to narrow the operation.
1346     [[fallthrough]];
1347   }
1348   case Intrinsic::smax:
1349   case Intrinsic::smin: {
1350     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1351     Value *X, *Y;
1352     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1353         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1354       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1355       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1356     }
1357 
1358     Constant *C;
1359     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1360         I0->hasOneUse()) {
1361       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1362       if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1363         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1364         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1365       }
1366     }
1367 
1368     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1369       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1370       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1371       // TODO: Canonicalize neg after min/max if I1 is constant.
1372       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1373           (I0->hasOneUse() || I1->hasOneUse())) {
1374         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1375         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1376         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1377       }
1378     }
1379 
1380     // If we can eliminate ~A and Y is free to invert:
1381     // max ~A, Y --> ~(min A, ~Y)
1382     //
1383     // Examples:
1384     // max ~A, ~Y --> ~(min A, Y)
1385     // max ~A, C --> ~(min A, ~C)
1386     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1387     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1388       Value *A;
1389       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1390           !isFreeToInvert(A, A->hasOneUse()) &&
1391           isFreeToInvert(Y, Y->hasOneUse())) {
1392         Value *NotY = Builder.CreateNot(Y);
1393         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1394         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1395         return BinaryOperator::CreateNot(InvMaxMin);
1396       }
1397       return nullptr;
1398     };
1399 
1400     if (Instruction *I = moveNotAfterMinMax(I0, I1))
1401       return I;
1402     if (Instruction *I = moveNotAfterMinMax(I1, I0))
1403       return I;
1404 
1405     if (Instruction *I = moveAddAfterMinMax(II, Builder))
1406       return I;
1407 
1408     // smax(X, -X) --> abs(X)
1409     // smin(X, -X) --> -abs(X)
1410     // umax(X, -X) --> -abs(X)
1411     // umin(X, -X) --> abs(X)
1412     if (isKnownNegation(I0, I1)) {
1413       // We can choose either operand as the input to abs(), but if we can
1414       // eliminate the only use of a value, that's better for subsequent
1415       // transforms/analysis.
1416       if (I0->hasOneUse() && !I1->hasOneUse())
1417         std::swap(I0, I1);
1418 
1419       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1420       // operation and potentially its negation.
1421       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1422       Value *Abs = Builder.CreateBinaryIntrinsic(
1423           Intrinsic::abs, I0,
1424           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1425 
1426       // We don't have a "nabs" intrinsic, so negate if needed based on the
1427       // max/min operation.
1428       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1429         Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1430       return replaceInstUsesWith(CI, Abs);
1431     }
1432 
1433     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1434       return Sel;
1435 
1436     if (Instruction *SAdd = matchSAddSubSat(*II))
1437       return SAdd;
1438 
1439     if (match(I1, m_ImmConstant()))
1440       if (auto *Sel = dyn_cast<SelectInst>(I0))
1441         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1442           return R;
1443 
1444     if (Instruction *NewMinMax = reassociateMinMaxWithConstants(II))
1445       return NewMinMax;
1446 
1447     if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1448       return R;
1449 
1450     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1451        return NewMinMax;
1452 
1453     break;
1454   }
1455   case Intrinsic::bitreverse: {
1456     // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1457     Value *X;
1458     if (match(II->getArgOperand(0), m_ZExt(m_Value(X))) &&
1459         X->getType()->isIntOrIntVectorTy(1)) {
1460       Type *Ty = II->getType();
1461       APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
1462       return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
1463                                 ConstantInt::getNullValue(Ty));
1464     }
1465     break;
1466   }
1467   case Intrinsic::bswap: {
1468     Value *IIOperand = II->getArgOperand(0);
1469 
1470     // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1471     // inverse-shift-of-bswap:
1472     // bswap (shl X, Y) --> lshr (bswap X), Y
1473     // bswap (lshr X, Y) --> shl (bswap X), Y
1474     Value *X, *Y;
1475     if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1476       // The transform allows undef vector elements, so try a constant match
1477       // first. If knownbits can handle that case, that clause could be removed.
1478       unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1479       const APInt *C;
1480       if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1481           MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1482         Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1483         BinaryOperator::BinaryOps InverseShift =
1484             cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1485                 ? Instruction::LShr
1486                 : Instruction::Shl;
1487         return BinaryOperator::Create(InverseShift, NewSwap, Y);
1488       }
1489     }
1490 
1491     KnownBits Known = computeKnownBits(IIOperand, 0, II);
1492     uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1493     uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1494     unsigned BW = Known.getBitWidth();
1495 
1496     // bswap(x) -> shift(x) if x has exactly one "active byte"
1497     if (BW - LZ - TZ == 8) {
1498       assert(LZ != TZ && "active byte cannot be in the middle");
1499       if (LZ > TZ)  // -> shl(x) if the "active byte" is in the low part of x
1500         return BinaryOperator::CreateNUWShl(
1501             IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1502       // -> lshr(x) if the "active byte" is in the high part of x
1503       return BinaryOperator::CreateExactLShr(
1504             IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1505     }
1506 
1507     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1508     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1509       unsigned C = X->getType()->getScalarSizeInBits() - BW;
1510       Value *CV = ConstantInt::get(X->getType(), C);
1511       Value *V = Builder.CreateLShr(X, CV);
1512       return new TruncInst(V, IIOperand->getType());
1513     }
1514     break;
1515   }
1516   case Intrinsic::masked_load:
1517     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1518       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1519     break;
1520   case Intrinsic::masked_store:
1521     return simplifyMaskedStore(*II);
1522   case Intrinsic::masked_gather:
1523     return simplifyMaskedGather(*II);
1524   case Intrinsic::masked_scatter:
1525     return simplifyMaskedScatter(*II);
1526   case Intrinsic::launder_invariant_group:
1527   case Intrinsic::strip_invariant_group:
1528     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1529       return replaceInstUsesWith(*II, SkippedBarrier);
1530     break;
1531   case Intrinsic::powi:
1532     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1533       // 0 and 1 are handled in instsimplify
1534       // powi(x, -1) -> 1/x
1535       if (Power->isMinusOne())
1536         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1537                                              II->getArgOperand(0), II);
1538       // powi(x, 2) -> x*x
1539       if (Power->equalsInt(2))
1540         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1541                                              II->getArgOperand(0), II);
1542 
1543       if (!Power->getValue()[0]) {
1544         Value *X;
1545         // If power is even:
1546         // powi(-x, p) -> powi(x, p)
1547         // powi(fabs(x), p) -> powi(x, p)
1548         // powi(copysign(x, y), p) -> powi(x, p)
1549         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1550             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1551             match(II->getArgOperand(0),
1552                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1553           return replaceOperand(*II, 0, X);
1554       }
1555     }
1556     break;
1557 
1558   case Intrinsic::cttz:
1559   case Intrinsic::ctlz:
1560     if (auto *I = foldCttzCtlz(*II, *this))
1561       return I;
1562     break;
1563 
1564   case Intrinsic::ctpop:
1565     if (auto *I = foldCtpop(*II, *this))
1566       return I;
1567     break;
1568 
1569   case Intrinsic::fshl:
1570   case Intrinsic::fshr: {
1571     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1572     Type *Ty = II->getType();
1573     unsigned BitWidth = Ty->getScalarSizeInBits();
1574     Constant *ShAmtC;
1575     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
1576       // Canonicalize a shift amount constant operand to modulo the bit-width.
1577       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1578       Constant *ModuloC =
1579           ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
1580       if (!ModuloC)
1581         return nullptr;
1582       if (ModuloC != ShAmtC)
1583         return replaceOperand(*II, 2, ModuloC);
1584 
1585       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1586                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1587              "Shift amount expected to be modulo bitwidth");
1588 
1589       // Canonicalize funnel shift right by constant to funnel shift left. This
1590       // is not entirely arbitrary. For historical reasons, the backend may
1591       // recognize rotate left patterns but miss rotate right patterns.
1592       if (IID == Intrinsic::fshr) {
1593         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1594         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1595         Module *Mod = II->getModule();
1596         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1597         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1598       }
1599       assert(IID == Intrinsic::fshl &&
1600              "All funnel shifts by simple constants should go left");
1601 
1602       // fshl(X, 0, C) --> shl X, C
1603       // fshl(X, undef, C) --> shl X, C
1604       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1605         return BinaryOperator::CreateShl(Op0, ShAmtC);
1606 
1607       // fshl(0, X, C) --> lshr X, (BW-C)
1608       // fshl(undef, X, C) --> lshr X, (BW-C)
1609       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1610         return BinaryOperator::CreateLShr(Op1,
1611                                           ConstantExpr::getSub(WidthC, ShAmtC));
1612 
1613       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1614       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1615         Module *Mod = II->getModule();
1616         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1617         return CallInst::Create(Bswap, { Op0 });
1618       }
1619     }
1620 
1621     // Left or right might be masked.
1622     if (SimplifyDemandedInstructionBits(*II))
1623       return &CI;
1624 
1625     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1626     // so only the low bits of the shift amount are demanded if the bitwidth is
1627     // a power-of-2.
1628     if (!isPowerOf2_32(BitWidth))
1629       break;
1630     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1631     KnownBits Op2Known(BitWidth);
1632     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1633       return &CI;
1634     break;
1635   }
1636   case Intrinsic::uadd_with_overflow:
1637   case Intrinsic::sadd_with_overflow: {
1638     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1639       return I;
1640 
1641     // Given 2 constant operands whose sum does not overflow:
1642     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1643     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1644     Value *X;
1645     const APInt *C0, *C1;
1646     Value *Arg0 = II->getArgOperand(0);
1647     Value *Arg1 = II->getArgOperand(1);
1648     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1649     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1650                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1651     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1652       bool Overflow;
1653       APInt NewC =
1654           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1655       if (!Overflow)
1656         return replaceInstUsesWith(
1657             *II, Builder.CreateBinaryIntrinsic(
1658                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1659     }
1660     break;
1661   }
1662 
1663   case Intrinsic::umul_with_overflow:
1664   case Intrinsic::smul_with_overflow:
1665   case Intrinsic::usub_with_overflow:
1666     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1667       return I;
1668     break;
1669 
1670   case Intrinsic::ssub_with_overflow: {
1671     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1672       return I;
1673 
1674     Constant *C;
1675     Value *Arg0 = II->getArgOperand(0);
1676     Value *Arg1 = II->getArgOperand(1);
1677     // Given a constant C that is not the minimum signed value
1678     // for an integer of a given bit width:
1679     //
1680     // ssubo X, C -> saddo X, -C
1681     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1682       Value *NegVal = ConstantExpr::getNeg(C);
1683       // Build a saddo call that is equivalent to the discovered
1684       // ssubo call.
1685       return replaceInstUsesWith(
1686           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1687                                              Arg0, NegVal));
1688     }
1689 
1690     break;
1691   }
1692 
1693   case Intrinsic::uadd_sat:
1694   case Intrinsic::sadd_sat:
1695   case Intrinsic::usub_sat:
1696   case Intrinsic::ssub_sat: {
1697     SaturatingInst *SI = cast<SaturatingInst>(II);
1698     Type *Ty = SI->getType();
1699     Value *Arg0 = SI->getLHS();
1700     Value *Arg1 = SI->getRHS();
1701 
1702     // Make use of known overflow information.
1703     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1704                                         Arg0, Arg1, SI);
1705     switch (OR) {
1706       case OverflowResult::MayOverflow:
1707         break;
1708       case OverflowResult::NeverOverflows:
1709         if (SI->isSigned())
1710           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1711         else
1712           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1713       case OverflowResult::AlwaysOverflowsLow: {
1714         unsigned BitWidth = Ty->getScalarSizeInBits();
1715         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1716         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1717       }
1718       case OverflowResult::AlwaysOverflowsHigh: {
1719         unsigned BitWidth = Ty->getScalarSizeInBits();
1720         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1721         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1722       }
1723     }
1724 
1725     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1726     Constant *C;
1727     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1728         C->isNotMinSignedValue()) {
1729       Value *NegVal = ConstantExpr::getNeg(C);
1730       return replaceInstUsesWith(
1731           *II, Builder.CreateBinaryIntrinsic(
1732               Intrinsic::sadd_sat, Arg0, NegVal));
1733     }
1734 
1735     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1736     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1737     // if Val and Val2 have the same sign
1738     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1739       Value *X;
1740       const APInt *Val, *Val2;
1741       APInt NewVal;
1742       bool IsUnsigned =
1743           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1744       if (Other->getIntrinsicID() == IID &&
1745           match(Arg1, m_APInt(Val)) &&
1746           match(Other->getArgOperand(0), m_Value(X)) &&
1747           match(Other->getArgOperand(1), m_APInt(Val2))) {
1748         if (IsUnsigned)
1749           NewVal = Val->uadd_sat(*Val2);
1750         else if (Val->isNonNegative() == Val2->isNonNegative()) {
1751           bool Overflow;
1752           NewVal = Val->sadd_ov(*Val2, Overflow);
1753           if (Overflow) {
1754             // Both adds together may add more than SignedMaxValue
1755             // without saturating the final result.
1756             break;
1757           }
1758         } else {
1759           // Cannot fold saturated addition with different signs.
1760           break;
1761         }
1762 
1763         return replaceInstUsesWith(
1764             *II, Builder.CreateBinaryIntrinsic(
1765                      IID, X, ConstantInt::get(II->getType(), NewVal)));
1766       }
1767     }
1768     break;
1769   }
1770 
1771   case Intrinsic::minnum:
1772   case Intrinsic::maxnum:
1773   case Intrinsic::minimum:
1774   case Intrinsic::maximum: {
1775     Value *Arg0 = II->getArgOperand(0);
1776     Value *Arg1 = II->getArgOperand(1);
1777     Value *X, *Y;
1778     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1779         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1780       // If both operands are negated, invert the call and negate the result:
1781       // min(-X, -Y) --> -(max(X, Y))
1782       // max(-X, -Y) --> -(min(X, Y))
1783       Intrinsic::ID NewIID;
1784       switch (IID) {
1785       case Intrinsic::maxnum:
1786         NewIID = Intrinsic::minnum;
1787         break;
1788       case Intrinsic::minnum:
1789         NewIID = Intrinsic::maxnum;
1790         break;
1791       case Intrinsic::maximum:
1792         NewIID = Intrinsic::minimum;
1793         break;
1794       case Intrinsic::minimum:
1795         NewIID = Intrinsic::maximum;
1796         break;
1797       default:
1798         llvm_unreachable("unexpected intrinsic ID");
1799       }
1800       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1801       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1802       FNeg->copyIRFlags(II);
1803       return FNeg;
1804     }
1805 
1806     // m(m(X, C2), C1) -> m(X, C)
1807     const APFloat *C1, *C2;
1808     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1809       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1810           ((match(M->getArgOperand(0), m_Value(X)) &&
1811             match(M->getArgOperand(1), m_APFloat(C2))) ||
1812            (match(M->getArgOperand(1), m_Value(X)) &&
1813             match(M->getArgOperand(0), m_APFloat(C2))))) {
1814         APFloat Res(0.0);
1815         switch (IID) {
1816         case Intrinsic::maxnum:
1817           Res = maxnum(*C1, *C2);
1818           break;
1819         case Intrinsic::minnum:
1820           Res = minnum(*C1, *C2);
1821           break;
1822         case Intrinsic::maximum:
1823           Res = maximum(*C1, *C2);
1824           break;
1825         case Intrinsic::minimum:
1826           Res = minimum(*C1, *C2);
1827           break;
1828         default:
1829           llvm_unreachable("unexpected intrinsic ID");
1830         }
1831         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1832             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1833         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1834         //       was a simplification (so Arg0 and its original flags could
1835         //       propagate?)
1836         NewCall->andIRFlags(M);
1837         return replaceInstUsesWith(*II, NewCall);
1838       }
1839     }
1840 
1841     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1842     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1843         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1844         X->getType() == Y->getType()) {
1845       Value *NewCall =
1846           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1847       return new FPExtInst(NewCall, II->getType());
1848     }
1849 
1850     // max X, -X --> fabs X
1851     // min X, -X --> -(fabs X)
1852     // TODO: Remove one-use limitation? That is obviously better for max.
1853     //       It would be an extra instruction for min (fnabs), but that is
1854     //       still likely better for analysis and codegen.
1855     if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1856         (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1857       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1858       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1859         R = Builder.CreateFNegFMF(R, II);
1860       return replaceInstUsesWith(*II, R);
1861     }
1862 
1863     break;
1864   }
1865   case Intrinsic::matrix_multiply: {
1866     // Optimize negation in matrix multiplication.
1867 
1868     // -A * -B -> A * B
1869     Value *A, *B;
1870     if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
1871         match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
1872       replaceOperand(*II, 0, A);
1873       replaceOperand(*II, 1, B);
1874       return II;
1875     }
1876 
1877     Value *Op0 = II->getOperand(0);
1878     Value *Op1 = II->getOperand(1);
1879     Value *OpNotNeg, *NegatedOp;
1880     unsigned NegatedOpArg, OtherOpArg;
1881     if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
1882       NegatedOp = Op0;
1883       NegatedOpArg = 0;
1884       OtherOpArg = 1;
1885     } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
1886       NegatedOp = Op1;
1887       NegatedOpArg = 1;
1888       OtherOpArg = 0;
1889     } else
1890       // Multiplication doesn't have a negated operand.
1891       break;
1892 
1893     // Only optimize if the negated operand has only one use.
1894     if (!NegatedOp->hasOneUse())
1895       break;
1896 
1897     Value *OtherOp = II->getOperand(OtherOpArg);
1898     VectorType *RetTy = cast<VectorType>(II->getType());
1899     VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
1900     VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
1901     ElementCount NegatedCount = NegatedOpTy->getElementCount();
1902     ElementCount OtherCount = OtherOpTy->getElementCount();
1903     ElementCount RetCount = RetTy->getElementCount();
1904     // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
1905     if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
1906         ElementCount::isKnownLT(OtherCount, RetCount)) {
1907       Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
1908       replaceOperand(*II, NegatedOpArg, OpNotNeg);
1909       replaceOperand(*II, OtherOpArg, InverseOtherOp);
1910       return II;
1911     }
1912     // (-A) * B -> -(A * B), if it is cheaper to negate the result
1913     if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
1914       SmallVector<Value *, 5> NewArgs(II->args());
1915       NewArgs[NegatedOpArg] = OpNotNeg;
1916       Instruction *NewMul =
1917           Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
1918       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
1919     }
1920     break;
1921   }
1922   case Intrinsic::fmuladd: {
1923     // Canonicalize fast fmuladd to the separate fmul + fadd.
1924     if (II->isFast()) {
1925       BuilderTy::FastMathFlagGuard Guard(Builder);
1926       Builder.setFastMathFlags(II->getFastMathFlags());
1927       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1928                                       II->getArgOperand(1));
1929       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1930       Add->takeName(II);
1931       return replaceInstUsesWith(*II, Add);
1932     }
1933 
1934     // Try to simplify the underlying FMul.
1935     if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1936                                     II->getFastMathFlags(),
1937                                     SQ.getWithInstruction(II))) {
1938       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1939       FAdd->copyFastMathFlags(II);
1940       return FAdd;
1941     }
1942 
1943     [[fallthrough]];
1944   }
1945   case Intrinsic::fma: {
1946     // fma fneg(x), fneg(y), z -> fma x, y, z
1947     Value *Src0 = II->getArgOperand(0);
1948     Value *Src1 = II->getArgOperand(1);
1949     Value *X, *Y;
1950     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1951       replaceOperand(*II, 0, X);
1952       replaceOperand(*II, 1, Y);
1953       return II;
1954     }
1955 
1956     // fma fabs(x), fabs(x), z -> fma x, x, z
1957     if (match(Src0, m_FAbs(m_Value(X))) &&
1958         match(Src1, m_FAbs(m_Specific(X)))) {
1959       replaceOperand(*II, 0, X);
1960       replaceOperand(*II, 1, X);
1961       return II;
1962     }
1963 
1964     // Try to simplify the underlying FMul. We can only apply simplifications
1965     // that do not require rounding.
1966     if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1967                                    II->getFastMathFlags(),
1968                                    SQ.getWithInstruction(II))) {
1969       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1970       FAdd->copyFastMathFlags(II);
1971       return FAdd;
1972     }
1973 
1974     // fma x, y, 0 -> fmul x, y
1975     // This is always valid for -0.0, but requires nsz for +0.0 as
1976     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1977     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1978         (match(II->getArgOperand(2), m_PosZeroFP()) &&
1979          II->getFastMathFlags().noSignedZeros()))
1980       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1981 
1982     break;
1983   }
1984   case Intrinsic::copysign: {
1985     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1986     if (SignBitMustBeZero(Sign, &TLI)) {
1987       // If we know that the sign argument is positive, reduce to FABS:
1988       // copysign Mag, +Sign --> fabs Mag
1989       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1990       return replaceInstUsesWith(*II, Fabs);
1991     }
1992     // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1993     const APFloat *C;
1994     if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1995       // If we know that the sign argument is negative, reduce to FNABS:
1996       // copysign Mag, -Sign --> fneg (fabs Mag)
1997       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1998       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1999     }
2000 
2001     // Propagate sign argument through nested calls:
2002     // copysign Mag, (copysign ?, X) --> copysign Mag, X
2003     Value *X;
2004     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2005       return replaceOperand(*II, 1, X);
2006 
2007     // Peek through changes of magnitude's sign-bit. This call rewrites those:
2008     // copysign (fabs X), Sign --> copysign X, Sign
2009     // copysign (fneg X), Sign --> copysign X, Sign
2010     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2011       return replaceOperand(*II, 0, X);
2012 
2013     break;
2014   }
2015   case Intrinsic::fabs: {
2016     Value *Cond, *TVal, *FVal;
2017     if (match(II->getArgOperand(0),
2018               m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2019       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2020       if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
2021         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2022         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2023         return SelectInst::Create(Cond, AbsT, AbsF);
2024       }
2025       // fabs (select Cond, -FVal, FVal) --> fabs FVal
2026       if (match(TVal, m_FNeg(m_Specific(FVal))))
2027         return replaceOperand(*II, 0, FVal);
2028       // fabs (select Cond, TVal, -TVal) --> fabs TVal
2029       if (match(FVal, m_FNeg(m_Specific(TVal))))
2030         return replaceOperand(*II, 0, TVal);
2031     }
2032 
2033     Value *Magnitude, *Sign;
2034     if (match(II->getArgOperand(0),
2035               m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2036       // fabs (copysign x, y) -> (fabs x)
2037       CallInst *AbsSign =
2038           Builder.CreateCall(II->getCalledFunction(), {Magnitude});
2039       AbsSign->copyFastMathFlags(II);
2040       return replaceInstUsesWith(*II, AbsSign);
2041     }
2042 
2043     [[fallthrough]];
2044   }
2045   case Intrinsic::ceil:
2046   case Intrinsic::floor:
2047   case Intrinsic::round:
2048   case Intrinsic::roundeven:
2049   case Intrinsic::nearbyint:
2050   case Intrinsic::rint:
2051   case Intrinsic::trunc: {
2052     Value *ExtSrc;
2053     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2054       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2055       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2056       return new FPExtInst(NarrowII, II->getType());
2057     }
2058     break;
2059   }
2060   case Intrinsic::cos:
2061   case Intrinsic::amdgcn_cos: {
2062     Value *X;
2063     Value *Src = II->getArgOperand(0);
2064     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2065       // cos(-x) -> cos(x)
2066       // cos(fabs(x)) -> cos(x)
2067       return replaceOperand(*II, 0, X);
2068     }
2069     break;
2070   }
2071   case Intrinsic::sin: {
2072     Value *X;
2073     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2074       // sin(-x) --> -sin(x)
2075       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2076       Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
2077       FNeg->copyFastMathFlags(II);
2078       return FNeg;
2079     }
2080     break;
2081   }
2082   case Intrinsic::ptrauth_auth:
2083   case Intrinsic::ptrauth_resign: {
2084     // (sign|resign) + (auth|resign) can be folded by omitting the middle
2085     // sign+auth component if the key and discriminator match.
2086     bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2087     Value *Key = II->getArgOperand(1);
2088     Value *Disc = II->getArgOperand(2);
2089 
2090     // AuthKey will be the key we need to end up authenticating against in
2091     // whatever we replace this sequence with.
2092     Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2093     if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) {
2094       BasePtr = CI->getArgOperand(0);
2095       if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2096         if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2097           break;
2098       } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2099         if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2100           break;
2101         AuthKey = CI->getArgOperand(1);
2102         AuthDisc = CI->getArgOperand(2);
2103       } else
2104         break;
2105     } else
2106       break;
2107 
2108     unsigned NewIntrin;
2109     if (AuthKey && NeedSign) {
2110       // resign(0,1) + resign(1,2) = resign(0, 2)
2111       NewIntrin = Intrinsic::ptrauth_resign;
2112     } else if (AuthKey) {
2113       // resign(0,1) + auth(1) = auth(0)
2114       NewIntrin = Intrinsic::ptrauth_auth;
2115     } else if (NeedSign) {
2116       // sign(0) + resign(0, 1) = sign(1)
2117       NewIntrin = Intrinsic::ptrauth_sign;
2118     } else {
2119       // sign(0) + auth(0) = nop
2120       replaceInstUsesWith(*II, BasePtr);
2121       eraseInstFromFunction(*II);
2122       return nullptr;
2123     }
2124 
2125     SmallVector<Value *, 4> CallArgs;
2126     CallArgs.push_back(BasePtr);
2127     if (AuthKey) {
2128       CallArgs.push_back(AuthKey);
2129       CallArgs.push_back(AuthDisc);
2130     }
2131 
2132     if (NeedSign) {
2133       CallArgs.push_back(II->getArgOperand(3));
2134       CallArgs.push_back(II->getArgOperand(4));
2135     }
2136 
2137     Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
2138     return CallInst::Create(NewFn, CallArgs);
2139   }
2140   case Intrinsic::arm_neon_vtbl1:
2141   case Intrinsic::aarch64_neon_tbl1:
2142     if (Value *V = simplifyNeonTbl1(*II, Builder))
2143       return replaceInstUsesWith(*II, V);
2144     break;
2145 
2146   case Intrinsic::arm_neon_vmulls:
2147   case Intrinsic::arm_neon_vmullu:
2148   case Intrinsic::aarch64_neon_smull:
2149   case Intrinsic::aarch64_neon_umull: {
2150     Value *Arg0 = II->getArgOperand(0);
2151     Value *Arg1 = II->getArgOperand(1);
2152 
2153     // Handle mul by zero first:
2154     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2155       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2156     }
2157 
2158     // Check for constant LHS & RHS - in this case we just simplify.
2159     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2160                  IID == Intrinsic::aarch64_neon_umull);
2161     VectorType *NewVT = cast<VectorType>(II->getType());
2162     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2163       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2164         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
2165         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
2166 
2167         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
2168       }
2169 
2170       // Couldn't simplify - canonicalize constant to the RHS.
2171       std::swap(Arg0, Arg1);
2172     }
2173 
2174     // Handle mul by one:
2175     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2176       if (ConstantInt *Splat =
2177               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2178         if (Splat->isOne())
2179           return CastInst::CreateIntegerCast(Arg0, II->getType(),
2180                                              /*isSigned=*/!Zext);
2181 
2182     break;
2183   }
2184   case Intrinsic::arm_neon_aesd:
2185   case Intrinsic::arm_neon_aese:
2186   case Intrinsic::aarch64_crypto_aesd:
2187   case Intrinsic::aarch64_crypto_aese: {
2188     Value *DataArg = II->getArgOperand(0);
2189     Value *KeyArg  = II->getArgOperand(1);
2190 
2191     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2192     Value *Data, *Key;
2193     if (match(KeyArg, m_ZeroInt()) &&
2194         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2195       replaceOperand(*II, 0, Data);
2196       replaceOperand(*II, 1, Key);
2197       return II;
2198     }
2199     break;
2200   }
2201   case Intrinsic::hexagon_V6_vandvrt:
2202   case Intrinsic::hexagon_V6_vandvrt_128B: {
2203     // Simplify Q -> V -> Q conversion.
2204     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2205       Intrinsic::ID ID0 = Op0->getIntrinsicID();
2206       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2207           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2208         break;
2209       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2210       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2211       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2212       // Check if every byte has common bits in Bytes and Mask.
2213       uint64_t C = Bytes1 & Mask1;
2214       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2215         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2216     }
2217     break;
2218   }
2219   case Intrinsic::stackrestore: {
2220     enum class ClassifyResult {
2221       None,
2222       Alloca,
2223       StackRestore,
2224       CallWithSideEffects,
2225     };
2226     auto Classify = [](const Instruction *I) {
2227       if (isa<AllocaInst>(I))
2228         return ClassifyResult::Alloca;
2229 
2230       if (auto *CI = dyn_cast<CallInst>(I)) {
2231         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2232           if (II->getIntrinsicID() == Intrinsic::stackrestore)
2233             return ClassifyResult::StackRestore;
2234 
2235           if (II->mayHaveSideEffects())
2236             return ClassifyResult::CallWithSideEffects;
2237         } else {
2238           // Consider all non-intrinsic calls to be side effects
2239           return ClassifyResult::CallWithSideEffects;
2240         }
2241       }
2242 
2243       return ClassifyResult::None;
2244     };
2245 
2246     // If the stacksave and the stackrestore are in the same BB, and there is
2247     // no intervening call, alloca, or stackrestore of a different stacksave,
2248     // remove the restore. This can happen when variable allocas are DCE'd.
2249     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2250       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2251           SS->getParent() == II->getParent()) {
2252         BasicBlock::iterator BI(SS);
2253         bool CannotRemove = false;
2254         for (++BI; &*BI != II; ++BI) {
2255           switch (Classify(&*BI)) {
2256           case ClassifyResult::None:
2257             // So far so good, look at next instructions.
2258             break;
2259 
2260           case ClassifyResult::StackRestore:
2261             // If we found an intervening stackrestore for a different
2262             // stacksave, we can't remove the stackrestore. Otherwise, continue.
2263             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2264               CannotRemove = true;
2265             break;
2266 
2267           case ClassifyResult::Alloca:
2268           case ClassifyResult::CallWithSideEffects:
2269             // If we found an alloca, a non-intrinsic call, or an intrinsic
2270             // call with side effects, we can't remove the stackrestore.
2271             CannotRemove = true;
2272             break;
2273           }
2274           if (CannotRemove)
2275             break;
2276         }
2277 
2278         if (!CannotRemove)
2279           return eraseInstFromFunction(CI);
2280       }
2281     }
2282 
2283     // Scan down this block to see if there is another stack restore in the
2284     // same block without an intervening call/alloca.
2285     BasicBlock::iterator BI(II);
2286     Instruction *TI = II->getParent()->getTerminator();
2287     bool CannotRemove = false;
2288     for (++BI; &*BI != TI; ++BI) {
2289       switch (Classify(&*BI)) {
2290       case ClassifyResult::None:
2291         // So far so good, look at next instructions.
2292         break;
2293 
2294       case ClassifyResult::StackRestore:
2295         // If there is a stackrestore below this one, remove this one.
2296         return eraseInstFromFunction(CI);
2297 
2298       case ClassifyResult::Alloca:
2299       case ClassifyResult::CallWithSideEffects:
2300         // If we found an alloca, a non-intrinsic call, or an intrinsic call
2301         // with side effects (such as llvm.stacksave and llvm.read_register),
2302         // we can't remove the stack restore.
2303         CannotRemove = true;
2304         break;
2305       }
2306       if (CannotRemove)
2307         break;
2308     }
2309 
2310     // If the stack restore is in a return, resume, or unwind block and if there
2311     // are no allocas or calls between the restore and the return, nuke the
2312     // restore.
2313     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2314       return eraseInstFromFunction(CI);
2315     break;
2316   }
2317   case Intrinsic::lifetime_end:
2318     // Asan needs to poison memory to detect invalid access which is possible
2319     // even for empty lifetime range.
2320     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2321         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2322         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2323       break;
2324 
2325     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2326           return I.getIntrinsicID() == Intrinsic::lifetime_start;
2327         }))
2328       return nullptr;
2329     break;
2330   case Intrinsic::assume: {
2331     Value *IIOperand = II->getArgOperand(0);
2332     SmallVector<OperandBundleDef, 4> OpBundles;
2333     II->getOperandBundlesAsDefs(OpBundles);
2334 
2335     /// This will remove the boolean Condition from the assume given as
2336     /// argument and remove the assume if it becomes useless.
2337     /// always returns nullptr for use as a return values.
2338     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2339       assert(isa<AssumeInst>(Assume));
2340       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2341         return eraseInstFromFunction(CI);
2342       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
2343       return nullptr;
2344     };
2345     // Remove an assume if it is followed by an identical assume.
2346     // TODO: Do we need this? Unless there are conflicting assumptions, the
2347     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2348     Instruction *Next = II->getNextNonDebugInstruction();
2349     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2350       return RemoveConditionFromAssume(Next);
2351 
2352     // Canonicalize assume(a && b) -> assume(a); assume(b);
2353     // Note: New assumption intrinsics created here are registered by
2354     // the InstCombineIRInserter object.
2355     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2356     Value *AssumeIntrinsic = II->getCalledOperand();
2357     Value *A, *B;
2358     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2359       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2360                          II->getName());
2361       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2362       return eraseInstFromFunction(*II);
2363     }
2364     // assume(!(a || b)) -> assume(!a); assume(!b);
2365     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2366       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2367                          Builder.CreateNot(A), OpBundles, II->getName());
2368       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2369                          Builder.CreateNot(B), II->getName());
2370       return eraseInstFromFunction(*II);
2371     }
2372 
2373     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2374     // (if assume is valid at the load)
2375     CmpInst::Predicate Pred;
2376     Instruction *LHS;
2377     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2378         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2379         LHS->getType()->isPointerTy() &&
2380         isValidAssumeForContext(II, LHS, &DT)) {
2381       MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
2382       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2383       return RemoveConditionFromAssume(II);
2384 
2385       // TODO: apply nonnull return attributes to calls and invokes
2386       // TODO: apply range metadata for range check patterns?
2387     }
2388 
2389     // Convert nonnull assume like:
2390     // %A = icmp ne i32* %PTR, null
2391     // call void @llvm.assume(i1 %A)
2392     // into
2393     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2394     if (EnableKnowledgeRetention &&
2395         match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2396         Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2397       if (auto *Replacement = buildAssumeFromKnowledge(
2398               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2399 
2400         Replacement->insertBefore(Next);
2401         AC.registerAssumption(Replacement);
2402         return RemoveConditionFromAssume(II);
2403       }
2404     }
2405 
2406     // Convert alignment assume like:
2407     // %B = ptrtoint i32* %A to i64
2408     // %C = and i64 %B, Constant
2409     // %D = icmp eq i64 %C, 0
2410     // call void @llvm.assume(i1 %D)
2411     // into
2412     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
2413     uint64_t AlignMask;
2414     if (EnableKnowledgeRetention &&
2415         match(IIOperand,
2416               m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2417                     m_Zero())) &&
2418         Pred == CmpInst::ICMP_EQ) {
2419       if (isPowerOf2_64(AlignMask + 1)) {
2420         uint64_t Offset = 0;
2421         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2422         if (match(A, m_PtrToInt(m_Value(A)))) {
2423           /// Note: this doesn't preserve the offset information but merges
2424           /// offset and alignment.
2425           /// TODO: we can generate a GEP instead of merging the alignment with
2426           /// the offset.
2427           RetainedKnowledge RK{Attribute::Alignment,
2428                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
2429           if (auto *Replacement =
2430                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2431 
2432             Replacement->insertAfter(II);
2433             AC.registerAssumption(Replacement);
2434           }
2435           return RemoveConditionFromAssume(II);
2436         }
2437       }
2438     }
2439 
2440     /// Canonicalize Knowledge in operand bundles.
2441     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2442       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2443         auto &BOI = II->bundle_op_info_begin()[Idx];
2444         RetainedKnowledge RK =
2445           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2446         if (BOI.End - BOI.Begin > 2)
2447           continue; // Prevent reducing knowledge in an align with offset since
2448                     // extracting a RetainedKnowledge from them looses offset
2449                     // information
2450         RetainedKnowledge CanonRK =
2451           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2452                                           &getAssumptionCache(),
2453                                           &getDominatorTree());
2454         if (CanonRK == RK)
2455           continue;
2456         if (!CanonRK) {
2457           if (BOI.End - BOI.Begin > 0) {
2458             Worklist.pushValue(II->op_begin()[BOI.Begin]);
2459             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2460           }
2461           continue;
2462         }
2463         assert(RK.AttrKind == CanonRK.AttrKind);
2464         if (BOI.End - BOI.Begin > 0)
2465           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2466         if (BOI.End - BOI.Begin > 1)
2467           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2468               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2469         if (RK.WasOn)
2470           Worklist.pushValue(RK.WasOn);
2471         return II;
2472       }
2473     }
2474 
2475     // If there is a dominating assume with the same condition as this one,
2476     // then this one is redundant, and should be removed.
2477     KnownBits Known(1);
2478     computeKnownBits(IIOperand, Known, 0, II);
2479     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2480       return eraseInstFromFunction(*II);
2481 
2482     // Update the cache of affected values for this assumption (we might be
2483     // here because we just simplified the condition).
2484     AC.updateAffectedValues(cast<AssumeInst>(II));
2485     break;
2486   }
2487   case Intrinsic::experimental_guard: {
2488     // Is this guard followed by another guard?  We scan forward over a small
2489     // fixed window of instructions to handle common cases with conditions
2490     // computed between guards.
2491     Instruction *NextInst = II->getNextNonDebugInstruction();
2492     for (unsigned i = 0; i < GuardWideningWindow; i++) {
2493       // Note: Using context-free form to avoid compile time blow up
2494       if (!isSafeToSpeculativelyExecute(NextInst))
2495         break;
2496       NextInst = NextInst->getNextNonDebugInstruction();
2497     }
2498     Value *NextCond = nullptr;
2499     if (match(NextInst,
2500               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2501       Value *CurrCond = II->getArgOperand(0);
2502 
2503       // Remove a guard that it is immediately preceded by an identical guard.
2504       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2505       if (CurrCond != NextCond) {
2506         Instruction *MoveI = II->getNextNonDebugInstruction();
2507         while (MoveI != NextInst) {
2508           auto *Temp = MoveI;
2509           MoveI = MoveI->getNextNonDebugInstruction();
2510           Temp->moveBefore(II);
2511         }
2512         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2513       }
2514       eraseInstFromFunction(*NextInst);
2515       return II;
2516     }
2517     break;
2518   }
2519   case Intrinsic::vector_insert: {
2520     Value *Vec = II->getArgOperand(0);
2521     Value *SubVec = II->getArgOperand(1);
2522     Value *Idx = II->getArgOperand(2);
2523     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2524     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2525     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2526 
2527     // Only canonicalize if the destination vector, Vec, and SubVec are all
2528     // fixed vectors.
2529     if (DstTy && VecTy && SubVecTy) {
2530       unsigned DstNumElts = DstTy->getNumElements();
2531       unsigned VecNumElts = VecTy->getNumElements();
2532       unsigned SubVecNumElts = SubVecTy->getNumElements();
2533       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2534 
2535       // An insert that entirely overwrites Vec with SubVec is a nop.
2536       if (VecNumElts == SubVecNumElts)
2537         return replaceInstUsesWith(CI, SubVec);
2538 
2539       // Widen SubVec into a vector of the same width as Vec, since
2540       // shufflevector requires the two input vectors to be the same width.
2541       // Elements beyond the bounds of SubVec within the widened vector are
2542       // undefined.
2543       SmallVector<int, 8> WidenMask;
2544       unsigned i;
2545       for (i = 0; i != SubVecNumElts; ++i)
2546         WidenMask.push_back(i);
2547       for (; i != VecNumElts; ++i)
2548         WidenMask.push_back(UndefMaskElem);
2549 
2550       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2551 
2552       SmallVector<int, 8> Mask;
2553       for (unsigned i = 0; i != IdxN; ++i)
2554         Mask.push_back(i);
2555       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2556         Mask.push_back(i);
2557       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2558         Mask.push_back(i);
2559 
2560       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2561       return replaceInstUsesWith(CI, Shuffle);
2562     }
2563     break;
2564   }
2565   case Intrinsic::vector_extract: {
2566     Value *Vec = II->getArgOperand(0);
2567     Value *Idx = II->getArgOperand(1);
2568 
2569     Type *ReturnType = II->getType();
2570     // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
2571     // ExtractIdx)
2572     unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
2573     Value *InsertTuple, *InsertIdx, *InsertValue;
2574     if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
2575                                                          m_Value(InsertValue),
2576                                                          m_Value(InsertIdx))) &&
2577         InsertValue->getType() == ReturnType) {
2578       unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
2579       // Case where we get the same index right after setting it.
2580       // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
2581       // InsertValue
2582       if (ExtractIdx == Index)
2583         return replaceInstUsesWith(CI, InsertValue);
2584       // If we are getting a different index than what was set in the
2585       // insert.vector intrinsic. We can just set the input tuple to the one up
2586       // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
2587       // InsertIndex), ExtractIndex)
2588       // --> extract.vector(InsertTuple, ExtractIndex)
2589       else
2590         return replaceOperand(CI, 0, InsertTuple);
2591     }
2592 
2593     auto *DstTy = dyn_cast<FixedVectorType>(ReturnType);
2594     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2595 
2596     // Only canonicalize if the the destination vector and Vec are fixed
2597     // vectors.
2598     if (DstTy && VecTy) {
2599       unsigned DstNumElts = DstTy->getNumElements();
2600       unsigned VecNumElts = VecTy->getNumElements();
2601       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2602 
2603       // Extracting the entirety of Vec is a nop.
2604       if (VecNumElts == DstNumElts) {
2605         replaceInstUsesWith(CI, Vec);
2606         return eraseInstFromFunction(CI);
2607       }
2608 
2609       SmallVector<int, 8> Mask;
2610       for (unsigned i = 0; i != DstNumElts; ++i)
2611         Mask.push_back(IdxN + i);
2612 
2613       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
2614       return replaceInstUsesWith(CI, Shuffle);
2615     }
2616     break;
2617   }
2618   case Intrinsic::experimental_vector_reverse: {
2619     Value *BO0, *BO1, *X, *Y;
2620     Value *Vec = II->getArgOperand(0);
2621     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
2622       auto *OldBinOp = cast<BinaryOperator>(Vec);
2623       if (match(BO0, m_VecReverse(m_Value(X)))) {
2624         // rev(binop rev(X), rev(Y)) --> binop X, Y
2625         if (match(BO1, m_VecReverse(m_Value(Y))))
2626           return replaceInstUsesWith(CI,
2627                                      BinaryOperator::CreateWithCopiedFlags(
2628                                          OldBinOp->getOpcode(), X, Y, OldBinOp,
2629                                          OldBinOp->getName(), II));
2630         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
2631         if (isSplatValue(BO1))
2632           return replaceInstUsesWith(CI,
2633                                      BinaryOperator::CreateWithCopiedFlags(
2634                                          OldBinOp->getOpcode(), X, BO1,
2635                                          OldBinOp, OldBinOp->getName(), II));
2636       }
2637       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
2638       if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
2639         return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
2640                                            OldBinOp->getOpcode(), BO0, Y,
2641                                            OldBinOp, OldBinOp->getName(), II));
2642     }
2643     // rev(unop rev(X)) --> unop X
2644     if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
2645       auto *OldUnOp = cast<UnaryOperator>(Vec);
2646       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
2647           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
2648       return replaceInstUsesWith(CI, NewUnOp);
2649     }
2650     break;
2651   }
2652   case Intrinsic::vector_reduce_or:
2653   case Intrinsic::vector_reduce_and: {
2654     // Canonicalize logical or/and reductions:
2655     // Or reduction for i1 is represented as:
2656     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2657     // %res = cmp ne iReduxWidth %val, 0
2658     // And reduction for i1 is represented as:
2659     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2660     // %res = cmp eq iReduxWidth %val, 11111
2661     Value *Arg = II->getArgOperand(0);
2662     Value *Vect;
2663     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2664       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2665         if (FTy->getElementType() == Builder.getInt1Ty()) {
2666           Value *Res = Builder.CreateBitCast(
2667               Vect, Builder.getIntNTy(FTy->getNumElements()));
2668           if (IID == Intrinsic::vector_reduce_and) {
2669             Res = Builder.CreateICmpEQ(
2670                 Res, ConstantInt::getAllOnesValue(Res->getType()));
2671           } else {
2672             assert(IID == Intrinsic::vector_reduce_or &&
2673                    "Expected or reduction.");
2674             Res = Builder.CreateIsNotNull(Res);
2675           }
2676           if (Arg != Vect)
2677             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2678                                      II->getType());
2679           return replaceInstUsesWith(CI, Res);
2680         }
2681     }
2682     [[fallthrough]];
2683   }
2684   case Intrinsic::vector_reduce_add: {
2685     if (IID == Intrinsic::vector_reduce_add) {
2686       // Convert vector_reduce_add(ZExt(<n x i1>)) to
2687       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2688       // Convert vector_reduce_add(SExt(<n x i1>)) to
2689       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2690       // Convert vector_reduce_add(<n x i1>) to
2691       // Trunc(ctpop(bitcast <n x i1> to in)).
2692       Value *Arg = II->getArgOperand(0);
2693       Value *Vect;
2694       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2695         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2696           if (FTy->getElementType() == Builder.getInt1Ty()) {
2697             Value *V = Builder.CreateBitCast(
2698                 Vect, Builder.getIntNTy(FTy->getNumElements()));
2699             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2700             if (Res->getType() != II->getType())
2701               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2702             if (Arg != Vect &&
2703                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2704               Res = Builder.CreateNeg(Res);
2705             return replaceInstUsesWith(CI, Res);
2706           }
2707       }
2708     }
2709     [[fallthrough]];
2710   }
2711   case Intrinsic::vector_reduce_xor: {
2712     if (IID == Intrinsic::vector_reduce_xor) {
2713       // Exclusive disjunction reduction over the vector with
2714       // (potentially-extended) i1 element type is actually a
2715       // (potentially-extended) arithmetic `add` reduction over the original
2716       // non-extended value:
2717       //   vector_reduce_xor(?ext(<n x i1>))
2718       //     -->
2719       //   ?ext(vector_reduce_add(<n x i1>))
2720       Value *Arg = II->getArgOperand(0);
2721       Value *Vect;
2722       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2723         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2724           if (FTy->getElementType() == Builder.getInt1Ty()) {
2725             Value *Res = Builder.CreateAddReduce(Vect);
2726             if (Arg != Vect)
2727               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2728                                        II->getType());
2729             return replaceInstUsesWith(CI, Res);
2730           }
2731       }
2732     }
2733     [[fallthrough]];
2734   }
2735   case Intrinsic::vector_reduce_mul: {
2736     if (IID == Intrinsic::vector_reduce_mul) {
2737       // Multiplicative reduction over the vector with (potentially-extended)
2738       // i1 element type is actually a (potentially zero-extended)
2739       // logical `and` reduction over the original non-extended value:
2740       //   vector_reduce_mul(?ext(<n x i1>))
2741       //     -->
2742       //   zext(vector_reduce_and(<n x i1>))
2743       Value *Arg = II->getArgOperand(0);
2744       Value *Vect;
2745       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2746         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2747           if (FTy->getElementType() == Builder.getInt1Ty()) {
2748             Value *Res = Builder.CreateAndReduce(Vect);
2749             if (Res->getType() != II->getType())
2750               Res = Builder.CreateZExt(Res, II->getType());
2751             return replaceInstUsesWith(CI, Res);
2752           }
2753       }
2754     }
2755     [[fallthrough]];
2756   }
2757   case Intrinsic::vector_reduce_umin:
2758   case Intrinsic::vector_reduce_umax: {
2759     if (IID == Intrinsic::vector_reduce_umin ||
2760         IID == Intrinsic::vector_reduce_umax) {
2761       // UMin/UMax reduction over the vector with (potentially-extended)
2762       // i1 element type is actually a (potentially-extended)
2763       // logical `and`/`or` reduction over the original non-extended value:
2764       //   vector_reduce_u{min,max}(?ext(<n x i1>))
2765       //     -->
2766       //   ?ext(vector_reduce_{and,or}(<n x i1>))
2767       Value *Arg = II->getArgOperand(0);
2768       Value *Vect;
2769       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2770         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2771           if (FTy->getElementType() == Builder.getInt1Ty()) {
2772             Value *Res = IID == Intrinsic::vector_reduce_umin
2773                              ? Builder.CreateAndReduce(Vect)
2774                              : Builder.CreateOrReduce(Vect);
2775             if (Arg != Vect)
2776               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2777                                        II->getType());
2778             return replaceInstUsesWith(CI, Res);
2779           }
2780       }
2781     }
2782     [[fallthrough]];
2783   }
2784   case Intrinsic::vector_reduce_smin:
2785   case Intrinsic::vector_reduce_smax: {
2786     if (IID == Intrinsic::vector_reduce_smin ||
2787         IID == Intrinsic::vector_reduce_smax) {
2788       // SMin/SMax reduction over the vector with (potentially-extended)
2789       // i1 element type is actually a (potentially-extended)
2790       // logical `and`/`or` reduction over the original non-extended value:
2791       //   vector_reduce_s{min,max}(<n x i1>)
2792       //     -->
2793       //   vector_reduce_{or,and}(<n x i1>)
2794       // and
2795       //   vector_reduce_s{min,max}(sext(<n x i1>))
2796       //     -->
2797       //   sext(vector_reduce_{or,and}(<n x i1>))
2798       // and
2799       //   vector_reduce_s{min,max}(zext(<n x i1>))
2800       //     -->
2801       //   zext(vector_reduce_{and,or}(<n x i1>))
2802       Value *Arg = II->getArgOperand(0);
2803       Value *Vect;
2804       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2805         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2806           if (FTy->getElementType() == Builder.getInt1Ty()) {
2807             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
2808             if (Arg != Vect)
2809               ExtOpc = cast<CastInst>(Arg)->getOpcode();
2810             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
2811                           (ExtOpc == Instruction::CastOps::ZExt))
2812                              ? Builder.CreateAndReduce(Vect)
2813                              : Builder.CreateOrReduce(Vect);
2814             if (Arg != Vect)
2815               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
2816             return replaceInstUsesWith(CI, Res);
2817           }
2818       }
2819     }
2820     [[fallthrough]];
2821   }
2822   case Intrinsic::vector_reduce_fmax:
2823   case Intrinsic::vector_reduce_fmin:
2824   case Intrinsic::vector_reduce_fadd:
2825   case Intrinsic::vector_reduce_fmul: {
2826     bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2827                               IID != Intrinsic::vector_reduce_fmul) ||
2828                              II->hasAllowReassoc();
2829     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2830                              IID == Intrinsic::vector_reduce_fmul)
2831                                 ? 1
2832                                 : 0;
2833     Value *Arg = II->getArgOperand(ArgIdx);
2834     Value *V;
2835     ArrayRef<int> Mask;
2836     if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2837         !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2838         !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2839       break;
2840     int Sz = Mask.size();
2841     SmallBitVector UsedIndices(Sz);
2842     for (int Idx : Mask) {
2843       if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2844         break;
2845       UsedIndices.set(Idx);
2846     }
2847     // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2848     // other changes.
2849     if (UsedIndices.all()) {
2850       replaceUse(II->getOperandUse(ArgIdx), V);
2851       return nullptr;
2852     }
2853     break;
2854   }
2855   default: {
2856     // Handle target specific intrinsics
2857     std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2858     if (V)
2859       return *V;
2860     break;
2861   }
2862   }
2863 
2864   if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
2865     return Shuf;
2866 
2867   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2868   // context, so it is handled in visitCallBase and we should trigger it.
2869   return visitCallBase(*II);
2870 }
2871 
2872 // Fence instruction simplification
2873 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2874   auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
2875   // This check is solely here to handle arbitrary target-dependent syncscopes.
2876   // TODO: Can remove if does not matter in practice.
2877   if (NFI && FI.isIdenticalTo(NFI))
2878     return eraseInstFromFunction(FI);
2879 
2880   // Returns true if FI1 is identical or stronger fence than FI2.
2881   auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
2882     auto FI1SyncScope = FI1->getSyncScopeID();
2883     // Consider same scope, where scope is global or single-thread.
2884     if (FI1SyncScope != FI2->getSyncScopeID() ||
2885         (FI1SyncScope != SyncScope::System &&
2886          FI1SyncScope != SyncScope::SingleThread))
2887       return false;
2888 
2889     return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
2890   };
2891   if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
2892     return eraseInstFromFunction(FI);
2893 
2894   if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
2895     if (isIdenticalOrStrongerFence(PFI, &FI))
2896       return eraseInstFromFunction(FI);
2897   return nullptr;
2898 }
2899 
2900 // InvokeInst simplification
2901 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2902   return visitCallBase(II);
2903 }
2904 
2905 // CallBrInst simplification
2906 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2907   return visitCallBase(CBI);
2908 }
2909 
2910 /// If this cast does not affect the value passed through the varargs area, we
2911 /// can eliminate the use of the cast.
2912 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2913                                          const DataLayout &DL,
2914                                          const CastInst *const CI,
2915                                          const int ix) {
2916   if (!CI->isLosslessCast())
2917     return false;
2918 
2919   // If this is a GC intrinsic, avoid munging types.  We need types for
2920   // statepoint reconstruction in SelectionDAG.
2921   // TODO: This is probably something which should be expanded to all
2922   // intrinsics since the entire point of intrinsics is that
2923   // they are understandable by the optimizer.
2924   if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2925       isa<GCResultInst>(Call))
2926     return false;
2927 
2928   // Opaque pointers are compatible with any byval types.
2929   PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2930   if (SrcTy->isOpaque())
2931     return true;
2932 
2933   // The size of ByVal or InAlloca arguments is derived from the type, so we
2934   // can't change to a type with a different size.  If the size were
2935   // passed explicitly we could avoid this check.
2936   if (!Call.isPassPointeeByValueArgument(ix))
2937     return true;
2938 
2939   // The transform currently only handles type replacement for byval, not other
2940   // type-carrying attributes.
2941   if (!Call.isByValArgument(ix))
2942     return false;
2943 
2944   Type *SrcElemTy = SrcTy->getNonOpaquePointerElementType();
2945   Type *DstElemTy = Call.getParamByValType(ix);
2946   if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2947     return false;
2948   if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2949     return false;
2950   return true;
2951 }
2952 
2953 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2954   if (!CI->getCalledFunction()) return nullptr;
2955 
2956   // Skip optimizing notail and musttail calls so
2957   // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
2958   // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
2959   if (CI->isMustTailCall() || CI->isNoTailCall())
2960     return nullptr;
2961 
2962   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2963     replaceInstUsesWith(*From, With);
2964   };
2965   auto InstCombineErase = [this](Instruction *I) {
2966     eraseInstFromFunction(*I);
2967   };
2968   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2969                                InstCombineErase);
2970   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2971     ++NumSimplified;
2972     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2973   }
2974 
2975   return nullptr;
2976 }
2977 
2978 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2979   // Strip off at most one level of pointer casts, looking for an alloca.  This
2980   // is good enough in practice and simpler than handling any number of casts.
2981   Value *Underlying = TrampMem->stripPointerCasts();
2982   if (Underlying != TrampMem &&
2983       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2984     return nullptr;
2985   if (!isa<AllocaInst>(Underlying))
2986     return nullptr;
2987 
2988   IntrinsicInst *InitTrampoline = nullptr;
2989   for (User *U : TrampMem->users()) {
2990     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2991     if (!II)
2992       return nullptr;
2993     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2994       if (InitTrampoline)
2995         // More than one init_trampoline writes to this value.  Give up.
2996         return nullptr;
2997       InitTrampoline = II;
2998       continue;
2999     }
3000     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3001       // Allow any number of calls to adjust.trampoline.
3002       continue;
3003     return nullptr;
3004   }
3005 
3006   // No call to init.trampoline found.
3007   if (!InitTrampoline)
3008     return nullptr;
3009 
3010   // Check that the alloca is being used in the expected way.
3011   if (InitTrampoline->getOperand(0) != TrampMem)
3012     return nullptr;
3013 
3014   return InitTrampoline;
3015 }
3016 
3017 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3018                                                Value *TrampMem) {
3019   // Visit all the previous instructions in the basic block, and try to find a
3020   // init.trampoline which has a direct path to the adjust.trampoline.
3021   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3022                             E = AdjustTramp->getParent()->begin();
3023        I != E;) {
3024     Instruction *Inst = &*--I;
3025     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3026       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3027           II->getOperand(0) == TrampMem)
3028         return II;
3029     if (Inst->mayWriteToMemory())
3030       return nullptr;
3031   }
3032   return nullptr;
3033 }
3034 
3035 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3036 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3037 // to a direct call to a function.  Otherwise return NULL.
3038 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3039   Callee = Callee->stripPointerCasts();
3040   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3041   if (!AdjustTramp ||
3042       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3043     return nullptr;
3044 
3045   Value *TrampMem = AdjustTramp->getOperand(0);
3046 
3047   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3048     return IT;
3049   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3050     return IT;
3051   return nullptr;
3052 }
3053 
3054 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3055                                             const TargetLibraryInfo *TLI) {
3056   // Note: We only handle cases which can't be driven from generic attributes
3057   // here.  So, for example, nonnull and noalias (which are common properties
3058   // of some allocation functions) are expected to be handled via annotation
3059   // of the respective allocator declaration with generic attributes.
3060   bool Changed = false;
3061 
3062   if (!Call.getType()->isPointerTy())
3063     return Changed;
3064 
3065   std::optional<APInt> Size = getAllocSize(&Call, TLI);
3066   if (Size && *Size != 0) {
3067     // TODO: We really should just emit deref_or_null here and then
3068     // let the generic inference code combine that with nonnull.
3069     if (Call.hasRetAttr(Attribute::NonNull)) {
3070       Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3071       Call.addRetAttr(Attribute::getWithDereferenceableBytes(
3072           Call.getContext(), Size->getLimitedValue()));
3073     } else {
3074       Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3075       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
3076           Call.getContext(), Size->getLimitedValue()));
3077     }
3078   }
3079 
3080   // Add alignment attribute if alignment is a power of two constant.
3081   Value *Alignment = getAllocAlignment(&Call, TLI);
3082   if (!Alignment)
3083     return Changed;
3084 
3085   ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3086   if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3087     uint64_t AlignmentVal = AlignOpC->getZExtValue();
3088     if (llvm::isPowerOf2_64(AlignmentVal)) {
3089       Align ExistingAlign = Call.getRetAlign().valueOrOne();
3090       Align NewAlign = Align(AlignmentVal);
3091       if (NewAlign > ExistingAlign) {
3092         Call.addRetAttr(
3093             Attribute::getWithAlignment(Call.getContext(), NewAlign));
3094         Changed = true;
3095       }
3096     }
3097   }
3098   return Changed;
3099 }
3100 
3101 /// Improvements for call, callbr and invoke instructions.
3102 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3103   bool Changed = annotateAnyAllocSite(Call, &TLI);
3104 
3105   // Mark any parameters that are known to be non-null with the nonnull
3106   // attribute.  This is helpful for inlining calls to functions with null
3107   // checks on their arguments.
3108   SmallVector<unsigned, 4> ArgNos;
3109   unsigned ArgNo = 0;
3110 
3111   for (Value *V : Call.args()) {
3112     if (V->getType()->isPointerTy() &&
3113         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3114         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
3115       ArgNos.push_back(ArgNo);
3116     ArgNo++;
3117   }
3118 
3119   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3120 
3121   if (!ArgNos.empty()) {
3122     AttributeList AS = Call.getAttributes();
3123     LLVMContext &Ctx = Call.getContext();
3124     AS = AS.addParamAttribute(Ctx, ArgNos,
3125                               Attribute::get(Ctx, Attribute::NonNull));
3126     Call.setAttributes(AS);
3127     Changed = true;
3128   }
3129 
3130   // If the callee is a pointer to a function, attempt to move any casts to the
3131   // arguments of the call/callbr/invoke.
3132   Value *Callee = Call.getCalledOperand();
3133   Function *CalleeF = dyn_cast<Function>(Callee);
3134   if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3135       transformConstExprCastCall(Call))
3136     return nullptr;
3137 
3138   if (CalleeF) {
3139     // Remove the convergent attr on calls when the callee is not convergent.
3140     if (Call.isConvergent() && !CalleeF->isConvergent() &&
3141         !CalleeF->isIntrinsic()) {
3142       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3143                         << "\n");
3144       Call.setNotConvergent();
3145       return &Call;
3146     }
3147 
3148     // If the call and callee calling conventions don't match, and neither one
3149     // of the calling conventions is compatible with C calling convention
3150     // this call must be unreachable, as the call is undefined.
3151     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3152          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3153            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
3154          !(Call.getCallingConv() == llvm::CallingConv::C &&
3155            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
3156         // Only do this for calls to a function with a body.  A prototype may
3157         // not actually end up matching the implementation's calling conv for a
3158         // variety of reasons (e.g. it may be written in assembly).
3159         !CalleeF->isDeclaration()) {
3160       Instruction *OldCall = &Call;
3161       CreateNonTerminatorUnreachable(OldCall);
3162       // If OldCall does not return void then replaceInstUsesWith poison.
3163       // This allows ValueHandlers and custom metadata to adjust itself.
3164       if (!OldCall->getType()->isVoidTy())
3165         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
3166       if (isa<CallInst>(OldCall))
3167         return eraseInstFromFunction(*OldCall);
3168 
3169       // We cannot remove an invoke or a callbr, because it would change thexi
3170       // CFG, just change the callee to a null pointer.
3171       cast<CallBase>(OldCall)->setCalledFunction(
3172           CalleeF->getFunctionType(),
3173           Constant::getNullValue(CalleeF->getType()));
3174       return nullptr;
3175     }
3176   }
3177 
3178   // Calling a null function pointer is undefined if a null address isn't
3179   // dereferenceable.
3180   if ((isa<ConstantPointerNull>(Callee) &&
3181        !NullPointerIsDefined(Call.getFunction())) ||
3182       isa<UndefValue>(Callee)) {
3183     // If Call does not return void then replaceInstUsesWith poison.
3184     // This allows ValueHandlers and custom metadata to adjust itself.
3185     if (!Call.getType()->isVoidTy())
3186       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3187 
3188     if (Call.isTerminator()) {
3189       // Can't remove an invoke or callbr because we cannot change the CFG.
3190       return nullptr;
3191     }
3192 
3193     // This instruction is not reachable, just remove it.
3194     CreateNonTerminatorUnreachable(&Call);
3195     return eraseInstFromFunction(Call);
3196   }
3197 
3198   if (IntrinsicInst *II = findInitTrampoline(Callee))
3199     return transformCallThroughTrampoline(Call, *II);
3200 
3201   // TODO: Drop this transform once opaque pointer transition is done.
3202   FunctionType *FTy = Call.getFunctionType();
3203   if (FTy->isVarArg()) {
3204     int ix = FTy->getNumParams();
3205     // See if we can optimize any arguments passed through the varargs area of
3206     // the call.
3207     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
3208          I != E; ++I, ++ix) {
3209       CastInst *CI = dyn_cast<CastInst>(*I);
3210       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
3211         replaceUse(*I, CI->getOperand(0));
3212 
3213         // Update the byval type to match the pointer type.
3214         // Not necessary for opaque pointers.
3215         PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
3216         if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
3217           Call.removeParamAttr(ix, Attribute::ByVal);
3218           Call.addParamAttr(ix, Attribute::getWithByValType(
3219                                     Call.getContext(),
3220                                     NewTy->getNonOpaquePointerElementType()));
3221         }
3222         Changed = true;
3223       }
3224     }
3225   }
3226 
3227   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3228     InlineAsm *IA = cast<InlineAsm>(Callee);
3229     if (!IA->canThrow()) {
3230       // Normal inline asm calls cannot throw - mark them
3231       // 'nounwind'.
3232       Call.setDoesNotThrow();
3233       Changed = true;
3234     }
3235   }
3236 
3237   // Try to optimize the call if possible, we require DataLayout for most of
3238   // this.  None of these calls are seen as possibly dead so go ahead and
3239   // delete the instruction now.
3240   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3241     Instruction *I = tryOptimizeCall(CI);
3242     // If we changed something return the result, etc. Otherwise let
3243     // the fallthrough check.
3244     if (I) return eraseInstFromFunction(*I);
3245   }
3246 
3247   if (!Call.use_empty() && !Call.isMustTailCall())
3248     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3249       Type *CallTy = Call.getType();
3250       Type *RetArgTy = ReturnedArg->getType();
3251       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3252         return replaceInstUsesWith(
3253             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3254     }
3255 
3256   // Drop unnecessary kcfi operand bundles from calls that were converted
3257   // into direct calls.
3258   auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
3259   if (Bundle && !Call.isIndirectCall()) {
3260     DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3261       if (CalleeF) {
3262         ConstantInt *FunctionType = nullptr;
3263         ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3264 
3265         if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3266           FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3267 
3268         if (FunctionType &&
3269             FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3270           dbgs() << Call.getModule()->getName()
3271                  << ": warning: kcfi: " << Call.getCaller()->getName()
3272                  << ": call to " << CalleeF->getName()
3273                  << " using a mismatching function pointer type\n";
3274       }
3275     });
3276 
3277     return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
3278   }
3279 
3280   if (isRemovableAlloc(&Call, &TLI))
3281     return visitAllocSite(Call);
3282 
3283   // Handle intrinsics which can be used in both call and invoke context.
3284   switch (Call.getIntrinsicID()) {
3285   case Intrinsic::experimental_gc_statepoint: {
3286     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3287     SmallPtrSet<Value *, 32> LiveGcValues;
3288     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3289       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3290 
3291       // Remove the relocation if unused.
3292       if (GCR.use_empty()) {
3293         eraseInstFromFunction(GCR);
3294         continue;
3295       }
3296 
3297       Value *DerivedPtr = GCR.getDerivedPtr();
3298       Value *BasePtr = GCR.getBasePtr();
3299 
3300       // Undef is undef, even after relocation.
3301       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3302         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3303         eraseInstFromFunction(GCR);
3304         continue;
3305       }
3306 
3307       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3308         // The relocation of null will be null for most any collector.
3309         // TODO: provide a hook for this in GCStrategy.  There might be some
3310         // weird collector this property does not hold for.
3311         if (isa<ConstantPointerNull>(DerivedPtr)) {
3312           // Use null-pointer of gc_relocate's type to replace it.
3313           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
3314           eraseInstFromFunction(GCR);
3315           continue;
3316         }
3317 
3318         // isKnownNonNull -> nonnull attribute
3319         if (!GCR.hasRetAttr(Attribute::NonNull) &&
3320             isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
3321           GCR.addRetAttr(Attribute::NonNull);
3322           // We discovered new fact, re-check users.
3323           Worklist.pushUsersToWorkList(GCR);
3324         }
3325       }
3326 
3327       // If we have two copies of the same pointer in the statepoint argument
3328       // list, canonicalize to one.  This may let us common gc.relocates.
3329       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3330           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3331         auto *OpIntTy = GCR.getOperand(2)->getType();
3332         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3333       }
3334 
3335       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3336       // Canonicalize on the type from the uses to the defs
3337 
3338       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3339       LiveGcValues.insert(BasePtr);
3340       LiveGcValues.insert(DerivedPtr);
3341     }
3342     std::optional<OperandBundleUse> Bundle =
3343         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
3344     unsigned NumOfGCLives = LiveGcValues.size();
3345     if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3346       break;
3347     // We can reduce the size of gc live bundle.
3348     DenseMap<Value *, unsigned> Val2Idx;
3349     std::vector<Value *> NewLiveGc;
3350     for (Value *V : Bundle->Inputs) {
3351       if (Val2Idx.count(V))
3352         continue;
3353       if (LiveGcValues.count(V)) {
3354         Val2Idx[V] = NewLiveGc.size();
3355         NewLiveGc.push_back(V);
3356       } else
3357         Val2Idx[V] = NumOfGCLives;
3358     }
3359     // Update all gc.relocates
3360     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3361       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3362       Value *BasePtr = GCR.getBasePtr();
3363       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3364              "Missed live gc for base pointer");
3365       auto *OpIntTy1 = GCR.getOperand(1)->getType();
3366       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3367       Value *DerivedPtr = GCR.getDerivedPtr();
3368       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3369              "Missed live gc for derived pointer");
3370       auto *OpIntTy2 = GCR.getOperand(2)->getType();
3371       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3372     }
3373     // Create new statepoint instruction.
3374     OperandBundleDef NewBundle("gc-live", NewLiveGc);
3375     return CallBase::Create(&Call, NewBundle);
3376   }
3377   default: { break; }
3378   }
3379 
3380   return Changed ? &Call : nullptr;
3381 }
3382 
3383 /// If the callee is a constexpr cast of a function, attempt to move the cast to
3384 /// the arguments of the call/callbr/invoke.
3385 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3386   auto *Callee =
3387       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3388   if (!Callee)
3389     return false;
3390 
3391   // If this is a call to a thunk function, don't remove the cast. Thunks are
3392   // used to transparently forward all incoming parameters and outgoing return
3393   // values, so it's important to leave the cast in place.
3394   if (Callee->hasFnAttribute("thunk"))
3395     return false;
3396 
3397   // If this is a musttail call, the callee's prototype must match the caller's
3398   // prototype with the exception of pointee types. The code below doesn't
3399   // implement that, so we can't do this transform.
3400   // TODO: Do the transform if it only requires adding pointer casts.
3401   if (Call.isMustTailCall())
3402     return false;
3403 
3404   Instruction *Caller = &Call;
3405   const AttributeList &CallerPAL = Call.getAttributes();
3406 
3407   // Okay, this is a cast from a function to a different type.  Unless doing so
3408   // would cause a type conversion of one of our arguments, change this call to
3409   // be a direct call with arguments casted to the appropriate types.
3410   FunctionType *FT = Callee->getFunctionType();
3411   Type *OldRetTy = Caller->getType();
3412   Type *NewRetTy = FT->getReturnType();
3413 
3414   // Check to see if we are changing the return type...
3415   if (OldRetTy != NewRetTy) {
3416 
3417     if (NewRetTy->isStructTy())
3418       return false; // TODO: Handle multiple return values.
3419 
3420     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3421       if (Callee->isDeclaration())
3422         return false;   // Cannot transform this return value.
3423 
3424       if (!Caller->use_empty() &&
3425           // void -> non-void is handled specially
3426           !NewRetTy->isVoidTy())
3427         return false;   // Cannot transform this return value.
3428     }
3429 
3430     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3431       AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3432       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3433         return false;   // Attribute not compatible with transformed value.
3434     }
3435 
3436     // If the callbase is an invoke/callbr instruction, and the return value is
3437     // used by a PHI node in a successor, we cannot change the return type of
3438     // the call because there is no place to put the cast instruction (without
3439     // breaking the critical edge).  Bail out in this case.
3440     if (!Caller->use_empty()) {
3441       BasicBlock *PhisNotSupportedBlock = nullptr;
3442       if (auto *II = dyn_cast<InvokeInst>(Caller))
3443         PhisNotSupportedBlock = II->getNormalDest();
3444       if (auto *CB = dyn_cast<CallBrInst>(Caller))
3445         PhisNotSupportedBlock = CB->getDefaultDest();
3446       if (PhisNotSupportedBlock)
3447         for (User *U : Caller->users())
3448           if (PHINode *PN = dyn_cast<PHINode>(U))
3449             if (PN->getParent() == PhisNotSupportedBlock)
3450               return false;
3451     }
3452   }
3453 
3454   unsigned NumActualArgs = Call.arg_size();
3455   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3456 
3457   // Prevent us turning:
3458   // declare void @takes_i32_inalloca(i32* inalloca)
3459   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3460   //
3461   // into:
3462   //  call void @takes_i32_inalloca(i32* null)
3463   //
3464   //  Similarly, avoid folding away bitcasts of byval calls.
3465   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3466       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
3467     return false;
3468 
3469   auto AI = Call.arg_begin();
3470   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3471     Type *ParamTy = FT->getParamType(i);
3472     Type *ActTy = (*AI)->getType();
3473 
3474     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3475       return false;   // Cannot transform this parameter value.
3476 
3477     // Check if there are any incompatible attributes we cannot drop safely.
3478     if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3479             .overlaps(AttributeFuncs::typeIncompatible(
3480                 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
3481       return false;   // Attribute not compatible with transformed value.
3482 
3483     if (Call.isInAllocaArgument(i) ||
3484         CallerPAL.hasParamAttr(i, Attribute::Preallocated))
3485       return false; // Cannot transform to and from inalloca/preallocated.
3486 
3487     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3488       return false;
3489 
3490     if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
3491         Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
3492       return false; // Cannot transform to or from byval.
3493 
3494     // If the parameter is passed as a byval argument, then we have to have a
3495     // sized type and the sized type has to have the same size as the old type.
3496     if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3497       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
3498       if (!ParamPTy)
3499         return false;
3500 
3501       if (!ParamPTy->isOpaque()) {
3502         Type *ParamElTy = ParamPTy->getNonOpaquePointerElementType();
3503         if (!ParamElTy->isSized())
3504           return false;
3505 
3506         Type *CurElTy = Call.getParamByValType(i);
3507         if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamElTy))
3508           return false;
3509       }
3510     }
3511   }
3512 
3513   if (Callee->isDeclaration()) {
3514     // Do not delete arguments unless we have a function body.
3515     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3516       return false;
3517 
3518     // If the callee is just a declaration, don't change the varargsness of the
3519     // call.  We don't want to introduce a varargs call where one doesn't
3520     // already exist.
3521     if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3522       return false;
3523 
3524     // If both the callee and the cast type are varargs, we still have to make
3525     // sure the number of fixed parameters are the same or we have the same
3526     // ABI issues as if we introduce a varargs call.
3527     if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3528         FT->getNumParams() != Call.getFunctionType()->getNumParams())
3529       return false;
3530   }
3531 
3532   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3533       !CallerPAL.isEmpty()) {
3534     // In this case we have more arguments than the new function type, but we
3535     // won't be dropping them.  Check that these extra arguments have attributes
3536     // that are compatible with being a vararg call argument.
3537     unsigned SRetIdx;
3538     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3539         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3540       return false;
3541   }
3542 
3543   // Okay, we decided that this is a safe thing to do: go ahead and start
3544   // inserting cast instructions as necessary.
3545   SmallVector<Value *, 8> Args;
3546   SmallVector<AttributeSet, 8> ArgAttrs;
3547   Args.reserve(NumActualArgs);
3548   ArgAttrs.reserve(NumActualArgs);
3549 
3550   // Get any return attributes.
3551   AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3552 
3553   // If the return value is not being used, the type may not be compatible
3554   // with the existing attributes.  Wipe out any problematic attributes.
3555   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3556 
3557   LLVMContext &Ctx = Call.getContext();
3558   AI = Call.arg_begin();
3559   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3560     Type *ParamTy = FT->getParamType(i);
3561 
3562     Value *NewArg = *AI;
3563     if ((*AI)->getType() != ParamTy)
3564       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3565     Args.push_back(NewArg);
3566 
3567     // Add any parameter attributes except the ones incompatible with the new
3568     // type. Note that we made sure all incompatible ones are safe to drop.
3569     AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
3570         ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
3571     if (CallerPAL.hasParamAttr(i, Attribute::ByVal) &&
3572         !ParamTy->isOpaquePointerTy()) {
3573       AttrBuilder AB(Ctx, CallerPAL.getParamAttrs(i).removeAttributes(
3574                               Ctx, IncompatibleAttrs));
3575       AB.addByValAttr(ParamTy->getNonOpaquePointerElementType());
3576       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
3577     } else {
3578       ArgAttrs.push_back(
3579           CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
3580     }
3581   }
3582 
3583   // If the function takes more arguments than the call was taking, add them
3584   // now.
3585   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3586     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3587     ArgAttrs.push_back(AttributeSet());
3588   }
3589 
3590   // If we are removing arguments to the function, emit an obnoxious warning.
3591   if (FT->getNumParams() < NumActualArgs) {
3592     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3593     if (FT->isVarArg()) {
3594       // Add all of the arguments in their promoted form to the arg list.
3595       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3596         Type *PTy = getPromotedType((*AI)->getType());
3597         Value *NewArg = *AI;
3598         if (PTy != (*AI)->getType()) {
3599           // Must promote to pass through va_arg area!
3600           Instruction::CastOps opcode =
3601             CastInst::getCastOpcode(*AI, false, PTy, false);
3602           NewArg = Builder.CreateCast(opcode, *AI, PTy);
3603         }
3604         Args.push_back(NewArg);
3605 
3606         // Add any parameter attributes.
3607         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3608       }
3609     }
3610   }
3611 
3612   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3613 
3614   if (NewRetTy->isVoidTy())
3615     Caller->setName("");   // Void type should not have a name.
3616 
3617   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3618          "missing argument attributes");
3619   AttributeList NewCallerPAL = AttributeList::get(
3620       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3621 
3622   SmallVector<OperandBundleDef, 1> OpBundles;
3623   Call.getOperandBundlesAsDefs(OpBundles);
3624 
3625   CallBase *NewCall;
3626   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3627     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3628                                    II->getUnwindDest(), Args, OpBundles);
3629   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3630     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
3631                                    CBI->getIndirectDests(), Args, OpBundles);
3632   } else {
3633     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3634     cast<CallInst>(NewCall)->setTailCallKind(
3635         cast<CallInst>(Caller)->getTailCallKind());
3636   }
3637   NewCall->takeName(Caller);
3638   NewCall->setCallingConv(Call.getCallingConv());
3639   NewCall->setAttributes(NewCallerPAL);
3640 
3641   // Preserve prof metadata if any.
3642   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3643 
3644   // Insert a cast of the return type as necessary.
3645   Instruction *NC = NewCall;
3646   Value *NV = NC;
3647   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3648     if (!NV->getType()->isVoidTy()) {
3649       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3650       NC->setDebugLoc(Caller->getDebugLoc());
3651 
3652       Instruction *InsertPt = NewCall->getInsertionPointAfterDef();
3653       assert(InsertPt && "No place to insert cast");
3654       InsertNewInstBefore(NC, *InsertPt);
3655       Worklist.pushUsersToWorkList(*Caller);
3656     } else {
3657       NV = PoisonValue::get(Caller->getType());
3658     }
3659   }
3660 
3661   if (!Caller->use_empty())
3662     replaceInstUsesWith(*Caller, NV);
3663   else if (Caller->hasValueHandle()) {
3664     if (OldRetTy == NV->getType())
3665       ValueHandleBase::ValueIsRAUWd(Caller, NV);
3666     else
3667       // We cannot call ValueIsRAUWd with a different type, and the
3668       // actual tracked value will disappear.
3669       ValueHandleBase::ValueIsDeleted(Caller);
3670   }
3671 
3672   eraseInstFromFunction(*Caller);
3673   return true;
3674 }
3675 
3676 /// Turn a call to a function created by init_trampoline / adjust_trampoline
3677 /// intrinsic pair into a direct call to the underlying function.
3678 Instruction *
3679 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
3680                                                  IntrinsicInst &Tramp) {
3681   Value *Callee = Call.getCalledOperand();
3682   Type *CalleeTy = Callee->getType();
3683   FunctionType *FTy = Call.getFunctionType();
3684   AttributeList Attrs = Call.getAttributes();
3685 
3686   // If the call already has the 'nest' attribute somewhere then give up -
3687   // otherwise 'nest' would occur twice after splicing in the chain.
3688   if (Attrs.hasAttrSomewhere(Attribute::Nest))
3689     return nullptr;
3690 
3691   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
3692   FunctionType *NestFTy = NestF->getFunctionType();
3693 
3694   AttributeList NestAttrs = NestF->getAttributes();
3695   if (!NestAttrs.isEmpty()) {
3696     unsigned NestArgNo = 0;
3697     Type *NestTy = nullptr;
3698     AttributeSet NestAttr;
3699 
3700     // Look for a parameter marked with the 'nest' attribute.
3701     for (FunctionType::param_iterator I = NestFTy->param_begin(),
3702                                       E = NestFTy->param_end();
3703          I != E; ++NestArgNo, ++I) {
3704       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
3705       if (AS.hasAttribute(Attribute::Nest)) {
3706         // Record the parameter type and any other attributes.
3707         NestTy = *I;
3708         NestAttr = AS;
3709         break;
3710       }
3711     }
3712 
3713     if (NestTy) {
3714       std::vector<Value*> NewArgs;
3715       std::vector<AttributeSet> NewArgAttrs;
3716       NewArgs.reserve(Call.arg_size() + 1);
3717       NewArgAttrs.reserve(Call.arg_size());
3718 
3719       // Insert the nest argument into the call argument list, which may
3720       // mean appending it.  Likewise for attributes.
3721 
3722       {
3723         unsigned ArgNo = 0;
3724         auto I = Call.arg_begin(), E = Call.arg_end();
3725         do {
3726           if (ArgNo == NestArgNo) {
3727             // Add the chain argument and attributes.
3728             Value *NestVal = Tramp.getArgOperand(2);
3729             if (NestVal->getType() != NestTy)
3730               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
3731             NewArgs.push_back(NestVal);
3732             NewArgAttrs.push_back(NestAttr);
3733           }
3734 
3735           if (I == E)
3736             break;
3737 
3738           // Add the original argument and attributes.
3739           NewArgs.push_back(*I);
3740           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
3741 
3742           ++ArgNo;
3743           ++I;
3744         } while (true);
3745       }
3746 
3747       // The trampoline may have been bitcast to a bogus type (FTy).
3748       // Handle this by synthesizing a new function type, equal to FTy
3749       // with the chain parameter inserted.
3750 
3751       std::vector<Type*> NewTypes;
3752       NewTypes.reserve(FTy->getNumParams()+1);
3753 
3754       // Insert the chain's type into the list of parameter types, which may
3755       // mean appending it.
3756       {
3757         unsigned ArgNo = 0;
3758         FunctionType::param_iterator I = FTy->param_begin(),
3759           E = FTy->param_end();
3760 
3761         do {
3762           if (ArgNo == NestArgNo)
3763             // Add the chain's type.
3764             NewTypes.push_back(NestTy);
3765 
3766           if (I == E)
3767             break;
3768 
3769           // Add the original type.
3770           NewTypes.push_back(*I);
3771 
3772           ++ArgNo;
3773           ++I;
3774         } while (true);
3775       }
3776 
3777       // Replace the trampoline call with a direct call.  Let the generic
3778       // code sort out any function type mismatches.
3779       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3780                                                 FTy->isVarArg());
3781       Constant *NewCallee =
3782         NestF->getType() == PointerType::getUnqual(NewFTy) ?
3783         NestF : ConstantExpr::getBitCast(NestF,
3784                                          PointerType::getUnqual(NewFTy));
3785       AttributeList NewPAL =
3786           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
3787                              Attrs.getRetAttrs(), NewArgAttrs);
3788 
3789       SmallVector<OperandBundleDef, 1> OpBundles;
3790       Call.getOperandBundlesAsDefs(OpBundles);
3791 
3792       Instruction *NewCaller;
3793       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
3794         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
3795                                        II->getNormalDest(), II->getUnwindDest(),
3796                                        NewArgs, OpBundles);
3797         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3798         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3799       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
3800         NewCaller =
3801             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
3802                                CBI->getIndirectDests(), NewArgs, OpBundles);
3803         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
3804         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
3805       } else {
3806         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
3807         cast<CallInst>(NewCaller)->setTailCallKind(
3808             cast<CallInst>(Call).getTailCallKind());
3809         cast<CallInst>(NewCaller)->setCallingConv(
3810             cast<CallInst>(Call).getCallingConv());
3811         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3812       }
3813       NewCaller->setDebugLoc(Call.getDebugLoc());
3814 
3815       return NewCaller;
3816     }
3817   }
3818 
3819   // Replace the trampoline call with a direct call.  Since there is no 'nest'
3820   // parameter, there is no need to adjust the argument list.  Let the generic
3821   // code sort out any function type mismatches.
3822   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
3823   Call.setCalledFunction(FTy, NewCallee);
3824   return &Call;
3825 }
3826