xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp (revision cd0d51baaa4509a1db83251a601d34404d20c990)
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 //      to indicate the weights of each edge coming out of the branch.
18 //      The weight of each edge is the weight of the target block for
19 //      that edge. The weight of a block B is computed as the maximum
20 //      number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <functional>
79 #include <limits>
80 #include <map>
81 #include <memory>
82 #include <string>
83 #include <system_error>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace sampleprof;
89 using ProfileCount = Function::ProfileCount;
90 #define DEBUG_TYPE "sample-profile"
91 
92 // Command line option to specify the file to read samples from. This is
93 // mainly used for debugging.
94 static cl::opt<std::string> SampleProfileFile(
95     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
96     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
97 
98 // The named file contains a set of transformations that may have been applied
99 // to the symbol names between the program from which the sample data was
100 // collected and the current program's symbols.
101 static cl::opt<std::string> SampleProfileRemappingFile(
102     "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
103     cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
104 
105 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
106     "sample-profile-max-propagate-iterations", cl::init(100),
107     cl::desc("Maximum number of iterations to go through when propagating "
108              "sample block/edge weights through the CFG."));
109 
110 static cl::opt<unsigned> SampleProfileRecordCoverage(
111     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
112     cl::desc("Emit a warning if less than N% of records in the input profile "
113              "are matched to the IR."));
114 
115 static cl::opt<unsigned> SampleProfileSampleCoverage(
116     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
117     cl::desc("Emit a warning if less than N% of samples in the input profile "
118              "are matched to the IR."));
119 
120 static cl::opt<bool> NoWarnSampleUnused(
121     "no-warn-sample-unused", cl::init(false), cl::Hidden,
122     cl::desc("Use this option to turn off/on warnings about function with "
123              "samples but without debug information to use those samples. "));
124 
125 static cl::opt<bool> ProfileSampleAccurate(
126     "profile-sample-accurate", cl::Hidden, cl::init(false),
127     cl::desc("If the sample profile is accurate, we will mark all un-sampled "
128              "callsite and function as having 0 samples. Otherwise, treat "
129              "un-sampled callsites and functions conservatively as unknown. "));
130 
131 namespace {
132 
133 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
134 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
135 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
136 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
137 using BlockEdgeMap =
138     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
139 
140 class SampleCoverageTracker {
141 public:
142   SampleCoverageTracker() = default;
143 
144   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
145                        uint32_t Discriminator, uint64_t Samples);
146   unsigned computeCoverage(unsigned Used, unsigned Total) const;
147   unsigned countUsedRecords(const FunctionSamples *FS,
148                             ProfileSummaryInfo *PSI) const;
149   unsigned countBodyRecords(const FunctionSamples *FS,
150                             ProfileSummaryInfo *PSI) const;
151   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
152   uint64_t countBodySamples(const FunctionSamples *FS,
153                             ProfileSummaryInfo *PSI) const;
154 
155   void clear() {
156     SampleCoverage.clear();
157     TotalUsedSamples = 0;
158   }
159 
160 private:
161   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
162   using FunctionSamplesCoverageMap =
163       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
164 
165   /// Coverage map for sampling records.
166   ///
167   /// This map keeps a record of sampling records that have been matched to
168   /// an IR instruction. This is used to detect some form of staleness in
169   /// profiles (see flag -sample-profile-check-coverage).
170   ///
171   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
172   /// another map that counts how many times the sample record at the
173   /// given location has been used.
174   FunctionSamplesCoverageMap SampleCoverage;
175 
176   /// Number of samples used from the profile.
177   ///
178   /// When a sampling record is used for the first time, the samples from
179   /// that record are added to this accumulator.  Coverage is later computed
180   /// based on the total number of samples available in this function and
181   /// its callsites.
182   ///
183   /// Note that this accumulator tracks samples used from a single function
184   /// and all the inlined callsites. Strictly, we should have a map of counters
185   /// keyed by FunctionSamples pointers, but these stats are cleared after
186   /// every function, so we just need to keep a single counter.
187   uint64_t TotalUsedSamples = 0;
188 };
189 
190 /// Sample profile pass.
191 ///
192 /// This pass reads profile data from the file specified by
193 /// -sample-profile-file and annotates every affected function with the
194 /// profile information found in that file.
195 class SampleProfileLoader {
196 public:
197   SampleProfileLoader(
198       StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
199       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
200       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
201       : GetAC(std::move(GetAssumptionCache)),
202         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
203         RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
204 
205   bool doInitialization(Module &M);
206   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
207                    ProfileSummaryInfo *_PSI);
208 
209   void dump() { Reader->dump(); }
210 
211 protected:
212   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
213   unsigned getFunctionLoc(Function &F);
214   bool emitAnnotations(Function &F);
215   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
216   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
217   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
218   std::vector<const FunctionSamples *>
219   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
220   mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
221   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
222   bool inlineCallInstruction(Instruction *I);
223   bool inlineHotFunctions(Function &F,
224                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
225   void printEdgeWeight(raw_ostream &OS, Edge E);
226   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
227   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
228   bool computeBlockWeights(Function &F);
229   void findEquivalenceClasses(Function &F);
230   template <bool IsPostDom>
231   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
232                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
233 
234   void propagateWeights(Function &F);
235   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
236   void buildEdges(Function &F);
237   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
238   void computeDominanceAndLoopInfo(Function &F);
239   void clearFunctionData();
240 
241   /// Map basic blocks to their computed weights.
242   ///
243   /// The weight of a basic block is defined to be the maximum
244   /// of all the instruction weights in that block.
245   BlockWeightMap BlockWeights;
246 
247   /// Map edges to their computed weights.
248   ///
249   /// Edge weights are computed by propagating basic block weights in
250   /// SampleProfile::propagateWeights.
251   EdgeWeightMap EdgeWeights;
252 
253   /// Set of visited blocks during propagation.
254   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
255 
256   /// Set of visited edges during propagation.
257   SmallSet<Edge, 32> VisitedEdges;
258 
259   /// Equivalence classes for block weights.
260   ///
261   /// Two blocks BB1 and BB2 are in the same equivalence class if they
262   /// dominate and post-dominate each other, and they are in the same loop
263   /// nest. When this happens, the two blocks are guaranteed to execute
264   /// the same number of times.
265   EquivalenceClassMap EquivalenceClass;
266 
267   /// Map from function name to Function *. Used to find the function from
268   /// the function name. If the function name contains suffix, additional
269   /// entry is added to map from the stripped name to the function if there
270   /// is one-to-one mapping.
271   StringMap<Function *> SymbolMap;
272 
273   /// Dominance, post-dominance and loop information.
274   std::unique_ptr<DominatorTree> DT;
275   std::unique_ptr<PostDominatorTree> PDT;
276   std::unique_ptr<LoopInfo> LI;
277 
278   std::function<AssumptionCache &(Function &)> GetAC;
279   std::function<TargetTransformInfo &(Function &)> GetTTI;
280 
281   /// Predecessors for each basic block in the CFG.
282   BlockEdgeMap Predecessors;
283 
284   /// Successors for each basic block in the CFG.
285   BlockEdgeMap Successors;
286 
287   SampleCoverageTracker CoverageTracker;
288 
289   /// Profile reader object.
290   std::unique_ptr<SampleProfileReader> Reader;
291 
292   /// Samples collected for the body of this function.
293   FunctionSamples *Samples = nullptr;
294 
295   /// Name of the profile file to load.
296   std::string Filename;
297 
298   /// Name of the profile remapping file to load.
299   std::string RemappingFilename;
300 
301   /// Flag indicating whether the profile input loaded successfully.
302   bool ProfileIsValid = false;
303 
304   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
305   ///
306   /// In this phase, in annotation, we should not promote indirect calls.
307   /// Instead, we will mark GUIDs that needs to be annotated to the function.
308   bool IsThinLTOPreLink;
309 
310   /// Profile Summary Info computed from sample profile.
311   ProfileSummaryInfo *PSI = nullptr;
312 
313   /// Total number of samples collected in this profile.
314   ///
315   /// This is the sum of all the samples collected in all the functions executed
316   /// at runtime.
317   uint64_t TotalCollectedSamples = 0;
318 
319   /// Optimization Remark Emitter used to emit diagnostic remarks.
320   OptimizationRemarkEmitter *ORE = nullptr;
321 
322   // Information recorded when we declined to inline a call site
323   // because we have determined it is too cold is accumulated for
324   // each callee function. Initially this is just the entry count.
325   struct NotInlinedProfileInfo {
326     uint64_t entryCount;
327   };
328   DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
329 };
330 
331 class SampleProfileLoaderLegacyPass : public ModulePass {
332 public:
333   // Class identification, replacement for typeinfo
334   static char ID;
335 
336   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
337                                 bool IsThinLTOPreLink = false)
338       : ModulePass(ID),
339         SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
340                      [&](Function &F) -> AssumptionCache & {
341                        return ACT->getAssumptionCache(F);
342                      },
343                      [&](Function &F) -> TargetTransformInfo & {
344                        return TTIWP->getTTI(F);
345                      }) {
346     initializeSampleProfileLoaderLegacyPassPass(
347         *PassRegistry::getPassRegistry());
348   }
349 
350   void dump() { SampleLoader.dump(); }
351 
352   bool doInitialization(Module &M) override {
353     return SampleLoader.doInitialization(M);
354   }
355 
356   StringRef getPassName() const override { return "Sample profile pass"; }
357   bool runOnModule(Module &M) override;
358 
359   void getAnalysisUsage(AnalysisUsage &AU) const override {
360     AU.addRequired<AssumptionCacheTracker>();
361     AU.addRequired<TargetTransformInfoWrapperPass>();
362     AU.addRequired<ProfileSummaryInfoWrapperPass>();
363   }
364 
365 private:
366   SampleProfileLoader SampleLoader;
367   AssumptionCacheTracker *ACT = nullptr;
368   TargetTransformInfoWrapperPass *TTIWP = nullptr;
369 };
370 
371 } // end anonymous namespace
372 
373 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
374 ///
375 /// Functions that were inlined in the original binary will be represented
376 /// in the inline stack in the sample profile. If the profile shows that
377 /// the original inline decision was "good" (i.e., the callsite is executed
378 /// frequently), then we will recreate the inline decision and apply the
379 /// profile from the inlined callsite.
380 ///
381 /// To decide whether an inlined callsite is hot, we compare the callsite
382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
383 /// regarded as hot if the count is above the cutoff value.
384 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
385                           ProfileSummaryInfo *PSI) {
386   if (!CallsiteFS)
387     return false; // The callsite was not inlined in the original binary.
388 
389   assert(PSI && "PSI is expected to be non null");
390   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
391   return PSI->isHotCount(CallsiteTotalSamples);
392 }
393 
394 /// Mark as used the sample record for the given function samples at
395 /// (LineOffset, Discriminator).
396 ///
397 /// \returns true if this is the first time we mark the given record.
398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
399                                             uint32_t LineOffset,
400                                             uint32_t Discriminator,
401                                             uint64_t Samples) {
402   LineLocation Loc(LineOffset, Discriminator);
403   unsigned &Count = SampleCoverage[FS][Loc];
404   bool FirstTime = (++Count == 1);
405   if (FirstTime)
406     TotalUsedSamples += Samples;
407   return FirstTime;
408 }
409 
410 /// Return the number of sample records that were applied from this profile.
411 ///
412 /// This count does not include records from cold inlined callsites.
413 unsigned
414 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
415                                         ProfileSummaryInfo *PSI) const {
416   auto I = SampleCoverage.find(FS);
417 
418   // The size of the coverage map for FS represents the number of records
419   // that were marked used at least once.
420   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
421 
422   // If there are inlined callsites in this function, count the samples found
423   // in the respective bodies. However, do not bother counting callees with 0
424   // total samples, these are callees that were never invoked at runtime.
425   for (const auto &I : FS->getCallsiteSamples())
426     for (const auto &J : I.second) {
427       const FunctionSamples *CalleeSamples = &J.second;
428       if (callsiteIsHot(CalleeSamples, PSI))
429         Count += countUsedRecords(CalleeSamples, PSI);
430     }
431 
432   return Count;
433 }
434 
435 /// Return the number of sample records in the body of this profile.
436 ///
437 /// This count does not include records from cold inlined callsites.
438 unsigned
439 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
440                                         ProfileSummaryInfo *PSI) const {
441   unsigned Count = FS->getBodySamples().size();
442 
443   // Only count records in hot callsites.
444   for (const auto &I : FS->getCallsiteSamples())
445     for (const auto &J : I.second) {
446       const FunctionSamples *CalleeSamples = &J.second;
447       if (callsiteIsHot(CalleeSamples, PSI))
448         Count += countBodyRecords(CalleeSamples, PSI);
449     }
450 
451   return Count;
452 }
453 
454 /// Return the number of samples collected in the body of this profile.
455 ///
456 /// This count does not include samples from cold inlined callsites.
457 uint64_t
458 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
459                                         ProfileSummaryInfo *PSI) const {
460   uint64_t Total = 0;
461   for (const auto &I : FS->getBodySamples())
462     Total += I.second.getSamples();
463 
464   // Only count samples in hot callsites.
465   for (const auto &I : FS->getCallsiteSamples())
466     for (const auto &J : I.second) {
467       const FunctionSamples *CalleeSamples = &J.second;
468       if (callsiteIsHot(CalleeSamples, PSI))
469         Total += countBodySamples(CalleeSamples, PSI);
470     }
471 
472   return Total;
473 }
474 
475 /// Return the fraction of sample records used in this profile.
476 ///
477 /// The returned value is an unsigned integer in the range 0-100 indicating
478 /// the percentage of sample records that were used while applying this
479 /// profile to the associated function.
480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
481                                                 unsigned Total) const {
482   assert(Used <= Total &&
483          "number of used records cannot exceed the total number of records");
484   return Total > 0 ? Used * 100 / Total : 100;
485 }
486 
487 /// Clear all the per-function data used to load samples and propagate weights.
488 void SampleProfileLoader::clearFunctionData() {
489   BlockWeights.clear();
490   EdgeWeights.clear();
491   VisitedBlocks.clear();
492   VisitedEdges.clear();
493   EquivalenceClass.clear();
494   DT = nullptr;
495   PDT = nullptr;
496   LI = nullptr;
497   Predecessors.clear();
498   Successors.clear();
499   CoverageTracker.clear();
500 }
501 
502 #ifndef NDEBUG
503 /// Print the weight of edge \p E on stream \p OS.
504 ///
505 /// \param OS  Stream to emit the output to.
506 /// \param E  Edge to print.
507 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
508   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
509      << "]: " << EdgeWeights[E] << "\n";
510 }
511 
512 /// Print the equivalence class of block \p BB on stream \p OS.
513 ///
514 /// \param OS  Stream to emit the output to.
515 /// \param BB  Block to print.
516 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
517                                                 const BasicBlock *BB) {
518   const BasicBlock *Equiv = EquivalenceClass[BB];
519   OS << "equivalence[" << BB->getName()
520      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
521 }
522 
523 /// Print the weight of block \p BB on stream \p OS.
524 ///
525 /// \param OS  Stream to emit the output to.
526 /// \param BB  Block to print.
527 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
528                                            const BasicBlock *BB) const {
529   const auto &I = BlockWeights.find(BB);
530   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
531   OS << "weight[" << BB->getName() << "]: " << W << "\n";
532 }
533 #endif
534 
535 /// Get the weight for an instruction.
536 ///
537 /// The "weight" of an instruction \p Inst is the number of samples
538 /// collected on that instruction at runtime. To retrieve it, we
539 /// need to compute the line number of \p Inst relative to the start of its
540 /// function. We use HeaderLineno to compute the offset. We then
541 /// look up the samples collected for \p Inst using BodySamples.
542 ///
543 /// \param Inst Instruction to query.
544 ///
545 /// \returns the weight of \p Inst.
546 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
547   const DebugLoc &DLoc = Inst.getDebugLoc();
548   if (!DLoc)
549     return std::error_code();
550 
551   const FunctionSamples *FS = findFunctionSamples(Inst);
552   if (!FS)
553     return std::error_code();
554 
555   // Ignore all intrinsics, phinodes and branch instructions.
556   // Branch and phinodes instruction usually contains debug info from sources outside of
557   // the residing basic block, thus we ignore them during annotation.
558   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
559     return std::error_code();
560 
561   // If a direct call/invoke instruction is inlined in profile
562   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
563   // it means that the inlined callsite has no sample, thus the call
564   // instruction should have 0 count.
565   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
566       !ImmutableCallSite(&Inst).isIndirectCall() &&
567       findCalleeFunctionSamples(Inst))
568     return 0;
569 
570   const DILocation *DIL = DLoc;
571   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
572   uint32_t Discriminator = DIL->getBaseDiscriminator();
573   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
574   if (R) {
575     bool FirstMark =
576         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
577     if (FirstMark) {
578       ORE->emit([&]() {
579         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
580         Remark << "Applied " << ore::NV("NumSamples", *R);
581         Remark << " samples from profile (offset: ";
582         Remark << ore::NV("LineOffset", LineOffset);
583         if (Discriminator) {
584           Remark << ".";
585           Remark << ore::NV("Discriminator", Discriminator);
586         }
587         Remark << ")";
588         return Remark;
589       });
590     }
591     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
592                       << DIL->getBaseDiscriminator() << ":" << Inst
593                       << " (line offset: " << LineOffset << "."
594                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
595                       << ")\n");
596   }
597   return R;
598 }
599 
600 /// Compute the weight of a basic block.
601 ///
602 /// The weight of basic block \p BB is the maximum weight of all the
603 /// instructions in BB.
604 ///
605 /// \param BB The basic block to query.
606 ///
607 /// \returns the weight for \p BB.
608 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
609   uint64_t Max = 0;
610   bool HasWeight = false;
611   for (auto &I : BB->getInstList()) {
612     const ErrorOr<uint64_t> &R = getInstWeight(I);
613     if (R) {
614       Max = std::max(Max, R.get());
615       HasWeight = true;
616     }
617   }
618   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
619 }
620 
621 /// Compute and store the weights of every basic block.
622 ///
623 /// This populates the BlockWeights map by computing
624 /// the weights of every basic block in the CFG.
625 ///
626 /// \param F The function to query.
627 bool SampleProfileLoader::computeBlockWeights(Function &F) {
628   bool Changed = false;
629   LLVM_DEBUG(dbgs() << "Block weights\n");
630   for (const auto &BB : F) {
631     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
632     if (Weight) {
633       BlockWeights[&BB] = Weight.get();
634       VisitedBlocks.insert(&BB);
635       Changed = true;
636     }
637     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
638   }
639 
640   return Changed;
641 }
642 
643 /// Get the FunctionSamples for a call instruction.
644 ///
645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
646 /// instance in which that call instruction is calling to. It contains
647 /// all samples that resides in the inlined instance. We first find the
648 /// inlined instance in which the call instruction is from, then we
649 /// traverse its children to find the callsite with the matching
650 /// location.
651 ///
652 /// \param Inst Call/Invoke instruction to query.
653 ///
654 /// \returns The FunctionSamples pointer to the inlined instance.
655 const FunctionSamples *
656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
657   const DILocation *DIL = Inst.getDebugLoc();
658   if (!DIL) {
659     return nullptr;
660   }
661 
662   StringRef CalleeName;
663   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
664     if (Function *Callee = CI->getCalledFunction())
665       CalleeName = Callee->getName();
666 
667   const FunctionSamples *FS = findFunctionSamples(Inst);
668   if (FS == nullptr)
669     return nullptr;
670 
671   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
672                                                 DIL->getBaseDiscriminator()),
673                                    CalleeName);
674 }
675 
676 /// Returns a vector of FunctionSamples that are the indirect call targets
677 /// of \p Inst. The vector is sorted by the total number of samples. Stores
678 /// the total call count of the indirect call in \p Sum.
679 std::vector<const FunctionSamples *>
680 SampleProfileLoader::findIndirectCallFunctionSamples(
681     const Instruction &Inst, uint64_t &Sum) const {
682   const DILocation *DIL = Inst.getDebugLoc();
683   std::vector<const FunctionSamples *> R;
684 
685   if (!DIL) {
686     return R;
687   }
688 
689   const FunctionSamples *FS = findFunctionSamples(Inst);
690   if (FS == nullptr)
691     return R;
692 
693   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
694   uint32_t Discriminator = DIL->getBaseDiscriminator();
695 
696   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
697   Sum = 0;
698   if (T)
699     for (const auto &T_C : T.get())
700       Sum += T_C.second;
701   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
702           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
703     if (M->empty())
704       return R;
705     for (const auto &NameFS : *M) {
706       Sum += NameFS.second.getEntrySamples();
707       R.push_back(&NameFS.second);
708     }
709     llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
710       if (L->getEntrySamples() != R->getEntrySamples())
711         return L->getEntrySamples() > R->getEntrySamples();
712       return FunctionSamples::getGUID(L->getName()) <
713              FunctionSamples::getGUID(R->getName());
714     });
715   }
716   return R;
717 }
718 
719 /// Get the FunctionSamples for an instruction.
720 ///
721 /// The FunctionSamples of an instruction \p Inst is the inlined instance
722 /// in which that instruction is coming from. We traverse the inline stack
723 /// of that instruction, and match it with the tree nodes in the profile.
724 ///
725 /// \param Inst Instruction to query.
726 ///
727 /// \returns the FunctionSamples pointer to the inlined instance.
728 const FunctionSamples *
729 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
730   const DILocation *DIL = Inst.getDebugLoc();
731   if (!DIL)
732     return Samples;
733 
734   auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
735   if (it.second)
736     it.first->second = Samples->findFunctionSamples(DIL);
737   return it.first->second;
738 }
739 
740 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
741   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
742   CallSite CS(I);
743   Function *CalledFunction = CS.getCalledFunction();
744   assert(CalledFunction);
745   DebugLoc DLoc = I->getDebugLoc();
746   BasicBlock *BB = I->getParent();
747   InlineParams Params = getInlineParams();
748   Params.ComputeFullInlineCost = true;
749   // Checks if there is anything in the reachable portion of the callee at
750   // this callsite that makes this inlining potentially illegal. Need to
751   // set ComputeFullInlineCost, otherwise getInlineCost may return early
752   // when cost exceeds threshold without checking all IRs in the callee.
753   // The acutal cost does not matter because we only checks isNever() to
754   // see if it is legal to inline the callsite.
755   InlineCost Cost =
756       getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
757                     None, nullptr, nullptr);
758   if (Cost.isNever()) {
759     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
760               << "incompatible inlining");
761     return false;
762   }
763   InlineFunctionInfo IFI(nullptr, &GetAC);
764   if (InlineFunction(CS, IFI)) {
765     // The call to InlineFunction erases I, so we can't pass it here.
766     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
767               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
768               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
769     return true;
770   }
771   return false;
772 }
773 
774 /// Iteratively inline hot callsites of a function.
775 ///
776 /// Iteratively traverse all callsites of the function \p F, and find if
777 /// the corresponding inlined instance exists and is hot in profile. If
778 /// it is hot enough, inline the callsites and adds new callsites of the
779 /// callee into the caller. If the call is an indirect call, first promote
780 /// it to direct call. Each indirect call is limited with a single target.
781 ///
782 /// \param F function to perform iterative inlining.
783 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
784 ///     inlined in the profiled binary.
785 ///
786 /// \returns True if there is any inline happened.
787 bool SampleProfileLoader::inlineHotFunctions(
788     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
789   DenseSet<Instruction *> PromotedInsns;
790 
791   DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
792   bool Changed = false;
793   while (true) {
794     bool LocalChanged = false;
795     SmallVector<Instruction *, 10> CIS;
796     for (auto &BB : F) {
797       bool Hot = false;
798       SmallVector<Instruction *, 10> Candidates;
799       for (auto &I : BB.getInstList()) {
800         const FunctionSamples *FS = nullptr;
801         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
802             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
803           Candidates.push_back(&I);
804           if (FS->getEntrySamples() > 0)
805             localNotInlinedCallSites.try_emplace(&I, FS);
806           if (callsiteIsHot(FS, PSI))
807             Hot = true;
808         }
809       }
810       if (Hot) {
811         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
812       }
813     }
814     for (auto I : CIS) {
815       Function *CalledFunction = CallSite(I).getCalledFunction();
816       // Do not inline recursive calls.
817       if (CalledFunction == &F)
818         continue;
819       if (CallSite(I).isIndirectCall()) {
820         if (PromotedInsns.count(I))
821           continue;
822         uint64_t Sum;
823         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
824           if (IsThinLTOPreLink) {
825             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
826                                      PSI->getOrCompHotCountThreshold());
827             continue;
828           }
829           auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
830           // If it is a recursive call, we do not inline it as it could bloat
831           // the code exponentially. There is way to better handle this, e.g.
832           // clone the caller first, and inline the cloned caller if it is
833           // recursive. As llvm does not inline recursive calls, we will
834           // simply ignore it instead of handling it explicitly.
835           if (CalleeFunctionName == F.getName())
836             continue;
837 
838           if (!callsiteIsHot(FS, PSI))
839             continue;
840 
841           const char *Reason = "Callee function not available";
842           auto R = SymbolMap.find(CalleeFunctionName);
843           if (R != SymbolMap.end() && R->getValue() &&
844               !R->getValue()->isDeclaration() &&
845               R->getValue()->getSubprogram() &&
846               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
847             uint64_t C = FS->getEntrySamples();
848             Instruction *DI =
849                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
850             Sum -= C;
851             PromotedInsns.insert(I);
852             // If profile mismatches, we should not attempt to inline DI.
853             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
854                 inlineCallInstruction(DI)) {
855               localNotInlinedCallSites.erase(I);
856               LocalChanged = true;
857             }
858           } else {
859             LLVM_DEBUG(dbgs()
860                        << "\nFailed to promote indirect call to "
861                        << CalleeFunctionName << " because " << Reason << "\n");
862           }
863         }
864       } else if (CalledFunction && CalledFunction->getSubprogram() &&
865                  !CalledFunction->isDeclaration()) {
866         if (inlineCallInstruction(I)) {
867           localNotInlinedCallSites.erase(I);
868           LocalChanged = true;
869         }
870       } else if (IsThinLTOPreLink) {
871         findCalleeFunctionSamples(*I)->findInlinedFunctions(
872             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
873       }
874     }
875     if (LocalChanged) {
876       Changed = true;
877     } else {
878       break;
879     }
880   }
881 
882   // Accumulate not inlined callsite information into notInlinedSamples
883   for (const auto &Pair : localNotInlinedCallSites) {
884     Instruction *I = Pair.getFirst();
885     Function *Callee = CallSite(I).getCalledFunction();
886     if (!Callee || Callee->isDeclaration())
887       continue;
888     const FunctionSamples *FS = Pair.getSecond();
889     auto pair =
890         notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
891     pair.first->second.entryCount += FS->getEntrySamples();
892   }
893   return Changed;
894 }
895 
896 /// Find equivalence classes for the given block.
897 ///
898 /// This finds all the blocks that are guaranteed to execute the same
899 /// number of times as \p BB1. To do this, it traverses all the
900 /// descendants of \p BB1 in the dominator or post-dominator tree.
901 ///
902 /// A block BB2 will be in the same equivalence class as \p BB1 if
903 /// the following holds:
904 ///
905 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
906 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
907 ///    dominate BB1 in the post-dominator tree.
908 ///
909 /// 2- Both BB2 and \p BB1 must be in the same loop.
910 ///
911 /// For every block BB2 that meets those two requirements, we set BB2's
912 /// equivalence class to \p BB1.
913 ///
914 /// \param BB1  Block to check.
915 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
916 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
917 ///                 with blocks from \p BB1's dominator tree, then
918 ///                 this is the post-dominator tree, and vice versa.
919 template <bool IsPostDom>
920 void SampleProfileLoader::findEquivalencesFor(
921     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
922     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
923   const BasicBlock *EC = EquivalenceClass[BB1];
924   uint64_t Weight = BlockWeights[EC];
925   for (const auto *BB2 : Descendants) {
926     bool IsDomParent = DomTree->dominates(BB2, BB1);
927     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
928     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
929       EquivalenceClass[BB2] = EC;
930       // If BB2 is visited, then the entire EC should be marked as visited.
931       if (VisitedBlocks.count(BB2)) {
932         VisitedBlocks.insert(EC);
933       }
934 
935       // If BB2 is heavier than BB1, make BB2 have the same weight
936       // as BB1.
937       //
938       // Note that we don't worry about the opposite situation here
939       // (when BB2 is lighter than BB1). We will deal with this
940       // during the propagation phase. Right now, we just want to
941       // make sure that BB1 has the largest weight of all the
942       // members of its equivalence set.
943       Weight = std::max(Weight, BlockWeights[BB2]);
944     }
945   }
946   if (EC == &EC->getParent()->getEntryBlock()) {
947     BlockWeights[EC] = Samples->getHeadSamples() + 1;
948   } else {
949     BlockWeights[EC] = Weight;
950   }
951 }
952 
953 /// Find equivalence classes.
954 ///
955 /// Since samples may be missing from blocks, we can fill in the gaps by setting
956 /// the weights of all the blocks in the same equivalence class to the same
957 /// weight. To compute the concept of equivalence, we use dominance and loop
958 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
959 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
960 ///
961 /// \param F The function to query.
962 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
963   SmallVector<BasicBlock *, 8> DominatedBBs;
964   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
965   // Find equivalence sets based on dominance and post-dominance information.
966   for (auto &BB : F) {
967     BasicBlock *BB1 = &BB;
968 
969     // Compute BB1's equivalence class once.
970     if (EquivalenceClass.count(BB1)) {
971       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
972       continue;
973     }
974 
975     // By default, blocks are in their own equivalence class.
976     EquivalenceClass[BB1] = BB1;
977 
978     // Traverse all the blocks dominated by BB1. We are looking for
979     // every basic block BB2 such that:
980     //
981     // 1- BB1 dominates BB2.
982     // 2- BB2 post-dominates BB1.
983     // 3- BB1 and BB2 are in the same loop nest.
984     //
985     // If all those conditions hold, it means that BB2 is executed
986     // as many times as BB1, so they are placed in the same equivalence
987     // class by making BB2's equivalence class be BB1.
988     DominatedBBs.clear();
989     DT->getDescendants(BB1, DominatedBBs);
990     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
991 
992     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
993   }
994 
995   // Assign weights to equivalence classes.
996   //
997   // All the basic blocks in the same equivalence class will execute
998   // the same number of times. Since we know that the head block in
999   // each equivalence class has the largest weight, assign that weight
1000   // to all the blocks in that equivalence class.
1001   LLVM_DEBUG(
1002       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1003   for (auto &BI : F) {
1004     const BasicBlock *BB = &BI;
1005     const BasicBlock *EquivBB = EquivalenceClass[BB];
1006     if (BB != EquivBB)
1007       BlockWeights[BB] = BlockWeights[EquivBB];
1008     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1009   }
1010 }
1011 
1012 /// Visit the given edge to decide if it has a valid weight.
1013 ///
1014 /// If \p E has not been visited before, we copy to \p UnknownEdge
1015 /// and increment the count of unknown edges.
1016 ///
1017 /// \param E  Edge to visit.
1018 /// \param NumUnknownEdges  Current number of unknown edges.
1019 /// \param UnknownEdge  Set if E has not been visited before.
1020 ///
1021 /// \returns E's weight, if known. Otherwise, return 0.
1022 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1023                                         Edge *UnknownEdge) {
1024   if (!VisitedEdges.count(E)) {
1025     (*NumUnknownEdges)++;
1026     *UnknownEdge = E;
1027     return 0;
1028   }
1029 
1030   return EdgeWeights[E];
1031 }
1032 
1033 /// Propagate weights through incoming/outgoing edges.
1034 ///
1035 /// If the weight of a basic block is known, and there is only one edge
1036 /// with an unknown weight, we can calculate the weight of that edge.
1037 ///
1038 /// Similarly, if all the edges have a known count, we can calculate the
1039 /// count of the basic block, if needed.
1040 ///
1041 /// \param F  Function to process.
1042 /// \param UpdateBlockCount  Whether we should update basic block counts that
1043 ///                          has already been annotated.
1044 ///
1045 /// \returns  True if new weights were assigned to edges or blocks.
1046 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1047                                                 bool UpdateBlockCount) {
1048   bool Changed = false;
1049   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1050   for (const auto &BI : F) {
1051     const BasicBlock *BB = &BI;
1052     const BasicBlock *EC = EquivalenceClass[BB];
1053 
1054     // Visit all the predecessor and successor edges to determine
1055     // which ones have a weight assigned already. Note that it doesn't
1056     // matter that we only keep track of a single unknown edge. The
1057     // only case we are interested in handling is when only a single
1058     // edge is unknown (see setEdgeOrBlockWeight).
1059     for (unsigned i = 0; i < 2; i++) {
1060       uint64_t TotalWeight = 0;
1061       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1062       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1063 
1064       if (i == 0) {
1065         // First, visit all predecessor edges.
1066         NumTotalEdges = Predecessors[BB].size();
1067         for (auto *Pred : Predecessors[BB]) {
1068           Edge E = std::make_pair(Pred, BB);
1069           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1070           if (E.first == E.second)
1071             SelfReferentialEdge = E;
1072         }
1073         if (NumTotalEdges == 1) {
1074           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1075         }
1076       } else {
1077         // On the second round, visit all successor edges.
1078         NumTotalEdges = Successors[BB].size();
1079         for (auto *Succ : Successors[BB]) {
1080           Edge E = std::make_pair(BB, Succ);
1081           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1082         }
1083         if (NumTotalEdges == 1) {
1084           SingleEdge = std::make_pair(BB, Successors[BB][0]);
1085         }
1086       }
1087 
1088       // After visiting all the edges, there are three cases that we
1089       // can handle immediately:
1090       //
1091       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1092       //   In this case, we simply check that the sum of all the edges
1093       //   is the same as BB's weight. If not, we change BB's weight
1094       //   to match. Additionally, if BB had not been visited before,
1095       //   we mark it visited.
1096       //
1097       // - Only one edge is unknown and BB has already been visited.
1098       //   In this case, we can compute the weight of the edge by
1099       //   subtracting the total block weight from all the known
1100       //   edge weights. If the edges weight more than BB, then the
1101       //   edge of the last remaining edge is set to zero.
1102       //
1103       // - There exists a self-referential edge and the weight of BB is
1104       //   known. In this case, this edge can be based on BB's weight.
1105       //   We add up all the other known edges and set the weight on
1106       //   the self-referential edge as we did in the previous case.
1107       //
1108       // In any other case, we must continue iterating. Eventually,
1109       // all edges will get a weight, or iteration will stop when
1110       // it reaches SampleProfileMaxPropagateIterations.
1111       if (NumUnknownEdges <= 1) {
1112         uint64_t &BBWeight = BlockWeights[EC];
1113         if (NumUnknownEdges == 0) {
1114           if (!VisitedBlocks.count(EC)) {
1115             // If we already know the weight of all edges, the weight of the
1116             // basic block can be computed. It should be no larger than the sum
1117             // of all edge weights.
1118             if (TotalWeight > BBWeight) {
1119               BBWeight = TotalWeight;
1120               Changed = true;
1121               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1122                                 << " known. Set weight for block: ";
1123                          printBlockWeight(dbgs(), BB););
1124             }
1125           } else if (NumTotalEdges == 1 &&
1126                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1127             // If there is only one edge for the visited basic block, use the
1128             // block weight to adjust edge weight if edge weight is smaller.
1129             EdgeWeights[SingleEdge] = BlockWeights[EC];
1130             Changed = true;
1131           }
1132         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1133           // If there is a single unknown edge and the block has been
1134           // visited, then we can compute E's weight.
1135           if (BBWeight >= TotalWeight)
1136             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1137           else
1138             EdgeWeights[UnknownEdge] = 0;
1139           const BasicBlock *OtherEC;
1140           if (i == 0)
1141             OtherEC = EquivalenceClass[UnknownEdge.first];
1142           else
1143             OtherEC = EquivalenceClass[UnknownEdge.second];
1144           // Edge weights should never exceed the BB weights it connects.
1145           if (VisitedBlocks.count(OtherEC) &&
1146               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1147             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1148           VisitedEdges.insert(UnknownEdge);
1149           Changed = true;
1150           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1151                      printEdgeWeight(dbgs(), UnknownEdge));
1152         }
1153       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1154         // If a block Weights 0, all its in/out edges should weight 0.
1155         if (i == 0) {
1156           for (auto *Pred : Predecessors[BB]) {
1157             Edge E = std::make_pair(Pred, BB);
1158             EdgeWeights[E] = 0;
1159             VisitedEdges.insert(E);
1160           }
1161         } else {
1162           for (auto *Succ : Successors[BB]) {
1163             Edge E = std::make_pair(BB, Succ);
1164             EdgeWeights[E] = 0;
1165             VisitedEdges.insert(E);
1166           }
1167         }
1168       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1169         uint64_t &BBWeight = BlockWeights[BB];
1170         // We have a self-referential edge and the weight of BB is known.
1171         if (BBWeight >= TotalWeight)
1172           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1173         else
1174           EdgeWeights[SelfReferentialEdge] = 0;
1175         VisitedEdges.insert(SelfReferentialEdge);
1176         Changed = true;
1177         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1178                    printEdgeWeight(dbgs(), SelfReferentialEdge));
1179       }
1180       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1181         BlockWeights[EC] = TotalWeight;
1182         VisitedBlocks.insert(EC);
1183         Changed = true;
1184       }
1185     }
1186   }
1187 
1188   return Changed;
1189 }
1190 
1191 /// Build in/out edge lists for each basic block in the CFG.
1192 ///
1193 /// We are interested in unique edges. If a block B1 has multiple
1194 /// edges to another block B2, we only add a single B1->B2 edge.
1195 void SampleProfileLoader::buildEdges(Function &F) {
1196   for (auto &BI : F) {
1197     BasicBlock *B1 = &BI;
1198 
1199     // Add predecessors for B1.
1200     SmallPtrSet<BasicBlock *, 16> Visited;
1201     if (!Predecessors[B1].empty())
1202       llvm_unreachable("Found a stale predecessors list in a basic block.");
1203     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1204       BasicBlock *B2 = *PI;
1205       if (Visited.insert(B2).second)
1206         Predecessors[B1].push_back(B2);
1207     }
1208 
1209     // Add successors for B1.
1210     Visited.clear();
1211     if (!Successors[B1].empty())
1212       llvm_unreachable("Found a stale successors list in a basic block.");
1213     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1214       BasicBlock *B2 = *SI;
1215       if (Visited.insert(B2).second)
1216         Successors[B1].push_back(B2);
1217     }
1218   }
1219 }
1220 
1221 /// Returns the sorted CallTargetMap \p M by count in descending order.
1222 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1223     const SampleRecord::CallTargetMap &M) {
1224   SmallVector<InstrProfValueData, 2> R;
1225   for (auto I = M.begin(); I != M.end(); ++I)
1226     R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1227   llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
1228     if (L.Count == R.Count)
1229       return L.Value > R.Value;
1230     else
1231       return L.Count > R.Count;
1232   });
1233   return R;
1234 }
1235 
1236 /// Propagate weights into edges
1237 ///
1238 /// The following rules are applied to every block BB in the CFG:
1239 ///
1240 /// - If BB has a single predecessor/successor, then the weight
1241 ///   of that edge is the weight of the block.
1242 ///
1243 /// - If all incoming or outgoing edges are known except one, and the
1244 ///   weight of the block is already known, the weight of the unknown
1245 ///   edge will be the weight of the block minus the sum of all the known
1246 ///   edges. If the sum of all the known edges is larger than BB's weight,
1247 ///   we set the unknown edge weight to zero.
1248 ///
1249 /// - If there is a self-referential edge, and the weight of the block is
1250 ///   known, the weight for that edge is set to the weight of the block
1251 ///   minus the weight of the other incoming edges to that block (if
1252 ///   known).
1253 void SampleProfileLoader::propagateWeights(Function &F) {
1254   bool Changed = true;
1255   unsigned I = 0;
1256 
1257   // If BB weight is larger than its corresponding loop's header BB weight,
1258   // use the BB weight to replace the loop header BB weight.
1259   for (auto &BI : F) {
1260     BasicBlock *BB = &BI;
1261     Loop *L = LI->getLoopFor(BB);
1262     if (!L) {
1263       continue;
1264     }
1265     BasicBlock *Header = L->getHeader();
1266     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1267       BlockWeights[Header] = BlockWeights[BB];
1268     }
1269   }
1270 
1271   // Before propagation starts, build, for each block, a list of
1272   // unique predecessors and successors. This is necessary to handle
1273   // identical edges in multiway branches. Since we visit all blocks and all
1274   // edges of the CFG, it is cleaner to build these lists once at the start
1275   // of the pass.
1276   buildEdges(F);
1277 
1278   // Propagate until we converge or we go past the iteration limit.
1279   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1280     Changed = propagateThroughEdges(F, false);
1281   }
1282 
1283   // The first propagation propagates BB counts from annotated BBs to unknown
1284   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1285   // to propagate edge weights.
1286   VisitedEdges.clear();
1287   Changed = true;
1288   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1289     Changed = propagateThroughEdges(F, false);
1290   }
1291 
1292   // The 3rd propagation pass allows adjust annotated BB weights that are
1293   // obviously wrong.
1294   Changed = true;
1295   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1296     Changed = propagateThroughEdges(F, true);
1297   }
1298 
1299   // Generate MD_prof metadata for every branch instruction using the
1300   // edge weights computed during propagation.
1301   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1302   LLVMContext &Ctx = F.getContext();
1303   MDBuilder MDB(Ctx);
1304   for (auto &BI : F) {
1305     BasicBlock *BB = &BI;
1306 
1307     if (BlockWeights[BB]) {
1308       for (auto &I : BB->getInstList()) {
1309         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1310           continue;
1311         CallSite CS(&I);
1312         if (!CS.getCalledFunction()) {
1313           const DebugLoc &DLoc = I.getDebugLoc();
1314           if (!DLoc)
1315             continue;
1316           const DILocation *DIL = DLoc;
1317           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1318           uint32_t Discriminator = DIL->getBaseDiscriminator();
1319 
1320           const FunctionSamples *FS = findFunctionSamples(I);
1321           if (!FS)
1322             continue;
1323           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1324           if (!T || T.get().empty())
1325             continue;
1326           SmallVector<InstrProfValueData, 2> SortedCallTargets =
1327               SortCallTargets(T.get());
1328           uint64_t Sum;
1329           findIndirectCallFunctionSamples(I, Sum);
1330           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1331                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1332                             SortedCallTargets.size());
1333         } else if (!isa<IntrinsicInst>(&I)) {
1334           I.setMetadata(LLVMContext::MD_prof,
1335                         MDB.createBranchWeights(
1336                             {static_cast<uint32_t>(BlockWeights[BB])}));
1337         }
1338       }
1339     }
1340     Instruction *TI = BB->getTerminator();
1341     if (TI->getNumSuccessors() == 1)
1342       continue;
1343     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1344       continue;
1345 
1346     DebugLoc BranchLoc = TI->getDebugLoc();
1347     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1348                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
1349                                       : Twine("<UNKNOWN LOCATION>"))
1350                       << ".\n");
1351     SmallVector<uint32_t, 4> Weights;
1352     uint32_t MaxWeight = 0;
1353     Instruction *MaxDestInst;
1354     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1355       BasicBlock *Succ = TI->getSuccessor(I);
1356       Edge E = std::make_pair(BB, Succ);
1357       uint64_t Weight = EdgeWeights[E];
1358       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1359       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1360       // if needed. Sample counts in profiles are 64-bit unsigned values,
1361       // but internally branch weights are expressed as 32-bit values.
1362       if (Weight > std::numeric_limits<uint32_t>::max()) {
1363         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1364         Weight = std::numeric_limits<uint32_t>::max();
1365       }
1366       // Weight is added by one to avoid propagation errors introduced by
1367       // 0 weights.
1368       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1369       if (Weight != 0) {
1370         if (Weight > MaxWeight) {
1371           MaxWeight = Weight;
1372           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1373         }
1374       }
1375     }
1376 
1377     uint64_t TempWeight;
1378     // Only set weights if there is at least one non-zero weight.
1379     // In any other case, let the analyzer set weights.
1380     // Do not set weights if the weights are present. In ThinLTO, the profile
1381     // annotation is done twice. If the first annotation already set the
1382     // weights, the second pass does not need to set it.
1383     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1384       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1385       TI->setMetadata(LLVMContext::MD_prof,
1386                       MDB.createBranchWeights(Weights));
1387       ORE->emit([&]() {
1388         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1389                << "most popular destination for conditional branches at "
1390                << ore::NV("CondBranchesLoc", BranchLoc);
1391       });
1392     } else {
1393       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1394     }
1395   }
1396 }
1397 
1398 /// Get the line number for the function header.
1399 ///
1400 /// This looks up function \p F in the current compilation unit and
1401 /// retrieves the line number where the function is defined. This is
1402 /// line 0 for all the samples read from the profile file. Every line
1403 /// number is relative to this line.
1404 ///
1405 /// \param F  Function object to query.
1406 ///
1407 /// \returns the line number where \p F is defined. If it returns 0,
1408 ///          it means that there is no debug information available for \p F.
1409 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1410   if (DISubprogram *S = F.getSubprogram())
1411     return S->getLine();
1412 
1413   if (NoWarnSampleUnused)
1414     return 0;
1415 
1416   // If the start of \p F is missing, emit a diagnostic to inform the user
1417   // about the missed opportunity.
1418   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1419       "No debug information found in function " + F.getName() +
1420           ": Function profile not used",
1421       DS_Warning));
1422   return 0;
1423 }
1424 
1425 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1426   DT.reset(new DominatorTree);
1427   DT->recalculate(F);
1428 
1429   PDT.reset(new PostDominatorTree(F));
1430 
1431   LI.reset(new LoopInfo);
1432   LI->analyze(*DT);
1433 }
1434 
1435 /// Generate branch weight metadata for all branches in \p F.
1436 ///
1437 /// Branch weights are computed out of instruction samples using a
1438 /// propagation heuristic. Propagation proceeds in 3 phases:
1439 ///
1440 /// 1- Assignment of block weights. All the basic blocks in the function
1441 ///    are initial assigned the same weight as their most frequently
1442 ///    executed instruction.
1443 ///
1444 /// 2- Creation of equivalence classes. Since samples may be missing from
1445 ///    blocks, we can fill in the gaps by setting the weights of all the
1446 ///    blocks in the same equivalence class to the same weight. To compute
1447 ///    the concept of equivalence, we use dominance and loop information.
1448 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1449 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1450 ///
1451 /// 3- Propagation of block weights into edges. This uses a simple
1452 ///    propagation heuristic. The following rules are applied to every
1453 ///    block BB in the CFG:
1454 ///
1455 ///    - If BB has a single predecessor/successor, then the weight
1456 ///      of that edge is the weight of the block.
1457 ///
1458 ///    - If all the edges are known except one, and the weight of the
1459 ///      block is already known, the weight of the unknown edge will
1460 ///      be the weight of the block minus the sum of all the known
1461 ///      edges. If the sum of all the known edges is larger than BB's weight,
1462 ///      we set the unknown edge weight to zero.
1463 ///
1464 ///    - If there is a self-referential edge, and the weight of the block is
1465 ///      known, the weight for that edge is set to the weight of the block
1466 ///      minus the weight of the other incoming edges to that block (if
1467 ///      known).
1468 ///
1469 /// Since this propagation is not guaranteed to finalize for every CFG, we
1470 /// only allow it to proceed for a limited number of iterations (controlled
1471 /// by -sample-profile-max-propagate-iterations).
1472 ///
1473 /// FIXME: Try to replace this propagation heuristic with a scheme
1474 /// that is guaranteed to finalize. A work-list approach similar to
1475 /// the standard value propagation algorithm used by SSA-CCP might
1476 /// work here.
1477 ///
1478 /// Once all the branch weights are computed, we emit the MD_prof
1479 /// metadata on BB using the computed values for each of its branches.
1480 ///
1481 /// \param F The function to query.
1482 ///
1483 /// \returns true if \p F was modified. Returns false, otherwise.
1484 bool SampleProfileLoader::emitAnnotations(Function &F) {
1485   bool Changed = false;
1486 
1487   if (getFunctionLoc(F) == 0)
1488     return false;
1489 
1490   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1491                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
1492 
1493   DenseSet<GlobalValue::GUID> InlinedGUIDs;
1494   Changed |= inlineHotFunctions(F, InlinedGUIDs);
1495 
1496   // Compute basic block weights.
1497   Changed |= computeBlockWeights(F);
1498 
1499   if (Changed) {
1500     // Add an entry count to the function using the samples gathered at the
1501     // function entry.
1502     // Sets the GUIDs that are inlined in the profiled binary. This is used
1503     // for ThinLink to make correct liveness analysis, and also make the IR
1504     // match the profiled binary before annotation.
1505     F.setEntryCount(
1506         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1507         &InlinedGUIDs);
1508 
1509     // Compute dominance and loop info needed for propagation.
1510     computeDominanceAndLoopInfo(F);
1511 
1512     // Find equivalence classes.
1513     findEquivalenceClasses(F);
1514 
1515     // Propagate weights to all edges.
1516     propagateWeights(F);
1517   }
1518 
1519   // If coverage checking was requested, compute it now.
1520   if (SampleProfileRecordCoverage) {
1521     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1522     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1523     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1524     if (Coverage < SampleProfileRecordCoverage) {
1525       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1526           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1527           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1528               Twine(Coverage) + "%) were applied",
1529           DS_Warning));
1530     }
1531   }
1532 
1533   if (SampleProfileSampleCoverage) {
1534     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1535     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1536     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1537     if (Coverage < SampleProfileSampleCoverage) {
1538       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1539           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1540           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1541               Twine(Coverage) + "%) were applied",
1542           DS_Warning));
1543     }
1544   }
1545   return Changed;
1546 }
1547 
1548 char SampleProfileLoaderLegacyPass::ID = 0;
1549 
1550 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1551                       "Sample Profile loader", false, false)
1552 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1554 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1555 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1556                     "Sample Profile loader", false, false)
1557 
1558 bool SampleProfileLoader::doInitialization(Module &M) {
1559   auto &Ctx = M.getContext();
1560   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1561   if (std::error_code EC = ReaderOrErr.getError()) {
1562     std::string Msg = "Could not open profile: " + EC.message();
1563     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1564     return false;
1565   }
1566   Reader = std::move(ReaderOrErr.get());
1567   Reader->collectFuncsToUse(M);
1568   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1569 
1570   if (!RemappingFilename.empty()) {
1571     // Apply profile remappings to the loaded profile data if requested.
1572     // For now, we only support remapping symbols encoded using the Itanium
1573     // C++ ABI's name mangling scheme.
1574     ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1575         RemappingFilename, Ctx, std::move(Reader));
1576     if (std::error_code EC = ReaderOrErr.getError()) {
1577       std::string Msg = "Could not open profile remapping file: " + EC.message();
1578       Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1579       return false;
1580     }
1581     Reader = std::move(ReaderOrErr.get());
1582     ProfileIsValid = (Reader->read() == sampleprof_error::success);
1583   }
1584   return true;
1585 }
1586 
1587 ModulePass *llvm::createSampleProfileLoaderPass() {
1588   return new SampleProfileLoaderLegacyPass();
1589 }
1590 
1591 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1592   return new SampleProfileLoaderLegacyPass(Name);
1593 }
1594 
1595 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1596                                       ProfileSummaryInfo *_PSI) {
1597   FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1598   if (!ProfileIsValid)
1599     return false;
1600 
1601   PSI = _PSI;
1602   if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1603     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1604                         ProfileSummary::PSK_Sample);
1605 
1606   // Compute the total number of samples collected in this profile.
1607   for (const auto &I : Reader->getProfiles())
1608     TotalCollectedSamples += I.second.getTotalSamples();
1609 
1610   // Populate the symbol map.
1611   for (const auto &N_F : M.getValueSymbolTable()) {
1612     StringRef OrigName = N_F.getKey();
1613     Function *F = dyn_cast<Function>(N_F.getValue());
1614     if (F == nullptr)
1615       continue;
1616     SymbolMap[OrigName] = F;
1617     auto pos = OrigName.find('.');
1618     if (pos != StringRef::npos) {
1619       StringRef NewName = OrigName.substr(0, pos);
1620       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1621       // Failiing to insert means there is already an entry in SymbolMap,
1622       // thus there are multiple functions that are mapped to the same
1623       // stripped name. In this case of name conflicting, set the value
1624       // to nullptr to avoid confusion.
1625       if (!r.second)
1626         r.first->second = nullptr;
1627     }
1628   }
1629 
1630   bool retval = false;
1631   for (auto &F : M)
1632     if (!F.isDeclaration()) {
1633       clearFunctionData();
1634       retval |= runOnFunction(F, AM);
1635     }
1636 
1637   // Account for cold calls not inlined....
1638   for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1639        notInlinedCallInfo)
1640     updateProfileCallee(pair.first, pair.second.entryCount);
1641 
1642   return retval;
1643 }
1644 
1645 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1646   ACT = &getAnalysis<AssumptionCacheTracker>();
1647   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1648   ProfileSummaryInfo *PSI =
1649       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1650   return SampleLoader.runOnModule(M, nullptr, PSI);
1651 }
1652 
1653 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1654 
1655   DILocation2SampleMap.clear();
1656   // By default the entry count is initialized to -1, which will be treated
1657   // conservatively by getEntryCount as the same as unknown (None). This is
1658   // to avoid newly added code to be treated as cold. If we have samples
1659   // this will be overwritten in emitAnnotations.
1660   // If ProfileSampleAccurate is true or F has profile-sample-accurate
1661   // attribute, initialize the entry count to 0 so callsites or functions
1662   // unsampled will be treated as cold.
1663   uint64_t initialEntryCount =
1664       (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1665           ? 0
1666           : -1;
1667   F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1668   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1669   if (AM) {
1670     auto &FAM =
1671         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1672             .getManager();
1673     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1674   } else {
1675     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1676     ORE = OwnedORE.get();
1677   }
1678   Samples = Reader->getSamplesFor(F);
1679   if (Samples && !Samples->empty())
1680     return emitAnnotations(F);
1681   return false;
1682 }
1683 
1684 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1685                                                ModuleAnalysisManager &AM) {
1686   FunctionAnalysisManager &FAM =
1687       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1688 
1689   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1690     return FAM.getResult<AssumptionAnalysis>(F);
1691   };
1692   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1693     return FAM.getResult<TargetIRAnalysis>(F);
1694   };
1695 
1696   SampleProfileLoader SampleLoader(
1697       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1698       ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1699                                        : ProfileRemappingFileName,
1700       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1701 
1702   SampleLoader.doInitialization(M);
1703 
1704   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1705   if (!SampleLoader.runOnModule(M, &AM, PSI))
1706     return PreservedAnalyses::all();
1707 
1708   return PreservedAnalyses::none();
1709 }
1710