1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Pass.h" 61 #include "llvm/ProfileData/InstrProf.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/ProfileData/SampleProfReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/GenericDomTree.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/IPO.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 74 #include "llvm/Transforms/Utils/Cloning.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <functional> 79 #include <limits> 80 #include <map> 81 #include <memory> 82 #include <string> 83 #include <system_error> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace sampleprof; 89 using ProfileCount = Function::ProfileCount; 90 #define DEBUG_TYPE "sample-profile" 91 92 // Command line option to specify the file to read samples from. This is 93 // mainly used for debugging. 94 static cl::opt<std::string> SampleProfileFile( 95 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 96 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 97 98 // The named file contains a set of transformations that may have been applied 99 // to the symbol names between the program from which the sample data was 100 // collected and the current program's symbols. 101 static cl::opt<std::string> SampleProfileRemappingFile( 102 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 103 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 104 105 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 106 "sample-profile-max-propagate-iterations", cl::init(100), 107 cl::desc("Maximum number of iterations to go through when propagating " 108 "sample block/edge weights through the CFG.")); 109 110 static cl::opt<unsigned> SampleProfileRecordCoverage( 111 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 112 cl::desc("Emit a warning if less than N% of records in the input profile " 113 "are matched to the IR.")); 114 115 static cl::opt<unsigned> SampleProfileSampleCoverage( 116 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 117 cl::desc("Emit a warning if less than N% of samples in the input profile " 118 "are matched to the IR.")); 119 120 static cl::opt<bool> NoWarnSampleUnused( 121 "no-warn-sample-unused", cl::init(false), cl::Hidden, 122 cl::desc("Use this option to turn off/on warnings about function with " 123 "samples but without debug information to use those samples. ")); 124 125 static cl::opt<bool> ProfileSampleAccurate( 126 "profile-sample-accurate", cl::Hidden, cl::init(false), 127 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 128 "callsite and function as having 0 samples. Otherwise, treat " 129 "un-sampled callsites and functions conservatively as unknown. ")); 130 131 namespace { 132 133 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 134 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 135 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 136 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 137 using BlockEdgeMap = 138 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 139 140 class SampleCoverageTracker { 141 public: 142 SampleCoverageTracker() = default; 143 144 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 145 uint32_t Discriminator, uint64_t Samples); 146 unsigned computeCoverage(unsigned Used, unsigned Total) const; 147 unsigned countUsedRecords(const FunctionSamples *FS, 148 ProfileSummaryInfo *PSI) const; 149 unsigned countBodyRecords(const FunctionSamples *FS, 150 ProfileSummaryInfo *PSI) const; 151 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 152 uint64_t countBodySamples(const FunctionSamples *FS, 153 ProfileSummaryInfo *PSI) const; 154 155 void clear() { 156 SampleCoverage.clear(); 157 TotalUsedSamples = 0; 158 } 159 160 private: 161 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 162 using FunctionSamplesCoverageMap = 163 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 164 165 /// Coverage map for sampling records. 166 /// 167 /// This map keeps a record of sampling records that have been matched to 168 /// an IR instruction. This is used to detect some form of staleness in 169 /// profiles (see flag -sample-profile-check-coverage). 170 /// 171 /// Each entry in the map corresponds to a FunctionSamples instance. This is 172 /// another map that counts how many times the sample record at the 173 /// given location has been used. 174 FunctionSamplesCoverageMap SampleCoverage; 175 176 /// Number of samples used from the profile. 177 /// 178 /// When a sampling record is used for the first time, the samples from 179 /// that record are added to this accumulator. Coverage is later computed 180 /// based on the total number of samples available in this function and 181 /// its callsites. 182 /// 183 /// Note that this accumulator tracks samples used from a single function 184 /// and all the inlined callsites. Strictly, we should have a map of counters 185 /// keyed by FunctionSamples pointers, but these stats are cleared after 186 /// every function, so we just need to keep a single counter. 187 uint64_t TotalUsedSamples = 0; 188 }; 189 190 /// Sample profile pass. 191 /// 192 /// This pass reads profile data from the file specified by 193 /// -sample-profile-file and annotates every affected function with the 194 /// profile information found in that file. 195 class SampleProfileLoader { 196 public: 197 SampleProfileLoader( 198 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 199 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 200 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 201 : GetAC(std::move(GetAssumptionCache)), 202 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), 203 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} 204 205 bool doInitialization(Module &M); 206 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 207 ProfileSummaryInfo *_PSI); 208 209 void dump() { Reader->dump(); } 210 211 protected: 212 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 213 unsigned getFunctionLoc(Function &F); 214 bool emitAnnotations(Function &F); 215 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 216 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 217 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 218 std::vector<const FunctionSamples *> 219 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 220 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 221 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 222 bool inlineCallInstruction(Instruction *I); 223 bool inlineHotFunctions(Function &F, 224 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 225 void printEdgeWeight(raw_ostream &OS, Edge E); 226 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 227 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 228 bool computeBlockWeights(Function &F); 229 void findEquivalenceClasses(Function &F); 230 template <bool IsPostDom> 231 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 232 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 233 234 void propagateWeights(Function &F); 235 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 236 void buildEdges(Function &F); 237 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 238 void computeDominanceAndLoopInfo(Function &F); 239 void clearFunctionData(); 240 241 /// Map basic blocks to their computed weights. 242 /// 243 /// The weight of a basic block is defined to be the maximum 244 /// of all the instruction weights in that block. 245 BlockWeightMap BlockWeights; 246 247 /// Map edges to their computed weights. 248 /// 249 /// Edge weights are computed by propagating basic block weights in 250 /// SampleProfile::propagateWeights. 251 EdgeWeightMap EdgeWeights; 252 253 /// Set of visited blocks during propagation. 254 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 255 256 /// Set of visited edges during propagation. 257 SmallSet<Edge, 32> VisitedEdges; 258 259 /// Equivalence classes for block weights. 260 /// 261 /// Two blocks BB1 and BB2 are in the same equivalence class if they 262 /// dominate and post-dominate each other, and they are in the same loop 263 /// nest. When this happens, the two blocks are guaranteed to execute 264 /// the same number of times. 265 EquivalenceClassMap EquivalenceClass; 266 267 /// Map from function name to Function *. Used to find the function from 268 /// the function name. If the function name contains suffix, additional 269 /// entry is added to map from the stripped name to the function if there 270 /// is one-to-one mapping. 271 StringMap<Function *> SymbolMap; 272 273 /// Dominance, post-dominance and loop information. 274 std::unique_ptr<DominatorTree> DT; 275 std::unique_ptr<PostDominatorTree> PDT; 276 std::unique_ptr<LoopInfo> LI; 277 278 std::function<AssumptionCache &(Function &)> GetAC; 279 std::function<TargetTransformInfo &(Function &)> GetTTI; 280 281 /// Predecessors for each basic block in the CFG. 282 BlockEdgeMap Predecessors; 283 284 /// Successors for each basic block in the CFG. 285 BlockEdgeMap Successors; 286 287 SampleCoverageTracker CoverageTracker; 288 289 /// Profile reader object. 290 std::unique_ptr<SampleProfileReader> Reader; 291 292 /// Samples collected for the body of this function. 293 FunctionSamples *Samples = nullptr; 294 295 /// Name of the profile file to load. 296 std::string Filename; 297 298 /// Name of the profile remapping file to load. 299 std::string RemappingFilename; 300 301 /// Flag indicating whether the profile input loaded successfully. 302 bool ProfileIsValid = false; 303 304 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 305 /// 306 /// In this phase, in annotation, we should not promote indirect calls. 307 /// Instead, we will mark GUIDs that needs to be annotated to the function. 308 bool IsThinLTOPreLink; 309 310 /// Profile Summary Info computed from sample profile. 311 ProfileSummaryInfo *PSI = nullptr; 312 313 /// Total number of samples collected in this profile. 314 /// 315 /// This is the sum of all the samples collected in all the functions executed 316 /// at runtime. 317 uint64_t TotalCollectedSamples = 0; 318 319 /// Optimization Remark Emitter used to emit diagnostic remarks. 320 OptimizationRemarkEmitter *ORE = nullptr; 321 322 // Information recorded when we declined to inline a call site 323 // because we have determined it is too cold is accumulated for 324 // each callee function. Initially this is just the entry count. 325 struct NotInlinedProfileInfo { 326 uint64_t entryCount; 327 }; 328 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 329 }; 330 331 class SampleProfileLoaderLegacyPass : public ModulePass { 332 public: 333 // Class identification, replacement for typeinfo 334 static char ID; 335 336 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 337 bool IsThinLTOPreLink = false) 338 : ModulePass(ID), 339 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 340 [&](Function &F) -> AssumptionCache & { 341 return ACT->getAssumptionCache(F); 342 }, 343 [&](Function &F) -> TargetTransformInfo & { 344 return TTIWP->getTTI(F); 345 }) { 346 initializeSampleProfileLoaderLegacyPassPass( 347 *PassRegistry::getPassRegistry()); 348 } 349 350 void dump() { SampleLoader.dump(); } 351 352 bool doInitialization(Module &M) override { 353 return SampleLoader.doInitialization(M); 354 } 355 356 StringRef getPassName() const override { return "Sample profile pass"; } 357 bool runOnModule(Module &M) override; 358 359 void getAnalysisUsage(AnalysisUsage &AU) const override { 360 AU.addRequired<AssumptionCacheTracker>(); 361 AU.addRequired<TargetTransformInfoWrapperPass>(); 362 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 363 } 364 365 private: 366 SampleProfileLoader SampleLoader; 367 AssumptionCacheTracker *ACT = nullptr; 368 TargetTransformInfoWrapperPass *TTIWP = nullptr; 369 }; 370 371 } // end anonymous namespace 372 373 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 374 /// 375 /// Functions that were inlined in the original binary will be represented 376 /// in the inline stack in the sample profile. If the profile shows that 377 /// the original inline decision was "good" (i.e., the callsite is executed 378 /// frequently), then we will recreate the inline decision and apply the 379 /// profile from the inlined callsite. 380 /// 381 /// To decide whether an inlined callsite is hot, we compare the callsite 382 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 383 /// regarded as hot if the count is above the cutoff value. 384 static bool callsiteIsHot(const FunctionSamples *CallsiteFS, 385 ProfileSummaryInfo *PSI) { 386 if (!CallsiteFS) 387 return false; // The callsite was not inlined in the original binary. 388 389 assert(PSI && "PSI is expected to be non null"); 390 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 391 return PSI->isHotCount(CallsiteTotalSamples); 392 } 393 394 /// Mark as used the sample record for the given function samples at 395 /// (LineOffset, Discriminator). 396 /// 397 /// \returns true if this is the first time we mark the given record. 398 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 399 uint32_t LineOffset, 400 uint32_t Discriminator, 401 uint64_t Samples) { 402 LineLocation Loc(LineOffset, Discriminator); 403 unsigned &Count = SampleCoverage[FS][Loc]; 404 bool FirstTime = (++Count == 1); 405 if (FirstTime) 406 TotalUsedSamples += Samples; 407 return FirstTime; 408 } 409 410 /// Return the number of sample records that were applied from this profile. 411 /// 412 /// This count does not include records from cold inlined callsites. 413 unsigned 414 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 415 ProfileSummaryInfo *PSI) const { 416 auto I = SampleCoverage.find(FS); 417 418 // The size of the coverage map for FS represents the number of records 419 // that were marked used at least once. 420 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 421 422 // If there are inlined callsites in this function, count the samples found 423 // in the respective bodies. However, do not bother counting callees with 0 424 // total samples, these are callees that were never invoked at runtime. 425 for (const auto &I : FS->getCallsiteSamples()) 426 for (const auto &J : I.second) { 427 const FunctionSamples *CalleeSamples = &J.second; 428 if (callsiteIsHot(CalleeSamples, PSI)) 429 Count += countUsedRecords(CalleeSamples, PSI); 430 } 431 432 return Count; 433 } 434 435 /// Return the number of sample records in the body of this profile. 436 /// 437 /// This count does not include records from cold inlined callsites. 438 unsigned 439 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 440 ProfileSummaryInfo *PSI) const { 441 unsigned Count = FS->getBodySamples().size(); 442 443 // Only count records in hot callsites. 444 for (const auto &I : FS->getCallsiteSamples()) 445 for (const auto &J : I.second) { 446 const FunctionSamples *CalleeSamples = &J.second; 447 if (callsiteIsHot(CalleeSamples, PSI)) 448 Count += countBodyRecords(CalleeSamples, PSI); 449 } 450 451 return Count; 452 } 453 454 /// Return the number of samples collected in the body of this profile. 455 /// 456 /// This count does not include samples from cold inlined callsites. 457 uint64_t 458 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 459 ProfileSummaryInfo *PSI) const { 460 uint64_t Total = 0; 461 for (const auto &I : FS->getBodySamples()) 462 Total += I.second.getSamples(); 463 464 // Only count samples in hot callsites. 465 for (const auto &I : FS->getCallsiteSamples()) 466 for (const auto &J : I.second) { 467 const FunctionSamples *CalleeSamples = &J.second; 468 if (callsiteIsHot(CalleeSamples, PSI)) 469 Total += countBodySamples(CalleeSamples, PSI); 470 } 471 472 return Total; 473 } 474 475 /// Return the fraction of sample records used in this profile. 476 /// 477 /// The returned value is an unsigned integer in the range 0-100 indicating 478 /// the percentage of sample records that were used while applying this 479 /// profile to the associated function. 480 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 481 unsigned Total) const { 482 assert(Used <= Total && 483 "number of used records cannot exceed the total number of records"); 484 return Total > 0 ? Used * 100 / Total : 100; 485 } 486 487 /// Clear all the per-function data used to load samples and propagate weights. 488 void SampleProfileLoader::clearFunctionData() { 489 BlockWeights.clear(); 490 EdgeWeights.clear(); 491 VisitedBlocks.clear(); 492 VisitedEdges.clear(); 493 EquivalenceClass.clear(); 494 DT = nullptr; 495 PDT = nullptr; 496 LI = nullptr; 497 Predecessors.clear(); 498 Successors.clear(); 499 CoverageTracker.clear(); 500 } 501 502 #ifndef NDEBUG 503 /// Print the weight of edge \p E on stream \p OS. 504 /// 505 /// \param OS Stream to emit the output to. 506 /// \param E Edge to print. 507 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 508 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 509 << "]: " << EdgeWeights[E] << "\n"; 510 } 511 512 /// Print the equivalence class of block \p BB on stream \p OS. 513 /// 514 /// \param OS Stream to emit the output to. 515 /// \param BB Block to print. 516 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 517 const BasicBlock *BB) { 518 const BasicBlock *Equiv = EquivalenceClass[BB]; 519 OS << "equivalence[" << BB->getName() 520 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 521 } 522 523 /// Print the weight of block \p BB on stream \p OS. 524 /// 525 /// \param OS Stream to emit the output to. 526 /// \param BB Block to print. 527 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 528 const BasicBlock *BB) const { 529 const auto &I = BlockWeights.find(BB); 530 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 531 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 532 } 533 #endif 534 535 /// Get the weight for an instruction. 536 /// 537 /// The "weight" of an instruction \p Inst is the number of samples 538 /// collected on that instruction at runtime. To retrieve it, we 539 /// need to compute the line number of \p Inst relative to the start of its 540 /// function. We use HeaderLineno to compute the offset. We then 541 /// look up the samples collected for \p Inst using BodySamples. 542 /// 543 /// \param Inst Instruction to query. 544 /// 545 /// \returns the weight of \p Inst. 546 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 547 const DebugLoc &DLoc = Inst.getDebugLoc(); 548 if (!DLoc) 549 return std::error_code(); 550 551 const FunctionSamples *FS = findFunctionSamples(Inst); 552 if (!FS) 553 return std::error_code(); 554 555 // Ignore all intrinsics, phinodes and branch instructions. 556 // Branch and phinodes instruction usually contains debug info from sources outside of 557 // the residing basic block, thus we ignore them during annotation. 558 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 559 return std::error_code(); 560 561 // If a direct call/invoke instruction is inlined in profile 562 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 563 // it means that the inlined callsite has no sample, thus the call 564 // instruction should have 0 count. 565 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 566 !ImmutableCallSite(&Inst).isIndirectCall() && 567 findCalleeFunctionSamples(Inst)) 568 return 0; 569 570 const DILocation *DIL = DLoc; 571 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 572 uint32_t Discriminator = DIL->getBaseDiscriminator(); 573 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 574 if (R) { 575 bool FirstMark = 576 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 577 if (FirstMark) { 578 ORE->emit([&]() { 579 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 580 Remark << "Applied " << ore::NV("NumSamples", *R); 581 Remark << " samples from profile (offset: "; 582 Remark << ore::NV("LineOffset", LineOffset); 583 if (Discriminator) { 584 Remark << "."; 585 Remark << ore::NV("Discriminator", Discriminator); 586 } 587 Remark << ")"; 588 return Remark; 589 }); 590 } 591 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 592 << DIL->getBaseDiscriminator() << ":" << Inst 593 << " (line offset: " << LineOffset << "." 594 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 595 << ")\n"); 596 } 597 return R; 598 } 599 600 /// Compute the weight of a basic block. 601 /// 602 /// The weight of basic block \p BB is the maximum weight of all the 603 /// instructions in BB. 604 /// 605 /// \param BB The basic block to query. 606 /// 607 /// \returns the weight for \p BB. 608 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 609 uint64_t Max = 0; 610 bool HasWeight = false; 611 for (auto &I : BB->getInstList()) { 612 const ErrorOr<uint64_t> &R = getInstWeight(I); 613 if (R) { 614 Max = std::max(Max, R.get()); 615 HasWeight = true; 616 } 617 } 618 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 619 } 620 621 /// Compute and store the weights of every basic block. 622 /// 623 /// This populates the BlockWeights map by computing 624 /// the weights of every basic block in the CFG. 625 /// 626 /// \param F The function to query. 627 bool SampleProfileLoader::computeBlockWeights(Function &F) { 628 bool Changed = false; 629 LLVM_DEBUG(dbgs() << "Block weights\n"); 630 for (const auto &BB : F) { 631 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 632 if (Weight) { 633 BlockWeights[&BB] = Weight.get(); 634 VisitedBlocks.insert(&BB); 635 Changed = true; 636 } 637 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 638 } 639 640 return Changed; 641 } 642 643 /// Get the FunctionSamples for a call instruction. 644 /// 645 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 646 /// instance in which that call instruction is calling to. It contains 647 /// all samples that resides in the inlined instance. We first find the 648 /// inlined instance in which the call instruction is from, then we 649 /// traverse its children to find the callsite with the matching 650 /// location. 651 /// 652 /// \param Inst Call/Invoke instruction to query. 653 /// 654 /// \returns The FunctionSamples pointer to the inlined instance. 655 const FunctionSamples * 656 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 657 const DILocation *DIL = Inst.getDebugLoc(); 658 if (!DIL) { 659 return nullptr; 660 } 661 662 StringRef CalleeName; 663 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 664 if (Function *Callee = CI->getCalledFunction()) 665 CalleeName = Callee->getName(); 666 667 const FunctionSamples *FS = findFunctionSamples(Inst); 668 if (FS == nullptr) 669 return nullptr; 670 671 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 672 DIL->getBaseDiscriminator()), 673 CalleeName); 674 } 675 676 /// Returns a vector of FunctionSamples that are the indirect call targets 677 /// of \p Inst. The vector is sorted by the total number of samples. Stores 678 /// the total call count of the indirect call in \p Sum. 679 std::vector<const FunctionSamples *> 680 SampleProfileLoader::findIndirectCallFunctionSamples( 681 const Instruction &Inst, uint64_t &Sum) const { 682 const DILocation *DIL = Inst.getDebugLoc(); 683 std::vector<const FunctionSamples *> R; 684 685 if (!DIL) { 686 return R; 687 } 688 689 const FunctionSamples *FS = findFunctionSamples(Inst); 690 if (FS == nullptr) 691 return R; 692 693 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 694 uint32_t Discriminator = DIL->getBaseDiscriminator(); 695 696 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 697 Sum = 0; 698 if (T) 699 for (const auto &T_C : T.get()) 700 Sum += T_C.second; 701 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 702 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 703 if (M->empty()) 704 return R; 705 for (const auto &NameFS : *M) { 706 Sum += NameFS.second.getEntrySamples(); 707 R.push_back(&NameFS.second); 708 } 709 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 710 if (L->getEntrySamples() != R->getEntrySamples()) 711 return L->getEntrySamples() > R->getEntrySamples(); 712 return FunctionSamples::getGUID(L->getName()) < 713 FunctionSamples::getGUID(R->getName()); 714 }); 715 } 716 return R; 717 } 718 719 /// Get the FunctionSamples for an instruction. 720 /// 721 /// The FunctionSamples of an instruction \p Inst is the inlined instance 722 /// in which that instruction is coming from. We traverse the inline stack 723 /// of that instruction, and match it with the tree nodes in the profile. 724 /// 725 /// \param Inst Instruction to query. 726 /// 727 /// \returns the FunctionSamples pointer to the inlined instance. 728 const FunctionSamples * 729 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 730 const DILocation *DIL = Inst.getDebugLoc(); 731 if (!DIL) 732 return Samples; 733 734 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 735 if (it.second) 736 it.first->second = Samples->findFunctionSamples(DIL); 737 return it.first->second; 738 } 739 740 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 741 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 742 CallSite CS(I); 743 Function *CalledFunction = CS.getCalledFunction(); 744 assert(CalledFunction); 745 DebugLoc DLoc = I->getDebugLoc(); 746 BasicBlock *BB = I->getParent(); 747 InlineParams Params = getInlineParams(); 748 Params.ComputeFullInlineCost = true; 749 // Checks if there is anything in the reachable portion of the callee at 750 // this callsite that makes this inlining potentially illegal. Need to 751 // set ComputeFullInlineCost, otherwise getInlineCost may return early 752 // when cost exceeds threshold without checking all IRs in the callee. 753 // The acutal cost does not matter because we only checks isNever() to 754 // see if it is legal to inline the callsite. 755 InlineCost Cost = 756 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 757 None, nullptr, nullptr); 758 if (Cost.isNever()) { 759 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 760 << "incompatible inlining"); 761 return false; 762 } 763 InlineFunctionInfo IFI(nullptr, &GetAC); 764 if (InlineFunction(CS, IFI)) { 765 // The call to InlineFunction erases I, so we can't pass it here. 766 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 767 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 768 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 769 return true; 770 } 771 return false; 772 } 773 774 /// Iteratively inline hot callsites of a function. 775 /// 776 /// Iteratively traverse all callsites of the function \p F, and find if 777 /// the corresponding inlined instance exists and is hot in profile. If 778 /// it is hot enough, inline the callsites and adds new callsites of the 779 /// callee into the caller. If the call is an indirect call, first promote 780 /// it to direct call. Each indirect call is limited with a single target. 781 /// 782 /// \param F function to perform iterative inlining. 783 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 784 /// inlined in the profiled binary. 785 /// 786 /// \returns True if there is any inline happened. 787 bool SampleProfileLoader::inlineHotFunctions( 788 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 789 DenseSet<Instruction *> PromotedInsns; 790 791 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 792 bool Changed = false; 793 while (true) { 794 bool LocalChanged = false; 795 SmallVector<Instruction *, 10> CIS; 796 for (auto &BB : F) { 797 bool Hot = false; 798 SmallVector<Instruction *, 10> Candidates; 799 for (auto &I : BB.getInstList()) { 800 const FunctionSamples *FS = nullptr; 801 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 802 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 803 Candidates.push_back(&I); 804 if (FS->getEntrySamples() > 0) 805 localNotInlinedCallSites.try_emplace(&I, FS); 806 if (callsiteIsHot(FS, PSI)) 807 Hot = true; 808 } 809 } 810 if (Hot) { 811 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 812 } 813 } 814 for (auto I : CIS) { 815 Function *CalledFunction = CallSite(I).getCalledFunction(); 816 // Do not inline recursive calls. 817 if (CalledFunction == &F) 818 continue; 819 if (CallSite(I).isIndirectCall()) { 820 if (PromotedInsns.count(I)) 821 continue; 822 uint64_t Sum; 823 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 824 if (IsThinLTOPreLink) { 825 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 826 PSI->getOrCompHotCountThreshold()); 827 continue; 828 } 829 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 830 // If it is a recursive call, we do not inline it as it could bloat 831 // the code exponentially. There is way to better handle this, e.g. 832 // clone the caller first, and inline the cloned caller if it is 833 // recursive. As llvm does not inline recursive calls, we will 834 // simply ignore it instead of handling it explicitly. 835 if (CalleeFunctionName == F.getName()) 836 continue; 837 838 if (!callsiteIsHot(FS, PSI)) 839 continue; 840 841 const char *Reason = "Callee function not available"; 842 auto R = SymbolMap.find(CalleeFunctionName); 843 if (R != SymbolMap.end() && R->getValue() && 844 !R->getValue()->isDeclaration() && 845 R->getValue()->getSubprogram() && 846 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 847 uint64_t C = FS->getEntrySamples(); 848 Instruction *DI = 849 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 850 Sum -= C; 851 PromotedInsns.insert(I); 852 // If profile mismatches, we should not attempt to inline DI. 853 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 854 inlineCallInstruction(DI)) { 855 localNotInlinedCallSites.erase(I); 856 LocalChanged = true; 857 } 858 } else { 859 LLVM_DEBUG(dbgs() 860 << "\nFailed to promote indirect call to " 861 << CalleeFunctionName << " because " << Reason << "\n"); 862 } 863 } 864 } else if (CalledFunction && CalledFunction->getSubprogram() && 865 !CalledFunction->isDeclaration()) { 866 if (inlineCallInstruction(I)) { 867 localNotInlinedCallSites.erase(I); 868 LocalChanged = true; 869 } 870 } else if (IsThinLTOPreLink) { 871 findCalleeFunctionSamples(*I)->findInlinedFunctions( 872 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 873 } 874 } 875 if (LocalChanged) { 876 Changed = true; 877 } else { 878 break; 879 } 880 } 881 882 // Accumulate not inlined callsite information into notInlinedSamples 883 for (const auto &Pair : localNotInlinedCallSites) { 884 Instruction *I = Pair.getFirst(); 885 Function *Callee = CallSite(I).getCalledFunction(); 886 if (!Callee || Callee->isDeclaration()) 887 continue; 888 const FunctionSamples *FS = Pair.getSecond(); 889 auto pair = 890 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 891 pair.first->second.entryCount += FS->getEntrySamples(); 892 } 893 return Changed; 894 } 895 896 /// Find equivalence classes for the given block. 897 /// 898 /// This finds all the blocks that are guaranteed to execute the same 899 /// number of times as \p BB1. To do this, it traverses all the 900 /// descendants of \p BB1 in the dominator or post-dominator tree. 901 /// 902 /// A block BB2 will be in the same equivalence class as \p BB1 if 903 /// the following holds: 904 /// 905 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 906 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 907 /// dominate BB1 in the post-dominator tree. 908 /// 909 /// 2- Both BB2 and \p BB1 must be in the same loop. 910 /// 911 /// For every block BB2 that meets those two requirements, we set BB2's 912 /// equivalence class to \p BB1. 913 /// 914 /// \param BB1 Block to check. 915 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 916 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 917 /// with blocks from \p BB1's dominator tree, then 918 /// this is the post-dominator tree, and vice versa. 919 template <bool IsPostDom> 920 void SampleProfileLoader::findEquivalencesFor( 921 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 922 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 923 const BasicBlock *EC = EquivalenceClass[BB1]; 924 uint64_t Weight = BlockWeights[EC]; 925 for (const auto *BB2 : Descendants) { 926 bool IsDomParent = DomTree->dominates(BB2, BB1); 927 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 928 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 929 EquivalenceClass[BB2] = EC; 930 // If BB2 is visited, then the entire EC should be marked as visited. 931 if (VisitedBlocks.count(BB2)) { 932 VisitedBlocks.insert(EC); 933 } 934 935 // If BB2 is heavier than BB1, make BB2 have the same weight 936 // as BB1. 937 // 938 // Note that we don't worry about the opposite situation here 939 // (when BB2 is lighter than BB1). We will deal with this 940 // during the propagation phase. Right now, we just want to 941 // make sure that BB1 has the largest weight of all the 942 // members of its equivalence set. 943 Weight = std::max(Weight, BlockWeights[BB2]); 944 } 945 } 946 if (EC == &EC->getParent()->getEntryBlock()) { 947 BlockWeights[EC] = Samples->getHeadSamples() + 1; 948 } else { 949 BlockWeights[EC] = Weight; 950 } 951 } 952 953 /// Find equivalence classes. 954 /// 955 /// Since samples may be missing from blocks, we can fill in the gaps by setting 956 /// the weights of all the blocks in the same equivalence class to the same 957 /// weight. To compute the concept of equivalence, we use dominance and loop 958 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 959 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 960 /// 961 /// \param F The function to query. 962 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 963 SmallVector<BasicBlock *, 8> DominatedBBs; 964 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 965 // Find equivalence sets based on dominance and post-dominance information. 966 for (auto &BB : F) { 967 BasicBlock *BB1 = &BB; 968 969 // Compute BB1's equivalence class once. 970 if (EquivalenceClass.count(BB1)) { 971 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 972 continue; 973 } 974 975 // By default, blocks are in their own equivalence class. 976 EquivalenceClass[BB1] = BB1; 977 978 // Traverse all the blocks dominated by BB1. We are looking for 979 // every basic block BB2 such that: 980 // 981 // 1- BB1 dominates BB2. 982 // 2- BB2 post-dominates BB1. 983 // 3- BB1 and BB2 are in the same loop nest. 984 // 985 // If all those conditions hold, it means that BB2 is executed 986 // as many times as BB1, so they are placed in the same equivalence 987 // class by making BB2's equivalence class be BB1. 988 DominatedBBs.clear(); 989 DT->getDescendants(BB1, DominatedBBs); 990 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 991 992 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 993 } 994 995 // Assign weights to equivalence classes. 996 // 997 // All the basic blocks in the same equivalence class will execute 998 // the same number of times. Since we know that the head block in 999 // each equivalence class has the largest weight, assign that weight 1000 // to all the blocks in that equivalence class. 1001 LLVM_DEBUG( 1002 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1003 for (auto &BI : F) { 1004 const BasicBlock *BB = &BI; 1005 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1006 if (BB != EquivBB) 1007 BlockWeights[BB] = BlockWeights[EquivBB]; 1008 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1009 } 1010 } 1011 1012 /// Visit the given edge to decide if it has a valid weight. 1013 /// 1014 /// If \p E has not been visited before, we copy to \p UnknownEdge 1015 /// and increment the count of unknown edges. 1016 /// 1017 /// \param E Edge to visit. 1018 /// \param NumUnknownEdges Current number of unknown edges. 1019 /// \param UnknownEdge Set if E has not been visited before. 1020 /// 1021 /// \returns E's weight, if known. Otherwise, return 0. 1022 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1023 Edge *UnknownEdge) { 1024 if (!VisitedEdges.count(E)) { 1025 (*NumUnknownEdges)++; 1026 *UnknownEdge = E; 1027 return 0; 1028 } 1029 1030 return EdgeWeights[E]; 1031 } 1032 1033 /// Propagate weights through incoming/outgoing edges. 1034 /// 1035 /// If the weight of a basic block is known, and there is only one edge 1036 /// with an unknown weight, we can calculate the weight of that edge. 1037 /// 1038 /// Similarly, if all the edges have a known count, we can calculate the 1039 /// count of the basic block, if needed. 1040 /// 1041 /// \param F Function to process. 1042 /// \param UpdateBlockCount Whether we should update basic block counts that 1043 /// has already been annotated. 1044 /// 1045 /// \returns True if new weights were assigned to edges or blocks. 1046 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1047 bool UpdateBlockCount) { 1048 bool Changed = false; 1049 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1050 for (const auto &BI : F) { 1051 const BasicBlock *BB = &BI; 1052 const BasicBlock *EC = EquivalenceClass[BB]; 1053 1054 // Visit all the predecessor and successor edges to determine 1055 // which ones have a weight assigned already. Note that it doesn't 1056 // matter that we only keep track of a single unknown edge. The 1057 // only case we are interested in handling is when only a single 1058 // edge is unknown (see setEdgeOrBlockWeight). 1059 for (unsigned i = 0; i < 2; i++) { 1060 uint64_t TotalWeight = 0; 1061 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1062 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1063 1064 if (i == 0) { 1065 // First, visit all predecessor edges. 1066 NumTotalEdges = Predecessors[BB].size(); 1067 for (auto *Pred : Predecessors[BB]) { 1068 Edge E = std::make_pair(Pred, BB); 1069 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1070 if (E.first == E.second) 1071 SelfReferentialEdge = E; 1072 } 1073 if (NumTotalEdges == 1) { 1074 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1075 } 1076 } else { 1077 // On the second round, visit all successor edges. 1078 NumTotalEdges = Successors[BB].size(); 1079 for (auto *Succ : Successors[BB]) { 1080 Edge E = std::make_pair(BB, Succ); 1081 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1082 } 1083 if (NumTotalEdges == 1) { 1084 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1085 } 1086 } 1087 1088 // After visiting all the edges, there are three cases that we 1089 // can handle immediately: 1090 // 1091 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1092 // In this case, we simply check that the sum of all the edges 1093 // is the same as BB's weight. If not, we change BB's weight 1094 // to match. Additionally, if BB had not been visited before, 1095 // we mark it visited. 1096 // 1097 // - Only one edge is unknown and BB has already been visited. 1098 // In this case, we can compute the weight of the edge by 1099 // subtracting the total block weight from all the known 1100 // edge weights. If the edges weight more than BB, then the 1101 // edge of the last remaining edge is set to zero. 1102 // 1103 // - There exists a self-referential edge and the weight of BB is 1104 // known. In this case, this edge can be based on BB's weight. 1105 // We add up all the other known edges and set the weight on 1106 // the self-referential edge as we did in the previous case. 1107 // 1108 // In any other case, we must continue iterating. Eventually, 1109 // all edges will get a weight, or iteration will stop when 1110 // it reaches SampleProfileMaxPropagateIterations. 1111 if (NumUnknownEdges <= 1) { 1112 uint64_t &BBWeight = BlockWeights[EC]; 1113 if (NumUnknownEdges == 0) { 1114 if (!VisitedBlocks.count(EC)) { 1115 // If we already know the weight of all edges, the weight of the 1116 // basic block can be computed. It should be no larger than the sum 1117 // of all edge weights. 1118 if (TotalWeight > BBWeight) { 1119 BBWeight = TotalWeight; 1120 Changed = true; 1121 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1122 << " known. Set weight for block: "; 1123 printBlockWeight(dbgs(), BB);); 1124 } 1125 } else if (NumTotalEdges == 1 && 1126 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1127 // If there is only one edge for the visited basic block, use the 1128 // block weight to adjust edge weight if edge weight is smaller. 1129 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1130 Changed = true; 1131 } 1132 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1133 // If there is a single unknown edge and the block has been 1134 // visited, then we can compute E's weight. 1135 if (BBWeight >= TotalWeight) 1136 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1137 else 1138 EdgeWeights[UnknownEdge] = 0; 1139 const BasicBlock *OtherEC; 1140 if (i == 0) 1141 OtherEC = EquivalenceClass[UnknownEdge.first]; 1142 else 1143 OtherEC = EquivalenceClass[UnknownEdge.second]; 1144 // Edge weights should never exceed the BB weights it connects. 1145 if (VisitedBlocks.count(OtherEC) && 1146 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1147 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1148 VisitedEdges.insert(UnknownEdge); 1149 Changed = true; 1150 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1151 printEdgeWeight(dbgs(), UnknownEdge)); 1152 } 1153 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1154 // If a block Weights 0, all its in/out edges should weight 0. 1155 if (i == 0) { 1156 for (auto *Pred : Predecessors[BB]) { 1157 Edge E = std::make_pair(Pred, BB); 1158 EdgeWeights[E] = 0; 1159 VisitedEdges.insert(E); 1160 } 1161 } else { 1162 for (auto *Succ : Successors[BB]) { 1163 Edge E = std::make_pair(BB, Succ); 1164 EdgeWeights[E] = 0; 1165 VisitedEdges.insert(E); 1166 } 1167 } 1168 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1169 uint64_t &BBWeight = BlockWeights[BB]; 1170 // We have a self-referential edge and the weight of BB is known. 1171 if (BBWeight >= TotalWeight) 1172 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1173 else 1174 EdgeWeights[SelfReferentialEdge] = 0; 1175 VisitedEdges.insert(SelfReferentialEdge); 1176 Changed = true; 1177 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1178 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1179 } 1180 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1181 BlockWeights[EC] = TotalWeight; 1182 VisitedBlocks.insert(EC); 1183 Changed = true; 1184 } 1185 } 1186 } 1187 1188 return Changed; 1189 } 1190 1191 /// Build in/out edge lists for each basic block in the CFG. 1192 /// 1193 /// We are interested in unique edges. If a block B1 has multiple 1194 /// edges to another block B2, we only add a single B1->B2 edge. 1195 void SampleProfileLoader::buildEdges(Function &F) { 1196 for (auto &BI : F) { 1197 BasicBlock *B1 = &BI; 1198 1199 // Add predecessors for B1. 1200 SmallPtrSet<BasicBlock *, 16> Visited; 1201 if (!Predecessors[B1].empty()) 1202 llvm_unreachable("Found a stale predecessors list in a basic block."); 1203 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1204 BasicBlock *B2 = *PI; 1205 if (Visited.insert(B2).second) 1206 Predecessors[B1].push_back(B2); 1207 } 1208 1209 // Add successors for B1. 1210 Visited.clear(); 1211 if (!Successors[B1].empty()) 1212 llvm_unreachable("Found a stale successors list in a basic block."); 1213 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1214 BasicBlock *B2 = *SI; 1215 if (Visited.insert(B2).second) 1216 Successors[B1].push_back(B2); 1217 } 1218 } 1219 } 1220 1221 /// Returns the sorted CallTargetMap \p M by count in descending order. 1222 static SmallVector<InstrProfValueData, 2> SortCallTargets( 1223 const SampleRecord::CallTargetMap &M) { 1224 SmallVector<InstrProfValueData, 2> R; 1225 for (auto I = M.begin(); I != M.end(); ++I) 1226 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); 1227 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { 1228 if (L.Count == R.Count) 1229 return L.Value > R.Value; 1230 else 1231 return L.Count > R.Count; 1232 }); 1233 return R; 1234 } 1235 1236 /// Propagate weights into edges 1237 /// 1238 /// The following rules are applied to every block BB in the CFG: 1239 /// 1240 /// - If BB has a single predecessor/successor, then the weight 1241 /// of that edge is the weight of the block. 1242 /// 1243 /// - If all incoming or outgoing edges are known except one, and the 1244 /// weight of the block is already known, the weight of the unknown 1245 /// edge will be the weight of the block minus the sum of all the known 1246 /// edges. If the sum of all the known edges is larger than BB's weight, 1247 /// we set the unknown edge weight to zero. 1248 /// 1249 /// - If there is a self-referential edge, and the weight of the block is 1250 /// known, the weight for that edge is set to the weight of the block 1251 /// minus the weight of the other incoming edges to that block (if 1252 /// known). 1253 void SampleProfileLoader::propagateWeights(Function &F) { 1254 bool Changed = true; 1255 unsigned I = 0; 1256 1257 // If BB weight is larger than its corresponding loop's header BB weight, 1258 // use the BB weight to replace the loop header BB weight. 1259 for (auto &BI : F) { 1260 BasicBlock *BB = &BI; 1261 Loop *L = LI->getLoopFor(BB); 1262 if (!L) { 1263 continue; 1264 } 1265 BasicBlock *Header = L->getHeader(); 1266 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1267 BlockWeights[Header] = BlockWeights[BB]; 1268 } 1269 } 1270 1271 // Before propagation starts, build, for each block, a list of 1272 // unique predecessors and successors. This is necessary to handle 1273 // identical edges in multiway branches. Since we visit all blocks and all 1274 // edges of the CFG, it is cleaner to build these lists once at the start 1275 // of the pass. 1276 buildEdges(F); 1277 1278 // Propagate until we converge or we go past the iteration limit. 1279 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1280 Changed = propagateThroughEdges(F, false); 1281 } 1282 1283 // The first propagation propagates BB counts from annotated BBs to unknown 1284 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1285 // to propagate edge weights. 1286 VisitedEdges.clear(); 1287 Changed = true; 1288 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1289 Changed = propagateThroughEdges(F, false); 1290 } 1291 1292 // The 3rd propagation pass allows adjust annotated BB weights that are 1293 // obviously wrong. 1294 Changed = true; 1295 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1296 Changed = propagateThroughEdges(F, true); 1297 } 1298 1299 // Generate MD_prof metadata for every branch instruction using the 1300 // edge weights computed during propagation. 1301 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1302 LLVMContext &Ctx = F.getContext(); 1303 MDBuilder MDB(Ctx); 1304 for (auto &BI : F) { 1305 BasicBlock *BB = &BI; 1306 1307 if (BlockWeights[BB]) { 1308 for (auto &I : BB->getInstList()) { 1309 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1310 continue; 1311 CallSite CS(&I); 1312 if (!CS.getCalledFunction()) { 1313 const DebugLoc &DLoc = I.getDebugLoc(); 1314 if (!DLoc) 1315 continue; 1316 const DILocation *DIL = DLoc; 1317 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1318 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1319 1320 const FunctionSamples *FS = findFunctionSamples(I); 1321 if (!FS) 1322 continue; 1323 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1324 if (!T || T.get().empty()) 1325 continue; 1326 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1327 SortCallTargets(T.get()); 1328 uint64_t Sum; 1329 findIndirectCallFunctionSamples(I, Sum); 1330 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1331 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1332 SortedCallTargets.size()); 1333 } else if (!isa<IntrinsicInst>(&I)) { 1334 I.setMetadata(LLVMContext::MD_prof, 1335 MDB.createBranchWeights( 1336 {static_cast<uint32_t>(BlockWeights[BB])})); 1337 } 1338 } 1339 } 1340 Instruction *TI = BB->getTerminator(); 1341 if (TI->getNumSuccessors() == 1) 1342 continue; 1343 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1344 continue; 1345 1346 DebugLoc BranchLoc = TI->getDebugLoc(); 1347 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1348 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1349 : Twine("<UNKNOWN LOCATION>")) 1350 << ".\n"); 1351 SmallVector<uint32_t, 4> Weights; 1352 uint32_t MaxWeight = 0; 1353 Instruction *MaxDestInst; 1354 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1355 BasicBlock *Succ = TI->getSuccessor(I); 1356 Edge E = std::make_pair(BB, Succ); 1357 uint64_t Weight = EdgeWeights[E]; 1358 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1359 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1360 // if needed. Sample counts in profiles are 64-bit unsigned values, 1361 // but internally branch weights are expressed as 32-bit values. 1362 if (Weight > std::numeric_limits<uint32_t>::max()) { 1363 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1364 Weight = std::numeric_limits<uint32_t>::max(); 1365 } 1366 // Weight is added by one to avoid propagation errors introduced by 1367 // 0 weights. 1368 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1369 if (Weight != 0) { 1370 if (Weight > MaxWeight) { 1371 MaxWeight = Weight; 1372 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1373 } 1374 } 1375 } 1376 1377 uint64_t TempWeight; 1378 // Only set weights if there is at least one non-zero weight. 1379 // In any other case, let the analyzer set weights. 1380 // Do not set weights if the weights are present. In ThinLTO, the profile 1381 // annotation is done twice. If the first annotation already set the 1382 // weights, the second pass does not need to set it. 1383 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1384 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1385 TI->setMetadata(LLVMContext::MD_prof, 1386 MDB.createBranchWeights(Weights)); 1387 ORE->emit([&]() { 1388 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1389 << "most popular destination for conditional branches at " 1390 << ore::NV("CondBranchesLoc", BranchLoc); 1391 }); 1392 } else { 1393 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1394 } 1395 } 1396 } 1397 1398 /// Get the line number for the function header. 1399 /// 1400 /// This looks up function \p F in the current compilation unit and 1401 /// retrieves the line number where the function is defined. This is 1402 /// line 0 for all the samples read from the profile file. Every line 1403 /// number is relative to this line. 1404 /// 1405 /// \param F Function object to query. 1406 /// 1407 /// \returns the line number where \p F is defined. If it returns 0, 1408 /// it means that there is no debug information available for \p F. 1409 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1410 if (DISubprogram *S = F.getSubprogram()) 1411 return S->getLine(); 1412 1413 if (NoWarnSampleUnused) 1414 return 0; 1415 1416 // If the start of \p F is missing, emit a diagnostic to inform the user 1417 // about the missed opportunity. 1418 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1419 "No debug information found in function " + F.getName() + 1420 ": Function profile not used", 1421 DS_Warning)); 1422 return 0; 1423 } 1424 1425 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1426 DT.reset(new DominatorTree); 1427 DT->recalculate(F); 1428 1429 PDT.reset(new PostDominatorTree(F)); 1430 1431 LI.reset(new LoopInfo); 1432 LI->analyze(*DT); 1433 } 1434 1435 /// Generate branch weight metadata for all branches in \p F. 1436 /// 1437 /// Branch weights are computed out of instruction samples using a 1438 /// propagation heuristic. Propagation proceeds in 3 phases: 1439 /// 1440 /// 1- Assignment of block weights. All the basic blocks in the function 1441 /// are initial assigned the same weight as their most frequently 1442 /// executed instruction. 1443 /// 1444 /// 2- Creation of equivalence classes. Since samples may be missing from 1445 /// blocks, we can fill in the gaps by setting the weights of all the 1446 /// blocks in the same equivalence class to the same weight. To compute 1447 /// the concept of equivalence, we use dominance and loop information. 1448 /// Two blocks B1 and B2 are in the same equivalence class if B1 1449 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1450 /// 1451 /// 3- Propagation of block weights into edges. This uses a simple 1452 /// propagation heuristic. The following rules are applied to every 1453 /// block BB in the CFG: 1454 /// 1455 /// - If BB has a single predecessor/successor, then the weight 1456 /// of that edge is the weight of the block. 1457 /// 1458 /// - If all the edges are known except one, and the weight of the 1459 /// block is already known, the weight of the unknown edge will 1460 /// be the weight of the block minus the sum of all the known 1461 /// edges. If the sum of all the known edges is larger than BB's weight, 1462 /// we set the unknown edge weight to zero. 1463 /// 1464 /// - If there is a self-referential edge, and the weight of the block is 1465 /// known, the weight for that edge is set to the weight of the block 1466 /// minus the weight of the other incoming edges to that block (if 1467 /// known). 1468 /// 1469 /// Since this propagation is not guaranteed to finalize for every CFG, we 1470 /// only allow it to proceed for a limited number of iterations (controlled 1471 /// by -sample-profile-max-propagate-iterations). 1472 /// 1473 /// FIXME: Try to replace this propagation heuristic with a scheme 1474 /// that is guaranteed to finalize. A work-list approach similar to 1475 /// the standard value propagation algorithm used by SSA-CCP might 1476 /// work here. 1477 /// 1478 /// Once all the branch weights are computed, we emit the MD_prof 1479 /// metadata on BB using the computed values for each of its branches. 1480 /// 1481 /// \param F The function to query. 1482 /// 1483 /// \returns true if \p F was modified. Returns false, otherwise. 1484 bool SampleProfileLoader::emitAnnotations(Function &F) { 1485 bool Changed = false; 1486 1487 if (getFunctionLoc(F) == 0) 1488 return false; 1489 1490 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1491 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1492 1493 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1494 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1495 1496 // Compute basic block weights. 1497 Changed |= computeBlockWeights(F); 1498 1499 if (Changed) { 1500 // Add an entry count to the function using the samples gathered at the 1501 // function entry. 1502 // Sets the GUIDs that are inlined in the profiled binary. This is used 1503 // for ThinLink to make correct liveness analysis, and also make the IR 1504 // match the profiled binary before annotation. 1505 F.setEntryCount( 1506 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1507 &InlinedGUIDs); 1508 1509 // Compute dominance and loop info needed for propagation. 1510 computeDominanceAndLoopInfo(F); 1511 1512 // Find equivalence classes. 1513 findEquivalenceClasses(F); 1514 1515 // Propagate weights to all edges. 1516 propagateWeights(F); 1517 } 1518 1519 // If coverage checking was requested, compute it now. 1520 if (SampleProfileRecordCoverage) { 1521 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1522 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1523 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1524 if (Coverage < SampleProfileRecordCoverage) { 1525 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1526 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1527 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1528 Twine(Coverage) + "%) were applied", 1529 DS_Warning)); 1530 } 1531 } 1532 1533 if (SampleProfileSampleCoverage) { 1534 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1535 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1536 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1537 if (Coverage < SampleProfileSampleCoverage) { 1538 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1539 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1540 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1541 Twine(Coverage) + "%) were applied", 1542 DS_Warning)); 1543 } 1544 } 1545 return Changed; 1546 } 1547 1548 char SampleProfileLoaderLegacyPass::ID = 0; 1549 1550 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1551 "Sample Profile loader", false, false) 1552 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1554 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1555 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1556 "Sample Profile loader", false, false) 1557 1558 bool SampleProfileLoader::doInitialization(Module &M) { 1559 auto &Ctx = M.getContext(); 1560 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1561 if (std::error_code EC = ReaderOrErr.getError()) { 1562 std::string Msg = "Could not open profile: " + EC.message(); 1563 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1564 return false; 1565 } 1566 Reader = std::move(ReaderOrErr.get()); 1567 Reader->collectFuncsToUse(M); 1568 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1569 1570 if (!RemappingFilename.empty()) { 1571 // Apply profile remappings to the loaded profile data if requested. 1572 // For now, we only support remapping symbols encoded using the Itanium 1573 // C++ ABI's name mangling scheme. 1574 ReaderOrErr = SampleProfileReaderItaniumRemapper::create( 1575 RemappingFilename, Ctx, std::move(Reader)); 1576 if (std::error_code EC = ReaderOrErr.getError()) { 1577 std::string Msg = "Could not open profile remapping file: " + EC.message(); 1578 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1579 return false; 1580 } 1581 Reader = std::move(ReaderOrErr.get()); 1582 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1583 } 1584 return true; 1585 } 1586 1587 ModulePass *llvm::createSampleProfileLoaderPass() { 1588 return new SampleProfileLoaderLegacyPass(); 1589 } 1590 1591 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1592 return new SampleProfileLoaderLegacyPass(Name); 1593 } 1594 1595 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1596 ProfileSummaryInfo *_PSI) { 1597 FunctionSamples::GUIDToFuncNameMapper Mapper(M); 1598 if (!ProfileIsValid) 1599 return false; 1600 1601 PSI = _PSI; 1602 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1603 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1604 ProfileSummary::PSK_Sample); 1605 1606 // Compute the total number of samples collected in this profile. 1607 for (const auto &I : Reader->getProfiles()) 1608 TotalCollectedSamples += I.second.getTotalSamples(); 1609 1610 // Populate the symbol map. 1611 for (const auto &N_F : M.getValueSymbolTable()) { 1612 StringRef OrigName = N_F.getKey(); 1613 Function *F = dyn_cast<Function>(N_F.getValue()); 1614 if (F == nullptr) 1615 continue; 1616 SymbolMap[OrigName] = F; 1617 auto pos = OrigName.find('.'); 1618 if (pos != StringRef::npos) { 1619 StringRef NewName = OrigName.substr(0, pos); 1620 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1621 // Failiing to insert means there is already an entry in SymbolMap, 1622 // thus there are multiple functions that are mapped to the same 1623 // stripped name. In this case of name conflicting, set the value 1624 // to nullptr to avoid confusion. 1625 if (!r.second) 1626 r.first->second = nullptr; 1627 } 1628 } 1629 1630 bool retval = false; 1631 for (auto &F : M) 1632 if (!F.isDeclaration()) { 1633 clearFunctionData(); 1634 retval |= runOnFunction(F, AM); 1635 } 1636 1637 // Account for cold calls not inlined.... 1638 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1639 notInlinedCallInfo) 1640 updateProfileCallee(pair.first, pair.second.entryCount); 1641 1642 return retval; 1643 } 1644 1645 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1646 ACT = &getAnalysis<AssumptionCacheTracker>(); 1647 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1648 ProfileSummaryInfo *PSI = 1649 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1650 return SampleLoader.runOnModule(M, nullptr, PSI); 1651 } 1652 1653 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1654 1655 DILocation2SampleMap.clear(); 1656 // By default the entry count is initialized to -1, which will be treated 1657 // conservatively by getEntryCount as the same as unknown (None). This is 1658 // to avoid newly added code to be treated as cold. If we have samples 1659 // this will be overwritten in emitAnnotations. 1660 // If ProfileSampleAccurate is true or F has profile-sample-accurate 1661 // attribute, initialize the entry count to 0 so callsites or functions 1662 // unsampled will be treated as cold. 1663 uint64_t initialEntryCount = 1664 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) 1665 ? 0 1666 : -1; 1667 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1668 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1669 if (AM) { 1670 auto &FAM = 1671 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1672 .getManager(); 1673 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1674 } else { 1675 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); 1676 ORE = OwnedORE.get(); 1677 } 1678 Samples = Reader->getSamplesFor(F); 1679 if (Samples && !Samples->empty()) 1680 return emitAnnotations(F); 1681 return false; 1682 } 1683 1684 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1685 ModuleAnalysisManager &AM) { 1686 FunctionAnalysisManager &FAM = 1687 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1688 1689 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1690 return FAM.getResult<AssumptionAnalysis>(F); 1691 }; 1692 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1693 return FAM.getResult<TargetIRAnalysis>(F); 1694 }; 1695 1696 SampleProfileLoader SampleLoader( 1697 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1698 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1699 : ProfileRemappingFileName, 1700 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1701 1702 SampleLoader.doInitialization(M); 1703 1704 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1705 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1706 return PreservedAnalyses::all(); 1707 1708 return PreservedAnalyses::none(); 1709 } 1710