1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements interprocedural passes which walk the 11 /// call-graph deducing and/or propagating function attributes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/FunctionAttrs.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BasicAliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/Analysis/CallGraph.h" 30 #include "llvm/Analysis/CallGraphSCCPass.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/LazyCallGraph.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/Use.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/Utils/Local.h" 63 #include <cassert> 64 #include <iterator> 65 #include <map> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "function-attrs" 71 72 STATISTIC(NumReadNone, "Number of functions marked readnone"); 73 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 74 STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); 75 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 76 STATISTIC(NumReturned, "Number of arguments marked returned"); 77 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 78 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 79 STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); 80 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 81 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 82 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 83 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); 84 STATISTIC(NumNoFree, "Number of functions marked as nofree"); 85 STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); 86 STATISTIC(NumNoSync, "Number of functions marked as nosync"); 87 88 STATISTIC(NumThinLinkNoRecurse, 89 "Number of functions marked as norecurse during thinlink"); 90 STATISTIC(NumThinLinkNoUnwind, 91 "Number of functions marked as nounwind during thinlink"); 92 93 static cl::opt<bool> EnableNonnullArgPropagation( 94 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, 95 cl::desc("Try to propagate nonnull argument attributes from callsites to " 96 "caller functions.")); 97 98 static cl::opt<bool> DisableNoUnwindInference( 99 "disable-nounwind-inference", cl::Hidden, 100 cl::desc("Stop inferring nounwind attribute during function-attrs pass")); 101 102 static cl::opt<bool> DisableNoFreeInference( 103 "disable-nofree-inference", cl::Hidden, 104 cl::desc("Stop inferring nofree attribute during function-attrs pass")); 105 106 static cl::opt<bool> DisableThinLTOPropagation( 107 "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, 108 cl::desc("Don't propagate function-attrs in thinLTO")); 109 110 namespace { 111 112 using SCCNodeSet = SmallSetVector<Function *, 8>; 113 114 } // end anonymous namespace 115 116 /// Returns the memory access attribute for function F using AAR for AA results, 117 /// where SCCNodes is the current SCC. 118 /// 119 /// If ThisBody is true, this function may examine the function body and will 120 /// return a result pertaining to this copy of the function. If it is false, the 121 /// result will be based only on AA results for the function declaration; it 122 /// will be assumed that some other (perhaps less optimized) version of the 123 /// function may be selected at link time. 124 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, 125 AAResults &AAR, 126 const SCCNodeSet &SCCNodes) { 127 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 128 if (MRB == FMRB_DoesNotAccessMemory) 129 // Already perfect! 130 return MAK_ReadNone; 131 132 if (!ThisBody) { 133 if (AliasAnalysis::onlyReadsMemory(MRB)) 134 return MAK_ReadOnly; 135 136 if (AliasAnalysis::onlyWritesMemory(MRB)) 137 return MAK_WriteOnly; 138 139 // Conservatively assume it reads and writes to memory. 140 return MAK_MayWrite; 141 } 142 143 // Scan the function body for instructions that may read or write memory. 144 bool ReadsMemory = false; 145 bool WritesMemory = false; 146 for (Instruction &I : instructions(F)) { 147 // Some instructions can be ignored even if they read or write memory. 148 // Detect these now, skipping to the next instruction if one is found. 149 if (auto *Call = dyn_cast<CallBase>(&I)) { 150 // Ignore calls to functions in the same SCC, as long as the call sites 151 // don't have operand bundles. Calls with operand bundles are allowed to 152 // have memory effects not described by the memory effects of the call 153 // target. 154 if (!Call->hasOperandBundles() && Call->getCalledFunction() && 155 SCCNodes.count(Call->getCalledFunction())) 156 continue; 157 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); 158 ModRefInfo MRI = createModRefInfo(MRB); 159 160 // If the call doesn't access memory, we're done. 161 if (isNoModRef(MRI)) 162 continue; 163 164 // A pseudo probe call shouldn't change any function attribute since it 165 // doesn't translate to a real instruction. It comes with a memory access 166 // tag to prevent itself being removed by optimizations and not block 167 // other instructions being optimized. 168 if (isa<PseudoProbeInst>(I)) 169 continue; 170 171 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 172 // The call could access any memory. If that includes writes, note it. 173 if (isModSet(MRI)) 174 WritesMemory = true; 175 // If it reads, note it. 176 if (isRefSet(MRI)) 177 ReadsMemory = true; 178 continue; 179 } 180 181 // Check whether all pointer arguments point to local memory, and 182 // ignore calls that only access local memory. 183 for (const Use &U : Call->args()) { 184 const Value *Arg = U; 185 if (!Arg->getType()->isPtrOrPtrVectorTy()) 186 continue; 187 188 MemoryLocation Loc = 189 MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); 190 191 // Skip accesses to local or constant memory as they don't impact the 192 // externally visible mod/ref behavior. 193 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 194 continue; 195 196 if (isModSet(MRI)) 197 // Writes non-local memory. 198 WritesMemory = true; 199 if (isRefSet(MRI)) 200 // Ok, it reads non-local memory. 201 ReadsMemory = true; 202 } 203 continue; 204 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 205 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 206 if (!LI->isVolatile()) { 207 MemoryLocation Loc = MemoryLocation::get(LI); 208 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 209 continue; 210 } 211 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 212 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 213 if (!SI->isVolatile()) { 214 MemoryLocation Loc = MemoryLocation::get(SI); 215 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 216 continue; 217 } 218 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { 219 // Ignore vaargs on local memory. 220 MemoryLocation Loc = MemoryLocation::get(VI); 221 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 222 continue; 223 } 224 225 // Any remaining instructions need to be taken seriously! Check if they 226 // read or write memory. 227 // 228 // Writes memory, remember that. 229 WritesMemory |= I.mayWriteToMemory(); 230 231 // If this instruction may read memory, remember that. 232 ReadsMemory |= I.mayReadFromMemory(); 233 } 234 235 if (WritesMemory) { 236 if (!ReadsMemory) 237 return MAK_WriteOnly; 238 else 239 return MAK_MayWrite; 240 } 241 242 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 243 } 244 245 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, 246 AAResults &AAR) { 247 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); 248 } 249 250 /// Deduce readonly/readnone attributes for the SCC. 251 template <typename AARGetterT> 252 static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, 253 SmallSet<Function *, 8> &Changed) { 254 // Check if any of the functions in the SCC read or write memory. If they 255 // write memory then they can't be marked readnone or readonly. 256 bool ReadsMemory = false; 257 bool WritesMemory = false; 258 for (Function *F : SCCNodes) { 259 // Call the callable parameter to look up AA results for this function. 260 AAResults &AAR = AARGetter(*F); 261 262 // Non-exact function definitions may not be selected at link time, and an 263 // alternative version that writes to memory may be selected. See the 264 // comment on GlobalValue::isDefinitionExact for more details. 265 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), 266 AAR, SCCNodes)) { 267 case MAK_MayWrite: 268 return; 269 case MAK_ReadOnly: 270 ReadsMemory = true; 271 break; 272 case MAK_WriteOnly: 273 WritesMemory = true; 274 break; 275 case MAK_ReadNone: 276 // Nothing to do! 277 break; 278 } 279 } 280 281 // If the SCC contains both functions that read and functions that write, then 282 // we cannot add readonly attributes. 283 if (ReadsMemory && WritesMemory) 284 return; 285 286 // Success! Functions in this SCC do not access memory, or only read memory. 287 // Give them the appropriate attribute. 288 289 for (Function *F : SCCNodes) { 290 if (F->doesNotAccessMemory()) 291 // Already perfect! 292 continue; 293 294 if (F->onlyReadsMemory() && ReadsMemory) 295 // No change. 296 continue; 297 298 if (F->onlyWritesMemory() && WritesMemory) 299 continue; 300 301 Changed.insert(F); 302 303 // Clear out any existing attributes. 304 AttributeMask AttrsToRemove; 305 AttrsToRemove.addAttribute(Attribute::ReadOnly); 306 AttrsToRemove.addAttribute(Attribute::ReadNone); 307 AttrsToRemove.addAttribute(Attribute::WriteOnly); 308 309 if (!WritesMemory && !ReadsMemory) { 310 // Clear out any "access range attributes" if readnone was deduced. 311 AttrsToRemove.addAttribute(Attribute::ArgMemOnly); 312 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); 313 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 314 } 315 F->removeFnAttrs(AttrsToRemove); 316 317 // Add in the new attribute. 318 if (WritesMemory && !ReadsMemory) 319 F->addFnAttr(Attribute::WriteOnly); 320 else 321 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 322 323 if (WritesMemory && !ReadsMemory) 324 ++NumWriteOnly; 325 else if (ReadsMemory) 326 ++NumReadOnly; 327 else 328 ++NumReadNone; 329 } 330 } 331 332 // Compute definitive function attributes for a function taking into account 333 // prevailing definitions and linkage types 334 static FunctionSummary *calculatePrevailingSummary( 335 ValueInfo VI, 336 DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, 337 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 338 IsPrevailing) { 339 340 if (CachedPrevailingSummary.count(VI)) 341 return CachedPrevailingSummary[VI]; 342 343 /// At this point, prevailing symbols have been resolved. The following leads 344 /// to returning a conservative result: 345 /// - Multiple instances with local linkage. Normally local linkage would be 346 /// unique per module 347 /// as the GUID includes the module path. We could have a guid alias if 348 /// there wasn't any distinguishing path when each file was compiled, but 349 /// that should be rare so we'll punt on those. 350 351 /// These next 2 cases should not happen and will assert: 352 /// - Multiple instances with external linkage. This should be caught in 353 /// symbol resolution 354 /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our 355 /// knowledge meaning we have to go conservative. 356 357 /// Otherwise, we calculate attributes for a function as: 358 /// 1. If we have a local linkage, take its attributes. If there's somehow 359 /// multiple, bail and go conservative. 360 /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is 361 /// prevailing, take its attributes. 362 /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic 363 /// differences. However, if the prevailing copy is known it will be used 364 /// so take its attributes. If the prevailing copy is in a native file 365 /// all IR copies will be dead and propagation will go conservative. 366 /// 4. AvailableExternally summaries without a prevailing copy are known to 367 /// occur in a couple of circumstances: 368 /// a. An internal function gets imported due to its caller getting 369 /// imported, it becomes AvailableExternally but no prevailing 370 /// definition exists. Because it has to get imported along with its 371 /// caller the attributes will be captured by propagating on its 372 /// caller. 373 /// b. C++11 [temp.explicit]p10 can generate AvailableExternally 374 /// definitions of explicitly instanced template declarations 375 /// for inlining which are ultimately dropped from the TU. Since this 376 /// is localized to the TU the attributes will have already made it to 377 /// the callers. 378 /// These are edge cases and already captured by their callers so we 379 /// ignore these for now. If they become relevant to optimize in the 380 /// future this can be revisited. 381 /// 5. Otherwise, go conservative. 382 383 CachedPrevailingSummary[VI] = nullptr; 384 FunctionSummary *Local = nullptr; 385 FunctionSummary *Prevailing = nullptr; 386 387 for (const auto &GVS : VI.getSummaryList()) { 388 if (!GVS->isLive()) 389 continue; 390 391 FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); 392 // Virtual and Unknown (e.g. indirect) calls require going conservative 393 if (!FS || FS->fflags().HasUnknownCall) 394 return nullptr; 395 396 const auto &Linkage = GVS->linkage(); 397 if (GlobalValue::isLocalLinkage(Linkage)) { 398 if (Local) { 399 LLVM_DEBUG( 400 dbgs() 401 << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " 402 "function " 403 << VI.name() << " from " << FS->modulePath() << ". Previous module " 404 << Local->modulePath() << "\n"); 405 return nullptr; 406 } 407 Local = FS; 408 } else if (GlobalValue::isExternalLinkage(Linkage)) { 409 assert(IsPrevailing(VI.getGUID(), GVS.get())); 410 Prevailing = FS; 411 break; 412 } else if (GlobalValue::isWeakODRLinkage(Linkage) || 413 GlobalValue::isLinkOnceODRLinkage(Linkage) || 414 GlobalValue::isWeakAnyLinkage(Linkage) || 415 GlobalValue::isLinkOnceAnyLinkage(Linkage)) { 416 if (IsPrevailing(VI.getGUID(), GVS.get())) { 417 Prevailing = FS; 418 break; 419 } 420 } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { 421 // TODO: Handle these cases if they become meaningful 422 continue; 423 } 424 } 425 426 if (Local) { 427 assert(!Prevailing); 428 CachedPrevailingSummary[VI] = Local; 429 } else if (Prevailing) { 430 assert(!Local); 431 CachedPrevailingSummary[VI] = Prevailing; 432 } 433 434 return CachedPrevailingSummary[VI]; 435 } 436 437 bool llvm::thinLTOPropagateFunctionAttrs( 438 ModuleSummaryIndex &Index, 439 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 440 IsPrevailing) { 441 // TODO: implement addNoAliasAttrs once 442 // there's more information about the return type in the summary 443 if (DisableThinLTOPropagation) 444 return false; 445 446 DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; 447 bool Changed = false; 448 449 auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { 450 // Assume we can propagate unless we discover otherwise 451 FunctionSummary::FFlags InferredFlags; 452 InferredFlags.NoRecurse = (SCCNodes.size() == 1); 453 InferredFlags.NoUnwind = true; 454 455 for (auto &V : SCCNodes) { 456 FunctionSummary *CallerSummary = 457 calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); 458 459 // Function summaries can fail to contain information such as declarations 460 if (!CallerSummary) 461 return; 462 463 if (CallerSummary->fflags().MayThrow) 464 InferredFlags.NoUnwind = false; 465 466 for (const auto &Callee : CallerSummary->calls()) { 467 FunctionSummary *CalleeSummary = calculatePrevailingSummary( 468 Callee.first, CachedPrevailingSummary, IsPrevailing); 469 470 if (!CalleeSummary) 471 return; 472 473 if (!CalleeSummary->fflags().NoRecurse) 474 InferredFlags.NoRecurse = false; 475 476 if (!CalleeSummary->fflags().NoUnwind) 477 InferredFlags.NoUnwind = false; 478 479 if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) 480 break; 481 } 482 } 483 484 if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { 485 Changed = true; 486 for (auto &V : SCCNodes) { 487 if (InferredFlags.NoRecurse) { 488 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " 489 << V.name() << "\n"); 490 ++NumThinLinkNoRecurse; 491 } 492 493 if (InferredFlags.NoUnwind) { 494 LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " 495 << V.name() << "\n"); 496 ++NumThinLinkNoUnwind; 497 } 498 499 for (auto &S : V.getSummaryList()) { 500 if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { 501 if (InferredFlags.NoRecurse) 502 FS->setNoRecurse(); 503 504 if (InferredFlags.NoUnwind) 505 FS->setNoUnwind(); 506 } 507 } 508 } 509 } 510 }; 511 512 // Call propagation functions on each SCC in the Index 513 for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); 514 ++I) { 515 std::vector<ValueInfo> Nodes(*I); 516 PropagateAttributes(Nodes); 517 } 518 return Changed; 519 } 520 521 namespace { 522 523 /// For a given pointer Argument, this retains a list of Arguments of functions 524 /// in the same SCC that the pointer data flows into. We use this to build an 525 /// SCC of the arguments. 526 struct ArgumentGraphNode { 527 Argument *Definition; 528 SmallVector<ArgumentGraphNode *, 4> Uses; 529 }; 530 531 class ArgumentGraph { 532 // We store pointers to ArgumentGraphNode objects, so it's important that 533 // that they not move around upon insert. 534 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; 535 536 ArgumentMapTy ArgumentMap; 537 538 // There is no root node for the argument graph, in fact: 539 // void f(int *x, int *y) { if (...) f(x, y); } 540 // is an example where the graph is disconnected. The SCCIterator requires a 541 // single entry point, so we maintain a fake ("synthetic") root node that 542 // uses every node. Because the graph is directed and nothing points into 543 // the root, it will not participate in any SCCs (except for its own). 544 ArgumentGraphNode SyntheticRoot; 545 546 public: 547 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 548 549 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; 550 551 iterator begin() { return SyntheticRoot.Uses.begin(); } 552 iterator end() { return SyntheticRoot.Uses.end(); } 553 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 554 555 ArgumentGraphNode *operator[](Argument *A) { 556 ArgumentGraphNode &Node = ArgumentMap[A]; 557 Node.Definition = A; 558 SyntheticRoot.Uses.push_back(&Node); 559 return &Node; 560 } 561 }; 562 563 /// This tracker checks whether callees are in the SCC, and if so it does not 564 /// consider that a capture, instead adding it to the "Uses" list and 565 /// continuing with the analysis. 566 struct ArgumentUsesTracker : public CaptureTracker { 567 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} 568 569 void tooManyUses() override { Captured = true; } 570 571 bool captured(const Use *U) override { 572 CallBase *CB = dyn_cast<CallBase>(U->getUser()); 573 if (!CB) { 574 Captured = true; 575 return true; 576 } 577 578 Function *F = CB->getCalledFunction(); 579 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 580 Captured = true; 581 return true; 582 } 583 584 assert(!CB->isCallee(U) && "callee operand reported captured?"); 585 const unsigned UseIndex = CB->getDataOperandNo(U); 586 if (UseIndex >= CB->arg_size()) { 587 // Data operand, but not a argument operand -- must be a bundle operand 588 assert(CB->hasOperandBundles() && "Must be!"); 589 590 // CaptureTracking told us that we're being captured by an operand bundle 591 // use. In this case it does not matter if the callee is within our SCC 592 // or not -- we've been captured in some unknown way, and we have to be 593 // conservative. 594 Captured = true; 595 return true; 596 } 597 598 if (UseIndex >= F->arg_size()) { 599 assert(F->isVarArg() && "More params than args in non-varargs call"); 600 Captured = true; 601 return true; 602 } 603 604 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 605 return false; 606 } 607 608 // True only if certainly captured (used outside our SCC). 609 bool Captured = false; 610 611 // Uses within our SCC. 612 SmallVector<Argument *, 4> Uses; 613 614 const SCCNodeSet &SCCNodes; 615 }; 616 617 } // end anonymous namespace 618 619 namespace llvm { 620 621 template <> struct GraphTraits<ArgumentGraphNode *> { 622 using NodeRef = ArgumentGraphNode *; 623 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; 624 625 static NodeRef getEntryNode(NodeRef A) { return A; } 626 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } 627 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } 628 }; 629 630 template <> 631 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 632 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } 633 634 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 635 return AG->begin(); 636 } 637 638 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 639 }; 640 641 } // end namespace llvm 642 643 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 644 static Attribute::AttrKind 645 determinePointerAccessAttrs(Argument *A, 646 const SmallPtrSet<Argument *, 8> &SCCNodes) { 647 SmallVector<Use *, 32> Worklist; 648 SmallPtrSet<Use *, 32> Visited; 649 650 // inalloca arguments are always clobbered by the call. 651 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) 652 return Attribute::None; 653 654 bool IsRead = false; 655 bool IsWrite = false; 656 657 for (Use &U : A->uses()) { 658 Visited.insert(&U); 659 Worklist.push_back(&U); 660 } 661 662 while (!Worklist.empty()) { 663 if (IsWrite && IsRead) 664 // No point in searching further.. 665 return Attribute::None; 666 667 Use *U = Worklist.pop_back_val(); 668 Instruction *I = cast<Instruction>(U->getUser()); 669 670 switch (I->getOpcode()) { 671 case Instruction::BitCast: 672 case Instruction::GetElementPtr: 673 case Instruction::PHI: 674 case Instruction::Select: 675 case Instruction::AddrSpaceCast: 676 // The original value is not read/written via this if the new value isn't. 677 for (Use &UU : I->uses()) 678 if (Visited.insert(&UU).second) 679 Worklist.push_back(&UU); 680 break; 681 682 case Instruction::Call: 683 case Instruction::Invoke: { 684 CallBase &CB = cast<CallBase>(*I); 685 if (CB.isCallee(U)) { 686 IsRead = true; 687 // Note that indirect calls do not capture, see comment in 688 // CaptureTracking for context 689 continue; 690 } 691 692 // Given we've explictily handled the callee operand above, what's left 693 // must be a data operand (e.g. argument or operand bundle) 694 const unsigned UseIndex = CB.getDataOperandNo(U); 695 696 if (!CB.doesNotCapture(UseIndex)) { 697 if (!CB.onlyReadsMemory()) 698 // If the callee can save a copy into other memory, then simply 699 // scanning uses of the call is insufficient. We have no way 700 // of tracking copies of the pointer through memory to see 701 // if a reloaded copy is written to, thus we must give up. 702 return Attribute::None; 703 // Push users for processing once we finish this one 704 if (!I->getType()->isVoidTy()) 705 for (Use &UU : I->uses()) 706 if (Visited.insert(&UU).second) 707 Worklist.push_back(&UU); 708 } 709 710 if (CB.doesNotAccessMemory()) 711 continue; 712 713 if (Function *F = CB.getCalledFunction()) 714 if (CB.isArgOperand(U) && UseIndex < F->arg_size() && 715 SCCNodes.count(F->getArg(UseIndex))) 716 // This is an argument which is part of the speculative SCC. Note 717 // that only operands corresponding to formal arguments of the callee 718 // can participate in the speculation. 719 break; 720 721 // The accessors used on call site here do the right thing for calls and 722 // invokes with operand bundles. 723 if (CB.doesNotAccessMemory(UseIndex)) { 724 /* nop */ 725 } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { 726 IsRead = true; 727 } else if (CB.hasFnAttr(Attribute::WriteOnly) || 728 CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { 729 IsWrite = true; 730 } else { 731 return Attribute::None; 732 } 733 break; 734 } 735 736 case Instruction::Load: 737 // A volatile load has side effects beyond what readonly can be relied 738 // upon. 739 if (cast<LoadInst>(I)->isVolatile()) 740 return Attribute::None; 741 742 IsRead = true; 743 break; 744 745 case Instruction::Store: 746 if (cast<StoreInst>(I)->getValueOperand() == *U) 747 // untrackable capture 748 return Attribute::None; 749 750 // A volatile store has side effects beyond what writeonly can be relied 751 // upon. 752 if (cast<StoreInst>(I)->isVolatile()) 753 return Attribute::None; 754 755 IsWrite = true; 756 break; 757 758 case Instruction::ICmp: 759 case Instruction::Ret: 760 break; 761 762 default: 763 return Attribute::None; 764 } 765 } 766 767 if (IsWrite && IsRead) 768 return Attribute::None; 769 else if (IsRead) 770 return Attribute::ReadOnly; 771 else if (IsWrite) 772 return Attribute::WriteOnly; 773 else 774 return Attribute::ReadNone; 775 } 776 777 /// Deduce returned attributes for the SCC. 778 static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, 779 SmallSet<Function *, 8> &Changed) { 780 // Check each function in turn, determining if an argument is always returned. 781 for (Function *F : SCCNodes) { 782 // We can infer and propagate function attributes only when we know that the 783 // definition we'll get at link time is *exactly* the definition we see now. 784 // For more details, see GlobalValue::mayBeDerefined. 785 if (!F->hasExactDefinition()) 786 continue; 787 788 if (F->getReturnType()->isVoidTy()) 789 continue; 790 791 // There is nothing to do if an argument is already marked as 'returned'. 792 if (llvm::any_of(F->args(), 793 [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) 794 continue; 795 796 auto FindRetArg = [&]() -> Value * { 797 Value *RetArg = nullptr; 798 for (BasicBlock &BB : *F) 799 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { 800 // Note that stripPointerCasts should look through functions with 801 // returned arguments. 802 Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); 803 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) 804 return nullptr; 805 806 if (!RetArg) 807 RetArg = RetVal; 808 else if (RetArg != RetVal) 809 return nullptr; 810 } 811 812 return RetArg; 813 }; 814 815 if (Value *RetArg = FindRetArg()) { 816 auto *A = cast<Argument>(RetArg); 817 A->addAttr(Attribute::Returned); 818 ++NumReturned; 819 Changed.insert(F); 820 } 821 } 822 } 823 824 /// If a callsite has arguments that are also arguments to the parent function, 825 /// try to propagate attributes from the callsite's arguments to the parent's 826 /// arguments. This may be important because inlining can cause information loss 827 /// when attribute knowledge disappears with the inlined call. 828 static bool addArgumentAttrsFromCallsites(Function &F) { 829 if (!EnableNonnullArgPropagation) 830 return false; 831 832 bool Changed = false; 833 834 // For an argument attribute to transfer from a callsite to the parent, the 835 // call must be guaranteed to execute every time the parent is called. 836 // Conservatively, just check for calls in the entry block that are guaranteed 837 // to execute. 838 // TODO: This could be enhanced by testing if the callsite post-dominates the 839 // entry block or by doing simple forward walks or backward walks to the 840 // callsite. 841 BasicBlock &Entry = F.getEntryBlock(); 842 for (Instruction &I : Entry) { 843 if (auto *CB = dyn_cast<CallBase>(&I)) { 844 if (auto *CalledFunc = CB->getCalledFunction()) { 845 for (auto &CSArg : CalledFunc->args()) { 846 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) 847 continue; 848 849 // If the non-null callsite argument operand is an argument to 'F' 850 // (the caller) and the call is guaranteed to execute, then the value 851 // must be non-null throughout 'F'. 852 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); 853 if (FArg && !FArg->hasNonNullAttr()) { 854 FArg->addAttr(Attribute::NonNull); 855 Changed = true; 856 } 857 } 858 } 859 } 860 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 861 break; 862 } 863 864 return Changed; 865 } 866 867 static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { 868 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || 869 R == Attribute::WriteOnly) 870 && "Must be an access attribute."); 871 assert(A && "Argument must not be null."); 872 873 // If the argument already has the attribute, nothing needs to be done. 874 if (A->hasAttribute(R)) 875 return false; 876 877 // Otherwise, remove potentially conflicting attribute, add the new one, 878 // and update statistics. 879 A->removeAttr(Attribute::WriteOnly); 880 A->removeAttr(Attribute::ReadOnly); 881 A->removeAttr(Attribute::ReadNone); 882 A->addAttr(R); 883 if (R == Attribute::ReadOnly) 884 ++NumReadOnlyArg; 885 else if (R == Attribute::WriteOnly) 886 ++NumWriteOnlyArg; 887 else 888 ++NumReadNoneArg; 889 return true; 890 } 891 892 /// Deduce nocapture attributes for the SCC. 893 static void addArgumentAttrs(const SCCNodeSet &SCCNodes, 894 SmallSet<Function *, 8> &Changed) { 895 ArgumentGraph AG; 896 897 // Check each function in turn, determining which pointer arguments are not 898 // captured. 899 for (Function *F : SCCNodes) { 900 // We can infer and propagate function attributes only when we know that the 901 // definition we'll get at link time is *exactly* the definition we see now. 902 // For more details, see GlobalValue::mayBeDerefined. 903 if (!F->hasExactDefinition()) 904 continue; 905 906 if (addArgumentAttrsFromCallsites(*F)) 907 Changed.insert(F); 908 909 // Functions that are readonly (or readnone) and nounwind and don't return 910 // a value can't capture arguments. Don't analyze them. 911 if (F->onlyReadsMemory() && F->doesNotThrow() && 912 F->getReturnType()->isVoidTy()) { 913 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 914 ++A) { 915 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 916 A->addAttr(Attribute::NoCapture); 917 ++NumNoCapture; 918 Changed.insert(F); 919 } 920 } 921 continue; 922 } 923 924 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 925 ++A) { 926 if (!A->getType()->isPointerTy()) 927 continue; 928 bool HasNonLocalUses = false; 929 if (!A->hasNoCaptureAttr()) { 930 ArgumentUsesTracker Tracker(SCCNodes); 931 PointerMayBeCaptured(&*A, &Tracker); 932 if (!Tracker.Captured) { 933 if (Tracker.Uses.empty()) { 934 // If it's trivially not captured, mark it nocapture now. 935 A->addAttr(Attribute::NoCapture); 936 ++NumNoCapture; 937 Changed.insert(F); 938 } else { 939 // If it's not trivially captured and not trivially not captured, 940 // then it must be calling into another function in our SCC. Save 941 // its particulars for Argument-SCC analysis later. 942 ArgumentGraphNode *Node = AG[&*A]; 943 for (Argument *Use : Tracker.Uses) { 944 Node->Uses.push_back(AG[Use]); 945 if (Use != &*A) 946 HasNonLocalUses = true; 947 } 948 } 949 } 950 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 951 } 952 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 953 // Can we determine that it's readonly/readnone/writeonly without doing 954 // an SCC? Note that we don't allow any calls at all here, or else our 955 // result will be dependent on the iteration order through the 956 // functions in the SCC. 957 SmallPtrSet<Argument *, 8> Self; 958 Self.insert(&*A); 959 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 960 if (R != Attribute::None) 961 if (addAccessAttr(A, R)) 962 Changed.insert(F); 963 } 964 } 965 } 966 967 // The graph we've collected is partial because we stopped scanning for 968 // argument uses once we solved the argument trivially. These partial nodes 969 // show up as ArgumentGraphNode objects with an empty Uses list, and for 970 // these nodes the final decision about whether they capture has already been 971 // made. If the definition doesn't have a 'nocapture' attribute by now, it 972 // captures. 973 974 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 975 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 976 if (ArgumentSCC.size() == 1) { 977 if (!ArgumentSCC[0]->Definition) 978 continue; // synthetic root node 979 980 // eg. "void f(int* x) { if (...) f(x); }" 981 if (ArgumentSCC[0]->Uses.size() == 1 && 982 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 983 Argument *A = ArgumentSCC[0]->Definition; 984 A->addAttr(Attribute::NoCapture); 985 ++NumNoCapture; 986 Changed.insert(A->getParent()); 987 988 // Infer the access attributes given the new nocapture one 989 SmallPtrSet<Argument *, 8> Self; 990 Self.insert(&*A); 991 Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); 992 if (R != Attribute::None) 993 addAccessAttr(A, R); 994 } 995 continue; 996 } 997 998 bool SCCCaptured = false; 999 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1000 I != E && !SCCCaptured; ++I) { 1001 ArgumentGraphNode *Node = *I; 1002 if (Node->Uses.empty()) { 1003 if (!Node->Definition->hasNoCaptureAttr()) 1004 SCCCaptured = true; 1005 } 1006 } 1007 if (SCCCaptured) 1008 continue; 1009 1010 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 1011 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 1012 // quickly looking up whether a given Argument is in this ArgumentSCC. 1013 for (ArgumentGraphNode *I : ArgumentSCC) { 1014 ArgumentSCCNodes.insert(I->Definition); 1015 } 1016 1017 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 1018 I != E && !SCCCaptured; ++I) { 1019 ArgumentGraphNode *N = *I; 1020 for (ArgumentGraphNode *Use : N->Uses) { 1021 Argument *A = Use->Definition; 1022 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 1023 continue; 1024 SCCCaptured = true; 1025 break; 1026 } 1027 } 1028 if (SCCCaptured) 1029 continue; 1030 1031 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1032 Argument *A = ArgumentSCC[i]->Definition; 1033 A->addAttr(Attribute::NoCapture); 1034 ++NumNoCapture; 1035 Changed.insert(A->getParent()); 1036 } 1037 1038 // We also want to compute readonly/readnone/writeonly. With a small number 1039 // of false negatives, we can assume that any pointer which is captured 1040 // isn't going to be provably readonly or readnone, since by definition 1041 // we can't analyze all uses of a captured pointer. 1042 // 1043 // The false negatives happen when the pointer is captured by a function 1044 // that promises readonly/readnone behaviour on the pointer, then the 1045 // pointer's lifetime ends before anything that writes to arbitrary memory. 1046 // Also, a readonly/readnone pointer may be returned, but returning a 1047 // pointer is capturing it. 1048 1049 auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { 1050 if (A == B) 1051 return A; 1052 if (A == Attribute::ReadNone) 1053 return B; 1054 if (B == Attribute::ReadNone) 1055 return A; 1056 return Attribute::None; 1057 }; 1058 1059 Attribute::AttrKind AccessAttr = Attribute::ReadNone; 1060 for (unsigned i = 0, e = ArgumentSCC.size(); 1061 i != e && AccessAttr != Attribute::None; ++i) { 1062 Argument *A = ArgumentSCC[i]->Definition; 1063 Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); 1064 AccessAttr = meetAccessAttr(AccessAttr, K); 1065 } 1066 1067 if (AccessAttr != Attribute::None) { 1068 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 1069 Argument *A = ArgumentSCC[i]->Definition; 1070 if (addAccessAttr(A, AccessAttr)) 1071 Changed.insert(A->getParent()); 1072 } 1073 } 1074 } 1075 } 1076 1077 /// Tests whether a function is "malloc-like". 1078 /// 1079 /// A function is "malloc-like" if it returns either null or a pointer that 1080 /// doesn't alias any other pointer visible to the caller. 1081 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 1082 SmallSetVector<Value *, 8> FlowsToReturn; 1083 for (BasicBlock &BB : *F) 1084 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1085 FlowsToReturn.insert(Ret->getReturnValue()); 1086 1087 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1088 Value *RetVal = FlowsToReturn[i]; 1089 1090 if (Constant *C = dyn_cast<Constant>(RetVal)) { 1091 if (!C->isNullValue() && !isa<UndefValue>(C)) 1092 return false; 1093 1094 continue; 1095 } 1096 1097 if (isa<Argument>(RetVal)) 1098 return false; 1099 1100 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 1101 switch (RVI->getOpcode()) { 1102 // Extend the analysis by looking upwards. 1103 case Instruction::BitCast: 1104 case Instruction::GetElementPtr: 1105 case Instruction::AddrSpaceCast: 1106 FlowsToReturn.insert(RVI->getOperand(0)); 1107 continue; 1108 case Instruction::Select: { 1109 SelectInst *SI = cast<SelectInst>(RVI); 1110 FlowsToReturn.insert(SI->getTrueValue()); 1111 FlowsToReturn.insert(SI->getFalseValue()); 1112 continue; 1113 } 1114 case Instruction::PHI: { 1115 PHINode *PN = cast<PHINode>(RVI); 1116 for (Value *IncValue : PN->incoming_values()) 1117 FlowsToReturn.insert(IncValue); 1118 continue; 1119 } 1120 1121 // Check whether the pointer came from an allocation. 1122 case Instruction::Alloca: 1123 break; 1124 case Instruction::Call: 1125 case Instruction::Invoke: { 1126 CallBase &CB = cast<CallBase>(*RVI); 1127 if (CB.hasRetAttr(Attribute::NoAlias)) 1128 break; 1129 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) 1130 break; 1131 LLVM_FALLTHROUGH; 1132 } 1133 default: 1134 return false; // Did not come from an allocation. 1135 } 1136 1137 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 1138 return false; 1139 } 1140 1141 return true; 1142 } 1143 1144 /// Deduce noalias attributes for the SCC. 1145 static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, 1146 SmallSet<Function *, 8> &Changed) { 1147 // Check each function in turn, determining which functions return noalias 1148 // pointers. 1149 for (Function *F : SCCNodes) { 1150 // Already noalias. 1151 if (F->returnDoesNotAlias()) 1152 continue; 1153 1154 // We can infer and propagate function attributes only when we know that the 1155 // definition we'll get at link time is *exactly* the definition we see now. 1156 // For more details, see GlobalValue::mayBeDerefined. 1157 if (!F->hasExactDefinition()) 1158 return; 1159 1160 // We annotate noalias return values, which are only applicable to 1161 // pointer types. 1162 if (!F->getReturnType()->isPointerTy()) 1163 continue; 1164 1165 if (!isFunctionMallocLike(F, SCCNodes)) 1166 return; 1167 } 1168 1169 for (Function *F : SCCNodes) { 1170 if (F->returnDoesNotAlias() || 1171 !F->getReturnType()->isPointerTy()) 1172 continue; 1173 1174 F->setReturnDoesNotAlias(); 1175 ++NumNoAlias; 1176 Changed.insert(F); 1177 } 1178 } 1179 1180 /// Tests whether this function is known to not return null. 1181 /// 1182 /// Requires that the function returns a pointer. 1183 /// 1184 /// Returns true if it believes the function will not return a null, and sets 1185 /// \p Speculative based on whether the returned conclusion is a speculative 1186 /// conclusion due to SCC calls. 1187 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 1188 bool &Speculative) { 1189 assert(F->getReturnType()->isPointerTy() && 1190 "nonnull only meaningful on pointer types"); 1191 Speculative = false; 1192 1193 SmallSetVector<Value *, 8> FlowsToReturn; 1194 for (BasicBlock &BB : *F) 1195 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 1196 FlowsToReturn.insert(Ret->getReturnValue()); 1197 1198 auto &DL = F->getParent()->getDataLayout(); 1199 1200 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 1201 Value *RetVal = FlowsToReturn[i]; 1202 1203 // If this value is locally known to be non-null, we're good 1204 if (isKnownNonZero(RetVal, DL)) 1205 continue; 1206 1207 // Otherwise, we need to look upwards since we can't make any local 1208 // conclusions. 1209 Instruction *RVI = dyn_cast<Instruction>(RetVal); 1210 if (!RVI) 1211 return false; 1212 switch (RVI->getOpcode()) { 1213 // Extend the analysis by looking upwards. 1214 case Instruction::BitCast: 1215 case Instruction::GetElementPtr: 1216 case Instruction::AddrSpaceCast: 1217 FlowsToReturn.insert(RVI->getOperand(0)); 1218 continue; 1219 case Instruction::Select: { 1220 SelectInst *SI = cast<SelectInst>(RVI); 1221 FlowsToReturn.insert(SI->getTrueValue()); 1222 FlowsToReturn.insert(SI->getFalseValue()); 1223 continue; 1224 } 1225 case Instruction::PHI: { 1226 PHINode *PN = cast<PHINode>(RVI); 1227 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1228 FlowsToReturn.insert(PN->getIncomingValue(i)); 1229 continue; 1230 } 1231 case Instruction::Call: 1232 case Instruction::Invoke: { 1233 CallBase &CB = cast<CallBase>(*RVI); 1234 Function *Callee = CB.getCalledFunction(); 1235 // A call to a node within the SCC is assumed to return null until 1236 // proven otherwise 1237 if (Callee && SCCNodes.count(Callee)) { 1238 Speculative = true; 1239 continue; 1240 } 1241 return false; 1242 } 1243 default: 1244 return false; // Unknown source, may be null 1245 }; 1246 llvm_unreachable("should have either continued or returned"); 1247 } 1248 1249 return true; 1250 } 1251 1252 /// Deduce nonnull attributes for the SCC. 1253 static void addNonNullAttrs(const SCCNodeSet &SCCNodes, 1254 SmallSet<Function *, 8> &Changed) { 1255 // Speculative that all functions in the SCC return only nonnull 1256 // pointers. We may refute this as we analyze functions. 1257 bool SCCReturnsNonNull = true; 1258 1259 // Check each function in turn, determining which functions return nonnull 1260 // pointers. 1261 for (Function *F : SCCNodes) { 1262 // Already nonnull. 1263 if (F->getAttributes().hasRetAttr(Attribute::NonNull)) 1264 continue; 1265 1266 // We can infer and propagate function attributes only when we know that the 1267 // definition we'll get at link time is *exactly* the definition we see now. 1268 // For more details, see GlobalValue::mayBeDerefined. 1269 if (!F->hasExactDefinition()) 1270 return; 1271 1272 // We annotate nonnull return values, which are only applicable to 1273 // pointer types. 1274 if (!F->getReturnType()->isPointerTy()) 1275 continue; 1276 1277 bool Speculative = false; 1278 if (isReturnNonNull(F, SCCNodes, Speculative)) { 1279 if (!Speculative) { 1280 // Mark the function eagerly since we may discover a function 1281 // which prevents us from speculating about the entire SCC 1282 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() 1283 << " as nonnull\n"); 1284 F->addRetAttr(Attribute::NonNull); 1285 ++NumNonNullReturn; 1286 Changed.insert(F); 1287 } 1288 continue; 1289 } 1290 // At least one function returns something which could be null, can't 1291 // speculate any more. 1292 SCCReturnsNonNull = false; 1293 } 1294 1295 if (SCCReturnsNonNull) { 1296 for (Function *F : SCCNodes) { 1297 if (F->getAttributes().hasRetAttr(Attribute::NonNull) || 1298 !F->getReturnType()->isPointerTy()) 1299 continue; 1300 1301 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 1302 F->addRetAttr(Attribute::NonNull); 1303 ++NumNonNullReturn; 1304 Changed.insert(F); 1305 } 1306 } 1307 } 1308 1309 namespace { 1310 1311 /// Collects a set of attribute inference requests and performs them all in one 1312 /// go on a single SCC Node. Inference involves scanning function bodies 1313 /// looking for instructions that violate attribute assumptions. 1314 /// As soon as all the bodies are fine we are free to set the attribute. 1315 /// Customization of inference for individual attributes is performed by 1316 /// providing a handful of predicates for each attribute. 1317 class AttributeInferer { 1318 public: 1319 /// Describes a request for inference of a single attribute. 1320 struct InferenceDescriptor { 1321 1322 /// Returns true if this function does not have to be handled. 1323 /// General intent for this predicate is to provide an optimization 1324 /// for functions that do not need this attribute inference at all 1325 /// (say, for functions that already have the attribute). 1326 std::function<bool(const Function &)> SkipFunction; 1327 1328 /// Returns true if this instruction violates attribute assumptions. 1329 std::function<bool(Instruction &)> InstrBreaksAttribute; 1330 1331 /// Sets the inferred attribute for this function. 1332 std::function<void(Function &)> SetAttribute; 1333 1334 /// Attribute we derive. 1335 Attribute::AttrKind AKind; 1336 1337 /// If true, only "exact" definitions can be used to infer this attribute. 1338 /// See GlobalValue::isDefinitionExact. 1339 bool RequiresExactDefinition; 1340 1341 InferenceDescriptor(Attribute::AttrKind AK, 1342 std::function<bool(const Function &)> SkipFunc, 1343 std::function<bool(Instruction &)> InstrScan, 1344 std::function<void(Function &)> SetAttr, 1345 bool ReqExactDef) 1346 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), 1347 SetAttribute(SetAttr), AKind(AK), 1348 RequiresExactDefinition(ReqExactDef) {} 1349 }; 1350 1351 private: 1352 SmallVector<InferenceDescriptor, 4> InferenceDescriptors; 1353 1354 public: 1355 void registerAttrInference(InferenceDescriptor AttrInference) { 1356 InferenceDescriptors.push_back(AttrInference); 1357 } 1358 1359 void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); 1360 }; 1361 1362 /// Perform all the requested attribute inference actions according to the 1363 /// attribute predicates stored before. 1364 void AttributeInferer::run(const SCCNodeSet &SCCNodes, 1365 SmallSet<Function *, 8> &Changed) { 1366 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; 1367 // Go through all the functions in SCC and check corresponding attribute 1368 // assumptions for each of them. Attributes that are invalid for this SCC 1369 // will be removed from InferInSCC. 1370 for (Function *F : SCCNodes) { 1371 1372 // No attributes whose assumptions are still valid - done. 1373 if (InferInSCC.empty()) 1374 return; 1375 1376 // Check if our attributes ever need scanning/can be scanned. 1377 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { 1378 if (ID.SkipFunction(*F)) 1379 return false; 1380 1381 // Remove from further inference (invalidate) when visiting a function 1382 // that has no instructions to scan/has an unsuitable definition. 1383 return F->isDeclaration() || 1384 (ID.RequiresExactDefinition && !F->hasExactDefinition()); 1385 }); 1386 1387 // For each attribute still in InferInSCC that doesn't explicitly skip F, 1388 // set up the F instructions scan to verify assumptions of the attribute. 1389 SmallVector<InferenceDescriptor, 4> InferInThisFunc; 1390 llvm::copy_if( 1391 InferInSCC, std::back_inserter(InferInThisFunc), 1392 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); 1393 1394 if (InferInThisFunc.empty()) 1395 continue; 1396 1397 // Start instruction scan. 1398 for (Instruction &I : instructions(*F)) { 1399 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { 1400 if (!ID.InstrBreaksAttribute(I)) 1401 return false; 1402 // Remove attribute from further inference on any other functions 1403 // because attribute assumptions have just been violated. 1404 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { 1405 return D.AKind == ID.AKind; 1406 }); 1407 // Remove attribute from the rest of current instruction scan. 1408 return true; 1409 }); 1410 1411 if (InferInThisFunc.empty()) 1412 break; 1413 } 1414 } 1415 1416 if (InferInSCC.empty()) 1417 return; 1418 1419 for (Function *F : SCCNodes) 1420 // At this point InferInSCC contains only functions that were either: 1421 // - explicitly skipped from scan/inference, or 1422 // - verified to have no instructions that break attribute assumptions. 1423 // Hence we just go and force the attribute for all non-skipped functions. 1424 for (auto &ID : InferInSCC) { 1425 if (ID.SkipFunction(*F)) 1426 continue; 1427 Changed.insert(F); 1428 ID.SetAttribute(*F); 1429 } 1430 } 1431 1432 struct SCCNodesResult { 1433 SCCNodeSet SCCNodes; 1434 bool HasUnknownCall; 1435 }; 1436 1437 } // end anonymous namespace 1438 1439 /// Helper for non-Convergent inference predicate InstrBreaksAttribute. 1440 static bool InstrBreaksNonConvergent(Instruction &I, 1441 const SCCNodeSet &SCCNodes) { 1442 const CallBase *CB = dyn_cast<CallBase>(&I); 1443 // Breaks non-convergent assumption if CS is a convergent call to a function 1444 // not in the SCC. 1445 return CB && CB->isConvergent() && 1446 !SCCNodes.contains(CB->getCalledFunction()); 1447 } 1448 1449 /// Helper for NoUnwind inference predicate InstrBreaksAttribute. 1450 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { 1451 if (!I.mayThrow()) 1452 return false; 1453 if (const auto *CI = dyn_cast<CallInst>(&I)) { 1454 if (Function *Callee = CI->getCalledFunction()) { 1455 // I is a may-throw call to a function inside our SCC. This doesn't 1456 // invalidate our current working assumption that the SCC is no-throw; we 1457 // just have to scan that other function. 1458 if (SCCNodes.contains(Callee)) 1459 return false; 1460 } 1461 } 1462 return true; 1463 } 1464 1465 /// Helper for NoFree inference predicate InstrBreaksAttribute. 1466 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { 1467 CallBase *CB = dyn_cast<CallBase>(&I); 1468 if (!CB) 1469 return false; 1470 1471 if (CB->hasFnAttr(Attribute::NoFree)) 1472 return false; 1473 1474 // Speculatively assume in SCC. 1475 if (Function *Callee = CB->getCalledFunction()) 1476 if (SCCNodes.contains(Callee)) 1477 return false; 1478 1479 return true; 1480 } 1481 1482 /// Attempt to remove convergent function attribute when possible. 1483 /// 1484 /// Returns true if any changes to function attributes were made. 1485 static void inferConvergent(const SCCNodeSet &SCCNodes, 1486 SmallSet<Function *, 8> &Changed) { 1487 AttributeInferer AI; 1488 1489 // Request to remove the convergent attribute from all functions in the SCC 1490 // if every callsite within the SCC is not convergent (except for calls 1491 // to functions within the SCC). 1492 // Note: Removal of the attr from the callsites will happen in 1493 // InstCombineCalls separately. 1494 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1495 Attribute::Convergent, 1496 // Skip non-convergent functions. 1497 [](const Function &F) { return !F.isConvergent(); }, 1498 // Instructions that break non-convergent assumption. 1499 [SCCNodes](Instruction &I) { 1500 return InstrBreaksNonConvergent(I, SCCNodes); 1501 }, 1502 [](Function &F) { 1503 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() 1504 << "\n"); 1505 F.setNotConvergent(); 1506 }, 1507 /* RequiresExactDefinition= */ false}); 1508 // Perform all the requested attribute inference actions. 1509 AI.run(SCCNodes, Changed); 1510 } 1511 1512 /// Infer attributes from all functions in the SCC by scanning every 1513 /// instruction for compliance to the attribute assumptions. Currently it 1514 /// does: 1515 /// - addition of NoUnwind attribute 1516 /// 1517 /// Returns true if any changes to function attributes were made. 1518 static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, 1519 SmallSet<Function *, 8> &Changed) { 1520 AttributeInferer AI; 1521 1522 if (!DisableNoUnwindInference) 1523 // Request to infer nounwind attribute for all the functions in the SCC if 1524 // every callsite within the SCC is not throwing (except for calls to 1525 // functions within the SCC). Note that nounwind attribute suffers from 1526 // derefinement - results may change depending on how functions are 1527 // optimized. Thus it can be inferred only from exact definitions. 1528 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1529 Attribute::NoUnwind, 1530 // Skip non-throwing functions. 1531 [](const Function &F) { return F.doesNotThrow(); }, 1532 // Instructions that break non-throwing assumption. 1533 [&SCCNodes](Instruction &I) { 1534 return InstrBreaksNonThrowing(I, SCCNodes); 1535 }, 1536 [](Function &F) { 1537 LLVM_DEBUG(dbgs() 1538 << "Adding nounwind attr to fn " << F.getName() << "\n"); 1539 F.setDoesNotThrow(); 1540 ++NumNoUnwind; 1541 }, 1542 /* RequiresExactDefinition= */ true}); 1543 1544 if (!DisableNoFreeInference) 1545 // Request to infer nofree attribute for all the functions in the SCC if 1546 // every callsite within the SCC does not directly or indirectly free 1547 // memory (except for calls to functions within the SCC). Note that nofree 1548 // attribute suffers from derefinement - results may change depending on 1549 // how functions are optimized. Thus it can be inferred only from exact 1550 // definitions. 1551 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1552 Attribute::NoFree, 1553 // Skip functions known not to free memory. 1554 [](const Function &F) { return F.doesNotFreeMemory(); }, 1555 // Instructions that break non-deallocating assumption. 1556 [&SCCNodes](Instruction &I) { 1557 return InstrBreaksNoFree(I, SCCNodes); 1558 }, 1559 [](Function &F) { 1560 LLVM_DEBUG(dbgs() 1561 << "Adding nofree attr to fn " << F.getName() << "\n"); 1562 F.setDoesNotFreeMemory(); 1563 ++NumNoFree; 1564 }, 1565 /* RequiresExactDefinition= */ true}); 1566 1567 // Perform all the requested attribute inference actions. 1568 AI.run(SCCNodes, Changed); 1569 } 1570 1571 static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, 1572 SmallSet<Function *, 8> &Changed) { 1573 // Try and identify functions that do not recurse. 1574 1575 // If the SCC contains multiple nodes we know for sure there is recursion. 1576 if (SCCNodes.size() != 1) 1577 return; 1578 1579 Function *F = *SCCNodes.begin(); 1580 if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) 1581 return; 1582 1583 // If all of the calls in F are identifiable and are to norecurse functions, F 1584 // is norecurse. This check also detects self-recursion as F is not currently 1585 // marked norecurse, so any called from F to F will not be marked norecurse. 1586 for (auto &BB : *F) 1587 for (auto &I : BB.instructionsWithoutDebug()) 1588 if (auto *CB = dyn_cast<CallBase>(&I)) { 1589 Function *Callee = CB->getCalledFunction(); 1590 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 1591 // Function calls a potentially recursive function. 1592 return; 1593 } 1594 1595 // Every call was to a non-recursive function other than this function, and 1596 // we have no indirect recursion as the SCC size is one. This function cannot 1597 // recurse. 1598 F->setDoesNotRecurse(); 1599 ++NumNoRecurse; 1600 Changed.insert(F); 1601 } 1602 1603 static bool instructionDoesNotReturn(Instruction &I) { 1604 if (auto *CB = dyn_cast<CallBase>(&I)) 1605 return CB->hasFnAttr(Attribute::NoReturn); 1606 return false; 1607 } 1608 1609 // A basic block can only return if it terminates with a ReturnInst and does not 1610 // contain calls to noreturn functions. 1611 static bool basicBlockCanReturn(BasicBlock &BB) { 1612 if (!isa<ReturnInst>(BB.getTerminator())) 1613 return false; 1614 return none_of(BB, instructionDoesNotReturn); 1615 } 1616 1617 // FIXME: this doesn't handle recursion. 1618 static bool canReturn(Function &F) { 1619 SmallVector<BasicBlock *, 16> Worklist; 1620 SmallPtrSet<BasicBlock *, 16> Visited; 1621 1622 Visited.insert(&F.front()); 1623 Worklist.push_back(&F.front()); 1624 1625 do { 1626 BasicBlock *BB = Worklist.pop_back_val(); 1627 if (basicBlockCanReturn(*BB)) 1628 return true; 1629 for (BasicBlock *Succ : successors(BB)) 1630 if (Visited.insert(Succ).second) 1631 Worklist.push_back(Succ); 1632 } while (!Worklist.empty()); 1633 1634 return false; 1635 } 1636 1637 // Set the noreturn function attribute if possible. 1638 static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, 1639 SmallSet<Function *, 8> &Changed) { 1640 for (Function *F : SCCNodes) { 1641 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || 1642 F->doesNotReturn()) 1643 continue; 1644 1645 if (!canReturn(*F)) { 1646 F->setDoesNotReturn(); 1647 Changed.insert(F); 1648 } 1649 } 1650 } 1651 1652 static bool functionWillReturn(const Function &F) { 1653 // We can infer and propagate function attributes only when we know that the 1654 // definition we'll get at link time is *exactly* the definition we see now. 1655 // For more details, see GlobalValue::mayBeDerefined. 1656 if (!F.hasExactDefinition()) 1657 return false; 1658 1659 // Must-progress function without side-effects must return. 1660 if (F.mustProgress() && F.onlyReadsMemory()) 1661 return true; 1662 1663 // Can only analyze functions with a definition. 1664 if (F.isDeclaration()) 1665 return false; 1666 1667 // Functions with loops require more sophisticated analysis, as the loop 1668 // may be infinite. For now, don't try to handle them. 1669 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; 1670 FindFunctionBackedges(F, Backedges); 1671 if (!Backedges.empty()) 1672 return false; 1673 1674 // If there are no loops, then the function is willreturn if all calls in 1675 // it are willreturn. 1676 return all_of(instructions(F), [](const Instruction &I) { 1677 return I.willReturn(); 1678 }); 1679 } 1680 1681 // Set the willreturn function attribute if possible. 1682 static void addWillReturn(const SCCNodeSet &SCCNodes, 1683 SmallSet<Function *, 8> &Changed) { 1684 for (Function *F : SCCNodes) { 1685 if (!F || F->willReturn() || !functionWillReturn(*F)) 1686 continue; 1687 1688 F->setWillReturn(); 1689 NumWillReturn++; 1690 Changed.insert(F); 1691 } 1692 } 1693 1694 // Return true if this is an atomic which has an ordering stronger than 1695 // unordered. Note that this is different than the predicate we use in 1696 // Attributor. Here we chose to be conservative and consider monotonic 1697 // operations potentially synchronizing. We generally don't do much with 1698 // monotonic operations, so this is simply risk reduction. 1699 static bool isOrderedAtomic(Instruction *I) { 1700 if (!I->isAtomic()) 1701 return false; 1702 1703 if (auto *FI = dyn_cast<FenceInst>(I)) 1704 // All legal orderings for fence are stronger than monotonic. 1705 return FI->getSyncScopeID() != SyncScope::SingleThread; 1706 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) 1707 return true; 1708 else if (auto *SI = dyn_cast<StoreInst>(I)) 1709 return !SI->isUnordered(); 1710 else if (auto *LI = dyn_cast<LoadInst>(I)) 1711 return !LI->isUnordered(); 1712 else { 1713 llvm_unreachable("unknown atomic instruction?"); 1714 } 1715 } 1716 1717 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { 1718 // Volatile may synchronize 1719 if (I.isVolatile()) 1720 return true; 1721 1722 // An ordered atomic may synchronize. (See comment about on monotonic.) 1723 if (isOrderedAtomic(&I)) 1724 return true; 1725 1726 auto *CB = dyn_cast<CallBase>(&I); 1727 if (!CB) 1728 // Non call site cases covered by the two checks above 1729 return false; 1730 1731 if (CB->hasFnAttr(Attribute::NoSync)) 1732 return false; 1733 1734 // Non volatile memset/memcpy/memmoves are nosync 1735 // NOTE: Only intrinsics with volatile flags should be handled here. All 1736 // others should be marked in Intrinsics.td. 1737 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 1738 if (!MI->isVolatile()) 1739 return false; 1740 1741 // Speculatively assume in SCC. 1742 if (Function *Callee = CB->getCalledFunction()) 1743 if (SCCNodes.contains(Callee)) 1744 return false; 1745 1746 return true; 1747 } 1748 1749 // Infer the nosync attribute. 1750 static void addNoSyncAttr(const SCCNodeSet &SCCNodes, 1751 SmallSet<Function *, 8> &Changed) { 1752 AttributeInferer AI; 1753 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ 1754 Attribute::NoSync, 1755 // Skip already marked functions. 1756 [](const Function &F) { return F.hasNoSync(); }, 1757 // Instructions that break nosync assumption. 1758 [&SCCNodes](Instruction &I) { 1759 return InstrBreaksNoSync(I, SCCNodes); 1760 }, 1761 [](Function &F) { 1762 LLVM_DEBUG(dbgs() 1763 << "Adding nosync attr to fn " << F.getName() << "\n"); 1764 F.setNoSync(); 1765 ++NumNoSync; 1766 }, 1767 /* RequiresExactDefinition= */ true}); 1768 AI.run(SCCNodes, Changed); 1769 } 1770 1771 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { 1772 SCCNodesResult Res; 1773 Res.HasUnknownCall = false; 1774 for (Function *F : Functions) { 1775 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || 1776 F->isPresplitCoroutine()) { 1777 // Treat any function we're trying not to optimize as if it were an 1778 // indirect call and omit it from the node set used below. 1779 Res.HasUnknownCall = true; 1780 continue; 1781 } 1782 // Track whether any functions in this SCC have an unknown call edge. 1783 // Note: if this is ever a performance hit, we can common it with 1784 // subsequent routines which also do scans over the instructions of the 1785 // function. 1786 if (!Res.HasUnknownCall) { 1787 for (Instruction &I : instructions(*F)) { 1788 if (auto *CB = dyn_cast<CallBase>(&I)) { 1789 if (!CB->getCalledFunction()) { 1790 Res.HasUnknownCall = true; 1791 break; 1792 } 1793 } 1794 } 1795 } 1796 Res.SCCNodes.insert(F); 1797 } 1798 return Res; 1799 } 1800 1801 template <typename AARGetterT> 1802 static SmallSet<Function *, 8> 1803 deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { 1804 SCCNodesResult Nodes = createSCCNodeSet(Functions); 1805 1806 // Bail if the SCC only contains optnone functions. 1807 if (Nodes.SCCNodes.empty()) 1808 return {}; 1809 1810 SmallSet<Function *, 8> Changed; 1811 1812 addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); 1813 addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); 1814 addArgumentAttrs(Nodes.SCCNodes, Changed); 1815 inferConvergent(Nodes.SCCNodes, Changed); 1816 addNoReturnAttrs(Nodes.SCCNodes, Changed); 1817 addWillReturn(Nodes.SCCNodes, Changed); 1818 1819 // If we have no external nodes participating in the SCC, we can deduce some 1820 // more precise attributes as well. 1821 if (!Nodes.HasUnknownCall) { 1822 addNoAliasAttrs(Nodes.SCCNodes, Changed); 1823 addNonNullAttrs(Nodes.SCCNodes, Changed); 1824 inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); 1825 addNoRecurseAttrs(Nodes.SCCNodes, Changed); 1826 } 1827 1828 addNoSyncAttr(Nodes.SCCNodes, Changed); 1829 1830 // Finally, infer the maximal set of attributes from the ones we've inferred 1831 // above. This is handling the cases where one attribute on a signature 1832 // implies another, but for implementation reasons the inference rule for 1833 // the later is missing (or simply less sophisticated). 1834 for (Function *F : Nodes.SCCNodes) 1835 if (F) 1836 if (inferAttributesFromOthers(*F)) 1837 Changed.insert(F); 1838 1839 return Changed; 1840 } 1841 1842 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 1843 CGSCCAnalysisManager &AM, 1844 LazyCallGraph &CG, 1845 CGSCCUpdateResult &) { 1846 FunctionAnalysisManager &FAM = 1847 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1848 1849 // We pass a lambda into functions to wire them up to the analysis manager 1850 // for getting function analyses. 1851 auto AARGetter = [&](Function &F) -> AAResults & { 1852 return FAM.getResult<AAManager>(F); 1853 }; 1854 1855 SmallVector<Function *, 8> Functions; 1856 for (LazyCallGraph::Node &N : C) { 1857 Functions.push_back(&N.getFunction()); 1858 } 1859 1860 auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); 1861 if (ChangedFunctions.empty()) 1862 return PreservedAnalyses::all(); 1863 1864 // Invalidate analyses for modified functions so that we don't have to 1865 // invalidate all analyses for all functions in this SCC. 1866 PreservedAnalyses FuncPA; 1867 // We haven't changed the CFG for modified functions. 1868 FuncPA.preserveSet<CFGAnalyses>(); 1869 for (Function *Changed : ChangedFunctions) { 1870 FAM.invalidate(*Changed, FuncPA); 1871 // Also invalidate any direct callers of changed functions since analyses 1872 // may care about attributes of direct callees. For example, MemorySSA cares 1873 // about whether or not a call's callee modifies memory and queries that 1874 // through function attributes. 1875 for (auto *U : Changed->users()) { 1876 if (auto *Call = dyn_cast<CallBase>(U)) { 1877 if (Call->getCalledFunction() == Changed) 1878 FAM.invalidate(*Call->getFunction(), FuncPA); 1879 } 1880 } 1881 } 1882 1883 PreservedAnalyses PA; 1884 // We have not added or removed functions. 1885 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1886 // We already invalidated all relevant function analyses above. 1887 PA.preserveSet<AllAnalysesOn<Function>>(); 1888 return PA; 1889 } 1890 1891 namespace { 1892 1893 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1894 // Pass identification, replacement for typeid 1895 static char ID; 1896 1897 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1898 initializePostOrderFunctionAttrsLegacyPassPass( 1899 *PassRegistry::getPassRegistry()); 1900 } 1901 1902 bool runOnSCC(CallGraphSCC &SCC) override; 1903 1904 void getAnalysisUsage(AnalysisUsage &AU) const override { 1905 AU.setPreservesCFG(); 1906 AU.addRequired<AssumptionCacheTracker>(); 1907 getAAResultsAnalysisUsage(AU); 1908 CallGraphSCCPass::getAnalysisUsage(AU); 1909 } 1910 }; 1911 1912 } // end anonymous namespace 1913 1914 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1915 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1916 "Deduce function attributes", false, false) 1917 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1918 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1919 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", 1920 "Deduce function attributes", false, false) 1921 1922 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { 1923 return new PostOrderFunctionAttrsLegacyPass(); 1924 } 1925 1926 template <typename AARGetterT> 1927 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1928 SmallVector<Function *, 8> Functions; 1929 for (CallGraphNode *I : SCC) { 1930 Functions.push_back(I->getFunction()); 1931 } 1932 1933 return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); 1934 } 1935 1936 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1937 if (skipSCC(SCC)) 1938 return false; 1939 return runImpl(SCC, LegacyAARGetter(*this)); 1940 } 1941 1942 namespace { 1943 1944 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1945 // Pass identification, replacement for typeid 1946 static char ID; 1947 1948 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1949 initializeReversePostOrderFunctionAttrsLegacyPassPass( 1950 *PassRegistry::getPassRegistry()); 1951 } 1952 1953 bool runOnModule(Module &M) override; 1954 1955 void getAnalysisUsage(AnalysisUsage &AU) const override { 1956 AU.setPreservesCFG(); 1957 AU.addRequired<CallGraphWrapperPass>(); 1958 AU.addPreserved<CallGraphWrapperPass>(); 1959 } 1960 }; 1961 1962 } // end anonymous namespace 1963 1964 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1965 1966 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, 1967 "rpo-function-attrs", "Deduce function attributes in RPO", 1968 false, false) 1969 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1970 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, 1971 "rpo-function-attrs", "Deduce function attributes in RPO", 1972 false, false) 1973 1974 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1975 return new ReversePostOrderFunctionAttrsLegacyPass(); 1976 } 1977 1978 static bool addNoRecurseAttrsTopDown(Function &F) { 1979 // We check the preconditions for the function prior to calling this to avoid 1980 // the cost of building up a reversible post-order list. We assert them here 1981 // to make sure none of the invariants this relies on were violated. 1982 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1983 assert(!F.doesNotRecurse() && 1984 "This function has already been deduced as norecurs!"); 1985 assert(F.hasInternalLinkage() && 1986 "Can only do top-down deduction for internal linkage functions!"); 1987 1988 // If F is internal and all of its uses are calls from a non-recursive 1989 // functions, then none of its calls could in fact recurse without going 1990 // through a function marked norecurse, and so we can mark this function too 1991 // as norecurse. Note that the uses must actually be calls -- otherwise 1992 // a pointer to this function could be returned from a norecurse function but 1993 // this function could be recursively (indirectly) called. Note that this 1994 // also detects if F is directly recursive as F is not yet marked as 1995 // a norecurse function. 1996 for (auto *U : F.users()) { 1997 auto *I = dyn_cast<Instruction>(U); 1998 if (!I) 1999 return false; 2000 CallBase *CB = dyn_cast<CallBase>(I); 2001 if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) 2002 return false; 2003 } 2004 F.setDoesNotRecurse(); 2005 ++NumNoRecurse; 2006 return true; 2007 } 2008 2009 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 2010 // We only have a post-order SCC traversal (because SCCs are inherently 2011 // discovered in post-order), so we accumulate them in a vector and then walk 2012 // it in reverse. This is simpler than using the RPO iterator infrastructure 2013 // because we need to combine SCC detection and the PO walk of the call 2014 // graph. We can also cheat egregiously because we're primarily interested in 2015 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 2016 // with multiple functions in them will clearly be recursive. 2017 SmallVector<Function *, 16> Worklist; 2018 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 2019 if (I->size() != 1) 2020 continue; 2021 2022 Function *F = I->front()->getFunction(); 2023 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 2024 F->hasInternalLinkage()) 2025 Worklist.push_back(F); 2026 } 2027 2028 bool Changed = false; 2029 for (auto *F : llvm::reverse(Worklist)) 2030 Changed |= addNoRecurseAttrsTopDown(*F); 2031 2032 return Changed; 2033 } 2034 2035 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 2036 if (skipModule(M)) 2037 return false; 2038 2039 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 2040 2041 return deduceFunctionAttributeInRPO(M, CG); 2042 } 2043 2044 PreservedAnalyses 2045 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { 2046 auto &CG = AM.getResult<CallGraphAnalysis>(M); 2047 2048 if (!deduceFunctionAttributeInRPO(M, CG)) 2049 return PreservedAnalyses::all(); 2050 2051 PreservedAnalyses PA; 2052 PA.preserve<CallGraphAnalysis>(); 2053 return PA; 2054 } 2055