xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86Subtarget.h (revision 0ad011ececb978e22a9bff2acf76633b094f1ff6)
1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15 
16 #include "X86FrameLowering.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86SelectionDAGInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/TargetParser/Triple.h"
23 #include <climits>
24 #include <memory>
25 
26 #define GET_SUBTARGETINFO_HEADER
27 #include "X86GenSubtargetInfo.inc"
28 
29 namespace llvm {
30 
31 class CallLowering;
32 class GlobalValue;
33 class InstructionSelector;
34 class LegalizerInfo;
35 class RegisterBankInfo;
36 class StringRef;
37 class TargetMachine;
38 
39 /// The X86 backend supports a number of different styles of PIC.
40 ///
41 namespace PICStyles {
42 
43 enum class Style {
44   StubPIC,          // Used on i386-darwin in pic mode.
45   GOT,              // Used on 32 bit elf on when in pic mode.
46   RIPRel,           // Used on X86-64 when in pic mode.
47   None              // Set when not in pic mode.
48 };
49 
50 } // end namespace PICStyles
51 
52 class X86Subtarget final : public X86GenSubtargetInfo {
53   enum X86SSEEnum {
54     NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512
55   };
56 
57   enum X863DNowEnum {
58     NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
59   };
60 
61   /// Which PIC style to use
62   PICStyles::Style PICStyle;
63 
64   const TargetMachine &TM;
65 
66   /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
67   X86SSEEnum X86SSELevel = NoSSE;
68 
69   /// MMX, 3DNow, 3DNow Athlon, or none supported.
70   X863DNowEnum X863DNowLevel = NoThreeDNow;
71 
72 #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
73   bool ATTRIBUTE = DEFAULT;
74 #include "X86GenSubtargetInfo.inc"
75   /// The minimum alignment known to hold of the stack frame on
76   /// entry to the function and which must be maintained by every function.
77   Align stackAlignment = Align(4);
78 
79   Align TileConfigAlignment = Align(4);
80 
81   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
82   ///
83   // FIXME: this is a known good value for Yonah. How about others?
84   unsigned MaxInlineSizeThreshold = 128;
85 
86   /// What processor and OS we're targeting.
87   Triple TargetTriple;
88 
89   /// GlobalISel related APIs.
90   std::unique_ptr<CallLowering> CallLoweringInfo;
91   std::unique_ptr<LegalizerInfo> Legalizer;
92   std::unique_ptr<RegisterBankInfo> RegBankInfo;
93   std::unique_ptr<InstructionSelector> InstSelector;
94 
95   /// Override the stack alignment.
96   MaybeAlign StackAlignOverride;
97 
98   /// Preferred vector width from function attribute.
99   unsigned PreferVectorWidthOverride;
100 
101   /// Resolved preferred vector width from function attribute and subtarget
102   /// features.
103   unsigned PreferVectorWidth = UINT32_MAX;
104 
105   /// Required vector width from function attribute.
106   unsigned RequiredVectorWidth;
107 
108   X86SelectionDAGInfo TSInfo;
109   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
110   // X86TargetLowering needs.
111   X86InstrInfo InstrInfo;
112   X86TargetLowering TLInfo;
113   X86FrameLowering FrameLowering;
114 
115 public:
116   /// This constructor initializes the data members to match that
117   /// of the specified triple.
118   ///
119   X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS,
120                const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
121                unsigned PreferVectorWidthOverride,
122                unsigned RequiredVectorWidth);
123 
124   const X86TargetLowering *getTargetLowering() const override {
125     return &TLInfo;
126   }
127 
128   const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
129 
130   const X86FrameLowering *getFrameLowering() const override {
131     return &FrameLowering;
132   }
133 
134   const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
135     return &TSInfo;
136   }
137 
138   const X86RegisterInfo *getRegisterInfo() const override {
139     return &getInstrInfo()->getRegisterInfo();
140   }
141 
142   unsigned getTileConfigSize() const { return 64; }
143   Align getTileConfigAlignment() const { return TileConfigAlignment; }
144 
145   /// Returns the minimum alignment known to hold of the
146   /// stack frame on entry to the function and which must be maintained by every
147   /// function for this subtarget.
148   Align getStackAlignment() const { return stackAlignment; }
149 
150   /// Returns the maximum memset / memcpy size
151   /// that still makes it profitable to inline the call.
152   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
153 
154   /// ParseSubtargetFeatures - Parses features string setting specified
155   /// subtarget options.  Definition of function is auto generated by tblgen.
156   void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
157 
158   /// Methods used by Global ISel
159   const CallLowering *getCallLowering() const override;
160   InstructionSelector *getInstructionSelector() const override;
161   const LegalizerInfo *getLegalizerInfo() const override;
162   const RegisterBankInfo *getRegBankInfo() const override;
163 
164 private:
165   /// Initialize the full set of dependencies so we can use an initializer
166   /// list for X86Subtarget.
167   X86Subtarget &initializeSubtargetDependencies(StringRef CPU,
168                                                 StringRef TuneCPU,
169                                                 StringRef FS);
170   void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
171 
172 public:
173 
174 #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER)                    \
175   bool GETTER() const { return ATTRIBUTE; }
176 #include "X86GenSubtargetInfo.inc"
177 
178   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
179   bool isTarget64BitILP32() const {
180     return Is64Bit && (TargetTriple.isX32() || TargetTriple.isOSNaCl());
181   }
182 
183   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
184   bool isTarget64BitLP64() const {
185     return Is64Bit && (!TargetTriple.isX32() && !TargetTriple.isOSNaCl());
186   }
187 
188   PICStyles::Style getPICStyle() const { return PICStyle; }
189   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
190 
191   bool canUseCMPXCHG8B() const { return hasCX8(); }
192   bool canUseCMPXCHG16B() const {
193     // CX16 is just the CPUID bit, instruction requires 64-bit mode too.
194     return hasCX16() && is64Bit();
195   }
196   // SSE codegen depends on cmovs, and all SSE1+ processors support them.
197   // All 64-bit processors support cmov.
198   bool canUseCMOV() const { return hasCMOV() || hasSSE1() || is64Bit(); }
199   bool hasSSE1() const { return X86SSELevel >= SSE1; }
200   bool hasSSE2() const { return X86SSELevel >= SSE2; }
201   bool hasSSE3() const { return X86SSELevel >= SSE3; }
202   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
203   bool hasSSE41() const { return X86SSELevel >= SSE41; }
204   bool hasSSE42() const { return X86SSELevel >= SSE42; }
205   bool hasAVX() const { return X86SSELevel >= AVX; }
206   bool hasAVX2() const { return X86SSELevel >= AVX2; }
207   bool hasAVX512() const { return X86SSELevel >= AVX512; }
208   bool hasInt256() const { return hasAVX2(); }
209   bool hasMMX() const { return X863DNowLevel >= MMX; }
210   bool hasThreeDNow() const { return X863DNowLevel >= ThreeDNow; }
211   bool hasThreeDNowA() const { return X863DNowLevel >= ThreeDNowA; }
212   bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
213   bool hasPrefetchW() const {
214     // The PREFETCHW instruction was added with 3DNow but later CPUs gave it
215     // its own CPUID bit as part of deprecating 3DNow. Intel eventually added
216     // it and KNL has another that prefetches to L2 cache. We assume the
217     // L1 version exists if the L2 version does.
218     return hasThreeDNow() || hasPRFCHW() || hasPREFETCHWT1();
219   }
220   bool hasSSEPrefetch() const {
221     // We implicitly enable these when we have a write prefix supporting cache
222     // level OR if we have prfchw, but don't already have a read prefetch from
223     // 3dnow.
224     return hasSSE1() || (hasPRFCHW() && !hasThreeDNow()) || hasPREFETCHWT1() ||
225            hasPREFETCHI();
226   }
227   bool canUseLAHFSAHF() const { return hasLAHFSAHF64() || !is64Bit(); }
228   // These are generic getters that OR together all of the thunk types
229   // supported by the subtarget. Therefore useIndirectThunk*() will return true
230   // if any respective thunk feature is enabled.
231   bool useIndirectThunkCalls() const {
232     return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity();
233   }
234   bool useIndirectThunkBranches() const {
235     return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity();
236   }
237 
238   unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
239   unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
240 
241   // Helper functions to determine when we should allow widening to 512-bit
242   // during codegen.
243   // TODO: Currently we're always allowing widening on CPUs without VLX,
244   // because for many cases we don't have a better option.
245   bool canExtendTo512DQ() const {
246     return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
247   }
248   bool canExtendTo512BW() const  {
249     return hasBWI() && canExtendTo512DQ();
250   }
251 
252   bool hasNoDomainDelay() const { return NoDomainDelay; }
253   bool hasNoDomainDelayMov() const {
254       return hasNoDomainDelay() || NoDomainDelayMov;
255   }
256   bool hasNoDomainDelayBlend() const {
257       return hasNoDomainDelay() || NoDomainDelayBlend;
258   }
259   bool hasNoDomainDelayShuffle() const {
260       return hasNoDomainDelay() || NoDomainDelayShuffle;
261   }
262 
263   // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
264   // disable them in the legalizer.
265   bool useAVX512Regs() const {
266     return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
267   }
268 
269   bool useLight256BitInstructions() const {
270     return getPreferVectorWidth() >= 256 || AllowLight256Bit;
271   }
272 
273   bool useBWIRegs() const {
274     return hasBWI() && useAVX512Regs();
275   }
276 
277   bool isXRaySupported() const override { return is64Bit(); }
278 
279   /// Use clflush if we have SSE2 or we're on x86-64 (even if we asked for
280   /// no-sse2). There isn't any reason to disable it if the target processor
281   /// supports it.
282   bool hasCLFLUSH() const { return hasSSE2() || is64Bit(); }
283 
284   /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
285   /// no-sse2). There isn't any reason to disable it if the target processor
286   /// supports it.
287   bool hasMFence() const { return hasSSE2() || is64Bit(); }
288 
289   const Triple &getTargetTriple() const { return TargetTriple; }
290 
291   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
292   bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
293   bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
294   bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
295   bool isTargetPS() const { return TargetTriple.isPS(); }
296 
297   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
298   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
299   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
300 
301   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
302   bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
303   bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
304   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
305   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
306   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
307   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
308   bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
309   bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
310 
311   bool isTargetWindowsMSVC() const {
312     return TargetTriple.isWindowsMSVCEnvironment();
313   }
314 
315   bool isTargetWindowsCoreCLR() const {
316     return TargetTriple.isWindowsCoreCLREnvironment();
317   }
318 
319   bool isTargetWindowsCygwin() const {
320     return TargetTriple.isWindowsCygwinEnvironment();
321   }
322 
323   bool isTargetWindowsGNU() const {
324     return TargetTriple.isWindowsGNUEnvironment();
325   }
326 
327   bool isTargetWindowsItanium() const {
328     return TargetTriple.isWindowsItaniumEnvironment();
329   }
330 
331   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
332 
333   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
334 
335   bool isTargetWin64() const { return Is64Bit && isOSWindows(); }
336 
337   bool isTargetWin32() const { return !Is64Bit && isOSWindows(); }
338 
339   bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; }
340   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; }
341 
342   bool isPICStyleStubPIC() const {
343     return PICStyle == PICStyles::Style::StubPIC;
344   }
345 
346   bool isPositionIndependent() const;
347 
348   bool isCallingConvWin64(CallingConv::ID CC) const {
349     switch (CC) {
350     // On Win64, all these conventions just use the default convention.
351     case CallingConv::C:
352     case CallingConv::Fast:
353     case CallingConv::Tail:
354     case CallingConv::Swift:
355     case CallingConv::SwiftTail:
356     case CallingConv::X86_FastCall:
357     case CallingConv::X86_StdCall:
358     case CallingConv::X86_ThisCall:
359     case CallingConv::X86_VectorCall:
360     case CallingConv::Intel_OCL_BI:
361       return isTargetWin64();
362     // This convention allows using the Win64 convention on other targets.
363     case CallingConv::Win64:
364       return true;
365     // This convention allows using the SysV convention on Windows targets.
366     case CallingConv::X86_64_SysV:
367       return false;
368     // Otherwise, who knows what this is.
369     default:
370       return false;
371     }
372   }
373 
374   /// Classify a global variable reference for the current subtarget according
375   /// to how we should reference it in a non-pcrel context.
376   unsigned char classifyLocalReference(const GlobalValue *GV) const;
377 
378   unsigned char classifyGlobalReference(const GlobalValue *GV,
379                                         const Module &M) const;
380   unsigned char classifyGlobalReference(const GlobalValue *GV) const;
381 
382   /// Classify a global function reference for the current subtarget.
383   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
384                                                 const Module &M) const;
385   unsigned char
386   classifyGlobalFunctionReference(const GlobalValue *GV) const override;
387 
388   /// Classify a blockaddress reference for the current subtarget according to
389   /// how we should reference it in a non-pcrel context.
390   unsigned char classifyBlockAddressReference() const;
391 
392   /// Return true if the subtarget allows calls to immediate address.
393   bool isLegalToCallImmediateAddr() const;
394 
395   /// Return whether FrameLowering should always set the "extended frame
396   /// present" bit in FP, or set it based on a symbol in the runtime.
397   bool swiftAsyncContextIsDynamicallySet() const {
398     // Older OS versions (particularly system unwinders) are confused by the
399     // Swift extended frame, so when building code that might be run on them we
400     // must dynamically query the concurrency library to determine whether
401     // extended frames should be flagged as present.
402     const Triple &TT = getTargetTriple();
403 
404     unsigned Major = TT.getOSVersion().getMajor();
405     switch(TT.getOS()) {
406     default:
407       return false;
408     case Triple::IOS:
409     case Triple::TvOS:
410       return Major < 15;
411     case Triple::WatchOS:
412       return Major < 8;
413     case Triple::MacOSX:
414     case Triple::Darwin:
415       return Major < 12;
416     }
417   }
418 
419   /// If we are using indirect thunks, we need to expand indirectbr to avoid it
420   /// lowering to an actual indirect jump.
421   bool enableIndirectBrExpand() const override {
422     return useIndirectThunkBranches();
423   }
424 
425   /// Enable the MachineScheduler pass for all X86 subtargets.
426   bool enableMachineScheduler() const override { return true; }
427 
428   bool enableEarlyIfConversion() const override;
429 
430   void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
431                               &Mutations) const override;
432 
433   AntiDepBreakMode getAntiDepBreakMode() const override {
434     return TargetSubtargetInfo::ANTIDEP_CRITICAL;
435   }
436 };
437 
438 } // end namespace llvm
439 
440 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H
441