xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 #define PASS_NAME "X86 DAG->DAG Instruction Selection"
39 
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41 
42 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
43     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44     cl::Hidden);
45 
46 static cl::opt<bool> EnablePromoteAnyextLoad(
47     "x86-promote-anyext-load", cl::init(true),
48     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49 
50 extern cl::opt<bool> IndirectBranchTracking;
51 
52 //===----------------------------------------------------------------------===//
53 //                      Pattern Matcher Implementation
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58   /// numbers for the leaves of the matched tree.
59   struct X86ISelAddressMode {
60     enum {
61       RegBase,
62       FrameIndexBase
63     } BaseType = RegBase;
64 
65     // This is really a union, discriminated by BaseType!
66     SDValue Base_Reg;
67     int Base_FrameIndex = 0;
68 
69     unsigned Scale = 1;
70     SDValue IndexReg;
71     int32_t Disp = 0;
72     SDValue Segment;
73     const GlobalValue *GV = nullptr;
74     const Constant *CP = nullptr;
75     const BlockAddress *BlockAddr = nullptr;
76     const char *ES = nullptr;
77     MCSymbol *MCSym = nullptr;
78     int JT = -1;
79     Align Alignment;            // CP alignment.
80     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
81     bool NegateIndex = false;
82 
83     X86ISelAddressMode() = default;
84 
85     bool hasSymbolicDisplacement() const {
86       return GV != nullptr || CP != nullptr || ES != nullptr ||
87              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88     }
89 
90     bool hasBaseOrIndexReg() const {
91       return BaseType == FrameIndexBase ||
92              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93     }
94 
95     /// Return true if this addressing mode is already RIP-relative.
96     bool isRIPRelative() const {
97       if (BaseType != RegBase) return false;
98       if (RegisterSDNode *RegNode =
99             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
100         return RegNode->getReg() == X86::RIP;
101       return false;
102     }
103 
104     void setBaseReg(SDValue Reg) {
105       BaseType = RegBase;
106       Base_Reg = Reg;
107     }
108 
109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110     void dump(SelectionDAG *DAG = nullptr) {
111       dbgs() << "X86ISelAddressMode " << this << '\n';
112       dbgs() << "Base_Reg ";
113       if (Base_Reg.getNode())
114         Base_Reg.getNode()->dump(DAG);
115       else
116         dbgs() << "nul\n";
117       if (BaseType == FrameIndexBase)
118         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119       dbgs() << " Scale " << Scale << '\n'
120              << "IndexReg ";
121       if (NegateIndex)
122         dbgs() << "negate ";
123       if (IndexReg.getNode())
124         IndexReg.getNode()->dump(DAG);
125       else
126         dbgs() << "nul\n";
127       dbgs() << " Disp " << Disp << '\n'
128              << "GV ";
129       if (GV)
130         GV->dump();
131       else
132         dbgs() << "nul";
133       dbgs() << " CP ";
134       if (CP)
135         CP->dump();
136       else
137         dbgs() << "nul";
138       dbgs() << '\n'
139              << "ES ";
140       if (ES)
141         dbgs() << ES;
142       else
143         dbgs() << "nul";
144       dbgs() << " MCSym ";
145       if (MCSym)
146         dbgs() << MCSym;
147       else
148         dbgs() << "nul";
149       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150     }
151 #endif
152   };
153 }
154 
155 namespace {
156   //===--------------------------------------------------------------------===//
157   /// ISel - X86-specific code to select X86 machine instructions for
158   /// SelectionDAG operations.
159   ///
160   class X86DAGToDAGISel final : public SelectionDAGISel {
161     /// Keep a pointer to the X86Subtarget around so that we can
162     /// make the right decision when generating code for different targets.
163     const X86Subtarget *Subtarget;
164 
165     /// If true, selector should try to optimize for minimum code size.
166     bool OptForMinSize;
167 
168     /// Disable direct TLS access through segment registers.
169     bool IndirectTlsSegRefs;
170 
171   public:
172     static char ID;
173 
174     X86DAGToDAGISel() = delete;
175 
176     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOptLevel OptLevel)
177         : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178           OptForMinSize(false), IndirectTlsSegRefs(false) {}
179 
180     bool runOnMachineFunction(MachineFunction &MF) override {
181       // Reset the subtarget each time through.
182       Subtarget = &MF.getSubtarget<X86Subtarget>();
183       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184                              "indirect-tls-seg-refs");
185 
186       // OptFor[Min]Size are used in pattern predicates that isel is matching.
187       OptForMinSize = MF.getFunction().hasMinSize();
188       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189              "OptForMinSize implies OptForSize");
190 
191       SelectionDAGISel::runOnMachineFunction(MF);
192       return true;
193     }
194 
195     void emitFunctionEntryCode() override;
196 
197     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198 
199     void PreprocessISelDAG() override;
200     void PostprocessISelDAG() override;
201 
202 // Include the pieces autogenerated from the target description.
203 #include "X86GenDAGISel.inc"
204 
205   private:
206     void Select(SDNode *N) override;
207 
208     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210                             bool AllowSegmentRegForX32 = false);
211     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215     SDValue matchIndexRecursively(SDValue N, X86ISelAddressMode &AM,
216                                   unsigned Depth);
217     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                  unsigned Depth);
219     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
220                                        unsigned Depth);
221     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
222     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
223                     SDValue &Scale, SDValue &Index, SDValue &Disp,
224                     SDValue &Segment);
225     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
226                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
227                           SDValue &Index, SDValue &Disp, SDValue &Segment);
228     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
229     bool selectLEAAddr(SDValue N, SDValue &Base,
230                        SDValue &Scale, SDValue &Index, SDValue &Disp,
231                        SDValue &Segment);
232     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
233                             SDValue &Scale, SDValue &Index, SDValue &Disp,
234                             SDValue &Segment);
235     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
236                            SDValue &Scale, SDValue &Index, SDValue &Disp,
237                            SDValue &Segment);
238     bool selectRelocImm(SDValue N, SDValue &Op);
239 
240     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
241                      SDValue &Base, SDValue &Scale,
242                      SDValue &Index, SDValue &Disp,
243                      SDValue &Segment);
244 
245     // Convenience method where P is also root.
246     bool tryFoldLoad(SDNode *P, SDValue N,
247                      SDValue &Base, SDValue &Scale,
248                      SDValue &Index, SDValue &Disp,
249                      SDValue &Segment) {
250       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
251     }
252 
253     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
254                           SDValue &Base, SDValue &Scale,
255                           SDValue &Index, SDValue &Disp,
256                           SDValue &Segment);
257 
258     bool isProfitableToFormMaskedOp(SDNode *N) const;
259 
260     /// Implement addressing mode selection for inline asm expressions.
261     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262                                       InlineAsm::ConstraintCode ConstraintID,
263                                       std::vector<SDValue> &OutOps) override;
264 
265     void emitSpecialCodeForMain();
266 
267     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
268                                    MVT VT, SDValue &Base, SDValue &Scale,
269                                    SDValue &Index, SDValue &Disp,
270                                    SDValue &Segment) {
271       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
272         Base = CurDAG->getTargetFrameIndex(
273             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
274       else if (AM.Base_Reg.getNode())
275         Base = AM.Base_Reg;
276       else
277         Base = CurDAG->getRegister(0, VT);
278 
279       Scale = getI8Imm(AM.Scale, DL);
280 
281       // Negate the index if needed.
282       if (AM.NegateIndex) {
283         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
284         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
285                                                      AM.IndexReg), 0);
286         AM.IndexReg = Neg;
287       }
288 
289       if (AM.IndexReg.getNode())
290         Index = AM.IndexReg;
291       else
292         Index = CurDAG->getRegister(0, VT);
293 
294       // These are 32-bit even in 64-bit mode since RIP-relative offset
295       // is 32-bit.
296       if (AM.GV)
297         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
298                                               MVT::i32, AM.Disp,
299                                               AM.SymbolFlags);
300       else if (AM.CP)
301         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
302                                              AM.Disp, AM.SymbolFlags);
303       else if (AM.ES) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
305         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
306       } else if (AM.MCSym) {
307         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
308         assert(AM.SymbolFlags == 0 && "oo");
309         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
310       } else if (AM.JT != -1) {
311         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
312         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
313       } else if (AM.BlockAddr)
314         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
315                                              AM.SymbolFlags);
316       else
317         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
318 
319       if (AM.Segment.getNode())
320         Segment = AM.Segment;
321       else
322         Segment = CurDAG->getRegister(0, MVT::i16);
323     }
324 
325     // Utility function to determine whether we should avoid selecting
326     // immediate forms of instructions for better code size or not.
327     // At a high level, we'd like to avoid such instructions when
328     // we have similar constants used within the same basic block
329     // that can be kept in a register.
330     //
331     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
332       uint32_t UseCount = 0;
333 
334       // Do not want to hoist if we're not optimizing for size.
335       // TODO: We'd like to remove this restriction.
336       // See the comment in X86InstrInfo.td for more info.
337       if (!CurDAG->shouldOptForSize())
338         return false;
339 
340       // Walk all the users of the immediate.
341       for (const SDNode *User : N->uses()) {
342         if (UseCount >= 2)
343           break;
344 
345         // This user is already selected. Count it as a legitimate use and
346         // move on.
347         if (User->isMachineOpcode()) {
348           UseCount++;
349           continue;
350         }
351 
352         // We want to count stores of immediates as real uses.
353         if (User->getOpcode() == ISD::STORE &&
354             User->getOperand(1).getNode() == N) {
355           UseCount++;
356           continue;
357         }
358 
359         // We don't currently match users that have > 2 operands (except
360         // for stores, which are handled above)
361         // Those instruction won't match in ISEL, for now, and would
362         // be counted incorrectly.
363         // This may change in the future as we add additional instruction
364         // types.
365         if (User->getNumOperands() != 2)
366           continue;
367 
368         // If this is a sign-extended 8-bit integer immediate used in an ALU
369         // instruction, there is probably an opcode encoding to save space.
370         auto *C = dyn_cast<ConstantSDNode>(N);
371         if (C && isInt<8>(C->getSExtValue()))
372           continue;
373 
374         // Immediates that are used for offsets as part of stack
375         // manipulation should be left alone. These are typically
376         // used to indicate SP offsets for argument passing and
377         // will get pulled into stores/pushes (implicitly).
378         if (User->getOpcode() == X86ISD::ADD ||
379             User->getOpcode() == ISD::ADD    ||
380             User->getOpcode() == X86ISD::SUB ||
381             User->getOpcode() == ISD::SUB) {
382 
383           // Find the other operand of the add/sub.
384           SDValue OtherOp = User->getOperand(0);
385           if (OtherOp.getNode() == N)
386             OtherOp = User->getOperand(1);
387 
388           // Don't count if the other operand is SP.
389           RegisterSDNode *RegNode;
390           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
391               (RegNode = dyn_cast_or_null<RegisterSDNode>(
392                  OtherOp->getOperand(1).getNode())))
393             if ((RegNode->getReg() == X86::ESP) ||
394                 (RegNode->getReg() == X86::RSP))
395               continue;
396         }
397 
398         // ... otherwise, count this and move on.
399         UseCount++;
400       }
401 
402       // If we have more than 1 use, then recommend for hoisting.
403       return (UseCount > 1);
404     }
405 
406     /// Return a target constant with the specified value of type i8.
407     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
408       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
409     }
410 
411     /// Return a target constant with the specified value, of type i32.
412     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
413       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
414     }
415 
416     /// Return a target constant with the specified value, of type i64.
417     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
418       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
419     }
420 
421     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
422                                         const SDLoc &DL) {
423       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
424       uint64_t Index = N->getConstantOperandVal(1);
425       MVT VecVT = N->getOperand(0).getSimpleValueType();
426       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
427     }
428 
429     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
430                                       const SDLoc &DL) {
431       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
432       uint64_t Index = N->getConstantOperandVal(2);
433       MVT VecVT = N->getSimpleValueType(0);
434       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
435     }
436 
437     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
438                                                const SDLoc &DL) {
439       assert(VecWidth == 128 && "Unexpected vector width");
440       uint64_t Index = N->getConstantOperandVal(2);
441       MVT VecVT = N->getSimpleValueType(0);
442       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
443       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
444       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
445       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
446       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
447     }
448 
449     SDValue getSBBZero(SDNode *N) {
450       SDLoc dl(N);
451       MVT VT = N->getSimpleValueType(0);
452 
453       // Create zero.
454       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
455       SDValue Zero = SDValue(
456           CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
457       if (VT == MVT::i64) {
458         Zero = SDValue(
459             CurDAG->getMachineNode(
460                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
461                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
462                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
463             0);
464       }
465 
466       // Copy flags to the EFLAGS register and glue it to next node.
467       unsigned Opcode = N->getOpcode();
468       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
469              "Unexpected opcode for SBB materialization");
470       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
471       SDValue EFLAGS =
472           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
473                                N->getOperand(FlagOpIndex), SDValue());
474 
475       // Create a 64-bit instruction if the result is 64-bits otherwise use the
476       // 32-bit version.
477       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
478       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
479       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
480       return SDValue(
481           CurDAG->getMachineNode(Opc, dl, VTs,
482                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
483           0);
484     }
485 
486     // Helper to detect unneeded and instructions on shift amounts. Called
487     // from PatFrags in tablegen.
488     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
489       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
490       const APInt &Val = N->getConstantOperandAPInt(1);
491 
492       if (Val.countr_one() >= Width)
493         return true;
494 
495       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
496       return Mask.countr_one() >= Width;
497     }
498 
499     /// Return an SDNode that returns the value of the global base register.
500     /// Output instructions required to initialize the global base register,
501     /// if necessary.
502     SDNode *getGlobalBaseReg();
503 
504     /// Return a reference to the TargetMachine, casted to the target-specific
505     /// type.
506     const X86TargetMachine &getTargetMachine() const {
507       return static_cast<const X86TargetMachine &>(TM);
508     }
509 
510     /// Return a reference to the TargetInstrInfo, casted to the target-specific
511     /// type.
512     const X86InstrInfo *getInstrInfo() const {
513       return Subtarget->getInstrInfo();
514     }
515 
516     /// Return a condition code of the given SDNode
517     X86::CondCode getCondFromNode(SDNode *N) const;
518 
519     /// Address-mode matching performs shift-of-and to and-of-shift
520     /// reassociation in order to expose more scaled addressing
521     /// opportunities.
522     bool ComplexPatternFuncMutatesDAG() const override {
523       return true;
524     }
525 
526     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
527 
528     // Indicates we should prefer to use a non-temporal load for this load.
529     bool useNonTemporalLoad(LoadSDNode *N) const {
530       if (!N->isNonTemporal())
531         return false;
532 
533       unsigned StoreSize = N->getMemoryVT().getStoreSize();
534 
535       if (N->getAlign().value() < StoreSize)
536         return false;
537 
538       switch (StoreSize) {
539       default: llvm_unreachable("Unsupported store size");
540       case 4:
541       case 8:
542         return false;
543       case 16:
544         return Subtarget->hasSSE41();
545       case 32:
546         return Subtarget->hasAVX2();
547       case 64:
548         return Subtarget->hasAVX512();
549       }
550     }
551 
552     bool foldLoadStoreIntoMemOperand(SDNode *Node);
553     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
554     bool matchBitExtract(SDNode *Node);
555     bool shrinkAndImmediate(SDNode *N);
556     bool isMaskZeroExtended(SDNode *N) const;
557     bool tryShiftAmountMod(SDNode *N);
558     bool tryShrinkShlLogicImm(SDNode *N);
559     bool tryVPTERNLOG(SDNode *N);
560     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
561                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
562                         uint8_t Imm);
563     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
564     bool tryMatchBitSelect(SDNode *N);
565 
566     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
567                                 const SDLoc &dl, MVT VT, SDNode *Node);
568     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
569                                 const SDLoc &dl, MVT VT, SDNode *Node,
570                                 SDValue &InGlue);
571 
572     bool tryOptimizeRem8Extend(SDNode *N);
573 
574     bool onlyUsesZeroFlag(SDValue Flags) const;
575     bool hasNoSignFlagUses(SDValue Flags) const;
576     bool hasNoCarryFlagUses(SDValue Flags) const;
577   };
578 }
579 
580 char X86DAGToDAGISel::ID = 0;
581 
582 INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
583 
584 // Returns true if this masked compare can be implemented legally with this
585 // type.
586 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
587   unsigned Opcode = N->getOpcode();
588   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
589       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
590       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
591     // We can get 256-bit 8 element types here without VLX being enabled. When
592     // this happens we will use 512-bit operations and the mask will not be
593     // zero extended.
594     EVT OpVT = N->getOperand(0).getValueType();
595     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
596     // second operand.
597     if (Opcode == X86ISD::STRICT_CMPM)
598       OpVT = N->getOperand(1).getValueType();
599     if (OpVT.is256BitVector() || OpVT.is128BitVector())
600       return Subtarget->hasVLX();
601 
602     return true;
603   }
604   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
605   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
606       Opcode == X86ISD::FSETCCM_SAE)
607     return true;
608 
609   return false;
610 }
611 
612 // Returns true if we can assume the writer of the mask has zero extended it
613 // for us.
614 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
615   // If this is an AND, check if we have a compare on either side. As long as
616   // one side guarantees the mask is zero extended, the AND will preserve those
617   // zeros.
618   if (N->getOpcode() == ISD::AND)
619     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
620            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
621 
622   return isLegalMaskCompare(N, Subtarget);
623 }
624 
625 bool
626 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
627   if (OptLevel == CodeGenOptLevel::None)
628     return false;
629 
630   if (!N.hasOneUse())
631     return false;
632 
633   if (N.getOpcode() != ISD::LOAD)
634     return true;
635 
636   // Don't fold non-temporal loads if we have an instruction for them.
637   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
638     return false;
639 
640   // If N is a load, do additional profitability checks.
641   if (U == Root) {
642     switch (U->getOpcode()) {
643     default: break;
644     case X86ISD::ADD:
645     case X86ISD::ADC:
646     case X86ISD::SUB:
647     case X86ISD::SBB:
648     case X86ISD::AND:
649     case X86ISD::XOR:
650     case X86ISD::OR:
651     case ISD::ADD:
652     case ISD::UADDO_CARRY:
653     case ISD::AND:
654     case ISD::OR:
655     case ISD::XOR: {
656       SDValue Op1 = U->getOperand(1);
657 
658       // If the other operand is a 8-bit immediate we should fold the immediate
659       // instead. This reduces code size.
660       // e.g.
661       // movl 4(%esp), %eax
662       // addl $4, %eax
663       // vs.
664       // movl $4, %eax
665       // addl 4(%esp), %eax
666       // The former is 2 bytes shorter. In case where the increment is 1, then
667       // the saving can be 4 bytes (by using incl %eax).
668       if (auto *Imm = dyn_cast<ConstantSDNode>(Op1)) {
669         if (Imm->getAPIntValue().isSignedIntN(8))
670           return false;
671 
672         // If this is a 64-bit AND with an immediate that fits in 32-bits,
673         // prefer using the smaller and over folding the load. This is needed to
674         // make sure immediates created by shrinkAndImmediate are always folded.
675         // Ideally we would narrow the load during DAG combine and get the
676         // best of both worlds.
677         if (U->getOpcode() == ISD::AND &&
678             Imm->getAPIntValue().getBitWidth() == 64 &&
679             Imm->getAPIntValue().isIntN(32))
680           return false;
681 
682         // If this really a zext_inreg that can be represented with a movzx
683         // instruction, prefer that.
684         // TODO: We could shrink the load and fold if it is non-volatile.
685         if (U->getOpcode() == ISD::AND &&
686             (Imm->getAPIntValue() == UINT8_MAX ||
687              Imm->getAPIntValue() == UINT16_MAX ||
688              Imm->getAPIntValue() == UINT32_MAX))
689           return false;
690 
691         // ADD/SUB with can negate the immediate and use the opposite operation
692         // to fit 128 into a sign extended 8 bit immediate.
693         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
694             (-Imm->getAPIntValue()).isSignedIntN(8))
695           return false;
696 
697         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
698             (-Imm->getAPIntValue()).isSignedIntN(8) &&
699             hasNoCarryFlagUses(SDValue(U, 1)))
700           return false;
701       }
702 
703       // If the other operand is a TLS address, we should fold it instead.
704       // This produces
705       // movl    %gs:0, %eax
706       // leal    i@NTPOFF(%eax), %eax
707       // instead of
708       // movl    $i@NTPOFF, %eax
709       // addl    %gs:0, %eax
710       // if the block also has an access to a second TLS address this will save
711       // a load.
712       // FIXME: This is probably also true for non-TLS addresses.
713       if (Op1.getOpcode() == X86ISD::Wrapper) {
714         SDValue Val = Op1.getOperand(0);
715         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
716           return false;
717       }
718 
719       // Don't fold load if this matches the BTS/BTR/BTC patterns.
720       // BTS: (or X, (shl 1, n))
721       // BTR: (and X, (rotl -2, n))
722       // BTC: (xor X, (shl 1, n))
723       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
724         if (U->getOperand(0).getOpcode() == ISD::SHL &&
725             isOneConstant(U->getOperand(0).getOperand(0)))
726           return false;
727 
728         if (U->getOperand(1).getOpcode() == ISD::SHL &&
729             isOneConstant(U->getOperand(1).getOperand(0)))
730           return false;
731       }
732       if (U->getOpcode() == ISD::AND) {
733         SDValue U0 = U->getOperand(0);
734         SDValue U1 = U->getOperand(1);
735         if (U0.getOpcode() == ISD::ROTL) {
736           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
737           if (C && C->getSExtValue() == -2)
738             return false;
739         }
740 
741         if (U1.getOpcode() == ISD::ROTL) {
742           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
743           if (C && C->getSExtValue() == -2)
744             return false;
745         }
746       }
747 
748       break;
749     }
750     case ISD::SHL:
751     case ISD::SRA:
752     case ISD::SRL:
753       // Don't fold a load into a shift by immediate. The BMI2 instructions
754       // support folding a load, but not an immediate. The legacy instructions
755       // support folding an immediate, but can't fold a load. Folding an
756       // immediate is preferable to folding a load.
757       if (isa<ConstantSDNode>(U->getOperand(1)))
758         return false;
759 
760       break;
761     }
762   }
763 
764   // Prevent folding a load if this can implemented with an insert_subreg or
765   // a move that implicitly zeroes.
766   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
767       isNullConstant(Root->getOperand(2)) &&
768       (Root->getOperand(0).isUndef() ||
769        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
770     return false;
771 
772   return true;
773 }
774 
775 // Indicates it is profitable to form an AVX512 masked operation. Returning
776 // false will favor a masked register-register masked move or vblendm and the
777 // operation will be selected separately.
778 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
779   assert(
780       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
781       "Unexpected opcode!");
782 
783   // If the operation has additional users, the operation will be duplicated.
784   // Check the use count to prevent that.
785   // FIXME: Are there cheap opcodes we might want to duplicate?
786   return N->getOperand(1).hasOneUse();
787 }
788 
789 /// Replace the original chain operand of the call with
790 /// load's chain operand and move load below the call's chain operand.
791 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
792                                SDValue Call, SDValue OrigChain) {
793   SmallVector<SDValue, 8> Ops;
794   SDValue Chain = OrigChain.getOperand(0);
795   if (Chain.getNode() == Load.getNode())
796     Ops.push_back(Load.getOperand(0));
797   else {
798     assert(Chain.getOpcode() == ISD::TokenFactor &&
799            "Unexpected chain operand");
800     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
801       if (Chain.getOperand(i).getNode() == Load.getNode())
802         Ops.push_back(Load.getOperand(0));
803       else
804         Ops.push_back(Chain.getOperand(i));
805     SDValue NewChain =
806       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
807     Ops.clear();
808     Ops.push_back(NewChain);
809   }
810   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
811   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
812   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
813                              Load.getOperand(1), Load.getOperand(2));
814 
815   Ops.clear();
816   Ops.push_back(SDValue(Load.getNode(), 1));
817   Ops.append(Call->op_begin() + 1, Call->op_end());
818   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
819 }
820 
821 /// Return true if call address is a load and it can be
822 /// moved below CALLSEQ_START and the chains leading up to the call.
823 /// Return the CALLSEQ_START by reference as a second output.
824 /// In the case of a tail call, there isn't a callseq node between the call
825 /// chain and the load.
826 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
827   // The transformation is somewhat dangerous if the call's chain was glued to
828   // the call. After MoveBelowOrigChain the load is moved between the call and
829   // the chain, this can create a cycle if the load is not folded. So it is
830   // *really* important that we are sure the load will be folded.
831   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
832     return false;
833   auto *LD = dyn_cast<LoadSDNode>(Callee.getNode());
834   if (!LD ||
835       !LD->isSimple() ||
836       LD->getAddressingMode() != ISD::UNINDEXED ||
837       LD->getExtensionType() != ISD::NON_EXTLOAD)
838     return false;
839 
840   // Now let's find the callseq_start.
841   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
842     if (!Chain.hasOneUse())
843       return false;
844     Chain = Chain.getOperand(0);
845   }
846 
847   if (!Chain.getNumOperands())
848     return false;
849   // Since we are not checking for AA here, conservatively abort if the chain
850   // writes to memory. It's not safe to move the callee (a load) across a store.
851   if (isa<MemSDNode>(Chain.getNode()) &&
852       cast<MemSDNode>(Chain.getNode())->writeMem())
853     return false;
854   if (Chain.getOperand(0).getNode() == Callee.getNode())
855     return true;
856   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
857       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
858       Callee.getValue(1).hasOneUse())
859     return true;
860   return false;
861 }
862 
863 static bool isEndbrImm64(uint64_t Imm) {
864 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
865 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
866   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
867     return false;
868 
869   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
870                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
871   int i = 24; // 24bit 0x0F1EFA has matched
872   while (i < 64) {
873     uint8_t Byte = (Imm >> i) & 0xFF;
874     if (Byte == 0xF3)
875       return true;
876     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
877       return false;
878     i += 8;
879   }
880 
881   return false;
882 }
883 
884 static bool needBWI(MVT VT) {
885   return (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v64i8);
886 }
887 
888 void X86DAGToDAGISel::PreprocessISelDAG() {
889   bool MadeChange = false;
890   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
891        E = CurDAG->allnodes_end(); I != E; ) {
892     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
893 
894     // This is for CET enhancement.
895     //
896     // ENDBR32 and ENDBR64 have specific opcodes:
897     // ENDBR32: F3 0F 1E FB
898     // ENDBR64: F3 0F 1E FA
899     // And we want that attackers won’t find unintended ENDBR32/64
900     // opcode matches in the binary
901     // Here’s an example:
902     // If the compiler had to generate asm for the following code:
903     // a = 0xF30F1EFA
904     // it could, for example, generate:
905     // mov 0xF30F1EFA, dword ptr[a]
906     // In such a case, the binary would include a gadget that starts
907     // with a fake ENDBR64 opcode. Therefore, we split such generation
908     // into multiple operations, let it not shows in the binary
909     if (N->getOpcode() == ISD::Constant) {
910       MVT VT = N->getSimpleValueType(0);
911       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
912       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
913       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
914         // Check that the cf-protection-branch is enabled.
915         Metadata *CFProtectionBranch =
916           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
917         if (CFProtectionBranch || IndirectBranchTracking) {
918           SDLoc dl(N);
919           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
920           Complement = CurDAG->getNOT(dl, Complement, VT);
921           --I;
922           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
923           ++I;
924           MadeChange = true;
925           continue;
926         }
927       }
928     }
929 
930     // If this is a target specific AND node with no flag usages, turn it back
931     // into ISD::AND to enable test instruction matching.
932     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
933       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
934                                     N->getOperand(0), N->getOperand(1));
935       --I;
936       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
937       ++I;
938       MadeChange = true;
939       continue;
940     }
941 
942     // Convert vector increment or decrement to sub/add with an all-ones
943     // constant:
944     // add X, <1, 1...> --> sub X, <-1, -1...>
945     // sub X, <1, 1...> --> add X, <-1, -1...>
946     // The all-ones vector constant can be materialized using a pcmpeq
947     // instruction that is commonly recognized as an idiom (has no register
948     // dependency), so that's better/smaller than loading a splat 1 constant.
949     //
950     // But don't do this if it would inhibit a potentially profitable load
951     // folding opportunity for the other operand. That only occurs with the
952     // intersection of:
953     // (1) The other operand (op0) is load foldable.
954     // (2) The op is an add (otherwise, we are *creating* an add and can still
955     //     load fold the other op).
956     // (3) The target has AVX (otherwise, we have a destructive add and can't
957     //     load fold the other op without killing the constant op).
958     // (4) The constant 1 vector has multiple uses (so it is profitable to load
959     //     into a register anyway).
960     auto mayPreventLoadFold = [&]() {
961       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
962              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
963              !N->getOperand(1).hasOneUse();
964     };
965     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
966         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
967       APInt SplatVal;
968       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
969           SplatVal.isOne()) {
970         SDLoc DL(N);
971 
972         MVT VT = N->getSimpleValueType(0);
973         unsigned NumElts = VT.getSizeInBits() / 32;
974         SDValue AllOnes =
975             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
976         AllOnes = CurDAG->getBitcast(VT, AllOnes);
977 
978         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
979         SDValue Res =
980             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
981         --I;
982         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
983         ++I;
984         MadeChange = true;
985         continue;
986       }
987     }
988 
989     switch (N->getOpcode()) {
990     case X86ISD::VBROADCAST: {
991       MVT VT = N->getSimpleValueType(0);
992       // Emulate v32i16/v64i8 broadcast without BWI.
993       if (!Subtarget->hasBWI() && needBWI(VT)) {
994         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
995         SDLoc dl(N);
996         SDValue NarrowBCast =
997             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
998         SDValue Res =
999             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1000                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1001         unsigned Index = NarrowVT.getVectorMinNumElements();
1002         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1003                               CurDAG->getIntPtrConstant(Index, dl));
1004 
1005         --I;
1006         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1007         ++I;
1008         MadeChange = true;
1009         continue;
1010       }
1011 
1012       break;
1013     }
1014     case X86ISD::VBROADCAST_LOAD: {
1015       MVT VT = N->getSimpleValueType(0);
1016       // Emulate v32i16/v64i8 broadcast without BWI.
1017       if (!Subtarget->hasBWI() && needBWI(VT)) {
1018         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
1019         auto *MemNode = cast<MemSDNode>(N);
1020         SDLoc dl(N);
1021         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1022         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1023         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1024             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1025             MemNode->getMemOperand());
1026         SDValue Res =
1027             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1028                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1029         unsigned Index = NarrowVT.getVectorMinNumElements();
1030         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1031                               CurDAG->getIntPtrConstant(Index, dl));
1032 
1033         --I;
1034         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1035         CurDAG->ReplaceAllUsesWith(N, To);
1036         ++I;
1037         MadeChange = true;
1038         continue;
1039       }
1040 
1041       break;
1042     }
1043     case ISD::LOAD: {
1044       // If this is a XMM/YMM load of the same lower bits as another YMM/ZMM
1045       // load, then just extract the lower subvector and avoid the second load.
1046       auto *Ld = cast<LoadSDNode>(N);
1047       MVT VT = N->getSimpleValueType(0);
1048       if (!ISD::isNormalLoad(Ld) || !Ld->isSimple() ||
1049           !(VT.is128BitVector() || VT.is256BitVector()))
1050         break;
1051 
1052       MVT MaxVT = VT;
1053       SDNode *MaxLd = nullptr;
1054       SDValue Ptr = Ld->getBasePtr();
1055       SDValue Chain = Ld->getChain();
1056       for (SDNode *User : Ptr->uses()) {
1057         auto *UserLd = dyn_cast<LoadSDNode>(User);
1058         MVT UserVT = User->getSimpleValueType(0);
1059         if (User != N && UserLd && ISD::isNormalLoad(User) &&
1060             UserLd->getBasePtr() == Ptr && UserLd->getChain() == Chain &&
1061             !User->hasAnyUseOfValue(1) &&
1062             (UserVT.is256BitVector() || UserVT.is512BitVector()) &&
1063             UserVT.getSizeInBits() > VT.getSizeInBits() &&
1064             (!MaxLd || UserVT.getSizeInBits() > MaxVT.getSizeInBits())) {
1065           MaxLd = User;
1066           MaxVT = UserVT;
1067         }
1068       }
1069       if (MaxLd) {
1070         SDLoc dl(N);
1071         unsigned NumSubElts = VT.getSizeInBits() / MaxVT.getScalarSizeInBits();
1072         MVT SubVT = MVT::getVectorVT(MaxVT.getScalarType(), NumSubElts);
1073         SDValue Extract = CurDAG->getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT,
1074                                           SDValue(MaxLd, 0),
1075                                           CurDAG->getIntPtrConstant(0, dl));
1076         SDValue Res = CurDAG->getBitcast(VT, Extract);
1077 
1078         --I;
1079         SDValue To[] = {Res, SDValue(MaxLd, 1)};
1080         CurDAG->ReplaceAllUsesWith(N, To);
1081         ++I;
1082         MadeChange = true;
1083         continue;
1084       }
1085       break;
1086     }
1087     case ISD::VSELECT: {
1088       // Replace VSELECT with non-mask conditions with with BLENDV/VPTERNLOG.
1089       EVT EleVT = N->getOperand(0).getValueType().getVectorElementType();
1090       if (EleVT == MVT::i1)
1091         break;
1092 
1093       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1094       assert(N->getValueType(0).getVectorElementType() != MVT::i16 &&
1095              "We can't replace VSELECT with BLENDV in vXi16!");
1096       SDValue R;
1097       if (Subtarget->hasVLX() && CurDAG->ComputeNumSignBits(N->getOperand(0)) ==
1098                                      EleVT.getSizeInBits()) {
1099         R = CurDAG->getNode(X86ISD::VPTERNLOG, SDLoc(N), N->getValueType(0),
1100                             N->getOperand(0), N->getOperand(1), N->getOperand(2),
1101                             CurDAG->getTargetConstant(0xCA, SDLoc(N), MVT::i8));
1102       } else {
1103         R = CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1104                             N->getOperand(0), N->getOperand(1),
1105                             N->getOperand(2));
1106       }
1107       --I;
1108       CurDAG->ReplaceAllUsesWith(N, R.getNode());
1109       ++I;
1110       MadeChange = true;
1111       continue;
1112     }
1113     case ISD::FP_ROUND:
1114     case ISD::STRICT_FP_ROUND:
1115     case ISD::FP_TO_SINT:
1116     case ISD::FP_TO_UINT:
1117     case ISD::STRICT_FP_TO_SINT:
1118     case ISD::STRICT_FP_TO_UINT: {
1119       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1120       // don't need 2 sets of patterns.
1121       if (!N->getSimpleValueType(0).isVector())
1122         break;
1123 
1124       unsigned NewOpc;
1125       switch (N->getOpcode()) {
1126       default: llvm_unreachable("Unexpected opcode!");
1127       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1128       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1129       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1130       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1131       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1132       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1133       }
1134       SDValue Res;
1135       if (N->isStrictFPOpcode())
1136         Res =
1137             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1138                             {N->getOperand(0), N->getOperand(1)});
1139       else
1140         Res =
1141             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1142                             N->getOperand(0));
1143       --I;
1144       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1145       ++I;
1146       MadeChange = true;
1147       continue;
1148     }
1149     case ISD::SHL:
1150     case ISD::SRA:
1151     case ISD::SRL: {
1152       // Replace vector shifts with their X86 specific equivalent so we don't
1153       // need 2 sets of patterns.
1154       if (!N->getValueType(0).isVector())
1155         break;
1156 
1157       unsigned NewOpc;
1158       switch (N->getOpcode()) {
1159       default: llvm_unreachable("Unexpected opcode!");
1160       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1161       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1162       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1163       }
1164       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1165                                     N->getOperand(0), N->getOperand(1));
1166       --I;
1167       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1168       ++I;
1169       MadeChange = true;
1170       continue;
1171     }
1172     case ISD::ANY_EXTEND:
1173     case ISD::ANY_EXTEND_VECTOR_INREG: {
1174       // Replace vector any extend with the zero extend equivalents so we don't
1175       // need 2 sets of patterns. Ignore vXi1 extensions.
1176       if (!N->getValueType(0).isVector())
1177         break;
1178 
1179       unsigned NewOpc;
1180       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1181         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1182                "Unexpected opcode for mask vector!");
1183         NewOpc = ISD::SIGN_EXTEND;
1184       } else {
1185         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1186                               ? ISD::ZERO_EXTEND
1187                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1188       }
1189 
1190       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1191                                     N->getOperand(0));
1192       --I;
1193       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1194       ++I;
1195       MadeChange = true;
1196       continue;
1197     }
1198     case ISD::FCEIL:
1199     case ISD::STRICT_FCEIL:
1200     case ISD::FFLOOR:
1201     case ISD::STRICT_FFLOOR:
1202     case ISD::FTRUNC:
1203     case ISD::STRICT_FTRUNC:
1204     case ISD::FROUNDEVEN:
1205     case ISD::STRICT_FROUNDEVEN:
1206     case ISD::FNEARBYINT:
1207     case ISD::STRICT_FNEARBYINT:
1208     case ISD::FRINT:
1209     case ISD::STRICT_FRINT: {
1210       // Replace fp rounding with their X86 specific equivalent so we don't
1211       // need 2 sets of patterns.
1212       unsigned Imm;
1213       switch (N->getOpcode()) {
1214       default: llvm_unreachable("Unexpected opcode!");
1215       case ISD::STRICT_FCEIL:
1216       case ISD::FCEIL:      Imm = 0xA; break;
1217       case ISD::STRICT_FFLOOR:
1218       case ISD::FFLOOR:     Imm = 0x9; break;
1219       case ISD::STRICT_FTRUNC:
1220       case ISD::FTRUNC:     Imm = 0xB; break;
1221       case ISD::STRICT_FROUNDEVEN:
1222       case ISD::FROUNDEVEN: Imm = 0x8; break;
1223       case ISD::STRICT_FNEARBYINT:
1224       case ISD::FNEARBYINT: Imm = 0xC; break;
1225       case ISD::STRICT_FRINT:
1226       case ISD::FRINT:      Imm = 0x4; break;
1227       }
1228       SDLoc dl(N);
1229       bool IsStrict = N->isStrictFPOpcode();
1230       SDValue Res;
1231       if (IsStrict)
1232         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1233                               {N->getValueType(0), MVT::Other},
1234                               {N->getOperand(0), N->getOperand(1),
1235                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1236       else
1237         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1238                               N->getOperand(0),
1239                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1240       --I;
1241       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1242       ++I;
1243       MadeChange = true;
1244       continue;
1245     }
1246     case X86ISD::FANDN:
1247     case X86ISD::FAND:
1248     case X86ISD::FOR:
1249     case X86ISD::FXOR: {
1250       // Widen scalar fp logic ops to vector to reduce isel patterns.
1251       // FIXME: Can we do this during lowering/combine.
1252       MVT VT = N->getSimpleValueType(0);
1253       if (VT.isVector() || VT == MVT::f128)
1254         break;
1255 
1256       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1257                   : VT == MVT::f32 ? MVT::v4f32
1258                                    : MVT::v8f16;
1259 
1260       SDLoc dl(N);
1261       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1262                                     N->getOperand(0));
1263       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1264                                     N->getOperand(1));
1265 
1266       SDValue Res;
1267       if (Subtarget->hasSSE2()) {
1268         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1269         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1270         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1271         unsigned Opc;
1272         switch (N->getOpcode()) {
1273         default: llvm_unreachable("Unexpected opcode!");
1274         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1275         case X86ISD::FAND:  Opc = ISD::AND;      break;
1276         case X86ISD::FOR:   Opc = ISD::OR;       break;
1277         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1278         }
1279         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1280         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1281       } else {
1282         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1283       }
1284       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1285                             CurDAG->getIntPtrConstant(0, dl));
1286       --I;
1287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1288       ++I;
1289       MadeChange = true;
1290       continue;
1291     }
1292     }
1293 
1294     if (OptLevel != CodeGenOptLevel::None &&
1295         // Only do this when the target can fold the load into the call or
1296         // jmp.
1297         !Subtarget->useIndirectThunkCalls() &&
1298         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1299          (N->getOpcode() == X86ISD::TC_RETURN &&
1300           (Subtarget->is64Bit() ||
1301            !getTargetMachine().isPositionIndependent())))) {
1302       /// Also try moving call address load from outside callseq_start to just
1303       /// before the call to allow it to be folded.
1304       ///
1305       ///     [Load chain]
1306       ///         ^
1307       ///         |
1308       ///       [Load]
1309       ///       ^    ^
1310       ///       |    |
1311       ///      /      \--
1312       ///     /          |
1313       ///[CALLSEQ_START] |
1314       ///     ^          |
1315       ///     |          |
1316       /// [LOAD/C2Reg]   |
1317       ///     |          |
1318       ///      \        /
1319       ///       \      /
1320       ///       [CALL]
1321       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1322       SDValue Chain = N->getOperand(0);
1323       SDValue Load  = N->getOperand(1);
1324       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1325         continue;
1326       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1327       ++NumLoadMoved;
1328       MadeChange = true;
1329       continue;
1330     }
1331 
1332     // Lower fpround and fpextend nodes that target the FP stack to be store and
1333     // load to the stack.  This is a gross hack.  We would like to simply mark
1334     // these as being illegal, but when we do that, legalize produces these when
1335     // it expands calls, then expands these in the same legalize pass.  We would
1336     // like dag combine to be able to hack on these between the call expansion
1337     // and the node legalization.  As such this pass basically does "really
1338     // late" legalization of these inline with the X86 isel pass.
1339     // FIXME: This should only happen when not compiled with -O0.
1340     switch (N->getOpcode()) {
1341     default: continue;
1342     case ISD::FP_ROUND:
1343     case ISD::FP_EXTEND:
1344     {
1345       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1346       MVT DstVT = N->getSimpleValueType(0);
1347 
1348       // If any of the sources are vectors, no fp stack involved.
1349       if (SrcVT.isVector() || DstVT.isVector())
1350         continue;
1351 
1352       // If the source and destination are SSE registers, then this is a legal
1353       // conversion that should not be lowered.
1354       const X86TargetLowering *X86Lowering =
1355           static_cast<const X86TargetLowering *>(TLI);
1356       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1357       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1358       if (SrcIsSSE && DstIsSSE)
1359         continue;
1360 
1361       if (!SrcIsSSE && !DstIsSSE) {
1362         // If this is an FPStack extension, it is a noop.
1363         if (N->getOpcode() == ISD::FP_EXTEND)
1364           continue;
1365         // If this is a value-preserving FPStack truncation, it is a noop.
1366         if (N->getConstantOperandVal(1))
1367           continue;
1368       }
1369 
1370       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1371       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1372       // operations.  Based on this, decide what we want to do.
1373       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1374       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1375       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1376       MachinePointerInfo MPI =
1377           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1378       SDLoc dl(N);
1379 
1380       // FIXME: optimize the case where the src/dest is a load or store?
1381 
1382       SDValue Store = CurDAG->getTruncStore(
1383           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1384       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1385                                           MemTmp, MPI, MemVT);
1386 
1387       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1388       // extload we created.  This will cause general havok on the dag because
1389       // anything below the conversion could be folded into other existing nodes.
1390       // To avoid invalidating 'I', back it up to the convert node.
1391       --I;
1392       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1393       break;
1394     }
1395 
1396     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1397     //dealing with the chain differently, as there is already a preexisting chain.
1398     case ISD::STRICT_FP_ROUND:
1399     case ISD::STRICT_FP_EXTEND:
1400     {
1401       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1402       MVT DstVT = N->getSimpleValueType(0);
1403 
1404       // If any of the sources are vectors, no fp stack involved.
1405       if (SrcVT.isVector() || DstVT.isVector())
1406         continue;
1407 
1408       // If the source and destination are SSE registers, then this is a legal
1409       // conversion that should not be lowered.
1410       const X86TargetLowering *X86Lowering =
1411           static_cast<const X86TargetLowering *>(TLI);
1412       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1413       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1414       if (SrcIsSSE && DstIsSSE)
1415         continue;
1416 
1417       if (!SrcIsSSE && !DstIsSSE) {
1418         // If this is an FPStack extension, it is a noop.
1419         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1420           continue;
1421         // If this is a value-preserving FPStack truncation, it is a noop.
1422         if (N->getConstantOperandVal(2))
1423           continue;
1424       }
1425 
1426       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1427       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1428       // operations.  Based on this, decide what we want to do.
1429       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1430       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1431       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1432       MachinePointerInfo MPI =
1433           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1434       SDLoc dl(N);
1435 
1436       // FIXME: optimize the case where the src/dest is a load or store?
1437 
1438       //Since the operation is StrictFP, use the preexisting chain.
1439       SDValue Store, Result;
1440       if (!SrcIsSSE) {
1441         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1442         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1443         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1444                                             MPI, /*Align*/ std::nullopt,
1445                                             MachineMemOperand::MOStore);
1446         if (N->getFlags().hasNoFPExcept()) {
1447           SDNodeFlags Flags = Store->getFlags();
1448           Flags.setNoFPExcept(true);
1449           Store->setFlags(Flags);
1450         }
1451       } else {
1452         assert(SrcVT == MemVT && "Unexpected VT!");
1453         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1454                                  MPI);
1455       }
1456 
1457       if (!DstIsSSE) {
1458         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1459         SDValue Ops[] = {Store, MemTmp};
1460         Result = CurDAG->getMemIntrinsicNode(
1461             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1462             /*Align*/ std::nullopt, MachineMemOperand::MOLoad);
1463         if (N->getFlags().hasNoFPExcept()) {
1464           SDNodeFlags Flags = Result->getFlags();
1465           Flags.setNoFPExcept(true);
1466           Result->setFlags(Flags);
1467         }
1468       } else {
1469         assert(DstVT == MemVT && "Unexpected VT!");
1470         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1471       }
1472 
1473       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1474       // extload we created.  This will cause general havok on the dag because
1475       // anything below the conversion could be folded into other existing nodes.
1476       // To avoid invalidating 'I', back it up to the convert node.
1477       --I;
1478       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1479       break;
1480     }
1481     }
1482 
1483 
1484     // Now that we did that, the node is dead.  Increment the iterator to the
1485     // next node to process, then delete N.
1486     ++I;
1487     MadeChange = true;
1488   }
1489 
1490   // Remove any dead nodes that may have been left behind.
1491   if (MadeChange)
1492     CurDAG->RemoveDeadNodes();
1493 }
1494 
1495 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1496 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1497   unsigned Opc = N->getMachineOpcode();
1498   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1499       Opc != X86::MOVSX64rr8)
1500     return false;
1501 
1502   SDValue N0 = N->getOperand(0);
1503 
1504   // We need to be extracting the lower bit of an extend.
1505   if (!N0.isMachineOpcode() ||
1506       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1507       N0.getConstantOperandVal(1) != X86::sub_8bit)
1508     return false;
1509 
1510   // We're looking for either a movsx or movzx to match the original opcode.
1511   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1512                                                 : X86::MOVSX32rr8_NOREX;
1513   SDValue N00 = N0.getOperand(0);
1514   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1515     return false;
1516 
1517   if (Opc == X86::MOVSX64rr8) {
1518     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1519     // to 64.
1520     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1521                                                    MVT::i64, N00);
1522     ReplaceUses(N, Extend);
1523   } else {
1524     // Ok we can drop this extend and just use the original extend.
1525     ReplaceUses(N, N00.getNode());
1526   }
1527 
1528   return true;
1529 }
1530 
1531 void X86DAGToDAGISel::PostprocessISelDAG() {
1532   // Skip peepholes at -O0.
1533   if (TM.getOptLevel() == CodeGenOptLevel::None)
1534     return;
1535 
1536   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1537 
1538   bool MadeChange = false;
1539   while (Position != CurDAG->allnodes_begin()) {
1540     SDNode *N = &*--Position;
1541     // Skip dead nodes and any non-machine opcodes.
1542     if (N->use_empty() || !N->isMachineOpcode())
1543       continue;
1544 
1545     if (tryOptimizeRem8Extend(N)) {
1546       MadeChange = true;
1547       continue;
1548     }
1549 
1550     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1551     // the same. Rewrite to remove the AND.
1552     unsigned Opc = N->getMachineOpcode();
1553     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1554          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1555         N->getOperand(0) == N->getOperand(1) &&
1556         N->getOperand(0)->hasNUsesOfValue(2, N->getOperand(0).getResNo()) &&
1557         N->getOperand(0).isMachineOpcode()) {
1558       SDValue And = N->getOperand(0);
1559       unsigned N0Opc = And.getMachineOpcode();
1560       if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1561            N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1562           !And->hasAnyUseOfValue(1)) {
1563         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1564                                                      MVT::i32,
1565                                                      And.getOperand(0),
1566                                                      And.getOperand(1));
1567         ReplaceUses(N, Test);
1568         MadeChange = true;
1569         continue;
1570       }
1571       if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1572            N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1573           !And->hasAnyUseOfValue(1)) {
1574         unsigned NewOpc;
1575         switch (N0Opc) {
1576         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1577         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1578         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1579         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1580         }
1581 
1582         // Need to swap the memory and register operand.
1583         SDValue Ops[] = { And.getOperand(1),
1584                           And.getOperand(2),
1585                           And.getOperand(3),
1586                           And.getOperand(4),
1587                           And.getOperand(5),
1588                           And.getOperand(0),
1589                           And.getOperand(6)  /* Chain */ };
1590         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1591                                                      MVT::i32, MVT::Other, Ops);
1592         CurDAG->setNodeMemRefs(
1593             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1594         ReplaceUses(And.getValue(2), SDValue(Test, 1));
1595         ReplaceUses(SDValue(N, 0), SDValue(Test, 0));
1596         MadeChange = true;
1597         continue;
1598       }
1599     }
1600 
1601     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1602     // used. We're doing this late so we can prefer to fold the AND into masked
1603     // comparisons. Doing that can be better for the live range of the mask
1604     // register.
1605     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1606          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1607         N->getOperand(0) == N->getOperand(1) &&
1608         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1609         N->getOperand(0).isMachineOpcode() &&
1610         onlyUsesZeroFlag(SDValue(N, 0))) {
1611       SDValue And = N->getOperand(0);
1612       unsigned N0Opc = And.getMachineOpcode();
1613       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1614       // KAND instructions and KTEST use the same ISA feature.
1615       if (N0Opc == X86::KANDBrr ||
1616           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1617           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1618         unsigned NewOpc;
1619         switch (Opc) {
1620         default: llvm_unreachable("Unexpected opcode!");
1621         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1622         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1623         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1624         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1625         }
1626         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1627                                                       MVT::i32,
1628                                                       And.getOperand(0),
1629                                                       And.getOperand(1));
1630         ReplaceUses(N, KTest);
1631         MadeChange = true;
1632         continue;
1633       }
1634     }
1635 
1636     // Attempt to remove vectors moves that were inserted to zero upper bits.
1637     if (Opc != TargetOpcode::SUBREG_TO_REG)
1638       continue;
1639 
1640     unsigned SubRegIdx = N->getConstantOperandVal(2);
1641     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1642       continue;
1643 
1644     SDValue Move = N->getOperand(1);
1645     if (!Move.isMachineOpcode())
1646       continue;
1647 
1648     // Make sure its one of the move opcodes we recognize.
1649     switch (Move.getMachineOpcode()) {
1650     default:
1651       continue;
1652     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1653     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1654     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1655     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1656     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1657     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1658     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1659     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1660     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1661     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1662     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1663     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1664     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1665     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1666       break;
1667     }
1668 
1669     SDValue In = Move.getOperand(0);
1670     if (!In.isMachineOpcode() ||
1671         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1672       continue;
1673 
1674     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1675     // the SHA instructions which use a legacy encoding.
1676     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1677     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1678         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1679         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1680       continue;
1681 
1682     // Producing instruction is another vector instruction. We can drop the
1683     // move.
1684     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1685     MadeChange = true;
1686   }
1687 
1688   if (MadeChange)
1689     CurDAG->RemoveDeadNodes();
1690 }
1691 
1692 
1693 /// Emit any code that needs to be executed only in the main function.
1694 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1695   if (Subtarget->isTargetCygMing()) {
1696     TargetLowering::ArgListTy Args;
1697     auto &DL = CurDAG->getDataLayout();
1698 
1699     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1700     CLI.setChain(CurDAG->getRoot())
1701         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1702                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1703                    std::move(Args));
1704     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1705     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1706     CurDAG->setRoot(Result.second);
1707   }
1708 }
1709 
1710 void X86DAGToDAGISel::emitFunctionEntryCode() {
1711   // If this is main, emit special code for main.
1712   const Function &F = MF->getFunction();
1713   if (F.hasExternalLinkage() && F.getName() == "main")
1714     emitSpecialCodeForMain();
1715 }
1716 
1717 static bool isDispSafeForFrameIndex(int64_t Val) {
1718   // On 64-bit platforms, we can run into an issue where a frame index
1719   // includes a displacement that, when added to the explicit displacement,
1720   // will overflow the displacement field. Assuming that the frame index
1721   // displacement fits into a 31-bit integer  (which is only slightly more
1722   // aggressive than the current fundamental assumption that it fits into
1723   // a 32-bit integer), a 31-bit disp should always be safe.
1724   return isInt<31>(Val);
1725 }
1726 
1727 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1728                                             X86ISelAddressMode &AM) {
1729   // We may have already matched a displacement and the caller just added the
1730   // symbolic displacement. So we still need to do the checks even if Offset
1731   // is zero.
1732 
1733   int64_t Val = AM.Disp + Offset;
1734 
1735   // Cannot combine ExternalSymbol displacements with integer offsets.
1736   if (Val != 0 && (AM.ES || AM.MCSym))
1737     return true;
1738 
1739   CodeModel::Model M = TM.getCodeModel();
1740   if (Subtarget->is64Bit()) {
1741     if (Val != 0 &&
1742         !X86::isOffsetSuitableForCodeModel(Val, M,
1743                                            AM.hasSymbolicDisplacement()))
1744       return true;
1745     // In addition to the checks required for a register base, check that
1746     // we do not try to use an unsafe Disp with a frame index.
1747     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1748         !isDispSafeForFrameIndex(Val))
1749       return true;
1750     // In ILP32 (x32) mode, pointers are 32 bits and need to be zero-extended to
1751     // 64 bits. Instructions with 32-bit register addresses perform this zero
1752     // extension for us and we can safely ignore the high bits of Offset.
1753     // Instructions with only a 32-bit immediate address do not, though: they
1754     // sign extend instead. This means only address the low 2GB of address space
1755     // is directly addressable, we need indirect addressing for the high 2GB of
1756     // address space.
1757     // TODO: Some of the earlier checks may be relaxed for ILP32 mode as the
1758     // implicit zero extension of instructions would cover up any problem.
1759     // However, we have asserts elsewhere that get triggered if we do, so keep
1760     // the checks for now.
1761     // TODO: We would actually be able to accept these, as well as the same
1762     // addresses in LP64 mode, by adding the EIZ pseudo-register as an operand
1763     // to get an address size override to be emitted. However, this
1764     // pseudo-register is not part of any register class and therefore causes
1765     // MIR verification to fail.
1766     if (Subtarget->isTarget64BitILP32() && !isUInt<31>(Val) &&
1767         !AM.hasBaseOrIndexReg())
1768       return true;
1769   }
1770   AM.Disp = Val;
1771   return false;
1772 }
1773 
1774 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1775                                          bool AllowSegmentRegForX32) {
1776   SDValue Address = N->getOperand(1);
1777 
1778   // load gs:0 -> GS segment register.
1779   // load fs:0 -> FS segment register.
1780   //
1781   // This optimization is generally valid because the GNU TLS model defines that
1782   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1783   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1784   // zero-extended to 64 bits and then added it to the base address, which gives
1785   // unwanted results when the register holds a negative value.
1786   // For more information see http://people.redhat.com/drepper/tls.pdf
1787   if (isNullConstant(Address) && AM.Segment.getNode() == nullptr &&
1788       !IndirectTlsSegRefs &&
1789       (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1790        Subtarget->isTargetFuchsia())) {
1791     if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1792       return true;
1793     switch (N->getPointerInfo().getAddrSpace()) {
1794     case X86AS::GS:
1795       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1796       return false;
1797     case X86AS::FS:
1798       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1799       return false;
1800       // Address space X86AS::SS is not handled here, because it is not used to
1801       // address TLS areas.
1802     }
1803   }
1804 
1805   return true;
1806 }
1807 
1808 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1809 /// mode. These wrap things that will resolve down into a symbol reference.
1810 /// If no match is possible, this returns true, otherwise it returns false.
1811 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1812   // If the addressing mode already has a symbol as the displacement, we can
1813   // never match another symbol.
1814   if (AM.hasSymbolicDisplacement())
1815     return true;
1816 
1817   bool IsRIPRelTLS = false;
1818   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1819   if (IsRIPRel) {
1820     SDValue Val = N.getOperand(0);
1821     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1822       IsRIPRelTLS = true;
1823   }
1824 
1825   // We can't use an addressing mode in the 64-bit large code model.
1826   // Global TLS addressing is an exception. In the medium code model,
1827   // we use can use a mode when RIP wrappers are present.
1828   // That signifies access to globals that are known to be "near",
1829   // such as the GOT itself.
1830   CodeModel::Model M = TM.getCodeModel();
1831   if (Subtarget->is64Bit() && M == CodeModel::Large && !IsRIPRelTLS)
1832     return true;
1833 
1834   // Base and index reg must be 0 in order to use %rip as base.
1835   if (IsRIPRel && AM.hasBaseOrIndexReg())
1836     return true;
1837 
1838   // Make a local copy in case we can't do this fold.
1839   X86ISelAddressMode Backup = AM;
1840 
1841   int64_t Offset = 0;
1842   SDValue N0 = N.getOperand(0);
1843   if (auto *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1844     AM.GV = G->getGlobal();
1845     AM.SymbolFlags = G->getTargetFlags();
1846     Offset = G->getOffset();
1847   } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1848     AM.CP = CP->getConstVal();
1849     AM.Alignment = CP->getAlign();
1850     AM.SymbolFlags = CP->getTargetFlags();
1851     Offset = CP->getOffset();
1852   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1853     AM.ES = S->getSymbol();
1854     AM.SymbolFlags = S->getTargetFlags();
1855   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1856     AM.MCSym = S->getMCSymbol();
1857   } else if (auto *J = dyn_cast<JumpTableSDNode>(N0)) {
1858     AM.JT = J->getIndex();
1859     AM.SymbolFlags = J->getTargetFlags();
1860   } else if (auto *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1861     AM.BlockAddr = BA->getBlockAddress();
1862     AM.SymbolFlags = BA->getTargetFlags();
1863     Offset = BA->getOffset();
1864   } else
1865     llvm_unreachable("Unhandled symbol reference node.");
1866 
1867   // Can't use an addressing mode with large globals.
1868   if (Subtarget->is64Bit() && !IsRIPRel && AM.GV &&
1869       TM.isLargeGlobalValue(AM.GV)) {
1870     AM = Backup;
1871     return true;
1872   }
1873 
1874   if (foldOffsetIntoAddress(Offset, AM)) {
1875     AM = Backup;
1876     return true;
1877   }
1878 
1879   if (IsRIPRel)
1880     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1881 
1882   // Commit the changes now that we know this fold is safe.
1883   return false;
1884 }
1885 
1886 /// Add the specified node to the specified addressing mode, returning true if
1887 /// it cannot be done. This just pattern matches for the addressing mode.
1888 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1889   if (matchAddressRecursively(N, AM, 0))
1890     return true;
1891 
1892   // Post-processing: Make a second attempt to fold a load, if we now know
1893   // that there will not be any other register. This is only performed for
1894   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1895   // any foldable load the first time.
1896   if (Subtarget->isTarget64BitILP32() &&
1897       AM.BaseType == X86ISelAddressMode::RegBase &&
1898       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1899     SDValue Save_Base_Reg = AM.Base_Reg;
1900     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1901       AM.Base_Reg = SDValue();
1902       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1903         AM.Base_Reg = Save_Base_Reg;
1904     }
1905   }
1906 
1907   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1908   // a smaller encoding and avoids a scaled-index.
1909   if (AM.Scale == 2 &&
1910       AM.BaseType == X86ISelAddressMode::RegBase &&
1911       AM.Base_Reg.getNode() == nullptr) {
1912     AM.Base_Reg = AM.IndexReg;
1913     AM.Scale = 1;
1914   }
1915 
1916   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1917   // because it has a smaller encoding.
1918   if (TM.getCodeModel() != CodeModel::Large &&
1919       (!AM.GV || !TM.isLargeGlobalValue(AM.GV)) && Subtarget->is64Bit() &&
1920       AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase &&
1921       AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr &&
1922       AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) {
1923     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1924   }
1925 
1926   return false;
1927 }
1928 
1929 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1930                                unsigned Depth) {
1931   // Add an artificial use to this node so that we can keep track of
1932   // it if it gets CSE'd with a different node.
1933   HandleSDNode Handle(N);
1934 
1935   X86ISelAddressMode Backup = AM;
1936   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1937       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1938     return false;
1939   AM = Backup;
1940 
1941   // Try again after commutating the operands.
1942   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1943                                Depth + 1) &&
1944       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1945     return false;
1946   AM = Backup;
1947 
1948   // If we couldn't fold both operands into the address at the same time,
1949   // see if we can just put each operand into a register and fold at least
1950   // the add.
1951   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1952       !AM.Base_Reg.getNode() &&
1953       !AM.IndexReg.getNode()) {
1954     N = Handle.getValue();
1955     AM.Base_Reg = N.getOperand(0);
1956     AM.IndexReg = N.getOperand(1);
1957     AM.Scale = 1;
1958     return false;
1959   }
1960   N = Handle.getValue();
1961   return true;
1962 }
1963 
1964 // Insert a node into the DAG at least before the Pos node's position. This
1965 // will reposition the node as needed, and will assign it a node ID that is <=
1966 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1967 // IDs! The selection DAG must no longer depend on their uniqueness when this
1968 // is used.
1969 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1970   if (N->getNodeId() == -1 ||
1971       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1972        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1973     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1974     // Mark Node as invalid for pruning as after this it may be a successor to a
1975     // selected node but otherwise be in the same position of Pos.
1976     // Conservatively mark it with the same -abs(Id) to assure node id
1977     // invariant is preserved.
1978     N->setNodeId(Pos->getNodeId());
1979     SelectionDAGISel::InvalidateNodeId(N.getNode());
1980   }
1981 }
1982 
1983 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1984 // safe. This allows us to convert the shift and and into an h-register
1985 // extract and a scaled index. Returns false if the simplification is
1986 // performed.
1987 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1988                                       uint64_t Mask,
1989                                       SDValue Shift, SDValue X,
1990                                       X86ISelAddressMode &AM) {
1991   if (Shift.getOpcode() != ISD::SRL ||
1992       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1993       !Shift.hasOneUse())
1994     return true;
1995 
1996   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1997   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1998       Mask != (0xffu << ScaleLog))
1999     return true;
2000 
2001   MVT XVT = X.getSimpleValueType();
2002   MVT VT = N.getSimpleValueType();
2003   SDLoc DL(N);
2004   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
2005   SDValue NewMask = DAG.getConstant(0xff, DL, XVT);
2006   SDValue Srl = DAG.getNode(ISD::SRL, DL, XVT, X, Eight);
2007   SDValue And = DAG.getNode(ISD::AND, DL, XVT, Srl, NewMask);
2008   SDValue Ext = DAG.getZExtOrTrunc(And, DL, VT);
2009   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
2010   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Ext, ShlCount);
2011 
2012   // Insert the new nodes into the topological ordering. We must do this in
2013   // a valid topological ordering as nothing is going to go back and re-sort
2014   // these nodes. We continually insert before 'N' in sequence as this is
2015   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2016   // hierarchy left to express.
2017   insertDAGNode(DAG, N, Eight);
2018   insertDAGNode(DAG, N, NewMask);
2019   insertDAGNode(DAG, N, Srl);
2020   insertDAGNode(DAG, N, And);
2021   insertDAGNode(DAG, N, Ext);
2022   insertDAGNode(DAG, N, ShlCount);
2023   insertDAGNode(DAG, N, Shl);
2024   DAG.ReplaceAllUsesWith(N, Shl);
2025   DAG.RemoveDeadNode(N.getNode());
2026   AM.IndexReg = Ext;
2027   AM.Scale = (1 << ScaleLog);
2028   return false;
2029 }
2030 
2031 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
2032 // allows us to fold the shift into this addressing mode. Returns false if the
2033 // transform succeeded.
2034 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
2035                                         X86ISelAddressMode &AM) {
2036   SDValue Shift = N.getOperand(0);
2037 
2038   // Use a signed mask so that shifting right will insert sign bits. These
2039   // bits will be removed when we shift the result left so it doesn't matter
2040   // what we use. This might allow a smaller immediate encoding.
2041   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2042 
2043   // If we have an any_extend feeding the AND, look through it to see if there
2044   // is a shift behind it. But only if the AND doesn't use the extended bits.
2045   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
2046   bool FoundAnyExtend = false;
2047   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
2048       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
2049       isUInt<32>(Mask)) {
2050     FoundAnyExtend = true;
2051     Shift = Shift.getOperand(0);
2052   }
2053 
2054   if (Shift.getOpcode() != ISD::SHL ||
2055       !isa<ConstantSDNode>(Shift.getOperand(1)))
2056     return true;
2057 
2058   SDValue X = Shift.getOperand(0);
2059 
2060   // Not likely to be profitable if either the AND or SHIFT node has more
2061   // than one use (unless all uses are for address computation). Besides,
2062   // isel mechanism requires their node ids to be reused.
2063   if (!N.hasOneUse() || !Shift.hasOneUse())
2064     return true;
2065 
2066   // Verify that the shift amount is something we can fold.
2067   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2068   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
2069     return true;
2070 
2071   MVT VT = N.getSimpleValueType();
2072   SDLoc DL(N);
2073   if (FoundAnyExtend) {
2074     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
2075     insertDAGNode(DAG, N, NewX);
2076     X = NewX;
2077   }
2078 
2079   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
2080   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
2081   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
2082 
2083   // Insert the new nodes into the topological ordering. We must do this in
2084   // a valid topological ordering as nothing is going to go back and re-sort
2085   // these nodes. We continually insert before 'N' in sequence as this is
2086   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2087   // hierarchy left to express.
2088   insertDAGNode(DAG, N, NewMask);
2089   insertDAGNode(DAG, N, NewAnd);
2090   insertDAGNode(DAG, N, NewShift);
2091   DAG.ReplaceAllUsesWith(N, NewShift);
2092   DAG.RemoveDeadNode(N.getNode());
2093 
2094   AM.Scale = 1 << ShiftAmt;
2095   AM.IndexReg = NewAnd;
2096   return false;
2097 }
2098 
2099 // Implement some heroics to detect shifts of masked values where the mask can
2100 // be replaced by extending the shift and undoing that in the addressing mode
2101 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2102 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2103 // the addressing mode. This results in code such as:
2104 //
2105 //   int f(short *y, int *lookup_table) {
2106 //     ...
2107 //     return *y + lookup_table[*y >> 11];
2108 //   }
2109 //
2110 // Turning into:
2111 //   movzwl (%rdi), %eax
2112 //   movl %eax, %ecx
2113 //   shrl $11, %ecx
2114 //   addl (%rsi,%rcx,4), %eax
2115 //
2116 // Instead of:
2117 //   movzwl (%rdi), %eax
2118 //   movl %eax, %ecx
2119 //   shrl $9, %ecx
2120 //   andl $124, %rcx
2121 //   addl (%rsi,%rcx), %eax
2122 //
2123 // Note that this function assumes the mask is provided as a mask *after* the
2124 // value is shifted. The input chain may or may not match that, but computing
2125 // such a mask is trivial.
2126 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2127                                     uint64_t Mask,
2128                                     SDValue Shift, SDValue X,
2129                                     X86ISelAddressMode &AM) {
2130   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2131       !isa<ConstantSDNode>(Shift.getOperand(1)))
2132     return true;
2133 
2134   // We need to ensure that mask is a continuous run of bits.
2135   unsigned MaskIdx, MaskLen;
2136   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2137     return true;
2138   unsigned MaskLZ = 64 - (MaskIdx + MaskLen);
2139 
2140   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2141 
2142   // The amount of shift we're trying to fit into the addressing mode is taken
2143   // from the shifted mask index (number of trailing zeros of the mask).
2144   unsigned AMShiftAmt = MaskIdx;
2145 
2146   // There is nothing we can do here unless the mask is removing some bits.
2147   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2148   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2149 
2150   // Scale the leading zero count down based on the actual size of the value.
2151   // Also scale it down based on the size of the shift.
2152   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2153   if (MaskLZ < ScaleDown)
2154     return true;
2155   MaskLZ -= ScaleDown;
2156 
2157   // The final check is to ensure that any masked out high bits of X are
2158   // already known to be zero. Otherwise, the mask has a semantic impact
2159   // other than masking out a couple of low bits. Unfortunately, because of
2160   // the mask, zero extensions will be removed from operands in some cases.
2161   // This code works extra hard to look through extensions because we can
2162   // replace them with zero extensions cheaply if necessary.
2163   bool ReplacingAnyExtend = false;
2164   if (X.getOpcode() == ISD::ANY_EXTEND) {
2165     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2166                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2167     // Assume that we'll replace the any-extend with a zero-extend, and
2168     // narrow the search to the extended value.
2169     X = X.getOperand(0);
2170     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2171     ReplacingAnyExtend = true;
2172   }
2173   APInt MaskedHighBits =
2174     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2175   if (!DAG.MaskedValueIsZero(X, MaskedHighBits))
2176     return true;
2177 
2178   // We've identified a pattern that can be transformed into a single shift
2179   // and an addressing mode. Make it so.
2180   MVT VT = N.getSimpleValueType();
2181   if (ReplacingAnyExtend) {
2182     assert(X.getValueType() != VT);
2183     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2184     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2185     insertDAGNode(DAG, N, NewX);
2186     X = NewX;
2187   }
2188 
2189   MVT XVT = X.getSimpleValueType();
2190   SDLoc DL(N);
2191   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2192   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2193   SDValue NewExt = DAG.getZExtOrTrunc(NewSRL, DL, VT);
2194   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2195   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2196 
2197   // Insert the new nodes into the topological ordering. We must do this in
2198   // a valid topological ordering as nothing is going to go back and re-sort
2199   // these nodes. We continually insert before 'N' in sequence as this is
2200   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2201   // hierarchy left to express.
2202   insertDAGNode(DAG, N, NewSRLAmt);
2203   insertDAGNode(DAG, N, NewSRL);
2204   insertDAGNode(DAG, N, NewExt);
2205   insertDAGNode(DAG, N, NewSHLAmt);
2206   insertDAGNode(DAG, N, NewSHL);
2207   DAG.ReplaceAllUsesWith(N, NewSHL);
2208   DAG.RemoveDeadNode(N.getNode());
2209 
2210   AM.Scale = 1 << AMShiftAmt;
2211   AM.IndexReg = NewExt;
2212   return false;
2213 }
2214 
2215 // Transform "(X >> SHIFT) & (MASK << C1)" to
2216 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2217 // matched to a BEXTR later. Returns false if the simplification is performed.
2218 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2219                                    uint64_t Mask,
2220                                    SDValue Shift, SDValue X,
2221                                    X86ISelAddressMode &AM,
2222                                    const X86Subtarget &Subtarget) {
2223   if (Shift.getOpcode() != ISD::SRL ||
2224       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2225       !Shift.hasOneUse() || !N.hasOneUse())
2226     return true;
2227 
2228   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2229   if (!Subtarget.hasTBM() &&
2230       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2231     return true;
2232 
2233   // We need to ensure that mask is a continuous run of bits.
2234   unsigned MaskIdx, MaskLen;
2235   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2236     return true;
2237 
2238   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2239 
2240   // The amount of shift we're trying to fit into the addressing mode is taken
2241   // from the shifted mask index (number of trailing zeros of the mask).
2242   unsigned AMShiftAmt = MaskIdx;
2243 
2244   // There is nothing we can do here unless the mask is removing some bits.
2245   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2246   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2247 
2248   MVT XVT = X.getSimpleValueType();
2249   MVT VT = N.getSimpleValueType();
2250   SDLoc DL(N);
2251   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2252   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2253   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, XVT);
2254   SDValue NewAnd = DAG.getNode(ISD::AND, DL, XVT, NewSRL, NewMask);
2255   SDValue NewExt = DAG.getZExtOrTrunc(NewAnd, DL, VT);
2256   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2257   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2258 
2259   // Insert the new nodes into the topological ordering. We must do this in
2260   // a valid topological ordering as nothing is going to go back and re-sort
2261   // these nodes. We continually insert before 'N' in sequence as this is
2262   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2263   // hierarchy left to express.
2264   insertDAGNode(DAG, N, NewSRLAmt);
2265   insertDAGNode(DAG, N, NewSRL);
2266   insertDAGNode(DAG, N, NewMask);
2267   insertDAGNode(DAG, N, NewAnd);
2268   insertDAGNode(DAG, N, NewExt);
2269   insertDAGNode(DAG, N, NewSHLAmt);
2270   insertDAGNode(DAG, N, NewSHL);
2271   DAG.ReplaceAllUsesWith(N, NewSHL);
2272   DAG.RemoveDeadNode(N.getNode());
2273 
2274   AM.Scale = 1 << AMShiftAmt;
2275   AM.IndexReg = NewExt;
2276   return false;
2277 }
2278 
2279 // Attempt to peek further into a scaled index register, collecting additional
2280 // extensions / offsets / etc. Returns /p N if we can't peek any further.
2281 SDValue X86DAGToDAGISel::matchIndexRecursively(SDValue N,
2282                                                X86ISelAddressMode &AM,
2283                                                unsigned Depth) {
2284   assert(AM.IndexReg.getNode() == nullptr && "IndexReg already matched");
2285   assert((AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8) &&
2286          "Illegal index scale");
2287 
2288   // Limit recursion.
2289   if (Depth >= SelectionDAG::MaxRecursionDepth)
2290     return N;
2291 
2292   EVT VT = N.getValueType();
2293   unsigned Opc = N.getOpcode();
2294 
2295   // index: add(x,c) -> index: x, disp + c
2296   if (CurDAG->isBaseWithConstantOffset(N)) {
2297     auto *AddVal = cast<ConstantSDNode>(N.getOperand(1));
2298     uint64_t Offset = (uint64_t)AddVal->getSExtValue() * AM.Scale;
2299     if (!foldOffsetIntoAddress(Offset, AM))
2300       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2301   }
2302 
2303   // index: add(x,x) -> index: x, scale * 2
2304   if (Opc == ISD::ADD && N.getOperand(0) == N.getOperand(1)) {
2305     if (AM.Scale <= 4) {
2306       AM.Scale *= 2;
2307       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2308     }
2309   }
2310 
2311   // index: shl(x,i) -> index: x, scale * (1 << i)
2312   if (Opc == X86ISD::VSHLI) {
2313     uint64_t ShiftAmt = N.getConstantOperandVal(1);
2314     uint64_t ScaleAmt = 1ULL << ShiftAmt;
2315     if ((AM.Scale * ScaleAmt) <= 8) {
2316       AM.Scale *= ScaleAmt;
2317       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2318     }
2319   }
2320 
2321   // index: sext(add_nsw(x,c)) -> index: sext(x), disp + sext(c)
2322   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2323   if (Opc == ISD::SIGN_EXTEND && !VT.isVector() && N.hasOneUse()) {
2324     SDValue Src = N.getOperand(0);
2325     if (Src.getOpcode() == ISD::ADD && Src->getFlags().hasNoSignedWrap() &&
2326         Src.hasOneUse()) {
2327       if (CurDAG->isBaseWithConstantOffset(Src)) {
2328         SDValue AddSrc = Src.getOperand(0);
2329         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2330         uint64_t Offset = (uint64_t)AddVal->getSExtValue();
2331         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2332           SDLoc DL(N);
2333           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2334           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2335           SDValue ExtAdd = CurDAG->getNode(ISD::ADD, DL, VT, ExtSrc, ExtVal);
2336           insertDAGNode(*CurDAG, N, ExtSrc);
2337           insertDAGNode(*CurDAG, N, ExtVal);
2338           insertDAGNode(*CurDAG, N, ExtAdd);
2339           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2340           CurDAG->RemoveDeadNode(N.getNode());
2341           return ExtSrc;
2342         }
2343       }
2344     }
2345   }
2346 
2347   // index: zext(add_nuw(x,c)) -> index: zext(x), disp + zext(c)
2348   // index: zext(addlike(x,c)) -> index: zext(x), disp + zext(c)
2349   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2350   if (Opc == ISD::ZERO_EXTEND && !VT.isVector() && N.hasOneUse()) {
2351     SDValue Src = N.getOperand(0);
2352     unsigned SrcOpc = Src.getOpcode();
2353     if (((SrcOpc == ISD::ADD && Src->getFlags().hasNoUnsignedWrap()) ||
2354          CurDAG->isADDLike(Src)) &&
2355         Src.hasOneUse()) {
2356       if (CurDAG->isBaseWithConstantOffset(Src)) {
2357         SDValue AddSrc = Src.getOperand(0);
2358         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2359         uint64_t Offset = (uint64_t)AddVal->getZExtValue();
2360         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2361           SDLoc DL(N);
2362           SDValue Res;
2363           // If we're also scaling, see if we can use that as well.
2364           if (AddSrc.getOpcode() == ISD::SHL &&
2365               isa<ConstantSDNode>(AddSrc.getOperand(1))) {
2366             SDValue ShVal = AddSrc.getOperand(0);
2367             uint64_t ShAmt = AddSrc.getConstantOperandVal(1);
2368             APInt HiBits =
2369                 APInt::getHighBitsSet(AddSrc.getScalarValueSizeInBits(), ShAmt);
2370             uint64_t ScaleAmt = 1ULL << ShAmt;
2371             if ((AM.Scale * ScaleAmt) <= 8 &&
2372                 (AddSrc->getFlags().hasNoUnsignedWrap() ||
2373                  CurDAG->MaskedValueIsZero(ShVal, HiBits))) {
2374               AM.Scale *= ScaleAmt;
2375               SDValue ExtShVal = CurDAG->getNode(Opc, DL, VT, ShVal);
2376               SDValue ExtShift = CurDAG->getNode(ISD::SHL, DL, VT, ExtShVal,
2377                                                  AddSrc.getOperand(1));
2378               insertDAGNode(*CurDAG, N, ExtShVal);
2379               insertDAGNode(*CurDAG, N, ExtShift);
2380               AddSrc = ExtShift;
2381               Res = ExtShVal;
2382             }
2383           }
2384           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2385           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2386           SDValue ExtAdd = CurDAG->getNode(SrcOpc, DL, VT, ExtSrc, ExtVal);
2387           insertDAGNode(*CurDAG, N, ExtSrc);
2388           insertDAGNode(*CurDAG, N, ExtVal);
2389           insertDAGNode(*CurDAG, N, ExtAdd);
2390           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2391           CurDAG->RemoveDeadNode(N.getNode());
2392           return Res ? Res : ExtSrc;
2393         }
2394       }
2395     }
2396   }
2397 
2398   // TODO: Handle extensions, shifted masks etc.
2399   return N;
2400 }
2401 
2402 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2403                                               unsigned Depth) {
2404   SDLoc dl(N);
2405   LLVM_DEBUG({
2406     dbgs() << "MatchAddress: ";
2407     AM.dump(CurDAG);
2408   });
2409   // Limit recursion.
2410   if (Depth >= SelectionDAG::MaxRecursionDepth)
2411     return matchAddressBase(N, AM);
2412 
2413   // If this is already a %rip relative address, we can only merge immediates
2414   // into it.  Instead of handling this in every case, we handle it here.
2415   // RIP relative addressing: %rip + 32-bit displacement!
2416   if (AM.isRIPRelative()) {
2417     // FIXME: JumpTable and ExternalSymbol address currently don't like
2418     // displacements.  It isn't very important, but this should be fixed for
2419     // consistency.
2420     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2421       return true;
2422 
2423     if (auto *Cst = dyn_cast<ConstantSDNode>(N))
2424       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2425         return false;
2426     return true;
2427   }
2428 
2429   switch (N.getOpcode()) {
2430   default: break;
2431   case ISD::LOCAL_RECOVER: {
2432     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2433       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2434         // Use the symbol and don't prefix it.
2435         AM.MCSym = ESNode->getMCSymbol();
2436         return false;
2437       }
2438     break;
2439   }
2440   case ISD::Constant: {
2441     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2442     if (!foldOffsetIntoAddress(Val, AM))
2443       return false;
2444     break;
2445   }
2446 
2447   case X86ISD::Wrapper:
2448   case X86ISD::WrapperRIP:
2449     if (!matchWrapper(N, AM))
2450       return false;
2451     break;
2452 
2453   case ISD::LOAD:
2454     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2455       return false;
2456     break;
2457 
2458   case ISD::FrameIndex:
2459     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2460         AM.Base_Reg.getNode() == nullptr &&
2461         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2462       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2463       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2464       return false;
2465     }
2466     break;
2467 
2468   case ISD::SHL:
2469     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2470       break;
2471 
2472     if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2473       unsigned Val = CN->getZExtValue();
2474       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2475       // that the base operand remains free for further matching. If
2476       // the base doesn't end up getting used, a post-processing step
2477       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2478       if (Val == 1 || Val == 2 || Val == 3) {
2479         SDValue ShVal = N.getOperand(0);
2480         AM.Scale = 1 << Val;
2481         AM.IndexReg = matchIndexRecursively(ShVal, AM, Depth + 1);
2482         return false;
2483       }
2484     }
2485     break;
2486 
2487   case ISD::SRL: {
2488     // Scale must not be used already.
2489     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2490 
2491     // We only handle up to 64-bit values here as those are what matter for
2492     // addressing mode optimizations.
2493     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2494            "Unexpected value size!");
2495 
2496     SDValue And = N.getOperand(0);
2497     if (And.getOpcode() != ISD::AND) break;
2498     SDValue X = And.getOperand(0);
2499 
2500     // The mask used for the transform is expected to be post-shift, but we
2501     // found the shift first so just apply the shift to the mask before passing
2502     // it down.
2503     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2504         !isa<ConstantSDNode>(And.getOperand(1)))
2505       break;
2506     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2507 
2508     // Try to fold the mask and shift into the scale, and return false if we
2509     // succeed.
2510     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2511       return false;
2512     break;
2513   }
2514 
2515   case ISD::SMUL_LOHI:
2516   case ISD::UMUL_LOHI:
2517     // A mul_lohi where we need the low part can be folded as a plain multiply.
2518     if (N.getResNo() != 0) break;
2519     [[fallthrough]];
2520   case ISD::MUL:
2521   case X86ISD::MUL_IMM:
2522     // X*[3,5,9] -> X+X*[2,4,8]
2523     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2524         AM.Base_Reg.getNode() == nullptr &&
2525         AM.IndexReg.getNode() == nullptr) {
2526       if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2527         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2528             CN->getZExtValue() == 9) {
2529           AM.Scale = unsigned(CN->getZExtValue())-1;
2530 
2531           SDValue MulVal = N.getOperand(0);
2532           SDValue Reg;
2533 
2534           // Okay, we know that we have a scale by now.  However, if the scaled
2535           // value is an add of something and a constant, we can fold the
2536           // constant into the disp field here.
2537           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2538               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2539             Reg = MulVal.getOperand(0);
2540             auto *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1));
2541             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2542             if (foldOffsetIntoAddress(Disp, AM))
2543               Reg = N.getOperand(0);
2544           } else {
2545             Reg = N.getOperand(0);
2546           }
2547 
2548           AM.IndexReg = AM.Base_Reg = Reg;
2549           return false;
2550         }
2551     }
2552     break;
2553 
2554   case ISD::SUB: {
2555     // Given A-B, if A can be completely folded into the address and
2556     // the index field with the index field unused, use -B as the index.
2557     // This is a win if a has multiple parts that can be folded into
2558     // the address. Also, this saves a mov if the base register has
2559     // other uses, since it avoids a two-address sub instruction, however
2560     // it costs an additional mov if the index register has other uses.
2561 
2562     // Add an artificial use to this node so that we can keep track of
2563     // it if it gets CSE'd with a different node.
2564     HandleSDNode Handle(N);
2565 
2566     // Test if the LHS of the sub can be folded.
2567     X86ISelAddressMode Backup = AM;
2568     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2569       N = Handle.getValue();
2570       AM = Backup;
2571       break;
2572     }
2573     N = Handle.getValue();
2574     // Test if the index field is free for use.
2575     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2576       AM = Backup;
2577       break;
2578     }
2579 
2580     int Cost = 0;
2581     SDValue RHS = N.getOperand(1);
2582     // If the RHS involves a register with multiple uses, this
2583     // transformation incurs an extra mov, due to the neg instruction
2584     // clobbering its operand.
2585     if (!RHS.getNode()->hasOneUse() ||
2586         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2587         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2588         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2589         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2590          RHS.getOperand(0).getValueType() == MVT::i32))
2591       ++Cost;
2592     // If the base is a register with multiple uses, this
2593     // transformation may save a mov.
2594     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2595          !AM.Base_Reg.getNode()->hasOneUse()) ||
2596         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2597       --Cost;
2598     // If the folded LHS was interesting, this transformation saves
2599     // address arithmetic.
2600     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2601         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2602         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2603       --Cost;
2604     // If it doesn't look like it may be an overall win, don't do it.
2605     if (Cost >= 0) {
2606       AM = Backup;
2607       break;
2608     }
2609 
2610     // Ok, the transformation is legal and appears profitable. Go for it.
2611     // Negation will be emitted later to avoid creating dangling nodes if this
2612     // was an unprofitable LEA.
2613     AM.IndexReg = RHS;
2614     AM.NegateIndex = true;
2615     AM.Scale = 1;
2616     return false;
2617   }
2618 
2619   case ISD::OR:
2620   case ISD::XOR:
2621     // See if we can treat the OR/XOR node as an ADD node.
2622     if (!CurDAG->isADDLike(N))
2623       break;
2624     [[fallthrough]];
2625   case ISD::ADD:
2626     if (!matchAdd(N, AM, Depth))
2627       return false;
2628     break;
2629 
2630   case ISD::AND: {
2631     // Perform some heroic transforms on an and of a constant-count shift
2632     // with a constant to enable use of the scaled offset field.
2633 
2634     // Scale must not be used already.
2635     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2636 
2637     // We only handle up to 64-bit values here as those are what matter for
2638     // addressing mode optimizations.
2639     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2640            "Unexpected value size!");
2641 
2642     if (!isa<ConstantSDNode>(N.getOperand(1)))
2643       break;
2644 
2645     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2646       SDValue Shift = N.getOperand(0);
2647       SDValue X = Shift.getOperand(0);
2648 
2649       uint64_t Mask = N.getConstantOperandVal(1);
2650 
2651       // Try to fold the mask and shift into an extract and scale.
2652       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2653         return false;
2654 
2655       // Try to fold the mask and shift directly into the scale.
2656       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2657         return false;
2658 
2659       // Try to fold the mask and shift into BEXTR and scale.
2660       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2661         return false;
2662     }
2663 
2664     // Try to swap the mask and shift to place shifts which can be done as
2665     // a scale on the outside of the mask.
2666     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2667       return false;
2668 
2669     break;
2670   }
2671   case ISD::ZERO_EXTEND: {
2672     // Try to widen a zexted shift left to the same size as its use, so we can
2673     // match the shift as a scale factor.
2674     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2675       break;
2676 
2677     SDValue Src = N.getOperand(0);
2678 
2679     // See if we can match a zext(addlike(x,c)).
2680     // TODO: Move more ZERO_EXTEND patterns into matchIndexRecursively.
2681     if (Src.getOpcode() == ISD::ADD || Src.getOpcode() == ISD::OR)
2682       if (SDValue Index = matchIndexRecursively(N, AM, Depth + 1))
2683         if (Index != N) {
2684           AM.IndexReg = Index;
2685           return false;
2686         }
2687 
2688     // Peek through mask: zext(and(shl(x,c1),c2))
2689     APInt Mask = APInt::getAllOnes(Src.getScalarValueSizeInBits());
2690     if (Src.getOpcode() == ISD::AND && Src.hasOneUse())
2691       if (auto *MaskC = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
2692         Mask = MaskC->getAPIntValue();
2693         Src = Src.getOperand(0);
2694       }
2695 
2696     if (Src.getOpcode() == ISD::SHL && Src.hasOneUse()) {
2697       // Give up if the shift is not a valid scale factor [1,2,3].
2698       SDValue ShlSrc = Src.getOperand(0);
2699       SDValue ShlAmt = Src.getOperand(1);
2700       auto *ShAmtC = dyn_cast<ConstantSDNode>(ShlAmt);
2701       if (!ShAmtC)
2702         break;
2703       unsigned ShAmtV = ShAmtC->getZExtValue();
2704       if (ShAmtV > 3)
2705         break;
2706 
2707       // The narrow shift must only shift out zero bits (it must be 'nuw').
2708       // That makes it safe to widen to the destination type.
2709       APInt HighZeros =
2710           APInt::getHighBitsSet(ShlSrc.getValueSizeInBits(), ShAmtV);
2711       if (!Src->getFlags().hasNoUnsignedWrap() &&
2712           !CurDAG->MaskedValueIsZero(ShlSrc, HighZeros & Mask))
2713         break;
2714 
2715       // zext (shl nuw i8 %x, C1) to i32
2716       // --> shl (zext i8 %x to i32), (zext C1)
2717       // zext (and (shl nuw i8 %x, C1), C2) to i32
2718       // --> shl (zext i8 (and %x, C2 >> C1) to i32), (zext C1)
2719       MVT SrcVT = ShlSrc.getSimpleValueType();
2720       MVT VT = N.getSimpleValueType();
2721       SDLoc DL(N);
2722 
2723       SDValue Res = ShlSrc;
2724       if (!Mask.isAllOnes()) {
2725         Res = CurDAG->getConstant(Mask.lshr(ShAmtV), DL, SrcVT);
2726         insertDAGNode(*CurDAG, N, Res);
2727         Res = CurDAG->getNode(ISD::AND, DL, SrcVT, ShlSrc, Res);
2728         insertDAGNode(*CurDAG, N, Res);
2729       }
2730       SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Res);
2731       insertDAGNode(*CurDAG, N, Zext);
2732       SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, ShlAmt);
2733       insertDAGNode(*CurDAG, N, NewShl);
2734 
2735       // Convert the shift to scale factor.
2736       AM.Scale = 1 << ShAmtV;
2737       AM.IndexReg = Zext;
2738 
2739       CurDAG->ReplaceAllUsesWith(N, NewShl);
2740       CurDAG->RemoveDeadNode(N.getNode());
2741       return false;
2742     }
2743 
2744     if (Src.getOpcode() == ISD::SRL && !Mask.isAllOnes()) {
2745       // Try to fold the mask and shift into an extract and scale.
2746       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask.getZExtValue(), Src,
2747                                      Src.getOperand(0), AM))
2748         return false;
2749 
2750       // Try to fold the mask and shift directly into the scale.
2751       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask.getZExtValue(), Src,
2752                                    Src.getOperand(0), AM))
2753         return false;
2754 
2755       // Try to fold the mask and shift into BEXTR and scale.
2756       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask.getZExtValue(), Src,
2757                                   Src.getOperand(0), AM, *Subtarget))
2758         return false;
2759     }
2760 
2761     break;
2762   }
2763   }
2764 
2765   return matchAddressBase(N, AM);
2766 }
2767 
2768 /// Helper for MatchAddress. Add the specified node to the
2769 /// specified addressing mode without any further recursion.
2770 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2771   // Is the base register already occupied?
2772   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2773     // If so, check to see if the scale index register is set.
2774     if (!AM.IndexReg.getNode()) {
2775       AM.IndexReg = N;
2776       AM.Scale = 1;
2777       return false;
2778     }
2779 
2780     // Otherwise, we cannot select it.
2781     return true;
2782   }
2783 
2784   // Default, generate it as a register.
2785   AM.BaseType = X86ISelAddressMode::RegBase;
2786   AM.Base_Reg = N;
2787   return false;
2788 }
2789 
2790 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2791                                                     X86ISelAddressMode &AM,
2792                                                     unsigned Depth) {
2793   SDLoc dl(N);
2794   LLVM_DEBUG({
2795     dbgs() << "MatchVectorAddress: ";
2796     AM.dump(CurDAG);
2797   });
2798   // Limit recursion.
2799   if (Depth >= SelectionDAG::MaxRecursionDepth)
2800     return matchAddressBase(N, AM);
2801 
2802   // TODO: Support other operations.
2803   switch (N.getOpcode()) {
2804   case ISD::Constant: {
2805     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2806     if (!foldOffsetIntoAddress(Val, AM))
2807       return false;
2808     break;
2809   }
2810   case X86ISD::Wrapper:
2811     if (!matchWrapper(N, AM))
2812       return false;
2813     break;
2814   case ISD::ADD: {
2815     // Add an artificial use to this node so that we can keep track of
2816     // it if it gets CSE'd with a different node.
2817     HandleSDNode Handle(N);
2818 
2819     X86ISelAddressMode Backup = AM;
2820     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2821         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2822                                        Depth + 1))
2823       return false;
2824     AM = Backup;
2825 
2826     // Try again after commuting the operands.
2827     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2828                                        Depth + 1) &&
2829         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2830                                        Depth + 1))
2831       return false;
2832     AM = Backup;
2833 
2834     N = Handle.getValue();
2835     break;
2836   }
2837   }
2838 
2839   return matchAddressBase(N, AM);
2840 }
2841 
2842 /// Helper for selectVectorAddr. Handles things that can be folded into a
2843 /// gather/scatter address. The index register and scale should have already
2844 /// been handled.
2845 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2846   return matchVectorAddressRecursively(N, AM, 0);
2847 }
2848 
2849 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2850                                        SDValue IndexOp, SDValue ScaleOp,
2851                                        SDValue &Base, SDValue &Scale,
2852                                        SDValue &Index, SDValue &Disp,
2853                                        SDValue &Segment) {
2854   X86ISelAddressMode AM;
2855   AM.Scale = ScaleOp->getAsZExtVal();
2856 
2857   // Attempt to match index patterns, as long as we're not relying on implicit
2858   // sign-extension, which is performed BEFORE scale.
2859   if (IndexOp.getScalarValueSizeInBits() == BasePtr.getScalarValueSizeInBits())
2860     AM.IndexReg = matchIndexRecursively(IndexOp, AM, 0);
2861   else
2862     AM.IndexReg = IndexOp;
2863 
2864   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2865   if (AddrSpace == X86AS::GS)
2866     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2867   if (AddrSpace == X86AS::FS)
2868     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2869   if (AddrSpace == X86AS::SS)
2870     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2871 
2872   SDLoc DL(BasePtr);
2873   MVT VT = BasePtr.getSimpleValueType();
2874 
2875   // Try to match into the base and displacement fields.
2876   if (matchVectorAddress(BasePtr, AM))
2877     return false;
2878 
2879   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2880   return true;
2881 }
2882 
2883 /// Returns true if it is able to pattern match an addressing mode.
2884 /// It returns the operands which make up the maximal addressing mode it can
2885 /// match by reference.
2886 ///
2887 /// Parent is the parent node of the addr operand that is being matched.  It
2888 /// is always a load, store, atomic node, or null.  It is only null when
2889 /// checking memory operands for inline asm nodes.
2890 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2891                                  SDValue &Scale, SDValue &Index,
2892                                  SDValue &Disp, SDValue &Segment) {
2893   X86ISelAddressMode AM;
2894 
2895   if (Parent &&
2896       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2897       // that are not a MemSDNode, and thus don't have proper addrspace info.
2898       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2899       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2900       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2901       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2902       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2903       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2904       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2905     unsigned AddrSpace =
2906       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2907     if (AddrSpace == X86AS::GS)
2908       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2909     if (AddrSpace == X86AS::FS)
2910       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2911     if (AddrSpace == X86AS::SS)
2912       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2913   }
2914 
2915   // Save the DL and VT before calling matchAddress, it can invalidate N.
2916   SDLoc DL(N);
2917   MVT VT = N.getSimpleValueType();
2918 
2919   if (matchAddress(N, AM))
2920     return false;
2921 
2922   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2923   return true;
2924 }
2925 
2926 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2927   // Cannot use 32 bit constants to reference objects in kernel code model.
2928   // Cannot use 32 bit constants to reference objects in large PIC mode since
2929   // GOTOFF is 64 bits.
2930   if (TM.getCodeModel() == CodeModel::Kernel ||
2931       (TM.getCodeModel() == CodeModel::Large && TM.isPositionIndependent()))
2932     return false;
2933 
2934   // In static codegen with small code model, we can get the address of a label
2935   // into a register with 'movl'
2936   if (N->getOpcode() != X86ISD::Wrapper)
2937     return false;
2938 
2939   N = N.getOperand(0);
2940 
2941   // At least GNU as does not accept 'movl' for TPOFF relocations.
2942   // FIXME: We could use 'movl' when we know we are targeting MC.
2943   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2944     return false;
2945 
2946   Imm = N;
2947   // Small/medium code model can reference non-TargetGlobalAddress objects with
2948   // 32 bit constants.
2949   if (N->getOpcode() != ISD::TargetGlobalAddress) {
2950     return TM.getCodeModel() == CodeModel::Small ||
2951            TM.getCodeModel() == CodeModel::Medium;
2952   }
2953 
2954   const GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
2955   if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2956     return CR->getUnsignedMax().ult(1ull << 32);
2957 
2958   return !TM.isLargeGlobalValue(GV);
2959 }
2960 
2961 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2962                                          SDValue &Scale, SDValue &Index,
2963                                          SDValue &Disp, SDValue &Segment) {
2964   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2965   SDLoc DL(N);
2966 
2967   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2968     return false;
2969 
2970   auto *RN = dyn_cast<RegisterSDNode>(Base);
2971   if (RN && RN->getReg() == 0)
2972     Base = CurDAG->getRegister(0, MVT::i64);
2973   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2974     // Base could already be %rip, particularly in the x32 ABI.
2975     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2976                                                      MVT::i64), 0);
2977     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2978                                          Base);
2979   }
2980 
2981   RN = dyn_cast<RegisterSDNode>(Index);
2982   if (RN && RN->getReg() == 0)
2983     Index = CurDAG->getRegister(0, MVT::i64);
2984   else {
2985     assert(Index.getValueType() == MVT::i32 &&
2986            "Expect to be extending 32-bit registers for use in LEA");
2987     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2988                                                      MVT::i64), 0);
2989     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2990                                           Index);
2991   }
2992 
2993   return true;
2994 }
2995 
2996 /// Calls SelectAddr and determines if the maximal addressing
2997 /// mode it matches can be cost effectively emitted as an LEA instruction.
2998 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2999                                     SDValue &Base, SDValue &Scale,
3000                                     SDValue &Index, SDValue &Disp,
3001                                     SDValue &Segment) {
3002   X86ISelAddressMode AM;
3003 
3004   // Save the DL and VT before calling matchAddress, it can invalidate N.
3005   SDLoc DL(N);
3006   MVT VT = N.getSimpleValueType();
3007 
3008   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
3009   // segments.
3010   SDValue Copy = AM.Segment;
3011   SDValue T = CurDAG->getRegister(0, MVT::i32);
3012   AM.Segment = T;
3013   if (matchAddress(N, AM))
3014     return false;
3015   assert (T == AM.Segment);
3016   AM.Segment = Copy;
3017 
3018   unsigned Complexity = 0;
3019   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3020     Complexity = 1;
3021   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
3022     Complexity = 4;
3023 
3024   if (AM.IndexReg.getNode())
3025     Complexity++;
3026 
3027   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
3028   // a simple shift.
3029   if (AM.Scale > 1)
3030     Complexity++;
3031 
3032   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
3033   // to a LEA. This is determined with some experimentation but is by no means
3034   // optimal (especially for code size consideration). LEA is nice because of
3035   // its three-address nature. Tweak the cost function again when we can run
3036   // convertToThreeAddress() at register allocation time.
3037   if (AM.hasSymbolicDisplacement()) {
3038     // For X86-64, always use LEA to materialize RIP-relative addresses.
3039     if (Subtarget->is64Bit())
3040       Complexity = 4;
3041     else
3042       Complexity += 2;
3043   }
3044 
3045   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
3046   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
3047   // duplicating flag-producing instructions later in the pipeline.
3048   if (N.getOpcode() == ISD::ADD) {
3049     auto isMathWithFlags = [](SDValue V) {
3050       switch (V.getOpcode()) {
3051       case X86ISD::ADD:
3052       case X86ISD::SUB:
3053       case X86ISD::ADC:
3054       case X86ISD::SBB:
3055       case X86ISD::SMUL:
3056       case X86ISD::UMUL:
3057       /* TODO: These opcodes can be added safely, but we may want to justify
3058                their inclusion for different reasons (better for reg-alloc).
3059       case X86ISD::OR:
3060       case X86ISD::XOR:
3061       case X86ISD::AND:
3062       */
3063         // Value 1 is the flag output of the node - verify it's not dead.
3064         return !SDValue(V.getNode(), 1).use_empty();
3065       default:
3066         return false;
3067       }
3068     };
3069     // TODO: We might want to factor in whether there's a load folding
3070     // opportunity for the math op that disappears with LEA.
3071     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
3072       Complexity++;
3073   }
3074 
3075   if (AM.Disp)
3076     Complexity++;
3077 
3078   // If it isn't worth using an LEA, reject it.
3079   if (Complexity <= 2)
3080     return false;
3081 
3082   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
3083   return true;
3084 }
3085 
3086 /// This is only run on TargetGlobalTLSAddress nodes.
3087 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
3088                                         SDValue &Scale, SDValue &Index,
3089                                         SDValue &Disp, SDValue &Segment) {
3090   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
3091   auto *GA = cast<GlobalAddressSDNode>(N);
3092 
3093   X86ISelAddressMode AM;
3094   AM.GV = GA->getGlobal();
3095   AM.Disp += GA->getOffset();
3096   AM.SymbolFlags = GA->getTargetFlags();
3097 
3098   if (Subtarget->is32Bit()) {
3099     AM.Scale = 1;
3100     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
3101   }
3102 
3103   MVT VT = N.getSimpleValueType();
3104   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
3105   return true;
3106 }
3107 
3108 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
3109   // Keep track of the original value type and whether this value was
3110   // truncated. If we see a truncation from pointer type to VT that truncates
3111   // bits that are known to be zero, we can use a narrow reference.
3112   EVT VT = N.getValueType();
3113   bool WasTruncated = false;
3114   if (N.getOpcode() == ISD::TRUNCATE) {
3115     WasTruncated = true;
3116     N = N.getOperand(0);
3117   }
3118 
3119   if (N.getOpcode() != X86ISD::Wrapper)
3120     return false;
3121 
3122   // We can only use non-GlobalValues as immediates if they were not truncated,
3123   // as we do not have any range information. If we have a GlobalValue and the
3124   // address was not truncated, we can select it as an operand directly.
3125   unsigned Opc = N.getOperand(0)->getOpcode();
3126   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
3127     Op = N.getOperand(0);
3128     // We can only select the operand directly if we didn't have to look past a
3129     // truncate.
3130     return !WasTruncated;
3131   }
3132 
3133   // Check that the global's range fits into VT.
3134   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
3135   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3136   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
3137     return false;
3138 
3139   // Okay, we can use a narrow reference.
3140   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
3141                                       GA->getOffset(), GA->getTargetFlags());
3142   return true;
3143 }
3144 
3145 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
3146                                   SDValue &Base, SDValue &Scale,
3147                                   SDValue &Index, SDValue &Disp,
3148                                   SDValue &Segment) {
3149   assert(Root && P && "Unknown root/parent nodes");
3150   if (!ISD::isNON_EXTLoad(N.getNode()) ||
3151       !IsProfitableToFold(N, P, Root) ||
3152       !IsLegalToFold(N, P, Root, OptLevel))
3153     return false;
3154 
3155   return selectAddr(N.getNode(),
3156                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3157 }
3158 
3159 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
3160                                        SDValue &Base, SDValue &Scale,
3161                                        SDValue &Index, SDValue &Disp,
3162                                        SDValue &Segment) {
3163   assert(Root && P && "Unknown root/parent nodes");
3164   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
3165       !IsProfitableToFold(N, P, Root) ||
3166       !IsLegalToFold(N, P, Root, OptLevel))
3167     return false;
3168 
3169   return selectAddr(N.getNode(),
3170                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3171 }
3172 
3173 /// Return an SDNode that returns the value of the global base register.
3174 /// Output instructions required to initialize the global base register,
3175 /// if necessary.
3176 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
3177   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
3178   auto &DL = MF->getDataLayout();
3179   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
3180 }
3181 
3182 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
3183   if (N->getOpcode() == ISD::TRUNCATE)
3184     N = N->getOperand(0).getNode();
3185   if (N->getOpcode() != X86ISD::Wrapper)
3186     return false;
3187 
3188   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
3189   if (!GA)
3190     return false;
3191 
3192   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3193   if (!CR)
3194     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
3195 
3196   return CR->getSignedMin().sge(-1ull << Width) &&
3197          CR->getSignedMax().slt(1ull << Width);
3198 }
3199 
3200 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
3201   assert(N->isMachineOpcode() && "Unexpected node");
3202   unsigned Opc = N->getMachineOpcode();
3203   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
3204   int CondNo = X86::getCondSrcNoFromDesc(MCID);
3205   if (CondNo < 0)
3206     return X86::COND_INVALID;
3207 
3208   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
3209 }
3210 
3211 /// Test whether the given X86ISD::CMP node has any users that use a flag
3212 /// other than ZF.
3213 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
3214   // Examine each user of the node.
3215   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3216          UI != UE; ++UI) {
3217     // Only check things that use the flags.
3218     if (UI.getUse().getResNo() != Flags.getResNo())
3219       continue;
3220     // Only examine CopyToReg uses that copy to EFLAGS.
3221     if (UI->getOpcode() != ISD::CopyToReg ||
3222         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3223       return false;
3224     // Examine each user of the CopyToReg use.
3225     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3226            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3227       // Only examine the Flag result.
3228       if (FlagUI.getUse().getResNo() != 1) continue;
3229       // Anything unusual: assume conservatively.
3230       if (!FlagUI->isMachineOpcode()) return false;
3231       // Examine the condition code of the user.
3232       X86::CondCode CC = getCondFromNode(*FlagUI);
3233 
3234       switch (CC) {
3235       // Comparisons which only use the zero flag.
3236       case X86::COND_E: case X86::COND_NE:
3237         continue;
3238       // Anything else: assume conservatively.
3239       default:
3240         return false;
3241       }
3242     }
3243   }
3244   return true;
3245 }
3246 
3247 /// Test whether the given X86ISD::CMP node has any uses which require the SF
3248 /// flag to be accurate.
3249 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
3250   // Examine each user of the node.
3251   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3252          UI != UE; ++UI) {
3253     // Only check things that use the flags.
3254     if (UI.getUse().getResNo() != Flags.getResNo())
3255       continue;
3256     // Only examine CopyToReg uses that copy to EFLAGS.
3257     if (UI->getOpcode() != ISD::CopyToReg ||
3258         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3259       return false;
3260     // Examine each user of the CopyToReg use.
3261     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3262            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3263       // Only examine the Flag result.
3264       if (FlagUI.getUse().getResNo() != 1) continue;
3265       // Anything unusual: assume conservatively.
3266       if (!FlagUI->isMachineOpcode()) return false;
3267       // Examine the condition code of the user.
3268       X86::CondCode CC = getCondFromNode(*FlagUI);
3269 
3270       switch (CC) {
3271       // Comparisons which don't examine the SF flag.
3272       case X86::COND_A: case X86::COND_AE:
3273       case X86::COND_B: case X86::COND_BE:
3274       case X86::COND_E: case X86::COND_NE:
3275       case X86::COND_O: case X86::COND_NO:
3276       case X86::COND_P: case X86::COND_NP:
3277         continue;
3278       // Anything else: assume conservatively.
3279       default:
3280         return false;
3281       }
3282     }
3283   }
3284   return true;
3285 }
3286 
3287 static bool mayUseCarryFlag(X86::CondCode CC) {
3288   switch (CC) {
3289   // Comparisons which don't examine the CF flag.
3290   case X86::COND_O: case X86::COND_NO:
3291   case X86::COND_E: case X86::COND_NE:
3292   case X86::COND_S: case X86::COND_NS:
3293   case X86::COND_P: case X86::COND_NP:
3294   case X86::COND_L: case X86::COND_GE:
3295   case X86::COND_G: case X86::COND_LE:
3296     return false;
3297   // Anything else: assume conservatively.
3298   default:
3299     return true;
3300   }
3301 }
3302 
3303 /// Test whether the given node which sets flags has any uses which require the
3304 /// CF flag to be accurate.
3305  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3306   // Examine each user of the node.
3307   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3308          UI != UE; ++UI) {
3309     // Only check things that use the flags.
3310     if (UI.getUse().getResNo() != Flags.getResNo())
3311       continue;
3312 
3313     unsigned UIOpc = UI->getOpcode();
3314 
3315     if (UIOpc == ISD::CopyToReg) {
3316       // Only examine CopyToReg uses that copy to EFLAGS.
3317       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3318         return false;
3319       // Examine each user of the CopyToReg use.
3320       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3321            FlagUI != FlagUE; ++FlagUI) {
3322         // Only examine the Flag result.
3323         if (FlagUI.getUse().getResNo() != 1)
3324           continue;
3325         // Anything unusual: assume conservatively.
3326         if (!FlagUI->isMachineOpcode())
3327           return false;
3328         // Examine the condition code of the user.
3329         X86::CondCode CC = getCondFromNode(*FlagUI);
3330 
3331         if (mayUseCarryFlag(CC))
3332           return false;
3333       }
3334 
3335       // This CopyToReg is ok. Move on to the next user.
3336       continue;
3337     }
3338 
3339     // This might be an unselected node. So look for the pre-isel opcodes that
3340     // use flags.
3341     unsigned CCOpNo;
3342     switch (UIOpc) {
3343     default:
3344       // Something unusual. Be conservative.
3345       return false;
3346     case X86ISD::SETCC:       CCOpNo = 0; break;
3347     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3348     case X86ISD::CMOV:        CCOpNo = 2; break;
3349     case X86ISD::BRCOND:      CCOpNo = 2; break;
3350     }
3351 
3352     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3353     if (mayUseCarryFlag(CC))
3354       return false;
3355   }
3356   return true;
3357 }
3358 
3359 /// Check whether or not the chain ending in StoreNode is suitable for doing
3360 /// the {load; op; store} to modify transformation.
3361 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3362                                         SDValue StoredVal, SelectionDAG *CurDAG,
3363                                         unsigned LoadOpNo,
3364                                         LoadSDNode *&LoadNode,
3365                                         SDValue &InputChain) {
3366   // Is the stored value result 0 of the operation?
3367   if (StoredVal.getResNo() != 0) return false;
3368 
3369   // Are there other uses of the operation other than the store?
3370   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3371 
3372   // Is the store non-extending and non-indexed?
3373   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3374     return false;
3375 
3376   SDValue Load = StoredVal->getOperand(LoadOpNo);
3377   // Is the stored value a non-extending and non-indexed load?
3378   if (!ISD::isNormalLoad(Load.getNode())) return false;
3379 
3380   // Return LoadNode by reference.
3381   LoadNode = cast<LoadSDNode>(Load);
3382 
3383   // Is store the only read of the loaded value?
3384   if (!Load.hasOneUse())
3385     return false;
3386 
3387   // Is the address of the store the same as the load?
3388   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3389       LoadNode->getOffset() != StoreNode->getOffset())
3390     return false;
3391 
3392   bool FoundLoad = false;
3393   SmallVector<SDValue, 4> ChainOps;
3394   SmallVector<const SDNode *, 4> LoopWorklist;
3395   SmallPtrSet<const SDNode *, 16> Visited;
3396   const unsigned int Max = 1024;
3397 
3398   //  Visualization of Load-Op-Store fusion:
3399   // -------------------------
3400   // Legend:
3401   //    *-lines = Chain operand dependencies.
3402   //    |-lines = Normal operand dependencies.
3403   //    Dependencies flow down and right. n-suffix references multiple nodes.
3404   //
3405   //        C                        Xn  C
3406   //        *                         *  *
3407   //        *                          * *
3408   //  Xn  A-LD    Yn                    TF         Yn
3409   //   *    * \   |                       *        |
3410   //    *   *  \  |                        *       |
3411   //     *  *   \ |             =>       A--LD_OP_ST
3412   //      * *    \|                                 \
3413   //       TF    OP                                  \
3414   //         *   | \                                  Zn
3415   //          *  |  \
3416   //         A-ST    Zn
3417   //
3418 
3419   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3420   //                                      #2: Yn -> LD
3421   //                                      #3: ST -> Zn
3422 
3423   // Ensure the transform is safe by checking for the dual
3424   // dependencies to make sure we do not induce a loop.
3425 
3426   // As LD is a predecessor to both OP and ST we can do this by checking:
3427   //  a). if LD is a predecessor to a member of Xn or Yn.
3428   //  b). if a Zn is a predecessor to ST.
3429 
3430   // However, (b) can only occur through being a chain predecessor to
3431   // ST, which is the same as Zn being a member or predecessor of Xn,
3432   // which is a subset of LD being a predecessor of Xn. So it's
3433   // subsumed by check (a).
3434 
3435   SDValue Chain = StoreNode->getChain();
3436 
3437   // Gather X elements in ChainOps.
3438   if (Chain == Load.getValue(1)) {
3439     FoundLoad = true;
3440     ChainOps.push_back(Load.getOperand(0));
3441   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3442     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3443       SDValue Op = Chain.getOperand(i);
3444       if (Op == Load.getValue(1)) {
3445         FoundLoad = true;
3446         // Drop Load, but keep its chain. No cycle check necessary.
3447         ChainOps.push_back(Load.getOperand(0));
3448         continue;
3449       }
3450       LoopWorklist.push_back(Op.getNode());
3451       ChainOps.push_back(Op);
3452     }
3453   }
3454 
3455   if (!FoundLoad)
3456     return false;
3457 
3458   // Worklist is currently Xn. Add Yn to worklist.
3459   for (SDValue Op : StoredVal->ops())
3460     if (Op.getNode() != LoadNode)
3461       LoopWorklist.push_back(Op.getNode());
3462 
3463   // Check (a) if Load is a predecessor to Xn + Yn
3464   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3465                                    true))
3466     return false;
3467 
3468   InputChain =
3469       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3470   return true;
3471 }
3472 
3473 // Change a chain of {load; op; store} of the same value into a simple op
3474 // through memory of that value, if the uses of the modified value and its
3475 // address are suitable.
3476 //
3477 // The tablegen pattern memory operand pattern is currently not able to match
3478 // the case where the EFLAGS on the original operation are used.
3479 //
3480 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3481 // be transferred from a node in the pattern to the result node, probably with
3482 // a new keyword. For example, we have this
3483 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3484 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3485 //   (implicit EFLAGS)]>;
3486 // but maybe need something like this
3487 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3488 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3489 //   (transferrable EFLAGS)]>;
3490 //
3491 // Until then, we manually fold these and instruction select the operation
3492 // here.
3493 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3494   auto *StoreNode = cast<StoreSDNode>(Node);
3495   SDValue StoredVal = StoreNode->getOperand(1);
3496   unsigned Opc = StoredVal->getOpcode();
3497 
3498   // Before we try to select anything, make sure this is memory operand size
3499   // and opcode we can handle. Note that this must match the code below that
3500   // actually lowers the opcodes.
3501   EVT MemVT = StoreNode->getMemoryVT();
3502   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3503       MemVT != MVT::i8)
3504     return false;
3505 
3506   bool IsCommutable = false;
3507   bool IsNegate = false;
3508   switch (Opc) {
3509   default:
3510     return false;
3511   case X86ISD::SUB:
3512     IsNegate = isNullConstant(StoredVal.getOperand(0));
3513     break;
3514   case X86ISD::SBB:
3515     break;
3516   case X86ISD::ADD:
3517   case X86ISD::ADC:
3518   case X86ISD::AND:
3519   case X86ISD::OR:
3520   case X86ISD::XOR:
3521     IsCommutable = true;
3522     break;
3523   }
3524 
3525   unsigned LoadOpNo = IsNegate ? 1 : 0;
3526   LoadSDNode *LoadNode = nullptr;
3527   SDValue InputChain;
3528   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3529                                    LoadNode, InputChain)) {
3530     if (!IsCommutable)
3531       return false;
3532 
3533     // This operation is commutable, try the other operand.
3534     LoadOpNo = 1;
3535     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3536                                      LoadNode, InputChain))
3537       return false;
3538   }
3539 
3540   SDValue Base, Scale, Index, Disp, Segment;
3541   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3542                   Segment))
3543     return false;
3544 
3545   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3546                           unsigned Opc8) {
3547     switch (MemVT.getSimpleVT().SimpleTy) {
3548     case MVT::i64:
3549       return Opc64;
3550     case MVT::i32:
3551       return Opc32;
3552     case MVT::i16:
3553       return Opc16;
3554     case MVT::i8:
3555       return Opc8;
3556     default:
3557       llvm_unreachable("Invalid size!");
3558     }
3559   };
3560 
3561   MachineSDNode *Result;
3562   switch (Opc) {
3563   case X86ISD::SUB:
3564     // Handle negate.
3565     if (IsNegate) {
3566       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3567                                      X86::NEG8m);
3568       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3569       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3570                                       MVT::Other, Ops);
3571       break;
3572     }
3573    [[fallthrough]];
3574   case X86ISD::ADD:
3575     // Try to match inc/dec.
3576     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3577       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3578       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3579       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3580       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3581         unsigned NewOpc =
3582           ((Opc == X86ISD::ADD) == IsOne)
3583               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3584               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3585         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3586         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3587                                         MVT::Other, Ops);
3588         break;
3589       }
3590     }
3591     [[fallthrough]];
3592   case X86ISD::ADC:
3593   case X86ISD::SBB:
3594   case X86ISD::AND:
3595   case X86ISD::OR:
3596   case X86ISD::XOR: {
3597     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3598       switch (Opc) {
3599       case X86ISD::ADD:
3600         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3601                             X86::ADD8mr);
3602       case X86ISD::ADC:
3603         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3604                             X86::ADC8mr);
3605       case X86ISD::SUB:
3606         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3607                             X86::SUB8mr);
3608       case X86ISD::SBB:
3609         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3610                             X86::SBB8mr);
3611       case X86ISD::AND:
3612         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3613                             X86::AND8mr);
3614       case X86ISD::OR:
3615         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3616       case X86ISD::XOR:
3617         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3618                             X86::XOR8mr);
3619       default:
3620         llvm_unreachable("Invalid opcode!");
3621       }
3622     };
3623     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3624       switch (Opc) {
3625       case X86ISD::ADD:
3626         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3627                             X86::ADD8mi);
3628       case X86ISD::ADC:
3629         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3630                             X86::ADC8mi);
3631       case X86ISD::SUB:
3632         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3633                             X86::SUB8mi);
3634       case X86ISD::SBB:
3635         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3636                             X86::SBB8mi);
3637       case X86ISD::AND:
3638         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3639                             X86::AND8mi);
3640       case X86ISD::OR:
3641         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3642                             X86::OR8mi);
3643       case X86ISD::XOR:
3644         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3645                             X86::XOR8mi);
3646       default:
3647         llvm_unreachable("Invalid opcode!");
3648       }
3649     };
3650 
3651     unsigned NewOpc = SelectRegOpcode(Opc);
3652     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3653 
3654     // See if the operand is a constant that we can fold into an immediate
3655     // operand.
3656     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3657       int64_t OperandV = OperandC->getSExtValue();
3658 
3659       // Check if we can shrink the operand enough to fit in an immediate (or
3660       // fit into a smaller immediate) by negating it and switching the
3661       // operation.
3662       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3663           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3664            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3665             isInt<32>(-OperandV))) &&
3666           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3667         OperandV = -OperandV;
3668         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3669       }
3670 
3671       if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3672         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3673         NewOpc = SelectImmOpcode(Opc);
3674       }
3675     }
3676 
3677     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3678       SDValue CopyTo =
3679           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3680                                StoredVal.getOperand(2), SDValue());
3681 
3682       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3683                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3684       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3685                                       Ops);
3686     } else {
3687       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3688                              Segment, Operand, InputChain};
3689       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3690                                       Ops);
3691     }
3692     break;
3693   }
3694   default:
3695     llvm_unreachable("Invalid opcode!");
3696   }
3697 
3698   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3699                                  LoadNode->getMemOperand()};
3700   CurDAG->setNodeMemRefs(Result, MemOps);
3701 
3702   // Update Load Chain uses as well.
3703   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3704   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3705   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3706   CurDAG->RemoveDeadNode(Node);
3707   return true;
3708 }
3709 
3710 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3711 // Where Mask is one of the following patterns:
3712 //   a) x &  (1 << nbits) - 1
3713 //   b) x & ~(-1 << nbits)
3714 //   c) x &  (-1 >> (32 - y))
3715 //   d) x << (32 - y) >> (32 - y)
3716 //   e) (1 << nbits) - 1
3717 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3718   assert(
3719       (Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::AND ||
3720        Node->getOpcode() == ISD::SRL) &&
3721       "Should be either an and-mask, or right-shift after clearing high bits.");
3722 
3723   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3724   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3725     return false;
3726 
3727   MVT NVT = Node->getSimpleValueType(0);
3728 
3729   // Only supported for 32 and 64 bits.
3730   if (NVT != MVT::i32 && NVT != MVT::i64)
3731     return false;
3732 
3733   SDValue NBits;
3734   bool NegateNBits;
3735 
3736   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3737   // Else, if we only have BMI1's BEXTR, we require one-use.
3738   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3739   auto checkUses = [AllowExtraUsesByDefault](
3740                        SDValue Op, unsigned NUses,
3741                        std::optional<bool> AllowExtraUses) {
3742     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3743            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3744   };
3745   auto checkOneUse = [checkUses](SDValue Op,
3746                                  std::optional<bool> AllowExtraUses =
3747                                      std::nullopt) {
3748     return checkUses(Op, 1, AllowExtraUses);
3749   };
3750   auto checkTwoUse = [checkUses](SDValue Op,
3751                                  std::optional<bool> AllowExtraUses =
3752                                      std::nullopt) {
3753     return checkUses(Op, 2, AllowExtraUses);
3754   };
3755 
3756   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3757     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3758       assert(V.getSimpleValueType() == MVT::i32 &&
3759              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3760              "Expected i64 -> i32 truncation");
3761       V = V.getOperand(0);
3762     }
3763     return V;
3764   };
3765 
3766   // a) x & ((1 << nbits) + (-1))
3767   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3768                         &NegateNBits](SDValue Mask) -> bool {
3769     // Match `add`. Must only have one use!
3770     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3771       return false;
3772     // We should be adding all-ones constant (i.e. subtracting one.)
3773     if (!isAllOnesConstant(Mask->getOperand(1)))
3774       return false;
3775     // Match `1 << nbits`. Might be truncated. Must only have one use!
3776     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3777     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3778       return false;
3779     if (!isOneConstant(M0->getOperand(0)))
3780       return false;
3781     NBits = M0->getOperand(1);
3782     NegateNBits = false;
3783     return true;
3784   };
3785 
3786   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3787     V = peekThroughOneUseTruncation(V);
3788     return CurDAG->MaskedValueIsAllOnes(
3789         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3790                                 NVT.getSizeInBits()));
3791   };
3792 
3793   // b) x & ~(-1 << nbits)
3794   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3795                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3796     // Match `~()`. Must only have one use!
3797     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3798       return false;
3799     // The -1 only has to be all-ones for the final Node's NVT.
3800     if (!isAllOnes(Mask->getOperand(1)))
3801       return false;
3802     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3803     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3804     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3805       return false;
3806     // The -1 only has to be all-ones for the final Node's NVT.
3807     if (!isAllOnes(M0->getOperand(0)))
3808       return false;
3809     NBits = M0->getOperand(1);
3810     NegateNBits = false;
3811     return true;
3812   };
3813 
3814   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3815   // or leave the shift amount as-is, but then we'll have to negate it.
3816   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3817                                                      unsigned Bitwidth) {
3818     NBits = ShiftAmt;
3819     NegateNBits = true;
3820     // Skip over a truncate of the shift amount, if any.
3821     if (NBits.getOpcode() == ISD::TRUNCATE)
3822       NBits = NBits.getOperand(0);
3823     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3824     // If it doesn't match, that's fine, we'll just negate it ourselves.
3825     if (NBits.getOpcode() != ISD::SUB)
3826       return;
3827     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3828     if (!V0 || V0->getZExtValue() != Bitwidth)
3829       return;
3830     NBits = NBits.getOperand(1);
3831     NegateNBits = false;
3832   };
3833 
3834   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3835   //   or
3836   // c) x &  (-1 >> (32 - y))
3837   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3838                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3839     // The mask itself may be truncated.
3840     Mask = peekThroughOneUseTruncation(Mask);
3841     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3842     // Match `l>>`. Must only have one use!
3843     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3844       return false;
3845     // We should be shifting truly all-ones constant.
3846     if (!isAllOnesConstant(Mask.getOperand(0)))
3847       return false;
3848     SDValue M1 = Mask.getOperand(1);
3849     // The shift amount should not be used externally.
3850     if (!checkOneUse(M1))
3851       return false;
3852     canonicalizeShiftAmt(M1, Bitwidth);
3853     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3854     // is no extra use of the mask. Clearly, there was one since we are here.
3855     // But at the same time, if we need to negate the shift amount,
3856     // then we don't want the mask to stick around, else it's unprofitable.
3857     return !NegateNBits;
3858   };
3859 
3860   SDValue X;
3861 
3862   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3863   //   or
3864   // d) x << (32 - y) >> (32 - y)
3865   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3866                         AllowExtraUsesByDefault, &NegateNBits,
3867                         &X](SDNode *Node) -> bool {
3868     if (Node->getOpcode() != ISD::SRL)
3869       return false;
3870     SDValue N0 = Node->getOperand(0);
3871     if (N0->getOpcode() != ISD::SHL)
3872       return false;
3873     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3874     SDValue N1 = Node->getOperand(1);
3875     SDValue N01 = N0->getOperand(1);
3876     // Both of the shifts must be by the exact same value.
3877     if (N1 != N01)
3878       return false;
3879     canonicalizeShiftAmt(N1, Bitwidth);
3880     // There should not be any external uses of the inner shift / shift amount.
3881     // Note that while we are generally okay with external uses given BMI2,
3882     // iff we need to negate the shift amount, we are not okay with extra uses.
3883     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3884     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3885       return false;
3886     X = N0->getOperand(0);
3887     return true;
3888   };
3889 
3890   auto matchLowBitMask = [matchPatternA, matchPatternB,
3891                           matchPatternC](SDValue Mask) -> bool {
3892     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3893   };
3894 
3895   if (Node->getOpcode() == ISD::AND) {
3896     X = Node->getOperand(0);
3897     SDValue Mask = Node->getOperand(1);
3898 
3899     if (matchLowBitMask(Mask)) {
3900       // Great.
3901     } else {
3902       std::swap(X, Mask);
3903       if (!matchLowBitMask(Mask))
3904         return false;
3905     }
3906   } else if (matchLowBitMask(SDValue(Node, 0))) {
3907     X = CurDAG->getAllOnesConstant(SDLoc(Node), NVT);
3908   } else if (!matchPatternD(Node))
3909     return false;
3910 
3911   // If we need to negate the shift amount, require BMI2 BZHI support.
3912   // It's just too unprofitable for BMI1 BEXTR.
3913   if (NegateNBits && !Subtarget->hasBMI2())
3914     return false;
3915 
3916   SDLoc DL(Node);
3917 
3918   // Truncate the shift amount.
3919   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3920   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3921 
3922   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3923   // All the other bits are undefined, we do not care about them.
3924   SDValue ImplDef = SDValue(
3925       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3926   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3927 
3928   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3929   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3930   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3931                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3932                   0);
3933   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3934 
3935   // We might have matched the amount of high bits to be cleared,
3936   // but we want the amount of low bits to be kept, so negate it then.
3937   if (NegateNBits) {
3938     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3939     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3940 
3941     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3942     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3943   }
3944 
3945   if (Subtarget->hasBMI2()) {
3946     // Great, just emit the BZHI..
3947     if (NVT != MVT::i32) {
3948       // But have to place the bit count into the wide-enough register first.
3949       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3950       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3951     }
3952 
3953     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3954     ReplaceNode(Node, Extract.getNode());
3955     SelectCode(Extract.getNode());
3956     return true;
3957   }
3958 
3959   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3960   // *logically* shifted (potentially with one-use trunc inbetween),
3961   // and the truncation was the only use of the shift,
3962   // and if so look past one-use truncation.
3963   {
3964     SDValue RealX = peekThroughOneUseTruncation(X);
3965     // FIXME: only if the shift is one-use?
3966     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3967       X = RealX;
3968   }
3969 
3970   MVT XVT = X.getSimpleValueType();
3971 
3972   // Else, emitting BEXTR requires one more step.
3973   // The 'control' of BEXTR has the pattern of:
3974   // [15...8 bit][ 7...0 bit] location
3975   // [ bit count][     shift] name
3976   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3977 
3978   // Shift NBits left by 8 bits, thus producing 'control'.
3979   // This makes the low 8 bits to be zero.
3980   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3981   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3982   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3983   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3984 
3985   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3986   // FIXME: only if the shift is one-use?
3987   if (X.getOpcode() == ISD::SRL) {
3988     SDValue ShiftAmt = X.getOperand(1);
3989     X = X.getOperand(0);
3990 
3991     assert(ShiftAmt.getValueType() == MVT::i8 &&
3992            "Expected shift amount to be i8");
3993 
3994     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3995     // We could zext to i16 in some form, but we intentionally don't do that.
3996     SDValue OrigShiftAmt = ShiftAmt;
3997     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3998     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3999 
4000     // And now 'or' these low 8 bits of shift amount into the 'control'.
4001     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
4002     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4003   }
4004 
4005   // But have to place the 'control' into the wide-enough register first.
4006   if (XVT != MVT::i32) {
4007     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
4008     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4009   }
4010 
4011   // And finally, form the BEXTR itself.
4012   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
4013 
4014   // The 'X' was originally truncated. Do that now.
4015   if (XVT != NVT) {
4016     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
4017     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
4018   }
4019 
4020   ReplaceNode(Node, Extract.getNode());
4021   SelectCode(Extract.getNode());
4022 
4023   return true;
4024 }
4025 
4026 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
4027 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
4028   MVT NVT = Node->getSimpleValueType(0);
4029   SDLoc dl(Node);
4030 
4031   SDValue N0 = Node->getOperand(0);
4032   SDValue N1 = Node->getOperand(1);
4033 
4034   // If we have TBM we can use an immediate for the control. If we have BMI
4035   // we should only do this if the BEXTR instruction is implemented well.
4036   // Otherwise moving the control into a register makes this more costly.
4037   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
4038   // hoisting the move immediate would make it worthwhile with a less optimal
4039   // BEXTR?
4040   bool PreferBEXTR =
4041       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
4042   if (!PreferBEXTR && !Subtarget->hasBMI2())
4043     return nullptr;
4044 
4045   // Must have a shift right.
4046   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
4047     return nullptr;
4048 
4049   // Shift can't have additional users.
4050   if (!N0->hasOneUse())
4051     return nullptr;
4052 
4053   // Only supported for 32 and 64 bits.
4054   if (NVT != MVT::i32 && NVT != MVT::i64)
4055     return nullptr;
4056 
4057   // Shift amount and RHS of and must be constant.
4058   auto *MaskCst = dyn_cast<ConstantSDNode>(N1);
4059   auto *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4060   if (!MaskCst || !ShiftCst)
4061     return nullptr;
4062 
4063   // And RHS must be a mask.
4064   uint64_t Mask = MaskCst->getZExtValue();
4065   if (!isMask_64(Mask))
4066     return nullptr;
4067 
4068   uint64_t Shift = ShiftCst->getZExtValue();
4069   uint64_t MaskSize = llvm::popcount(Mask);
4070 
4071   // Don't interfere with something that can be handled by extracting AH.
4072   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
4073   if (Shift == 8 && MaskSize == 8)
4074     return nullptr;
4075 
4076   // Make sure we are only using bits that were in the original value, not
4077   // shifted in.
4078   if (Shift + MaskSize > NVT.getSizeInBits())
4079     return nullptr;
4080 
4081   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
4082   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
4083   // does not fit into 32 bits. Load folding is not a sufficient reason.
4084   if (!PreferBEXTR && MaskSize <= 32)
4085     return nullptr;
4086 
4087   SDValue Control;
4088   unsigned ROpc, MOpc;
4089 
4090   if (!PreferBEXTR) {
4091     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
4092     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
4093     // Let's perform the mask first, and apply shift later. Note that we need to
4094     // widen the mask to account for the fact that we'll apply shift afterwards!
4095     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
4096     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
4097     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
4098     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4099     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4100   } else {
4101     // The 'control' of BEXTR has the pattern of:
4102     // [15...8 bit][ 7...0 bit] location
4103     // [ bit count][     shift] name
4104     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
4105     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
4106     if (Subtarget->hasTBM()) {
4107       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
4108       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
4109     } else {
4110       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
4111       // BMI requires the immediate to placed in a register.
4112       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
4113       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
4114       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4115       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4116     }
4117   }
4118 
4119   MachineSDNode *NewNode;
4120   SDValue Input = N0->getOperand(0);
4121   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4122   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4123     SDValue Ops[] = {
4124         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
4125     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4126     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4127     // Update the chain.
4128     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
4129     // Record the mem-refs
4130     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
4131   } else {
4132     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
4133   }
4134 
4135   if (!PreferBEXTR) {
4136     // We still need to apply the shift.
4137     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
4138     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
4139     NewNode =
4140         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
4141   }
4142 
4143   return NewNode;
4144 }
4145 
4146 // Emit a PCMISTR(I/M) instruction.
4147 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
4148                                              bool MayFoldLoad, const SDLoc &dl,
4149                                              MVT VT, SDNode *Node) {
4150   SDValue N0 = Node->getOperand(0);
4151   SDValue N1 = Node->getOperand(1);
4152   SDValue Imm = Node->getOperand(2);
4153   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4154   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4155 
4156   // Try to fold a load. No need to check alignment.
4157   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4158   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4159     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4160                       N1.getOperand(0) };
4161     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
4162     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4163     // Update the chain.
4164     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
4165     // Record the mem-refs
4166     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4167     return CNode;
4168   }
4169 
4170   SDValue Ops[] = { N0, N1, Imm };
4171   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
4172   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4173   return CNode;
4174 }
4175 
4176 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
4177 // to emit a second instruction after this one. This is needed since we have two
4178 // copyToReg nodes glued before this and we need to continue that glue through.
4179 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
4180                                              bool MayFoldLoad, const SDLoc &dl,
4181                                              MVT VT, SDNode *Node,
4182                                              SDValue &InGlue) {
4183   SDValue N0 = Node->getOperand(0);
4184   SDValue N2 = Node->getOperand(2);
4185   SDValue Imm = Node->getOperand(4);
4186   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4187   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4188 
4189   // Try to fold a load. No need to check alignment.
4190   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4191   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4192     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4193                       N2.getOperand(0), InGlue };
4194     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
4195     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4196     InGlue = SDValue(CNode, 3);
4197     // Update the chain.
4198     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
4199     // Record the mem-refs
4200     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
4201     return CNode;
4202   }
4203 
4204   SDValue Ops[] = { N0, N2, Imm, InGlue };
4205   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
4206   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4207   InGlue = SDValue(CNode, 2);
4208   return CNode;
4209 }
4210 
4211 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
4212   EVT VT = N->getValueType(0);
4213 
4214   // Only handle scalar shifts.
4215   if (VT.isVector())
4216     return false;
4217 
4218   // Narrower shifts only mask to 5 bits in hardware.
4219   unsigned Size = VT == MVT::i64 ? 64 : 32;
4220 
4221   SDValue OrigShiftAmt = N->getOperand(1);
4222   SDValue ShiftAmt = OrigShiftAmt;
4223   SDLoc DL(N);
4224 
4225   // Skip over a truncate of the shift amount.
4226   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
4227     ShiftAmt = ShiftAmt->getOperand(0);
4228 
4229   // This function is called after X86DAGToDAGISel::matchBitExtract(),
4230   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
4231 
4232   SDValue NewShiftAmt;
4233   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
4234       ShiftAmt->getOpcode() == ISD::XOR) {
4235     SDValue Add0 = ShiftAmt->getOperand(0);
4236     SDValue Add1 = ShiftAmt->getOperand(1);
4237     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
4238     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
4239     // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4240     // to avoid the ADD/SUB/XOR.
4241     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
4242       NewShiftAmt = Add0;
4243 
4244     } else if (ShiftAmt->getOpcode() != ISD::ADD && ShiftAmt.hasOneUse() &&
4245                ((Add0C && Add0C->getAPIntValue().urem(Size) == Size - 1) ||
4246                 (Add1C && Add1C->getAPIntValue().urem(Size) == Size - 1))) {
4247       // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4248       // we can replace it with a NOT. In the XOR case it may save some code
4249       // size, in the SUB case it also may save a move.
4250       assert(Add0C == nullptr || Add1C == nullptr);
4251 
4252       // We can only do N-X, not X-N
4253       if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4254         return false;
4255 
4256       EVT OpVT = ShiftAmt.getValueType();
4257 
4258       SDValue AllOnes = CurDAG->getAllOnesConstant(DL, OpVT);
4259       NewShiftAmt = CurDAG->getNode(ISD::XOR, DL, OpVT,
4260                                     Add0C == nullptr ? Add0 : Add1, AllOnes);
4261       insertDAGNode(*CurDAG, OrigShiftAmt, AllOnes);
4262       insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4263       // If we are shifting by N-X where N == 0 mod Size, then just shift by
4264       // -X to generate a NEG instead of a SUB of a constant.
4265     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4266                Add0C->getZExtValue() != 0) {
4267       EVT SubVT = ShiftAmt.getValueType();
4268       SDValue X;
4269       if (Add0C->getZExtValue() % Size == 0)
4270         X = Add1;
4271       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4272                Add0C->getZExtValue() % 32 == 0) {
4273         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4274         // This is mainly beneficial if we already compute (x+n*32).
4275         if (Add1.getOpcode() == ISD::TRUNCATE) {
4276           Add1 = Add1.getOperand(0);
4277           SubVT = Add1.getValueType();
4278         }
4279         if (Add0.getValueType() != SubVT) {
4280           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4281           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4282         }
4283 
4284         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4285         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4286       } else
4287         return false;
4288       // Insert a negate op.
4289       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4290       // that uses it that's not a shift.
4291       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4292       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4293       NewShiftAmt = Neg;
4294 
4295       // Insert these operands into a valid topological order so they can
4296       // get selected independently.
4297       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4298       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4299     } else
4300       return false;
4301   } else
4302     return false;
4303 
4304   if (NewShiftAmt.getValueType() != MVT::i8) {
4305     // Need to truncate the shift amount.
4306     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4307     // Add to a correct topological ordering.
4308     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4309   }
4310 
4311   // Insert a new mask to keep the shift amount legal. This should be removed
4312   // by isel patterns.
4313   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4314                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4315   // Place in a correct topological ordering.
4316   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4317 
4318   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4319                                                    NewShiftAmt);
4320   if (UpdatedNode != N) {
4321     // If we found an existing node, we should replace ourselves with that node
4322     // and wait for it to be selected after its other users.
4323     ReplaceNode(N, UpdatedNode);
4324     return true;
4325   }
4326 
4327   // If the original shift amount is now dead, delete it so that we don't run
4328   // it through isel.
4329   if (OrigShiftAmt.getNode()->use_empty())
4330     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4331 
4332   // Now that we've optimized the shift amount, defer to normal isel to get
4333   // load folding and legacy vs BMI2 selection without repeating it here.
4334   SelectCode(N);
4335   return true;
4336 }
4337 
4338 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4339   MVT NVT = N->getSimpleValueType(0);
4340   unsigned Opcode = N->getOpcode();
4341   SDLoc dl(N);
4342 
4343   // For operations of the form (x << C1) op C2, check if we can use a smaller
4344   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4345   SDValue Shift = N->getOperand(0);
4346   SDValue N1 = N->getOperand(1);
4347 
4348   auto *Cst = dyn_cast<ConstantSDNode>(N1);
4349   if (!Cst)
4350     return false;
4351 
4352   int64_t Val = Cst->getSExtValue();
4353 
4354   // If we have an any_extend feeding the AND, look through it to see if there
4355   // is a shift behind it. But only if the AND doesn't use the extended bits.
4356   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4357   bool FoundAnyExtend = false;
4358   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4359       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4360       isUInt<32>(Val)) {
4361     FoundAnyExtend = true;
4362     Shift = Shift.getOperand(0);
4363   }
4364 
4365   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4366     return false;
4367 
4368   // i8 is unshrinkable, i16 should be promoted to i32.
4369   if (NVT != MVT::i32 && NVT != MVT::i64)
4370     return false;
4371 
4372   auto *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4373   if (!ShlCst)
4374     return false;
4375 
4376   uint64_t ShAmt = ShlCst->getZExtValue();
4377 
4378   // Make sure that we don't change the operation by removing bits.
4379   // This only matters for OR and XOR, AND is unaffected.
4380   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4381   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4382     return false;
4383 
4384   // Check the minimum bitwidth for the new constant.
4385   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4386   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4387     if (Opcode == ISD::AND) {
4388       // AND32ri is the same as AND64ri32 with zext imm.
4389       // Try this before sign extended immediates below.
4390       ShiftedVal = (uint64_t)Val >> ShAmt;
4391       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4392         return true;
4393       // Also swap order when the AND can become MOVZX.
4394       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4395         return true;
4396     }
4397     ShiftedVal = Val >> ShAmt;
4398     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4399         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4400       return true;
4401     if (Opcode != ISD::AND) {
4402       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4403       ShiftedVal = (uint64_t)Val >> ShAmt;
4404       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4405         return true;
4406     }
4407     return false;
4408   };
4409 
4410   int64_t ShiftedVal;
4411   if (!CanShrinkImmediate(ShiftedVal))
4412     return false;
4413 
4414   // Ok, we can reorder to get a smaller immediate.
4415 
4416   // But, its possible the original immediate allowed an AND to become MOVZX.
4417   // Doing this late due to avoid the MakedValueIsZero call as late as
4418   // possible.
4419   if (Opcode == ISD::AND) {
4420     // Find the smallest zext this could possibly be.
4421     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4422     ZExtWidth = llvm::bit_ceil(std::max(ZExtWidth, 8U));
4423 
4424     // Figure out which bits need to be zero to achieve that mask.
4425     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4426                                             ZExtWidth);
4427     NeededMask &= ~Cst->getAPIntValue();
4428 
4429     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4430       return false;
4431   }
4432 
4433   SDValue X = Shift.getOperand(0);
4434   if (FoundAnyExtend) {
4435     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4436     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4437     X = NewX;
4438   }
4439 
4440   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4441   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4442   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4443   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4444   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4445                                    Shift.getOperand(1));
4446   ReplaceNode(N, NewSHL.getNode());
4447   SelectCode(NewSHL.getNode());
4448   return true;
4449 }
4450 
4451 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4452                                      SDNode *ParentB, SDNode *ParentC,
4453                                      SDValue A, SDValue B, SDValue C,
4454                                      uint8_t Imm) {
4455   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4456          C.isOperandOf(ParentC) && "Incorrect parent node");
4457 
4458   auto tryFoldLoadOrBCast =
4459       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4460              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4461         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4462           return true;
4463 
4464         // Not a load, check for broadcast which may be behind a bitcast.
4465         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4466           P = L.getNode();
4467           L = L.getOperand(0);
4468         }
4469 
4470         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4471           return false;
4472 
4473         // Only 32 and 64 bit broadcasts are supported.
4474         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4475         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4476         if (Size != 32 && Size != 64)
4477           return false;
4478 
4479         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4480       };
4481 
4482   bool FoldedLoad = false;
4483   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4484   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4485     FoldedLoad = true;
4486   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4487                                 Tmp4)) {
4488     FoldedLoad = true;
4489     std::swap(A, C);
4490     // Swap bits 1/4 and 3/6.
4491     uint8_t OldImm = Imm;
4492     Imm = OldImm & 0xa5;
4493     if (OldImm & 0x02) Imm |= 0x10;
4494     if (OldImm & 0x10) Imm |= 0x02;
4495     if (OldImm & 0x08) Imm |= 0x40;
4496     if (OldImm & 0x40) Imm |= 0x08;
4497   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4498                                 Tmp4)) {
4499     FoldedLoad = true;
4500     std::swap(B, C);
4501     // Swap bits 1/2 and 5/6.
4502     uint8_t OldImm = Imm;
4503     Imm = OldImm & 0x99;
4504     if (OldImm & 0x02) Imm |= 0x04;
4505     if (OldImm & 0x04) Imm |= 0x02;
4506     if (OldImm & 0x20) Imm |= 0x40;
4507     if (OldImm & 0x40) Imm |= 0x20;
4508   }
4509 
4510   SDLoc DL(Root);
4511 
4512   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4513 
4514   MVT NVT = Root->getSimpleValueType(0);
4515 
4516   MachineSDNode *MNode;
4517   if (FoldedLoad) {
4518     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4519 
4520     unsigned Opc;
4521     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4522       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4523       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4524       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4525 
4526       bool UseD = EltSize == 32;
4527       if (NVT.is128BitVector())
4528         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4529       else if (NVT.is256BitVector())
4530         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4531       else if (NVT.is512BitVector())
4532         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4533       else
4534         llvm_unreachable("Unexpected vector size!");
4535     } else {
4536       bool UseD = NVT.getVectorElementType() == MVT::i32;
4537       if (NVT.is128BitVector())
4538         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4539       else if (NVT.is256BitVector())
4540         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4541       else if (NVT.is512BitVector())
4542         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4543       else
4544         llvm_unreachable("Unexpected vector size!");
4545     }
4546 
4547     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4548     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4549 
4550     // Update the chain.
4551     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4552     // Record the mem-refs
4553     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4554   } else {
4555     bool UseD = NVT.getVectorElementType() == MVT::i32;
4556     unsigned Opc;
4557     if (NVT.is128BitVector())
4558       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4559     else if (NVT.is256BitVector())
4560       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4561     else if (NVT.is512BitVector())
4562       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4563     else
4564       llvm_unreachable("Unexpected vector size!");
4565 
4566     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4567   }
4568 
4569   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4570   CurDAG->RemoveDeadNode(Root);
4571   return true;
4572 }
4573 
4574 // Try to match two logic ops to a VPTERNLOG.
4575 // FIXME: Handle more complex patterns that use an operand more than once?
4576 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4577   MVT NVT = N->getSimpleValueType(0);
4578 
4579   // Make sure we support VPTERNLOG.
4580   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4581       NVT.getVectorElementType() == MVT::i1)
4582     return false;
4583 
4584   // We need VLX for 128/256-bit.
4585   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4586     return false;
4587 
4588   SDValue N0 = N->getOperand(0);
4589   SDValue N1 = N->getOperand(1);
4590 
4591   auto getFoldableLogicOp = [](SDValue Op) {
4592     // Peek through single use bitcast.
4593     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4594       Op = Op.getOperand(0);
4595 
4596     if (!Op.hasOneUse())
4597       return SDValue();
4598 
4599     unsigned Opc = Op.getOpcode();
4600     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4601         Opc == X86ISD::ANDNP)
4602       return Op;
4603 
4604     return SDValue();
4605   };
4606 
4607   SDValue A, FoldableOp;
4608   if ((FoldableOp = getFoldableLogicOp(N1))) {
4609     A = N0;
4610   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4611     A = N1;
4612   } else
4613     return false;
4614 
4615   SDValue B = FoldableOp.getOperand(0);
4616   SDValue C = FoldableOp.getOperand(1);
4617   SDNode *ParentA = N;
4618   SDNode *ParentB = FoldableOp.getNode();
4619   SDNode *ParentC = FoldableOp.getNode();
4620 
4621   // We can build the appropriate control immediate by performing the logic
4622   // operation we're matching using these constants for A, B, and C.
4623   uint8_t TernlogMagicA = 0xf0;
4624   uint8_t TernlogMagicB = 0xcc;
4625   uint8_t TernlogMagicC = 0xaa;
4626 
4627   // Some of the inputs may be inverted, peek through them and invert the
4628   // magic values accordingly.
4629   // TODO: There may be a bitcast before the xor that we should peek through.
4630   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4631     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4632         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4633       Magic = ~Magic;
4634       Parent = Op.getNode();
4635       Op = Op.getOperand(0);
4636     }
4637   };
4638 
4639   PeekThroughNot(A, ParentA, TernlogMagicA);
4640   PeekThroughNot(B, ParentB, TernlogMagicB);
4641   PeekThroughNot(C, ParentC, TernlogMagicC);
4642 
4643   uint8_t Imm;
4644   switch (FoldableOp.getOpcode()) {
4645   default: llvm_unreachable("Unexpected opcode!");
4646   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4647   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4648   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4649   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4650   }
4651 
4652   switch (N->getOpcode()) {
4653   default: llvm_unreachable("Unexpected opcode!");
4654   case X86ISD::ANDNP:
4655     if (A == N0)
4656       Imm &= ~TernlogMagicA;
4657     else
4658       Imm = ~(Imm) & TernlogMagicA;
4659     break;
4660   case ISD::AND: Imm &= TernlogMagicA; break;
4661   case ISD::OR:  Imm |= TernlogMagicA; break;
4662   case ISD::XOR: Imm ^= TernlogMagicA; break;
4663   }
4664 
4665   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4666 }
4667 
4668 /// If the high bits of an 'and' operand are known zero, try setting the
4669 /// high bits of an 'and' constant operand to produce a smaller encoding by
4670 /// creating a small, sign-extended negative immediate rather than a large
4671 /// positive one. This reverses a transform in SimplifyDemandedBits that
4672 /// shrinks mask constants by clearing bits. There is also a possibility that
4673 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4674 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4675 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4676   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4677   // have immediate operands.
4678   MVT VT = And->getSimpleValueType(0);
4679   if (VT != MVT::i32 && VT != MVT::i64)
4680     return false;
4681 
4682   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4683   if (!And1C)
4684     return false;
4685 
4686   // Bail out if the mask constant is already negative. It's can't shrink more.
4687   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4688   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4689   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4690   // are negative too.
4691   APInt MaskVal = And1C->getAPIntValue();
4692   unsigned MaskLZ = MaskVal.countl_zero();
4693   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4694     return false;
4695 
4696   // Don't extend into the upper 32 bits of a 64 bit mask.
4697   if (VT == MVT::i64 && MaskLZ >= 32) {
4698     MaskLZ -= 32;
4699     MaskVal = MaskVal.trunc(32);
4700   }
4701 
4702   SDValue And0 = And->getOperand(0);
4703   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4704   APInt NegMaskVal = MaskVal | HighZeros;
4705 
4706   // If a negative constant would not allow a smaller encoding, there's no need
4707   // to continue. Only change the constant when we know it's a win.
4708   unsigned MinWidth = NegMaskVal.getSignificantBits();
4709   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getSignificantBits() <= 32))
4710     return false;
4711 
4712   // Extend masks if we truncated above.
4713   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4714     NegMaskVal = NegMaskVal.zext(64);
4715     HighZeros = HighZeros.zext(64);
4716   }
4717 
4718   // The variable operand must be all zeros in the top bits to allow using the
4719   // new, negative constant as the mask.
4720   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4721     return false;
4722 
4723   // Check if the mask is -1. In that case, this is an unnecessary instruction
4724   // that escaped earlier analysis.
4725   if (NegMaskVal.isAllOnes()) {
4726     ReplaceNode(And, And0.getNode());
4727     return true;
4728   }
4729 
4730   // A negative mask allows a smaller encoding. Create a new 'and' node.
4731   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4732   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4733   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4734   ReplaceNode(And, NewAnd.getNode());
4735   SelectCode(NewAnd.getNode());
4736   return true;
4737 }
4738 
4739 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4740                               bool FoldedBCast, bool Masked) {
4741 #define VPTESTM_CASE(VT, SUFFIX) \
4742 case MVT::VT: \
4743   if (Masked) \
4744     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4745   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4746 
4747 
4748 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4749 default: llvm_unreachable("Unexpected VT!"); \
4750 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4751 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4752 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4753 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4754 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4755 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4756 
4757 #define VPTESTM_FULL_CASES(SUFFIX) \
4758 VPTESTM_BROADCAST_CASES(SUFFIX) \
4759 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4760 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4761 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4762 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4763 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4764 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4765 
4766   if (FoldedBCast) {
4767     switch (TestVT.SimpleTy) {
4768     VPTESTM_BROADCAST_CASES(rmb)
4769     }
4770   }
4771 
4772   if (FoldedLoad) {
4773     switch (TestVT.SimpleTy) {
4774     VPTESTM_FULL_CASES(rm)
4775     }
4776   }
4777 
4778   switch (TestVT.SimpleTy) {
4779   VPTESTM_FULL_CASES(rr)
4780   }
4781 
4782 #undef VPTESTM_FULL_CASES
4783 #undef VPTESTM_BROADCAST_CASES
4784 #undef VPTESTM_CASE
4785 }
4786 
4787 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4788 // to form a masked operation.
4789 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4790                                  SDValue InMask) {
4791   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4792   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4793          "Unexpected VT!");
4794 
4795   // Look for equal and not equal compares.
4796   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4797   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4798     return false;
4799 
4800   SDValue SetccOp0 = Setcc.getOperand(0);
4801   SDValue SetccOp1 = Setcc.getOperand(1);
4802 
4803   // Canonicalize the all zero vector to the RHS.
4804   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4805     std::swap(SetccOp0, SetccOp1);
4806 
4807   // See if we're comparing against zero.
4808   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4809     return false;
4810 
4811   SDValue N0 = SetccOp0;
4812 
4813   MVT CmpVT = N0.getSimpleValueType();
4814   MVT CmpSVT = CmpVT.getVectorElementType();
4815 
4816   // Start with both operands the same. We'll try to refine this.
4817   SDValue Src0 = N0;
4818   SDValue Src1 = N0;
4819 
4820   {
4821     // Look through single use bitcasts.
4822     SDValue N0Temp = N0;
4823     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4824       N0Temp = N0.getOperand(0);
4825 
4826      // Look for single use AND.
4827     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4828       Src0 = N0Temp.getOperand(0);
4829       Src1 = N0Temp.getOperand(1);
4830     }
4831   }
4832 
4833   // Without VLX we need to widen the operation.
4834   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4835 
4836   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4837                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4838                                 SDValue &Disp, SDValue &Segment) {
4839     // If we need to widen, we can't fold the load.
4840     if (!Widen)
4841       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4842         return true;
4843 
4844     // If we didn't fold a load, try to match broadcast. No widening limitation
4845     // for this. But only 32 and 64 bit types are supported.
4846     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4847       return false;
4848 
4849     // Look through single use bitcasts.
4850     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4851       P = L.getNode();
4852       L = L.getOperand(0);
4853     }
4854 
4855     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4856       return false;
4857 
4858     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4859     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4860       return false;
4861 
4862     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4863   };
4864 
4865   // We can only fold loads if the sources are unique.
4866   bool CanFoldLoads = Src0 != Src1;
4867 
4868   bool FoldedLoad = false;
4869   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4870   if (CanFoldLoads) {
4871     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4872                                     Tmp3, Tmp4);
4873     if (!FoldedLoad) {
4874       // And is commutative.
4875       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4876                                       Tmp2, Tmp3, Tmp4);
4877       if (FoldedLoad)
4878         std::swap(Src0, Src1);
4879     }
4880   }
4881 
4882   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4883 
4884   bool IsMasked = InMask.getNode() != nullptr;
4885 
4886   SDLoc dl(Root);
4887 
4888   MVT ResVT = Setcc.getSimpleValueType();
4889   MVT MaskVT = ResVT;
4890   if (Widen) {
4891     // Widen the inputs using insert_subreg or copy_to_regclass.
4892     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4893     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4894     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4895     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4896     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4897     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4898                                                      CmpVT), 0);
4899     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4900 
4901     if (!FoldedBCast)
4902       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4903 
4904     if (IsMasked) {
4905       // Widen the mask.
4906       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4907       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4908       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4909                                               dl, MaskVT, InMask, RC), 0);
4910     }
4911   }
4912 
4913   bool IsTestN = CC == ISD::SETEQ;
4914   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4915                                IsMasked);
4916 
4917   MachineSDNode *CNode;
4918   if (FoldedLoad) {
4919     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4920 
4921     if (IsMasked) {
4922       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4923                         Src1.getOperand(0) };
4924       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4925     } else {
4926       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4927                         Src1.getOperand(0) };
4928       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4929     }
4930 
4931     // Update the chain.
4932     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4933     // Record the mem-refs
4934     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4935   } else {
4936     if (IsMasked)
4937       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4938     else
4939       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4940   }
4941 
4942   // If we widened, we need to shrink the mask VT.
4943   if (Widen) {
4944     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4945     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4946     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4947                                    dl, ResVT, SDValue(CNode, 0), RC);
4948   }
4949 
4950   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4951   CurDAG->RemoveDeadNode(Root);
4952   return true;
4953 }
4954 
4955 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4956 // into vpternlog.
4957 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4958   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4959 
4960   MVT NVT = N->getSimpleValueType(0);
4961 
4962   // Make sure we support VPTERNLOG.
4963   if (!NVT.isVector() || !Subtarget->hasAVX512())
4964     return false;
4965 
4966   // We need VLX for 128/256-bit.
4967   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4968     return false;
4969 
4970   SDValue N0 = N->getOperand(0);
4971   SDValue N1 = N->getOperand(1);
4972 
4973   // Canonicalize AND to LHS.
4974   if (N1.getOpcode() == ISD::AND)
4975     std::swap(N0, N1);
4976 
4977   if (N0.getOpcode() != ISD::AND ||
4978       N1.getOpcode() != X86ISD::ANDNP ||
4979       !N0.hasOneUse() || !N1.hasOneUse())
4980     return false;
4981 
4982   // ANDN is not commutable, use it to pick down A and C.
4983   SDValue A = N1.getOperand(0);
4984   SDValue C = N1.getOperand(1);
4985 
4986   // AND is commutable, if one operand matches A, the other operand is B.
4987   // Otherwise this isn't a match.
4988   SDValue B;
4989   if (N0.getOperand(0) == A)
4990     B = N0.getOperand(1);
4991   else if (N0.getOperand(1) == A)
4992     B = N0.getOperand(0);
4993   else
4994     return false;
4995 
4996   SDLoc dl(N);
4997   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4998   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4999   ReplaceNode(N, Ternlog.getNode());
5000 
5001   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
5002                         Ternlog.getNode(), A, B, C, 0xCA);
5003 }
5004 
5005 void X86DAGToDAGISel::Select(SDNode *Node) {
5006   MVT NVT = Node->getSimpleValueType(0);
5007   unsigned Opcode = Node->getOpcode();
5008   SDLoc dl(Node);
5009 
5010   if (Node->isMachineOpcode()) {
5011     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
5012     Node->setNodeId(-1);
5013     return;   // Already selected.
5014   }
5015 
5016   switch (Opcode) {
5017   default: break;
5018   case ISD::INTRINSIC_W_CHAIN: {
5019     unsigned IntNo = Node->getConstantOperandVal(1);
5020     switch (IntNo) {
5021     default: break;
5022     case Intrinsic::x86_encodekey128:
5023     case Intrinsic::x86_encodekey256: {
5024       if (!Subtarget->hasKL())
5025         break;
5026 
5027       unsigned Opcode;
5028       switch (IntNo) {
5029       default: llvm_unreachable("Impossible intrinsic");
5030       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
5031       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
5032       }
5033 
5034       SDValue Chain = Node->getOperand(0);
5035       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
5036                                    SDValue());
5037       if (Opcode == X86::ENCODEKEY256)
5038         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
5039                                      Chain.getValue(1));
5040 
5041       MachineSDNode *Res = CurDAG->getMachineNode(
5042           Opcode, dl, Node->getVTList(),
5043           {Node->getOperand(2), Chain, Chain.getValue(1)});
5044       ReplaceNode(Node, Res);
5045       return;
5046     }
5047     case Intrinsic::x86_tileloadd64_internal:
5048     case Intrinsic::x86_tileloaddt164_internal: {
5049       if (!Subtarget->hasAMXTILE())
5050         break;
5051       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
5052                          ? X86::PTILELOADDV
5053                          : X86::PTILELOADDT1V;
5054       // _tile_loadd_internal(row, col, buf, STRIDE)
5055       SDValue Base = Node->getOperand(4);
5056       SDValue Scale = getI8Imm(1, dl);
5057       SDValue Index = Node->getOperand(5);
5058       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5059       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5060       SDValue Chain = Node->getOperand(0);
5061       MachineSDNode *CNode;
5062       SDValue Ops[] = {Node->getOperand(2),
5063                        Node->getOperand(3),
5064                        Base,
5065                        Scale,
5066                        Index,
5067                        Disp,
5068                        Segment,
5069                        Chain};
5070       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
5071       ReplaceNode(Node, CNode);
5072       return;
5073     }
5074     }
5075     break;
5076   }
5077   case ISD::INTRINSIC_VOID: {
5078     unsigned IntNo = Node->getConstantOperandVal(1);
5079     switch (IntNo) {
5080     default: break;
5081     case Intrinsic::x86_sse3_monitor:
5082     case Intrinsic::x86_monitorx:
5083     case Intrinsic::x86_clzero: {
5084       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
5085 
5086       unsigned Opc = 0;
5087       switch (IntNo) {
5088       default: llvm_unreachable("Unexpected intrinsic!");
5089       case Intrinsic::x86_sse3_monitor:
5090         if (!Subtarget->hasSSE3())
5091           break;
5092         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
5093         break;
5094       case Intrinsic::x86_monitorx:
5095         if (!Subtarget->hasMWAITX())
5096           break;
5097         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
5098         break;
5099       case Intrinsic::x86_clzero:
5100         if (!Subtarget->hasCLZERO())
5101           break;
5102         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
5103         break;
5104       }
5105 
5106       if (Opc) {
5107         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
5108         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
5109                                              Node->getOperand(2), SDValue());
5110         SDValue InGlue = Chain.getValue(1);
5111 
5112         if (IntNo == Intrinsic::x86_sse3_monitor ||
5113             IntNo == Intrinsic::x86_monitorx) {
5114           // Copy the other two operands to ECX and EDX.
5115           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
5116                                        InGlue);
5117           InGlue = Chain.getValue(1);
5118           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
5119                                        InGlue);
5120           InGlue = Chain.getValue(1);
5121         }
5122 
5123         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
5124                                                       { Chain, InGlue});
5125         ReplaceNode(Node, CNode);
5126         return;
5127       }
5128 
5129       break;
5130     }
5131     case Intrinsic::x86_tilestored64_internal: {
5132       unsigned Opc = X86::PTILESTOREDV;
5133       // _tile_stored_internal(row, col, buf, STRIDE, c)
5134       SDValue Base = Node->getOperand(4);
5135       SDValue Scale = getI8Imm(1, dl);
5136       SDValue Index = Node->getOperand(5);
5137       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5138       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5139       SDValue Chain = Node->getOperand(0);
5140       MachineSDNode *CNode;
5141       SDValue Ops[] = {Node->getOperand(2),
5142                        Node->getOperand(3),
5143                        Base,
5144                        Scale,
5145                        Index,
5146                        Disp,
5147                        Segment,
5148                        Node->getOperand(6),
5149                        Chain};
5150       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5151       ReplaceNode(Node, CNode);
5152       return;
5153     }
5154     case Intrinsic::x86_tileloadd64:
5155     case Intrinsic::x86_tileloaddt164:
5156     case Intrinsic::x86_tilestored64: {
5157       if (!Subtarget->hasAMXTILE())
5158         break;
5159       unsigned Opc;
5160       switch (IntNo) {
5161       default: llvm_unreachable("Unexpected intrinsic!");
5162       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
5163       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
5164       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
5165       }
5166       // FIXME: Match displacement and scale.
5167       unsigned TIndex = Node->getConstantOperandVal(2);
5168       SDValue TReg = getI8Imm(TIndex, dl);
5169       SDValue Base = Node->getOperand(3);
5170       SDValue Scale = getI8Imm(1, dl);
5171       SDValue Index = Node->getOperand(4);
5172       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5173       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5174       SDValue Chain = Node->getOperand(0);
5175       MachineSDNode *CNode;
5176       if (Opc == X86::PTILESTORED) {
5177         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
5178         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5179       } else {
5180         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
5181         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5182       }
5183       ReplaceNode(Node, CNode);
5184       return;
5185     }
5186     }
5187     break;
5188   }
5189   case ISD::BRIND:
5190   case X86ISD::NT_BRIND: {
5191     if (Subtarget->isTargetNaCl())
5192       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
5193       // leave the instruction alone.
5194       break;
5195     if (Subtarget->isTarget64BitILP32()) {
5196       // Converts a 32-bit register to a 64-bit, zero-extended version of
5197       // it. This is needed because x86-64 can do many things, but jmp %r32
5198       // ain't one of them.
5199       SDValue Target = Node->getOperand(1);
5200       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
5201       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
5202       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
5203                                       Node->getOperand(0), ZextTarget);
5204       ReplaceNode(Node, Brind.getNode());
5205       SelectCode(ZextTarget.getNode());
5206       SelectCode(Brind.getNode());
5207       return;
5208     }
5209     break;
5210   }
5211   case X86ISD::GlobalBaseReg:
5212     ReplaceNode(Node, getGlobalBaseReg());
5213     return;
5214 
5215   case ISD::BITCAST:
5216     // Just drop all 128/256/512-bit bitcasts.
5217     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
5218         NVT == MVT::f128) {
5219       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
5220       CurDAG->RemoveDeadNode(Node);
5221       return;
5222     }
5223     break;
5224 
5225   case ISD::SRL:
5226     if (matchBitExtract(Node))
5227       return;
5228     [[fallthrough]];
5229   case ISD::SRA:
5230   case ISD::SHL:
5231     if (tryShiftAmountMod(Node))
5232       return;
5233     break;
5234 
5235   case X86ISD::VPTERNLOG: {
5236     uint8_t Imm = Node->getConstantOperandVal(3);
5237     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
5238                        Node->getOperand(1), Node->getOperand(2), Imm))
5239       return;
5240     break;
5241   }
5242 
5243   case X86ISD::ANDNP:
5244     if (tryVPTERNLOG(Node))
5245       return;
5246     break;
5247 
5248   case ISD::AND:
5249     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5250       // Try to form a masked VPTESTM. Operands can be in either order.
5251       SDValue N0 = Node->getOperand(0);
5252       SDValue N1 = Node->getOperand(1);
5253       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5254           tryVPTESTM(Node, N0, N1))
5255         return;
5256       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5257           tryVPTESTM(Node, N1, N0))
5258         return;
5259     }
5260 
5261     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5262       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5263       CurDAG->RemoveDeadNode(Node);
5264       return;
5265     }
5266     if (matchBitExtract(Node))
5267       return;
5268     if (AndImmShrink && shrinkAndImmediate(Node))
5269       return;
5270 
5271     [[fallthrough]];
5272   case ISD::OR:
5273   case ISD::XOR:
5274     if (tryShrinkShlLogicImm(Node))
5275       return;
5276     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5277       return;
5278     if (tryVPTERNLOG(Node))
5279       return;
5280 
5281     [[fallthrough]];
5282   case ISD::ADD:
5283     if (Opcode == ISD::ADD && matchBitExtract(Node))
5284       return;
5285     [[fallthrough]];
5286   case ISD::SUB: {
5287     // Try to avoid folding immediates with multiple uses for optsize.
5288     // This code tries to select to register form directly to avoid going
5289     // through the isel table which might fold the immediate. We can't change
5290     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5291     // tablegen files to check immediate use count without making the patterns
5292     // unavailable to the fast-isel table.
5293     if (!CurDAG->shouldOptForSize())
5294       break;
5295 
5296     // Only handle i8/i16/i32/i64.
5297     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5298       break;
5299 
5300     SDValue N0 = Node->getOperand(0);
5301     SDValue N1 = Node->getOperand(1);
5302 
5303     auto *Cst = dyn_cast<ConstantSDNode>(N1);
5304     if (!Cst)
5305       break;
5306 
5307     int64_t Val = Cst->getSExtValue();
5308 
5309     // Make sure its an immediate that is considered foldable.
5310     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5311     if (!isInt<8>(Val) && !isInt<32>(Val))
5312       break;
5313 
5314     // If this can match to INC/DEC, let it go.
5315     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5316       break;
5317 
5318     // Check if we should avoid folding this immediate.
5319     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5320       break;
5321 
5322     // We should not fold the immediate. So we need a register form instead.
5323     unsigned ROpc, MOpc;
5324     switch (NVT.SimpleTy) {
5325     default: llvm_unreachable("Unexpected VT!");
5326     case MVT::i8:
5327       switch (Opcode) {
5328       default: llvm_unreachable("Unexpected opcode!");
5329       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5330       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5331       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5332       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5333       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5334       }
5335       break;
5336     case MVT::i16:
5337       switch (Opcode) {
5338       default: llvm_unreachable("Unexpected opcode!");
5339       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5340       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5341       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5342       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5343       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5344       }
5345       break;
5346     case MVT::i32:
5347       switch (Opcode) {
5348       default: llvm_unreachable("Unexpected opcode!");
5349       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5350       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5351       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5352       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5353       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5354       }
5355       break;
5356     case MVT::i64:
5357       switch (Opcode) {
5358       default: llvm_unreachable("Unexpected opcode!");
5359       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5360       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5361       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5362       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5363       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5364       }
5365       break;
5366     }
5367 
5368     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5369 
5370     // If this is a not a subtract, we can still try to fold a load.
5371     if (Opcode != ISD::SUB) {
5372       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5373       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5374         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5375         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5376         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5377         // Update the chain.
5378         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5379         // Record the mem-refs
5380         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5381         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5382         CurDAG->RemoveDeadNode(Node);
5383         return;
5384       }
5385     }
5386 
5387     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5388     return;
5389   }
5390 
5391   case X86ISD::SMUL:
5392     // i16/i32/i64 are handled with isel patterns.
5393     if (NVT != MVT::i8)
5394       break;
5395     [[fallthrough]];
5396   case X86ISD::UMUL: {
5397     SDValue N0 = Node->getOperand(0);
5398     SDValue N1 = Node->getOperand(1);
5399 
5400     unsigned LoReg, ROpc, MOpc;
5401     switch (NVT.SimpleTy) {
5402     default: llvm_unreachable("Unsupported VT!");
5403     case MVT::i8:
5404       LoReg = X86::AL;
5405       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5406       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5407       break;
5408     case MVT::i16:
5409       LoReg = X86::AX;
5410       ROpc = X86::MUL16r;
5411       MOpc = X86::MUL16m;
5412       break;
5413     case MVT::i32:
5414       LoReg = X86::EAX;
5415       ROpc = X86::MUL32r;
5416       MOpc = X86::MUL32m;
5417       break;
5418     case MVT::i64:
5419       LoReg = X86::RAX;
5420       ROpc = X86::MUL64r;
5421       MOpc = X86::MUL64m;
5422       break;
5423     }
5424 
5425     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5426     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5427     // Multiply is commutative.
5428     if (!FoldedLoad) {
5429       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5430       if (FoldedLoad)
5431         std::swap(N0, N1);
5432     }
5433 
5434     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5435                                           N0, SDValue()).getValue(1);
5436 
5437     MachineSDNode *CNode;
5438     if (FoldedLoad) {
5439       // i16/i32/i64 use an instruction that produces a low and high result even
5440       // though only the low result is used.
5441       SDVTList VTs;
5442       if (NVT == MVT::i8)
5443         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5444       else
5445         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5446 
5447       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5448                         InGlue };
5449       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5450 
5451       // Update the chain.
5452       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5453       // Record the mem-refs
5454       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5455     } else {
5456       // i16/i32/i64 use an instruction that produces a low and high result even
5457       // though only the low result is used.
5458       SDVTList VTs;
5459       if (NVT == MVT::i8)
5460         VTs = CurDAG->getVTList(NVT, MVT::i32);
5461       else
5462         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5463 
5464       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InGlue});
5465     }
5466 
5467     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5468     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5469     CurDAG->RemoveDeadNode(Node);
5470     return;
5471   }
5472 
5473   case ISD::SMUL_LOHI:
5474   case ISD::UMUL_LOHI: {
5475     SDValue N0 = Node->getOperand(0);
5476     SDValue N1 = Node->getOperand(1);
5477 
5478     unsigned Opc, MOpc;
5479     unsigned LoReg, HiReg;
5480     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5481     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5482     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5483     switch (NVT.SimpleTy) {
5484     default: llvm_unreachable("Unsupported VT!");
5485     case MVT::i32:
5486       Opc  = UseMULXHi ? X86::MULX32Hrr :
5487              UseMULX ? X86::MULX32rr :
5488              IsSigned ? X86::IMUL32r : X86::MUL32r;
5489       MOpc = UseMULXHi ? X86::MULX32Hrm :
5490              UseMULX ? X86::MULX32rm :
5491              IsSigned ? X86::IMUL32m : X86::MUL32m;
5492       LoReg = UseMULX ? X86::EDX : X86::EAX;
5493       HiReg = X86::EDX;
5494       break;
5495     case MVT::i64:
5496       Opc  = UseMULXHi ? X86::MULX64Hrr :
5497              UseMULX ? X86::MULX64rr :
5498              IsSigned ? X86::IMUL64r : X86::MUL64r;
5499       MOpc = UseMULXHi ? X86::MULX64Hrm :
5500              UseMULX ? X86::MULX64rm :
5501              IsSigned ? X86::IMUL64m : X86::MUL64m;
5502       LoReg = UseMULX ? X86::RDX : X86::RAX;
5503       HiReg = X86::RDX;
5504       break;
5505     }
5506 
5507     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5508     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5509     // Multiply is commutative.
5510     if (!foldedLoad) {
5511       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5512       if (foldedLoad)
5513         std::swap(N0, N1);
5514     }
5515 
5516     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5517                                           N0, SDValue()).getValue(1);
5518     SDValue ResHi, ResLo;
5519     if (foldedLoad) {
5520       SDValue Chain;
5521       MachineSDNode *CNode = nullptr;
5522       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5523                         InGlue };
5524       if (UseMULXHi) {
5525         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5526         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5527         ResHi = SDValue(CNode, 0);
5528         Chain = SDValue(CNode, 1);
5529       } else if (UseMULX) {
5530         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5531         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5532         ResHi = SDValue(CNode, 0);
5533         ResLo = SDValue(CNode, 1);
5534         Chain = SDValue(CNode, 2);
5535       } else {
5536         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5537         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5538         Chain = SDValue(CNode, 0);
5539         InGlue = SDValue(CNode, 1);
5540       }
5541 
5542       // Update the chain.
5543       ReplaceUses(N1.getValue(1), Chain);
5544       // Record the mem-refs
5545       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5546     } else {
5547       SDValue Ops[] = { N1, InGlue };
5548       if (UseMULXHi) {
5549         SDVTList VTs = CurDAG->getVTList(NVT);
5550         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5551         ResHi = SDValue(CNode, 0);
5552       } else if (UseMULX) {
5553         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5554         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5555         ResHi = SDValue(CNode, 0);
5556         ResLo = SDValue(CNode, 1);
5557       } else {
5558         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5559         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5560         InGlue = SDValue(CNode, 0);
5561       }
5562     }
5563 
5564     // Copy the low half of the result, if it is needed.
5565     if (!SDValue(Node, 0).use_empty()) {
5566       if (!ResLo) {
5567         assert(LoReg && "Register for low half is not defined!");
5568         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5569                                        NVT, InGlue);
5570         InGlue = ResLo.getValue(2);
5571       }
5572       ReplaceUses(SDValue(Node, 0), ResLo);
5573       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5574                  dbgs() << '\n');
5575     }
5576     // Copy the high half of the result, if it is needed.
5577     if (!SDValue(Node, 1).use_empty()) {
5578       if (!ResHi) {
5579         assert(HiReg && "Register for high half is not defined!");
5580         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5581                                        NVT, InGlue);
5582         InGlue = ResHi.getValue(2);
5583       }
5584       ReplaceUses(SDValue(Node, 1), ResHi);
5585       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5586                  dbgs() << '\n');
5587     }
5588 
5589     CurDAG->RemoveDeadNode(Node);
5590     return;
5591   }
5592 
5593   case ISD::SDIVREM:
5594   case ISD::UDIVREM: {
5595     SDValue N0 = Node->getOperand(0);
5596     SDValue N1 = Node->getOperand(1);
5597 
5598     unsigned ROpc, MOpc;
5599     bool isSigned = Opcode == ISD::SDIVREM;
5600     if (!isSigned) {
5601       switch (NVT.SimpleTy) {
5602       default: llvm_unreachable("Unsupported VT!");
5603       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5604       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5605       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5606       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5607       }
5608     } else {
5609       switch (NVT.SimpleTy) {
5610       default: llvm_unreachable("Unsupported VT!");
5611       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5612       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5613       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5614       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5615       }
5616     }
5617 
5618     unsigned LoReg, HiReg, ClrReg;
5619     unsigned SExtOpcode;
5620     switch (NVT.SimpleTy) {
5621     default: llvm_unreachable("Unsupported VT!");
5622     case MVT::i8:
5623       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5624       SExtOpcode = 0; // Not used.
5625       break;
5626     case MVT::i16:
5627       LoReg = X86::AX;  HiReg = X86::DX;
5628       ClrReg = X86::DX;
5629       SExtOpcode = X86::CWD;
5630       break;
5631     case MVT::i32:
5632       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5633       SExtOpcode = X86::CDQ;
5634       break;
5635     case MVT::i64:
5636       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5637       SExtOpcode = X86::CQO;
5638       break;
5639     }
5640 
5641     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5642     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5643     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5644 
5645     SDValue InGlue;
5646     if (NVT == MVT::i8) {
5647       // Special case for div8, just use a move with zero extension to AX to
5648       // clear the upper 8 bits (AH).
5649       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5650       MachineSDNode *Move;
5651       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5652         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5653         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5654                                                     : X86::MOVZX16rm8;
5655         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5656         Chain = SDValue(Move, 1);
5657         ReplaceUses(N0.getValue(1), Chain);
5658         // Record the mem-refs
5659         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5660       } else {
5661         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5662                                                     : X86::MOVZX16rr8;
5663         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5664         Chain = CurDAG->getEntryNode();
5665       }
5666       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5667                                     SDValue());
5668       InGlue = Chain.getValue(1);
5669     } else {
5670       InGlue =
5671         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5672                              LoReg, N0, SDValue()).getValue(1);
5673       if (isSigned && !signBitIsZero) {
5674         // Sign extend the low part into the high part.
5675         InGlue =
5676           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InGlue),0);
5677       } else {
5678         // Zero out the high part, effectively zero extending the input.
5679         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5680         SDValue ClrNode = SDValue(
5681             CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5682         switch (NVT.SimpleTy) {
5683         case MVT::i16:
5684           ClrNode =
5685               SDValue(CurDAG->getMachineNode(
5686                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5687                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5688                                                     MVT::i32)),
5689                       0);
5690           break;
5691         case MVT::i32:
5692           break;
5693         case MVT::i64:
5694           ClrNode =
5695               SDValue(CurDAG->getMachineNode(
5696                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5697                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5698                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5699                                                     MVT::i32)),
5700                       0);
5701           break;
5702         default:
5703           llvm_unreachable("Unexpected division source");
5704         }
5705 
5706         InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5707                                       ClrNode, InGlue).getValue(1);
5708       }
5709     }
5710 
5711     if (foldedLoad) {
5712       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5713                         InGlue };
5714       MachineSDNode *CNode =
5715         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5716       InGlue = SDValue(CNode, 1);
5717       // Update the chain.
5718       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5719       // Record the mem-refs
5720       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5721     } else {
5722       InGlue =
5723         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InGlue), 0);
5724     }
5725 
5726     // Prevent use of AH in a REX instruction by explicitly copying it to
5727     // an ABCD_L register.
5728     //
5729     // The current assumption of the register allocator is that isel
5730     // won't generate explicit references to the GR8_ABCD_H registers. If
5731     // the allocator and/or the backend get enhanced to be more robust in
5732     // that regard, this can be, and should be, removed.
5733     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5734       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5735       unsigned AHExtOpcode =
5736           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5737 
5738       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5739                                              MVT::Glue, AHCopy, InGlue);
5740       SDValue Result(RNode, 0);
5741       InGlue = SDValue(RNode, 1);
5742 
5743       Result =
5744           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5745 
5746       ReplaceUses(SDValue(Node, 1), Result);
5747       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5748                  dbgs() << '\n');
5749     }
5750     // Copy the division (low) result, if it is needed.
5751     if (!SDValue(Node, 0).use_empty()) {
5752       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5753                                                 LoReg, NVT, InGlue);
5754       InGlue = Result.getValue(2);
5755       ReplaceUses(SDValue(Node, 0), Result);
5756       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5757                  dbgs() << '\n');
5758     }
5759     // Copy the remainder (high) result, if it is needed.
5760     if (!SDValue(Node, 1).use_empty()) {
5761       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5762                                               HiReg, NVT, InGlue);
5763       InGlue = Result.getValue(2);
5764       ReplaceUses(SDValue(Node, 1), Result);
5765       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5766                  dbgs() << '\n');
5767     }
5768     CurDAG->RemoveDeadNode(Node);
5769     return;
5770   }
5771 
5772   case X86ISD::FCMP:
5773   case X86ISD::STRICT_FCMP:
5774   case X86ISD::STRICT_FCMPS: {
5775     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5776                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5777     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5778     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5779 
5780     // Save the original VT of the compare.
5781     MVT CmpVT = N0.getSimpleValueType();
5782 
5783     // Floating point needs special handling if we don't have FCOMI.
5784     if (Subtarget->canUseCMOV())
5785       break;
5786 
5787     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5788 
5789     unsigned Opc;
5790     switch (CmpVT.SimpleTy) {
5791     default: llvm_unreachable("Unexpected type!");
5792     case MVT::f32:
5793       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5794       break;
5795     case MVT::f64:
5796       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5797       break;
5798     case MVT::f80:
5799       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5800       break;
5801     }
5802 
5803     SDValue Chain =
5804         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5805     SDValue Glue;
5806     if (IsStrictCmp) {
5807       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5808       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5809       Glue = Chain.getValue(1);
5810     } else {
5811       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5812     }
5813 
5814     // Move FPSW to AX.
5815     SDValue FNSTSW =
5816         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5817 
5818     // Extract upper 8-bits of AX.
5819     SDValue Extract =
5820         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5821 
5822     // Move AH into flags.
5823     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5824     assert(Subtarget->canUseLAHFSAHF() &&
5825            "Target doesn't support SAHF or FCOMI?");
5826     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5827     Chain = AH;
5828     SDValue SAHF = SDValue(
5829         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5830 
5831     if (IsStrictCmp)
5832       ReplaceUses(SDValue(Node, 1), Chain);
5833 
5834     ReplaceUses(SDValue(Node, 0), SAHF);
5835     CurDAG->RemoveDeadNode(Node);
5836     return;
5837   }
5838 
5839   case X86ISD::CMP: {
5840     SDValue N0 = Node->getOperand(0);
5841     SDValue N1 = Node->getOperand(1);
5842 
5843     // Optimizations for TEST compares.
5844     if (!isNullConstant(N1))
5845       break;
5846 
5847     // Save the original VT of the compare.
5848     MVT CmpVT = N0.getSimpleValueType();
5849 
5850     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5851     // by a test instruction. The test should be removed later by
5852     // analyzeCompare if we are using only the zero flag.
5853     // TODO: Should we check the users and use the BEXTR flags directly?
5854     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5855       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5856         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5857                                              : X86::TEST32rr;
5858         SDValue BEXTR = SDValue(NewNode, 0);
5859         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5860         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5861         CurDAG->RemoveDeadNode(Node);
5862         return;
5863       }
5864     }
5865 
5866     // We can peek through truncates, but we need to be careful below.
5867     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5868       N0 = N0.getOperand(0);
5869 
5870     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5871     // use a smaller encoding.
5872     // Look past the truncate if CMP is the only use of it.
5873     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5874         N0.getValueType() != MVT::i8) {
5875       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5876       if (!MaskC)
5877         break;
5878 
5879       // We may have looked through a truncate so mask off any bits that
5880       // shouldn't be part of the compare.
5881       uint64_t Mask = MaskC->getZExtValue();
5882       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5883 
5884       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5885       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5886       // zero flag.
5887       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5888           onlyUsesZeroFlag(SDValue(Node, 0))) {
5889         unsigned ShiftOpcode = ISD::DELETED_NODE;
5890         unsigned ShiftAmt;
5891         unsigned SubRegIdx;
5892         MVT SubRegVT;
5893         unsigned TestOpcode;
5894         unsigned LeadingZeros = llvm::countl_zero(Mask);
5895         unsigned TrailingZeros = llvm::countr_zero(Mask);
5896 
5897         // With leading/trailing zeros, the transform is profitable if we can
5898         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5899         // incurring any extra register moves.
5900         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5901         if (LeadingZeros == 0 && SavesBytes) {
5902           // If the mask covers the most significant bit, then we can replace
5903           // TEST+AND with a SHR and check eflags.
5904           // This emits a redundant TEST which is subsequently eliminated.
5905           ShiftOpcode = X86::SHR64ri;
5906           ShiftAmt = TrailingZeros;
5907           SubRegIdx = 0;
5908           TestOpcode = X86::TEST64rr;
5909         } else if (TrailingZeros == 0 && SavesBytes) {
5910           // If the mask covers the least significant bit, then we can replace
5911           // TEST+AND with a SHL and check eflags.
5912           // This emits a redundant TEST which is subsequently eliminated.
5913           ShiftOpcode = X86::SHL64ri;
5914           ShiftAmt = LeadingZeros;
5915           SubRegIdx = 0;
5916           TestOpcode = X86::TEST64rr;
5917         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5918           // If the shifted mask extends into the high half and is 8/16/32 bits
5919           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5920           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5921           if (PopCount == 8) {
5922             ShiftOpcode = X86::SHR64ri;
5923             ShiftAmt = TrailingZeros;
5924             SubRegIdx = X86::sub_8bit;
5925             SubRegVT = MVT::i8;
5926             TestOpcode = X86::TEST8rr;
5927           } else if (PopCount == 16) {
5928             ShiftOpcode = X86::SHR64ri;
5929             ShiftAmt = TrailingZeros;
5930             SubRegIdx = X86::sub_16bit;
5931             SubRegVT = MVT::i16;
5932             TestOpcode = X86::TEST16rr;
5933           } else if (PopCount == 32) {
5934             ShiftOpcode = X86::SHR64ri;
5935             ShiftAmt = TrailingZeros;
5936             SubRegIdx = X86::sub_32bit;
5937             SubRegVT = MVT::i32;
5938             TestOpcode = X86::TEST32rr;
5939           }
5940         }
5941         if (ShiftOpcode != ISD::DELETED_NODE) {
5942           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5943           SDValue Shift = SDValue(
5944               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5945                                      N0.getOperand(0), ShiftC),
5946               0);
5947           if (SubRegIdx != 0) {
5948             Shift =
5949                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5950           }
5951           MachineSDNode *Test =
5952               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5953           ReplaceNode(Node, Test);
5954           return;
5955         }
5956       }
5957 
5958       MVT VT;
5959       int SubRegOp;
5960       unsigned ROpc, MOpc;
5961 
5962       // For each of these checks we need to be careful if the sign flag is
5963       // being used. It is only safe to use the sign flag in two conditions,
5964       // either the sign bit in the shrunken mask is zero or the final test
5965       // size is equal to the original compare size.
5966 
5967       if (isUInt<8>(Mask) &&
5968           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5969            hasNoSignFlagUses(SDValue(Node, 0)))) {
5970         // For example, convert "testl %eax, $8" to "testb %al, $8"
5971         VT = MVT::i8;
5972         SubRegOp = X86::sub_8bit;
5973         ROpc = X86::TEST8ri;
5974         MOpc = X86::TEST8mi;
5975       } else if (OptForMinSize && isUInt<16>(Mask) &&
5976                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5977                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5978         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5979         // NOTE: We only want to form TESTW instructions if optimizing for
5980         // min size. Otherwise we only save one byte and possibly get a length
5981         // changing prefix penalty in the decoders.
5982         VT = MVT::i16;
5983         SubRegOp = X86::sub_16bit;
5984         ROpc = X86::TEST16ri;
5985         MOpc = X86::TEST16mi;
5986       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5987                  ((!(Mask & 0x80000000) &&
5988                    // Without minsize 16-bit Cmps can get here so we need to
5989                    // be sure we calculate the correct sign flag if needed.
5990                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5991                   CmpVT == MVT::i32 ||
5992                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5993         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5994         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5995         // Otherwize, we find ourselves in a position where we have to do
5996         // promotion. If previous passes did not promote the and, we assume
5997         // they had a good reason not to and do not promote here.
5998         VT = MVT::i32;
5999         SubRegOp = X86::sub_32bit;
6000         ROpc = X86::TEST32ri;
6001         MOpc = X86::TEST32mi;
6002       } else {
6003         // No eligible transformation was found.
6004         break;
6005       }
6006 
6007       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
6008       SDValue Reg = N0.getOperand(0);
6009 
6010       // Emit a testl or testw.
6011       MachineSDNode *NewNode;
6012       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
6013       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
6014         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
6015           if (!LoadN->isSimple()) {
6016             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
6017             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
6018                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
6019                 (MOpc == X86::TEST32mi && NumVolBits != 32))
6020               break;
6021           }
6022         }
6023         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
6024                           Reg.getOperand(0) };
6025         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
6026         // Update the chain.
6027         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
6028         // Record the mem-refs
6029         CurDAG->setNodeMemRefs(NewNode,
6030                                {cast<LoadSDNode>(Reg)->getMemOperand()});
6031       } else {
6032         // Extract the subregister if necessary.
6033         if (N0.getValueType() != VT)
6034           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
6035 
6036         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
6037       }
6038       // Replace CMP with TEST.
6039       ReplaceNode(Node, NewNode);
6040       return;
6041     }
6042     break;
6043   }
6044   case X86ISD::PCMPISTR: {
6045     if (!Subtarget->hasSSE42())
6046       break;
6047 
6048     bool NeedIndex = !SDValue(Node, 0).use_empty();
6049     bool NeedMask = !SDValue(Node, 1).use_empty();
6050     // We can't fold a load if we are going to make two instructions.
6051     bool MayFoldLoad = !NeedIndex || !NeedMask;
6052 
6053     MachineSDNode *CNode;
6054     if (NeedMask) {
6055       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
6056       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
6057       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
6058       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6059     }
6060     if (NeedIndex || !NeedMask) {
6061       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
6062       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
6063       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
6064       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6065     }
6066 
6067     // Connect the flag usage to the last instruction created.
6068     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6069     CurDAG->RemoveDeadNode(Node);
6070     return;
6071   }
6072   case X86ISD::PCMPESTR: {
6073     if (!Subtarget->hasSSE42())
6074       break;
6075 
6076     // Copy the two implicit register inputs.
6077     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
6078                                           Node->getOperand(1),
6079                                           SDValue()).getValue(1);
6080     InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
6081                                   Node->getOperand(3), InGlue).getValue(1);
6082 
6083     bool NeedIndex = !SDValue(Node, 0).use_empty();
6084     bool NeedMask = !SDValue(Node, 1).use_empty();
6085     // We can't fold a load if we are going to make two instructions.
6086     bool MayFoldLoad = !NeedIndex || !NeedMask;
6087 
6088     MachineSDNode *CNode;
6089     if (NeedMask) {
6090       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
6091       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
6092       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
6093                            InGlue);
6094       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6095     }
6096     if (NeedIndex || !NeedMask) {
6097       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
6098       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
6099       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InGlue);
6100       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6101     }
6102     // Connect the flag usage to the last instruction created.
6103     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6104     CurDAG->RemoveDeadNode(Node);
6105     return;
6106   }
6107 
6108   case ISD::SETCC: {
6109     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
6110       return;
6111 
6112     break;
6113   }
6114 
6115   case ISD::STORE:
6116     if (foldLoadStoreIntoMemOperand(Node))
6117       return;
6118     break;
6119 
6120   case X86ISD::SETCC_CARRY: {
6121     MVT VT = Node->getSimpleValueType(0);
6122     SDValue Result;
6123     if (Subtarget->hasSBBDepBreaking()) {
6124       // We have to do this manually because tblgen will put the eflags copy in
6125       // the wrong place if we use an extract_subreg in the pattern.
6126       // Copy flags to the EFLAGS register and glue it to next node.
6127       SDValue EFLAGS =
6128           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
6129                                Node->getOperand(1), SDValue());
6130 
6131       // Create a 64-bit instruction if the result is 64-bits otherwise use the
6132       // 32-bit version.
6133       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
6134       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
6135       Result = SDValue(
6136           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
6137           0);
6138     } else {
6139       // The target does not recognize sbb with the same reg operand as a
6140       // no-source idiom, so we explicitly zero the input values.
6141       Result = getSBBZero(Node);
6142     }
6143 
6144     // For less than 32-bits we need to extract from the 32-bit node.
6145     if (VT == MVT::i8 || VT == MVT::i16) {
6146       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6147       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6148     }
6149 
6150     ReplaceUses(SDValue(Node, 0), Result);
6151     CurDAG->RemoveDeadNode(Node);
6152     return;
6153   }
6154   case X86ISD::SBB: {
6155     if (isNullConstant(Node->getOperand(0)) &&
6156         isNullConstant(Node->getOperand(1))) {
6157       SDValue Result = getSBBZero(Node);
6158 
6159       // Replace the flag use.
6160       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
6161 
6162       // Replace the result use.
6163       if (!SDValue(Node, 0).use_empty()) {
6164         // For less than 32-bits we need to extract from the 32-bit node.
6165         MVT VT = Node->getSimpleValueType(0);
6166         if (VT == MVT::i8 || VT == MVT::i16) {
6167           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6168           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6169         }
6170         ReplaceUses(SDValue(Node, 0), Result);
6171       }
6172 
6173       CurDAG->RemoveDeadNode(Node);
6174       return;
6175     }
6176     break;
6177   }
6178   case X86ISD::MGATHER: {
6179     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
6180     SDValue IndexOp = Mgt->getIndex();
6181     SDValue Mask = Mgt->getMask();
6182     MVT IndexVT = IndexOp.getSimpleValueType();
6183     MVT ValueVT = Node->getSimpleValueType(0);
6184     MVT MaskVT = Mask.getSimpleValueType();
6185 
6186     // This is just to prevent crashes if the nodes are malformed somehow. We're
6187     // otherwise only doing loose type checking in here based on type what
6188     // a type constraint would say just like table based isel.
6189     if (!ValueVT.isVector() || !MaskVT.isVector())
6190       break;
6191 
6192     unsigned NumElts = ValueVT.getVectorNumElements();
6193     MVT ValueSVT = ValueVT.getVectorElementType();
6194 
6195     bool IsFP = ValueSVT.isFloatingPoint();
6196     unsigned EltSize = ValueSVT.getSizeInBits();
6197 
6198     unsigned Opc = 0;
6199     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
6200     if (AVX512Gather) {
6201       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6202         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
6203       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6204         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
6205       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6206         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
6207       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6208         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
6209       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6210         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
6211       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6212         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
6213       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6214         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
6215       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6216         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
6217       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6218         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
6219       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6220         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
6221       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6222         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
6223       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6224         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
6225     } else {
6226       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
6227              "Unexpected mask VT!");
6228       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6229         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
6230       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6231         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
6232       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6233         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
6234       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6235         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
6236       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6237         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6238       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6239         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6240       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6241         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6242       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6243         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6244     }
6245 
6246     if (!Opc)
6247       break;
6248 
6249     SDValue Base, Scale, Index, Disp, Segment;
6250     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
6251                           Base, Scale, Index, Disp, Segment))
6252       break;
6253 
6254     SDValue PassThru = Mgt->getPassThru();
6255     SDValue Chain = Mgt->getChain();
6256     // Gather instructions have a mask output not in the ISD node.
6257     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6258 
6259     MachineSDNode *NewNode;
6260     if (AVX512Gather) {
6261       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
6262                        Index,    Disp, Segment, Chain};
6263       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6264     } else {
6265       SDValue Ops[] = {PassThru, Base,    Scale, Index,
6266                        Disp,     Segment, Mask,  Chain};
6267       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6268     }
6269     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6270     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6271     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6272     CurDAG->RemoveDeadNode(Node);
6273     return;
6274   }
6275   case X86ISD::MSCATTER: {
6276     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6277     SDValue Value = Sc->getValue();
6278     SDValue IndexOp = Sc->getIndex();
6279     MVT IndexVT = IndexOp.getSimpleValueType();
6280     MVT ValueVT = Value.getSimpleValueType();
6281 
6282     // This is just to prevent crashes if the nodes are malformed somehow. We're
6283     // otherwise only doing loose type checking in here based on type what
6284     // a type constraint would say just like table based isel.
6285     if (!ValueVT.isVector())
6286       break;
6287 
6288     unsigned NumElts = ValueVT.getVectorNumElements();
6289     MVT ValueSVT = ValueVT.getVectorElementType();
6290 
6291     bool IsFP = ValueSVT.isFloatingPoint();
6292     unsigned EltSize = ValueSVT.getSizeInBits();
6293 
6294     unsigned Opc;
6295     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6296       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6297     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6298       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6299     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6300       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6301     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6302       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6303     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6304       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6305     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6306       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6307     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6308       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6309     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6310       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6311     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6312       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6313     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6314       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6315     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6316       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6317     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6318       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6319     else
6320       break;
6321 
6322     SDValue Base, Scale, Index, Disp, Segment;
6323     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6324                           Base, Scale, Index, Disp, Segment))
6325       break;
6326 
6327     SDValue Mask = Sc->getMask();
6328     SDValue Chain = Sc->getChain();
6329     // Scatter instructions have a mask output not in the ISD node.
6330     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6331     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6332 
6333     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6334     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6335     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6336     CurDAG->RemoveDeadNode(Node);
6337     return;
6338   }
6339   case ISD::PREALLOCATED_SETUP: {
6340     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6341     auto CallId = MFI->getPreallocatedIdForCallSite(
6342         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6343     SDValue Chain = Node->getOperand(0);
6344     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6345     MachineSDNode *New = CurDAG->getMachineNode(
6346         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6347     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6348     CurDAG->RemoveDeadNode(Node);
6349     return;
6350   }
6351   case ISD::PREALLOCATED_ARG: {
6352     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6353     auto CallId = MFI->getPreallocatedIdForCallSite(
6354         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6355     SDValue Chain = Node->getOperand(0);
6356     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6357     SDValue ArgIndex = Node->getOperand(2);
6358     SDValue Ops[3];
6359     Ops[0] = CallIdValue;
6360     Ops[1] = ArgIndex;
6361     Ops[2] = Chain;
6362     MachineSDNode *New = CurDAG->getMachineNode(
6363         TargetOpcode::PREALLOCATED_ARG, dl,
6364         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6365                           MVT::Other),
6366         Ops);
6367     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6368     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6369     CurDAG->RemoveDeadNode(Node);
6370     return;
6371   }
6372   case X86ISD::AESENCWIDE128KL:
6373   case X86ISD::AESDECWIDE128KL:
6374   case X86ISD::AESENCWIDE256KL:
6375   case X86ISD::AESDECWIDE256KL: {
6376     if (!Subtarget->hasWIDEKL())
6377       break;
6378 
6379     unsigned Opcode;
6380     switch (Node->getOpcode()) {
6381     default:
6382       llvm_unreachable("Unexpected opcode!");
6383     case X86ISD::AESENCWIDE128KL:
6384       Opcode = X86::AESENCWIDE128KL;
6385       break;
6386     case X86ISD::AESDECWIDE128KL:
6387       Opcode = X86::AESDECWIDE128KL;
6388       break;
6389     case X86ISD::AESENCWIDE256KL:
6390       Opcode = X86::AESENCWIDE256KL;
6391       break;
6392     case X86ISD::AESDECWIDE256KL:
6393       Opcode = X86::AESDECWIDE256KL;
6394       break;
6395     }
6396 
6397     SDValue Chain = Node->getOperand(0);
6398     SDValue Addr = Node->getOperand(1);
6399 
6400     SDValue Base, Scale, Index, Disp, Segment;
6401     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6402       break;
6403 
6404     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6405                                  SDValue());
6406     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6407                                  Chain.getValue(1));
6408     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6409                                  Chain.getValue(1));
6410     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6411                                  Chain.getValue(1));
6412     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6413                                  Chain.getValue(1));
6414     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6415                                  Chain.getValue(1));
6416     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6417                                  Chain.getValue(1));
6418     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6419                                  Chain.getValue(1));
6420 
6421     MachineSDNode *Res = CurDAG->getMachineNode(
6422         Opcode, dl, Node->getVTList(),
6423         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6424     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6425     ReplaceNode(Node, Res);
6426     return;
6427   }
6428   }
6429 
6430   SelectCode(Node);
6431 }
6432 
6433 bool X86DAGToDAGISel::SelectInlineAsmMemoryOperand(
6434     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
6435     std::vector<SDValue> &OutOps) {
6436   SDValue Op0, Op1, Op2, Op3, Op4;
6437   switch (ConstraintID) {
6438   default:
6439     llvm_unreachable("Unexpected asm memory constraint");
6440   case InlineAsm::ConstraintCode::o: // offsetable        ??
6441   case InlineAsm::ConstraintCode::v: // not offsetable    ??
6442   case InlineAsm::ConstraintCode::m: // memory
6443   case InlineAsm::ConstraintCode::X:
6444   case InlineAsm::ConstraintCode::p: // address
6445     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6446       return true;
6447     break;
6448   }
6449 
6450   OutOps.push_back(Op0);
6451   OutOps.push_back(Op1);
6452   OutOps.push_back(Op2);
6453   OutOps.push_back(Op3);
6454   OutOps.push_back(Op4);
6455   return false;
6456 }
6457 
6458 /// This pass converts a legalized DAG into a X86-specific DAG,
6459 /// ready for instruction scheduling.
6460 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6461                                      CodeGenOptLevel OptLevel) {
6462   return new X86DAGToDAGISel(TM, OptLevel);
6463 }
6464