1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/WinEHFuncInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cstdlib> 38 39 #define DEBUG_TYPE "x86-fl" 40 41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 42 STATISTIC(NumFrameExtraProbe, 43 "Number of extra stack probes generated in prologue"); 44 45 using namespace llvm; 46 47 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 48 MaybeAlign StackAlignOverride) 49 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 50 STI.is64Bit() ? -8 : -4), 51 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 52 // Cache a bunch of frame-related predicates for this subtarget. 53 SlotSize = TRI->getSlotSize(); 54 Is64Bit = STI.is64Bit(); 55 IsLP64 = STI.isTarget64BitLP64(); 56 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 57 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 58 StackPtr = TRI->getStackRegister(); 59 } 60 61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 62 return !MF.getFrameInfo().hasVarSizedObjects() && 63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 65 } 66 67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 68 /// call frame pseudos can be simplified. Having a FP, as in the default 69 /// implementation, is not sufficient here since we can't always use it. 70 /// Use a more nuanced condition. 71 bool 72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 73 return hasReservedCallFrame(MF) || 74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 76 TRI->hasBasePointer(MF); 77 } 78 79 // needsFrameIndexResolution - Do we need to perform FI resolution for 80 // this function. Normally, this is required only when the function 81 // has any stack objects. However, FI resolution actually has another job, 82 // not apparent from the title - it resolves callframesetup/destroy 83 // that were not simplified earlier. 84 // So, this is required for x86 functions that have push sequences even 85 // when there are no stack objects. 86 bool 87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 88 return MF.getFrameInfo().hasStackObjects() || 89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 90 } 91 92 /// hasFP - Return true if the specified function should have a dedicated frame 93 /// pointer register. This is true if the function has variable sized allocas 94 /// or if frame pointer elimination is disabled. 95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 96 const MachineFrameInfo &MFI = MF.getFrameInfo(); 97 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 103 MFI.hasStackMap() || MFI.hasPatchPoint() || 104 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 105 } 106 107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::SUB64ri8; 111 return X86::SUB64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::SUB32ri8; 115 return X86::SUB32ri; 116 } 117 } 118 119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 120 if (IsLP64) { 121 if (isInt<8>(Imm)) 122 return X86::ADD64ri8; 123 return X86::ADD64ri32; 124 } else { 125 if (isInt<8>(Imm)) 126 return X86::ADD32ri8; 127 return X86::ADD32ri; 128 } 129 } 130 131 static unsigned getSUBrrOpcode(bool IsLP64) { 132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 133 } 134 135 static unsigned getADDrrOpcode(bool IsLP64) { 136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 137 } 138 139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 140 if (IsLP64) { 141 if (isInt<8>(Imm)) 142 return X86::AND64ri8; 143 return X86::AND64ri32; 144 } 145 if (isInt<8>(Imm)) 146 return X86::AND32ri8; 147 return X86::AND32ri; 148 } 149 150 static unsigned getLEArOpcode(bool IsLP64) { 151 return IsLP64 ? X86::LEA64r : X86::LEA32r; 152 } 153 154 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 155 if (Use64BitReg) { 156 if (isUInt<32>(Imm)) 157 return X86::MOV32ri64; 158 if (isInt<32>(Imm)) 159 return X86::MOV64ri32; 160 return X86::MOV64ri; 161 } 162 return X86::MOV32ri; 163 } 164 165 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 166 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 167 unsigned Reg = RegMask.PhysReg; 168 169 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 170 Reg == X86::AH || Reg == X86::AL) 171 return true; 172 } 173 174 return false; 175 } 176 177 /// Check if the flags need to be preserved before the terminators. 178 /// This would be the case, if the eflags is live-in of the region 179 /// composed by the terminators or live-out of that region, without 180 /// being defined by a terminator. 181 static bool 182 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 183 for (const MachineInstr &MI : MBB.terminators()) { 184 bool BreakNext = false; 185 for (const MachineOperand &MO : MI.operands()) { 186 if (!MO.isReg()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (Reg != X86::EFLAGS) 190 continue; 191 192 // This terminator needs an eflags that is not defined 193 // by a previous another terminator: 194 // EFLAGS is live-in of the region composed by the terminators. 195 if (!MO.isDef()) 196 return true; 197 // This terminator defines the eflags, i.e., we don't need to preserve it. 198 // However, we still need to check this specific terminator does not 199 // read a live-in value. 200 BreakNext = true; 201 } 202 // We found a definition of the eflags, no need to preserve them. 203 if (BreakNext) 204 return false; 205 } 206 207 // None of the terminators use or define the eflags. 208 // Check if they are live-out, that would imply we need to preserve them. 209 for (const MachineBasicBlock *Succ : MBB.successors()) 210 if (Succ->isLiveIn(X86::EFLAGS)) 211 return true; 212 213 return false; 214 } 215 216 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 217 /// stack pointer by a constant value. 218 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 219 MachineBasicBlock::iterator &MBBI, 220 const DebugLoc &DL, 221 int64_t NumBytes, bool InEpilogue) const { 222 bool isSub = NumBytes < 0; 223 uint64_t Offset = isSub ? -NumBytes : NumBytes; 224 MachineInstr::MIFlag Flag = 225 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 226 227 uint64_t Chunk = (1LL << 31) - 1; 228 229 MachineFunction &MF = *MBB.getParent(); 230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 231 const X86TargetLowering &TLI = *STI.getTargetLowering(); 232 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 233 234 // It's ok to not take into account large chunks when probing, as the 235 // allocation is split in smaller chunks anyway. 236 if (EmitInlineStackProbe && !InEpilogue) { 237 238 // This pseudo-instruction is going to be expanded, potentially using a 239 // loop, by inlineStackProbe(). 240 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 241 return; 242 } else if (Offset > Chunk) { 243 // Rather than emit a long series of instructions for large offsets, 244 // load the offset into a register and do one sub/add 245 unsigned Reg = 0; 246 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 247 248 if (isSub && !isEAXLiveIn(MBB)) 249 Reg = Rax; 250 else 251 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 252 253 unsigned AddSubRROpc = 254 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 255 if (Reg) { 256 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 257 .addImm(Offset) 258 .setMIFlag(Flag); 259 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 260 .addReg(StackPtr) 261 .addReg(Reg); 262 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 263 return; 264 } else if (Offset > 8 * Chunk) { 265 // If we would need more than 8 add or sub instructions (a >16GB stack 266 // frame), it's worth spilling RAX to materialize this immediate. 267 // pushq %rax 268 // movabsq +-$Offset+-SlotSize, %rax 269 // addq %rsp, %rax 270 // xchg %rax, (%rsp) 271 // movq (%rsp), %rsp 272 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 273 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 274 .addReg(Rax, RegState::Kill) 275 .setMIFlag(Flag); 276 // Subtract is not commutative, so negate the offset and always use add. 277 // Subtract 8 less and add 8 more to account for the PUSH we just did. 278 if (isSub) 279 Offset = -(Offset - SlotSize); 280 else 281 Offset = Offset + SlotSize; 282 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 283 .addImm(Offset) 284 .setMIFlag(Flag); 285 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 286 .addReg(Rax) 287 .addReg(StackPtr); 288 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 289 // Exchange the new SP in RAX with the top of the stack. 290 addRegOffset( 291 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 292 StackPtr, false, 0); 293 // Load new SP from the top of the stack into RSP. 294 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 295 StackPtr, false, 0); 296 return; 297 } 298 } 299 300 while (Offset) { 301 uint64_t ThisVal = std::min(Offset, Chunk); 302 if (ThisVal == SlotSize) { 303 // Use push / pop for slot sized adjustments as a size optimization. We 304 // need to find a dead register when using pop. 305 unsigned Reg = isSub 306 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 307 : TRI->findDeadCallerSavedReg(MBB, MBBI); 308 if (Reg) { 309 unsigned Opc = isSub 310 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 311 : (Is64Bit ? X86::POP64r : X86::POP32r); 312 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 313 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 314 .setMIFlag(Flag); 315 Offset -= ThisVal; 316 continue; 317 } 318 } 319 320 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 321 .setMIFlag(Flag); 322 323 Offset -= ThisVal; 324 } 325 } 326 327 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 328 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 329 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 330 assert(Offset != 0 && "zero offset stack adjustment requested"); 331 332 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 333 // is tricky. 334 bool UseLEA; 335 if (!InEpilogue) { 336 // Check if inserting the prologue at the beginning 337 // of MBB would require to use LEA operations. 338 // We need to use LEA operations if EFLAGS is live in, because 339 // it means an instruction will read it before it gets defined. 340 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 341 } else { 342 // If we can use LEA for SP but we shouldn't, check that none 343 // of the terminators uses the eflags. Otherwise we will insert 344 // a ADD that will redefine the eflags and break the condition. 345 // Alternatively, we could move the ADD, but this may not be possible 346 // and is an optimization anyway. 347 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 348 if (UseLEA && !STI.useLeaForSP()) 349 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 350 // If that assert breaks, that means we do not do the right thing 351 // in canUseAsEpilogue. 352 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 353 "We shouldn't have allowed this insertion point"); 354 } 355 356 MachineInstrBuilder MI; 357 if (UseLEA) { 358 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 359 TII.get(getLEArOpcode(Uses64BitFramePtr)), 360 StackPtr), 361 StackPtr, false, Offset); 362 } else { 363 bool IsSub = Offset < 0; 364 uint64_t AbsOffset = IsSub ? -Offset : Offset; 365 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 366 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 367 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 368 .addReg(StackPtr) 369 .addImm(AbsOffset); 370 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 371 } 372 return MI; 373 } 374 375 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 376 MachineBasicBlock::iterator &MBBI, 377 bool doMergeWithPrevious) const { 378 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 379 (!doMergeWithPrevious && MBBI == MBB.end())) 380 return 0; 381 382 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 383 384 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 385 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 386 // instruction, and that there are no DBG_VALUE or other instructions between 387 // ADD/SUB/LEA and its corresponding CFI instruction. 388 /* TODO: Add support for the case where there are multiple CFI instructions 389 below the ADD/SUB/LEA, e.g.: 390 ... 391 add 392 cfi_def_cfa_offset 393 cfi_offset 394 ... 395 */ 396 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 397 PI = std::prev(PI); 398 399 unsigned Opc = PI->getOpcode(); 400 int Offset = 0; 401 402 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 403 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 404 PI->getOperand(0).getReg() == StackPtr){ 405 assert(PI->getOperand(1).getReg() == StackPtr); 406 Offset = PI->getOperand(2).getImm(); 407 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 408 PI->getOperand(0).getReg() == StackPtr && 409 PI->getOperand(1).getReg() == StackPtr && 410 PI->getOperand(2).getImm() == 1 && 411 PI->getOperand(3).getReg() == X86::NoRegister && 412 PI->getOperand(5).getReg() == X86::NoRegister) { 413 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 414 Offset = PI->getOperand(4).getImm(); 415 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 416 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 417 PI->getOperand(0).getReg() == StackPtr) { 418 assert(PI->getOperand(1).getReg() == StackPtr); 419 Offset = -PI->getOperand(2).getImm(); 420 } else 421 return 0; 422 423 PI = MBB.erase(PI); 424 if (PI != MBB.end() && PI->isCFIInstruction()) { 425 auto CIs = MBB.getParent()->getFrameInstructions(); 426 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 427 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 428 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 429 PI = MBB.erase(PI); 430 } 431 if (!doMergeWithPrevious) 432 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 433 434 return Offset; 435 } 436 437 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 438 MachineBasicBlock::iterator MBBI, 439 const DebugLoc &DL, 440 const MCCFIInstruction &CFIInst, 441 MachineInstr::MIFlag Flag) const { 442 MachineFunction &MF = *MBB.getParent(); 443 unsigned CFIIndex = MF.addFrameInst(CFIInst); 444 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 445 .addCFIIndex(CFIIndex) 446 .setMIFlag(Flag); 447 } 448 449 /// Emits Dwarf Info specifying offsets of callee saved registers and 450 /// frame pointer. This is called only when basic block sections are enabled. 451 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 452 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 453 MachineFunction &MF = *MBB.getParent(); 454 if (!hasFP(MF)) { 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 return; 457 } 458 const MachineModuleInfo &MMI = MF.getMMI(); 459 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 460 const Register FramePtr = TRI->getFrameRegister(MF); 461 const Register MachineFramePtr = 462 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 463 : FramePtr; 464 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 465 // Offset = space for return address + size of the frame pointer itself. 466 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 467 BuildCFI(MBB, MBBI, DebugLoc{}, 468 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 469 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 470 } 471 472 void X86FrameLowering::emitCalleeSavedFrameMoves( 473 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 474 const DebugLoc &DL, bool IsPrologue) const { 475 MachineFunction &MF = *MBB.getParent(); 476 MachineFrameInfo &MFI = MF.getFrameInfo(); 477 MachineModuleInfo &MMI = MF.getMMI(); 478 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 479 480 // Add callee saved registers to move list. 481 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 482 483 // Calculate offsets. 484 for (const CalleeSavedInfo &I : CSI) { 485 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 486 Register Reg = I.getReg(); 487 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 488 489 if (IsPrologue) { 490 BuildCFI(MBB, MBBI, DL, 491 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 492 } else { 493 BuildCFI(MBB, MBBI, DL, 494 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 495 } 496 } 497 } 498 499 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 500 MachineBasicBlock &MBB) const { 501 const MachineFunction &MF = *MBB.getParent(); 502 503 // Insertion point. 504 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 505 506 // Fake a debug loc. 507 DebugLoc DL; 508 if (MBBI != MBB.end()) 509 DL = MBBI->getDebugLoc(); 510 511 // Zero out FP stack if referenced. Do this outside of the loop below so that 512 // it's done only once. 513 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 514 for (MCRegister Reg : RegsToZero.set_bits()) { 515 if (!X86::RFP80RegClass.contains(Reg)) 516 continue; 517 518 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 519 for (unsigned i = 0; i != NumFPRegs; ++i) 520 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 521 522 for (unsigned i = 0; i != NumFPRegs; ++i) 523 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 524 break; 525 } 526 527 // For GPRs, we only care to clear out the 32-bit register. 528 BitVector GPRsToZero(TRI->getNumRegs()); 529 for (MCRegister Reg : RegsToZero.set_bits()) 530 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 531 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); 532 RegsToZero.reset(Reg); 533 } 534 535 for (MCRegister Reg : GPRsToZero.set_bits()) 536 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 537 .addReg(Reg, RegState::Undef) 538 .addReg(Reg, RegState::Undef); 539 540 // Zero out registers. 541 for (MCRegister Reg : RegsToZero.set_bits()) { 542 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 543 // FIXME: Ignore MMX registers? 544 continue; 545 546 unsigned XorOp; 547 if (X86::VR128RegClass.contains(Reg)) { 548 // XMM# 549 if (!ST.hasSSE1()) 550 continue; 551 XorOp = X86::PXORrr; 552 } else if (X86::VR256RegClass.contains(Reg)) { 553 // YMM# 554 if (!ST.hasAVX()) 555 continue; 556 XorOp = X86::VPXORrr; 557 } else if (X86::VR512RegClass.contains(Reg)) { 558 // ZMM# 559 if (!ST.hasAVX512()) 560 continue; 561 XorOp = X86::VPXORYrr; 562 } else if (X86::VK1RegClass.contains(Reg) || 563 X86::VK2RegClass.contains(Reg) || 564 X86::VK4RegClass.contains(Reg) || 565 X86::VK8RegClass.contains(Reg) || 566 X86::VK16RegClass.contains(Reg)) { 567 if (!ST.hasVLX()) 568 continue; 569 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 570 } else { 571 continue; 572 } 573 574 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 575 .addReg(Reg, RegState::Undef) 576 .addReg(Reg, RegState::Undef); 577 } 578 } 579 580 void X86FrameLowering::emitStackProbe( 581 MachineFunction &MF, MachineBasicBlock &MBB, 582 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 583 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 584 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 585 if (STI.isTargetWindowsCoreCLR()) { 586 if (InProlog) { 587 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 588 .addImm(0 /* no explicit stack size */); 589 } else { 590 emitStackProbeInline(MF, MBB, MBBI, DL, false); 591 } 592 } else { 593 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 594 } 595 } 596 597 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 598 return STI.isOSWindows() && !STI.isTargetWin64(); 599 } 600 601 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 602 MachineBasicBlock &PrologMBB) const { 603 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 604 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 605 }); 606 if (Where != PrologMBB.end()) { 607 DebugLoc DL = PrologMBB.findDebugLoc(Where); 608 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 609 Where->eraseFromParent(); 610 } 611 } 612 613 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 614 MachineBasicBlock &MBB, 615 MachineBasicBlock::iterator MBBI, 616 const DebugLoc &DL, 617 bool InProlog) const { 618 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 619 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 620 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 621 else 622 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 623 } 624 625 void X86FrameLowering::emitStackProbeInlineGeneric( 626 MachineFunction &MF, MachineBasicBlock &MBB, 627 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 628 MachineInstr &AllocWithProbe = *MBBI; 629 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 630 631 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 632 const X86TargetLowering &TLI = *STI.getTargetLowering(); 633 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 634 "different expansion expected for CoreCLR 64 bit"); 635 636 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 637 uint64_t ProbeChunk = StackProbeSize * 8; 638 639 uint64_t MaxAlign = 640 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 641 642 // Synthesize a loop or unroll it, depending on the number of iterations. 643 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 644 // between the unaligned rsp and current rsp. 645 if (Offset > ProbeChunk) { 646 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 647 MaxAlign % StackProbeSize); 648 } else { 649 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 650 MaxAlign % StackProbeSize); 651 } 652 } 653 654 void X86FrameLowering::emitStackProbeInlineGenericBlock( 655 MachineFunction &MF, MachineBasicBlock &MBB, 656 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 657 uint64_t AlignOffset) const { 658 659 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 660 const bool HasFP = hasFP(MF); 661 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 662 const X86TargetLowering &TLI = *STI.getTargetLowering(); 663 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 664 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 665 666 uint64_t CurrentOffset = 0; 667 668 assert(AlignOffset < StackProbeSize); 669 670 // If the offset is so small it fits within a page, there's nothing to do. 671 if (StackProbeSize < Offset + AlignOffset) { 672 673 uint64_t StackAdjustment = StackProbeSize - AlignOffset; 674 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) 675 .setMIFlag(MachineInstr::FrameSetup); 676 if (!HasFP && NeedsDwarfCFI) { 677 BuildCFI( 678 MBB, MBBI, DL, 679 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 680 } 681 682 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 683 .setMIFlag(MachineInstr::FrameSetup), 684 StackPtr, false, 0) 685 .addImm(0) 686 .setMIFlag(MachineInstr::FrameSetup); 687 NumFrameExtraProbe++; 688 CurrentOffset = StackProbeSize - AlignOffset; 689 } 690 691 // For the next N - 1 pages, just probe. I tried to take advantage of 692 // natural probes but it implies much more logic and there was very few 693 // interesting natural probes to interleave. 694 while (CurrentOffset + StackProbeSize < Offset) { 695 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) 696 .setMIFlag(MachineInstr::FrameSetup); 697 698 if (!HasFP && NeedsDwarfCFI) { 699 BuildCFI( 700 MBB, MBBI, DL, 701 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 702 } 703 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 704 .setMIFlag(MachineInstr::FrameSetup), 705 StackPtr, false, 0) 706 .addImm(0) 707 .setMIFlag(MachineInstr::FrameSetup); 708 NumFrameExtraProbe++; 709 CurrentOffset += StackProbeSize; 710 } 711 712 // No need to probe the tail, it is smaller than a Page. 713 uint64_t ChunkSize = Offset - CurrentOffset; 714 if (ChunkSize == SlotSize) { 715 // Use push for slot sized adjustments as a size optimization, 716 // like emitSPUpdate does when not probing. 717 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; 718 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 719 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 720 .addReg(Reg, RegState::Undef) 721 .setMIFlag(MachineInstr::FrameSetup); 722 } else { 723 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) 724 .setMIFlag(MachineInstr::FrameSetup); 725 } 726 // No need to adjust Dwarf CFA offset here, the last position of the stack has 727 // been defined 728 } 729 730 void X86FrameLowering::emitStackProbeInlineGenericLoop( 731 MachineFunction &MF, MachineBasicBlock &MBB, 732 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 733 uint64_t AlignOffset) const { 734 assert(Offset && "null offset"); 735 736 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 737 MachineBasicBlock::LQR_Live && 738 "Inline stack probe loop will clobber live EFLAGS."); 739 740 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 741 const bool HasFP = hasFP(MF); 742 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 743 const X86TargetLowering &TLI = *STI.getTargetLowering(); 744 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 745 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 746 747 if (AlignOffset) { 748 if (AlignOffset < StackProbeSize) { 749 // Perform a first smaller allocation followed by a probe. 750 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) 751 .setMIFlag(MachineInstr::FrameSetup); 752 753 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 754 .setMIFlag(MachineInstr::FrameSetup), 755 StackPtr, false, 0) 756 .addImm(0) 757 .setMIFlag(MachineInstr::FrameSetup); 758 NumFrameExtraProbe++; 759 Offset -= AlignOffset; 760 } 761 } 762 763 // Synthesize a loop 764 NumFrameLoopProbe++; 765 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 766 767 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 768 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 769 770 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 771 MF.insert(MBBIter, testMBB); 772 MF.insert(MBBIter, tailMBB); 773 774 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 775 : Is64Bit ? X86::R11D 776 : X86::EAX; 777 778 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 779 .addReg(StackPtr) 780 .setMIFlag(MachineInstr::FrameSetup); 781 782 // save loop bound 783 { 784 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 785 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 786 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 787 .addReg(FinalStackProbed) 788 .addImm(BoundOffset) 789 .setMIFlag(MachineInstr::FrameSetup); 790 791 // while in the loop, use loop-invariant reg for CFI, 792 // instead of the stack pointer, which changes during the loop 793 if (!HasFP && NeedsDwarfCFI) { 794 // x32 uses the same DWARF register numbers as x86-64, 795 // so there isn't a register number for r11d, we must use r11 instead 796 const Register DwarfFinalStackProbed = 797 STI.isTarget64BitILP32() 798 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 799 : FinalStackProbed; 800 801 BuildCFI(MBB, MBBI, DL, 802 MCCFIInstruction::createDefCfaRegister( 803 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 804 BuildCFI(MBB, MBBI, DL, 805 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 806 } 807 } 808 809 // allocate a page 810 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, 811 /*InEpilogue=*/false) 812 .setMIFlag(MachineInstr::FrameSetup); 813 814 // touch the page 815 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 816 .setMIFlag(MachineInstr::FrameSetup), 817 StackPtr, false, 0) 818 .addImm(0) 819 .setMIFlag(MachineInstr::FrameSetup); 820 821 // cmp with stack pointer bound 822 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 823 .addReg(StackPtr) 824 .addReg(FinalStackProbed) 825 .setMIFlag(MachineInstr::FrameSetup); 826 827 // jump 828 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 829 .addMBB(testMBB) 830 .addImm(X86::COND_NE) 831 .setMIFlag(MachineInstr::FrameSetup); 832 testMBB->addSuccessor(testMBB); 833 testMBB->addSuccessor(tailMBB); 834 835 // BB management 836 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 837 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 838 MBB.addSuccessor(testMBB); 839 840 // handle tail 841 const uint64_t TailOffset = Offset % StackProbeSize; 842 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 843 if (TailOffset) { 844 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, 845 /*InEpilogue=*/false) 846 .setMIFlag(MachineInstr::FrameSetup); 847 } 848 849 // after the loop, switch back to stack pointer for CFI 850 if (!HasFP && NeedsDwarfCFI) { 851 // x32 uses the same DWARF register numbers as x86-64, 852 // so there isn't a register number for esp, we must use rsp instead 853 const Register DwarfStackPtr = 854 STI.isTarget64BitILP32() 855 ? Register(getX86SubSuperRegister(StackPtr, 64)) 856 : Register(StackPtr); 857 858 BuildCFI(*tailMBB, TailMBBIter, DL, 859 MCCFIInstruction::createDefCfaRegister( 860 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 861 } 862 863 // Update Live In information 864 recomputeLiveIns(*testMBB); 865 recomputeLiveIns(*tailMBB); 866 } 867 868 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 869 MachineFunction &MF, MachineBasicBlock &MBB, 870 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 871 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 872 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 873 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 874 const TargetInstrInfo &TII = *STI.getInstrInfo(); 875 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 876 877 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 878 MachineBasicBlock::LQR_Live && 879 "Inline stack probe loop will clobber live EFLAGS."); 880 881 // RAX contains the number of bytes of desired stack adjustment. 882 // The handling here assumes this value has already been updated so as to 883 // maintain stack alignment. 884 // 885 // We need to exit with RSP modified by this amount and execute suitable 886 // page touches to notify the OS that we're growing the stack responsibly. 887 // All stack probing must be done without modifying RSP. 888 // 889 // MBB: 890 // SizeReg = RAX; 891 // ZeroReg = 0 892 // CopyReg = RSP 893 // Flags, TestReg = CopyReg - SizeReg 894 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 895 // LimitReg = gs magic thread env access 896 // if FinalReg >= LimitReg goto ContinueMBB 897 // RoundBB: 898 // RoundReg = page address of FinalReg 899 // LoopMBB: 900 // LoopReg = PHI(LimitReg,ProbeReg) 901 // ProbeReg = LoopReg - PageSize 902 // [ProbeReg] = 0 903 // if (ProbeReg > RoundReg) goto LoopMBB 904 // ContinueMBB: 905 // RSP = RSP - RAX 906 // [rest of original MBB] 907 908 // Set up the new basic blocks 909 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 910 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 911 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 912 913 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 914 MF.insert(MBBIter, RoundMBB); 915 MF.insert(MBBIter, LoopMBB); 916 MF.insert(MBBIter, ContinueMBB); 917 918 // Split MBB and move the tail portion down to ContinueMBB. 919 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 920 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 921 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 922 923 // Some useful constants 924 const int64_t ThreadEnvironmentStackLimit = 0x10; 925 const int64_t PageSize = 0x1000; 926 const int64_t PageMask = ~(PageSize - 1); 927 928 // Registers we need. For the normal case we use virtual 929 // registers. For the prolog expansion we use RAX, RCX and RDX. 930 MachineRegisterInfo &MRI = MF.getRegInfo(); 931 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 932 const Register SizeReg = InProlog ? X86::RAX 933 : MRI.createVirtualRegister(RegClass), 934 ZeroReg = InProlog ? X86::RCX 935 : MRI.createVirtualRegister(RegClass), 936 CopyReg = InProlog ? X86::RDX 937 : MRI.createVirtualRegister(RegClass), 938 TestReg = InProlog ? X86::RDX 939 : MRI.createVirtualRegister(RegClass), 940 FinalReg = InProlog ? X86::RDX 941 : MRI.createVirtualRegister(RegClass), 942 RoundedReg = InProlog ? X86::RDX 943 : MRI.createVirtualRegister(RegClass), 944 LimitReg = InProlog ? X86::RCX 945 : MRI.createVirtualRegister(RegClass), 946 JoinReg = InProlog ? X86::RCX 947 : MRI.createVirtualRegister(RegClass), 948 ProbeReg = InProlog ? X86::RCX 949 : MRI.createVirtualRegister(RegClass); 950 951 // SP-relative offsets where we can save RCX and RDX. 952 int64_t RCXShadowSlot = 0; 953 int64_t RDXShadowSlot = 0; 954 955 // If inlining in the prolog, save RCX and RDX. 956 if (InProlog) { 957 // Compute the offsets. We need to account for things already 958 // pushed onto the stack at this point: return address, frame 959 // pointer (if used), and callee saves. 960 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 961 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 962 const bool HasFP = hasFP(MF); 963 964 // Check if we need to spill RCX and/or RDX. 965 // Here we assume that no earlier prologue instruction changes RCX and/or 966 // RDX, so checking the block live-ins is enough. 967 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 968 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 969 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 970 // Assign the initial slot to both registers, then change RDX's slot if both 971 // need to be spilled. 972 if (IsRCXLiveIn) 973 RCXShadowSlot = InitSlot; 974 if (IsRDXLiveIn) 975 RDXShadowSlot = InitSlot; 976 if (IsRDXLiveIn && IsRCXLiveIn) 977 RDXShadowSlot += 8; 978 // Emit the saves if needed. 979 if (IsRCXLiveIn) 980 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 981 RCXShadowSlot) 982 .addReg(X86::RCX); 983 if (IsRDXLiveIn) 984 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 985 RDXShadowSlot) 986 .addReg(X86::RDX); 987 } else { 988 // Not in the prolog. Copy RAX to a virtual reg. 989 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 990 } 991 992 // Add code to MBB to check for overflow and set the new target stack pointer 993 // to zero if so. 994 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 995 .addReg(ZeroReg, RegState::Undef) 996 .addReg(ZeroReg, RegState::Undef); 997 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 998 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 999 .addReg(CopyReg) 1000 .addReg(SizeReg); 1001 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1002 .addReg(TestReg) 1003 .addReg(ZeroReg) 1004 .addImm(X86::COND_B); 1005 1006 // FinalReg now holds final stack pointer value, or zero if 1007 // allocation would overflow. Compare against the current stack 1008 // limit from the thread environment block. Note this limit is the 1009 // lowest touched page on the stack, not the point at which the OS 1010 // will cause an overflow exception, so this is just an optimization 1011 // to avoid unnecessarily touching pages that are below the current 1012 // SP but already committed to the stack by the OS. 1013 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1014 .addReg(0) 1015 .addImm(1) 1016 .addReg(0) 1017 .addImm(ThreadEnvironmentStackLimit) 1018 .addReg(X86::GS); 1019 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1020 // Jump if the desired stack pointer is at or above the stack limit. 1021 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1022 1023 // Add code to roundMBB to round the final stack pointer to a page boundary. 1024 RoundMBB->addLiveIn(FinalReg); 1025 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1026 .addReg(FinalReg) 1027 .addImm(PageMask); 1028 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1029 1030 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1031 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1032 // and probe until we reach RoundedReg. 1033 if (!InProlog) { 1034 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1035 .addReg(LimitReg) 1036 .addMBB(RoundMBB) 1037 .addReg(ProbeReg) 1038 .addMBB(LoopMBB); 1039 } 1040 1041 LoopMBB->addLiveIn(JoinReg); 1042 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1043 false, -PageSize); 1044 1045 // Probe by storing a byte onto the stack. 1046 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1047 .addReg(ProbeReg) 1048 .addImm(1) 1049 .addReg(0) 1050 .addImm(0) 1051 .addReg(0) 1052 .addImm(0); 1053 1054 LoopMBB->addLiveIn(RoundedReg); 1055 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1056 .addReg(RoundedReg) 1057 .addReg(ProbeReg); 1058 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1059 1060 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1061 1062 // If in prolog, restore RDX and RCX. 1063 if (InProlog) { 1064 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1065 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1066 TII.get(X86::MOV64rm), X86::RCX), 1067 X86::RSP, false, RCXShadowSlot); 1068 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1069 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1070 TII.get(X86::MOV64rm), X86::RDX), 1071 X86::RSP, false, RDXShadowSlot); 1072 } 1073 1074 // Now that the probing is done, add code to continueMBB to update 1075 // the stack pointer for real. 1076 ContinueMBB->addLiveIn(SizeReg); 1077 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1078 .addReg(X86::RSP) 1079 .addReg(SizeReg); 1080 1081 // Add the control flow edges we need. 1082 MBB.addSuccessor(ContinueMBB); 1083 MBB.addSuccessor(RoundMBB); 1084 RoundMBB->addSuccessor(LoopMBB); 1085 LoopMBB->addSuccessor(ContinueMBB); 1086 LoopMBB->addSuccessor(LoopMBB); 1087 1088 // Mark all the instructions added to the prolog as frame setup. 1089 if (InProlog) { 1090 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1091 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1092 } 1093 for (MachineInstr &MI : *RoundMBB) { 1094 MI.setFlag(MachineInstr::FrameSetup); 1095 } 1096 for (MachineInstr &MI : *LoopMBB) { 1097 MI.setFlag(MachineInstr::FrameSetup); 1098 } 1099 for (MachineInstr &MI : 1100 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { 1101 MI.setFlag(MachineInstr::FrameSetup); 1102 } 1103 } 1104 } 1105 1106 void X86FrameLowering::emitStackProbeCall( 1107 MachineFunction &MF, MachineBasicBlock &MBB, 1108 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1109 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1110 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1111 1112 // FIXME: Add indirect thunk support and remove this. 1113 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1114 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1115 "code model and indirect thunks not yet implemented."); 1116 1117 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 1118 MachineBasicBlock::LQR_Live && 1119 "Stack probe calls will clobber live EFLAGS."); 1120 1121 unsigned CallOp; 1122 if (Is64Bit) 1123 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1124 else 1125 CallOp = X86::CALLpcrel32; 1126 1127 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1128 1129 MachineInstrBuilder CI; 1130 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1131 1132 // All current stack probes take AX and SP as input, clobber flags, and 1133 // preserve all registers. x86_64 probes leave RSP unmodified. 1134 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1135 // For the large code model, we have to call through a register. Use R11, 1136 // as it is scratch in all supported calling conventions. 1137 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1138 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1139 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1140 } else { 1141 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1142 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1143 } 1144 1145 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1146 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1147 CI.addReg(AX, RegState::Implicit) 1148 .addReg(SP, RegState::Implicit) 1149 .addReg(AX, RegState::Define | RegState::Implicit) 1150 .addReg(SP, RegState::Define | RegState::Implicit) 1151 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1152 1153 MachineInstr *ModInst = CI; 1154 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1155 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1156 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1157 // themselves. They also does not clobber %rax so we can reuse it when 1158 // adjusting %rsp. 1159 // All other platforms do not specify a particular ABI for the stack probe 1160 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1161 ModInst = 1162 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1163 .addReg(SP) 1164 .addReg(AX); 1165 } 1166 1167 // DebugInfo variable locations -- if there's an instruction number for the 1168 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1169 // modifies SP. 1170 if (InstrNum) { 1171 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1172 // Label destination operand of the subtract. 1173 MF.makeDebugValueSubstitution(*InstrNum, 1174 {ModInst->getDebugInstrNum(), 0}); 1175 } else { 1176 // Label the call. The operand number is the penultimate operand, zero 1177 // based. 1178 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1179 MF.makeDebugValueSubstitution( 1180 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1181 } 1182 } 1183 1184 if (InProlog) { 1185 // Apply the frame setup flag to all inserted instrs. 1186 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1187 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1188 } 1189 } 1190 1191 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1192 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1193 // and might require smaller successive adjustments. 1194 const uint64_t Win64MaxSEHOffset = 128; 1195 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1196 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1197 return SEHFrameOffset & -16; 1198 } 1199 1200 // If we're forcing a stack realignment we can't rely on just the frame 1201 // info, we need to know the ABI stack alignment as well in case we 1202 // have a call out. Otherwise just make sure we have some alignment - we'll 1203 // go with the minimum SlotSize. 1204 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1205 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1206 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1207 Align StackAlign = getStackAlign(); 1208 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1209 if (MFI.hasCalls()) 1210 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1211 else if (MaxAlign < SlotSize) 1212 MaxAlign = Align(SlotSize); 1213 } 1214 return MaxAlign.value(); 1215 } 1216 1217 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1218 MachineBasicBlock::iterator MBBI, 1219 const DebugLoc &DL, unsigned Reg, 1220 uint64_t MaxAlign) const { 1221 uint64_t Val = -MaxAlign; 1222 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1223 1224 MachineFunction &MF = *MBB.getParent(); 1225 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1226 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1227 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1228 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1229 1230 // We want to make sure that (in worst case) less than StackProbeSize bytes 1231 // are not probed after the AND. This assumption is used in 1232 // emitStackProbeInlineGeneric. 1233 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1234 { 1235 NumFrameLoopProbe++; 1236 MachineBasicBlock *entryMBB = 1237 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1238 MachineBasicBlock *headMBB = 1239 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1240 MachineBasicBlock *bodyMBB = 1241 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1242 MachineBasicBlock *footMBB = 1243 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1244 1245 MachineFunction::iterator MBBIter = MBB.getIterator(); 1246 MF.insert(MBBIter, entryMBB); 1247 MF.insert(MBBIter, headMBB); 1248 MF.insert(MBBIter, bodyMBB); 1249 MF.insert(MBBIter, footMBB); 1250 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1251 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1252 : Is64Bit ? X86::R11D 1253 : X86::EAX; 1254 1255 // Setup entry block 1256 { 1257 1258 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1259 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1260 .addReg(StackPtr) 1261 .setMIFlag(MachineInstr::FrameSetup); 1262 MachineInstr *MI = 1263 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1264 .addReg(FinalStackProbed) 1265 .addImm(Val) 1266 .setMIFlag(MachineInstr::FrameSetup); 1267 1268 // The EFLAGS implicit def is dead. 1269 MI->getOperand(3).setIsDead(); 1270 1271 BuildMI(entryMBB, DL, 1272 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1273 .addReg(FinalStackProbed) 1274 .addReg(StackPtr) 1275 .setMIFlag(MachineInstr::FrameSetup); 1276 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1277 .addMBB(&MBB) 1278 .addImm(X86::COND_E) 1279 .setMIFlag(MachineInstr::FrameSetup); 1280 entryMBB->addSuccessor(headMBB); 1281 entryMBB->addSuccessor(&MBB); 1282 } 1283 1284 // Loop entry block 1285 1286 { 1287 const unsigned SUBOpc = 1288 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1289 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1290 .addReg(StackPtr) 1291 .addImm(StackProbeSize) 1292 .setMIFlag(MachineInstr::FrameSetup); 1293 1294 BuildMI(headMBB, DL, 1295 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1296 .addReg(StackPtr) 1297 .addReg(FinalStackProbed) 1298 .setMIFlag(MachineInstr::FrameSetup); 1299 1300 // jump to the footer if StackPtr < FinalStackProbed 1301 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1302 .addMBB(footMBB) 1303 .addImm(X86::COND_B) 1304 .setMIFlag(MachineInstr::FrameSetup); 1305 1306 headMBB->addSuccessor(bodyMBB); 1307 headMBB->addSuccessor(footMBB); 1308 } 1309 1310 // setup loop body 1311 { 1312 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1313 .setMIFlag(MachineInstr::FrameSetup), 1314 StackPtr, false, 0) 1315 .addImm(0) 1316 .setMIFlag(MachineInstr::FrameSetup); 1317 1318 const unsigned SUBOpc = 1319 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1320 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1321 .addReg(StackPtr) 1322 .addImm(StackProbeSize) 1323 .setMIFlag(MachineInstr::FrameSetup); 1324 1325 // cmp with stack pointer bound 1326 BuildMI(bodyMBB, DL, 1327 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1328 .addReg(FinalStackProbed) 1329 .addReg(StackPtr) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 1332 // jump back while FinalStackProbed < StackPtr 1333 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1334 .addMBB(bodyMBB) 1335 .addImm(X86::COND_B) 1336 .setMIFlag(MachineInstr::FrameSetup); 1337 bodyMBB->addSuccessor(bodyMBB); 1338 bodyMBB->addSuccessor(footMBB); 1339 } 1340 1341 // setup loop footer 1342 { 1343 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1344 .addReg(FinalStackProbed) 1345 .setMIFlag(MachineInstr::FrameSetup); 1346 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1347 .setMIFlag(MachineInstr::FrameSetup), 1348 StackPtr, false, 0) 1349 .addImm(0) 1350 .setMIFlag(MachineInstr::FrameSetup); 1351 footMBB->addSuccessor(&MBB); 1352 } 1353 1354 recomputeLiveIns(*headMBB); 1355 recomputeLiveIns(*bodyMBB); 1356 recomputeLiveIns(*footMBB); 1357 recomputeLiveIns(MBB); 1358 } 1359 } else { 1360 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1361 .addReg(Reg) 1362 .addImm(Val) 1363 .setMIFlag(MachineInstr::FrameSetup); 1364 1365 // The EFLAGS implicit def is dead. 1366 MI->getOperand(3).setIsDead(); 1367 } 1368 } 1369 1370 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1371 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1372 // clobbered by any interrupt handler. 1373 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1374 "MF used frame lowering for wrong subtarget"); 1375 const Function &Fn = MF.getFunction(); 1376 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1377 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1378 } 1379 1380 /// Return true if we need to use the restricted Windows x64 prologue and 1381 /// epilogue code patterns that can be described with WinCFI (.seh_* 1382 /// directives). 1383 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1384 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1385 } 1386 1387 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1388 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1389 } 1390 1391 /// emitPrologue - Push callee-saved registers onto the stack, which 1392 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1393 /// space for local variables. Also emit labels used by the exception handler to 1394 /// generate the exception handling frames. 1395 1396 /* 1397 Here's a gist of what gets emitted: 1398 1399 ; Establish frame pointer, if needed 1400 [if needs FP] 1401 push %rbp 1402 .cfi_def_cfa_offset 16 1403 .cfi_offset %rbp, -16 1404 .seh_pushreg %rpb 1405 mov %rsp, %rbp 1406 .cfi_def_cfa_register %rbp 1407 1408 ; Spill general-purpose registers 1409 [for all callee-saved GPRs] 1410 pushq %<reg> 1411 [if not needs FP] 1412 .cfi_def_cfa_offset (offset from RETADDR) 1413 .seh_pushreg %<reg> 1414 1415 ; If the required stack alignment > default stack alignment 1416 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1417 ; of unknown size in the stack frame. 1418 [if stack needs re-alignment] 1419 and $MASK, %rsp 1420 1421 ; Allocate space for locals 1422 [if target is Windows and allocated space > 4096 bytes] 1423 ; Windows needs special care for allocations larger 1424 ; than one page. 1425 mov $NNN, %rax 1426 call ___chkstk_ms/___chkstk 1427 sub %rax, %rsp 1428 [else] 1429 sub $NNN, %rsp 1430 1431 [if needs FP] 1432 .seh_stackalloc (size of XMM spill slots) 1433 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1434 [else] 1435 .seh_stackalloc NNN 1436 1437 ; Spill XMMs 1438 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1439 ; they may get spilled on any platform, if the current function 1440 ; calls @llvm.eh.unwind.init 1441 [if needs FP] 1442 [for all callee-saved XMM registers] 1443 movaps %<xmm reg>, -MMM(%rbp) 1444 [for all callee-saved XMM registers] 1445 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1446 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1447 [else] 1448 [for all callee-saved XMM registers] 1449 movaps %<xmm reg>, KKK(%rsp) 1450 [for all callee-saved XMM registers] 1451 .seh_savexmm %<xmm reg>, KKK 1452 1453 .seh_endprologue 1454 1455 [if needs base pointer] 1456 mov %rsp, %rbx 1457 [if needs to restore base pointer] 1458 mov %rsp, -MMM(%rbp) 1459 1460 ; Emit CFI info 1461 [if needs FP] 1462 [for all callee-saved registers] 1463 .cfi_offset %<reg>, (offset from %rbp) 1464 [else] 1465 .cfi_def_cfa_offset (offset from RETADDR) 1466 [for all callee-saved registers] 1467 .cfi_offset %<reg>, (offset from %rsp) 1468 1469 Notes: 1470 - .seh directives are emitted only for Windows 64 ABI 1471 - .cv_fpo directives are emitted on win32 when emitting CodeView 1472 - .cfi directives are emitted for all other ABIs 1473 - for 32-bit code, substitute %e?? registers for %r?? 1474 */ 1475 1476 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1477 MachineBasicBlock &MBB) const { 1478 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1479 "MF used frame lowering for wrong subtarget"); 1480 MachineBasicBlock::iterator MBBI = MBB.begin(); 1481 MachineFrameInfo &MFI = MF.getFrameInfo(); 1482 const Function &Fn = MF.getFunction(); 1483 MachineModuleInfo &MMI = MF.getMMI(); 1484 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1485 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1486 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1487 bool IsFunclet = MBB.isEHFuncletEntry(); 1488 EHPersonality Personality = EHPersonality::Unknown; 1489 if (Fn.hasPersonalityFn()) 1490 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1491 bool FnHasClrFunclet = 1492 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1493 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1494 bool HasFP = hasFP(MF); 1495 bool IsWin64Prologue = isWin64Prologue(MF); 1496 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1497 // FIXME: Emit FPO data for EH funclets. 1498 bool NeedsWinFPO = 1499 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1500 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1501 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1502 Register FramePtr = TRI->getFrameRegister(MF); 1503 const Register MachineFramePtr = 1504 STI.isTarget64BitILP32() 1505 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1506 Register BasePtr = TRI->getBaseRegister(); 1507 bool HasWinCFI = false; 1508 1509 // Debug location must be unknown since the first debug location is used 1510 // to determine the end of the prologue. 1511 DebugLoc DL; 1512 1513 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1514 // tail call. 1515 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1516 if (TailCallArgReserveSize && IsWin64Prologue) 1517 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1518 1519 const bool EmitStackProbeCall = 1520 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1521 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1522 1523 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1524 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1525 case SwiftAsyncFramePointerMode::DeploymentBased: 1526 if (STI.swiftAsyncContextIsDynamicallySet()) { 1527 // The special symbol below is absolute and has a *value* suitable to be 1528 // combined with the frame pointer directly. 1529 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1530 .addUse(MachineFramePtr) 1531 .addUse(X86::RIP) 1532 .addImm(1) 1533 .addUse(X86::NoRegister) 1534 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1535 X86II::MO_GOTPCREL) 1536 .addUse(X86::NoRegister); 1537 break; 1538 } 1539 [[fallthrough]]; 1540 1541 case SwiftAsyncFramePointerMode::Always: 1542 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1543 .addUse(MachineFramePtr) 1544 .addImm(60) 1545 .setMIFlag(MachineInstr::FrameSetup); 1546 break; 1547 1548 case SwiftAsyncFramePointerMode::Never: 1549 break; 1550 } 1551 } 1552 1553 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1554 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1555 // stack alignment. 1556 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1557 Fn.arg_size() == 2) { 1558 StackSize += 8; 1559 MFI.setStackSize(StackSize); 1560 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1561 } 1562 1563 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1564 // function, and use up to 128 bytes of stack space, don't have a frame 1565 // pointer, calls, or dynamic alloca then we do not need to adjust the 1566 // stack pointer (we fit in the Red Zone). We also check that we don't 1567 // push and pop from the stack. 1568 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1569 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1570 !MFI.adjustsStack() && // No calls. 1571 !EmitStackProbeCall && // No stack probes. 1572 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1573 !MF.shouldSplitStack()) { // Regular stack 1574 uint64_t MinSize = 1575 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1576 if (HasFP) MinSize += SlotSize; 1577 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1578 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1579 MFI.setStackSize(StackSize); 1580 } 1581 1582 // Insert stack pointer adjustment for later moving of return addr. Only 1583 // applies to tail call optimized functions where the callee argument stack 1584 // size is bigger than the callers. 1585 if (TailCallArgReserveSize != 0) { 1586 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1587 /*InEpilogue=*/false) 1588 .setMIFlag(MachineInstr::FrameSetup); 1589 } 1590 1591 // Mapping for machine moves: 1592 // 1593 // DST: VirtualFP AND 1594 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1595 // ELSE => DW_CFA_def_cfa 1596 // 1597 // SRC: VirtualFP AND 1598 // DST: Register => DW_CFA_def_cfa_register 1599 // 1600 // ELSE 1601 // OFFSET < 0 => DW_CFA_offset_extended_sf 1602 // REG < 64 => DW_CFA_offset + Reg 1603 // ELSE => DW_CFA_offset_extended 1604 1605 uint64_t NumBytes = 0; 1606 int stackGrowth = -SlotSize; 1607 1608 // Find the funclet establisher parameter 1609 Register Establisher = X86::NoRegister; 1610 if (IsClrFunclet) 1611 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1612 else if (IsFunclet) 1613 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1614 1615 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1616 // Immediately spill establisher into the home slot. 1617 // The runtime cares about this. 1618 // MOV64mr %rdx, 16(%rsp) 1619 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1620 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1621 .addReg(Establisher) 1622 .setMIFlag(MachineInstr::FrameSetup); 1623 MBB.addLiveIn(Establisher); 1624 } 1625 1626 if (HasFP) { 1627 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1628 1629 // Calculate required stack adjustment. 1630 uint64_t FrameSize = StackSize - SlotSize; 1631 // If required, include space for extra hidden slot for stashing base pointer. 1632 if (X86FI->getRestoreBasePointer()) 1633 FrameSize += SlotSize; 1634 1635 NumBytes = FrameSize - 1636 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1637 1638 // Callee-saved registers are pushed on stack before the stack is realigned. 1639 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1640 NumBytes = alignTo(NumBytes, MaxAlign); 1641 1642 // Save EBP/RBP into the appropriate stack slot. 1643 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1644 .addReg(MachineFramePtr, RegState::Kill) 1645 .setMIFlag(MachineInstr::FrameSetup); 1646 1647 if (NeedsDwarfCFI) { 1648 // Mark the place where EBP/RBP was saved. 1649 // Define the current CFA rule to use the provided offset. 1650 assert(StackSize); 1651 BuildCFI(MBB, MBBI, DL, 1652 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth), 1653 MachineInstr::FrameSetup); 1654 1655 // Change the rule for the FramePtr to be an "offset" rule. 1656 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1657 BuildCFI(MBB, MBBI, DL, 1658 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1659 2 * stackGrowth), 1660 MachineInstr::FrameSetup); 1661 } 1662 1663 if (NeedsWinCFI) { 1664 HasWinCFI = true; 1665 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1666 .addImm(FramePtr) 1667 .setMIFlag(MachineInstr::FrameSetup); 1668 } 1669 1670 if (!IsFunclet) { 1671 if (X86FI->hasSwiftAsyncContext()) { 1672 const auto &Attrs = MF.getFunction().getAttributes(); 1673 1674 // Before we update the live frame pointer we have to ensure there's a 1675 // valid (or null) asynchronous context in its slot just before FP in 1676 // the frame record, so store it now. 1677 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1678 // We have an initial context in r14, store it just before the frame 1679 // pointer. 1680 MBB.addLiveIn(X86::R14); 1681 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1682 .addReg(X86::R14) 1683 .setMIFlag(MachineInstr::FrameSetup); 1684 } else { 1685 // No initial context, store null so that there's no pointer that 1686 // could be misused. 1687 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1688 .addImm(0) 1689 .setMIFlag(MachineInstr::FrameSetup); 1690 } 1691 1692 if (NeedsWinCFI) { 1693 HasWinCFI = true; 1694 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1695 .addImm(X86::R14) 1696 .setMIFlag(MachineInstr::FrameSetup); 1697 } 1698 1699 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1700 .addUse(X86::RSP) 1701 .addImm(1) 1702 .addUse(X86::NoRegister) 1703 .addImm(8) 1704 .addUse(X86::NoRegister) 1705 .setMIFlag(MachineInstr::FrameSetup); 1706 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1707 .addUse(X86::RSP) 1708 .addImm(8) 1709 .setMIFlag(MachineInstr::FrameSetup); 1710 } 1711 1712 if (!IsWin64Prologue && !IsFunclet) { 1713 // Update EBP with the new base value. 1714 if (!X86FI->hasSwiftAsyncContext()) 1715 BuildMI(MBB, MBBI, DL, 1716 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1717 FramePtr) 1718 .addReg(StackPtr) 1719 .setMIFlag(MachineInstr::FrameSetup); 1720 1721 if (NeedsDwarfCFI) { 1722 // Mark effective beginning of when frame pointer becomes valid. 1723 // Define the current CFA to use the EBP/RBP register. 1724 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1725 BuildCFI( 1726 MBB, MBBI, DL, 1727 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1728 MachineInstr::FrameSetup); 1729 } 1730 1731 if (NeedsWinFPO) { 1732 // .cv_fpo_setframe $FramePtr 1733 HasWinCFI = true; 1734 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1735 .addImm(FramePtr) 1736 .addImm(0) 1737 .setMIFlag(MachineInstr::FrameSetup); 1738 } 1739 } 1740 } 1741 } else { 1742 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1743 NumBytes = StackSize - 1744 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1745 } 1746 1747 // Update the offset adjustment, which is mainly used by codeview to translate 1748 // from ESP to VFRAME relative local variable offsets. 1749 if (!IsFunclet) { 1750 if (HasFP && TRI->hasStackRealignment(MF)) 1751 MFI.setOffsetAdjustment(-NumBytes); 1752 else 1753 MFI.setOffsetAdjustment(-StackSize); 1754 } 1755 1756 // For EH funclets, only allocate enough space for outgoing calls. Save the 1757 // NumBytes value that we would've used for the parent frame. 1758 unsigned ParentFrameNumBytes = NumBytes; 1759 if (IsFunclet) 1760 NumBytes = getWinEHFuncletFrameSize(MF); 1761 1762 // Skip the callee-saved push instructions. 1763 bool PushedRegs = false; 1764 int StackOffset = 2 * stackGrowth; 1765 1766 while (MBBI != MBB.end() && 1767 MBBI->getFlag(MachineInstr::FrameSetup) && 1768 (MBBI->getOpcode() == X86::PUSH32r || 1769 MBBI->getOpcode() == X86::PUSH64r)) { 1770 PushedRegs = true; 1771 Register Reg = MBBI->getOperand(0).getReg(); 1772 ++MBBI; 1773 1774 if (!HasFP && NeedsDwarfCFI) { 1775 // Mark callee-saved push instruction. 1776 // Define the current CFA rule to use the provided offset. 1777 assert(StackSize); 1778 BuildCFI(MBB, MBBI, DL, 1779 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1780 MachineInstr::FrameSetup); 1781 StackOffset += stackGrowth; 1782 } 1783 1784 if (NeedsWinCFI) { 1785 HasWinCFI = true; 1786 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1787 .addImm(Reg) 1788 .setMIFlag(MachineInstr::FrameSetup); 1789 } 1790 } 1791 1792 // Realign stack after we pushed callee-saved registers (so that we'll be 1793 // able to calculate their offsets from the frame pointer). 1794 // Don't do this for Win64, it needs to realign the stack after the prologue. 1795 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1796 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1797 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1798 1799 if (NeedsWinCFI) { 1800 HasWinCFI = true; 1801 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1802 .addImm(MaxAlign) 1803 .setMIFlag(MachineInstr::FrameSetup); 1804 } 1805 } 1806 1807 // If there is an SUB32ri of ESP immediately before this instruction, merge 1808 // the two. This can be the case when tail call elimination is enabled and 1809 // the callee has more arguments then the caller. 1810 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1811 1812 // Adjust stack pointer: ESP -= numbytes. 1813 1814 // Windows and cygwin/mingw require a prologue helper routine when allocating 1815 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1816 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1817 // stack and adjust the stack pointer in one go. The 64-bit version of 1818 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1819 // responsible for adjusting the stack pointer. Touching the stack at 4K 1820 // increments is necessary to ensure that the guard pages used by the OS 1821 // virtual memory manager are allocated in correct sequence. 1822 uint64_t AlignedNumBytes = NumBytes; 1823 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1824 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1825 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1826 assert(!X86FI->getUsesRedZone() && 1827 "The Red Zone is not accounted for in stack probes"); 1828 1829 // Check whether EAX is livein for this block. 1830 bool isEAXAlive = isEAXLiveIn(MBB); 1831 1832 if (isEAXAlive) { 1833 if (Is64Bit) { 1834 // Save RAX 1835 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1836 .addReg(X86::RAX, RegState::Kill) 1837 .setMIFlag(MachineInstr::FrameSetup); 1838 } else { 1839 // Save EAX 1840 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1841 .addReg(X86::EAX, RegState::Kill) 1842 .setMIFlag(MachineInstr::FrameSetup); 1843 } 1844 } 1845 1846 if (Is64Bit) { 1847 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1848 // Function prologue is responsible for adjusting the stack pointer. 1849 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1850 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1851 .addImm(Alloc) 1852 .setMIFlag(MachineInstr::FrameSetup); 1853 } else { 1854 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1855 // We'll also use 4 already allocated bytes for EAX. 1856 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1857 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1858 .setMIFlag(MachineInstr::FrameSetup); 1859 } 1860 1861 // Call __chkstk, __chkstk_ms, or __alloca. 1862 emitStackProbe(MF, MBB, MBBI, DL, true); 1863 1864 if (isEAXAlive) { 1865 // Restore RAX/EAX 1866 MachineInstr *MI; 1867 if (Is64Bit) 1868 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1869 StackPtr, false, NumBytes - 8); 1870 else 1871 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1872 StackPtr, false, NumBytes - 4); 1873 MI->setFlag(MachineInstr::FrameSetup); 1874 MBB.insert(MBBI, MI); 1875 } 1876 } else if (NumBytes) { 1877 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1878 } 1879 1880 if (NeedsWinCFI && NumBytes) { 1881 HasWinCFI = true; 1882 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1883 .addImm(NumBytes) 1884 .setMIFlag(MachineInstr::FrameSetup); 1885 } 1886 1887 int SEHFrameOffset = 0; 1888 unsigned SPOrEstablisher; 1889 if (IsFunclet) { 1890 if (IsClrFunclet) { 1891 // The establisher parameter passed to a CLR funclet is actually a pointer 1892 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1893 // to find the root function establisher frame by loading the PSPSym from 1894 // the intermediate frame. 1895 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1896 MachinePointerInfo NoInfo; 1897 MBB.addLiveIn(Establisher); 1898 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1899 Establisher, false, PSPSlotOffset) 1900 .addMemOperand(MF.getMachineMemOperand( 1901 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1902 ; 1903 // Save the root establisher back into the current funclet's (mostly 1904 // empty) frame, in case a sub-funclet or the GC needs it. 1905 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1906 false, PSPSlotOffset) 1907 .addReg(Establisher) 1908 .addMemOperand(MF.getMachineMemOperand( 1909 NoInfo, 1910 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1911 SlotSize, Align(SlotSize))); 1912 } 1913 SPOrEstablisher = Establisher; 1914 } else { 1915 SPOrEstablisher = StackPtr; 1916 } 1917 1918 if (IsWin64Prologue && HasFP) { 1919 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1920 // this calculation on the incoming establisher, which holds the value of 1921 // RSP from the parent frame at the end of the prologue. 1922 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1923 if (SEHFrameOffset) 1924 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1925 SPOrEstablisher, false, SEHFrameOffset); 1926 else 1927 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1928 .addReg(SPOrEstablisher); 1929 1930 // If this is not a funclet, emit the CFI describing our frame pointer. 1931 if (NeedsWinCFI && !IsFunclet) { 1932 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1933 HasWinCFI = true; 1934 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1935 .addImm(FramePtr) 1936 .addImm(SEHFrameOffset) 1937 .setMIFlag(MachineInstr::FrameSetup); 1938 if (isAsynchronousEHPersonality(Personality)) 1939 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1940 } 1941 } else if (IsFunclet && STI.is32Bit()) { 1942 // Reset EBP / ESI to something good for funclets. 1943 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1944 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1945 // into the registration node so that the runtime will restore it for us. 1946 if (!MBB.isCleanupFuncletEntry()) { 1947 assert(Personality == EHPersonality::MSVC_CXX); 1948 Register FrameReg; 1949 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1950 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1951 // ESP is the first field, so no extra displacement is needed. 1952 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1953 false, EHRegOffset) 1954 .addReg(X86::ESP); 1955 } 1956 } 1957 1958 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1959 const MachineInstr &FrameInstr = *MBBI; 1960 ++MBBI; 1961 1962 if (NeedsWinCFI) { 1963 int FI; 1964 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1965 if (X86::FR64RegClass.contains(Reg)) { 1966 int Offset; 1967 Register IgnoredFrameReg; 1968 if (IsWin64Prologue && IsFunclet) 1969 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1970 else 1971 Offset = 1972 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1973 SEHFrameOffset; 1974 1975 HasWinCFI = true; 1976 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1977 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1978 .addImm(Reg) 1979 .addImm(Offset) 1980 .setMIFlag(MachineInstr::FrameSetup); 1981 } 1982 } 1983 } 1984 } 1985 1986 if (NeedsWinCFI && HasWinCFI) 1987 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1988 .setMIFlag(MachineInstr::FrameSetup); 1989 1990 if (FnHasClrFunclet && !IsFunclet) { 1991 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1992 // immediately after the prolog) into the PSPSlot so that funclets 1993 // and the GC can recover it. 1994 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1995 auto PSPInfo = MachinePointerInfo::getFixedStack( 1996 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1997 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1998 PSPSlotOffset) 1999 .addReg(StackPtr) 2000 .addMemOperand(MF.getMachineMemOperand( 2001 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2002 SlotSize, Align(SlotSize))); 2003 } 2004 2005 // Realign stack after we spilled callee-saved registers (so that we'll be 2006 // able to calculate their offsets from the frame pointer). 2007 // Win64 requires aligning the stack after the prologue. 2008 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2009 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2010 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2011 } 2012 2013 // We already dealt with stack realignment and funclets above. 2014 if (IsFunclet && STI.is32Bit()) 2015 return; 2016 2017 // If we need a base pointer, set it up here. It's whatever the value 2018 // of the stack pointer is at this point. Any variable size objects 2019 // will be allocated after this, so we can still use the base pointer 2020 // to reference locals. 2021 if (TRI->hasBasePointer(MF)) { 2022 // Update the base pointer with the current stack pointer. 2023 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2024 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2025 .addReg(SPOrEstablisher) 2026 .setMIFlag(MachineInstr::FrameSetup); 2027 if (X86FI->getRestoreBasePointer()) { 2028 // Stash value of base pointer. Saving RSP instead of EBP shortens 2029 // dependence chain. Used by SjLj EH. 2030 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2031 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2032 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2033 .addReg(SPOrEstablisher) 2034 .setMIFlag(MachineInstr::FrameSetup); 2035 } 2036 2037 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2038 // Stash the value of the frame pointer relative to the base pointer for 2039 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2040 // it recovers the frame pointer from the base pointer rather than the 2041 // other way around. 2042 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2043 Register UsedReg; 2044 int Offset = 2045 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2046 .getFixed(); 2047 assert(UsedReg == BasePtr); 2048 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2049 .addReg(FramePtr) 2050 .setMIFlag(MachineInstr::FrameSetup); 2051 } 2052 } 2053 2054 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2055 // Mark end of stack pointer adjustment. 2056 if (!HasFP && NumBytes) { 2057 // Define the current CFA rule to use the provided offset. 2058 assert(StackSize); 2059 BuildCFI( 2060 MBB, MBBI, DL, 2061 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2062 MachineInstr::FrameSetup); 2063 } 2064 2065 // Emit DWARF info specifying the offsets of the callee-saved registers. 2066 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2067 } 2068 2069 // X86 Interrupt handling function cannot assume anything about the direction 2070 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2071 // in each prologue of interrupt handler function. 2072 // 2073 // FIXME: Create "cld" instruction only in these cases: 2074 // 1. The interrupt handling function uses any of the "rep" instructions. 2075 // 2. Interrupt handling function calls another function. 2076 // 2077 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2078 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2079 .setMIFlag(MachineInstr::FrameSetup); 2080 2081 // At this point we know if the function has WinCFI or not. 2082 MF.setHasWinCFI(HasWinCFI); 2083 } 2084 2085 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2086 const MachineFunction &MF) const { 2087 // We can't use LEA instructions for adjusting the stack pointer if we don't 2088 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2089 // to deallocate the stack. 2090 // This means that we can use LEA for SP in two situations: 2091 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2092 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2093 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2094 } 2095 2096 static bool isFuncletReturnInstr(MachineInstr &MI) { 2097 switch (MI.getOpcode()) { 2098 case X86::CATCHRET: 2099 case X86::CLEANUPRET: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 llvm_unreachable("impossible"); 2105 } 2106 2107 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2108 // stack. It holds a pointer to the bottom of the root function frame. The 2109 // establisher frame pointer passed to a nested funclet may point to the 2110 // (mostly empty) frame of its parent funclet, but it will need to find 2111 // the frame of the root function to access locals. To facilitate this, 2112 // every funclet copies the pointer to the bottom of the root function 2113 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2114 // same offset for the PSPSym in the root function frame that's used in the 2115 // funclets' frames allows each funclet to dynamically accept any ancestor 2116 // frame as its establisher argument (the runtime doesn't guarantee the 2117 // immediate parent for some reason lost to history), and also allows the GC, 2118 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2119 // frame with only a single offset reported for the entire method. 2120 unsigned 2121 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2122 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2123 Register SPReg; 2124 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2125 /*IgnoreSPUpdates*/ true) 2126 .getFixed(); 2127 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2128 return static_cast<unsigned>(Offset); 2129 } 2130 2131 unsigned 2132 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2133 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2134 // This is the size of the pushed CSRs. 2135 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2136 // This is the size of callee saved XMMs. 2137 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2138 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2139 TRI->getSpillSize(X86::VR128RegClass); 2140 // This is the amount of stack a funclet needs to allocate. 2141 unsigned UsedSize; 2142 EHPersonality Personality = 2143 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2144 if (Personality == EHPersonality::CoreCLR) { 2145 // CLR funclets need to hold enough space to include the PSPSym, at the 2146 // same offset from the stack pointer (immediately after the prolog) as it 2147 // resides at in the main function. 2148 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2149 } else { 2150 // Other funclets just need enough stack for outgoing call arguments. 2151 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2152 } 2153 // RBP is not included in the callee saved register block. After pushing RBP, 2154 // everything is 16 byte aligned. Everything we allocate before an outgoing 2155 // call must also be 16 byte aligned. 2156 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2157 // Subtract out the size of the callee saved registers. This is how much stack 2158 // each funclet will allocate. 2159 return FrameSizeMinusRBP + XMMSize - CSSize; 2160 } 2161 2162 static bool isTailCallOpcode(unsigned Opc) { 2163 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2164 Opc == X86::TCRETURNmi || 2165 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2166 Opc == X86::TCRETURNmi64; 2167 } 2168 2169 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2170 MachineBasicBlock &MBB) const { 2171 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2172 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2173 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2174 MachineBasicBlock::iterator MBBI = Terminator; 2175 DebugLoc DL; 2176 if (MBBI != MBB.end()) 2177 DL = MBBI->getDebugLoc(); 2178 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2179 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2180 Register FramePtr = TRI->getFrameRegister(MF); 2181 Register MachineFramePtr = 2182 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2183 2184 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2185 bool NeedsWin64CFI = 2186 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2187 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2188 2189 // Get the number of bytes to allocate from the FrameInfo. 2190 uint64_t StackSize = MFI.getStackSize(); 2191 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2192 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2193 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2194 bool HasFP = hasFP(MF); 2195 uint64_t NumBytes = 0; 2196 2197 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2198 !MF.getTarget().getTargetTriple().isOSWindows()) && 2199 MF.needsFrameMoves(); 2200 2201 if (IsFunclet) { 2202 assert(HasFP && "EH funclets without FP not yet implemented"); 2203 NumBytes = getWinEHFuncletFrameSize(MF); 2204 } else if (HasFP) { 2205 // Calculate required stack adjustment. 2206 uint64_t FrameSize = StackSize - SlotSize; 2207 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2208 2209 // Callee-saved registers were pushed on stack before the stack was 2210 // realigned. 2211 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2212 NumBytes = alignTo(FrameSize, MaxAlign); 2213 } else { 2214 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2215 } 2216 uint64_t SEHStackAllocAmt = NumBytes; 2217 2218 // AfterPop is the position to insert .cfi_restore. 2219 MachineBasicBlock::iterator AfterPop = MBBI; 2220 if (HasFP) { 2221 if (X86FI->hasSwiftAsyncContext()) { 2222 // Discard the context. 2223 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2224 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2225 } 2226 // Pop EBP. 2227 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2228 MachineFramePtr) 2229 .setMIFlag(MachineInstr::FrameDestroy); 2230 2231 // We need to reset FP to its untagged state on return. Bit 60 is currently 2232 // used to show the presence of an extended frame. 2233 if (X86FI->hasSwiftAsyncContext()) { 2234 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2235 MachineFramePtr) 2236 .addUse(MachineFramePtr) 2237 .addImm(60) 2238 .setMIFlag(MachineInstr::FrameDestroy); 2239 } 2240 2241 if (NeedsDwarfCFI) { 2242 unsigned DwarfStackPtr = 2243 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2244 BuildCFI(MBB, MBBI, DL, 2245 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2246 MachineInstr::FrameDestroy); 2247 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2248 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2249 BuildCFI(MBB, AfterPop, DL, 2250 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2251 MachineInstr::FrameDestroy); 2252 --MBBI; 2253 --AfterPop; 2254 } 2255 --MBBI; 2256 } 2257 } 2258 2259 MachineBasicBlock::iterator FirstCSPop = MBBI; 2260 // Skip the callee-saved pop instructions. 2261 while (MBBI != MBB.begin()) { 2262 MachineBasicBlock::iterator PI = std::prev(MBBI); 2263 unsigned Opc = PI->getOpcode(); 2264 2265 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2266 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2267 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2268 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2269 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2270 break; 2271 FirstCSPop = PI; 2272 } 2273 2274 --MBBI; 2275 } 2276 MBBI = FirstCSPop; 2277 2278 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2279 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2280 2281 if (MBBI != MBB.end()) 2282 DL = MBBI->getDebugLoc(); 2283 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2284 // instruction, merge the two instructions. 2285 if (NumBytes || MFI.hasVarSizedObjects()) 2286 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2287 2288 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2289 // slot before popping them off! Same applies for the case, when stack was 2290 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2291 // will not do realignment or dynamic stack allocation. 2292 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2293 !IsFunclet) { 2294 if (TRI->hasStackRealignment(MF)) 2295 MBBI = FirstCSPop; 2296 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2297 uint64_t LEAAmount = 2298 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2299 2300 if (X86FI->hasSwiftAsyncContext()) 2301 LEAAmount -= 16; 2302 2303 // There are only two legal forms of epilogue: 2304 // - add SEHAllocationSize, %rsp 2305 // - lea SEHAllocationSize(%FramePtr), %rsp 2306 // 2307 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2308 // However, we may use this sequence if we have a frame pointer because the 2309 // effects of the prologue can safely be undone. 2310 if (LEAAmount != 0) { 2311 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2312 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2313 FramePtr, false, LEAAmount); 2314 --MBBI; 2315 } else { 2316 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2317 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2318 .addReg(FramePtr); 2319 --MBBI; 2320 } 2321 } else if (NumBytes) { 2322 // Adjust stack pointer back: ESP += numbytes. 2323 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2324 if (!HasFP && NeedsDwarfCFI) { 2325 // Define the current CFA rule to use the provided offset. 2326 BuildCFI(MBB, MBBI, DL, 2327 MCCFIInstruction::cfiDefCfaOffset( 2328 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2329 MachineInstr::FrameDestroy); 2330 } 2331 --MBBI; 2332 } 2333 2334 // Windows unwinder will not invoke function's exception handler if IP is 2335 // either in prologue or in epilogue. This behavior causes a problem when a 2336 // call immediately precedes an epilogue, because the return address points 2337 // into the epilogue. To cope with that, we insert an epilogue marker here, 2338 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2339 // final emitted code. 2340 if (NeedsWin64CFI && MF.hasWinCFI()) 2341 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2342 2343 if (!HasFP && NeedsDwarfCFI) { 2344 MBBI = FirstCSPop; 2345 int64_t Offset = -CSSize - SlotSize; 2346 // Mark callee-saved pop instruction. 2347 // Define the current CFA rule to use the provided offset. 2348 while (MBBI != MBB.end()) { 2349 MachineBasicBlock::iterator PI = MBBI; 2350 unsigned Opc = PI->getOpcode(); 2351 ++MBBI; 2352 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2353 Offset += SlotSize; 2354 BuildCFI(MBB, MBBI, DL, 2355 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2356 MachineInstr::FrameDestroy); 2357 } 2358 } 2359 } 2360 2361 // Emit DWARF info specifying the restores of the callee-saved registers. 2362 // For epilogue with return inside or being other block without successor, 2363 // no need to generate .cfi_restore for callee-saved registers. 2364 if (NeedsDwarfCFI && !MBB.succ_empty()) 2365 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2366 2367 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2368 // Add the return addr area delta back since we are not tail calling. 2369 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2370 assert(Offset >= 0 && "TCDelta should never be positive"); 2371 if (Offset) { 2372 // Check for possible merge with preceding ADD instruction. 2373 Offset += mergeSPUpdates(MBB, Terminator, true); 2374 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2375 } 2376 } 2377 2378 // Emit tilerelease for AMX kernel. 2379 if (X86FI->hasVirtualTileReg()) 2380 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2381 } 2382 2383 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2384 int FI, 2385 Register &FrameReg) const { 2386 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2387 2388 bool IsFixed = MFI.isFixedObjectIndex(FI); 2389 // We can't calculate offset from frame pointer if the stack is realigned, 2390 // so enforce usage of stack/base pointer. The base pointer is used when we 2391 // have dynamic allocas in addition to dynamic realignment. 2392 if (TRI->hasBasePointer(MF)) 2393 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2394 else if (TRI->hasStackRealignment(MF)) 2395 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2396 else 2397 FrameReg = TRI->getFrameRegister(MF); 2398 2399 // Offset will hold the offset from the stack pointer at function entry to the 2400 // object. 2401 // We need to factor in additional offsets applied during the prologue to the 2402 // frame, base, and stack pointer depending on which is used. 2403 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2404 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2405 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2406 uint64_t StackSize = MFI.getStackSize(); 2407 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2408 int64_t FPDelta = 0; 2409 2410 // In an x86 interrupt, remove the offset we added to account for the return 2411 // address from any stack object allocated in the caller's frame. Interrupts 2412 // do not have a standard return address. Fixed objects in the current frame, 2413 // such as SSE register spills, should not get this treatment. 2414 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2415 Offset >= 0) { 2416 Offset += getOffsetOfLocalArea(); 2417 } 2418 2419 if (IsWin64Prologue) { 2420 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2421 2422 // Calculate required stack adjustment. 2423 uint64_t FrameSize = StackSize - SlotSize; 2424 // If required, include space for extra hidden slot for stashing base pointer. 2425 if (X86FI->getRestoreBasePointer()) 2426 FrameSize += SlotSize; 2427 uint64_t NumBytes = FrameSize - CSSize; 2428 2429 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2430 if (FI && FI == X86FI->getFAIndex()) 2431 return StackOffset::getFixed(-SEHFrameOffset); 2432 2433 // FPDelta is the offset from the "traditional" FP location of the old base 2434 // pointer followed by return address and the location required by the 2435 // restricted Win64 prologue. 2436 // Add FPDelta to all offsets below that go through the frame pointer. 2437 FPDelta = FrameSize - SEHFrameOffset; 2438 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2439 "FPDelta isn't aligned per the Win64 ABI!"); 2440 } 2441 2442 if (FrameReg == TRI->getFramePtr()) { 2443 // Skip saved EBP/RBP 2444 Offset += SlotSize; 2445 2446 // Account for restricted Windows prologue. 2447 Offset += FPDelta; 2448 2449 // Skip the RETADDR move area 2450 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2451 if (TailCallReturnAddrDelta < 0) 2452 Offset -= TailCallReturnAddrDelta; 2453 2454 return StackOffset::getFixed(Offset); 2455 } 2456 2457 // FrameReg is either the stack pointer or a base pointer. But the base is 2458 // located at the end of the statically known StackSize so the distinction 2459 // doesn't really matter. 2460 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2461 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2462 return StackOffset::getFixed(Offset + StackSize); 2463 } 2464 2465 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2466 Register &FrameReg) const { 2467 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2468 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2469 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2470 const auto it = WinEHXMMSlotInfo.find(FI); 2471 2472 if (it == WinEHXMMSlotInfo.end()) 2473 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2474 2475 FrameReg = TRI->getStackRegister(); 2476 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2477 it->second; 2478 } 2479 2480 StackOffset 2481 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2482 Register &FrameReg, 2483 int Adjustment) const { 2484 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2485 FrameReg = TRI->getStackRegister(); 2486 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2487 getOffsetOfLocalArea() + Adjustment); 2488 } 2489 2490 StackOffset 2491 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2492 int FI, Register &FrameReg, 2493 bool IgnoreSPUpdates) const { 2494 2495 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2496 // Does not include any dynamic realign. 2497 const uint64_t StackSize = MFI.getStackSize(); 2498 // LLVM arranges the stack as follows: 2499 // ... 2500 // ARG2 2501 // ARG1 2502 // RETADDR 2503 // PUSH RBP <-- RBP points here 2504 // PUSH CSRs 2505 // ~~~~~~~ <-- possible stack realignment (non-win64) 2506 // ... 2507 // STACK OBJECTS 2508 // ... <-- RSP after prologue points here 2509 // ~~~~~~~ <-- possible stack realignment (win64) 2510 // 2511 // if (hasVarSizedObjects()): 2512 // ... <-- "base pointer" (ESI/RBX) points here 2513 // DYNAMIC ALLOCAS 2514 // ... <-- RSP points here 2515 // 2516 // Case 1: In the simple case of no stack realignment and no dynamic 2517 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2518 // with fixed offsets from RSP. 2519 // 2520 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2521 // stack objects are addressed with RBP and regular stack objects with RSP. 2522 // 2523 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2524 // to address stack arguments for outgoing calls and nothing else. The "base 2525 // pointer" points to local variables, and RBP points to fixed objects. 2526 // 2527 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2528 // answer we give is relative to the SP after the prologue, and not the 2529 // SP in the middle of the function. 2530 2531 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2532 !STI.isTargetWin64()) 2533 return getFrameIndexReference(MF, FI, FrameReg); 2534 2535 // If !hasReservedCallFrame the function might have SP adjustement in the 2536 // body. So, even though the offset is statically known, it depends on where 2537 // we are in the function. 2538 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2539 return getFrameIndexReference(MF, FI, FrameReg); 2540 2541 // We don't handle tail calls, and shouldn't be seeing them either. 2542 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2543 "we don't handle this case!"); 2544 2545 // This is how the math works out: 2546 // 2547 // %rsp grows (i.e. gets lower) left to right. Each box below is 2548 // one word (eight bytes). Obj0 is the stack slot we're trying to 2549 // get to. 2550 // 2551 // ---------------------------------- 2552 // | BP | Obj0 | Obj1 | ... | ObjN | 2553 // ---------------------------------- 2554 // ^ ^ ^ ^ 2555 // A B C E 2556 // 2557 // A is the incoming stack pointer. 2558 // (B - A) is the local area offset (-8 for x86-64) [1] 2559 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2560 // 2561 // |(E - B)| is the StackSize (absolute value, positive). For a 2562 // stack that grown down, this works out to be (B - E). [3] 2563 // 2564 // E is also the value of %rsp after stack has been set up, and we 2565 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2566 // (C - E) == (C - A) - (B - A) + (B - E) 2567 // { Using [1], [2] and [3] above } 2568 // == getObjectOffset - LocalAreaOffset + StackSize 2569 2570 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2571 } 2572 2573 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2574 MachineFunction &MF, const TargetRegisterInfo *TRI, 2575 std::vector<CalleeSavedInfo> &CSI) const { 2576 MachineFrameInfo &MFI = MF.getFrameInfo(); 2577 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2578 2579 unsigned CalleeSavedFrameSize = 0; 2580 unsigned XMMCalleeSavedFrameSize = 0; 2581 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2582 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2583 2584 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2585 2586 if (TailCallReturnAddrDelta < 0) { 2587 // create RETURNADDR area 2588 // arg 2589 // arg 2590 // RETADDR 2591 // { ... 2592 // RETADDR area 2593 // ... 2594 // } 2595 // [EBP] 2596 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2597 TailCallReturnAddrDelta - SlotSize, true); 2598 } 2599 2600 // Spill the BasePtr if it's used. 2601 if (this->TRI->hasBasePointer(MF)) { 2602 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2603 if (MF.hasEHFunclets()) { 2604 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2605 X86FI->setHasSEHFramePtrSave(true); 2606 X86FI->setSEHFramePtrSaveIndex(FI); 2607 } 2608 } 2609 2610 if (hasFP(MF)) { 2611 // emitPrologue always spills frame register the first thing. 2612 SpillSlotOffset -= SlotSize; 2613 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2614 2615 // The async context lives directly before the frame pointer, and we 2616 // allocate a second slot to preserve stack alignment. 2617 if (X86FI->hasSwiftAsyncContext()) { 2618 SpillSlotOffset -= SlotSize; 2619 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2620 SpillSlotOffset -= SlotSize; 2621 } 2622 2623 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2624 // the frame register, we can delete it from CSI list and not have to worry 2625 // about avoiding it later. 2626 Register FPReg = TRI->getFrameRegister(MF); 2627 for (unsigned i = 0; i < CSI.size(); ++i) { 2628 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2629 CSI.erase(CSI.begin() + i); 2630 break; 2631 } 2632 } 2633 } 2634 2635 // Assign slots for GPRs. It increases frame size. 2636 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2637 Register Reg = I.getReg(); 2638 2639 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2640 continue; 2641 2642 SpillSlotOffset -= SlotSize; 2643 CalleeSavedFrameSize += SlotSize; 2644 2645 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2646 I.setFrameIdx(SlotIndex); 2647 } 2648 2649 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2650 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2651 2652 // Assign slots for XMMs. 2653 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2654 Register Reg = I.getReg(); 2655 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2656 continue; 2657 2658 // If this is k-register make sure we lookup via the largest legal type. 2659 MVT VT = MVT::Other; 2660 if (X86::VK16RegClass.contains(Reg)) 2661 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2662 2663 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2664 unsigned Size = TRI->getSpillSize(*RC); 2665 Align Alignment = TRI->getSpillAlign(*RC); 2666 // ensure alignment 2667 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2668 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2669 2670 // spill into slot 2671 SpillSlotOffset -= Size; 2672 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2673 I.setFrameIdx(SlotIndex); 2674 MFI.ensureMaxAlignment(Alignment); 2675 2676 // Save the start offset and size of XMM in stack frame for funclets. 2677 if (X86::VR128RegClass.contains(Reg)) { 2678 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2679 XMMCalleeSavedFrameSize += Size; 2680 } 2681 } 2682 2683 return true; 2684 } 2685 2686 bool X86FrameLowering::spillCalleeSavedRegisters( 2687 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2688 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2689 DebugLoc DL = MBB.findDebugLoc(MI); 2690 2691 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2692 // for us, and there are no XMM CSRs on Win32. 2693 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2694 return true; 2695 2696 // Push GPRs. It increases frame size. 2697 const MachineFunction &MF = *MBB.getParent(); 2698 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2699 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2700 Register Reg = I.getReg(); 2701 2702 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2703 continue; 2704 2705 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2706 bool isLiveIn = MRI.isLiveIn(Reg); 2707 if (!isLiveIn) 2708 MBB.addLiveIn(Reg); 2709 2710 // Decide whether we can add a kill flag to the use. 2711 bool CanKill = !isLiveIn; 2712 // Check if any subregister is live-in 2713 if (CanKill) { 2714 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2715 if (MRI.isLiveIn(*AReg)) { 2716 CanKill = false; 2717 break; 2718 } 2719 } 2720 } 2721 2722 // Do not set a kill flag on values that are also marked as live-in. This 2723 // happens with the @llvm-returnaddress intrinsic and with arguments 2724 // passed in callee saved registers. 2725 // Omitting the kill flags is conservatively correct even if the live-in 2726 // is not used after all. 2727 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2728 .setMIFlag(MachineInstr::FrameSetup); 2729 } 2730 2731 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2732 // It can be done by spilling XMMs to stack frame. 2733 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2734 Register Reg = I.getReg(); 2735 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2736 continue; 2737 2738 // If this is k-register make sure we lookup via the largest legal type. 2739 MVT VT = MVT::Other; 2740 if (X86::VK16RegClass.contains(Reg)) 2741 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2742 2743 // Add the callee-saved register as live-in. It's killed at the spill. 2744 MBB.addLiveIn(Reg); 2745 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2746 2747 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, 2748 Register()); 2749 --MI; 2750 MI->setFlag(MachineInstr::FrameSetup); 2751 ++MI; 2752 } 2753 2754 return true; 2755 } 2756 2757 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2758 MachineBasicBlock::iterator MBBI, 2759 MachineInstr *CatchRet) const { 2760 // SEH shouldn't use catchret. 2761 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2762 MBB.getParent()->getFunction().getPersonalityFn())) && 2763 "SEH should not use CATCHRET"); 2764 const DebugLoc &DL = CatchRet->getDebugLoc(); 2765 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2766 2767 // Fill EAX/RAX with the address of the target block. 2768 if (STI.is64Bit()) { 2769 // LEA64r CatchRetTarget(%rip), %rax 2770 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2771 .addReg(X86::RIP) 2772 .addImm(0) 2773 .addReg(0) 2774 .addMBB(CatchRetTarget) 2775 .addReg(0); 2776 } else { 2777 // MOV32ri $CatchRetTarget, %eax 2778 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2779 .addMBB(CatchRetTarget); 2780 } 2781 2782 // Record that we've taken the address of CatchRetTarget and no longer just 2783 // reference it in a terminator. 2784 CatchRetTarget->setMachineBlockAddressTaken(); 2785 } 2786 2787 bool X86FrameLowering::restoreCalleeSavedRegisters( 2788 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2789 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2790 if (CSI.empty()) 2791 return false; 2792 2793 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2794 // Don't restore CSRs in 32-bit EH funclets. Matches 2795 // spillCalleeSavedRegisters. 2796 if (STI.is32Bit()) 2797 return true; 2798 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2799 // funclets. emitEpilogue transforms these to normal jumps. 2800 if (MI->getOpcode() == X86::CATCHRET) { 2801 const Function &F = MBB.getParent()->getFunction(); 2802 bool IsSEH = isAsynchronousEHPersonality( 2803 classifyEHPersonality(F.getPersonalityFn())); 2804 if (IsSEH) 2805 return true; 2806 } 2807 } 2808 2809 DebugLoc DL = MBB.findDebugLoc(MI); 2810 2811 // Reload XMMs from stack frame. 2812 for (const CalleeSavedInfo &I : CSI) { 2813 Register Reg = I.getReg(); 2814 if (X86::GR64RegClass.contains(Reg) || 2815 X86::GR32RegClass.contains(Reg)) 2816 continue; 2817 2818 // If this is k-register make sure we lookup via the largest legal type. 2819 MVT VT = MVT::Other; 2820 if (X86::VK16RegClass.contains(Reg)) 2821 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2822 2823 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2824 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, 2825 Register()); 2826 } 2827 2828 // POP GPRs. 2829 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2830 for (const CalleeSavedInfo &I : CSI) { 2831 Register Reg = I.getReg(); 2832 if (!X86::GR64RegClass.contains(Reg) && 2833 !X86::GR32RegClass.contains(Reg)) 2834 continue; 2835 2836 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2837 .setMIFlag(MachineInstr::FrameDestroy); 2838 } 2839 return true; 2840 } 2841 2842 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2843 BitVector &SavedRegs, 2844 RegScavenger *RS) const { 2845 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2846 2847 // Spill the BasePtr if it's used. 2848 if (TRI->hasBasePointer(MF)){ 2849 Register BasePtr = TRI->getBaseRegister(); 2850 if (STI.isTarget64BitILP32()) 2851 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2852 SavedRegs.set(BasePtr); 2853 } 2854 } 2855 2856 static bool 2857 HasNestArgument(const MachineFunction *MF) { 2858 const Function &F = MF->getFunction(); 2859 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2860 I != E; I++) { 2861 if (I->hasNestAttr() && !I->use_empty()) 2862 return true; 2863 } 2864 return false; 2865 } 2866 2867 /// GetScratchRegister - Get a temp register for performing work in the 2868 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2869 /// and the properties of the function either one or two registers will be 2870 /// needed. Set primary to true for the first register, false for the second. 2871 static unsigned 2872 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2873 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2874 2875 // Erlang stuff. 2876 if (CallingConvention == CallingConv::HiPE) { 2877 if (Is64Bit) 2878 return Primary ? X86::R14 : X86::R13; 2879 else 2880 return Primary ? X86::EBX : X86::EDI; 2881 } 2882 2883 if (Is64Bit) { 2884 if (IsLP64) 2885 return Primary ? X86::R11 : X86::R12; 2886 else 2887 return Primary ? X86::R11D : X86::R12D; 2888 } 2889 2890 bool IsNested = HasNestArgument(&MF); 2891 2892 if (CallingConvention == CallingConv::X86_FastCall || 2893 CallingConvention == CallingConv::Fast || 2894 CallingConvention == CallingConv::Tail) { 2895 if (IsNested) 2896 report_fatal_error("Segmented stacks does not support fastcall with " 2897 "nested function."); 2898 return Primary ? X86::EAX : X86::ECX; 2899 } 2900 if (IsNested) 2901 return Primary ? X86::EDX : X86::EAX; 2902 return Primary ? X86::ECX : X86::EAX; 2903 } 2904 2905 // The stack limit in the TCB is set to this many bytes above the actual stack 2906 // limit. 2907 static const uint64_t kSplitStackAvailable = 256; 2908 2909 void X86FrameLowering::adjustForSegmentedStacks( 2910 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2911 MachineFrameInfo &MFI = MF.getFrameInfo(); 2912 uint64_t StackSize; 2913 unsigned TlsReg, TlsOffset; 2914 DebugLoc DL; 2915 2916 // To support shrink-wrapping we would need to insert the new blocks 2917 // at the right place and update the branches to PrologueMBB. 2918 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2919 2920 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2921 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2922 "Scratch register is live-in"); 2923 2924 if (MF.getFunction().isVarArg()) 2925 report_fatal_error("Segmented stacks do not support vararg functions."); 2926 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2927 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2928 !STI.isTargetDragonFly()) 2929 report_fatal_error("Segmented stacks not supported on this platform."); 2930 2931 // Eventually StackSize will be calculated by a link-time pass; which will 2932 // also decide whether checking code needs to be injected into this particular 2933 // prologue. 2934 StackSize = MFI.getStackSize(); 2935 2936 if (!MFI.needsSplitStackProlog()) 2937 return; 2938 2939 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2940 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2941 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2942 bool IsNested = false; 2943 2944 // We need to know if the function has a nest argument only in 64 bit mode. 2945 if (Is64Bit) 2946 IsNested = HasNestArgument(&MF); 2947 2948 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2949 // allocMBB needs to be last (terminating) instruction. 2950 2951 for (const auto &LI : PrologueMBB.liveins()) { 2952 allocMBB->addLiveIn(LI); 2953 checkMBB->addLiveIn(LI); 2954 } 2955 2956 if (IsNested) 2957 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2958 2959 MF.push_front(allocMBB); 2960 MF.push_front(checkMBB); 2961 2962 // When the frame size is less than 256 we just compare the stack 2963 // boundary directly to the value of the stack pointer, per gcc. 2964 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2965 2966 // Read the limit off the current stacklet off the stack_guard location. 2967 if (Is64Bit) { 2968 if (STI.isTargetLinux()) { 2969 TlsReg = X86::FS; 2970 TlsOffset = IsLP64 ? 0x70 : 0x40; 2971 } else if (STI.isTargetDarwin()) { 2972 TlsReg = X86::GS; 2973 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2974 } else if (STI.isTargetWin64()) { 2975 TlsReg = X86::GS; 2976 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2977 } else if (STI.isTargetFreeBSD()) { 2978 TlsReg = X86::FS; 2979 TlsOffset = 0x18; 2980 } else if (STI.isTargetDragonFly()) { 2981 TlsReg = X86::FS; 2982 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2983 } else { 2984 report_fatal_error("Segmented stacks not supported on this platform."); 2985 } 2986 2987 if (CompareStackPointer) 2988 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2989 else 2990 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2991 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2992 2993 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2994 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2995 } else { 2996 if (STI.isTargetLinux()) { 2997 TlsReg = X86::GS; 2998 TlsOffset = 0x30; 2999 } else if (STI.isTargetDarwin()) { 3000 TlsReg = X86::GS; 3001 TlsOffset = 0x48 + 90*4; 3002 } else if (STI.isTargetWin32()) { 3003 TlsReg = X86::FS; 3004 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3005 } else if (STI.isTargetDragonFly()) { 3006 TlsReg = X86::FS; 3007 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3008 } else if (STI.isTargetFreeBSD()) { 3009 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3010 } else { 3011 report_fatal_error("Segmented stacks not supported on this platform."); 3012 } 3013 3014 if (CompareStackPointer) 3015 ScratchReg = X86::ESP; 3016 else 3017 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3018 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3019 3020 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3021 STI.isTargetDragonFly()) { 3022 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3023 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3024 } else if (STI.isTargetDarwin()) { 3025 3026 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3027 unsigned ScratchReg2; 3028 bool SaveScratch2; 3029 if (CompareStackPointer) { 3030 // The primary scratch register is available for holding the TLS offset. 3031 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3032 SaveScratch2 = false; 3033 } else { 3034 // Need to use a second register to hold the TLS offset 3035 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3036 3037 // Unfortunately, with fastcc the second scratch register may hold an 3038 // argument. 3039 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3040 } 3041 3042 // If Scratch2 is live-in then it needs to be saved. 3043 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3044 "Scratch register is live-in and not saved"); 3045 3046 if (SaveScratch2) 3047 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3048 .addReg(ScratchReg2, RegState::Kill); 3049 3050 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3051 .addImm(TlsOffset); 3052 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3053 .addReg(ScratchReg) 3054 .addReg(ScratchReg2).addImm(1).addReg(0) 3055 .addImm(0) 3056 .addReg(TlsReg); 3057 3058 if (SaveScratch2) 3059 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3060 } 3061 } 3062 3063 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3064 // It jumps to normal execution of the function body. 3065 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3066 3067 // On 32 bit we first push the arguments size and then the frame size. On 64 3068 // bit, we pass the stack frame size in r10 and the argument size in r11. 3069 if (Is64Bit) { 3070 // Functions with nested arguments use R10, so it needs to be saved across 3071 // the call to _morestack 3072 3073 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3074 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3075 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3076 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3077 3078 if (IsNested) 3079 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3080 3081 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3082 .addImm(StackSize); 3083 BuildMI(allocMBB, DL, 3084 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3085 Reg11) 3086 .addImm(X86FI->getArgumentStackSize()); 3087 } else { 3088 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3089 .addImm(X86FI->getArgumentStackSize()); 3090 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3091 .addImm(StackSize); 3092 } 3093 3094 // __morestack is in libgcc 3095 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3096 // Under the large code model, we cannot assume that __morestack lives 3097 // within 2^31 bytes of the call site, so we cannot use pc-relative 3098 // addressing. We cannot perform the call via a temporary register, 3099 // as the rax register may be used to store the static chain, and all 3100 // other suitable registers may be either callee-save or used for 3101 // parameter passing. We cannot use the stack at this point either 3102 // because __morestack manipulates the stack directly. 3103 // 3104 // To avoid these issues, perform an indirect call via a read-only memory 3105 // location containing the address. 3106 // 3107 // This solution is not perfect, as it assumes that the .rodata section 3108 // is laid out within 2^31 bytes of each function body, but this seems 3109 // to be sufficient for JIT. 3110 // FIXME: Add retpoline support and remove the error here.. 3111 if (STI.useIndirectThunkCalls()) 3112 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3113 "code model and thunks not yet implemented."); 3114 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3115 .addReg(X86::RIP) 3116 .addImm(0) 3117 .addReg(0) 3118 .addExternalSymbol("__morestack_addr") 3119 .addReg(0); 3120 } else { 3121 if (Is64Bit) 3122 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3123 .addExternalSymbol("__morestack"); 3124 else 3125 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3126 .addExternalSymbol("__morestack"); 3127 } 3128 3129 if (IsNested) 3130 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3131 else 3132 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3133 3134 allocMBB->addSuccessor(&PrologueMBB); 3135 3136 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3137 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3138 3139 #ifdef EXPENSIVE_CHECKS 3140 MF.verify(); 3141 #endif 3142 } 3143 3144 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3145 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3146 /// to fields it needs, through a named metadata node "hipe.literals" containing 3147 /// name-value pairs. 3148 static unsigned getHiPELiteral( 3149 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3150 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3151 MDNode *Node = HiPELiteralsMD->getOperand(i); 3152 if (Node->getNumOperands() != 2) continue; 3153 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3154 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3155 if (!NodeName || !NodeVal) continue; 3156 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3157 if (ValConst && NodeName->getString() == LiteralName) { 3158 return ValConst->getZExtValue(); 3159 } 3160 } 3161 3162 report_fatal_error("HiPE literal " + LiteralName 3163 + " required but not provided"); 3164 } 3165 3166 // Return true if there are no non-ehpad successors to MBB and there are no 3167 // non-meta instructions between MBBI and MBB.end(). 3168 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3169 MachineBasicBlock::const_iterator MBBI) { 3170 return llvm::all_of( 3171 MBB.successors(), 3172 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3173 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3174 return MI.isMetaInstruction(); 3175 }); 3176 } 3177 3178 /// Erlang programs may need a special prologue to handle the stack size they 3179 /// might need at runtime. That is because Erlang/OTP does not implement a C 3180 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3181 /// (for more information see Eric Stenman's Ph.D. thesis: 3182 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3183 /// 3184 /// CheckStack: 3185 /// temp0 = sp - MaxStack 3186 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3187 /// OldStart: 3188 /// ... 3189 /// IncStack: 3190 /// call inc_stack # doubles the stack space 3191 /// temp0 = sp - MaxStack 3192 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3193 void X86FrameLowering::adjustForHiPEPrologue( 3194 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3195 MachineFrameInfo &MFI = MF.getFrameInfo(); 3196 DebugLoc DL; 3197 3198 // To support shrink-wrapping we would need to insert the new blocks 3199 // at the right place and update the branches to PrologueMBB. 3200 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3201 3202 // HiPE-specific values 3203 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3204 ->getNamedMetadata("hipe.literals"); 3205 if (!HiPELiteralsMD) 3206 report_fatal_error( 3207 "Can't generate HiPE prologue without runtime parameters"); 3208 const unsigned HipeLeafWords 3209 = getHiPELiteral(HiPELiteralsMD, 3210 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3211 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3212 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3213 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3214 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3215 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3216 3217 assert(STI.isTargetLinux() && 3218 "HiPE prologue is only supported on Linux operating systems."); 3219 3220 // Compute the largest caller's frame that is needed to fit the callees' 3221 // frames. This 'MaxStack' is computed from: 3222 // 3223 // a) the fixed frame size, which is the space needed for all spilled temps, 3224 // b) outgoing on-stack parameter areas, and 3225 // c) the minimum stack space this function needs to make available for the 3226 // functions it calls (a tunable ABI property). 3227 if (MFI.hasCalls()) { 3228 unsigned MoreStackForCalls = 0; 3229 3230 for (auto &MBB : MF) { 3231 for (auto &MI : MBB) { 3232 if (!MI.isCall()) 3233 continue; 3234 3235 // Get callee operand. 3236 const MachineOperand &MO = MI.getOperand(0); 3237 3238 // Only take account of global function calls (no closures etc.). 3239 if (!MO.isGlobal()) 3240 continue; 3241 3242 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3243 if (!F) 3244 continue; 3245 3246 // Do not update 'MaxStack' for primitive and built-in functions 3247 // (encoded with names either starting with "erlang."/"bif_" or not 3248 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3249 // "_", such as the BIF "suspend_0") as they are executed on another 3250 // stack. 3251 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3252 F->getName().find_first_of("._") == StringRef::npos) 3253 continue; 3254 3255 unsigned CalleeStkArity = 3256 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3257 if (HipeLeafWords - 1 > CalleeStkArity) 3258 MoreStackForCalls = std::max(MoreStackForCalls, 3259 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3260 } 3261 } 3262 MaxStack += MoreStackForCalls; 3263 } 3264 3265 // If the stack frame needed is larger than the guaranteed then runtime checks 3266 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3267 if (MaxStack > Guaranteed) { 3268 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3269 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3270 3271 for (const auto &LI : PrologueMBB.liveins()) { 3272 stackCheckMBB->addLiveIn(LI); 3273 incStackMBB->addLiveIn(LI); 3274 } 3275 3276 MF.push_front(incStackMBB); 3277 MF.push_front(stackCheckMBB); 3278 3279 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3280 unsigned LEAop, CMPop, CALLop; 3281 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3282 if (Is64Bit) { 3283 SPReg = X86::RSP; 3284 PReg = X86::RBP; 3285 LEAop = X86::LEA64r; 3286 CMPop = X86::CMP64rm; 3287 CALLop = X86::CALL64pcrel32; 3288 } else { 3289 SPReg = X86::ESP; 3290 PReg = X86::EBP; 3291 LEAop = X86::LEA32r; 3292 CMPop = X86::CMP32rm; 3293 CALLop = X86::CALLpcrel32; 3294 } 3295 3296 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3297 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3298 "HiPE prologue scratch register is live-in"); 3299 3300 // Create new MBB for StackCheck: 3301 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3302 SPReg, false, -MaxStack); 3303 // SPLimitOffset is in a fixed heap location (pointed by BP). 3304 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3305 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3306 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3307 3308 // Create new MBB for IncStack: 3309 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3310 addExternalSymbol("inc_stack_0"); 3311 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3312 SPReg, false, -MaxStack); 3313 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3314 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3315 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3316 3317 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3318 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3319 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3320 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3321 } 3322 #ifdef EXPENSIVE_CHECKS 3323 MF.verify(); 3324 #endif 3325 } 3326 3327 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3328 MachineBasicBlock::iterator MBBI, 3329 const DebugLoc &DL, 3330 int Offset) const { 3331 if (Offset <= 0) 3332 return false; 3333 3334 if (Offset % SlotSize) 3335 return false; 3336 3337 int NumPops = Offset / SlotSize; 3338 // This is only worth it if we have at most 2 pops. 3339 if (NumPops != 1 && NumPops != 2) 3340 return false; 3341 3342 // Handle only the trivial case where the adjustment directly follows 3343 // a call. This is the most common one, anyway. 3344 if (MBBI == MBB.begin()) 3345 return false; 3346 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3347 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3348 return false; 3349 3350 unsigned Regs[2]; 3351 unsigned FoundRegs = 0; 3352 3353 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3354 const MachineOperand &RegMask = Prev->getOperand(1); 3355 3356 auto &RegClass = 3357 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3358 // Try to find up to NumPops free registers. 3359 for (auto Candidate : RegClass) { 3360 // Poor man's liveness: 3361 // Since we're immediately after a call, any register that is clobbered 3362 // by the call and not defined by it can be considered dead. 3363 if (!RegMask.clobbersPhysReg(Candidate)) 3364 continue; 3365 3366 // Don't clobber reserved registers 3367 if (MRI.isReserved(Candidate)) 3368 continue; 3369 3370 bool IsDef = false; 3371 for (const MachineOperand &MO : Prev->implicit_operands()) { 3372 if (MO.isReg() && MO.isDef() && 3373 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3374 IsDef = true; 3375 break; 3376 } 3377 } 3378 3379 if (IsDef) 3380 continue; 3381 3382 Regs[FoundRegs++] = Candidate; 3383 if (FoundRegs == (unsigned)NumPops) 3384 break; 3385 } 3386 3387 if (FoundRegs == 0) 3388 return false; 3389 3390 // If we found only one free register, but need two, reuse the same one twice. 3391 while (FoundRegs < (unsigned)NumPops) 3392 Regs[FoundRegs++] = Regs[0]; 3393 3394 for (int i = 0; i < NumPops; ++i) 3395 BuildMI(MBB, MBBI, DL, 3396 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3397 3398 return true; 3399 } 3400 3401 MachineBasicBlock::iterator X86FrameLowering:: 3402 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3403 MachineBasicBlock::iterator I) const { 3404 bool reserveCallFrame = hasReservedCallFrame(MF); 3405 unsigned Opcode = I->getOpcode(); 3406 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3407 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3408 uint64_t Amount = TII.getFrameSize(*I); 3409 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3410 I = MBB.erase(I); 3411 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3412 3413 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3414 // typically because the function is marked noreturn (abort, throw, 3415 // assert_fail, etc). 3416 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3417 return I; 3418 3419 if (!reserveCallFrame) { 3420 // If the stack pointer can be changed after prologue, turn the 3421 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3422 // adjcallstackdown instruction into 'add ESP, <amt>' 3423 3424 // We need to keep the stack aligned properly. To do this, we round the 3425 // amount of space needed for the outgoing arguments up to the next 3426 // alignment boundary. 3427 Amount = alignTo(Amount, getStackAlign()); 3428 3429 const Function &F = MF.getFunction(); 3430 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3431 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3432 3433 // If we have any exception handlers in this function, and we adjust 3434 // the SP before calls, we may need to indicate this to the unwinder 3435 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3436 // Amount == 0, because the preceding function may have set a non-0 3437 // GNU_ARGS_SIZE. 3438 // TODO: We don't need to reset this between subsequent functions, 3439 // if it didn't change. 3440 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3441 3442 if (HasDwarfEHHandlers && !isDestroy && 3443 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3444 BuildCFI(MBB, InsertPos, DL, 3445 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3446 3447 if (Amount == 0) 3448 return I; 3449 3450 // Factor out the amount that gets handled inside the sequence 3451 // (Pushes of argument for frame setup, callee pops for frame destroy) 3452 Amount -= InternalAmt; 3453 3454 // TODO: This is needed only if we require precise CFA. 3455 // If this is a callee-pop calling convention, emit a CFA adjust for 3456 // the amount the callee popped. 3457 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3458 BuildCFI(MBB, InsertPos, DL, 3459 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3460 3461 // Add Amount to SP to destroy a frame, or subtract to setup. 3462 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3463 3464 if (StackAdjustment) { 3465 // Merge with any previous or following adjustment instruction. Note: the 3466 // instructions merged with here do not have CFI, so their stack 3467 // adjustments do not feed into CfaAdjustment. 3468 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3469 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3470 3471 if (StackAdjustment) { 3472 if (!(F.hasMinSize() && 3473 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3474 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3475 /*InEpilogue=*/false); 3476 } 3477 } 3478 3479 if (DwarfCFI && !hasFP(MF)) { 3480 // If we don't have FP, but need to generate unwind information, 3481 // we need to set the correct CFA offset after the stack adjustment. 3482 // How much we adjust the CFA offset depends on whether we're emitting 3483 // CFI only for EH purposes or for debugging. EH only requires the CFA 3484 // offset to be correct at each call site, while for debugging we want 3485 // it to be more precise. 3486 3487 int64_t CfaAdjustment = -StackAdjustment; 3488 // TODO: When not using precise CFA, we also need to adjust for the 3489 // InternalAmt here. 3490 if (CfaAdjustment) { 3491 BuildCFI(MBB, InsertPos, DL, 3492 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3493 CfaAdjustment)); 3494 } 3495 } 3496 3497 return I; 3498 } 3499 3500 if (InternalAmt) { 3501 MachineBasicBlock::iterator CI = I; 3502 MachineBasicBlock::iterator B = MBB.begin(); 3503 while (CI != B && !std::prev(CI)->isCall()) 3504 --CI; 3505 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3506 } 3507 3508 return I; 3509 } 3510 3511 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3512 assert(MBB.getParent() && "Block is not attached to a function!"); 3513 const MachineFunction &MF = *MBB.getParent(); 3514 if (!MBB.isLiveIn(X86::EFLAGS)) 3515 return true; 3516 3517 // If stack probes have to loop inline or call, that will clobber EFLAGS. 3518 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. 3519 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 3520 const X86TargetLowering &TLI = *STI.getTargetLowering(); 3521 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) 3522 return false; 3523 3524 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3525 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3526 } 3527 3528 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3529 assert(MBB.getParent() && "Block is not attached to a function!"); 3530 3531 // Win64 has strict requirements in terms of epilogue and we are 3532 // not taking a chance at messing with them. 3533 // I.e., unless this block is already an exit block, we can't use 3534 // it as an epilogue. 3535 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3536 return false; 3537 3538 // Swift async context epilogue has a BTR instruction that clobbers parts of 3539 // EFLAGS. 3540 const MachineFunction &MF = *MBB.getParent(); 3541 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3542 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3543 3544 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3545 return true; 3546 3547 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3548 // clobbers the EFLAGS. Check that we do not need to preserve it, 3549 // otherwise, conservatively assume this is not 3550 // safe to insert the epilogue here. 3551 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3552 } 3553 3554 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3555 // If we may need to emit frameless compact unwind information, give 3556 // up as this is currently broken: PR25614. 3557 bool CompactUnwind = 3558 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3559 nullptr; 3560 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3561 !CompactUnwind) && 3562 // The lowering of segmented stack and HiPE only support entry 3563 // blocks as prologue blocks: PR26107. This limitation may be 3564 // lifted if we fix: 3565 // - adjustForSegmentedStacks 3566 // - adjustForHiPEPrologue 3567 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3568 !MF.shouldSplitStack(); 3569 } 3570 3571 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3572 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3573 const DebugLoc &DL, bool RestoreSP) const { 3574 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3575 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3576 assert(STI.is32Bit() && !Uses64BitFramePtr && 3577 "restoring EBP/ESI on non-32-bit target"); 3578 3579 MachineFunction &MF = *MBB.getParent(); 3580 Register FramePtr = TRI->getFrameRegister(MF); 3581 Register BasePtr = TRI->getBaseRegister(); 3582 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3583 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3584 MachineFrameInfo &MFI = MF.getFrameInfo(); 3585 3586 // FIXME: Don't set FrameSetup flag in catchret case. 3587 3588 int FI = FuncInfo.EHRegNodeFrameIndex; 3589 int EHRegSize = MFI.getObjectSize(FI); 3590 3591 if (RestoreSP) { 3592 // MOV32rm -EHRegSize(%ebp), %esp 3593 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3594 X86::EBP, true, -EHRegSize) 3595 .setMIFlag(MachineInstr::FrameSetup); 3596 } 3597 3598 Register UsedReg; 3599 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3600 int EndOffset = -EHRegOffset - EHRegSize; 3601 FuncInfo.EHRegNodeEndOffset = EndOffset; 3602 3603 if (UsedReg == FramePtr) { 3604 // ADD $offset, %ebp 3605 unsigned ADDri = getADDriOpcode(false, EndOffset); 3606 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3607 .addReg(FramePtr) 3608 .addImm(EndOffset) 3609 .setMIFlag(MachineInstr::FrameSetup) 3610 ->getOperand(3) 3611 .setIsDead(); 3612 assert(EndOffset >= 0 && 3613 "end of registration object above normal EBP position!"); 3614 } else if (UsedReg == BasePtr) { 3615 // LEA offset(%ebp), %esi 3616 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3617 FramePtr, false, EndOffset) 3618 .setMIFlag(MachineInstr::FrameSetup); 3619 // MOV32rm SavedEBPOffset(%esi), %ebp 3620 assert(X86FI->getHasSEHFramePtrSave()); 3621 int Offset = 3622 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3623 .getFixed(); 3624 assert(UsedReg == BasePtr); 3625 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3626 UsedReg, true, Offset) 3627 .setMIFlag(MachineInstr::FrameSetup); 3628 } else { 3629 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3630 } 3631 return MBBI; 3632 } 3633 3634 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3635 return TRI->getSlotSize(); 3636 } 3637 3638 Register 3639 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3640 return TRI->getDwarfRegNum(StackPtr, true); 3641 } 3642 3643 namespace { 3644 // Struct used by orderFrameObjects to help sort the stack objects. 3645 struct X86FrameSortingObject { 3646 bool IsValid = false; // true if we care about this Object. 3647 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3648 unsigned ObjectSize = 0; // Size of Object in bytes. 3649 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3650 unsigned ObjectNumUses = 0; // Object static number of uses. 3651 }; 3652 3653 // The comparison function we use for std::sort to order our local 3654 // stack symbols. The current algorithm is to use an estimated 3655 // "density". This takes into consideration the size and number of 3656 // uses each object has in order to roughly minimize code size. 3657 // So, for example, an object of size 16B that is referenced 5 times 3658 // will get higher priority than 4 4B objects referenced 1 time each. 3659 // It's not perfect and we may be able to squeeze a few more bytes out of 3660 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3661 // fringe end can have special consideration, given their size is less 3662 // important, etc.), but the algorithmic complexity grows too much to be 3663 // worth the extra gains we get. This gets us pretty close. 3664 // The final order leaves us with objects with highest priority going 3665 // at the end of our list. 3666 struct X86FrameSortingComparator { 3667 inline bool operator()(const X86FrameSortingObject &A, 3668 const X86FrameSortingObject &B) const { 3669 uint64_t DensityAScaled, DensityBScaled; 3670 3671 // For consistency in our comparison, all invalid objects are placed 3672 // at the end. This also allows us to stop walking when we hit the 3673 // first invalid item after it's all sorted. 3674 if (!A.IsValid) 3675 return false; 3676 if (!B.IsValid) 3677 return true; 3678 3679 // The density is calculated by doing : 3680 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3681 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3682 // Since this approach may cause inconsistencies in 3683 // the floating point <, >, == comparisons, depending on the floating 3684 // point model with which the compiler was built, we're going 3685 // to scale both sides by multiplying with 3686 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3687 // the division and, with it, the need for any floating point 3688 // arithmetic. 3689 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3690 static_cast<uint64_t>(B.ObjectSize); 3691 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3692 static_cast<uint64_t>(A.ObjectSize); 3693 3694 // If the two densities are equal, prioritize highest alignment 3695 // objects. This allows for similar alignment objects 3696 // to be packed together (given the same density). 3697 // There's room for improvement here, also, since we can pack 3698 // similar alignment (different density) objects next to each 3699 // other to save padding. This will also require further 3700 // complexity/iterations, and the overall gain isn't worth it, 3701 // in general. Something to keep in mind, though. 3702 if (DensityAScaled == DensityBScaled) 3703 return A.ObjectAlignment < B.ObjectAlignment; 3704 3705 return DensityAScaled < DensityBScaled; 3706 } 3707 }; 3708 } // namespace 3709 3710 // Order the symbols in the local stack. 3711 // We want to place the local stack objects in some sort of sensible order. 3712 // The heuristic we use is to try and pack them according to static number 3713 // of uses and size of object in order to minimize code size. 3714 void X86FrameLowering::orderFrameObjects( 3715 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3716 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3717 3718 // Don't waste time if there's nothing to do. 3719 if (ObjectsToAllocate.empty()) 3720 return; 3721 3722 // Create an array of all MFI objects. We won't need all of these 3723 // objects, but we're going to create a full array of them to make 3724 // it easier to index into when we're counting "uses" down below. 3725 // We want to be able to easily/cheaply access an object by simply 3726 // indexing into it, instead of having to search for it every time. 3727 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3728 3729 // Walk the objects we care about and mark them as such in our working 3730 // struct. 3731 for (auto &Obj : ObjectsToAllocate) { 3732 SortingObjects[Obj].IsValid = true; 3733 SortingObjects[Obj].ObjectIndex = Obj; 3734 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3735 // Set the size. 3736 int ObjectSize = MFI.getObjectSize(Obj); 3737 if (ObjectSize == 0) 3738 // Variable size. Just use 4. 3739 SortingObjects[Obj].ObjectSize = 4; 3740 else 3741 SortingObjects[Obj].ObjectSize = ObjectSize; 3742 } 3743 3744 // Count the number of uses for each object. 3745 for (auto &MBB : MF) { 3746 for (auto &MI : MBB) { 3747 if (MI.isDebugInstr()) 3748 continue; 3749 for (const MachineOperand &MO : MI.operands()) { 3750 // Check to see if it's a local stack symbol. 3751 if (!MO.isFI()) 3752 continue; 3753 int Index = MO.getIndex(); 3754 // Check to see if it falls within our range, and is tagged 3755 // to require ordering. 3756 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3757 SortingObjects[Index].IsValid) 3758 SortingObjects[Index].ObjectNumUses++; 3759 } 3760 } 3761 } 3762 3763 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3764 // info). 3765 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3766 3767 // Now modify the original list to represent the final order that 3768 // we want. The order will depend on whether we're going to access them 3769 // from the stack pointer or the frame pointer. For SP, the list should 3770 // end up with the END containing objects that we want with smaller offsets. 3771 // For FP, it should be flipped. 3772 int i = 0; 3773 for (auto &Obj : SortingObjects) { 3774 // All invalid items are sorted at the end, so it's safe to stop. 3775 if (!Obj.IsValid) 3776 break; 3777 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3778 } 3779 3780 // Flip it if we're accessing off of the FP. 3781 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3782 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3783 } 3784 3785 3786 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3787 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3788 unsigned Offset = 16; 3789 // RBP is immediately pushed. 3790 Offset += SlotSize; 3791 // All callee-saved registers are then pushed. 3792 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3793 // Every funclet allocates enough stack space for the largest outgoing call. 3794 Offset += getWinEHFuncletFrameSize(MF); 3795 return Offset; 3796 } 3797 3798 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3799 MachineFunction &MF, RegScavenger *RS) const { 3800 // Mark the function as not having WinCFI. We will set it back to true in 3801 // emitPrologue if it gets called and emits CFI. 3802 MF.setHasWinCFI(false); 3803 3804 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3805 // aligned. The format doesn't support misaligned stack adjustments. 3806 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3807 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3808 3809 // If this function isn't doing Win64-style C++ EH, we don't need to do 3810 // anything. 3811 if (STI.is64Bit() && MF.hasEHFunclets() && 3812 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3813 EHPersonality::MSVC_CXX) { 3814 adjustFrameForMsvcCxxEh(MF); 3815 } 3816 } 3817 3818 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3819 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3820 // relative to RSP after the prologue. Find the offset of the last fixed 3821 // object, so that we can allocate a slot immediately following it. If there 3822 // were no fixed objects, use offset -SlotSize, which is immediately after the 3823 // return address. Fixed objects have negative frame indices. 3824 MachineFrameInfo &MFI = MF.getFrameInfo(); 3825 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3826 int64_t MinFixedObjOffset = -SlotSize; 3827 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3828 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3829 3830 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3831 for (WinEHHandlerType &H : TBME.HandlerArray) { 3832 int FrameIndex = H.CatchObj.FrameIndex; 3833 if (FrameIndex != INT_MAX) { 3834 // Ensure alignment. 3835 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3836 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3837 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3838 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3839 } 3840 } 3841 } 3842 3843 // Ensure alignment. 3844 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3845 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3846 int UnwindHelpFI = 3847 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3848 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3849 3850 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3851 // other frame setup instructions. 3852 MachineBasicBlock &MBB = MF.front(); 3853 auto MBBI = MBB.begin(); 3854 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3855 ++MBBI; 3856 3857 DebugLoc DL = MBB.findDebugLoc(MBBI); 3858 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3859 UnwindHelpFI) 3860 .addImm(-2); 3861 } 3862 3863 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3864 MachineFunction &MF, RegScavenger *RS) const { 3865 if (STI.is32Bit() && MF.hasEHFunclets()) 3866 restoreWinEHStackPointersInParent(MF); 3867 } 3868 3869 void X86FrameLowering::restoreWinEHStackPointersInParent( 3870 MachineFunction &MF) const { 3871 // 32-bit functions have to restore stack pointers when control is transferred 3872 // back to the parent function. These blocks are identified as eh pads that 3873 // are not funclet entries. 3874 bool IsSEH = isAsynchronousEHPersonality( 3875 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3876 for (MachineBasicBlock &MBB : MF) { 3877 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3878 if (NeedsRestore) 3879 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3880 /*RestoreSP=*/IsSEH); 3881 } 3882 } 3883