1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the pass which converts floating point instructions from 10 // pseudo registers into register stack instructions. This pass uses live 11 // variable information to indicate where the FPn registers are used and their 12 // lifetimes. 13 // 14 // The x87 hardware tracks liveness of the stack registers, so it is necessary 15 // to implement exact liveness tracking between basic blocks. The CFG edges are 16 // partitioned into bundles where the same FP registers must be live in 17 // identical stack positions. Instructions are inserted at the end of each basic 18 // block to rearrange the live registers to match the outgoing bundle. 19 // 20 // This approach avoids splitting critical edges at the potential cost of more 21 // live register shuffling instructions when critical edges are present. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "X86.h" 26 #include "X86InstrInfo.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/EdgeBundles.h" 33 #include "llvm/CodeGen/LivePhysRegs.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include <algorithm> 48 #include <bitset> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-codegen" 52 53 STATISTIC(NumFXCH, "Number of fxch instructions inserted"); 54 STATISTIC(NumFP , "Number of floating point instructions"); 55 56 namespace { 57 const unsigned ScratchFPReg = 7; 58 59 struct FPS : public MachineFunctionPass { 60 static char ID; 61 FPS() : MachineFunctionPass(ID) { 62 // This is really only to keep valgrind quiet. 63 // The logic in isLive() is too much for it. 64 memset(Stack, 0, sizeof(Stack)); 65 memset(RegMap, 0, sizeof(RegMap)); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<EdgeBundles>(); 71 AU.addPreservedID(MachineLoopInfoID); 72 AU.addPreservedID(MachineDominatorsID); 73 MachineFunctionPass::getAnalysisUsage(AU); 74 } 75 76 bool runOnMachineFunction(MachineFunction &MF) override; 77 78 MachineFunctionProperties getRequiredProperties() const override { 79 return MachineFunctionProperties().set( 80 MachineFunctionProperties::Property::NoVRegs); 81 } 82 83 StringRef getPassName() const override { return "X86 FP Stackifier"; } 84 85 private: 86 const TargetInstrInfo *TII = nullptr; // Machine instruction info. 87 88 // Two CFG edges are related if they leave the same block, or enter the same 89 // block. The transitive closure of an edge under this relation is a 90 // LiveBundle. It represents a set of CFG edges where the live FP stack 91 // registers must be allocated identically in the x87 stack. 92 // 93 // A LiveBundle is usually all the edges leaving a block, or all the edges 94 // entering a block, but it can contain more edges if critical edges are 95 // present. 96 // 97 // The set of live FP registers in a LiveBundle is calculated by bundleCFG, 98 // but the exact mapping of FP registers to stack slots is fixed later. 99 struct LiveBundle { 100 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. 101 unsigned Mask = 0; 102 103 // Number of pre-assigned live registers in FixStack. This is 0 when the 104 // stack order has not yet been fixed. 105 unsigned FixCount = 0; 106 107 // Assigned stack order for live-in registers. 108 // FixStack[i] == getStackEntry(i) for all i < FixCount. 109 unsigned char FixStack[8]; 110 111 LiveBundle() = default; 112 113 // Have the live registers been assigned a stack order yet? 114 bool isFixed() const { return !Mask || FixCount; } 115 }; 116 117 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges 118 // with no live FP registers. 119 SmallVector<LiveBundle, 8> LiveBundles; 120 121 // The edge bundle analysis provides indices into the LiveBundles vector. 122 EdgeBundles *Bundles = nullptr; 123 124 // Return a bitmask of FP registers in block's live-in list. 125 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { 126 unsigned Mask = 0; 127 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); 128 I != MBB->livein_end(); ) { 129 MCPhysReg Reg = I->PhysReg; 130 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums"); 131 if (Reg >= X86::FP0 && Reg <= X86::FP6) { 132 Mask |= 1 << (Reg - X86::FP0); 133 if (RemoveFPs) { 134 I = MBB->removeLiveIn(I); 135 continue; 136 } 137 } 138 ++I; 139 } 140 return Mask; 141 } 142 143 // Partition all the CFG edges into LiveBundles. 144 void bundleCFGRecomputeKillFlags(MachineFunction &MF); 145 146 MachineBasicBlock *MBB = nullptr; // Current basic block 147 148 // The hardware keeps track of how many FP registers are live, so we have 149 // to model that exactly. Usually, each live register corresponds to an 150 // FP<n> register, but when dealing with calls, returns, and inline 151 // assembly, it is sometimes necessary to have live scratch registers. 152 unsigned Stack[8]; // FP<n> Registers in each stack slot... 153 unsigned StackTop = 0; // The current top of the FP stack. 154 155 enum { 156 NumFPRegs = 8 // Including scratch pseudo-registers. 157 }; 158 159 // For each live FP<n> register, point to its Stack[] entry. 160 // The first entries correspond to FP0-FP6, the rest are scratch registers 161 // used when we need slightly different live registers than what the 162 // register allocator thinks. 163 unsigned RegMap[NumFPRegs]; 164 165 // Set up our stack model to match the incoming registers to MBB. 166 void setupBlockStack(); 167 168 // Shuffle live registers to match the expectations of successor blocks. 169 void finishBlockStack(); 170 171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 172 void dumpStack() const { 173 dbgs() << "Stack contents:"; 174 for (unsigned i = 0; i != StackTop; ++i) { 175 dbgs() << " FP" << Stack[i]; 176 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 177 } 178 } 179 #endif 180 181 /// getSlot - Return the stack slot number a particular register number is 182 /// in. 183 unsigned getSlot(unsigned RegNo) const { 184 assert(RegNo < NumFPRegs && "Regno out of range!"); 185 return RegMap[RegNo]; 186 } 187 188 /// isLive - Is RegNo currently live in the stack? 189 bool isLive(unsigned RegNo) const { 190 unsigned Slot = getSlot(RegNo); 191 return Slot < StackTop && Stack[Slot] == RegNo; 192 } 193 194 /// getStackEntry - Return the X86::FP<n> register in register ST(i). 195 unsigned getStackEntry(unsigned STi) const { 196 if (STi >= StackTop) 197 report_fatal_error("Access past stack top!"); 198 return Stack[StackTop-1-STi]; 199 } 200 201 /// getSTReg - Return the X86::ST(i) register which contains the specified 202 /// FP<RegNo> register. 203 unsigned getSTReg(unsigned RegNo) const { 204 return StackTop - 1 - getSlot(RegNo) + X86::ST0; 205 } 206 207 // pushReg - Push the specified FP<n> register onto the stack. 208 void pushReg(unsigned Reg) { 209 assert(Reg < NumFPRegs && "Register number out of range!"); 210 if (StackTop >= 8) 211 report_fatal_error("Stack overflow!"); 212 Stack[StackTop] = Reg; 213 RegMap[Reg] = StackTop++; 214 } 215 216 // popReg - Pop a register from the stack. 217 void popReg() { 218 if (StackTop == 0) 219 report_fatal_error("Cannot pop empty stack!"); 220 RegMap[Stack[--StackTop]] = ~0; // Update state 221 } 222 223 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } 224 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { 225 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 226 if (isAtTop(RegNo)) return; 227 228 unsigned STReg = getSTReg(RegNo); 229 unsigned RegOnTop = getStackEntry(0); 230 231 // Swap the slots the regs are in. 232 std::swap(RegMap[RegNo], RegMap[RegOnTop]); 233 234 // Swap stack slot contents. 235 if (RegMap[RegOnTop] >= StackTop) 236 report_fatal_error("Access past stack top!"); 237 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); 238 239 // Emit an fxch to update the runtime processors version of the state. 240 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); 241 ++NumFXCH; 242 } 243 244 void duplicateToTop(unsigned RegNo, unsigned AsReg, 245 MachineBasicBlock::iterator I) { 246 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 247 unsigned STReg = getSTReg(RegNo); 248 pushReg(AsReg); // New register on top of stack 249 250 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); 251 } 252 253 /// popStackAfter - Pop the current value off of the top of the FP stack 254 /// after the specified instruction. 255 void popStackAfter(MachineBasicBlock::iterator &I); 256 257 /// freeStackSlotAfter - Free the specified register from the register 258 /// stack, so that it is no longer in a register. If the register is 259 /// currently at the top of the stack, we just pop the current instruction, 260 /// otherwise we store the current top-of-stack into the specified slot, 261 /// then pop the top of stack. 262 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); 263 264 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted 265 /// instruction. 266 MachineBasicBlock::iterator 267 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); 268 269 /// Adjust the live registers to be the set in Mask. 270 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); 271 272 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is 273 /// st(0), FP reg FixStack[1] is st(1) etc. 274 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, 275 MachineBasicBlock::iterator I); 276 277 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 278 279 void handleCall(MachineBasicBlock::iterator &I); 280 void handleReturn(MachineBasicBlock::iterator &I); 281 void handleZeroArgFP(MachineBasicBlock::iterator &I); 282 void handleOneArgFP(MachineBasicBlock::iterator &I); 283 void handleOneArgFPRW(MachineBasicBlock::iterator &I); 284 void handleTwoArgFP(MachineBasicBlock::iterator &I); 285 void handleCompareFP(MachineBasicBlock::iterator &I); 286 void handleCondMovFP(MachineBasicBlock::iterator &I); 287 void handleSpecialFP(MachineBasicBlock::iterator &I); 288 289 // Check if a COPY instruction is using FP registers. 290 static bool isFPCopy(MachineInstr &MI) { 291 Register DstReg = MI.getOperand(0).getReg(); 292 Register SrcReg = MI.getOperand(1).getReg(); 293 294 return X86::RFP80RegClass.contains(DstReg) || 295 X86::RFP80RegClass.contains(SrcReg); 296 } 297 298 void setKillFlags(MachineBasicBlock &MBB) const; 299 }; 300 } 301 302 char FPS::ID = 0; 303 304 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier", 305 false, false) 306 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 307 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier", 308 false, false) 309 310 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } 311 312 /// getFPReg - Return the X86::FPx register number for the specified operand. 313 /// For example, this returns 3 for X86::FP3. 314 static unsigned getFPReg(const MachineOperand &MO) { 315 assert(MO.isReg() && "Expected an FP register!"); 316 Register Reg = MO.getReg(); 317 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); 318 return Reg - X86::FP0; 319 } 320 321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP 322 /// register references into FP stack references. 323 /// 324 bool FPS::runOnMachineFunction(MachineFunction &MF) { 325 // We only need to run this pass if there are any FP registers used in this 326 // function. If it is all integer, there is nothing for us to do! 327 bool FPIsUsed = false; 328 329 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); 330 const MachineRegisterInfo &MRI = MF.getRegInfo(); 331 for (unsigned i = 0; i <= 6; ++i) 332 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { 333 FPIsUsed = true; 334 break; 335 } 336 337 // Early exit. 338 if (!FPIsUsed) return false; 339 340 Bundles = &getAnalysis<EdgeBundles>(); 341 TII = MF.getSubtarget().getInstrInfo(); 342 343 // Prepare cross-MBB liveness. 344 bundleCFGRecomputeKillFlags(MF); 345 346 StackTop = 0; 347 348 // Process the function in depth first order so that we process at least one 349 // of the predecessors for every reachable block in the function. 350 df_iterator_default_set<MachineBasicBlock*> Processed; 351 MachineBasicBlock *Entry = &MF.front(); 352 353 LiveBundle &Bundle = 354 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)]; 355 356 // In regcall convention, some FP registers may not be passed through 357 // the stack, so they will need to be assigned to the stack first 358 if ((Entry->getParent()->getFunction().getCallingConv() == 359 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { 360 // In the register calling convention, up to one FP argument could be 361 // saved in the first FP register. 362 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means 363 // that the FP registers contain arguments. 364 // The actual value is passed in FP0. 365 // Here we fix the stack and mark FP0 as pre-assigned register. 366 assert((Bundle.Mask & 0xFE) == 0 && 367 "Only FP0 could be passed as an argument"); 368 Bundle.FixCount = 1; 369 Bundle.FixStack[0] = 0; 370 } 371 372 bool Changed = false; 373 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) 374 Changed |= processBasicBlock(MF, *BB); 375 376 // Process any unreachable blocks in arbitrary order now. 377 if (MF.size() != Processed.size()) 378 for (MachineBasicBlock &BB : MF) 379 if (Processed.insert(&BB).second) 380 Changed |= processBasicBlock(MF, BB); 381 382 LiveBundles.clear(); 383 384 return Changed; 385 } 386 387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and 388 /// live-out sets for the FP registers. Consistent means that the set of 389 /// registers live-out from a block is identical to the live-in set of all 390 /// successors. This is not enforced by the normal live-in lists since 391 /// registers may be implicitly defined, or not used by all successors. 392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { 393 assert(LiveBundles.empty() && "Stale data in LiveBundles"); 394 LiveBundles.resize(Bundles->getNumBundles()); 395 396 // Gather the actual live-in masks for all MBBs. 397 for (MachineBasicBlock &MBB : MF) { 398 setKillFlags(MBB); 399 400 const unsigned Mask = calcLiveInMask(&MBB, false); 401 if (!Mask) 402 continue; 403 // Update MBB ingoing bundle mask. 404 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; 405 } 406 } 407 408 /// processBasicBlock - Loop over all of the instructions in the basic block, 409 /// transforming FP instructions into their stack form. 410 /// 411 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { 412 bool Changed = false; 413 MBB = &BB; 414 415 setupBlockStack(); 416 417 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { 418 MachineInstr &MI = *I; 419 uint64_t Flags = MI.getDesc().TSFlags; 420 421 unsigned FPInstClass = Flags & X86II::FPTypeMask; 422 if (MI.isInlineAsm()) 423 FPInstClass = X86II::SpecialFP; 424 425 if (MI.isCopy() && isFPCopy(MI)) 426 FPInstClass = X86II::SpecialFP; 427 428 if (MI.isImplicitDef() && 429 X86::RFP80RegClass.contains(MI.getOperand(0).getReg())) 430 FPInstClass = X86II::SpecialFP; 431 432 if (MI.isCall()) 433 FPInstClass = X86II::SpecialFP; 434 435 if (FPInstClass == X86II::NotFP) 436 continue; // Efficiently ignore non-fp insts! 437 438 MachineInstr *PrevMI = nullptr; 439 if (I != BB.begin()) 440 PrevMI = &*std::prev(I); 441 442 ++NumFP; // Keep track of # of pseudo instrs 443 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); 444 445 // Get dead variables list now because the MI pointer may be deleted as part 446 // of processing! 447 SmallVector<unsigned, 8> DeadRegs; 448 for (const MachineOperand &MO : MI.operands()) 449 if (MO.isReg() && MO.isDead()) 450 DeadRegs.push_back(MO.getReg()); 451 452 switch (FPInstClass) { 453 case X86II::ZeroArgFP: handleZeroArgFP(I); break; 454 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) 455 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) 456 case X86II::TwoArgFP: handleTwoArgFP(I); break; 457 case X86II::CompareFP: handleCompareFP(I); break; 458 case X86II::CondMovFP: handleCondMovFP(I); break; 459 case X86II::SpecialFP: handleSpecialFP(I); break; 460 default: llvm_unreachable("Unknown FP Type!"); 461 } 462 463 // Check to see if any of the values defined by this instruction are dead 464 // after definition. If so, pop them. 465 for (unsigned Reg : DeadRegs) { 466 // Check if Reg is live on the stack. An inline-asm register operand that 467 // is in the clobber list and marked dead might not be live on the stack. 468 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); 469 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { 470 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n"); 471 freeStackSlotAfter(I, Reg-X86::FP0); 472 } 473 } 474 475 // Print out all of the instructions expanded to if -debug 476 LLVM_DEBUG({ 477 MachineBasicBlock::iterator PrevI = PrevMI; 478 if (I == PrevI) { 479 dbgs() << "Just deleted pseudo instruction\n"; 480 } else { 481 MachineBasicBlock::iterator Start = I; 482 // Rewind to first instruction newly inserted. 483 while (Start != BB.begin() && std::prev(Start) != PrevI) 484 --Start; 485 dbgs() << "Inserted instructions:\n\t"; 486 Start->print(dbgs()); 487 while (++Start != std::next(I)) { 488 } 489 } 490 dumpStack(); 491 }); 492 (void)PrevMI; 493 494 Changed = true; 495 } 496 497 finishBlockStack(); 498 499 return Changed; 500 } 501 502 /// setupBlockStack - Use the live bundles to set up our model of the stack 503 /// to match predecessors' live out stack. 504 void FPS::setupBlockStack() { 505 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) 506 << " derived from " << MBB->getName() << ".\n"); 507 StackTop = 0; 508 // Get the live-in bundle for MBB. 509 const LiveBundle &Bundle = 510 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; 511 512 if (!Bundle.Mask) { 513 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n"); 514 return; 515 } 516 517 // Depth-first iteration should ensure that we always have an assigned stack. 518 assert(Bundle.isFixed() && "Reached block before any predecessors"); 519 520 // Push the fixed live-in registers. 521 for (unsigned i = Bundle.FixCount; i > 0; --i) { 522 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" 523 << unsigned(Bundle.FixStack[i - 1]) << '\n'); 524 pushReg(Bundle.FixStack[i-1]); 525 } 526 527 // Kill off unwanted live-ins. This can happen with a critical edge. 528 // FIXME: We could keep these live registers around as zombies. They may need 529 // to be revived at the end of a short block. It might save a few instrs. 530 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); 531 adjustLiveRegs(Mask, MBB->begin()); 532 LLVM_DEBUG(MBB->dump()); 533 } 534 535 /// finishBlockStack - Revive live-outs that are implicitly defined out of 536 /// MBB. Shuffle live registers to match the expected fixed stack of any 537 /// predecessors, and ensure that all predecessors are expecting the same 538 /// stack. 539 void FPS::finishBlockStack() { 540 // The RET handling below takes care of return blocks for us. 541 if (MBB->succ_empty()) 542 return; 543 544 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) 545 << " derived from " << MBB->getName() << ".\n"); 546 547 // Get MBB's live-out bundle. 548 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); 549 LiveBundle &Bundle = LiveBundles[BundleIdx]; 550 551 // We may need to kill and define some registers to match successors. 552 // FIXME: This can probably be combined with the shuffle below. 553 MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); 554 adjustLiveRegs(Bundle.Mask, Term); 555 556 if (!Bundle.Mask) { 557 LLVM_DEBUG(dbgs() << "No live-outs.\n"); 558 return; 559 } 560 561 // Has the stack order been fixed yet? 562 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": "); 563 if (Bundle.isFixed()) { 564 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n"); 565 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); 566 } else { 567 // Not fixed yet, we get to choose. 568 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n"); 569 Bundle.FixCount = StackTop; 570 for (unsigned i = 0; i < StackTop; ++i) 571 Bundle.FixStack[i] = getStackEntry(i); 572 } 573 } 574 575 576 //===----------------------------------------------------------------------===// 577 // Efficient Lookup Table Support 578 //===----------------------------------------------------------------------===// 579 580 namespace { 581 struct TableEntry { 582 uint16_t from; 583 uint16_t to; 584 bool operator<(const TableEntry &TE) const { return from < TE.from; } 585 friend bool operator<(const TableEntry &TE, unsigned V) { 586 return TE.from < V; 587 } 588 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, 589 const TableEntry &TE) { 590 return V < TE.from; 591 } 592 }; 593 } 594 595 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { 596 const TableEntry *I = llvm::lower_bound(Table, Opcode); 597 if (I != Table.end() && I->from == Opcode) 598 return I->to; 599 return -1; 600 } 601 602 #ifdef NDEBUG 603 #define ASSERT_SORTED(TABLE) 604 #else 605 #define ASSERT_SORTED(TABLE) \ 606 { \ 607 static std::atomic<bool> TABLE##Checked(false); \ 608 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \ 609 assert(is_sorted(TABLE) && \ 610 "All lookup tables must be sorted for efficient access!"); \ 611 TABLE##Checked.store(true, std::memory_order_relaxed); \ 612 } \ 613 } 614 #endif 615 616 //===----------------------------------------------------------------------===// 617 // Register File -> Register Stack Mapping Methods 618 //===----------------------------------------------------------------------===// 619 620 // OpcodeTable - Sorted map of register instructions to their stack version. 621 // The first element is an register file pseudo instruction, the second is the 622 // concrete X86 instruction which uses the register stack. 623 // 624 static const TableEntry OpcodeTable[] = { 625 { X86::ABS_Fp32 , X86::ABS_F }, 626 { X86::ABS_Fp64 , X86::ABS_F }, 627 { X86::ABS_Fp80 , X86::ABS_F }, 628 { X86::ADD_Fp32m , X86::ADD_F32m }, 629 { X86::ADD_Fp64m , X86::ADD_F64m }, 630 { X86::ADD_Fp64m32 , X86::ADD_F32m }, 631 { X86::ADD_Fp80m32 , X86::ADD_F32m }, 632 { X86::ADD_Fp80m64 , X86::ADD_F64m }, 633 { X86::ADD_FpI16m32 , X86::ADD_FI16m }, 634 { X86::ADD_FpI16m64 , X86::ADD_FI16m }, 635 { X86::ADD_FpI16m80 , X86::ADD_FI16m }, 636 { X86::ADD_FpI32m32 , X86::ADD_FI32m }, 637 { X86::ADD_FpI32m64 , X86::ADD_FI32m }, 638 { X86::ADD_FpI32m80 , X86::ADD_FI32m }, 639 { X86::CHS_Fp32 , X86::CHS_F }, 640 { X86::CHS_Fp64 , X86::CHS_F }, 641 { X86::CHS_Fp80 , X86::CHS_F }, 642 { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, 643 { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, 644 { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, 645 { X86::CMOVB_Fp32 , X86::CMOVB_F }, 646 { X86::CMOVB_Fp64 , X86::CMOVB_F }, 647 { X86::CMOVB_Fp80 , X86::CMOVB_F }, 648 { X86::CMOVE_Fp32 , X86::CMOVE_F }, 649 { X86::CMOVE_Fp64 , X86::CMOVE_F }, 650 { X86::CMOVE_Fp80 , X86::CMOVE_F }, 651 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, 652 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, 653 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, 654 { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, 655 { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, 656 { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, 657 { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, 658 { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, 659 { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, 660 { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, 661 { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, 662 { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, 663 { X86::CMOVP_Fp32 , X86::CMOVP_F }, 664 { X86::CMOVP_Fp64 , X86::CMOVP_F }, 665 { X86::CMOVP_Fp80 , X86::CMOVP_F }, 666 { X86::COM_FpIr32 , X86::COM_FIr }, 667 { X86::COM_FpIr64 , X86::COM_FIr }, 668 { X86::COM_FpIr80 , X86::COM_FIr }, 669 { X86::COM_Fpr32 , X86::COM_FST0r }, 670 { X86::COM_Fpr64 , X86::COM_FST0r }, 671 { X86::COM_Fpr80 , X86::COM_FST0r }, 672 { X86::DIVR_Fp32m , X86::DIVR_F32m }, 673 { X86::DIVR_Fp64m , X86::DIVR_F64m }, 674 { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, 675 { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, 676 { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, 677 { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, 678 { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, 679 { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, 680 { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, 681 { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, 682 { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, 683 { X86::DIV_Fp32m , X86::DIV_F32m }, 684 { X86::DIV_Fp64m , X86::DIV_F64m }, 685 { X86::DIV_Fp64m32 , X86::DIV_F32m }, 686 { X86::DIV_Fp80m32 , X86::DIV_F32m }, 687 { X86::DIV_Fp80m64 , X86::DIV_F64m }, 688 { X86::DIV_FpI16m32 , X86::DIV_FI16m }, 689 { X86::DIV_FpI16m64 , X86::DIV_FI16m }, 690 { X86::DIV_FpI16m80 , X86::DIV_FI16m }, 691 { X86::DIV_FpI32m32 , X86::DIV_FI32m }, 692 { X86::DIV_FpI32m64 , X86::DIV_FI32m }, 693 { X86::DIV_FpI32m80 , X86::DIV_FI32m }, 694 { X86::ILD_Fp16m32 , X86::ILD_F16m }, 695 { X86::ILD_Fp16m64 , X86::ILD_F16m }, 696 { X86::ILD_Fp16m80 , X86::ILD_F16m }, 697 { X86::ILD_Fp32m32 , X86::ILD_F32m }, 698 { X86::ILD_Fp32m64 , X86::ILD_F32m }, 699 { X86::ILD_Fp32m80 , X86::ILD_F32m }, 700 { X86::ILD_Fp64m32 , X86::ILD_F64m }, 701 { X86::ILD_Fp64m64 , X86::ILD_F64m }, 702 { X86::ILD_Fp64m80 , X86::ILD_F64m }, 703 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, 704 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, 705 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, 706 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, 707 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, 708 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, 709 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, 710 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, 711 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, 712 { X86::IST_Fp16m32 , X86::IST_F16m }, 713 { X86::IST_Fp16m64 , X86::IST_F16m }, 714 { X86::IST_Fp16m80 , X86::IST_F16m }, 715 { X86::IST_Fp32m32 , X86::IST_F32m }, 716 { X86::IST_Fp32m64 , X86::IST_F32m }, 717 { X86::IST_Fp32m80 , X86::IST_F32m }, 718 { X86::IST_Fp64m32 , X86::IST_FP64m }, 719 { X86::IST_Fp64m64 , X86::IST_FP64m }, 720 { X86::IST_Fp64m80 , X86::IST_FP64m }, 721 { X86::LD_Fp032 , X86::LD_F0 }, 722 { X86::LD_Fp064 , X86::LD_F0 }, 723 { X86::LD_Fp080 , X86::LD_F0 }, 724 { X86::LD_Fp132 , X86::LD_F1 }, 725 { X86::LD_Fp164 , X86::LD_F1 }, 726 { X86::LD_Fp180 , X86::LD_F1 }, 727 { X86::LD_Fp32m , X86::LD_F32m }, 728 { X86::LD_Fp32m64 , X86::LD_F32m }, 729 { X86::LD_Fp32m80 , X86::LD_F32m }, 730 { X86::LD_Fp64m , X86::LD_F64m }, 731 { X86::LD_Fp64m80 , X86::LD_F64m }, 732 { X86::LD_Fp80m , X86::LD_F80m }, 733 { X86::MUL_Fp32m , X86::MUL_F32m }, 734 { X86::MUL_Fp64m , X86::MUL_F64m }, 735 { X86::MUL_Fp64m32 , X86::MUL_F32m }, 736 { X86::MUL_Fp80m32 , X86::MUL_F32m }, 737 { X86::MUL_Fp80m64 , X86::MUL_F64m }, 738 { X86::MUL_FpI16m32 , X86::MUL_FI16m }, 739 { X86::MUL_FpI16m64 , X86::MUL_FI16m }, 740 { X86::MUL_FpI16m80 , X86::MUL_FI16m }, 741 { X86::MUL_FpI32m32 , X86::MUL_FI32m }, 742 { X86::MUL_FpI32m64 , X86::MUL_FI32m }, 743 { X86::MUL_FpI32m80 , X86::MUL_FI32m }, 744 { X86::SQRT_Fp32 , X86::SQRT_F }, 745 { X86::SQRT_Fp64 , X86::SQRT_F }, 746 { X86::SQRT_Fp80 , X86::SQRT_F }, 747 { X86::ST_Fp32m , X86::ST_F32m }, 748 { X86::ST_Fp64m , X86::ST_F64m }, 749 { X86::ST_Fp64m32 , X86::ST_F32m }, 750 { X86::ST_Fp80m32 , X86::ST_F32m }, 751 { X86::ST_Fp80m64 , X86::ST_F64m }, 752 { X86::ST_FpP80m , X86::ST_FP80m }, 753 { X86::SUBR_Fp32m , X86::SUBR_F32m }, 754 { X86::SUBR_Fp64m , X86::SUBR_F64m }, 755 { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, 756 { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, 757 { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, 758 { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, 759 { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, 760 { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, 761 { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, 762 { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, 763 { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, 764 { X86::SUB_Fp32m , X86::SUB_F32m }, 765 { X86::SUB_Fp64m , X86::SUB_F64m }, 766 { X86::SUB_Fp64m32 , X86::SUB_F32m }, 767 { X86::SUB_Fp80m32 , X86::SUB_F32m }, 768 { X86::SUB_Fp80m64 , X86::SUB_F64m }, 769 { X86::SUB_FpI16m32 , X86::SUB_FI16m }, 770 { X86::SUB_FpI16m64 , X86::SUB_FI16m }, 771 { X86::SUB_FpI16m80 , X86::SUB_FI16m }, 772 { X86::SUB_FpI32m32 , X86::SUB_FI32m }, 773 { X86::SUB_FpI32m64 , X86::SUB_FI32m }, 774 { X86::SUB_FpI32m80 , X86::SUB_FI32m }, 775 { X86::TST_Fp32 , X86::TST_F }, 776 { X86::TST_Fp64 , X86::TST_F }, 777 { X86::TST_Fp80 , X86::TST_F }, 778 { X86::UCOM_FpIr32 , X86::UCOM_FIr }, 779 { X86::UCOM_FpIr64 , X86::UCOM_FIr }, 780 { X86::UCOM_FpIr80 , X86::UCOM_FIr }, 781 { X86::UCOM_Fpr32 , X86::UCOM_Fr }, 782 { X86::UCOM_Fpr64 , X86::UCOM_Fr }, 783 { X86::UCOM_Fpr80 , X86::UCOM_Fr }, 784 { X86::XAM_Fp32 , X86::XAM_F }, 785 { X86::XAM_Fp64 , X86::XAM_F }, 786 { X86::XAM_Fp80 , X86::XAM_F }, 787 }; 788 789 static unsigned getConcreteOpcode(unsigned Opcode) { 790 ASSERT_SORTED(OpcodeTable); 791 int Opc = Lookup(OpcodeTable, Opcode); 792 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); 793 return Opc; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Helper Methods 798 //===----------------------------------------------------------------------===// 799 800 // PopTable - Sorted map of instructions to their popping version. The first 801 // element is an instruction, the second is the version which pops. 802 // 803 static const TableEntry PopTable[] = { 804 { X86::ADD_FrST0 , X86::ADD_FPrST0 }, 805 806 { X86::COMP_FST0r, X86::FCOMPP }, 807 { X86::COM_FIr , X86::COM_FIPr }, 808 { X86::COM_FST0r , X86::COMP_FST0r }, 809 810 { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, 811 { X86::DIV_FrST0 , X86::DIV_FPrST0 }, 812 813 { X86::IST_F16m , X86::IST_FP16m }, 814 { X86::IST_F32m , X86::IST_FP32m }, 815 816 { X86::MUL_FrST0 , X86::MUL_FPrST0 }, 817 818 { X86::ST_F32m , X86::ST_FP32m }, 819 { X86::ST_F64m , X86::ST_FP64m }, 820 { X86::ST_Frr , X86::ST_FPrr }, 821 822 { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, 823 { X86::SUB_FrST0 , X86::SUB_FPrST0 }, 824 825 { X86::UCOM_FIr , X86::UCOM_FIPr }, 826 827 { X86::UCOM_FPr , X86::UCOM_FPPr }, 828 { X86::UCOM_Fr , X86::UCOM_FPr }, 829 }; 830 831 static bool doesInstructionSetFPSW(MachineInstr &MI) { 832 if (const MachineOperand *MO = MI.findRegisterDefOperand(X86::FPSW)) 833 if (!MO->isDead()) 834 return true; 835 return false; 836 } 837 838 static MachineBasicBlock::iterator 839 getNextFPInstruction(MachineBasicBlock::iterator I) { 840 MachineBasicBlock &MBB = *I->getParent(); 841 while (++I != MBB.end()) { 842 MachineInstr &MI = *I; 843 if (X86::isX87Instruction(MI)) 844 return I; 845 } 846 return MBB.end(); 847 } 848 849 /// popStackAfter - Pop the current value off of the top of the FP stack after 850 /// the specified instruction. This attempts to be sneaky and combine the pop 851 /// into the instruction itself if possible. The iterator is left pointing to 852 /// the last instruction, be it a new pop instruction inserted, or the old 853 /// instruction if it was modified in place. 854 /// 855 void FPS::popStackAfter(MachineBasicBlock::iterator &I) { 856 MachineInstr &MI = *I; 857 const DebugLoc &dl = MI.getDebugLoc(); 858 ASSERT_SORTED(PopTable); 859 860 popReg(); 861 862 // Check to see if there is a popping version of this instruction... 863 int Opcode = Lookup(PopTable, I->getOpcode()); 864 if (Opcode != -1) { 865 I->setDesc(TII->get(Opcode)); 866 if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr) 867 I->removeOperand(0); 868 MI.dropDebugNumber(); 869 } else { // Insert an explicit pop 870 // If this instruction sets FPSW, which is read in following instruction, 871 // insert pop after that reader. 872 if (doesInstructionSetFPSW(MI)) { 873 MachineBasicBlock &MBB = *MI.getParent(); 874 MachineBasicBlock::iterator Next = getNextFPInstruction(I); 875 if (Next != MBB.end() && Next->readsRegister(X86::FPSW)) 876 I = Next; 877 } 878 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); 879 } 880 } 881 882 /// freeStackSlotAfter - Free the specified register from the register stack, so 883 /// that it is no longer in a register. If the register is currently at the top 884 /// of the stack, we just pop the current instruction, otherwise we store the 885 /// current top-of-stack into the specified slot, then pop the top of stack. 886 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { 887 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. 888 popStackAfter(I); 889 return; 890 } 891 892 // Otherwise, store the top of stack into the dead slot, killing the operand 893 // without having to add in an explicit xchg then pop. 894 // 895 I = freeStackSlotBefore(++I, FPRegNo); 896 } 897 898 /// freeStackSlotBefore - Free the specified register without trying any 899 /// folding. 900 MachineBasicBlock::iterator 901 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { 902 unsigned STReg = getSTReg(FPRegNo); 903 unsigned OldSlot = getSlot(FPRegNo); 904 unsigned TopReg = Stack[StackTop-1]; 905 Stack[OldSlot] = TopReg; 906 RegMap[TopReg] = OldSlot; 907 RegMap[FPRegNo] = ~0; 908 Stack[--StackTop] = ~0; 909 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) 910 .addReg(STReg) 911 .getInstr(); 912 } 913 914 /// adjustLiveRegs - Kill and revive registers such that exactly the FP 915 /// registers with a bit in Mask are live. 916 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { 917 unsigned Defs = Mask; 918 unsigned Kills = 0; 919 for (unsigned i = 0; i < StackTop; ++i) { 920 unsigned RegNo = Stack[i]; 921 if (!(Defs & (1 << RegNo))) 922 // This register is live, but we don't want it. 923 Kills |= (1 << RegNo); 924 else 925 // We don't need to imp-def this live register. 926 Defs &= ~(1 << RegNo); 927 } 928 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); 929 930 // Produce implicit-defs for free by using killed registers. 931 while (Kills && Defs) { 932 unsigned KReg = llvm::countr_zero(Kills); 933 unsigned DReg = llvm::countr_zero(Defs); 934 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg 935 << "\n"); 936 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); 937 std::swap(RegMap[KReg], RegMap[DReg]); 938 Kills &= ~(1 << KReg); 939 Defs &= ~(1 << DReg); 940 } 941 942 // Kill registers by popping. 943 if (Kills && I != MBB->begin()) { 944 MachineBasicBlock::iterator I2 = std::prev(I); 945 while (StackTop) { 946 unsigned KReg = getStackEntry(0); 947 if (!(Kills & (1 << KReg))) 948 break; 949 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n"); 950 popStackAfter(I2); 951 Kills &= ~(1 << KReg); 952 } 953 } 954 955 // Manually kill the rest. 956 while (Kills) { 957 unsigned KReg = llvm::countr_zero(Kills); 958 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n"); 959 freeStackSlotBefore(I, KReg); 960 Kills &= ~(1 << KReg); 961 } 962 963 // Load zeros for all the imp-defs. 964 while(Defs) { 965 unsigned DReg = llvm::countr_zero(Defs); 966 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n"); 967 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); 968 pushReg(DReg); 969 Defs &= ~(1 << DReg); 970 } 971 972 // Now we should have the correct registers live. 973 LLVM_DEBUG(dumpStack()); 974 assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch"); 975 } 976 977 /// shuffleStackTop - emit fxch instructions before I to shuffle the top 978 /// FixCount entries into the order given by FixStack. 979 /// FIXME: Is there a better algorithm than insertion sort? 980 void FPS::shuffleStackTop(const unsigned char *FixStack, 981 unsigned FixCount, 982 MachineBasicBlock::iterator I) { 983 // Move items into place, starting from the desired stack bottom. 984 while (FixCount--) { 985 // Old register at position FixCount. 986 unsigned OldReg = getStackEntry(FixCount); 987 // Desired register at position FixCount. 988 unsigned Reg = FixStack[FixCount]; 989 if (Reg == OldReg) 990 continue; 991 // (Reg st0) (OldReg st0) = (Reg OldReg st0) 992 moveToTop(Reg, I); 993 if (FixCount > 0) 994 moveToTop(OldReg, I); 995 } 996 LLVM_DEBUG(dumpStack()); 997 } 998 999 1000 //===----------------------------------------------------------------------===// 1001 // Instruction transformation implementation 1002 //===----------------------------------------------------------------------===// 1003 1004 void FPS::handleCall(MachineBasicBlock::iterator &I) { 1005 MachineInstr &MI = *I; 1006 unsigned STReturns = 0; 1007 1008 bool ClobbersFPStack = false; 1009 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1010 MachineOperand &Op = MI.getOperand(i); 1011 // Check if this call clobbers the FP stack. 1012 // is sufficient. 1013 if (Op.isRegMask()) { 1014 bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0); 1015 #ifndef NDEBUG 1016 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); 1017 for (unsigned i = 1; i != 8; ++i) 1018 assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 && 1019 "Inconsistent FP register clobber"); 1020 #endif 1021 1022 if (ClobbersFP0) 1023 ClobbersFPStack = true; 1024 } 1025 1026 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1027 continue; 1028 1029 assert(Op.isImplicit() && "Expected implicit def/use"); 1030 1031 if (Op.isDef()) 1032 STReturns |= 1 << getFPReg(Op); 1033 1034 // Remove the operand so that later passes don't see it. 1035 MI.removeOperand(i); 1036 --i; 1037 --e; 1038 } 1039 1040 // Most calls should have a regmask that clobbers the FP registers. If it 1041 // isn't present then the register allocator didn't spill the FP registers 1042 // so they are still on the stack. 1043 assert((ClobbersFPStack || STReturns == 0) && 1044 "ST returns without FP stack clobber"); 1045 if (!ClobbersFPStack) 1046 return; 1047 1048 unsigned N = llvm::countr_one(STReturns); 1049 1050 // FP registers used for function return must be consecutive starting at 1051 // FP0 1052 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); 1053 1054 // Reset the FP Stack - It is required because of possible leftovers from 1055 // passed arguments. The caller should assume that the FP stack is 1056 // returned empty (unless the callee returns values on FP stack). 1057 while (StackTop > 0) 1058 popReg(); 1059 1060 for (unsigned I = 0; I < N; ++I) 1061 pushReg(N - I - 1); 1062 1063 // If this call has been modified, drop all variable values defined by it. 1064 // We can't track them once they've been stackified. 1065 if (STReturns) 1066 I->dropDebugNumber(); 1067 } 1068 1069 /// If RET has an FP register use operand, pass the first one in ST(0) and 1070 /// the second one in ST(1). 1071 void FPS::handleReturn(MachineBasicBlock::iterator &I) { 1072 MachineInstr &MI = *I; 1073 1074 // Find the register operands. 1075 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; 1076 unsigned LiveMask = 0; 1077 1078 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1079 MachineOperand &Op = MI.getOperand(i); 1080 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1081 continue; 1082 // FP Register uses must be kills unless there are two uses of the same 1083 // register, in which case only one will be a kill. 1084 assert(Op.isUse() && 1085 (Op.isKill() || // Marked kill. 1086 getFPReg(Op) == FirstFPRegOp || // Second instance. 1087 MI.killsRegister(Op.getReg())) && // Later use is marked kill. 1088 "Ret only defs operands, and values aren't live beyond it"); 1089 1090 if (FirstFPRegOp == ~0U) 1091 FirstFPRegOp = getFPReg(Op); 1092 else { 1093 assert(SecondFPRegOp == ~0U && "More than two fp operands!"); 1094 SecondFPRegOp = getFPReg(Op); 1095 } 1096 LiveMask |= (1 << getFPReg(Op)); 1097 1098 // Remove the operand so that later passes don't see it. 1099 MI.removeOperand(i); 1100 --i; 1101 --e; 1102 } 1103 1104 // We may have been carrying spurious live-ins, so make sure only the 1105 // returned registers are left live. 1106 adjustLiveRegs(LiveMask, MI); 1107 if (!LiveMask) return; // Quick check to see if any are possible. 1108 1109 // There are only four possibilities here: 1110 // 1) we are returning a single FP value. In this case, it has to be in 1111 // ST(0) already, so just declare success by removing the value from the 1112 // FP Stack. 1113 if (SecondFPRegOp == ~0U) { 1114 // Assert that the top of stack contains the right FP register. 1115 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && 1116 "Top of stack not the right register for RET!"); 1117 1118 // Ok, everything is good, mark the value as not being on the stack 1119 // anymore so that our assertion about the stack being empty at end of 1120 // block doesn't fire. 1121 StackTop = 0; 1122 return; 1123 } 1124 1125 // Otherwise, we are returning two values: 1126 // 2) If returning the same value for both, we only have one thing in the FP 1127 // stack. Consider: RET FP1, FP1 1128 if (StackTop == 1) { 1129 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& 1130 "Stack misconfiguration for RET!"); 1131 1132 // Duplicate the TOS so that we return it twice. Just pick some other FPx 1133 // register to hold it. 1134 unsigned NewReg = ScratchFPReg; 1135 duplicateToTop(FirstFPRegOp, NewReg, MI); 1136 FirstFPRegOp = NewReg; 1137 } 1138 1139 /// Okay we know we have two different FPx operands now: 1140 assert(StackTop == 2 && "Must have two values live!"); 1141 1142 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently 1143 /// in ST(1). In this case, emit an fxch. 1144 if (getStackEntry(0) == SecondFPRegOp) { 1145 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); 1146 moveToTop(FirstFPRegOp, MI); 1147 } 1148 1149 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in 1150 /// ST(1). Just remove both from our understanding of the stack and return. 1151 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); 1152 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); 1153 StackTop = 0; 1154 } 1155 1156 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> 1157 /// 1158 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { 1159 MachineInstr &MI = *I; 1160 unsigned DestReg = getFPReg(MI.getOperand(0)); 1161 1162 // Change from the pseudo instruction to the concrete instruction. 1163 MI.removeOperand(0); // Remove the explicit ST(0) operand 1164 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1165 MI.addOperand( 1166 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true)); 1167 1168 // Result gets pushed on the stack. 1169 pushReg(DestReg); 1170 1171 MI.dropDebugNumber(); 1172 } 1173 1174 /// handleOneArgFP - fst <mem>, ST(0) 1175 /// 1176 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { 1177 MachineInstr &MI = *I; 1178 unsigned NumOps = MI.getDesc().getNumOperands(); 1179 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && 1180 "Can only handle fst* & ftst instructions!"); 1181 1182 // Is this the last use of the source register? 1183 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1)); 1184 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1185 1186 // FISTP64m is strange because there isn't a non-popping versions. 1187 // If we have one _and_ we don't want to pop the operand, duplicate the value 1188 // on the stack instead of moving it. This ensure that popping the value is 1189 // always ok. 1190 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. 1191 // 1192 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || 1193 MI.getOpcode() == X86::ISTT_Fp16m32 || 1194 MI.getOpcode() == X86::ISTT_Fp32m32 || 1195 MI.getOpcode() == X86::ISTT_Fp64m32 || 1196 MI.getOpcode() == X86::IST_Fp64m64 || 1197 MI.getOpcode() == X86::ISTT_Fp16m64 || 1198 MI.getOpcode() == X86::ISTT_Fp32m64 || 1199 MI.getOpcode() == X86::ISTT_Fp64m64 || 1200 MI.getOpcode() == X86::IST_Fp64m80 || 1201 MI.getOpcode() == X86::ISTT_Fp16m80 || 1202 MI.getOpcode() == X86::ISTT_Fp32m80 || 1203 MI.getOpcode() == X86::ISTT_Fp64m80 || 1204 MI.getOpcode() == X86::ST_FpP80m)) { 1205 duplicateToTop(Reg, ScratchFPReg, I); 1206 } else { 1207 moveToTop(Reg, I); // Move to the top of the stack... 1208 } 1209 1210 // Convert from the pseudo instruction to the concrete instruction. 1211 MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand 1212 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1213 MI.addOperand( 1214 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true)); 1215 1216 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || 1217 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || 1218 MI.getOpcode() == X86::ST_FP80m) { 1219 if (StackTop == 0) 1220 report_fatal_error("Stack empty??"); 1221 --StackTop; 1222 } else if (KillsSrc) { // Last use of operand? 1223 popStackAfter(I); 1224 } 1225 1226 MI.dropDebugNumber(); 1227 } 1228 1229 1230 /// handleOneArgFPRW: Handle instructions that read from the top of stack and 1231 /// replace the value with a newly computed value. These instructions may have 1232 /// non-fp operands after their FP operands. 1233 /// 1234 /// Examples: 1235 /// R1 = fchs R2 1236 /// R1 = fadd R2, [mem] 1237 /// 1238 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { 1239 MachineInstr &MI = *I; 1240 #ifndef NDEBUG 1241 unsigned NumOps = MI.getDesc().getNumOperands(); 1242 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); 1243 #endif 1244 1245 // Is this the last use of the source register? 1246 unsigned Reg = getFPReg(MI.getOperand(1)); 1247 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1248 1249 if (KillsSrc) { 1250 // If this is the last use of the source register, just make sure it's on 1251 // the top of the stack. 1252 moveToTop(Reg, I); 1253 if (StackTop == 0) 1254 report_fatal_error("Stack cannot be empty!"); 1255 --StackTop; 1256 pushReg(getFPReg(MI.getOperand(0))); 1257 } else { 1258 // If this is not the last use of the source register, _copy_ it to the top 1259 // of the stack. 1260 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I); 1261 } 1262 1263 // Change from the pseudo instruction to the concrete instruction. 1264 MI.removeOperand(1); // Drop the source operand. 1265 MI.removeOperand(0); // Drop the destination operand. 1266 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1267 MI.dropDebugNumber(); 1268 } 1269 1270 1271 //===----------------------------------------------------------------------===// 1272 // Define tables of various ways to map pseudo instructions 1273 // 1274 1275 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) 1276 static const TableEntry ForwardST0Table[] = { 1277 { X86::ADD_Fp32 , X86::ADD_FST0r }, 1278 { X86::ADD_Fp64 , X86::ADD_FST0r }, 1279 { X86::ADD_Fp80 , X86::ADD_FST0r }, 1280 { X86::DIV_Fp32 , X86::DIV_FST0r }, 1281 { X86::DIV_Fp64 , X86::DIV_FST0r }, 1282 { X86::DIV_Fp80 , X86::DIV_FST0r }, 1283 { X86::MUL_Fp32 , X86::MUL_FST0r }, 1284 { X86::MUL_Fp64 , X86::MUL_FST0r }, 1285 { X86::MUL_Fp80 , X86::MUL_FST0r }, 1286 { X86::SUB_Fp32 , X86::SUB_FST0r }, 1287 { X86::SUB_Fp64 , X86::SUB_FST0r }, 1288 { X86::SUB_Fp80 , X86::SUB_FST0r }, 1289 }; 1290 1291 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) 1292 static const TableEntry ReverseST0Table[] = { 1293 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative 1294 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative 1295 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative 1296 { X86::DIV_Fp32 , X86::DIVR_FST0r }, 1297 { X86::DIV_Fp64 , X86::DIVR_FST0r }, 1298 { X86::DIV_Fp80 , X86::DIVR_FST0r }, 1299 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative 1300 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative 1301 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative 1302 { X86::SUB_Fp32 , X86::SUBR_FST0r }, 1303 { X86::SUB_Fp64 , X86::SUBR_FST0r }, 1304 { X86::SUB_Fp80 , X86::SUBR_FST0r }, 1305 }; 1306 1307 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) 1308 static const TableEntry ForwardSTiTable[] = { 1309 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative 1310 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative 1311 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative 1312 { X86::DIV_Fp32 , X86::DIVR_FrST0 }, 1313 { X86::DIV_Fp64 , X86::DIVR_FrST0 }, 1314 { X86::DIV_Fp80 , X86::DIVR_FrST0 }, 1315 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative 1316 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative 1317 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative 1318 { X86::SUB_Fp32 , X86::SUBR_FrST0 }, 1319 { X86::SUB_Fp64 , X86::SUBR_FrST0 }, 1320 { X86::SUB_Fp80 , X86::SUBR_FrST0 }, 1321 }; 1322 1323 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) 1324 static const TableEntry ReverseSTiTable[] = { 1325 { X86::ADD_Fp32 , X86::ADD_FrST0 }, 1326 { X86::ADD_Fp64 , X86::ADD_FrST0 }, 1327 { X86::ADD_Fp80 , X86::ADD_FrST0 }, 1328 { X86::DIV_Fp32 , X86::DIV_FrST0 }, 1329 { X86::DIV_Fp64 , X86::DIV_FrST0 }, 1330 { X86::DIV_Fp80 , X86::DIV_FrST0 }, 1331 { X86::MUL_Fp32 , X86::MUL_FrST0 }, 1332 { X86::MUL_Fp64 , X86::MUL_FrST0 }, 1333 { X86::MUL_Fp80 , X86::MUL_FrST0 }, 1334 { X86::SUB_Fp32 , X86::SUB_FrST0 }, 1335 { X86::SUB_Fp64 , X86::SUB_FrST0 }, 1336 { X86::SUB_Fp80 , X86::SUB_FrST0 }, 1337 }; 1338 1339 1340 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual 1341 /// instructions which need to be simplified and possibly transformed. 1342 /// 1343 /// Result: ST(0) = fsub ST(0), ST(i) 1344 /// ST(i) = fsub ST(0), ST(i) 1345 /// ST(0) = fsubr ST(0), ST(i) 1346 /// ST(i) = fsubr ST(0), ST(i) 1347 /// 1348 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { 1349 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1350 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1351 MachineInstr &MI = *I; 1352 1353 unsigned NumOperands = MI.getDesc().getNumOperands(); 1354 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); 1355 unsigned Dest = getFPReg(MI.getOperand(0)); 1356 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1357 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1358 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1359 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1360 const DebugLoc &dl = MI.getDebugLoc(); 1361 1362 unsigned TOS = getStackEntry(0); 1363 1364 // One of our operands must be on the top of the stack. If neither is yet, we 1365 // need to move one. 1366 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? 1367 // We can choose to move either operand to the top of the stack. If one of 1368 // the operands is killed by this instruction, we want that one so that we 1369 // can update right on top of the old version. 1370 if (KillsOp0) { 1371 moveToTop(Op0, I); // Move dead operand to TOS. 1372 TOS = Op0; 1373 } else if (KillsOp1) { 1374 moveToTop(Op1, I); 1375 TOS = Op1; 1376 } else { 1377 // All of the operands are live after this instruction executes, so we 1378 // cannot update on top of any operand. Because of this, we must 1379 // duplicate one of the stack elements to the top. It doesn't matter 1380 // which one we pick. 1381 // 1382 duplicateToTop(Op0, Dest, I); 1383 Op0 = TOS = Dest; 1384 KillsOp0 = true; 1385 } 1386 } else if (!KillsOp0 && !KillsOp1) { 1387 // If we DO have one of our operands at the top of the stack, but we don't 1388 // have a dead operand, we must duplicate one of the operands to a new slot 1389 // on the stack. 1390 duplicateToTop(Op0, Dest, I); 1391 Op0 = TOS = Dest; 1392 KillsOp0 = true; 1393 } 1394 1395 // Now we know that one of our operands is on the top of the stack, and at 1396 // least one of our operands is killed by this instruction. 1397 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && 1398 "Stack conditions not set up right!"); 1399 1400 // We decide which form to use based on what is on the top of the stack, and 1401 // which operand is killed by this instruction. 1402 ArrayRef<TableEntry> InstTable; 1403 bool isForward = TOS == Op0; 1404 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); 1405 if (updateST0) { 1406 if (isForward) 1407 InstTable = ForwardST0Table; 1408 else 1409 InstTable = ReverseST0Table; 1410 } else { 1411 if (isForward) 1412 InstTable = ForwardSTiTable; 1413 else 1414 InstTable = ReverseSTiTable; 1415 } 1416 1417 int Opcode = Lookup(InstTable, MI.getOpcode()); 1418 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); 1419 1420 // NotTOS - The register which is not on the top of stack... 1421 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; 1422 1423 // Replace the old instruction with a new instruction 1424 MBB->remove(&*I++); 1425 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); 1426 1427 if (!MI.mayRaiseFPException()) 1428 I->setFlag(MachineInstr::MIFlag::NoFPExcept); 1429 1430 // If both operands are killed, pop one off of the stack in addition to 1431 // overwriting the other one. 1432 if (KillsOp0 && KillsOp1 && Op0 != Op1) { 1433 assert(!updateST0 && "Should have updated other operand!"); 1434 popStackAfter(I); // Pop the top of stack 1435 } 1436 1437 // Update stack information so that we know the destination register is now on 1438 // the stack. 1439 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); 1440 assert(UpdatedSlot < StackTop && Dest < 7); 1441 Stack[UpdatedSlot] = Dest; 1442 RegMap[Dest] = UpdatedSlot; 1443 MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction 1444 } 1445 1446 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP 1447 /// register arguments and no explicit destinations. 1448 /// 1449 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { 1450 MachineInstr &MI = *I; 1451 1452 unsigned NumOperands = MI.getDesc().getNumOperands(); 1453 assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); 1454 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1455 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1456 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1457 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1458 1459 // Make sure the first operand is on the top of stack, the other one can be 1460 // anywhere. 1461 moveToTop(Op0, I); 1462 1463 // Change from the pseudo instruction to the concrete instruction. 1464 MI.getOperand(0).setReg(getSTReg(Op1)); 1465 MI.removeOperand(1); 1466 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1467 MI.dropDebugNumber(); 1468 1469 // If any of the operands are killed by this instruction, free them. 1470 if (KillsOp0) freeStackSlotAfter(I, Op0); 1471 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); 1472 } 1473 1474 /// handleCondMovFP - Handle two address conditional move instructions. These 1475 /// instructions move a st(i) register to st(0) iff a condition is true. These 1476 /// instructions require that the first operand is at the top of the stack, but 1477 /// otherwise don't modify the stack at all. 1478 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { 1479 MachineInstr &MI = *I; 1480 1481 unsigned Op0 = getFPReg(MI.getOperand(0)); 1482 unsigned Op1 = getFPReg(MI.getOperand(2)); 1483 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1484 1485 // The first operand *must* be on the top of the stack. 1486 moveToTop(Op0, I); 1487 1488 // Change the second operand to the stack register that the operand is in. 1489 // Change from the pseudo instruction to the concrete instruction. 1490 MI.removeOperand(0); 1491 MI.removeOperand(1); 1492 MI.getOperand(0).setReg(getSTReg(Op1)); 1493 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1494 MI.dropDebugNumber(); 1495 1496 // If we kill the second operand, make sure to pop it from the stack. 1497 if (Op0 != Op1 && KillsOp1) { 1498 // Get this value off of the register stack. 1499 freeStackSlotAfter(I, Op1); 1500 } 1501 } 1502 1503 1504 /// handleSpecialFP - Handle special instructions which behave unlike other 1505 /// floating point instructions. This is primarily intended for use by pseudo 1506 /// instructions. 1507 /// 1508 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { 1509 MachineInstr &MI = *Inst; 1510 1511 if (MI.isCall()) { 1512 handleCall(Inst); 1513 return; 1514 } 1515 1516 if (MI.isReturn()) { 1517 handleReturn(Inst); 1518 return; 1519 } 1520 1521 switch (MI.getOpcode()) { 1522 default: llvm_unreachable("Unknown SpecialFP instruction!"); 1523 case TargetOpcode::COPY: { 1524 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. 1525 const MachineOperand &MO1 = MI.getOperand(1); 1526 const MachineOperand &MO0 = MI.getOperand(0); 1527 bool KillsSrc = MI.killsRegister(MO1.getReg()); 1528 1529 // FP <- FP copy. 1530 unsigned DstFP = getFPReg(MO0); 1531 unsigned SrcFP = getFPReg(MO1); 1532 assert(isLive(SrcFP) && "Cannot copy dead register"); 1533 if (KillsSrc) { 1534 // If the input operand is killed, we can just change the owner of the 1535 // incoming stack slot into the result. 1536 unsigned Slot = getSlot(SrcFP); 1537 Stack[Slot] = DstFP; 1538 RegMap[DstFP] = Slot; 1539 } else { 1540 // For COPY we just duplicate the specified value to a new stack slot. 1541 // This could be made better, but would require substantial changes. 1542 duplicateToTop(SrcFP, DstFP, Inst); 1543 } 1544 break; 1545 } 1546 1547 case TargetOpcode::IMPLICIT_DEF: { 1548 // All FP registers must be explicitly defined, so load a 0 instead. 1549 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0; 1550 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); 1551 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0)); 1552 pushReg(Reg); 1553 break; 1554 } 1555 1556 case TargetOpcode::INLINEASM: 1557 case TargetOpcode::INLINEASM_BR: { 1558 // The inline asm MachineInstr currently only *uses* FP registers for the 1559 // 'f' constraint. These should be turned into the current ST(x) register 1560 // in the machine instr. 1561 // 1562 // There are special rules for x87 inline assembly. The compiler must know 1563 // exactly how many registers are popped and pushed implicitly by the asm. 1564 // Otherwise it is not possible to restore the stack state after the inline 1565 // asm. 1566 // 1567 // There are 3 kinds of input operands: 1568 // 1569 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A 1570 // popped input operand must be in a fixed stack slot, and it is either 1571 // tied to an output operand, or in the clobber list. The MI has ST use 1572 // and def operands for these inputs. 1573 // 1574 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are 1575 // preserved by the inline asm. The fixed stack slots must be STn-STm 1576 // following the popped inputs. A fixed input operand cannot be tied to 1577 // an output or appear in the clobber list. The MI has ST use operands 1578 // and no defs for these inputs. 1579 // 1580 // 3. Preserved inputs. These inputs use the "f" constraint which is 1581 // represented as an FP register. The inline asm won't change these 1582 // stack slots. 1583 // 1584 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered 1585 // registers do not count as output operands. The inline asm changes the 1586 // stack as if it popped all the popped inputs and then pushed all the 1587 // output operands. 1588 1589 // Scan the assembly for ST registers used, defined and clobbered. We can 1590 // only tell clobbers from defs by looking at the asm descriptor. 1591 unsigned STUses = 0, STDefs = 0, STClobbers = 0; 1592 unsigned NumOps = 0; 1593 SmallSet<unsigned, 1> FRegIdx; 1594 unsigned RCID; 1595 1596 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); 1597 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { 1598 unsigned Flags = MI.getOperand(i).getImm(); 1599 const InlineAsm::Flag F(Flags); 1600 1601 NumOps = F.getNumOperandRegisters(); 1602 if (NumOps != 1) 1603 continue; 1604 const MachineOperand &MO = MI.getOperand(i + 1); 1605 if (!MO.isReg()) 1606 continue; 1607 unsigned STReg = MO.getReg() - X86::FP0; 1608 if (STReg >= 8) 1609 continue; 1610 1611 // If the flag has a register class constraint, this must be an operand 1612 // with constraint "f". Record its index and continue. 1613 if (F.hasRegClassConstraint(RCID)) { 1614 FRegIdx.insert(i + 1); 1615 continue; 1616 } 1617 1618 switch (F.getKind()) { 1619 case InlineAsm::Kind::RegUse: 1620 STUses |= (1u << STReg); 1621 break; 1622 case InlineAsm::Kind::RegDef: 1623 case InlineAsm::Kind::RegDefEarlyClobber: 1624 STDefs |= (1u << STReg); 1625 break; 1626 case InlineAsm::Kind::Clobber: 1627 STClobbers |= (1u << STReg); 1628 break; 1629 default: 1630 break; 1631 } 1632 } 1633 1634 if (STUses && !isMask_32(STUses)) 1635 MI.emitError("fixed input regs must be last on the x87 stack"); 1636 unsigned NumSTUses = llvm::countr_one(STUses); 1637 1638 // Defs must be contiguous from the stack top. ST0-STn. 1639 if (STDefs && !isMask_32(STDefs)) { 1640 MI.emitError("output regs must be last on the x87 stack"); 1641 STDefs = NextPowerOf2(STDefs) - 1; 1642 } 1643 unsigned NumSTDefs = llvm::countr_one(STDefs); 1644 1645 // So must the clobbered stack slots. ST0-STm, m >= n. 1646 if (STClobbers && !isMask_32(STDefs | STClobbers)) 1647 MI.emitError("clobbers must be last on the x87 stack"); 1648 1649 // Popped inputs are the ones that are also clobbered or defined. 1650 unsigned STPopped = STUses & (STDefs | STClobbers); 1651 if (STPopped && !isMask_32(STPopped)) 1652 MI.emitError("implicitly popped regs must be last on the x87 stack"); 1653 unsigned NumSTPopped = llvm::countr_one(STPopped); 1654 1655 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " 1656 << NumSTPopped << ", and defines " << NumSTDefs 1657 << " regs.\n"); 1658 1659 #ifndef NDEBUG 1660 // If any input operand uses constraint "f", all output register 1661 // constraints must be early-clobber defs. 1662 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) 1663 if (FRegIdx.count(I)) { 1664 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && 1665 "Operands with constraint \"f\" cannot overlap with defs"); 1666 } 1667 #endif 1668 1669 // Collect all FP registers (register operands with constraints "t", "u", 1670 // and "f") to kill afer the instruction. 1671 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; 1672 for (const MachineOperand &Op : MI.operands()) { 1673 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1674 continue; 1675 unsigned FPReg = getFPReg(Op); 1676 1677 // If we kill this operand, make sure to pop it from the stack after the 1678 // asm. We just remember it for now, and pop them all off at the end in 1679 // a batch. 1680 if (Op.isUse() && Op.isKill()) 1681 FPKills |= 1U << FPReg; 1682 } 1683 1684 // Do not include registers that are implicitly popped by defs/clobbers. 1685 FPKills &= ~(STDefs | STClobbers); 1686 1687 // Now we can rearrange the live registers to match what was requested. 1688 unsigned char STUsesArray[8]; 1689 1690 for (unsigned I = 0; I < NumSTUses; ++I) 1691 STUsesArray[I] = I; 1692 1693 shuffleStackTop(STUsesArray, NumSTUses, Inst); 1694 LLVM_DEBUG({ 1695 dbgs() << "Before asm: "; 1696 dumpStack(); 1697 }); 1698 1699 // With the stack layout fixed, rewrite the FP registers. 1700 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1701 MachineOperand &Op = MI.getOperand(i); 1702 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1703 continue; 1704 1705 unsigned FPReg = getFPReg(Op); 1706 1707 if (FRegIdx.count(i)) 1708 // Operand with constraint "f". 1709 Op.setReg(getSTReg(FPReg)); 1710 else 1711 // Operand with a single register class constraint ("t" or "u"). 1712 Op.setReg(X86::ST0 + FPReg); 1713 } 1714 1715 // Simulate the inline asm popping its inputs and pushing its outputs. 1716 StackTop -= NumSTPopped; 1717 1718 for (unsigned i = 0; i < NumSTDefs; ++i) 1719 pushReg(NumSTDefs - i - 1); 1720 1721 // If this asm kills any FP registers (is the last use of them) we must 1722 // explicitly emit pop instructions for them. Do this now after the asm has 1723 // executed so that the ST(x) numbers are not off (which would happen if we 1724 // did this inline with operand rewriting). 1725 // 1726 // Note: this might be a non-optimal pop sequence. We might be able to do 1727 // better by trying to pop in stack order or something. 1728 while (FPKills) { 1729 unsigned FPReg = llvm::countr_zero(FPKills); 1730 if (isLive(FPReg)) 1731 freeStackSlotAfter(Inst, FPReg); 1732 FPKills &= ~(1U << FPReg); 1733 } 1734 1735 // Don't delete the inline asm! 1736 return; 1737 } 1738 } 1739 1740 Inst = MBB->erase(Inst); // Remove the pseudo instruction 1741 1742 // We want to leave I pointing to the previous instruction, but what if we 1743 // just erased the first instruction? 1744 if (Inst == MBB->begin()) { 1745 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n"); 1746 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); 1747 } else 1748 --Inst; 1749 } 1750 1751 void FPS::setKillFlags(MachineBasicBlock &MBB) const { 1752 const TargetRegisterInfo &TRI = 1753 *MBB.getParent()->getSubtarget().getRegisterInfo(); 1754 LivePhysRegs LPR(TRI); 1755 1756 LPR.addLiveOuts(MBB); 1757 1758 for (MachineInstr &MI : llvm::reverse(MBB)) { 1759 if (MI.isDebugInstr()) 1760 continue; 1761 1762 std::bitset<8> Defs; 1763 SmallVector<MachineOperand *, 2> Uses; 1764 1765 for (auto &MO : MI.operands()) { 1766 if (!MO.isReg()) 1767 continue; 1768 1769 unsigned Reg = MO.getReg() - X86::FP0; 1770 1771 if (Reg >= 8) 1772 continue; 1773 1774 if (MO.isDef()) { 1775 Defs.set(Reg); 1776 if (!LPR.contains(MO.getReg())) 1777 MO.setIsDead(); 1778 } else 1779 Uses.push_back(&MO); 1780 } 1781 1782 for (auto *MO : Uses) 1783 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) 1784 MO->setIsKill(); 1785 1786 LPR.stepBackward(MI); 1787 } 1788 } 1789