xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers.  Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already.  So, this consideration primarily affects load
21 /// instructions and register-to-register moves.  It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings.  Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however.  As an example take:
33 ///   orw  ax, $0x1000
34 ///   addw ax, $3
35 /// now if this were to get transformed into
36 ///   orw  ax, $1000
37 ///   addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier.  On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
46 
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/ProfileSummaryInfo.h"
52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53 #include "llvm/CodeGen/LiveRegUnits.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineRegisterInfo.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/Passes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 using namespace llvm;
64 
65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
66 #define FIXUPBW_NAME "x86-fixup-bw-insts"
67 
68 #define DEBUG_TYPE FIXUPBW_NAME
69 
70 // Option to allow this optimization pass to have fine-grained control.
71 static cl::opt<bool>
72     FixupBWInsts("fixup-byte-word-insts",
73                  cl::desc("Change byte and word instructions to larger sizes"),
74                  cl::init(true), cl::Hidden);
75 
76 namespace {
77 class FixupBWInstPass : public MachineFunctionPass {
78   /// Loop over all of the instructions in the basic block replacing applicable
79   /// byte or word instructions with better alternatives.
80   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
81 
82   /// This returns the 32 bit super reg of the original destination register of
83   /// the MachineInstr passed in, if that super register is dead just prior to
84   /// \p OrigMI. Otherwise it returns Register().
85   Register getSuperRegDestIfDead(MachineInstr *OrigMI) const;
86 
87   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
88   /// register if it is safe to do so.  Return the replacement instruction if
89   /// OK, otherwise return nullptr.
90   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
91 
92   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
93   /// safe to do so.  Return the replacement instruction if OK, otherwise return
94   /// nullptr.
95   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
96 
97   /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
98   /// register if it is safe to do so.  Return the replacement instruction if
99   /// OK, otherwise return nullptr.
100   MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
101                                  MachineInstr *MI) const;
102 
103   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
104   // possible.  Return the replacement instruction if OK, return nullptr
105   // otherwise.
106   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
107 
108 public:
109   static char ID;
110 
111   StringRef getPassName() const override { return FIXUPBW_DESC; }
112 
113   FixupBWInstPass() : MachineFunctionPass(ID) { }
114 
115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
117                                        // guide some heuristics.
118     AU.addRequired<ProfileSummaryInfoWrapperPass>();
119     AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
120     MachineFunctionPass::getAnalysisUsage(AU);
121   }
122 
123   /// Loop over all of the basic blocks, replacing byte and word instructions by
124   /// equivalent 32 bit instructions where performance or code size can be
125   /// improved.
126   bool runOnMachineFunction(MachineFunction &MF) override;
127 
128   MachineFunctionProperties getRequiredProperties() const override {
129     return MachineFunctionProperties().set(
130         MachineFunctionProperties::Property::NoVRegs);
131   }
132 
133 private:
134   MachineFunction *MF = nullptr;
135 
136   /// Machine instruction info used throughout the class.
137   const X86InstrInfo *TII = nullptr;
138 
139   const TargetRegisterInfo *TRI = nullptr;
140 
141   /// Local member for function's OptForSize attribute.
142   bool OptForSize = false;
143 
144   /// Machine loop info used for guiding some heruistics.
145   MachineLoopInfo *MLI = nullptr;
146 
147   /// Register Liveness information after the current instruction.
148   LiveRegUnits LiveUnits;
149 
150   ProfileSummaryInfo *PSI = nullptr;
151   MachineBlockFrequencyInfo *MBFI = nullptr;
152 };
153 char FixupBWInstPass::ID = 0;
154 }
155 
156 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
157 
158 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
159 
160 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
161   if (!FixupBWInsts || skipFunction(MF.getFunction()))
162     return false;
163 
164   this->MF = &MF;
165   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
166   TRI = MF.getRegInfo().getTargetRegisterInfo();
167   MLI = &getAnalysis<MachineLoopInfo>();
168   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
169   MBFI = (PSI && PSI->hasProfileSummary()) ?
170          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
171          nullptr;
172   LiveUnits.init(TII->getRegisterInfo());
173 
174   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
175 
176   // Process all basic blocks.
177   for (auto &MBB : MF)
178     processBasicBlock(MF, MBB);
179 
180   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
181 
182   return true;
183 }
184 
185 /// Check if after \p OrigMI the only portion of super register
186 /// of the destination register of \p OrigMI that is alive is that
187 /// destination register.
188 ///
189 /// If so, return that super register in \p SuperDestReg.
190 Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const {
191   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
192   Register OrigDestReg = OrigMI->getOperand(0).getReg();
193   Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
194   assert(SuperDestReg.isValid() && "Invalid Operand");
195 
196   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
197 
198   // Make sure that the sub-register that this instruction has as its
199   // destination is the lowest order sub-register of the super-register.
200   // If it isn't, then the register isn't really dead even if the
201   // super-register is considered dead.
202   if (SubRegIdx == X86::sub_8bit_hi)
203     return Register();
204 
205   // Test all regunits of the super register that are not part of the
206   // sub register. If none of them are live then the super register is safe to
207   // use.
208   bool SuperIsLive = false;
209   auto Range = TRI->regunits(OrigDestReg);
210   MCRegUnitIterator I = Range.begin(), E = Range.end();
211   for (MCRegUnit S : TRI->regunits(SuperDestReg)) {
212     I = std::lower_bound(I, E, S);
213     if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) {
214       SuperIsLive = true;
215       break;
216     }
217   }
218   if (!SuperIsLive)
219     return SuperDestReg;
220 
221   // If we get here, the super-register destination (or some part of it) is
222   // marked as live after the original instruction.
223   //
224   // The X86 backend does not have subregister liveness tracking enabled,
225   // so liveness information might be overly conservative. Specifically, the
226   // super register might be marked as live because it is implicitly defined
227   // by the instruction we are examining.
228   //
229   // However, for some specific instructions (this pass only cares about MOVs)
230   // we can produce more precise results by analysing that MOV's operands.
231   //
232   // Indeed, if super-register is not live before the mov it means that it
233   // was originally <read-undef> and so we are free to modify these
234   // undef upper bits. That may happen in case where the use is in another MBB
235   // and the vreg/physreg corresponding to the move has higher width than
236   // necessary (e.g. due to register coalescing with a "truncate" copy).
237   // So, we would like to handle patterns like this:
238   //
239   //   %bb.2: derived from LLVM BB %if.then
240   //   Live Ins: %rdi
241   //   Predecessors according to CFG: %bb.0
242   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
243   //                                 ; No implicit %eax
244   //   Successors according to CFG: %bb.3(?%)
245   //
246   //   %bb.3: derived from LLVM BB %if.end
247   //   Live Ins: %eax                            Only %ax is actually live
248   //   Predecessors according to CFG: %bb.2 %bb.1
249   //   %ax = KILL %ax, implicit killed %eax
250   //   RET 0, %ax
251   unsigned Opc = OrigMI->getOpcode(); (void)Opc;
252   // These are the opcodes currently known to work with the code below, if
253   // something // else will be added we need to ensure that new opcode has the
254   // same properties.
255   if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
256       Opc != X86::MOV16rr)
257     return Register();
258 
259   bool IsDefined = false;
260   for (auto &MO: OrigMI->implicit_operands()) {
261     if (!MO.isReg())
262       continue;
263 
264     assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
265 
266     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
267       IsDefined = true;
268 
269     // If MO is a use of any part of the destination register but is not equal
270     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
271     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
272     // %eax, or %rax will prevent us from using the %eax register.
273     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
274         TRI->regsOverlap(SuperDestReg, MO.getReg()))
275       return Register();
276   }
277   // Reg is not Imp-def'ed -> it's live both before/after the instruction.
278   if (!IsDefined)
279     return Register();
280 
281   // Otherwise, the Reg is not live before the MI and the MOV can't
282   // make it really live, so it's in fact dead even after the MI.
283   return SuperDestReg;
284 }
285 
286 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
287                                               MachineInstr *MI) const {
288   // We are going to try to rewrite this load to a larger zero-extending
289   // load.  This is safe if all portions of the 32 bit super-register
290   // of the original destination register, except for the original destination
291   // register are dead. getSuperRegDestIfDead checks that.
292   Register NewDestReg = getSuperRegDestIfDead(MI);
293   if (!NewDestReg)
294     return nullptr;
295 
296   // Safe to change the instruction.
297   MachineInstrBuilder MIB =
298       BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
299 
300   unsigned NumArgs = MI->getNumOperands();
301   for (unsigned i = 1; i < NumArgs; ++i)
302     MIB.add(MI->getOperand(i));
303 
304   MIB.setMemRefs(MI->memoperands());
305 
306   // If it was debug tracked, record a substitution.
307   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
308     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
309                                           MI->getOperand(0).getReg());
310     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
311     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
312   }
313 
314   return MIB;
315 }
316 
317 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
318   assert(MI->getNumExplicitOperands() == 2);
319   auto &OldDest = MI->getOperand(0);
320   auto &OldSrc = MI->getOperand(1);
321 
322   Register NewDestReg = getSuperRegDestIfDead(MI);
323   if (!NewDestReg)
324     return nullptr;
325 
326   Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
327   assert(NewSrcReg.isValid() && "Invalid Operand");
328 
329   // This is only correct if we access the same subregister index: otherwise,
330   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
331   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
332   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
333       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
334     return nullptr;
335 
336   // Safe to change the instruction.
337   // Don't set src flags, as we don't know if we're also killing the superreg.
338   // However, the superregister might not be defined; make it explicit that
339   // we don't care about the higher bits by reading it as Undef, and adding
340   // an imp-use on the original subregister.
341   MachineInstrBuilder MIB =
342       BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg)
343           .addReg(NewSrcReg, RegState::Undef)
344           .addReg(OldSrc.getReg(), RegState::Implicit);
345 
346   // Drop imp-defs/uses that would be redundant with the new def/use.
347   for (auto &Op : MI->implicit_operands())
348     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
349       MIB.add(Op);
350 
351   return MIB;
352 }
353 
354 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
355                                                 MachineInstr *MI) const {
356   Register NewDestReg = getSuperRegDestIfDead(MI);
357   if (!NewDestReg)
358     return nullptr;
359 
360   // Don't interfere with formation of CBW instructions which should be a
361   // shorter encoding than even the MOVSX32rr8. It's also immune to partial
362   // merge issues on Intel CPUs.
363   if (MI->getOpcode() == X86::MOVSX16rr8 &&
364       MI->getOperand(0).getReg() == X86::AX &&
365       MI->getOperand(1).getReg() == X86::AL)
366     return nullptr;
367 
368   // Safe to change the instruction.
369   MachineInstrBuilder MIB =
370       BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
371 
372   unsigned NumArgs = MI->getNumOperands();
373   for (unsigned i = 1; i < NumArgs; ++i)
374     MIB.add(MI->getOperand(i));
375 
376   MIB.setMemRefs(MI->memoperands());
377 
378   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
379     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
380                                           MI->getOperand(0).getReg());
381     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
382     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
383   }
384 
385   return MIB;
386 }
387 
388 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
389                                                MachineBasicBlock &MBB) const {
390   // See if this is an instruction of the type we are currently looking for.
391   switch (MI->getOpcode()) {
392 
393   case X86::MOV8rm:
394     // Replace 8-bit loads with the zero-extending version if not optimizing
395     // for size. The extending op is cheaper across a wide range of uarch and
396     // it avoids a potentially expensive partial register stall. It takes an
397     // extra byte to encode, however, so don't do this when optimizing for size.
398     if (!OptForSize)
399       return tryReplaceLoad(X86::MOVZX32rm8, MI);
400     break;
401 
402   case X86::MOV16rm:
403     // Always try to replace 16 bit load with 32 bit zero extending.
404     // Code size is the same, and there is sometimes a perf advantage
405     // from eliminating a false dependence on the upper portion of
406     // the register.
407     return tryReplaceLoad(X86::MOVZX32rm16, MI);
408 
409   case X86::MOV8rr:
410   case X86::MOV16rr:
411     // Always try to replace 8/16 bit copies with a 32 bit copy.
412     // Code size is either less (16) or equal (8), and there is sometimes a
413     // perf advantage from eliminating a false dependence on the upper portion
414     // of the register.
415     return tryReplaceCopy(MI);
416 
417   case X86::MOVSX16rr8:
418     return tryReplaceExtend(X86::MOVSX32rr8, MI);
419   case X86::MOVSX16rm8:
420     return tryReplaceExtend(X86::MOVSX32rm8, MI);
421   case X86::MOVZX16rr8:
422     return tryReplaceExtend(X86::MOVZX32rr8, MI);
423   case X86::MOVZX16rm8:
424     return tryReplaceExtend(X86::MOVZX32rm8, MI);
425 
426   default:
427     // nothing to do here.
428     break;
429   }
430 
431   return nullptr;
432 }
433 
434 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
435                                         MachineBasicBlock &MBB) {
436 
437   // This algorithm doesn't delete the instructions it is replacing
438   // right away.  By leaving the existing instructions in place, the
439   // register liveness information doesn't change, and this makes the
440   // analysis that goes on be better than if the replaced instructions
441   // were immediately removed.
442   //
443   // This algorithm always creates a replacement instruction
444   // and notes that and the original in a data structure, until the
445   // whole BB has been analyzed.  This keeps the replacement instructions
446   // from making it seem as if the larger register might be live.
447   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
448 
449   // Start computing liveness for this block. We iterate from the end to be able
450   // to update this for each instruction.
451   LiveUnits.clear();
452   // We run after PEI, so we need to AddPristinesAndCSRs.
453   LiveUnits.addLiveOuts(MBB);
454 
455   OptForSize = MF.getFunction().hasOptSize() ||
456                llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
457 
458   for (MachineInstr &MI : llvm::reverse(MBB)) {
459     if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
460       MIReplacements.push_back(std::make_pair(&MI, NewMI));
461 
462     // We're done with this instruction, update liveness for the next one.
463     LiveUnits.stepBackward(MI);
464   }
465 
466   while (!MIReplacements.empty()) {
467     MachineInstr *MI = MIReplacements.back().first;
468     MachineInstr *NewMI = MIReplacements.back().second;
469     MIReplacements.pop_back();
470     MBB.insert(MI, NewMI);
471     MBB.erase(MI);
472   }
473 }
474