1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/ProfileSummaryInfo.h" 52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 53 #include "llvm/CodeGen/LiveRegUnits.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineRegisterInfo.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/Passes.h" 60 #include "llvm/CodeGen/TargetInstrInfo.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 using namespace llvm; 64 65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 66 #define FIXUPBW_NAME "x86-fixup-bw-insts" 67 68 #define DEBUG_TYPE FIXUPBW_NAME 69 70 // Option to allow this optimization pass to have fine-grained control. 71 static cl::opt<bool> 72 FixupBWInsts("fixup-byte-word-insts", 73 cl::desc("Change byte and word instructions to larger sizes"), 74 cl::init(true), cl::Hidden); 75 76 namespace { 77 class FixupBWInstPass : public MachineFunctionPass { 78 /// Loop over all of the instructions in the basic block replacing applicable 79 /// byte or word instructions with better alternatives. 80 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 81 82 /// This returns the 32 bit super reg of the original destination register of 83 /// the MachineInstr passed in, if that super register is dead just prior to 84 /// \p OrigMI. Otherwise it returns Register(). 85 Register getSuperRegDestIfDead(MachineInstr *OrigMI) const; 86 87 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 88 /// register if it is safe to do so. Return the replacement instruction if 89 /// OK, otherwise return nullptr. 90 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 91 92 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 93 /// safe to do so. Return the replacement instruction if OK, otherwise return 94 /// nullptr. 95 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 96 97 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 98 /// register if it is safe to do so. Return the replacement instruction if 99 /// OK, otherwise return nullptr. 100 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 101 MachineInstr *MI) const; 102 103 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 104 // possible. Return the replacement instruction if OK, return nullptr 105 // otherwise. 106 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 107 108 public: 109 static char ID; 110 111 StringRef getPassName() const override { return FIXUPBW_DESC; } 112 113 FixupBWInstPass() : MachineFunctionPass(ID) { } 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to 117 // guide some heuristics. 118 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 119 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 120 MachineFunctionPass::getAnalysisUsage(AU); 121 } 122 123 /// Loop over all of the basic blocks, replacing byte and word instructions by 124 /// equivalent 32 bit instructions where performance or code size can be 125 /// improved. 126 bool runOnMachineFunction(MachineFunction &MF) override; 127 128 MachineFunctionProperties getRequiredProperties() const override { 129 return MachineFunctionProperties().set( 130 MachineFunctionProperties::Property::NoVRegs); 131 } 132 133 private: 134 MachineFunction *MF = nullptr; 135 136 /// Machine instruction info used throughout the class. 137 const X86InstrInfo *TII = nullptr; 138 139 const TargetRegisterInfo *TRI = nullptr; 140 141 /// Local member for function's OptForSize attribute. 142 bool OptForSize = false; 143 144 /// Machine loop info used for guiding some heruistics. 145 MachineLoopInfo *MLI = nullptr; 146 147 /// Register Liveness information after the current instruction. 148 LiveRegUnits LiveUnits; 149 150 ProfileSummaryInfo *PSI = nullptr; 151 MachineBlockFrequencyInfo *MBFI = nullptr; 152 }; 153 char FixupBWInstPass::ID = 0; 154 } 155 156 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 157 158 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 159 160 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 161 if (!FixupBWInsts || skipFunction(MF.getFunction())) 162 return false; 163 164 this->MF = &MF; 165 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 166 TRI = MF.getRegInfo().getTargetRegisterInfo(); 167 MLI = &getAnalysis<MachineLoopInfo>(); 168 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 169 MBFI = (PSI && PSI->hasProfileSummary()) ? 170 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 171 nullptr; 172 LiveUnits.init(TII->getRegisterInfo()); 173 174 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 175 176 // Process all basic blocks. 177 for (auto &MBB : MF) 178 processBasicBlock(MF, MBB); 179 180 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 181 182 return true; 183 } 184 185 /// Check if after \p OrigMI the only portion of super register 186 /// of the destination register of \p OrigMI that is alive is that 187 /// destination register. 188 /// 189 /// If so, return that super register in \p SuperDestReg. 190 Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const { 191 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 192 Register OrigDestReg = OrigMI->getOperand(0).getReg(); 193 Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 194 assert(SuperDestReg.isValid() && "Invalid Operand"); 195 196 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 197 198 // Make sure that the sub-register that this instruction has as its 199 // destination is the lowest order sub-register of the super-register. 200 // If it isn't, then the register isn't really dead even if the 201 // super-register is considered dead. 202 if (SubRegIdx == X86::sub_8bit_hi) 203 return Register(); 204 205 // Test all regunits of the super register that are not part of the 206 // sub register. If none of them are live then the super register is safe to 207 // use. 208 bool SuperIsLive = false; 209 auto Range = TRI->regunits(OrigDestReg); 210 MCRegUnitIterator I = Range.begin(), E = Range.end(); 211 for (MCRegUnit S : TRI->regunits(SuperDestReg)) { 212 I = std::lower_bound(I, E, S); 213 if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) { 214 SuperIsLive = true; 215 break; 216 } 217 } 218 if (!SuperIsLive) 219 return SuperDestReg; 220 221 // If we get here, the super-register destination (or some part of it) is 222 // marked as live after the original instruction. 223 // 224 // The X86 backend does not have subregister liveness tracking enabled, 225 // so liveness information might be overly conservative. Specifically, the 226 // super register might be marked as live because it is implicitly defined 227 // by the instruction we are examining. 228 // 229 // However, for some specific instructions (this pass only cares about MOVs) 230 // we can produce more precise results by analysing that MOV's operands. 231 // 232 // Indeed, if super-register is not live before the mov it means that it 233 // was originally <read-undef> and so we are free to modify these 234 // undef upper bits. That may happen in case where the use is in another MBB 235 // and the vreg/physreg corresponding to the move has higher width than 236 // necessary (e.g. due to register coalescing with a "truncate" copy). 237 // So, we would like to handle patterns like this: 238 // 239 // %bb.2: derived from LLVM BB %if.then 240 // Live Ins: %rdi 241 // Predecessors according to CFG: %bb.0 242 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 243 // ; No implicit %eax 244 // Successors according to CFG: %bb.3(?%) 245 // 246 // %bb.3: derived from LLVM BB %if.end 247 // Live Ins: %eax Only %ax is actually live 248 // Predecessors according to CFG: %bb.2 %bb.1 249 // %ax = KILL %ax, implicit killed %eax 250 // RET 0, %ax 251 unsigned Opc = OrigMI->getOpcode(); (void)Opc; 252 // These are the opcodes currently known to work with the code below, if 253 // something // else will be added we need to ensure that new opcode has the 254 // same properties. 255 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 256 Opc != X86::MOV16rr) 257 return Register(); 258 259 bool IsDefined = false; 260 for (auto &MO: OrigMI->implicit_operands()) { 261 if (!MO.isReg()) 262 continue; 263 264 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); 265 266 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 267 IsDefined = true; 268 269 // If MO is a use of any part of the destination register but is not equal 270 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 271 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 272 // %eax, or %rax will prevent us from using the %eax register. 273 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 274 TRI->regsOverlap(SuperDestReg, MO.getReg())) 275 return Register(); 276 } 277 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 278 if (!IsDefined) 279 return Register(); 280 281 // Otherwise, the Reg is not live before the MI and the MOV can't 282 // make it really live, so it's in fact dead even after the MI. 283 return SuperDestReg; 284 } 285 286 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 287 MachineInstr *MI) const { 288 // We are going to try to rewrite this load to a larger zero-extending 289 // load. This is safe if all portions of the 32 bit super-register 290 // of the original destination register, except for the original destination 291 // register are dead. getSuperRegDestIfDead checks that. 292 Register NewDestReg = getSuperRegDestIfDead(MI); 293 if (!NewDestReg) 294 return nullptr; 295 296 // Safe to change the instruction. 297 MachineInstrBuilder MIB = 298 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 299 300 unsigned NumArgs = MI->getNumOperands(); 301 for (unsigned i = 1; i < NumArgs; ++i) 302 MIB.add(MI->getOperand(i)); 303 304 MIB.setMemRefs(MI->memoperands()); 305 306 // If it was debug tracked, record a substitution. 307 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 308 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 309 MI->getOperand(0).getReg()); 310 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 311 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 312 } 313 314 return MIB; 315 } 316 317 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 318 assert(MI->getNumExplicitOperands() == 2); 319 auto &OldDest = MI->getOperand(0); 320 auto &OldSrc = MI->getOperand(1); 321 322 Register NewDestReg = getSuperRegDestIfDead(MI); 323 if (!NewDestReg) 324 return nullptr; 325 326 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 327 assert(NewSrcReg.isValid() && "Invalid Operand"); 328 329 // This is only correct if we access the same subregister index: otherwise, 330 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 331 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 332 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 333 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 334 return nullptr; 335 336 // Safe to change the instruction. 337 // Don't set src flags, as we don't know if we're also killing the superreg. 338 // However, the superregister might not be defined; make it explicit that 339 // we don't care about the higher bits by reading it as Undef, and adding 340 // an imp-use on the original subregister. 341 MachineInstrBuilder MIB = 342 BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg) 343 .addReg(NewSrcReg, RegState::Undef) 344 .addReg(OldSrc.getReg(), RegState::Implicit); 345 346 // Drop imp-defs/uses that would be redundant with the new def/use. 347 for (auto &Op : MI->implicit_operands()) 348 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 349 MIB.add(Op); 350 351 return MIB; 352 } 353 354 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 355 MachineInstr *MI) const { 356 Register NewDestReg = getSuperRegDestIfDead(MI); 357 if (!NewDestReg) 358 return nullptr; 359 360 // Don't interfere with formation of CBW instructions which should be a 361 // shorter encoding than even the MOVSX32rr8. It's also immune to partial 362 // merge issues on Intel CPUs. 363 if (MI->getOpcode() == X86::MOVSX16rr8 && 364 MI->getOperand(0).getReg() == X86::AX && 365 MI->getOperand(1).getReg() == X86::AL) 366 return nullptr; 367 368 // Safe to change the instruction. 369 MachineInstrBuilder MIB = 370 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 371 372 unsigned NumArgs = MI->getNumOperands(); 373 for (unsigned i = 1; i < NumArgs; ++i) 374 MIB.add(MI->getOperand(i)); 375 376 MIB.setMemRefs(MI->memoperands()); 377 378 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 379 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 380 MI->getOperand(0).getReg()); 381 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 382 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 383 } 384 385 return MIB; 386 } 387 388 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 389 MachineBasicBlock &MBB) const { 390 // See if this is an instruction of the type we are currently looking for. 391 switch (MI->getOpcode()) { 392 393 case X86::MOV8rm: 394 // Replace 8-bit loads with the zero-extending version if not optimizing 395 // for size. The extending op is cheaper across a wide range of uarch and 396 // it avoids a potentially expensive partial register stall. It takes an 397 // extra byte to encode, however, so don't do this when optimizing for size. 398 if (!OptForSize) 399 return tryReplaceLoad(X86::MOVZX32rm8, MI); 400 break; 401 402 case X86::MOV16rm: 403 // Always try to replace 16 bit load with 32 bit zero extending. 404 // Code size is the same, and there is sometimes a perf advantage 405 // from eliminating a false dependence on the upper portion of 406 // the register. 407 return tryReplaceLoad(X86::MOVZX32rm16, MI); 408 409 case X86::MOV8rr: 410 case X86::MOV16rr: 411 // Always try to replace 8/16 bit copies with a 32 bit copy. 412 // Code size is either less (16) or equal (8), and there is sometimes a 413 // perf advantage from eliminating a false dependence on the upper portion 414 // of the register. 415 return tryReplaceCopy(MI); 416 417 case X86::MOVSX16rr8: 418 return tryReplaceExtend(X86::MOVSX32rr8, MI); 419 case X86::MOVSX16rm8: 420 return tryReplaceExtend(X86::MOVSX32rm8, MI); 421 case X86::MOVZX16rr8: 422 return tryReplaceExtend(X86::MOVZX32rr8, MI); 423 case X86::MOVZX16rm8: 424 return tryReplaceExtend(X86::MOVZX32rm8, MI); 425 426 default: 427 // nothing to do here. 428 break; 429 } 430 431 return nullptr; 432 } 433 434 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 435 MachineBasicBlock &MBB) { 436 437 // This algorithm doesn't delete the instructions it is replacing 438 // right away. By leaving the existing instructions in place, the 439 // register liveness information doesn't change, and this makes the 440 // analysis that goes on be better than if the replaced instructions 441 // were immediately removed. 442 // 443 // This algorithm always creates a replacement instruction 444 // and notes that and the original in a data structure, until the 445 // whole BB has been analyzed. This keeps the replacement instructions 446 // from making it seem as if the larger register might be live. 447 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 448 449 // Start computing liveness for this block. We iterate from the end to be able 450 // to update this for each instruction. 451 LiveUnits.clear(); 452 // We run after PEI, so we need to AddPristinesAndCSRs. 453 LiveUnits.addLiveOuts(MBB); 454 455 OptForSize = MF.getFunction().hasOptSize() || 456 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 457 458 for (MachineInstr &MI : llvm::reverse(MBB)) { 459 if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) 460 MIReplacements.push_back(std::make_pair(&MI, NewMI)); 461 462 // We're done with this instruction, update liveness for the next one. 463 LiveUnits.stepBackward(MI); 464 } 465 466 while (!MIReplacements.empty()) { 467 MachineInstr *MI = MIReplacements.back().first; 468 MachineInstr *NewMI = MIReplacements.back().second; 469 MIReplacements.pop_back(); 470 MBB.insert(MI, NewMI); 471 MBB.erase(MI); 472 } 473 } 474