1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/IntrinsicsX86.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 public: 53 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 54 const TargetLibraryInfo *libInfo) 55 : FastISel(funcInfo, libInfo) { 56 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 57 } 58 59 bool fastSelectInstruction(const Instruction *I) override; 60 61 /// The specified machine instr operand is a vreg, and that 62 /// vreg is being provided by the specified load instruction. If possible, 63 /// try to fold the load as an operand to the instruction, returning true if 64 /// possible. 65 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 66 const LoadInst *LI) override; 67 68 bool fastLowerArguments() override; 69 bool fastLowerCall(CallLoweringInfo &CLI) override; 70 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 71 72 #include "X86GenFastISel.inc" 73 74 private: 75 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 76 const DebugLoc &DL); 77 78 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 79 unsigned &ResultReg, unsigned Alignment = 1); 80 81 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 82 MachineMemOperand *MMO = nullptr, bool Aligned = false); 83 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 84 MachineMemOperand *MMO = nullptr, bool Aligned = false); 85 86 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 87 unsigned &ResultReg); 88 89 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 90 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 91 92 bool X86SelectLoad(const Instruction *I); 93 94 bool X86SelectStore(const Instruction *I); 95 96 bool X86SelectRet(const Instruction *I); 97 98 bool X86SelectCmp(const Instruction *I); 99 100 bool X86SelectZExt(const Instruction *I); 101 102 bool X86SelectSExt(const Instruction *I); 103 104 bool X86SelectBranch(const Instruction *I); 105 106 bool X86SelectShift(const Instruction *I); 107 108 bool X86SelectDivRem(const Instruction *I); 109 110 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 111 112 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 113 114 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 115 116 bool X86SelectSelect(const Instruction *I); 117 118 bool X86SelectTrunc(const Instruction *I); 119 120 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 121 const TargetRegisterClass *RC); 122 123 bool X86SelectFPExt(const Instruction *I); 124 bool X86SelectFPTrunc(const Instruction *I); 125 bool X86SelectSIToFP(const Instruction *I); 126 bool X86SelectUIToFP(const Instruction *I); 127 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 128 129 const X86InstrInfo *getInstrInfo() const { 130 return Subtarget->getInstrInfo(); 131 } 132 const X86TargetMachine *getTargetMachine() const { 133 return static_cast<const X86TargetMachine *>(&TM); 134 } 135 136 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 137 138 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 139 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 140 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 141 unsigned fastMaterializeConstant(const Constant *C) override; 142 143 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 144 145 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 146 147 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 148 /// computed in an SSE register, not on the X87 floating point stack. 149 bool isScalarFPTypeInSSEReg(EVT VT) const { 150 return (VT == MVT::f64 && Subtarget->hasSSE2()) || 151 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; 152 } 153 154 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 155 156 bool IsMemcpySmall(uint64_t Len); 157 158 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 159 X86AddressMode SrcAM, uint64_t Len); 160 161 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 162 const Value *Cond); 163 164 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 165 X86AddressMode &AM); 166 167 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 168 const TargetRegisterClass *RC, unsigned Op0, 169 unsigned Op1, unsigned Op2, unsigned Op3); 170 }; 171 172 } // end anonymous namespace. 173 174 static std::pair<unsigned, bool> 175 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 176 unsigned CC; 177 bool NeedSwap = false; 178 179 // SSE Condition code mapping: 180 // 0 - EQ 181 // 1 - LT 182 // 2 - LE 183 // 3 - UNORD 184 // 4 - NEQ 185 // 5 - NLT 186 // 6 - NLE 187 // 7 - ORD 188 switch (Predicate) { 189 default: llvm_unreachable("Unexpected predicate"); 190 case CmpInst::FCMP_OEQ: CC = 0; break; 191 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; 192 case CmpInst::FCMP_OLT: CC = 1; break; 193 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; 194 case CmpInst::FCMP_OLE: CC = 2; break; 195 case CmpInst::FCMP_UNO: CC = 3; break; 196 case CmpInst::FCMP_UNE: CC = 4; break; 197 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; 198 case CmpInst::FCMP_UGE: CC = 5; break; 199 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; 200 case CmpInst::FCMP_UGT: CC = 6; break; 201 case CmpInst::FCMP_ORD: CC = 7; break; 202 case CmpInst::FCMP_UEQ: CC = 8; break; 203 case CmpInst::FCMP_ONE: CC = 12; break; 204 } 205 206 return std::make_pair(CC, NeedSwap); 207 } 208 209 /// Adds a complex addressing mode to the given machine instr builder. 210 /// Note, this will constrain the index register. If its not possible to 211 /// constrain the given index register, then a new one will be created. The 212 /// IndexReg field of the addressing mode will be updated to match in this case. 213 const MachineInstrBuilder & 214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 215 X86AddressMode &AM) { 216 // First constrain the index register. It needs to be a GR64_NOSP. 217 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 218 MIB->getNumOperands() + 219 X86::AddrIndexReg); 220 return ::addFullAddress(MIB, AM); 221 } 222 223 /// Check if it is possible to fold the condition from the XALU intrinsic 224 /// into the user. The condition code will only be updated on success. 225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 226 const Value *Cond) { 227 if (!isa<ExtractValueInst>(Cond)) 228 return false; 229 230 const auto *EV = cast<ExtractValueInst>(Cond); 231 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 232 return false; 233 234 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 235 MVT RetVT; 236 const Function *Callee = II->getCalledFunction(); 237 Type *RetTy = 238 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 239 if (!isTypeLegal(RetTy, RetVT)) 240 return false; 241 242 if (RetVT != MVT::i32 && RetVT != MVT::i64) 243 return false; 244 245 X86::CondCode TmpCC; 246 switch (II->getIntrinsicID()) { 247 default: return false; 248 case Intrinsic::sadd_with_overflow: 249 case Intrinsic::ssub_with_overflow: 250 case Intrinsic::smul_with_overflow: 251 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 252 case Intrinsic::uadd_with_overflow: 253 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 254 } 255 256 // Check if both instructions are in the same basic block. 257 if (II->getParent() != I->getParent()) 258 return false; 259 260 // Make sure nothing is in the way 261 BasicBlock::const_iterator Start(I); 262 BasicBlock::const_iterator End(II); 263 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 264 // We only expect extractvalue instructions between the intrinsic and the 265 // instruction to be selected. 266 if (!isa<ExtractValueInst>(Itr)) 267 return false; 268 269 // Check that the extractvalue operand comes from the intrinsic. 270 const auto *EVI = cast<ExtractValueInst>(Itr); 271 if (EVI->getAggregateOperand() != II) 272 return false; 273 } 274 275 // Make sure no potentially eflags clobbering phi moves can be inserted in 276 // between. 277 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; 278 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) 279 return false; 280 281 // Make sure there are no potentially eflags clobbering constant 282 // materializations in between. 283 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); })) 284 return false; 285 286 CC = TmpCC; 287 return true; 288 } 289 290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 291 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 292 if (evt == MVT::Other || !evt.isSimple()) 293 // Unhandled type. Halt "fast" selection and bail. 294 return false; 295 296 VT = evt.getSimpleVT(); 297 // For now, require SSE/SSE2 for performing floating-point operations, 298 // since x87 requires additional work. 299 if (VT == MVT::f64 && !Subtarget->hasSSE2()) 300 return false; 301 if (VT == MVT::f32 && !Subtarget->hasSSE1()) 302 return false; 303 // Similarly, no f80 support yet. 304 if (VT == MVT::f80) 305 return false; 306 // We only handle legal types. For example, on x86-32 the instruction 307 // selector contains all of the 64-bit instructions from x86-64, 308 // under the assumption that i64 won't be used if the target doesn't 309 // support it. 310 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 311 } 312 313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 315 /// Return true and the result register by reference if it is possible. 316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 317 MachineMemOperand *MMO, unsigned &ResultReg, 318 unsigned Alignment) { 319 bool HasSSE1 = Subtarget->hasSSE1(); 320 bool HasSSE2 = Subtarget->hasSSE2(); 321 bool HasSSE41 = Subtarget->hasSSE41(); 322 bool HasAVX = Subtarget->hasAVX(); 323 bool HasAVX2 = Subtarget->hasAVX2(); 324 bool HasAVX512 = Subtarget->hasAVX512(); 325 bool HasVLX = Subtarget->hasVLX(); 326 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 327 328 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 329 if (VT == MVT::i1) 330 VT = MVT::i8; 331 332 // Get opcode and regclass of the output for the given load instruction. 333 unsigned Opc = 0; 334 switch (VT.SimpleTy) { 335 default: return false; 336 case MVT::i8: 337 Opc = X86::MOV8rm; 338 break; 339 case MVT::i16: 340 Opc = X86::MOV16rm; 341 break; 342 case MVT::i32: 343 Opc = X86::MOV32rm; 344 break; 345 case MVT::i64: 346 // Must be in x86-64 mode. 347 Opc = X86::MOV64rm; 348 break; 349 case MVT::f32: 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 351 : HasAVX ? X86::VMOVSSrm_alt 352 : HasSSE1 ? X86::MOVSSrm_alt 353 : X86::LD_Fp32m; 354 break; 355 case MVT::f64: 356 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 357 : HasAVX ? X86::VMOVSDrm_alt 358 : HasSSE2 ? X86::MOVSDrm_alt 359 : X86::LD_Fp64m; 360 break; 361 case MVT::f80: 362 // No f80 support yet. 363 return false; 364 case MVT::v4f32: 365 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 366 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 367 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 368 else if (Alignment >= 16) 369 Opc = HasVLX ? X86::VMOVAPSZ128rm : 370 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 371 else 372 Opc = HasVLX ? X86::VMOVUPSZ128rm : 373 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 374 break; 375 case MVT::v2f64: 376 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 377 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 378 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 379 else if (Alignment >= 16) 380 Opc = HasVLX ? X86::VMOVAPDZ128rm : 381 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 382 else 383 Opc = HasVLX ? X86::VMOVUPDZ128rm : 384 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 385 break; 386 case MVT::v4i32: 387 case MVT::v2i64: 388 case MVT::v8i16: 389 case MVT::v16i8: 390 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 391 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 392 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 393 else if (Alignment >= 16) 394 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 395 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 396 else 397 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 398 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 399 break; 400 case MVT::v8f32: 401 assert(HasAVX); 402 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 403 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 404 else if (IsNonTemporal && Alignment >= 16) 405 return false; // Force split for X86::VMOVNTDQArm 406 else if (Alignment >= 32) 407 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 408 else 409 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 410 break; 411 case MVT::v4f64: 412 assert(HasAVX); 413 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 415 else if (IsNonTemporal && Alignment >= 16) 416 return false; // Force split for X86::VMOVNTDQArm 417 else if (Alignment >= 32) 418 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 419 else 420 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 421 break; 422 case MVT::v8i32: 423 case MVT::v4i64: 424 case MVT::v16i16: 425 case MVT::v32i8: 426 assert(HasAVX); 427 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 428 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 429 else if (IsNonTemporal && Alignment >= 16) 430 return false; // Force split for X86::VMOVNTDQArm 431 else if (Alignment >= 32) 432 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 433 else 434 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 435 break; 436 case MVT::v16f32: 437 assert(HasAVX512); 438 if (IsNonTemporal && Alignment >= 64) 439 Opc = X86::VMOVNTDQAZrm; 440 else 441 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 442 break; 443 case MVT::v8f64: 444 assert(HasAVX512); 445 if (IsNonTemporal && Alignment >= 64) 446 Opc = X86::VMOVNTDQAZrm; 447 else 448 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 449 break; 450 case MVT::v8i64: 451 case MVT::v16i32: 452 case MVT::v32i16: 453 case MVT::v64i8: 454 assert(HasAVX512); 455 // Note: There are a lot more choices based on type with AVX-512, but 456 // there's really no advantage when the load isn't masked. 457 if (IsNonTemporal && Alignment >= 64) 458 Opc = X86::VMOVNTDQAZrm; 459 else 460 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 461 break; 462 } 463 464 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 465 466 ResultReg = createResultReg(RC); 467 MachineInstrBuilder MIB = 468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 469 addFullAddress(MIB, AM); 470 if (MMO) 471 MIB->addMemOperand(*FuncInfo.MF, MMO); 472 return true; 473 } 474 475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 477 /// and a displacement offset, or a GlobalAddress, 478 /// i.e. V. Return true if it is possible. 479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 480 MachineMemOperand *MMO, bool Aligned) { 481 bool HasSSE1 = Subtarget->hasSSE1(); 482 bool HasSSE2 = Subtarget->hasSSE2(); 483 bool HasSSE4A = Subtarget->hasSSE4A(); 484 bool HasAVX = Subtarget->hasAVX(); 485 bool HasAVX512 = Subtarget->hasAVX512(); 486 bool HasVLX = Subtarget->hasVLX(); 487 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 488 489 // Get opcode and regclass of the output for the given store instruction. 490 unsigned Opc = 0; 491 switch (VT.getSimpleVT().SimpleTy) { 492 case MVT::f80: // No f80 support yet. 493 default: return false; 494 case MVT::i1: { 495 // Mask out all but lowest bit. 496 Register AndResult = createResultReg(&X86::GR8RegClass); 497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 498 TII.get(X86::AND8ri), AndResult) 499 .addReg(ValReg).addImm(1); 500 ValReg = AndResult; 501 [[fallthrough]]; // handle i1 as i8. 502 } 503 case MVT::i8: Opc = X86::MOV8mr; break; 504 case MVT::i16: Opc = X86::MOV16mr; break; 505 case MVT::i32: 506 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 507 break; 508 case MVT::i64: 509 // Must be in x86-64 mode. 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 511 break; 512 case MVT::f32: 513 if (HasSSE1) { 514 if (IsNonTemporal && HasSSE4A) 515 Opc = X86::MOVNTSS; 516 else 517 Opc = HasAVX512 ? X86::VMOVSSZmr : 518 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 519 } else 520 Opc = X86::ST_Fp32m; 521 break; 522 case MVT::f64: 523 if (HasSSE2) { 524 if (IsNonTemporal && HasSSE4A) 525 Opc = X86::MOVNTSD; 526 else 527 Opc = HasAVX512 ? X86::VMOVSDZmr : 528 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 529 } else 530 Opc = X86::ST_Fp64m; 531 break; 532 case MVT::x86mmx: 533 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 534 break; 535 case MVT::v4f32: 536 if (Aligned) { 537 if (IsNonTemporal) 538 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 539 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 540 else 541 Opc = HasVLX ? X86::VMOVAPSZ128mr : 542 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 543 } else 544 Opc = HasVLX ? X86::VMOVUPSZ128mr : 545 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 546 break; 547 case MVT::v2f64: 548 if (Aligned) { 549 if (IsNonTemporal) 550 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 551 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 552 else 553 Opc = HasVLX ? X86::VMOVAPDZ128mr : 554 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 555 } else 556 Opc = HasVLX ? X86::VMOVUPDZ128mr : 557 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 558 break; 559 case MVT::v4i32: 560 case MVT::v2i64: 561 case MVT::v8i16: 562 case MVT::v16i8: 563 if (Aligned) { 564 if (IsNonTemporal) 565 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 566 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 567 else 568 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 569 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 570 } else 571 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 572 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 573 break; 574 case MVT::v8f32: 575 assert(HasAVX); 576 if (Aligned) { 577 if (IsNonTemporal) 578 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 579 else 580 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 581 } else 582 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 583 break; 584 case MVT::v4f64: 585 assert(HasAVX); 586 if (Aligned) { 587 if (IsNonTemporal) 588 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 589 else 590 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 591 } else 592 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 593 break; 594 case MVT::v8i32: 595 case MVT::v4i64: 596 case MVT::v16i16: 597 case MVT::v32i8: 598 assert(HasAVX); 599 if (Aligned) { 600 if (IsNonTemporal) 601 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 602 else 603 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 604 } else 605 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 606 break; 607 case MVT::v16f32: 608 assert(HasAVX512); 609 if (Aligned) 610 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 611 else 612 Opc = X86::VMOVUPSZmr; 613 break; 614 case MVT::v8f64: 615 assert(HasAVX512); 616 if (Aligned) { 617 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 618 } else 619 Opc = X86::VMOVUPDZmr; 620 break; 621 case MVT::v8i64: 622 case MVT::v16i32: 623 case MVT::v32i16: 624 case MVT::v64i8: 625 assert(HasAVX512); 626 // Note: There are a lot more choices based on type with AVX-512, but 627 // there's really no advantage when the store isn't masked. 628 if (Aligned) 629 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 630 else 631 Opc = X86::VMOVDQU64Zmr; 632 break; 633 } 634 635 const MCInstrDesc &Desc = TII.get(Opc); 636 // Some of the instructions in the previous switch use FR128 instead 637 // of FR32 for ValReg. Make sure the register we feed the instruction 638 // matches its register class constraints. 639 // Note: This is fine to do a copy from FR32 to FR128, this is the 640 // same registers behind the scene and actually why it did not trigger 641 // any bugs before. 642 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 643 MachineInstrBuilder MIB = 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); 645 addFullAddress(MIB, AM).addReg(ValReg); 646 if (MMO) 647 MIB->addMemOperand(*FuncInfo.MF, MMO); 648 649 return true; 650 } 651 652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 653 X86AddressMode &AM, 654 MachineMemOperand *MMO, bool Aligned) { 655 // Handle 'null' like i32/i64 0. 656 if (isa<ConstantPointerNull>(Val)) 657 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 658 659 // If this is a store of a simple constant, fold the constant into the store. 660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 661 unsigned Opc = 0; 662 bool Signed = true; 663 switch (VT.getSimpleVT().SimpleTy) { 664 default: break; 665 case MVT::i1: 666 Signed = false; 667 [[fallthrough]]; // Handle as i8. 668 case MVT::i8: Opc = X86::MOV8mi; break; 669 case MVT::i16: Opc = X86::MOV16mi; break; 670 case MVT::i32: Opc = X86::MOV32mi; break; 671 case MVT::i64: 672 // Must be a 32-bit sign extended value. 673 if (isInt<32>(CI->getSExtValue())) 674 Opc = X86::MOV64mi32; 675 break; 676 } 677 678 if (Opc) { 679 MachineInstrBuilder MIB = 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); 681 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 682 : CI->getZExtValue()); 683 if (MMO) 684 MIB->addMemOperand(*FuncInfo.MF, MMO); 685 return true; 686 } 687 } 688 689 Register ValReg = getRegForValue(Val); 690 if (ValReg == 0) 691 return false; 692 693 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); 694 } 695 696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 698 /// ISD::SIGN_EXTEND). 699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 700 unsigned Src, EVT SrcVT, 701 unsigned &ResultReg) { 702 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); 703 if (RR == 0) 704 return false; 705 706 ResultReg = RR; 707 return true; 708 } 709 710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 711 // Handle constant address. 712 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 713 // Can't handle alternate code models yet. 714 if (TM.getCodeModel() != CodeModel::Small && 715 TM.getCodeModel() != CodeModel::Medium) 716 return false; 717 718 // Can't handle large objects yet. 719 if (TM.isLargeGlobalValue(GV)) 720 return false; 721 722 // Can't handle TLS yet. 723 if (GV->isThreadLocal()) 724 return false; 725 726 // Can't handle !absolute_symbol references yet. 727 if (GV->isAbsoluteSymbolRef()) 728 return false; 729 730 // RIP-relative addresses can't have additional register operands, so if 731 // we've already folded stuff into the addressing mode, just force the 732 // global value into its own register, which we can use as the basereg. 733 if (!Subtarget->isPICStyleRIPRel() || 734 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 735 // Okay, we've committed to selecting this global. Set up the address. 736 AM.GV = GV; 737 738 // Allow the subtarget to classify the global. 739 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 740 741 // If this reference is relative to the pic base, set it now. 742 if (isGlobalRelativeToPICBase(GVFlags)) { 743 // FIXME: How do we know Base.Reg is free?? 744 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 745 } 746 747 // Unless the ABI requires an extra load, return a direct reference to 748 // the global. 749 if (!isGlobalStubReference(GVFlags)) { 750 if (Subtarget->isPICStyleRIPRel()) { 751 // Use rip-relative addressing if we can. Above we verified that the 752 // base and index registers are unused. 753 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 754 AM.Base.Reg = X86::RIP; 755 } 756 AM.GVOpFlags = GVFlags; 757 return true; 758 } 759 760 // Ok, we need to do a load from a stub. If we've already loaded from 761 // this stub, reuse the loaded pointer, otherwise emit the load now. 762 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 763 Register LoadReg; 764 if (I != LocalValueMap.end() && I->second) { 765 LoadReg = I->second; 766 } else { 767 // Issue load from stub. 768 unsigned Opc = 0; 769 const TargetRegisterClass *RC = nullptr; 770 X86AddressMode StubAM; 771 StubAM.Base.Reg = AM.Base.Reg; 772 StubAM.GV = GV; 773 StubAM.GVOpFlags = GVFlags; 774 775 // Prepare for inserting code in the local-value area. 776 SavePoint SaveInsertPt = enterLocalValueArea(); 777 778 if (TLI.getPointerTy(DL) == MVT::i64) { 779 Opc = X86::MOV64rm; 780 RC = &X86::GR64RegClass; 781 } else { 782 Opc = X86::MOV32rm; 783 RC = &X86::GR32RegClass; 784 } 785 786 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || 787 GVFlags == X86II::MO_GOTPCREL_NORELAX) 788 StubAM.Base.Reg = X86::RIP; 789 790 LoadReg = createResultReg(RC); 791 MachineInstrBuilder LoadMI = 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); 793 addFullAddress(LoadMI, StubAM); 794 795 // Ok, back to normal mode. 796 leaveLocalValueArea(SaveInsertPt); 797 798 // Prevent loading GV stub multiple times in same MBB. 799 LocalValueMap[V] = LoadReg; 800 } 801 802 // Now construct the final address. Note that the Disp, Scale, 803 // and Index values may already be set here. 804 AM.Base.Reg = LoadReg; 805 AM.GV = nullptr; 806 return true; 807 } 808 } 809 810 // If all else fails, try to materialize the value in a register. 811 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 812 if (AM.Base.Reg == 0) { 813 AM.Base.Reg = getRegForValue(V); 814 return AM.Base.Reg != 0; 815 } 816 if (AM.IndexReg == 0) { 817 assert(AM.Scale == 1 && "Scale with no index!"); 818 AM.IndexReg = getRegForValue(V); 819 return AM.IndexReg != 0; 820 } 821 } 822 823 return false; 824 } 825 826 /// X86SelectAddress - Attempt to fill in an address from the given value. 827 /// 828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 829 SmallVector<const Value *, 32> GEPs; 830 redo_gep: 831 const User *U = nullptr; 832 unsigned Opcode = Instruction::UserOp1; 833 if (const Instruction *I = dyn_cast<Instruction>(V)) { 834 // Don't walk into other basic blocks; it's possible we haven't 835 // visited them yet, so the instructions may not yet be assigned 836 // virtual registers. 837 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 838 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 839 Opcode = I->getOpcode(); 840 U = I; 841 } 842 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 843 Opcode = C->getOpcode(); 844 U = C; 845 } 846 847 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 848 if (Ty->getAddressSpace() > 255) 849 // Fast instruction selection doesn't support the special 850 // address spaces. 851 return false; 852 853 switch (Opcode) { 854 default: break; 855 case Instruction::BitCast: 856 // Look past bitcasts. 857 return X86SelectAddress(U->getOperand(0), AM); 858 859 case Instruction::IntToPtr: 860 // Look past no-op inttoptrs. 861 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 862 TLI.getPointerTy(DL)) 863 return X86SelectAddress(U->getOperand(0), AM); 864 break; 865 866 case Instruction::PtrToInt: 867 // Look past no-op ptrtoints. 868 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::Alloca: { 873 // Do static allocas. 874 const AllocaInst *A = cast<AllocaInst>(V); 875 DenseMap<const AllocaInst *, int>::iterator SI = 876 FuncInfo.StaticAllocaMap.find(A); 877 if (SI != FuncInfo.StaticAllocaMap.end()) { 878 AM.BaseType = X86AddressMode::FrameIndexBase; 879 AM.Base.FrameIndex = SI->second; 880 return true; 881 } 882 break; 883 } 884 885 case Instruction::Add: { 886 // Adds of constants are common and easy enough. 887 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 888 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 889 // They have to fit in the 32-bit signed displacement field though. 890 if (isInt<32>(Disp)) { 891 AM.Disp = (uint32_t)Disp; 892 return X86SelectAddress(U->getOperand(0), AM); 893 } 894 } 895 break; 896 } 897 898 case Instruction::GetElementPtr: { 899 X86AddressMode SavedAM = AM; 900 901 // Pattern-match simple GEPs. 902 uint64_t Disp = (int32_t)AM.Disp; 903 unsigned IndexReg = AM.IndexReg; 904 unsigned Scale = AM.Scale; 905 gep_type_iterator GTI = gep_type_begin(U); 906 // Iterate through the indices, folding what we can. Constants can be 907 // folded, and one dynamic index can be handled, if the scale is supported. 908 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 909 i != e; ++i, ++GTI) { 910 const Value *Op = *i; 911 if (StructType *STy = GTI.getStructTypeOrNull()) { 912 const StructLayout *SL = DL.getStructLayout(STy); 913 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 914 continue; 915 } 916 917 // A array/variable index is always of the form i*S where S is the 918 // constant scale size. See if we can push the scale into immediates. 919 uint64_t S = GTI.getSequentialElementStride(DL); 920 for (;;) { 921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 922 // Constant-offset addressing. 923 Disp += CI->getSExtValue() * S; 924 break; 925 } 926 if (canFoldAddIntoGEP(U, Op)) { 927 // A compatible add with a constant operand. Fold the constant. 928 ConstantInt *CI = 929 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 930 Disp += CI->getSExtValue() * S; 931 // Iterate on the other operand. 932 Op = cast<AddOperator>(Op)->getOperand(0); 933 continue; 934 } 935 if (IndexReg == 0 && 936 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 937 (S == 1 || S == 2 || S == 4 || S == 8)) { 938 // Scaled-index addressing. 939 Scale = S; 940 IndexReg = getRegForGEPIndex(Op); 941 if (IndexReg == 0) 942 return false; 943 break; 944 } 945 // Unsupported. 946 goto unsupported_gep; 947 } 948 } 949 950 // Check for displacement overflow. 951 if (!isInt<32>(Disp)) 952 break; 953 954 AM.IndexReg = IndexReg; 955 AM.Scale = Scale; 956 AM.Disp = (uint32_t)Disp; 957 GEPs.push_back(V); 958 959 if (const GetElementPtrInst *GEP = 960 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 961 // Ok, the GEP indices were covered by constant-offset and scaled-index 962 // addressing. Update the address state and move on to examining the base. 963 V = GEP; 964 goto redo_gep; 965 } else if (X86SelectAddress(U->getOperand(0), AM)) { 966 return true; 967 } 968 969 // If we couldn't merge the gep value into this addr mode, revert back to 970 // our address and just match the value instead of completely failing. 971 AM = SavedAM; 972 973 for (const Value *I : reverse(GEPs)) 974 if (handleConstantAddresses(I, AM)) 975 return true; 976 977 return false; 978 unsupported_gep: 979 // Ok, the GEP indices weren't all covered. 980 break; 981 } 982 } 983 984 return handleConstantAddresses(V, AM); 985 } 986 987 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 988 /// 989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 990 const User *U = nullptr; 991 unsigned Opcode = Instruction::UserOp1; 992 const Instruction *I = dyn_cast<Instruction>(V); 993 // Record if the value is defined in the same basic block. 994 // 995 // This information is crucial to know whether or not folding an 996 // operand is valid. 997 // Indeed, FastISel generates or reuses a virtual register for all 998 // operands of all instructions it selects. Obviously, the definition and 999 // its uses must use the same virtual register otherwise the produced 1000 // code is incorrect. 1001 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1002 // registers for values that are alive across basic blocks. This ensures 1003 // that the values are consistently set between across basic block, even 1004 // if different instruction selection mechanisms are used (e.g., a mix of 1005 // SDISel and FastISel). 1006 // For values local to a basic block, the instruction selection process 1007 // generates these virtual registers with whatever method is appropriate 1008 // for its needs. In particular, FastISel and SDISel do not share the way 1009 // local virtual registers are set. 1010 // Therefore, this is impossible (or at least unsafe) to share values 1011 // between basic blocks unless they use the same instruction selection 1012 // method, which is not guarantee for X86. 1013 // Moreover, things like hasOneUse could not be used accurately, if we 1014 // allow to reference values across basic blocks whereas they are not 1015 // alive across basic blocks initially. 1016 bool InMBB = true; 1017 if (I) { 1018 Opcode = I->getOpcode(); 1019 U = I; 1020 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1021 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1022 Opcode = C->getOpcode(); 1023 U = C; 1024 } 1025 1026 switch (Opcode) { 1027 default: break; 1028 case Instruction::BitCast: 1029 // Look past bitcasts if its operand is in the same BB. 1030 if (InMBB) 1031 return X86SelectCallAddress(U->getOperand(0), AM); 1032 break; 1033 1034 case Instruction::IntToPtr: 1035 // Look past no-op inttoptrs if its operand is in the same BB. 1036 if (InMBB && 1037 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1038 TLI.getPointerTy(DL)) 1039 return X86SelectCallAddress(U->getOperand(0), AM); 1040 break; 1041 1042 case Instruction::PtrToInt: 1043 // Look past no-op ptrtoints if its operand is in the same BB. 1044 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1045 return X86SelectCallAddress(U->getOperand(0), AM); 1046 break; 1047 } 1048 1049 // Handle constant address. 1050 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1051 // Can't handle alternate code models yet. 1052 if (TM.getCodeModel() != CodeModel::Small && 1053 TM.getCodeModel() != CodeModel::Medium) 1054 return false; 1055 1056 // RIP-relative addresses can't have additional register operands. 1057 if (Subtarget->isPICStyleRIPRel() && 1058 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1059 return false; 1060 1061 // Can't handle TLS. 1062 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1063 if (GVar->isThreadLocal()) 1064 return false; 1065 1066 // Okay, we've committed to selecting this global. Set up the basic address. 1067 AM.GV = GV; 1068 1069 // Return a direct reference to the global. Fastisel can handle calls to 1070 // functions that require loads, such as dllimport and nonlazybind 1071 // functions. 1072 if (Subtarget->isPICStyleRIPRel()) { 1073 // Use rip-relative addressing if we can. Above we verified that the 1074 // base and index registers are unused. 1075 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1076 AM.Base.Reg = X86::RIP; 1077 } else { 1078 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1079 } 1080 1081 return true; 1082 } 1083 1084 // If all else fails, try to materialize the value in a register. 1085 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1086 auto GetCallRegForValue = [this](const Value *V) { 1087 Register Reg = getRegForValue(V); 1088 1089 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. 1090 if (Reg && Subtarget->isTarget64BitILP32()) { 1091 Register CopyReg = createResultReg(&X86::GR32RegClass); 1092 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), 1093 CopyReg) 1094 .addReg(Reg); 1095 1096 Register ExtReg = createResultReg(&X86::GR64RegClass); 1097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1098 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) 1099 .addImm(0) 1100 .addReg(CopyReg) 1101 .addImm(X86::sub_32bit); 1102 Reg = ExtReg; 1103 } 1104 1105 return Reg; 1106 }; 1107 1108 if (AM.Base.Reg == 0) { 1109 AM.Base.Reg = GetCallRegForValue(V); 1110 return AM.Base.Reg != 0; 1111 } 1112 if (AM.IndexReg == 0) { 1113 assert(AM.Scale == 1 && "Scale with no index!"); 1114 AM.IndexReg = GetCallRegForValue(V); 1115 return AM.IndexReg != 0; 1116 } 1117 } 1118 1119 return false; 1120 } 1121 1122 1123 /// X86SelectStore - Select and emit code to implement store instructions. 1124 bool X86FastISel::X86SelectStore(const Instruction *I) { 1125 // Atomic stores need special handling. 1126 const StoreInst *S = cast<StoreInst>(I); 1127 1128 if (S->isAtomic()) 1129 return false; 1130 1131 const Value *PtrV = I->getOperand(1); 1132 if (TLI.supportSwiftError()) { 1133 // Swifterror values can come from either a function parameter with 1134 // swifterror attribute or an alloca with swifterror attribute. 1135 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1136 if (Arg->hasSwiftErrorAttr()) 1137 return false; 1138 } 1139 1140 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1141 if (Alloca->isSwiftError()) 1142 return false; 1143 } 1144 } 1145 1146 const Value *Val = S->getValueOperand(); 1147 const Value *Ptr = S->getPointerOperand(); 1148 1149 MVT VT; 1150 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1151 return false; 1152 1153 Align Alignment = S->getAlign(); 1154 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1155 bool Aligned = Alignment >= ABIAlignment; 1156 1157 X86AddressMode AM; 1158 if (!X86SelectAddress(Ptr, AM)) 1159 return false; 1160 1161 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1162 } 1163 1164 /// X86SelectRet - Select and emit code to implement ret instructions. 1165 bool X86FastISel::X86SelectRet(const Instruction *I) { 1166 const ReturnInst *Ret = cast<ReturnInst>(I); 1167 const Function &F = *I->getParent()->getParent(); 1168 const X86MachineFunctionInfo *X86MFInfo = 1169 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1170 1171 if (!FuncInfo.CanLowerReturn) 1172 return false; 1173 1174 if (TLI.supportSwiftError() && 1175 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1176 return false; 1177 1178 if (TLI.supportSplitCSR(FuncInfo.MF)) 1179 return false; 1180 1181 CallingConv::ID CC = F.getCallingConv(); 1182 if (CC != CallingConv::C && 1183 CC != CallingConv::Fast && 1184 CC != CallingConv::Tail && 1185 CC != CallingConv::SwiftTail && 1186 CC != CallingConv::X86_FastCall && 1187 CC != CallingConv::X86_StdCall && 1188 CC != CallingConv::X86_ThisCall && 1189 CC != CallingConv::X86_64_SysV && 1190 CC != CallingConv::Win64) 1191 return false; 1192 1193 // Don't handle popping bytes if they don't fit the ret's immediate. 1194 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1195 return false; 1196 1197 // fastcc with -tailcallopt is intended to provide a guaranteed 1198 // tail call optimization. Fastisel doesn't know how to do that. 1199 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1200 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 1201 return false; 1202 1203 // Let SDISel handle vararg functions. 1204 if (F.isVarArg()) 1205 return false; 1206 1207 // Build a list of return value registers. 1208 SmallVector<unsigned, 4> RetRegs; 1209 1210 if (Ret->getNumOperands() > 0) { 1211 SmallVector<ISD::OutputArg, 4> Outs; 1212 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1213 1214 // Analyze operands of the call, assigning locations to each operand. 1215 SmallVector<CCValAssign, 16> ValLocs; 1216 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1217 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1218 1219 const Value *RV = Ret->getOperand(0); 1220 Register Reg = getRegForValue(RV); 1221 if (Reg == 0) 1222 return false; 1223 1224 // Only handle a single return value for now. 1225 if (ValLocs.size() != 1) 1226 return false; 1227 1228 CCValAssign &VA = ValLocs[0]; 1229 1230 // Don't bother handling odd stuff for now. 1231 if (VA.getLocInfo() != CCValAssign::Full) 1232 return false; 1233 // Only handle register returns for now. 1234 if (!VA.isRegLoc()) 1235 return false; 1236 1237 // The calling-convention tables for x87 returns don't tell 1238 // the whole story. 1239 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1240 return false; 1241 1242 unsigned SrcReg = Reg + VA.getValNo(); 1243 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1244 EVT DstVT = VA.getValVT(); 1245 // Special handling for extended integers. 1246 if (SrcVT != DstVT) { 1247 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1248 return false; 1249 1250 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1251 return false; 1252 1253 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1254 1255 if (SrcVT == MVT::i1) { 1256 if (Outs[0].Flags.isSExt()) 1257 return false; 1258 // TODO 1259 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); 1260 SrcVT = MVT::i8; 1261 } 1262 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1263 ISD::SIGN_EXTEND; 1264 // TODO 1265 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); 1266 } 1267 1268 // Make the copy. 1269 Register DstReg = VA.getLocReg(); 1270 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1271 // Avoid a cross-class copy. This is very unlikely. 1272 if (!SrcRC->contains(DstReg)) 1273 return false; 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1275 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1276 1277 // Add register to return instruction. 1278 RetRegs.push_back(VA.getLocReg()); 1279 } 1280 1281 // Swift calling convention does not require we copy the sret argument 1282 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1283 1284 // All x86 ABIs require that for returning structs by value we copy 1285 // the sret argument into %rax/%eax (depending on ABI) for the return. 1286 // We saved the argument into a virtual register in the entry block, 1287 // so now we copy the value out and into %rax/%eax. 1288 if (F.hasStructRetAttr() && CC != CallingConv::Swift && 1289 CC != CallingConv::SwiftTail) { 1290 Register Reg = X86MFInfo->getSRetReturnReg(); 1291 assert(Reg && 1292 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1293 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1295 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1296 RetRegs.push_back(RetReg); 1297 } 1298 1299 // Now emit the RET. 1300 MachineInstrBuilder MIB; 1301 if (X86MFInfo->getBytesToPopOnReturn()) { 1302 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1303 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) 1304 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1305 } else { 1306 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1307 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); 1308 } 1309 for (unsigned Reg : RetRegs) 1310 MIB.addReg(Reg, RegState::Implicit); 1311 return true; 1312 } 1313 1314 /// X86SelectLoad - Select and emit code to implement load instructions. 1315 /// 1316 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1317 const LoadInst *LI = cast<LoadInst>(I); 1318 1319 // Atomic loads need special handling. 1320 if (LI->isAtomic()) 1321 return false; 1322 1323 const Value *SV = I->getOperand(0); 1324 if (TLI.supportSwiftError()) { 1325 // Swifterror values can come from either a function parameter with 1326 // swifterror attribute or an alloca with swifterror attribute. 1327 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1328 if (Arg->hasSwiftErrorAttr()) 1329 return false; 1330 } 1331 1332 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1333 if (Alloca->isSwiftError()) 1334 return false; 1335 } 1336 } 1337 1338 MVT VT; 1339 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1340 return false; 1341 1342 const Value *Ptr = LI->getPointerOperand(); 1343 1344 X86AddressMode AM; 1345 if (!X86SelectAddress(Ptr, AM)) 1346 return false; 1347 1348 unsigned ResultReg = 0; 1349 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1350 LI->getAlign().value())) 1351 return false; 1352 1353 updateValueMap(I, ResultReg); 1354 return true; 1355 } 1356 1357 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1358 bool HasAVX512 = Subtarget->hasAVX512(); 1359 bool HasAVX = Subtarget->hasAVX(); 1360 bool HasSSE1 = Subtarget->hasSSE1(); 1361 bool HasSSE2 = Subtarget->hasSSE2(); 1362 1363 switch (VT.getSimpleVT().SimpleTy) { 1364 default: return 0; 1365 case MVT::i8: return X86::CMP8rr; 1366 case MVT::i16: return X86::CMP16rr; 1367 case MVT::i32: return X86::CMP32rr; 1368 case MVT::i64: return X86::CMP64rr; 1369 case MVT::f32: 1370 return HasAVX512 ? X86::VUCOMISSZrr 1371 : HasAVX ? X86::VUCOMISSrr 1372 : HasSSE1 ? X86::UCOMISSrr 1373 : 0; 1374 case MVT::f64: 1375 return HasAVX512 ? X86::VUCOMISDZrr 1376 : HasAVX ? X86::VUCOMISDrr 1377 : HasSSE2 ? X86::UCOMISDrr 1378 : 0; 1379 } 1380 } 1381 1382 /// If we have a comparison with RHS as the RHS of the comparison, return an 1383 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1384 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1385 switch (VT.getSimpleVT().SimpleTy) { 1386 // Otherwise, we can't fold the immediate into this comparison. 1387 default: 1388 return 0; 1389 case MVT::i8: 1390 return X86::CMP8ri; 1391 case MVT::i16: 1392 return X86::CMP16ri; 1393 case MVT::i32: 1394 return X86::CMP32ri; 1395 case MVT::i64: 1396 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1397 // field. 1398 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; 1399 } 1400 } 1401 1402 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1403 const DebugLoc &CurMIMD) { 1404 Register Op0Reg = getRegForValue(Op0); 1405 if (Op0Reg == 0) return false; 1406 1407 // Handle 'null' like i32/i64 0. 1408 if (isa<ConstantPointerNull>(Op1)) 1409 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1410 1411 // We have two options: compare with register or immediate. If the RHS of 1412 // the compare is an immediate that we can fold into this compare, use 1413 // CMPri, otherwise use CMPrr. 1414 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1415 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) 1417 .addReg(Op0Reg) 1418 .addImm(Op1C->getSExtValue()); 1419 return true; 1420 } 1421 } 1422 1423 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1424 if (CompareOpc == 0) return false; 1425 1426 Register Op1Reg = getRegForValue(Op1); 1427 if (Op1Reg == 0) return false; 1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) 1429 .addReg(Op0Reg) 1430 .addReg(Op1Reg); 1431 1432 return true; 1433 } 1434 1435 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1436 const CmpInst *CI = cast<CmpInst>(I); 1437 1438 MVT VT; 1439 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1440 return false; 1441 1442 // Below code only works for scalars. 1443 if (VT.isVector()) 1444 return false; 1445 1446 // Try to optimize or fold the cmp. 1447 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1448 unsigned ResultReg = 0; 1449 switch (Predicate) { 1450 default: break; 1451 case CmpInst::FCMP_FALSE: { 1452 ResultReg = createResultReg(&X86::GR32RegClass); 1453 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), 1454 ResultReg); 1455 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); 1456 if (!ResultReg) 1457 return false; 1458 break; 1459 } 1460 case CmpInst::FCMP_TRUE: { 1461 ResultReg = createResultReg(&X86::GR8RegClass); 1462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 1463 ResultReg).addImm(1); 1464 break; 1465 } 1466 } 1467 1468 if (ResultReg) { 1469 updateValueMap(I, ResultReg); 1470 return true; 1471 } 1472 1473 const Value *LHS = CI->getOperand(0); 1474 const Value *RHS = CI->getOperand(1); 1475 1476 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1477 // We don't have to materialize a zero constant for this case and can just use 1478 // %x again on the RHS. 1479 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1480 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1481 if (RHSC && RHSC->isNullValue()) 1482 RHS = LHS; 1483 } 1484 1485 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1486 static const uint16_t SETFOpcTable[2][3] = { 1487 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1488 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1489 }; 1490 const uint16_t *SETFOpc = nullptr; 1491 switch (Predicate) { 1492 default: break; 1493 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1494 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1495 } 1496 1497 ResultReg = createResultReg(&X86::GR8RegClass); 1498 if (SETFOpc) { 1499 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1500 return false; 1501 1502 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1503 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1505 FlagReg1).addImm(SETFOpc[0]); 1506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1507 FlagReg2).addImm(SETFOpc[1]); 1508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), 1509 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1510 updateValueMap(I, ResultReg); 1511 return true; 1512 } 1513 1514 X86::CondCode CC; 1515 bool SwapArgs; 1516 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1517 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1518 1519 if (SwapArgs) 1520 std::swap(LHS, RHS); 1521 1522 // Emit a compare of LHS/RHS. 1523 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1524 return false; 1525 1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1527 ResultReg).addImm(CC); 1528 updateValueMap(I, ResultReg); 1529 return true; 1530 } 1531 1532 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1533 EVT DstVT = TLI.getValueType(DL, I->getType()); 1534 if (!TLI.isTypeLegal(DstVT)) 1535 return false; 1536 1537 Register ResultReg = getRegForValue(I->getOperand(0)); 1538 if (ResultReg == 0) 1539 return false; 1540 1541 // Handle zero-extension from i1 to i8, which is common. 1542 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1543 if (SrcVT == MVT::i1) { 1544 // Set the high bits to zero. 1545 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1546 SrcVT = MVT::i8; 1547 1548 if (ResultReg == 0) 1549 return false; 1550 } 1551 1552 if (DstVT == MVT::i64) { 1553 // Handle extension to 64-bits via sub-register shenanigans. 1554 unsigned MovInst; 1555 1556 switch (SrcVT.SimpleTy) { 1557 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1558 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1559 case MVT::i32: MovInst = X86::MOV32rr; break; 1560 default: llvm_unreachable("Unexpected zext to i64 source type"); 1561 } 1562 1563 Register Result32 = createResultReg(&X86::GR32RegClass); 1564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) 1565 .addReg(ResultReg); 1566 1567 ResultReg = createResultReg(&X86::GR64RegClass); 1568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), 1569 ResultReg) 1570 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1571 } else if (DstVT == MVT::i16) { 1572 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1573 // extend to 32-bits and then extract down to 16-bits. 1574 Register Result32 = createResultReg(&X86::GR32RegClass); 1575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), 1576 Result32).addReg(ResultReg); 1577 1578 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1579 } else if (DstVT != MVT::i8) { 1580 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1581 ResultReg); 1582 if (ResultReg == 0) 1583 return false; 1584 } 1585 1586 updateValueMap(I, ResultReg); 1587 return true; 1588 } 1589 1590 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1591 EVT DstVT = TLI.getValueType(DL, I->getType()); 1592 if (!TLI.isTypeLegal(DstVT)) 1593 return false; 1594 1595 Register ResultReg = getRegForValue(I->getOperand(0)); 1596 if (ResultReg == 0) 1597 return false; 1598 1599 // Handle sign-extension from i1 to i8. 1600 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1601 if (SrcVT == MVT::i1) { 1602 // Set the high bits to zero. 1603 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1604 if (ZExtReg == 0) 1605 return false; 1606 1607 // Negate the result to make an 8-bit sign extended value. 1608 ResultReg = createResultReg(&X86::GR8RegClass); 1609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), 1610 ResultReg).addReg(ZExtReg); 1611 1612 SrcVT = MVT::i8; 1613 } 1614 1615 if (DstVT == MVT::i16) { 1616 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1617 // extend to 32-bits and then extract down to 16-bits. 1618 Register Result32 = createResultReg(&X86::GR32RegClass); 1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), 1620 Result32).addReg(ResultReg); 1621 1622 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1623 } else if (DstVT != MVT::i8) { 1624 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1625 ResultReg); 1626 if (ResultReg == 0) 1627 return false; 1628 } 1629 1630 updateValueMap(I, ResultReg); 1631 return true; 1632 } 1633 1634 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1635 // Unconditional branches are selected by tablegen-generated code. 1636 // Handle a conditional branch. 1637 const BranchInst *BI = cast<BranchInst>(I); 1638 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1639 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1640 1641 // Fold the common case of a conditional branch with a comparison 1642 // in the same block (values defined on other blocks may not have 1643 // initialized registers). 1644 X86::CondCode CC; 1645 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1646 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1647 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1648 1649 // Try to optimize or fold the cmp. 1650 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1651 switch (Predicate) { 1652 default: break; 1653 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; 1654 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true; 1655 } 1656 1657 const Value *CmpLHS = CI->getOperand(0); 1658 const Value *CmpRHS = CI->getOperand(1); 1659 1660 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1661 // 0.0. 1662 // We don't have to materialize a zero constant for this case and can just 1663 // use %x again on the RHS. 1664 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1665 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1666 if (CmpRHSC && CmpRHSC->isNullValue()) 1667 CmpRHS = CmpLHS; 1668 } 1669 1670 // Try to take advantage of fallthrough opportunities. 1671 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1672 std::swap(TrueMBB, FalseMBB); 1673 Predicate = CmpInst::getInversePredicate(Predicate); 1674 } 1675 1676 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1677 // code check. Instead two branch instructions are required to check all 1678 // the flags. First we change the predicate to a supported condition code, 1679 // which will be the first branch. Later one we will emit the second 1680 // branch. 1681 bool NeedExtraBranch = false; 1682 switch (Predicate) { 1683 default: break; 1684 case CmpInst::FCMP_OEQ: 1685 std::swap(TrueMBB, FalseMBB); 1686 [[fallthrough]]; 1687 case CmpInst::FCMP_UNE: 1688 NeedExtraBranch = true; 1689 Predicate = CmpInst::FCMP_ONE; 1690 break; 1691 } 1692 1693 bool SwapArgs; 1694 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1695 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1696 1697 if (SwapArgs) 1698 std::swap(CmpLHS, CmpRHS); 1699 1700 // Emit a compare of the LHS and RHS, setting the flags. 1701 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1702 return false; 1703 1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1705 .addMBB(TrueMBB).addImm(CC); 1706 1707 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1708 // to UNE above). 1709 if (NeedExtraBranch) { 1710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1711 .addMBB(TrueMBB).addImm(X86::COND_P); 1712 } 1713 1714 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1715 return true; 1716 } 1717 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1718 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1719 // typically happen for _Bool and C++ bools. 1720 MVT SourceVT; 1721 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1722 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1723 unsigned TestOpc = 0; 1724 switch (SourceVT.SimpleTy) { 1725 default: break; 1726 case MVT::i8: TestOpc = X86::TEST8ri; break; 1727 case MVT::i16: TestOpc = X86::TEST16ri; break; 1728 case MVT::i32: TestOpc = X86::TEST32ri; break; 1729 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1730 } 1731 if (TestOpc) { 1732 Register OpReg = getRegForValue(TI->getOperand(0)); 1733 if (OpReg == 0) return false; 1734 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) 1736 .addReg(OpReg).addImm(1); 1737 1738 unsigned JmpCond = X86::COND_NE; 1739 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1740 std::swap(TrueMBB, FalseMBB); 1741 JmpCond = X86::COND_E; 1742 } 1743 1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1745 .addMBB(TrueMBB).addImm(JmpCond); 1746 1747 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1748 return true; 1749 } 1750 } 1751 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1752 // Fake request the condition, otherwise the intrinsic might be completely 1753 // optimized away. 1754 Register TmpReg = getRegForValue(BI->getCondition()); 1755 if (TmpReg == 0) 1756 return false; 1757 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1759 .addMBB(TrueMBB).addImm(CC); 1760 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1761 return true; 1762 } 1763 1764 // Otherwise do a clumsy setcc and re-test it. 1765 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1766 // in an explicit cast, so make sure to handle that correctly. 1767 Register OpReg = getRegForValue(BI->getCondition()); 1768 if (OpReg == 0) return false; 1769 1770 // In case OpReg is a K register, COPY to a GPR 1771 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1772 unsigned KOpReg = OpReg; 1773 OpReg = createResultReg(&X86::GR32RegClass); 1774 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1775 TII.get(TargetOpcode::COPY), OpReg) 1776 .addReg(KOpReg); 1777 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); 1778 } 1779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 1780 .addReg(OpReg) 1781 .addImm(1); 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1783 .addMBB(TrueMBB).addImm(X86::COND_NE); 1784 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1785 return true; 1786 } 1787 1788 bool X86FastISel::X86SelectShift(const Instruction *I) { 1789 unsigned CReg = 0, OpReg = 0; 1790 const TargetRegisterClass *RC = nullptr; 1791 if (I->getType()->isIntegerTy(8)) { 1792 CReg = X86::CL; 1793 RC = &X86::GR8RegClass; 1794 switch (I->getOpcode()) { 1795 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1796 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1797 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1798 default: return false; 1799 } 1800 } else if (I->getType()->isIntegerTy(16)) { 1801 CReg = X86::CX; 1802 RC = &X86::GR16RegClass; 1803 switch (I->getOpcode()) { 1804 default: llvm_unreachable("Unexpected shift opcode"); 1805 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1806 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1807 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1808 } 1809 } else if (I->getType()->isIntegerTy(32)) { 1810 CReg = X86::ECX; 1811 RC = &X86::GR32RegClass; 1812 switch (I->getOpcode()) { 1813 default: llvm_unreachable("Unexpected shift opcode"); 1814 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1815 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1816 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1817 } 1818 } else if (I->getType()->isIntegerTy(64)) { 1819 CReg = X86::RCX; 1820 RC = &X86::GR64RegClass; 1821 switch (I->getOpcode()) { 1822 default: llvm_unreachable("Unexpected shift opcode"); 1823 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1824 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1825 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1826 } 1827 } else { 1828 return false; 1829 } 1830 1831 MVT VT; 1832 if (!isTypeLegal(I->getType(), VT)) 1833 return false; 1834 1835 Register Op0Reg = getRegForValue(I->getOperand(0)); 1836 if (Op0Reg == 0) return false; 1837 1838 Register Op1Reg = getRegForValue(I->getOperand(1)); 1839 if (Op1Reg == 0) return false; 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1841 CReg).addReg(Op1Reg); 1842 1843 // The shift instruction uses X86::CL. If we defined a super-register 1844 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1845 if (CReg != X86::CL) 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1847 TII.get(TargetOpcode::KILL), X86::CL) 1848 .addReg(CReg, RegState::Kill); 1849 1850 Register ResultReg = createResultReg(RC); 1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) 1852 .addReg(Op0Reg); 1853 updateValueMap(I, ResultReg); 1854 return true; 1855 } 1856 1857 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1858 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1859 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1860 const static bool S = true; // IsSigned 1861 const static bool U = false; // !IsSigned 1862 const static unsigned Copy = TargetOpcode::COPY; 1863 // For the X86 DIV/IDIV instruction, in most cases the dividend 1864 // (numerator) must be in a specific register pair highreg:lowreg, 1865 // producing the quotient in lowreg and the remainder in highreg. 1866 // For most data types, to set up the instruction, the dividend is 1867 // copied into lowreg, and lowreg is sign-extended or zero-extended 1868 // into highreg. The exception is i8, where the dividend is defined 1869 // as a single register rather than a register pair, and we 1870 // therefore directly sign-extend or zero-extend the dividend into 1871 // lowreg, instead of copying, and ignore the highreg. 1872 const static struct DivRemEntry { 1873 // The following portion depends only on the data type. 1874 const TargetRegisterClass *RC; 1875 unsigned LowInReg; // low part of the register pair 1876 unsigned HighInReg; // high part of the register pair 1877 // The following portion depends on both the data type and the operation. 1878 struct DivRemResult { 1879 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1880 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1881 // highreg, or copying a zero into highreg. 1882 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1883 // zero/sign-extending into lowreg for i8. 1884 unsigned DivRemResultReg; // Register containing the desired result. 1885 bool IsOpSigned; // Whether to use signed or unsigned form. 1886 } ResultTable[NumOps]; 1887 } OpTable[NumTypes] = { 1888 { &X86::GR8RegClass, X86::AX, 0, { 1889 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1890 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1891 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1892 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1893 } 1894 }, // i8 1895 { &X86::GR16RegClass, X86::AX, X86::DX, { 1896 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1897 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1898 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1899 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1900 } 1901 }, // i16 1902 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1903 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1904 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1905 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1906 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1907 } 1908 }, // i32 1909 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1910 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1911 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1912 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1913 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1914 } 1915 }, // i64 1916 }; 1917 1918 MVT VT; 1919 if (!isTypeLegal(I->getType(), VT)) 1920 return false; 1921 1922 unsigned TypeIndex, OpIndex; 1923 switch (VT.SimpleTy) { 1924 default: return false; 1925 case MVT::i8: TypeIndex = 0; break; 1926 case MVT::i16: TypeIndex = 1; break; 1927 case MVT::i32: TypeIndex = 2; break; 1928 case MVT::i64: TypeIndex = 3; 1929 if (!Subtarget->is64Bit()) 1930 return false; 1931 break; 1932 } 1933 1934 switch (I->getOpcode()) { 1935 default: llvm_unreachable("Unexpected div/rem opcode"); 1936 case Instruction::SDiv: OpIndex = 0; break; 1937 case Instruction::SRem: OpIndex = 1; break; 1938 case Instruction::UDiv: OpIndex = 2; break; 1939 case Instruction::URem: OpIndex = 3; break; 1940 } 1941 1942 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1943 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1944 Register Op0Reg = getRegForValue(I->getOperand(0)); 1945 if (Op0Reg == 0) 1946 return false; 1947 Register Op1Reg = getRegForValue(I->getOperand(1)); 1948 if (Op1Reg == 0) 1949 return false; 1950 1951 // Move op0 into low-order input register. 1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1953 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1954 // Zero-extend or sign-extend into high-order input register. 1955 if (OpEntry.OpSignExtend) { 1956 if (OpEntry.IsOpSigned) 1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1958 TII.get(OpEntry.OpSignExtend)); 1959 else { 1960 Register Zero32 = createResultReg(&X86::GR32RegClass); 1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1962 TII.get(X86::MOV32r0), Zero32); 1963 1964 // Copy the zero into the appropriate sub/super/identical physical 1965 // register. Unfortunately the operations needed are not uniform enough 1966 // to fit neatly into the table above. 1967 if (VT == MVT::i16) { 1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1969 TII.get(Copy), TypeEntry.HighInReg) 1970 .addReg(Zero32, 0, X86::sub_16bit); 1971 } else if (VT == MVT::i32) { 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1973 TII.get(Copy), TypeEntry.HighInReg) 1974 .addReg(Zero32); 1975 } else if (VT == MVT::i64) { 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1977 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1978 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1979 } 1980 } 1981 } 1982 // Generate the DIV/IDIV instruction. 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1984 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1985 // For i8 remainder, we can't reference ah directly, as we'll end 1986 // up with bogus copies like %r9b = COPY %ah. Reference ax 1987 // instead to prevent ah references in a rex instruction. 1988 // 1989 // The current assumption of the fast register allocator is that isel 1990 // won't generate explicit references to the GR8_NOREX registers. If 1991 // the allocator and/or the backend get enhanced to be more robust in 1992 // that regard, this can be, and should be, removed. 1993 unsigned ResultReg = 0; 1994 if ((I->getOpcode() == Instruction::SRem || 1995 I->getOpcode() == Instruction::URem) && 1996 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1997 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 1998 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2000 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 2001 2002 // Shift AX right by 8 bits instead of using AH. 2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), 2004 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 2005 2006 // Now reference the 8-bit subreg of the result. 2007 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2008 X86::sub_8bit); 2009 } 2010 // Copy the result out of the physreg if we haven't already. 2011 if (!ResultReg) { 2012 ResultReg = createResultReg(TypeEntry.RC); 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) 2014 .addReg(OpEntry.DivRemResultReg); 2015 } 2016 updateValueMap(I, ResultReg); 2017 2018 return true; 2019 } 2020 2021 /// Emit a conditional move instruction (if the are supported) to lower 2022 /// the select. 2023 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2024 // Check if the subtarget supports these instructions. 2025 if (!Subtarget->canUseCMOV()) 2026 return false; 2027 2028 // FIXME: Add support for i8. 2029 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2030 return false; 2031 2032 const Value *Cond = I->getOperand(0); 2033 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2034 bool NeedTest = true; 2035 X86::CondCode CC = X86::COND_NE; 2036 2037 // Optimize conditions coming from a compare if both instructions are in the 2038 // same basic block (values defined in other basic blocks may not have 2039 // initialized registers). 2040 const auto *CI = dyn_cast<CmpInst>(Cond); 2041 if (CI && (CI->getParent() == I->getParent())) { 2042 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2043 2044 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2045 static const uint16_t SETFOpcTable[2][3] = { 2046 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2047 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2048 }; 2049 const uint16_t *SETFOpc = nullptr; 2050 switch (Predicate) { 2051 default: break; 2052 case CmpInst::FCMP_OEQ: 2053 SETFOpc = &SETFOpcTable[0][0]; 2054 Predicate = CmpInst::ICMP_NE; 2055 break; 2056 case CmpInst::FCMP_UNE: 2057 SETFOpc = &SETFOpcTable[1][0]; 2058 Predicate = CmpInst::ICMP_NE; 2059 break; 2060 } 2061 2062 bool NeedSwap; 2063 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2064 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2065 2066 const Value *CmpLHS = CI->getOperand(0); 2067 const Value *CmpRHS = CI->getOperand(1); 2068 if (NeedSwap) 2069 std::swap(CmpLHS, CmpRHS); 2070 2071 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2072 // Emit a compare of the LHS and RHS, setting the flags. 2073 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2074 return false; 2075 2076 if (SETFOpc) { 2077 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2078 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2079 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2080 FlagReg1).addImm(SETFOpc[0]); 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2082 FlagReg2).addImm(SETFOpc[1]); 2083 auto const &II = TII.get(SETFOpc[2]); 2084 if (II.getNumDefs()) { 2085 Register TmpReg = createResultReg(&X86::GR8RegClass); 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) 2087 .addReg(FlagReg2).addReg(FlagReg1); 2088 } else { 2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2090 .addReg(FlagReg2).addReg(FlagReg1); 2091 } 2092 } 2093 NeedTest = false; 2094 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2095 // Fake request the condition, otherwise the intrinsic might be completely 2096 // optimized away. 2097 Register TmpReg = getRegForValue(Cond); 2098 if (TmpReg == 0) 2099 return false; 2100 2101 NeedTest = false; 2102 } 2103 2104 if (NeedTest) { 2105 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2106 // garbage. Indeed, only the less significant bit is supposed to be 2107 // accurate. If we read more than the lsb, we may see non-zero values 2108 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2109 // the select. This is achieved by performing TEST against 1. 2110 Register CondReg = getRegForValue(Cond); 2111 if (CondReg == 0) 2112 return false; 2113 2114 // In case OpReg is a K register, COPY to a GPR 2115 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2116 unsigned KCondReg = CondReg; 2117 CondReg = createResultReg(&X86::GR32RegClass); 2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2119 TII.get(TargetOpcode::COPY), CondReg) 2120 .addReg(KCondReg); 2121 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2122 } 2123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2124 .addReg(CondReg) 2125 .addImm(1); 2126 } 2127 2128 const Value *LHS = I->getOperand(1); 2129 const Value *RHS = I->getOperand(2); 2130 2131 Register RHSReg = getRegForValue(RHS); 2132 Register LHSReg = getRegForValue(LHS); 2133 if (!LHSReg || !RHSReg) 2134 return false; 2135 2136 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2137 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2138 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2139 updateValueMap(I, ResultReg); 2140 return true; 2141 } 2142 2143 /// Emit SSE or AVX instructions to lower the select. 2144 /// 2145 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2146 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2147 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2148 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2149 // Optimize conditions coming from a compare if both instructions are in the 2150 // same basic block (values defined in other basic blocks may not have 2151 // initialized registers). 2152 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2153 if (!CI || (CI->getParent() != I->getParent())) 2154 return false; 2155 2156 if (I->getType() != CI->getOperand(0)->getType() || 2157 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2158 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2159 return false; 2160 2161 const Value *CmpLHS = CI->getOperand(0); 2162 const Value *CmpRHS = CI->getOperand(1); 2163 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2164 2165 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2166 // We don't have to materialize a zero constant for this case and can just use 2167 // %x again on the RHS. 2168 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2169 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2170 if (CmpRHSC && CmpRHSC->isNullValue()) 2171 CmpRHS = CmpLHS; 2172 } 2173 2174 unsigned CC; 2175 bool NeedSwap; 2176 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2177 if (CC > 7 && !Subtarget->hasAVX()) 2178 return false; 2179 2180 if (NeedSwap) 2181 std::swap(CmpLHS, CmpRHS); 2182 2183 const Value *LHS = I->getOperand(1); 2184 const Value *RHS = I->getOperand(2); 2185 2186 Register LHSReg = getRegForValue(LHS); 2187 Register RHSReg = getRegForValue(RHS); 2188 Register CmpLHSReg = getRegForValue(CmpLHS); 2189 Register CmpRHSReg = getRegForValue(CmpRHS); 2190 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2191 return false; 2192 2193 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2194 unsigned ResultReg; 2195 2196 if (Subtarget->hasAVX512()) { 2197 // If we have AVX512 we can use a mask compare and masked movss/sd. 2198 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2199 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2200 2201 unsigned CmpOpcode = 2202 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2203 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, 2204 CC); 2205 2206 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2207 // bits of the result register since its not based on any of the inputs. 2208 Register ImplicitDefReg = createResultReg(VR128X); 2209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2210 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2211 2212 // Place RHSReg is the passthru of the masked movss/sd operation and put 2213 // LHS in the input. The mask input comes from the compare. 2214 unsigned MovOpcode = 2215 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2216 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, 2217 ImplicitDefReg, LHSReg); 2218 2219 ResultReg = createResultReg(RC); 2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2221 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2222 2223 } else if (Subtarget->hasAVX()) { 2224 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2225 2226 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2227 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2228 // uses XMM0 as the selection register. That may need just as many 2229 // instructions as the AND/ANDN/OR sequence due to register moves, so 2230 // don't bother. 2231 unsigned CmpOpcode = 2232 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2233 unsigned BlendOpcode = 2234 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2235 2236 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, 2237 CC); 2238 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, 2239 CmpReg); 2240 ResultReg = createResultReg(RC); 2241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2242 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2243 } else { 2244 // Choose the SSE instruction sequence based on data type (float or double). 2245 static const uint16_t OpcTable[2][4] = { 2246 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2247 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2248 }; 2249 2250 const uint16_t *Opc = nullptr; 2251 switch (RetVT.SimpleTy) { 2252 default: return false; 2253 case MVT::f32: Opc = &OpcTable[0][0]; break; 2254 case MVT::f64: Opc = &OpcTable[1][0]; break; 2255 } 2256 2257 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2258 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); 2259 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); 2260 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); 2261 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); 2262 ResultReg = createResultReg(RC); 2263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2264 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2265 } 2266 updateValueMap(I, ResultReg); 2267 return true; 2268 } 2269 2270 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2271 // These are pseudo CMOV instructions and will be later expanded into control- 2272 // flow. 2273 unsigned Opc; 2274 switch (RetVT.SimpleTy) { 2275 default: return false; 2276 case MVT::i8: Opc = X86::CMOV_GR8; break; 2277 case MVT::i16: Opc = X86::CMOV_GR16; break; 2278 case MVT::i32: Opc = X86::CMOV_GR32; break; 2279 case MVT::f16: 2280 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; 2281 case MVT::f32: 2282 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; 2283 case MVT::f64: 2284 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; 2285 } 2286 2287 const Value *Cond = I->getOperand(0); 2288 X86::CondCode CC = X86::COND_NE; 2289 2290 // Optimize conditions coming from a compare if both instructions are in the 2291 // same basic block (values defined in other basic blocks may not have 2292 // initialized registers). 2293 const auto *CI = dyn_cast<CmpInst>(Cond); 2294 if (CI && (CI->getParent() == I->getParent())) { 2295 bool NeedSwap; 2296 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2297 if (CC > X86::LAST_VALID_COND) 2298 return false; 2299 2300 const Value *CmpLHS = CI->getOperand(0); 2301 const Value *CmpRHS = CI->getOperand(1); 2302 2303 if (NeedSwap) 2304 std::swap(CmpLHS, CmpRHS); 2305 2306 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2307 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2308 return false; 2309 } else { 2310 Register CondReg = getRegForValue(Cond); 2311 if (CondReg == 0) 2312 return false; 2313 2314 // In case OpReg is a K register, COPY to a GPR 2315 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2316 unsigned KCondReg = CondReg; 2317 CondReg = createResultReg(&X86::GR32RegClass); 2318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2319 TII.get(TargetOpcode::COPY), CondReg) 2320 .addReg(KCondReg); 2321 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2322 } 2323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2324 .addReg(CondReg) 2325 .addImm(1); 2326 } 2327 2328 const Value *LHS = I->getOperand(1); 2329 const Value *RHS = I->getOperand(2); 2330 2331 Register LHSReg = getRegForValue(LHS); 2332 Register RHSReg = getRegForValue(RHS); 2333 if (!LHSReg || !RHSReg) 2334 return false; 2335 2336 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2337 2338 Register ResultReg = 2339 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2340 updateValueMap(I, ResultReg); 2341 return true; 2342 } 2343 2344 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2345 MVT RetVT; 2346 if (!isTypeLegal(I->getType(), RetVT)) 2347 return false; 2348 2349 // Check if we can fold the select. 2350 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2351 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2352 const Value *Opnd = nullptr; 2353 switch (Predicate) { 2354 default: break; 2355 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2356 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2357 } 2358 // No need for a select anymore - this is an unconditional move. 2359 if (Opnd) { 2360 Register OpReg = getRegForValue(Opnd); 2361 if (OpReg == 0) 2362 return false; 2363 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2364 Register ResultReg = createResultReg(RC); 2365 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2366 TII.get(TargetOpcode::COPY), ResultReg) 2367 .addReg(OpReg); 2368 updateValueMap(I, ResultReg); 2369 return true; 2370 } 2371 } 2372 2373 // First try to use real conditional move instructions. 2374 if (X86FastEmitCMoveSelect(RetVT, I)) 2375 return true; 2376 2377 // Try to use a sequence of SSE instructions to simulate a conditional move. 2378 if (X86FastEmitSSESelect(RetVT, I)) 2379 return true; 2380 2381 // Fall-back to pseudo conditional move instructions, which will be later 2382 // converted to control-flow. 2383 if (X86FastEmitPseudoSelect(RetVT, I)) 2384 return true; 2385 2386 return false; 2387 } 2388 2389 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2390 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2391 // The target-independent selection algorithm in FastISel already knows how 2392 // to select a SINT_TO_FP if the target is SSE but not AVX. 2393 // Early exit if the subtarget doesn't have AVX. 2394 // Unsigned conversion requires avx512. 2395 bool HasAVX512 = Subtarget->hasAVX512(); 2396 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2397 return false; 2398 2399 // TODO: We could sign extend narrower types. 2400 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2401 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2402 return false; 2403 2404 // Select integer to float/double conversion. 2405 Register OpReg = getRegForValue(I->getOperand(0)); 2406 if (OpReg == 0) 2407 return false; 2408 2409 unsigned Opcode; 2410 2411 static const uint16_t SCvtOpc[2][2][2] = { 2412 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2413 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2414 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2415 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2416 }; 2417 static const uint16_t UCvtOpc[2][2] = { 2418 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2419 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2420 }; 2421 bool Is64Bit = SrcVT == MVT::i64; 2422 2423 if (I->getType()->isDoubleTy()) { 2424 // s/uitofp int -> double 2425 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2426 } else if (I->getType()->isFloatTy()) { 2427 // s/uitofp int -> float 2428 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2429 } else 2430 return false; 2431 2432 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2433 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2434 Register ImplicitDefReg = createResultReg(RC); 2435 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2436 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2437 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); 2438 updateValueMap(I, ResultReg); 2439 return true; 2440 } 2441 2442 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2443 return X86SelectIntToFP(I, /*IsSigned*/true); 2444 } 2445 2446 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2447 return X86SelectIntToFP(I, /*IsSigned*/false); 2448 } 2449 2450 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2451 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2452 unsigned TargetOpc, 2453 const TargetRegisterClass *RC) { 2454 assert((I->getOpcode() == Instruction::FPExt || 2455 I->getOpcode() == Instruction::FPTrunc) && 2456 "Instruction must be an FPExt or FPTrunc!"); 2457 bool HasAVX = Subtarget->hasAVX(); 2458 2459 Register OpReg = getRegForValue(I->getOperand(0)); 2460 if (OpReg == 0) 2461 return false; 2462 2463 unsigned ImplicitDefReg; 2464 if (HasAVX) { 2465 ImplicitDefReg = createResultReg(RC); 2466 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2467 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2468 2469 } 2470 2471 Register ResultReg = createResultReg(RC); 2472 MachineInstrBuilder MIB; 2473 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), 2474 ResultReg); 2475 2476 if (HasAVX) 2477 MIB.addReg(ImplicitDefReg); 2478 2479 MIB.addReg(OpReg); 2480 updateValueMap(I, ResultReg); 2481 return true; 2482 } 2483 2484 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2485 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && 2486 I->getOperand(0)->getType()->isFloatTy()) { 2487 bool HasAVX512 = Subtarget->hasAVX512(); 2488 // fpext from float to double. 2489 unsigned Opc = 2490 HasAVX512 ? X86::VCVTSS2SDZrr 2491 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2492 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2493 } 2494 2495 return false; 2496 } 2497 2498 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2499 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && 2500 I->getOperand(0)->getType()->isDoubleTy()) { 2501 bool HasAVX512 = Subtarget->hasAVX512(); 2502 // fptrunc from double to float. 2503 unsigned Opc = 2504 HasAVX512 ? X86::VCVTSD2SSZrr 2505 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2506 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2507 } 2508 2509 return false; 2510 } 2511 2512 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2513 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2514 EVT DstVT = TLI.getValueType(DL, I->getType()); 2515 2516 // This code only handles truncation to byte. 2517 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2518 return false; 2519 if (!TLI.isTypeLegal(SrcVT)) 2520 return false; 2521 2522 Register InputReg = getRegForValue(I->getOperand(0)); 2523 if (!InputReg) 2524 // Unhandled operand. Halt "fast" selection and bail. 2525 return false; 2526 2527 if (SrcVT == MVT::i8) { 2528 // Truncate from i8 to i1; no code needed. 2529 updateValueMap(I, InputReg); 2530 return true; 2531 } 2532 2533 // Issue an extract_subreg. 2534 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, 2535 X86::sub_8bit); 2536 if (!ResultReg) 2537 return false; 2538 2539 updateValueMap(I, ResultReg); 2540 return true; 2541 } 2542 2543 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2544 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2545 } 2546 2547 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2548 X86AddressMode SrcAM, uint64_t Len) { 2549 2550 // Make sure we don't bloat code by inlining very large memcpy's. 2551 if (!IsMemcpySmall(Len)) 2552 return false; 2553 2554 bool i64Legal = Subtarget->is64Bit(); 2555 2556 // We don't care about alignment here since we just emit integer accesses. 2557 while (Len) { 2558 MVT VT; 2559 if (Len >= 8 && i64Legal) 2560 VT = MVT::i64; 2561 else if (Len >= 4) 2562 VT = MVT::i32; 2563 else if (Len >= 2) 2564 VT = MVT::i16; 2565 else 2566 VT = MVT::i8; 2567 2568 unsigned Reg; 2569 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2570 RV &= X86FastEmitStore(VT, Reg, DestAM); 2571 assert(RV && "Failed to emit load or store??"); 2572 (void)RV; 2573 2574 unsigned Size = VT.getSizeInBits()/8; 2575 Len -= Size; 2576 DestAM.Disp += Size; 2577 SrcAM.Disp += Size; 2578 } 2579 2580 return true; 2581 } 2582 2583 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2584 // FIXME: Handle more intrinsics. 2585 switch (II->getIntrinsicID()) { 2586 default: return false; 2587 case Intrinsic::convert_from_fp16: 2588 case Intrinsic::convert_to_fp16: { 2589 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2590 return false; 2591 2592 const Value *Op = II->getArgOperand(0); 2593 Register InputReg = getRegForValue(Op); 2594 if (InputReg == 0) 2595 return false; 2596 2597 // F16C only allows converting from float to half and from half to float. 2598 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2599 if (IsFloatToHalf) { 2600 if (!Op->getType()->isFloatTy()) 2601 return false; 2602 } else { 2603 if (!II->getType()->isFloatTy()) 2604 return false; 2605 } 2606 2607 unsigned ResultReg = 0; 2608 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2609 if (IsFloatToHalf) { 2610 // 'InputReg' is implicitly promoted from register class FR32 to 2611 // register class VR128 by method 'constrainOperandRegClass' which is 2612 // directly called by 'fastEmitInst_ri'. 2613 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2614 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2615 // It's consistent with the other FP instructions, which are usually 2616 // controlled by MXCSR. 2617 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2618 : X86::VCVTPS2PHrr; 2619 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); 2620 2621 // Move the lower 32-bits of ResultReg to another register of class GR32. 2622 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2623 : X86::VMOVPDI2DIrr; 2624 ResultReg = createResultReg(&X86::GR32RegClass); 2625 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 2626 .addReg(InputReg, RegState::Kill); 2627 2628 // The result value is in the lower 16-bits of ResultReg. 2629 unsigned RegIdx = X86::sub_16bit; 2630 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); 2631 } else { 2632 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2633 // Explicitly zero-extend the input to 32-bit. 2634 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); 2635 2636 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2637 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2638 InputReg); 2639 2640 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2641 : X86::VCVTPH2PSrr; 2642 InputReg = fastEmitInst_r(Opc, RC, InputReg); 2643 2644 // The result value is in the lower 32-bits of ResultReg. 2645 // Emit an explicit copy from register class VR128 to register class FR32. 2646 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2648 TII.get(TargetOpcode::COPY), ResultReg) 2649 .addReg(InputReg, RegState::Kill); 2650 } 2651 2652 updateValueMap(II, ResultReg); 2653 return true; 2654 } 2655 case Intrinsic::frameaddress: { 2656 MachineFunction *MF = FuncInfo.MF; 2657 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2658 return false; 2659 2660 Type *RetTy = II->getCalledFunction()->getReturnType(); 2661 2662 MVT VT; 2663 if (!isTypeLegal(RetTy, VT)) 2664 return false; 2665 2666 unsigned Opc; 2667 const TargetRegisterClass *RC = nullptr; 2668 2669 switch (VT.SimpleTy) { 2670 default: llvm_unreachable("Invalid result type for frameaddress."); 2671 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2672 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2673 } 2674 2675 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2676 // we get the wrong frame register. 2677 MachineFrameInfo &MFI = MF->getFrameInfo(); 2678 MFI.setFrameAddressIsTaken(true); 2679 2680 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2681 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2682 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2683 (FrameReg == X86::EBP && VT == MVT::i32)) && 2684 "Invalid Frame Register!"); 2685 2686 // Always make a copy of the frame register to a vreg first, so that we 2687 // never directly reference the frame register (the TwoAddressInstruction- 2688 // Pass doesn't like that). 2689 Register SrcReg = createResultReg(RC); 2690 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2691 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2692 2693 // Now recursively load from the frame address. 2694 // movq (%rbp), %rax 2695 // movq (%rax), %rax 2696 // movq (%rax), %rax 2697 // ... 2698 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2699 while (Depth--) { 2700 Register DestReg = createResultReg(RC); 2701 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2702 TII.get(Opc), DestReg), SrcReg); 2703 SrcReg = DestReg; 2704 } 2705 2706 updateValueMap(II, SrcReg); 2707 return true; 2708 } 2709 case Intrinsic::memcpy: { 2710 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2711 // Don't handle volatile or variable length memcpys. 2712 if (MCI->isVolatile()) 2713 return false; 2714 2715 if (isa<ConstantInt>(MCI->getLength())) { 2716 // Small memcpy's are common enough that we want to do them 2717 // without a call if possible. 2718 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2719 if (IsMemcpySmall(Len)) { 2720 X86AddressMode DestAM, SrcAM; 2721 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2722 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2723 return false; 2724 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2725 return true; 2726 } 2727 } 2728 2729 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2730 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2731 return false; 2732 2733 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2734 return false; 2735 2736 return lowerCallTo(II, "memcpy", II->arg_size() - 1); 2737 } 2738 case Intrinsic::memset: { 2739 const MemSetInst *MSI = cast<MemSetInst>(II); 2740 2741 if (MSI->isVolatile()) 2742 return false; 2743 2744 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2745 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2746 return false; 2747 2748 if (MSI->getDestAddressSpace() > 255) 2749 return false; 2750 2751 return lowerCallTo(II, "memset", II->arg_size() - 1); 2752 } 2753 case Intrinsic::stackprotector: { 2754 // Emit code to store the stack guard onto the stack. 2755 EVT PtrTy = TLI.getPointerTy(DL); 2756 2757 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2758 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2759 2760 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2761 2762 // Grab the frame index. 2763 X86AddressMode AM; 2764 if (!X86SelectAddress(Slot, AM)) return false; 2765 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2766 return true; 2767 } 2768 case Intrinsic::dbg_declare: { 2769 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2770 X86AddressMode AM; 2771 assert(DI->getAddress() && "Null address should be checked earlier!"); 2772 if (!X86SelectAddress(DI->getAddress(), AM)) 2773 return false; 2774 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2775 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 2776 "Expected inlined-at fields to agree"); 2777 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) 2778 .addImm(0) 2779 .addMetadata(DI->getVariable()) 2780 .addMetadata(DI->getExpression()); 2781 return true; 2782 } 2783 case Intrinsic::trap: { 2784 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); 2785 return true; 2786 } 2787 case Intrinsic::sqrt: { 2788 if (!Subtarget->hasSSE1()) 2789 return false; 2790 2791 Type *RetTy = II->getCalledFunction()->getReturnType(); 2792 2793 MVT VT; 2794 if (!isTypeLegal(RetTy, VT)) 2795 return false; 2796 2797 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2798 // is not generated by FastISel yet. 2799 // FIXME: Update this code once tablegen can handle it. 2800 static const uint16_t SqrtOpc[3][2] = { 2801 { X86::SQRTSSr, X86::SQRTSDr }, 2802 { X86::VSQRTSSr, X86::VSQRTSDr }, 2803 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2804 }; 2805 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2806 Subtarget->hasAVX() ? 1 : 2807 0; 2808 unsigned Opc; 2809 switch (VT.SimpleTy) { 2810 default: return false; 2811 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2812 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2813 } 2814 2815 const Value *SrcVal = II->getArgOperand(0); 2816 Register SrcReg = getRegForValue(SrcVal); 2817 2818 if (SrcReg == 0) 2819 return false; 2820 2821 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2822 unsigned ImplicitDefReg = 0; 2823 if (AVXLevel > 0) { 2824 ImplicitDefReg = createResultReg(RC); 2825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2826 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2827 } 2828 2829 Register ResultReg = createResultReg(RC); 2830 MachineInstrBuilder MIB; 2831 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 2832 ResultReg); 2833 2834 if (ImplicitDefReg) 2835 MIB.addReg(ImplicitDefReg); 2836 2837 MIB.addReg(SrcReg); 2838 2839 updateValueMap(II, ResultReg); 2840 return true; 2841 } 2842 case Intrinsic::sadd_with_overflow: 2843 case Intrinsic::uadd_with_overflow: 2844 case Intrinsic::ssub_with_overflow: 2845 case Intrinsic::usub_with_overflow: 2846 case Intrinsic::smul_with_overflow: 2847 case Intrinsic::umul_with_overflow: { 2848 // This implements the basic lowering of the xalu with overflow intrinsics 2849 // into add/sub/mul followed by either seto or setb. 2850 const Function *Callee = II->getCalledFunction(); 2851 auto *Ty = cast<StructType>(Callee->getReturnType()); 2852 Type *RetTy = Ty->getTypeAtIndex(0U); 2853 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2854 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2855 "Overflow value expected to be an i1"); 2856 2857 MVT VT; 2858 if (!isTypeLegal(RetTy, VT)) 2859 return false; 2860 2861 if (VT < MVT::i8 || VT > MVT::i64) 2862 return false; 2863 2864 const Value *LHS = II->getArgOperand(0); 2865 const Value *RHS = II->getArgOperand(1); 2866 2867 // Canonicalize immediate to the RHS. 2868 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) 2869 std::swap(LHS, RHS); 2870 2871 unsigned BaseOpc, CondCode; 2872 switch (II->getIntrinsicID()) { 2873 default: llvm_unreachable("Unexpected intrinsic!"); 2874 case Intrinsic::sadd_with_overflow: 2875 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2876 case Intrinsic::uadd_with_overflow: 2877 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2878 case Intrinsic::ssub_with_overflow: 2879 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2880 case Intrinsic::usub_with_overflow: 2881 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2882 case Intrinsic::smul_with_overflow: 2883 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2884 case Intrinsic::umul_with_overflow: 2885 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2886 } 2887 2888 Register LHSReg = getRegForValue(LHS); 2889 if (LHSReg == 0) 2890 return false; 2891 2892 unsigned ResultReg = 0; 2893 // Check if we have an immediate version. 2894 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2895 static const uint16_t Opc[2][4] = { 2896 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2897 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2898 }; 2899 2900 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2901 CondCode == X86::COND_O) { 2902 // We can use INC/DEC. 2903 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2904 bool IsDec = BaseOpc == ISD::SUB; 2905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2906 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2907 .addReg(LHSReg); 2908 } else 2909 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); 2910 } 2911 2912 unsigned RHSReg; 2913 if (!ResultReg) { 2914 RHSReg = getRegForValue(RHS); 2915 if (RHSReg == 0) 2916 return false; 2917 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); 2918 } 2919 2920 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2921 // it manually. 2922 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2923 static const uint16_t MULOpc[] = 2924 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2925 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2926 // First copy the first operand into RAX, which is an implicit input to 2927 // the X86::MUL*r instruction. 2928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2929 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2930 .addReg(LHSReg); 2931 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2932 TLI.getRegClassFor(VT), RHSReg); 2933 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2934 static const uint16_t MULOpc[] = 2935 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2936 if (VT == MVT::i8) { 2937 // Copy the first operand into AL, which is an implicit input to the 2938 // X86::IMUL8r instruction. 2939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2940 TII.get(TargetOpcode::COPY), X86::AL) 2941 .addReg(LHSReg); 2942 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); 2943 } else 2944 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2945 TLI.getRegClassFor(VT), LHSReg, RHSReg); 2946 } 2947 2948 if (!ResultReg) 2949 return false; 2950 2951 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2952 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2953 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2955 ResultReg2).addImm(CondCode); 2956 2957 updateValueMap(II, ResultReg, 2); 2958 return true; 2959 } 2960 case Intrinsic::x86_sse_cvttss2si: 2961 case Intrinsic::x86_sse_cvttss2si64: 2962 case Intrinsic::x86_sse2_cvttsd2si: 2963 case Intrinsic::x86_sse2_cvttsd2si64: { 2964 bool IsInputDouble; 2965 switch (II->getIntrinsicID()) { 2966 default: llvm_unreachable("Unexpected intrinsic."); 2967 case Intrinsic::x86_sse_cvttss2si: 2968 case Intrinsic::x86_sse_cvttss2si64: 2969 if (!Subtarget->hasSSE1()) 2970 return false; 2971 IsInputDouble = false; 2972 break; 2973 case Intrinsic::x86_sse2_cvttsd2si: 2974 case Intrinsic::x86_sse2_cvttsd2si64: 2975 if (!Subtarget->hasSSE2()) 2976 return false; 2977 IsInputDouble = true; 2978 break; 2979 } 2980 2981 Type *RetTy = II->getCalledFunction()->getReturnType(); 2982 MVT VT; 2983 if (!isTypeLegal(RetTy, VT)) 2984 return false; 2985 2986 static const uint16_t CvtOpc[3][2][2] = { 2987 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 2988 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 2989 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 2990 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 2991 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 2992 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 2993 }; 2994 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2995 Subtarget->hasAVX() ? 1 : 2996 0; 2997 unsigned Opc; 2998 switch (VT.SimpleTy) { 2999 default: llvm_unreachable("Unexpected result type."); 3000 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3001 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3002 } 3003 3004 // Check if we can fold insertelement instructions into the convert. 3005 const Value *Op = II->getArgOperand(0); 3006 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3007 const Value *Index = IE->getOperand(2); 3008 if (!isa<ConstantInt>(Index)) 3009 break; 3010 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3011 3012 if (Idx == 0) { 3013 Op = IE->getOperand(1); 3014 break; 3015 } 3016 Op = IE->getOperand(0); 3017 } 3018 3019 Register Reg = getRegForValue(Op); 3020 if (Reg == 0) 3021 return false; 3022 3023 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3024 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 3025 .addReg(Reg); 3026 3027 updateValueMap(II, ResultReg); 3028 return true; 3029 } 3030 case Intrinsic::x86_sse42_crc32_32_8: 3031 case Intrinsic::x86_sse42_crc32_32_16: 3032 case Intrinsic::x86_sse42_crc32_32_32: 3033 case Intrinsic::x86_sse42_crc32_64_64: { 3034 if (!Subtarget->hasCRC32()) 3035 return false; 3036 3037 Type *RetTy = II->getCalledFunction()->getReturnType(); 3038 3039 MVT VT; 3040 if (!isTypeLegal(RetTy, VT)) 3041 return false; 3042 3043 unsigned Opc; 3044 const TargetRegisterClass *RC = nullptr; 3045 3046 switch (II->getIntrinsicID()) { 3047 default: 3048 llvm_unreachable("Unexpected intrinsic."); 3049 #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC 3050 case Intrinsic::x86_sse42_crc32_32_8: 3051 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8); 3052 RC = &X86::GR32RegClass; 3053 break; 3054 case Intrinsic::x86_sse42_crc32_32_16: 3055 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16); 3056 RC = &X86::GR32RegClass; 3057 break; 3058 case Intrinsic::x86_sse42_crc32_32_32: 3059 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32); 3060 RC = &X86::GR32RegClass; 3061 break; 3062 case Intrinsic::x86_sse42_crc32_64_64: 3063 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64); 3064 RC = &X86::GR64RegClass; 3065 break; 3066 #undef GET_EGPR_IF_ENABLED 3067 } 3068 3069 const Value *LHS = II->getArgOperand(0); 3070 const Value *RHS = II->getArgOperand(1); 3071 3072 Register LHSReg = getRegForValue(LHS); 3073 Register RHSReg = getRegForValue(RHS); 3074 if (!LHSReg || !RHSReg) 3075 return false; 3076 3077 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg); 3078 if (!ResultReg) 3079 return false; 3080 3081 updateValueMap(II, ResultReg); 3082 return true; 3083 } 3084 } 3085 } 3086 3087 bool X86FastISel::fastLowerArguments() { 3088 if (!FuncInfo.CanLowerReturn) 3089 return false; 3090 3091 const Function *F = FuncInfo.Fn; 3092 if (F->isVarArg()) 3093 return false; 3094 3095 CallingConv::ID CC = F->getCallingConv(); 3096 if (CC != CallingConv::C) 3097 return false; 3098 3099 if (Subtarget->isCallingConvWin64(CC)) 3100 return false; 3101 3102 if (!Subtarget->is64Bit()) 3103 return false; 3104 3105 if (Subtarget->useSoftFloat()) 3106 return false; 3107 3108 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3109 unsigned GPRCnt = 0; 3110 unsigned FPRCnt = 0; 3111 for (auto const &Arg : F->args()) { 3112 if (Arg.hasAttribute(Attribute::ByVal) || 3113 Arg.hasAttribute(Attribute::InReg) || 3114 Arg.hasAttribute(Attribute::StructRet) || 3115 Arg.hasAttribute(Attribute::SwiftSelf) || 3116 Arg.hasAttribute(Attribute::SwiftAsync) || 3117 Arg.hasAttribute(Attribute::SwiftError) || 3118 Arg.hasAttribute(Attribute::Nest)) 3119 return false; 3120 3121 Type *ArgTy = Arg.getType(); 3122 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3123 return false; 3124 3125 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3126 if (!ArgVT.isSimple()) return false; 3127 switch (ArgVT.getSimpleVT().SimpleTy) { 3128 default: return false; 3129 case MVT::i32: 3130 case MVT::i64: 3131 ++GPRCnt; 3132 break; 3133 case MVT::f32: 3134 case MVT::f64: 3135 if (!Subtarget->hasSSE1()) 3136 return false; 3137 ++FPRCnt; 3138 break; 3139 } 3140 3141 if (GPRCnt > 6) 3142 return false; 3143 3144 if (FPRCnt > 8) 3145 return false; 3146 } 3147 3148 static const MCPhysReg GPR32ArgRegs[] = { 3149 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3150 }; 3151 static const MCPhysReg GPR64ArgRegs[] = { 3152 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3153 }; 3154 static const MCPhysReg XMMArgRegs[] = { 3155 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3156 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3157 }; 3158 3159 unsigned GPRIdx = 0; 3160 unsigned FPRIdx = 0; 3161 for (auto const &Arg : F->args()) { 3162 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3163 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3164 unsigned SrcReg; 3165 switch (VT.SimpleTy) { 3166 default: llvm_unreachable("Unexpected value type."); 3167 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3168 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3169 case MVT::f32: [[fallthrough]]; 3170 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3171 } 3172 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3173 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3174 // Without this, EmitLiveInCopies may eliminate the livein if its only 3175 // use is a bitcast (which isn't turned into an instruction). 3176 Register ResultReg = createResultReg(RC); 3177 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3178 TII.get(TargetOpcode::COPY), ResultReg) 3179 .addReg(DstReg, getKillRegState(true)); 3180 updateValueMap(&Arg, ResultReg); 3181 } 3182 return true; 3183 } 3184 3185 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3186 CallingConv::ID CC, 3187 const CallBase *CB) { 3188 if (Subtarget->is64Bit()) 3189 return 0; 3190 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3191 return 0; 3192 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3193 CC == CallingConv::HiPE || CC == CallingConv::Tail || 3194 CC == CallingConv::SwiftTail) 3195 return 0; 3196 3197 if (CB) 3198 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3199 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3200 return 0; 3201 3202 return 4; 3203 } 3204 3205 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3206 auto &OutVals = CLI.OutVals; 3207 auto &OutFlags = CLI.OutFlags; 3208 auto &OutRegs = CLI.OutRegs; 3209 auto &Ins = CLI.Ins; 3210 auto &InRegs = CLI.InRegs; 3211 CallingConv::ID CC = CLI.CallConv; 3212 bool &IsTailCall = CLI.IsTailCall; 3213 bool IsVarArg = CLI.IsVarArg; 3214 const Value *Callee = CLI.Callee; 3215 MCSymbol *Symbol = CLI.Symbol; 3216 const auto *CB = CLI.CB; 3217 3218 bool Is64Bit = Subtarget->is64Bit(); 3219 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3220 3221 // Call / invoke instructions with NoCfCheck attribute require special 3222 // handling. 3223 if (CB && CB->doesNoCfCheck()) 3224 return false; 3225 3226 // Functions with no_caller_saved_registers that need special handling. 3227 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) 3228 return false; 3229 3230 // Functions with no_callee_saved_registers that need special handling. 3231 if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) 3232 return false; 3233 3234 // Indirect calls with CFI checks need special handling. 3235 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) 3236 return false; 3237 3238 // Functions using thunks for indirect calls need to use SDISel. 3239 if (Subtarget->useIndirectThunkCalls()) 3240 return false; 3241 3242 // Handle only C and fastcc calling conventions for now. 3243 switch (CC) { 3244 default: return false; 3245 case CallingConv::C: 3246 case CallingConv::Fast: 3247 case CallingConv::Tail: 3248 case CallingConv::Swift: 3249 case CallingConv::SwiftTail: 3250 case CallingConv::X86_FastCall: 3251 case CallingConv::X86_StdCall: 3252 case CallingConv::X86_ThisCall: 3253 case CallingConv::Win64: 3254 case CallingConv::X86_64_SysV: 3255 case CallingConv::CFGuard_Check: 3256 break; 3257 } 3258 3259 // Allow SelectionDAG isel to handle tail calls. 3260 if (IsTailCall) 3261 return false; 3262 3263 // fastcc with -tailcallopt is intended to provide a guaranteed 3264 // tail call optimization. Fastisel doesn't know how to do that. 3265 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3266 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 3267 return false; 3268 3269 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3270 // x86-32. Special handling for x86-64 is implemented. 3271 if (IsVarArg && IsWin64) 3272 return false; 3273 3274 // Don't know about inalloca yet. 3275 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3276 return false; 3277 3278 for (auto Flag : CLI.OutFlags) 3279 if (Flag.isSwiftError() || Flag.isPreallocated()) 3280 return false; 3281 3282 SmallVector<MVT, 16> OutVTs; 3283 SmallVector<unsigned, 16> ArgRegs; 3284 3285 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3286 // instruction. This is safe because it is common to all FastISel supported 3287 // calling conventions on x86. 3288 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3289 Value *&Val = OutVals[i]; 3290 ISD::ArgFlagsTy Flags = OutFlags[i]; 3291 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3292 if (CI->getBitWidth() < 32) { 3293 if (Flags.isSExt()) 3294 Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32)); 3295 else 3296 Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32)); 3297 } 3298 } 3299 3300 // Passing bools around ends up doing a trunc to i1 and passing it. 3301 // Codegen this as an argument + "and 1". 3302 MVT VT; 3303 auto *TI = dyn_cast<TruncInst>(Val); 3304 unsigned ResultReg; 3305 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3306 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3307 Value *PrevVal = TI->getOperand(0); 3308 ResultReg = getRegForValue(PrevVal); 3309 3310 if (!ResultReg) 3311 return false; 3312 3313 if (!isTypeLegal(PrevVal->getType(), VT)) 3314 return false; 3315 3316 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); 3317 } else { 3318 if (!isTypeLegal(Val->getType(), VT) || 3319 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3320 return false; 3321 ResultReg = getRegForValue(Val); 3322 } 3323 3324 if (!ResultReg) 3325 return false; 3326 3327 ArgRegs.push_back(ResultReg); 3328 OutVTs.push_back(VT); 3329 } 3330 3331 // Analyze operands of the call, assigning locations to each operand. 3332 SmallVector<CCValAssign, 16> ArgLocs; 3333 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3334 3335 // Allocate shadow area for Win64 3336 if (IsWin64) 3337 CCInfo.AllocateStack(32, Align(8)); 3338 3339 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3340 3341 // Get a count of how many bytes are to be pushed on the stack. 3342 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3343 3344 // Issue CALLSEQ_START 3345 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) 3347 .addImm(NumBytes).addImm(0).addImm(0); 3348 3349 // Walk the register/memloc assignments, inserting copies/loads. 3350 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3351 for (const CCValAssign &VA : ArgLocs) { 3352 const Value *ArgVal = OutVals[VA.getValNo()]; 3353 MVT ArgVT = OutVTs[VA.getValNo()]; 3354 3355 if (ArgVT == MVT::x86mmx) 3356 return false; 3357 3358 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3359 3360 // Promote the value if needed. 3361 switch (VA.getLocInfo()) { 3362 case CCValAssign::Full: break; 3363 case CCValAssign::SExt: { 3364 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3365 "Unexpected extend"); 3366 3367 if (ArgVT == MVT::i1) 3368 return false; 3369 3370 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3371 ArgVT, ArgReg); 3372 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3373 ArgVT = VA.getLocVT(); 3374 break; 3375 } 3376 case CCValAssign::ZExt: { 3377 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3378 "Unexpected extend"); 3379 3380 // Handle zero-extension from i1 to i8, which is common. 3381 if (ArgVT == MVT::i1) { 3382 // Set the high bits to zero. 3383 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); 3384 ArgVT = MVT::i8; 3385 3386 if (ArgReg == 0) 3387 return false; 3388 } 3389 3390 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3391 ArgVT, ArgReg); 3392 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3393 ArgVT = VA.getLocVT(); 3394 break; 3395 } 3396 case CCValAssign::AExt: { 3397 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3398 "Unexpected extend"); 3399 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3400 ArgVT, ArgReg); 3401 if (!Emitted) 3402 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3403 ArgVT, ArgReg); 3404 if (!Emitted) 3405 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3406 ArgVT, ArgReg); 3407 3408 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3409 ArgVT = VA.getLocVT(); 3410 break; 3411 } 3412 case CCValAssign::BCvt: { 3413 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); 3414 assert(ArgReg && "Failed to emit a bitcast!"); 3415 ArgVT = VA.getLocVT(); 3416 break; 3417 } 3418 case CCValAssign::VExt: 3419 // VExt has not been implemented, so this should be impossible to reach 3420 // for now. However, fallback to Selection DAG isel once implemented. 3421 return false; 3422 case CCValAssign::AExtUpper: 3423 case CCValAssign::SExtUpper: 3424 case CCValAssign::ZExtUpper: 3425 case CCValAssign::FPExt: 3426 case CCValAssign::Trunc: 3427 llvm_unreachable("Unexpected loc info!"); 3428 case CCValAssign::Indirect: 3429 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3430 // support this. 3431 return false; 3432 } 3433 3434 if (VA.isRegLoc()) { 3435 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3436 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3437 OutRegs.push_back(VA.getLocReg()); 3438 } else { 3439 assert(VA.isMemLoc() && "Unknown value location!"); 3440 3441 // Don't emit stores for undef values. 3442 if (isa<UndefValue>(ArgVal)) 3443 continue; 3444 3445 unsigned LocMemOffset = VA.getLocMemOffset(); 3446 X86AddressMode AM; 3447 AM.Base.Reg = RegInfo->getStackRegister(); 3448 AM.Disp = LocMemOffset; 3449 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3450 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3451 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3452 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3453 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3454 if (Flags.isByVal()) { 3455 X86AddressMode SrcAM; 3456 SrcAM.Base.Reg = ArgReg; 3457 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3458 return false; 3459 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3460 // If this is a really simple value, emit this with the Value* version 3461 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3462 // as it can cause us to reevaluate the argument. 3463 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3464 return false; 3465 } else { 3466 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) 3467 return false; 3468 } 3469 } 3470 } 3471 3472 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3473 // GOT pointer. 3474 if (Subtarget->isPICStyleGOT()) { 3475 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3477 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3478 } 3479 3480 if (Is64Bit && IsVarArg && !IsWin64) { 3481 // From AMD64 ABI document: 3482 // For calls that may call functions that use varargs or stdargs 3483 // (prototype-less calls or calls to functions containing ellipsis (...) in 3484 // the declaration) %al is used as hidden argument to specify the number 3485 // of SSE registers used. The contents of %al do not need to match exactly 3486 // the number of registers, but must be an ubound on the number of SSE 3487 // registers used and is in the range 0 - 8 inclusive. 3488 3489 // Count the number of XMM registers allocated. 3490 static const MCPhysReg XMMArgRegs[] = { 3491 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3492 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3493 }; 3494 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3495 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3496 && "SSE registers cannot be used when SSE is disabled"); 3497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 3498 X86::AL).addImm(NumXMMRegs); 3499 } 3500 3501 // Materialize callee address in a register. FIXME: GV address can be 3502 // handled with a CALLpcrel32 instead. 3503 X86AddressMode CalleeAM; 3504 if (!X86SelectCallAddress(Callee, CalleeAM)) 3505 return false; 3506 3507 unsigned CalleeOp = 0; 3508 const GlobalValue *GV = nullptr; 3509 if (CalleeAM.GV != nullptr) { 3510 GV = CalleeAM.GV; 3511 } else if (CalleeAM.Base.Reg != 0) { 3512 CalleeOp = CalleeAM.Base.Reg; 3513 } else 3514 return false; 3515 3516 // Issue the call. 3517 MachineInstrBuilder MIB; 3518 if (CalleeOp) { 3519 // Register-indirect call. 3520 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3521 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) 3522 .addReg(CalleeOp); 3523 } else { 3524 // Direct call. 3525 assert(GV && "Not a direct call"); 3526 // See if we need any target-specific flags on the GV operand. 3527 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3528 if (OpFlags == X86II::MO_PLT && !Is64Bit && 3529 TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) && 3530 cast<Function>(GV)->isIntrinsic()) 3531 OpFlags = X86II::MO_NO_FLAG; 3532 3533 // This will be a direct call, or an indirect call through memory for 3534 // NonLazyBind calls or dllimport calls. 3535 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3536 OpFlags == X86II::MO_GOTPCREL || 3537 OpFlags == X86II::MO_GOTPCREL_NORELAX || 3538 OpFlags == X86II::MO_COFFSTUB; 3539 unsigned CallOpc = NeedLoad 3540 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3541 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3542 3543 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); 3544 if (NeedLoad) 3545 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3546 if (Symbol) 3547 MIB.addSym(Symbol, OpFlags); 3548 else 3549 MIB.addGlobalAddress(GV, 0, OpFlags); 3550 if (NeedLoad) 3551 MIB.addReg(0); 3552 } 3553 3554 // Add a register mask operand representing the call-preserved registers. 3555 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3556 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3557 3558 // Add an implicit use GOT pointer in EBX. 3559 if (Subtarget->isPICStyleGOT()) 3560 MIB.addReg(X86::EBX, RegState::Implicit); 3561 3562 if (Is64Bit && IsVarArg && !IsWin64) 3563 MIB.addReg(X86::AL, RegState::Implicit); 3564 3565 // Add implicit physical register uses to the call. 3566 for (auto Reg : OutRegs) 3567 MIB.addReg(Reg, RegState::Implicit); 3568 3569 // Issue CALLSEQ_END 3570 unsigned NumBytesForCalleeToPop = 3571 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3572 TM.Options.GuaranteedTailCallOpt) 3573 ? NumBytes // Callee pops everything. 3574 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3575 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3576 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 3577 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3578 3579 // Now handle call return values. 3580 SmallVector<CCValAssign, 16> RVLocs; 3581 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3582 CLI.RetTy->getContext()); 3583 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3584 3585 // Copy all of the result registers out of their specified physreg. 3586 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3587 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3588 CCValAssign &VA = RVLocs[i]; 3589 EVT CopyVT = VA.getValVT(); 3590 unsigned CopyReg = ResultReg + i; 3591 Register SrcReg = VA.getLocReg(); 3592 3593 // If this is x86-64, and we disabled SSE, we can't return FP values 3594 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3595 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3596 report_fatal_error("SSE register return with SSE disabled"); 3597 } 3598 3599 // If we prefer to use the value in xmm registers, copy it out as f80 and 3600 // use a truncate to move it from fp stack reg to xmm reg. 3601 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3602 isScalarFPTypeInSSEReg(VA.getValVT())) { 3603 CopyVT = MVT::f80; 3604 CopyReg = createResultReg(&X86::RFP80RegClass); 3605 } 3606 3607 // Copy out the result. 3608 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3609 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3610 InRegs.push_back(VA.getLocReg()); 3611 3612 // Round the f80 to the right size, which also moves it to the appropriate 3613 // xmm register. This is accomplished by storing the f80 value in memory 3614 // and then loading it back. 3615 if (CopyVT != VA.getValVT()) { 3616 EVT ResVT = VA.getValVT(); 3617 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3618 unsigned MemSize = ResVT.getSizeInBits()/8; 3619 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3620 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3621 TII.get(Opc)), FI) 3622 .addReg(CopyReg); 3623 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3624 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3625 TII.get(Opc), ResultReg + i), FI); 3626 } 3627 } 3628 3629 CLI.ResultReg = ResultReg; 3630 CLI.NumResultRegs = RVLocs.size(); 3631 CLI.Call = MIB; 3632 3633 return true; 3634 } 3635 3636 bool 3637 X86FastISel::fastSelectInstruction(const Instruction *I) { 3638 switch (I->getOpcode()) { 3639 default: break; 3640 case Instruction::Load: 3641 return X86SelectLoad(I); 3642 case Instruction::Store: 3643 return X86SelectStore(I); 3644 case Instruction::Ret: 3645 return X86SelectRet(I); 3646 case Instruction::ICmp: 3647 case Instruction::FCmp: 3648 return X86SelectCmp(I); 3649 case Instruction::ZExt: 3650 return X86SelectZExt(I); 3651 case Instruction::SExt: 3652 return X86SelectSExt(I); 3653 case Instruction::Br: 3654 return X86SelectBranch(I); 3655 case Instruction::LShr: 3656 case Instruction::AShr: 3657 case Instruction::Shl: 3658 return X86SelectShift(I); 3659 case Instruction::SDiv: 3660 case Instruction::UDiv: 3661 case Instruction::SRem: 3662 case Instruction::URem: 3663 return X86SelectDivRem(I); 3664 case Instruction::Select: 3665 return X86SelectSelect(I); 3666 case Instruction::Trunc: 3667 return X86SelectTrunc(I); 3668 case Instruction::FPExt: 3669 return X86SelectFPExt(I); 3670 case Instruction::FPTrunc: 3671 return X86SelectFPTrunc(I); 3672 case Instruction::SIToFP: 3673 return X86SelectSIToFP(I); 3674 case Instruction::UIToFP: 3675 return X86SelectUIToFP(I); 3676 case Instruction::IntToPtr: // Deliberate fall-through. 3677 case Instruction::PtrToInt: { 3678 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3679 EVT DstVT = TLI.getValueType(DL, I->getType()); 3680 if (DstVT.bitsGT(SrcVT)) 3681 return X86SelectZExt(I); 3682 if (DstVT.bitsLT(SrcVT)) 3683 return X86SelectTrunc(I); 3684 Register Reg = getRegForValue(I->getOperand(0)); 3685 if (Reg == 0) return false; 3686 updateValueMap(I, Reg); 3687 return true; 3688 } 3689 case Instruction::BitCast: { 3690 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3691 if (!Subtarget->hasSSE2()) 3692 return false; 3693 3694 MVT SrcVT, DstVT; 3695 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3696 !isTypeLegal(I->getType(), DstVT)) 3697 return false; 3698 3699 // Only allow vectors that use xmm/ymm/zmm. 3700 if (!SrcVT.isVector() || !DstVT.isVector() || 3701 SrcVT.getVectorElementType() == MVT::i1 || 3702 DstVT.getVectorElementType() == MVT::i1) 3703 return false; 3704 3705 Register Reg = getRegForValue(I->getOperand(0)); 3706 if (!Reg) 3707 return false; 3708 3709 // Emit a reg-reg copy so we don't propagate cached known bits information 3710 // with the wrong VT if we fall out of fast isel after selecting this. 3711 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3712 Register ResultReg = createResultReg(DstClass); 3713 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3714 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3715 3716 updateValueMap(I, ResultReg); 3717 return true; 3718 } 3719 } 3720 3721 return false; 3722 } 3723 3724 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3725 if (VT > MVT::i64) 3726 return 0; 3727 3728 uint64_t Imm = CI->getZExtValue(); 3729 if (Imm == 0) { 3730 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3731 switch (VT.SimpleTy) { 3732 default: llvm_unreachable("Unexpected value type"); 3733 case MVT::i1: 3734 case MVT::i8: 3735 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); 3736 case MVT::i16: 3737 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); 3738 case MVT::i32: 3739 return SrcReg; 3740 case MVT::i64: { 3741 Register ResultReg = createResultReg(&X86::GR64RegClass); 3742 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3743 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3744 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3745 return ResultReg; 3746 } 3747 } 3748 } 3749 3750 unsigned Opc = 0; 3751 switch (VT.SimpleTy) { 3752 default: llvm_unreachable("Unexpected value type"); 3753 case MVT::i1: 3754 VT = MVT::i8; 3755 [[fallthrough]]; 3756 case MVT::i8: Opc = X86::MOV8ri; break; 3757 case MVT::i16: Opc = X86::MOV16ri; break; 3758 case MVT::i32: Opc = X86::MOV32ri; break; 3759 case MVT::i64: { 3760 if (isUInt<32>(Imm)) 3761 Opc = X86::MOV32ri64; 3762 else if (isInt<32>(Imm)) 3763 Opc = X86::MOV64ri32; 3764 else 3765 Opc = X86::MOV64ri; 3766 break; 3767 } 3768 } 3769 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3770 } 3771 3772 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3773 if (CFP->isNullValue()) 3774 return fastMaterializeFloatZero(CFP); 3775 3776 // Can't handle alternate code models yet. 3777 CodeModel::Model CM = TM.getCodeModel(); 3778 if (CM != CodeModel::Small && CM != CodeModel::Medium && 3779 CM != CodeModel::Large) 3780 return 0; 3781 3782 // Get opcode and regclass of the output for the given load instruction. 3783 unsigned Opc = 0; 3784 bool HasSSE1 = Subtarget->hasSSE1(); 3785 bool HasSSE2 = Subtarget->hasSSE2(); 3786 bool HasAVX = Subtarget->hasAVX(); 3787 bool HasAVX512 = Subtarget->hasAVX512(); 3788 switch (VT.SimpleTy) { 3789 default: return 0; 3790 case MVT::f32: 3791 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 3792 : HasAVX ? X86::VMOVSSrm_alt 3793 : HasSSE1 ? X86::MOVSSrm_alt 3794 : X86::LD_Fp32m; 3795 break; 3796 case MVT::f64: 3797 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 3798 : HasAVX ? X86::VMOVSDrm_alt 3799 : HasSSE2 ? X86::MOVSDrm_alt 3800 : X86::LD_Fp64m; 3801 break; 3802 case MVT::f80: 3803 // No f80 support yet. 3804 return 0; 3805 } 3806 3807 // MachineConstantPool wants an explicit alignment. 3808 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3809 3810 // x86-32 PIC requires a PIC base register for constant pools. 3811 unsigned PICBase = 0; 3812 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3813 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3814 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3815 else if (OpFlag == X86II::MO_GOTOFF) 3816 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3817 else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large) 3818 PICBase = X86::RIP; 3819 3820 // Create the load from the constant pool. 3821 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3822 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3823 3824 // Large code model only applies to 64-bit mode. 3825 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3826 Register AddrReg = createResultReg(&X86::GR64RegClass); 3827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3828 AddrReg) 3829 .addConstantPoolIndex(CPI, 0, OpFlag); 3830 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3831 TII.get(Opc), ResultReg); 3832 addRegReg(MIB, AddrReg, false, PICBase, false); 3833 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3834 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3835 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3836 MIB->addMemOperand(*FuncInfo.MF, MMO); 3837 return ResultReg; 3838 } 3839 3840 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3841 TII.get(Opc), ResultReg), 3842 CPI, PICBase, OpFlag); 3843 return ResultReg; 3844 } 3845 3846 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3847 // Can't handle large GlobalValues yet. 3848 if (TM.getCodeModel() != CodeModel::Small && 3849 TM.getCodeModel() != CodeModel::Medium) 3850 return 0; 3851 if (TM.isLargeGlobalValue(GV)) 3852 return 0; 3853 3854 // Materialize addresses with LEA/MOV instructions. 3855 X86AddressMode AM; 3856 if (X86SelectAddress(GV, AM)) { 3857 // If the expression is just a basereg, then we're done, otherwise we need 3858 // to emit an LEA. 3859 if (AM.BaseType == X86AddressMode::RegBase && 3860 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3861 return AM.Base.Reg; 3862 3863 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3864 if (TM.getRelocationModel() == Reloc::Static && 3865 TLI.getPointerTy(DL) == MVT::i64) { 3866 // The displacement code could be more than 32 bits away so we need to use 3867 // an instruction with a 64 bit immediate 3868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3869 ResultReg) 3870 .addGlobalAddress(GV); 3871 } else { 3872 unsigned Opc = 3873 TLI.getPointerTy(DL) == MVT::i32 3874 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3875 : X86::LEA64r; 3876 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3877 TII.get(Opc), ResultReg), AM); 3878 } 3879 return ResultReg; 3880 } 3881 return 0; 3882 } 3883 3884 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3885 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3886 3887 // Only handle simple types. 3888 if (!CEVT.isSimple()) 3889 return 0; 3890 MVT VT = CEVT.getSimpleVT(); 3891 3892 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3893 return X86MaterializeInt(CI, VT); 3894 if (const auto *CFP = dyn_cast<ConstantFP>(C)) 3895 return X86MaterializeFP(CFP, VT); 3896 if (const auto *GV = dyn_cast<GlobalValue>(C)) 3897 return X86MaterializeGV(GV, VT); 3898 if (isa<UndefValue>(C)) { 3899 unsigned Opc = 0; 3900 switch (VT.SimpleTy) { 3901 default: 3902 break; 3903 case MVT::f32: 3904 if (!Subtarget->hasSSE1()) 3905 Opc = X86::LD_Fp032; 3906 break; 3907 case MVT::f64: 3908 if (!Subtarget->hasSSE2()) 3909 Opc = X86::LD_Fp064; 3910 break; 3911 case MVT::f80: 3912 Opc = X86::LD_Fp080; 3913 break; 3914 } 3915 3916 if (Opc) { 3917 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 3919 ResultReg); 3920 return ResultReg; 3921 } 3922 } 3923 3924 return 0; 3925 } 3926 3927 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3928 // Fail on dynamic allocas. At this point, getRegForValue has already 3929 // checked its CSE maps, so if we're here trying to handle a dynamic 3930 // alloca, we're not going to succeed. X86SelectAddress has a 3931 // check for dynamic allocas, because it's called directly from 3932 // various places, but targetMaterializeAlloca also needs a check 3933 // in order to avoid recursion between getRegForValue, 3934 // X86SelectAddrss, and targetMaterializeAlloca. 3935 if (!FuncInfo.StaticAllocaMap.count(C)) 3936 return 0; 3937 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3938 3939 X86AddressMode AM; 3940 if (!X86SelectAddress(C, AM)) 3941 return 0; 3942 unsigned Opc = 3943 TLI.getPointerTy(DL) == MVT::i32 3944 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3945 : X86::LEA64r; 3946 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3947 Register ResultReg = createResultReg(RC); 3948 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3949 TII.get(Opc), ResultReg), AM); 3950 return ResultReg; 3951 } 3952 3953 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3954 MVT VT; 3955 if (!isTypeLegal(CF->getType(), VT)) 3956 return 0; 3957 3958 // Get opcode and regclass for the given zero. 3959 bool HasSSE1 = Subtarget->hasSSE1(); 3960 bool HasSSE2 = Subtarget->hasSSE2(); 3961 bool HasAVX512 = Subtarget->hasAVX512(); 3962 unsigned Opc = 0; 3963 switch (VT.SimpleTy) { 3964 default: return 0; 3965 case MVT::f16: 3966 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; 3967 break; 3968 case MVT::f32: 3969 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS 3970 : HasSSE1 ? X86::FsFLD0SS 3971 : X86::LD_Fp032; 3972 break; 3973 case MVT::f64: 3974 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD 3975 : HasSSE2 ? X86::FsFLD0SD 3976 : X86::LD_Fp064; 3977 break; 3978 case MVT::f80: 3979 // No f80 support yet. 3980 return 0; 3981 } 3982 3983 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 3985 return ResultReg; 3986 } 3987 3988 3989 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3990 const LoadInst *LI) { 3991 const Value *Ptr = LI->getPointerOperand(); 3992 X86AddressMode AM; 3993 if (!X86SelectAddress(Ptr, AM)) 3994 return false; 3995 3996 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3997 3998 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3999 4000 SmallVector<MachineOperand, 8> AddrOps; 4001 AM.getFullAddress(AddrOps); 4002 4003 MachineInstr *Result = XII.foldMemoryOperandImpl( 4004 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 4005 /*AllowCommute=*/true); 4006 if (!Result) 4007 return false; 4008 4009 // The index register could be in the wrong register class. Unfortunately, 4010 // foldMemoryOperandImpl could have commuted the instruction so its not enough 4011 // to just look at OpNo + the offset to the index reg. We actually need to 4012 // scan the instruction to find the index reg and see if its the correct reg 4013 // class. 4014 unsigned OperandNo = 0; 4015 for (MachineInstr::mop_iterator I = Result->operands_begin(), 4016 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 4017 MachineOperand &MO = *I; 4018 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 4019 continue; 4020 // Found the index reg, now try to rewrite it. 4021 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 4022 MO.getReg(), OperandNo); 4023 if (IndexReg == MO.getReg()) 4024 continue; 4025 MO.setReg(IndexReg); 4026 } 4027 4028 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 4029 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 4030 MachineBasicBlock::iterator I(MI); 4031 removeDeadCode(I, std::next(I)); 4032 return true; 4033 } 4034 4035 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 4036 const TargetRegisterClass *RC, 4037 unsigned Op0, unsigned Op1, 4038 unsigned Op2, unsigned Op3) { 4039 const MCInstrDesc &II = TII.get(MachineInstOpcode); 4040 4041 Register ResultReg = createResultReg(RC); 4042 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 4043 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 4044 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 4045 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 4046 4047 if (II.getNumDefs() >= 1) 4048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 4049 .addReg(Op0) 4050 .addReg(Op1) 4051 .addReg(Op2) 4052 .addReg(Op3); 4053 else { 4054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 4055 .addReg(Op0) 4056 .addReg(Op1) 4057 .addReg(Op2) 4058 .addReg(Op3); 4059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 4060 ResultReg) 4061 .addReg(II.implicit_defs()[0]); 4062 } 4063 return ResultReg; 4064 } 4065 4066 4067 namespace llvm { 4068 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4069 const TargetLibraryInfo *libInfo) { 4070 return new X86FastISel(funcInfo, libInfo); 4071 } 4072 } 4073