xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetTransformInfo.cpp (revision 84823cc70824c8d842f503d8c2e6d7b0c2d95b61)
1 //===-- WebAssemblyTargetTransformInfo.cpp - WebAssembly-specific TTI -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific TargetTransformInfo
11 /// implementation.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "WebAssemblyTargetTransformInfo.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "wasmtti"
21 
22 TargetTransformInfo::PopcntSupportKind
23 WebAssemblyTTIImpl::getPopcntSupport(unsigned TyWidth) const {
24   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
25   return TargetTransformInfo::PSK_FastHardware;
26 }
27 
28 unsigned WebAssemblyTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
29   unsigned Result = BaseT::getNumberOfRegisters(ClassID);
30 
31   // For SIMD, use at least 16 registers, as a rough guess.
32   bool Vector = (ClassID == 1);
33   if (Vector)
34     Result = std::max(Result, 16u);
35 
36   return Result;
37 }
38 
39 TypeSize WebAssemblyTTIImpl::getRegisterBitWidth(
40     TargetTransformInfo::RegisterKind K) const {
41   switch (K) {
42   case TargetTransformInfo::RGK_Scalar:
43     return TypeSize::getFixed(64);
44   case TargetTransformInfo::RGK_FixedWidthVector:
45     return TypeSize::getFixed(getST()->hasSIMD128() ? 128 : 64);
46   case TargetTransformInfo::RGK_ScalableVector:
47     return TypeSize::getScalable(0);
48   }
49 
50   llvm_unreachable("Unsupported register kind");
51 }
52 
53 InstructionCost WebAssemblyTTIImpl::getArithmeticInstrCost(
54     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
55     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
56     TTI::OperandValueProperties Opd1PropInfo,
57     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
58     const Instruction *CxtI) {
59 
60   InstructionCost Cost =
61       BasicTTIImplBase<WebAssemblyTTIImpl>::getArithmeticInstrCost(
62           Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
63 
64   if (auto *VTy = dyn_cast<VectorType>(Ty)) {
65     switch (Opcode) {
66     case Instruction::LShr:
67     case Instruction::AShr:
68     case Instruction::Shl:
69       // SIMD128's shifts currently only accept a scalar shift count. For each
70       // element, we'll need to extract, op, insert. The following is a rough
71       // approxmation.
72       if (Opd2Info != TTI::OK_UniformValue &&
73           Opd2Info != TTI::OK_UniformConstantValue)
74         Cost =
75             cast<FixedVectorType>(VTy)->getNumElements() *
76             (TargetTransformInfo::TCC_Basic +
77              getArithmeticInstrCost(Opcode, VTy->getElementType(), CostKind) +
78              TargetTransformInfo::TCC_Basic);
79       break;
80     }
81   }
82   return Cost;
83 }
84 
85 InstructionCost WebAssemblyTTIImpl::getVectorInstrCost(unsigned Opcode,
86                                                        Type *Val,
87                                                        unsigned Index) {
88   InstructionCost Cost =
89       BasicTTIImplBase::getVectorInstrCost(Opcode, Val, Index);
90 
91   // SIMD128's insert/extract currently only take constant indices.
92   if (Index == -1u)
93     return Cost + 25 * TargetTransformInfo::TCC_Expensive;
94 
95   return Cost;
96 }
97 
98 bool WebAssemblyTTIImpl::areInlineCompatible(const Function *Caller,
99                                              const Function *Callee) const {
100   // Allow inlining only when the Callee has a subset of the Caller's
101   // features. In principle, we should be able to inline regardless of any
102   // features because WebAssembly supports features at module granularity, not
103   // function granularity, but without this restriction it would be possible for
104   // a module to "forget" about features if all the functions that used them
105   // were inlined.
106   const TargetMachine &TM = getTLI()->getTargetMachine();
107 
108   const FeatureBitset &CallerBits =
109       TM.getSubtargetImpl(*Caller)->getFeatureBits();
110   const FeatureBitset &CalleeBits =
111       TM.getSubtargetImpl(*Callee)->getFeatureBits();
112 
113   return (CallerBits & CalleeBits) == CalleeBits;
114 }
115 
116 void WebAssemblyTTIImpl::getUnrollingPreferences(
117     Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
118     OptimizationRemarkEmitter *ORE) const {
119   // Scan the loop: don't unroll loops with calls. This is a standard approach
120   // for most (all?) targets.
121   for (BasicBlock *BB : L->blocks())
122     for (Instruction &I : *BB)
123       if (isa<CallInst>(I) || isa<InvokeInst>(I))
124         if (const Function *F = cast<CallBase>(I).getCalledFunction())
125           if (isLoweredToCall(F))
126             return;
127 
128   // The chosen threshold is within the range of 'LoopMicroOpBufferSize' of
129   // the various microarchitectures that use the BasicTTI implementation and
130   // has been selected through heuristics across multiple cores and runtimes.
131   UP.Partial = UP.Runtime = UP.UpperBound = true;
132   UP.PartialThreshold = 30;
133 
134   // Avoid unrolling when optimizing for size.
135   UP.OptSizeThreshold = 0;
136   UP.PartialOptSizeThreshold = 0;
137 
138   // Set number of instructions optimized when "back edge"
139   // becomes "fall through" to default value of 2.
140   UP.BEInsns = 2;
141 }
142