1 //===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the WebAssembly-specific subclass of TargetMachine. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyTargetMachine.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "TargetInfo/WebAssemblyTargetInfo.h" 17 #include "WebAssembly.h" 18 #include "WebAssemblyISelLowering.h" 19 #include "WebAssemblyMachineFunctionInfo.h" 20 #include "WebAssemblyTargetObjectFile.h" 21 #include "WebAssemblyTargetTransformInfo.h" 22 #include "WebAssemblyUtilities.h" 23 #include "llvm/CodeGen/MIRParser/MIParser.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegAllocRegistry.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/TargetRegistry.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Scalar/LowerAtomicPass.h" 35 #include "llvm/Transforms/Utils.h" 36 #include <optional> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "wasm" 40 41 // A command-line option to keep implicit locals 42 // for the purpose of testing with lit/llc ONLY. 43 // This produces output which is not valid WebAssembly, and is not supported 44 // by assemblers/disassemblers and other MC based tools. 45 static cl::opt<bool> WasmDisableExplicitLocals( 46 "wasm-disable-explicit-locals", cl::Hidden, 47 cl::desc("WebAssembly: output implicit locals in" 48 " instruction output for test purposes only."), 49 cl::init(false)); 50 51 static cl::opt<bool> WasmDisableFixIrreducibleControlFlowPass( 52 "wasm-disable-fix-irreducible-control-flow-pass", cl::Hidden, 53 cl::desc("webassembly: disables the fix " 54 " irreducible control flow optimization pass"), 55 cl::init(false)); 56 57 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeWebAssemblyTarget() { 58 // Register the target. 59 RegisterTargetMachine<WebAssemblyTargetMachine> X( 60 getTheWebAssemblyTarget32()); 61 RegisterTargetMachine<WebAssemblyTargetMachine> Y( 62 getTheWebAssemblyTarget64()); 63 64 // Register backend passes 65 auto &PR = *PassRegistry::getPassRegistry(); 66 initializeWebAssemblyAddMissingPrototypesPass(PR); 67 initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR); 68 initializeLowerGlobalDtorsLegacyPassPass(PR); 69 initializeFixFunctionBitcastsPass(PR); 70 initializeOptimizeReturnedPass(PR); 71 initializeWebAssemblyArgumentMovePass(PR); 72 initializeWebAssemblySetP2AlignOperandsPass(PR); 73 initializeWebAssemblyReplacePhysRegsPass(PR); 74 initializeWebAssemblyOptimizeLiveIntervalsPass(PR); 75 initializeWebAssemblyMemIntrinsicResultsPass(PR); 76 initializeWebAssemblyRegStackifyPass(PR); 77 initializeWebAssemblyRegColoringPass(PR); 78 initializeWebAssemblyNullifyDebugValueListsPass(PR); 79 initializeWebAssemblyFixIrreducibleControlFlowPass(PR); 80 initializeWebAssemblyLateEHPreparePass(PR); 81 initializeWebAssemblyExceptionInfoPass(PR); 82 initializeWebAssemblyCFGSortPass(PR); 83 initializeWebAssemblyCFGStackifyPass(PR); 84 initializeWebAssemblyExplicitLocalsPass(PR); 85 initializeWebAssemblyLowerBrUnlessPass(PR); 86 initializeWebAssemblyRegNumberingPass(PR); 87 initializeWebAssemblyDebugFixupPass(PR); 88 initializeWebAssemblyPeepholePass(PR); 89 initializeWebAssemblyMCLowerPrePassPass(PR); 90 initializeWebAssemblyLowerRefTypesIntPtrConvPass(PR); 91 initializeWebAssemblyFixBrTableDefaultsPass(PR); 92 initializeWebAssemblyDAGToDAGISelPass(PR); 93 } 94 95 //===----------------------------------------------------------------------===// 96 // WebAssembly Lowering public interface. 97 //===----------------------------------------------------------------------===// 98 99 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM, 100 const Triple &TT) { 101 if (!RM) { 102 // Default to static relocation model. This should always be more optimial 103 // than PIC since the static linker can determine all global addresses and 104 // assume direct function calls. 105 return Reloc::Static; 106 } 107 108 return *RM; 109 } 110 111 /// Create an WebAssembly architecture model. 112 /// 113 WebAssemblyTargetMachine::WebAssemblyTargetMachine( 114 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 115 const TargetOptions &Options, std::optional<Reloc::Model> RM, 116 std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT) 117 : LLVMTargetMachine( 118 T, 119 TT.isArch64Bit() 120 ? (TT.isOSEmscripten() ? "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-" 121 "f128:64-n32:64-S128-ni:1:10:20" 122 : "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-" 123 "n32:64-S128-ni:1:10:20") 124 : (TT.isOSEmscripten() ? "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-" 125 "f128:64-n32:64-S128-ni:1:10:20" 126 : "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-" 127 "n32:64-S128-ni:1:10:20"), 128 TT, CPU, FS, Options, getEffectiveRelocModel(RM, TT), 129 getEffectiveCodeModel(CM, CodeModel::Large), OL), 130 TLOF(new WebAssemblyTargetObjectFile()) { 131 // WebAssembly type-checks instructions, but a noreturn function with a return 132 // type that doesn't match the context will cause a check failure. So we lower 133 // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's 134 // 'unreachable' instructions which is meant for that case. 135 this->Options.TrapUnreachable = true; 136 this->Options.NoTrapAfterNoreturn = false; 137 138 // WebAssembly treats each function as an independent unit. Force 139 // -ffunction-sections, effectively, so that we can emit them independently. 140 this->Options.FunctionSections = true; 141 this->Options.DataSections = true; 142 this->Options.UniqueSectionNames = true; 143 144 initAsmInfo(); 145 146 // Note that we don't use setRequiresStructuredCFG(true). It disables 147 // optimizations than we're ok with, and want, such as critical edge 148 // splitting and tail merging. 149 } 150 151 WebAssemblyTargetMachine::~WebAssemblyTargetMachine() = default; // anchor. 152 153 const WebAssemblySubtarget *WebAssemblyTargetMachine::getSubtargetImpl() const { 154 return getSubtargetImpl(std::string(getTargetCPU()), 155 std::string(getTargetFeatureString())); 156 } 157 158 const WebAssemblySubtarget * 159 WebAssemblyTargetMachine::getSubtargetImpl(std::string CPU, 160 std::string FS) const { 161 auto &I = SubtargetMap[CPU + FS]; 162 if (!I) { 163 I = std::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this); 164 } 165 return I.get(); 166 } 167 168 const WebAssemblySubtarget * 169 WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const { 170 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 171 Attribute FSAttr = F.getFnAttribute("target-features"); 172 173 std::string CPU = 174 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 175 std::string FS = 176 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 177 178 // This needs to be done before we create a new subtarget since any 179 // creation will depend on the TM and the code generation flags on the 180 // function that reside in TargetOptions. 181 resetTargetOptions(F); 182 183 return getSubtargetImpl(CPU, FS); 184 } 185 186 namespace { 187 188 class CoalesceFeaturesAndStripAtomics final : public ModulePass { 189 // Take the union of all features used in the module and use it for each 190 // function individually, since having multiple feature sets in one module 191 // currently does not make sense for WebAssembly. If atomics are not enabled, 192 // also strip atomic operations and thread local storage. 193 static char ID; 194 WebAssemblyTargetMachine *WasmTM; 195 196 public: 197 CoalesceFeaturesAndStripAtomics(WebAssemblyTargetMachine *WasmTM) 198 : ModulePass(ID), WasmTM(WasmTM) {} 199 200 bool runOnModule(Module &M) override { 201 FeatureBitset Features = coalesceFeatures(M); 202 203 std::string FeatureStr = getFeatureString(Features); 204 WasmTM->setTargetFeatureString(FeatureStr); 205 for (auto &F : M) 206 replaceFeatures(F, FeatureStr); 207 208 bool StrippedAtomics = false; 209 bool StrippedTLS = false; 210 211 if (!Features[WebAssembly::FeatureAtomics]) { 212 StrippedAtomics = stripAtomics(M); 213 StrippedTLS = stripThreadLocals(M); 214 } else if (!Features[WebAssembly::FeatureBulkMemory]) { 215 StrippedTLS |= stripThreadLocals(M); 216 } 217 218 if (StrippedAtomics && !StrippedTLS) 219 stripThreadLocals(M); 220 else if (StrippedTLS && !StrippedAtomics) 221 stripAtomics(M); 222 223 recordFeatures(M, Features, StrippedAtomics || StrippedTLS); 224 225 // Conservatively assume we have made some change 226 return true; 227 } 228 229 private: 230 FeatureBitset coalesceFeatures(const Module &M) { 231 FeatureBitset Features = 232 WasmTM 233 ->getSubtargetImpl(std::string(WasmTM->getTargetCPU()), 234 std::string(WasmTM->getTargetFeatureString())) 235 ->getFeatureBits(); 236 for (auto &F : M) 237 Features |= WasmTM->getSubtargetImpl(F)->getFeatureBits(); 238 return Features; 239 } 240 241 std::string getFeatureString(const FeatureBitset &Features) { 242 std::string Ret; 243 for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) { 244 if (Features[KV.Value]) 245 Ret += (StringRef("+") + KV.Key + ",").str(); 246 } 247 return Ret; 248 } 249 250 void replaceFeatures(Function &F, const std::string &Features) { 251 F.removeFnAttr("target-features"); 252 F.removeFnAttr("target-cpu"); 253 F.addFnAttr("target-features", Features); 254 } 255 256 bool stripAtomics(Module &M) { 257 // Detect whether any atomics will be lowered, since there is no way to tell 258 // whether the LowerAtomic pass lowers e.g. stores. 259 bool Stripped = false; 260 for (auto &F : M) { 261 for (auto &B : F) { 262 for (auto &I : B) { 263 if (I.isAtomic()) { 264 Stripped = true; 265 goto done; 266 } 267 } 268 } 269 } 270 271 done: 272 if (!Stripped) 273 return false; 274 275 LowerAtomicPass Lowerer; 276 FunctionAnalysisManager FAM; 277 for (auto &F : M) 278 Lowerer.run(F, FAM); 279 280 return true; 281 } 282 283 bool stripThreadLocals(Module &M) { 284 bool Stripped = false; 285 for (auto &GV : M.globals()) { 286 if (GV.isThreadLocal()) { 287 Stripped = true; 288 GV.setThreadLocal(false); 289 } 290 } 291 return Stripped; 292 } 293 294 void recordFeatures(Module &M, const FeatureBitset &Features, bool Stripped) { 295 for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) { 296 if (Features[KV.Value]) { 297 // Mark features as used 298 std::string MDKey = (StringRef("wasm-feature-") + KV.Key).str(); 299 M.addModuleFlag(Module::ModFlagBehavior::Error, MDKey, 300 wasm::WASM_FEATURE_PREFIX_USED); 301 } 302 } 303 // Code compiled without atomics or bulk-memory may have had its atomics or 304 // thread-local data lowered to nonatomic operations or non-thread-local 305 // data. In that case, we mark the pseudo-feature "shared-mem" as disallowed 306 // to tell the linker that it would be unsafe to allow this code ot be used 307 // in a module with shared memory. 308 if (Stripped) { 309 M.addModuleFlag(Module::ModFlagBehavior::Error, "wasm-feature-shared-mem", 310 wasm::WASM_FEATURE_PREFIX_DISALLOWED); 311 } 312 } 313 }; 314 char CoalesceFeaturesAndStripAtomics::ID = 0; 315 316 /// WebAssembly Code Generator Pass Configuration Options. 317 class WebAssemblyPassConfig final : public TargetPassConfig { 318 public: 319 WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM) 320 : TargetPassConfig(TM, PM) {} 321 322 WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const { 323 return getTM<WebAssemblyTargetMachine>(); 324 } 325 326 FunctionPass *createTargetRegisterAllocator(bool) override; 327 328 void addIRPasses() override; 329 void addISelPrepare() override; 330 bool addInstSelector() override; 331 void addOptimizedRegAlloc() override; 332 void addPostRegAlloc() override; 333 bool addGCPasses() override { return false; } 334 void addPreEmitPass() override; 335 bool addPreISel() override; 336 337 // No reg alloc 338 bool addRegAssignAndRewriteFast() override { return false; } 339 340 // No reg alloc 341 bool addRegAssignAndRewriteOptimized() override { return false; } 342 }; 343 } // end anonymous namespace 344 345 MachineFunctionInfo *WebAssemblyTargetMachine::createMachineFunctionInfo( 346 BumpPtrAllocator &Allocator, const Function &F, 347 const TargetSubtargetInfo *STI) const { 348 return WebAssemblyFunctionInfo::create<WebAssemblyFunctionInfo>(Allocator, F, 349 STI); 350 } 351 352 TargetTransformInfo 353 WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) const { 354 return TargetTransformInfo(WebAssemblyTTIImpl(this, F)); 355 } 356 357 TargetPassConfig * 358 WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) { 359 return new WebAssemblyPassConfig(*this, PM); 360 } 361 362 FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) { 363 return nullptr; // No reg alloc 364 } 365 366 using WebAssembly::WasmEnableEH; 367 using WebAssembly::WasmEnableEmEH; 368 using WebAssembly::WasmEnableEmSjLj; 369 using WebAssembly::WasmEnableSjLj; 370 371 static void basicCheckForEHAndSjLj(TargetMachine *TM) { 372 // Before checking, we make sure TargetOptions.ExceptionModel is the same as 373 // MCAsmInfo.ExceptionsType. Normally these have to be the same, because clang 374 // stores the exception model info in LangOptions, which is later transferred 375 // to TargetOptions and MCAsmInfo. But when clang compiles bitcode directly, 376 // clang's LangOptions is not used and thus the exception model info is not 377 // correctly transferred to TargetOptions and MCAsmInfo, so we make sure we 378 // have the correct exception model in WebAssemblyMCAsmInfo constructor. 379 // But in this case TargetOptions is still not updated, so we make sure they 380 // are the same. 381 TM->Options.ExceptionModel = TM->getMCAsmInfo()->getExceptionHandlingType(); 382 383 // Basic Correctness checking related to -exception-model 384 if (TM->Options.ExceptionModel != ExceptionHandling::None && 385 TM->Options.ExceptionModel != ExceptionHandling::Wasm) 386 report_fatal_error("-exception-model should be either 'none' or 'wasm'"); 387 if (WasmEnableEmEH && TM->Options.ExceptionModel == ExceptionHandling::Wasm) 388 report_fatal_error("-exception-model=wasm not allowed with " 389 "-enable-emscripten-cxx-exceptions"); 390 if (WasmEnableEH && TM->Options.ExceptionModel != ExceptionHandling::Wasm) 391 report_fatal_error( 392 "-wasm-enable-eh only allowed with -exception-model=wasm"); 393 if (WasmEnableSjLj && TM->Options.ExceptionModel != ExceptionHandling::Wasm) 394 report_fatal_error( 395 "-wasm-enable-sjlj only allowed with -exception-model=wasm"); 396 if ((!WasmEnableEH && !WasmEnableSjLj) && 397 TM->Options.ExceptionModel == ExceptionHandling::Wasm) 398 report_fatal_error( 399 "-exception-model=wasm only allowed with at least one of " 400 "-wasm-enable-eh or -wasm-enable-sjj"); 401 402 // You can't enable two modes of EH at the same time 403 if (WasmEnableEmEH && WasmEnableEH) 404 report_fatal_error( 405 "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-eh"); 406 // You can't enable two modes of SjLj at the same time 407 if (WasmEnableEmSjLj && WasmEnableSjLj) 408 report_fatal_error( 409 "-enable-emscripten-sjlj not allowed with -wasm-enable-sjlj"); 410 // You can't mix Emscripten EH with Wasm SjLj. 411 if (WasmEnableEmEH && WasmEnableSjLj) 412 report_fatal_error( 413 "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-sjlj"); 414 // Currently it is allowed to mix Wasm EH with Emscripten SjLj as an interim 415 // measure, but some code will error out at compile time in this combination. 416 // See WebAssemblyLowerEmscriptenEHSjLj pass for details. 417 } 418 419 //===----------------------------------------------------------------------===// 420 // The following functions are called from lib/CodeGen/Passes.cpp to modify 421 // the CodeGen pass sequence. 422 //===----------------------------------------------------------------------===// 423 424 void WebAssemblyPassConfig::addIRPasses() { 425 // Add signatures to prototype-less function declarations 426 addPass(createWebAssemblyAddMissingPrototypes()); 427 428 // Lower .llvm.global_dtors into .llvm.global_ctors with __cxa_atexit calls. 429 addPass(createLowerGlobalDtorsLegacyPass()); 430 431 // Fix function bitcasts, as WebAssembly requires caller and callee signatures 432 // to match. 433 addPass(createWebAssemblyFixFunctionBitcasts()); 434 435 // Optimize "returned" function attributes. 436 if (getOptLevel() != CodeGenOptLevel::None) 437 addPass(createWebAssemblyOptimizeReturned()); 438 439 basicCheckForEHAndSjLj(TM); 440 441 // If exception handling is not enabled and setjmp/longjmp handling is 442 // enabled, we lower invokes into calls and delete unreachable landingpad 443 // blocks. Lowering invokes when there is no EH support is done in 444 // TargetPassConfig::addPassesToHandleExceptions, but that runs after these IR 445 // passes and Emscripten SjLj handling expects all invokes to be lowered 446 // before. 447 if (!WasmEnableEmEH && !WasmEnableEH) { 448 addPass(createLowerInvokePass()); 449 // The lower invoke pass may create unreachable code. Remove it in order not 450 // to process dead blocks in setjmp/longjmp handling. 451 addPass(createUnreachableBlockEliminationPass()); 452 } 453 454 // Handle exceptions and setjmp/longjmp if enabled. Unlike Wasm EH preparation 455 // done in WasmEHPrepare pass, Wasm SjLj preparation shares libraries and 456 // transformation algorithms with Emscripten SjLj, so we run 457 // LowerEmscriptenEHSjLj pass also when Wasm SjLj is enabled. 458 if (WasmEnableEmEH || WasmEnableEmSjLj || WasmEnableSjLj) 459 addPass(createWebAssemblyLowerEmscriptenEHSjLj()); 460 461 // Expand indirectbr instructions to switches. 462 addPass(createIndirectBrExpandPass()); 463 464 TargetPassConfig::addIRPasses(); 465 } 466 467 void WebAssemblyPassConfig::addISelPrepare() { 468 WebAssemblyTargetMachine *WasmTM = 469 static_cast<WebAssemblyTargetMachine *>(TM); 470 const WebAssemblySubtarget *Subtarget = 471 WasmTM->getSubtargetImpl(std::string(WasmTM->getTargetCPU()), 472 std::string(WasmTM->getTargetFeatureString())); 473 if (Subtarget->hasReferenceTypes()) { 474 // We need to remove allocas for reference types 475 addPass(createPromoteMemoryToRegisterPass(true)); 476 } 477 // Lower atomics and TLS if necessary 478 addPass(new CoalesceFeaturesAndStripAtomics(&getWebAssemblyTargetMachine())); 479 480 // This is a no-op if atomics are not used in the module 481 addPass(createAtomicExpandPass()); 482 483 TargetPassConfig::addISelPrepare(); 484 } 485 486 bool WebAssemblyPassConfig::addInstSelector() { 487 (void)TargetPassConfig::addInstSelector(); 488 addPass( 489 createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel())); 490 // Run the argument-move pass immediately after the ScheduleDAG scheduler 491 // so that we can fix up the ARGUMENT instructions before anything else 492 // sees them in the wrong place. 493 addPass(createWebAssemblyArgumentMove()); 494 // Set the p2align operands. This information is present during ISel, however 495 // it's inconvenient to collect. Collect it now, and update the immediate 496 // operands. 497 addPass(createWebAssemblySetP2AlignOperands()); 498 499 // Eliminate range checks and add default targets to br_table instructions. 500 addPass(createWebAssemblyFixBrTableDefaults()); 501 502 return false; 503 } 504 505 void WebAssemblyPassConfig::addOptimizedRegAlloc() { 506 // Currently RegisterCoalesce degrades wasm debug info quality by a 507 // significant margin. As a quick fix, disable this for -O1, which is often 508 // used for debugging large applications. Disabling this increases code size 509 // of Emscripten core benchmarks by ~5%, which is acceptable for -O1, which is 510 // usually not used for production builds. 511 // TODO Investigate why RegisterCoalesce degrades debug info quality and fix 512 // it properly 513 if (getOptLevel() == CodeGenOptLevel::Less) 514 disablePass(&RegisterCoalescerID); 515 TargetPassConfig::addOptimizedRegAlloc(); 516 } 517 518 void WebAssemblyPassConfig::addPostRegAlloc() { 519 // TODO: The following CodeGen passes don't currently support code containing 520 // virtual registers. Consider removing their restrictions and re-enabling 521 // them. 522 523 // These functions all require the NoVRegs property. 524 disablePass(&MachineLateInstrsCleanupID); 525 disablePass(&MachineCopyPropagationID); 526 disablePass(&PostRAMachineSinkingID); 527 disablePass(&PostRASchedulerID); 528 disablePass(&FuncletLayoutID); 529 disablePass(&StackMapLivenessID); 530 disablePass(&PatchableFunctionID); 531 disablePass(&ShrinkWrapID); 532 533 // This pass hurts code size for wasm because it can generate irreducible 534 // control flow. 535 disablePass(&MachineBlockPlacementID); 536 537 TargetPassConfig::addPostRegAlloc(); 538 } 539 540 void WebAssemblyPassConfig::addPreEmitPass() { 541 TargetPassConfig::addPreEmitPass(); 542 543 // Nullify DBG_VALUE_LISTs that we cannot handle. 544 addPass(createWebAssemblyNullifyDebugValueLists()); 545 546 // Eliminate multiple-entry loops. 547 if (!WasmDisableFixIrreducibleControlFlowPass) 548 addPass(createWebAssemblyFixIrreducibleControlFlow()); 549 550 // Do various transformations for exception handling. 551 // Every CFG-changing optimizations should come before this. 552 if (TM->Options.ExceptionModel == ExceptionHandling::Wasm) 553 addPass(createWebAssemblyLateEHPrepare()); 554 555 // Now that we have a prologue and epilogue and all frame indices are 556 // rewritten, eliminate SP and FP. This allows them to be stackified, 557 // colored, and numbered with the rest of the registers. 558 addPass(createWebAssemblyReplacePhysRegs()); 559 560 // Preparations and optimizations related to register stackification. 561 if (getOptLevel() != CodeGenOptLevel::None) { 562 // Depend on LiveIntervals and perform some optimizations on it. 563 addPass(createWebAssemblyOptimizeLiveIntervals()); 564 565 // Prepare memory intrinsic calls for register stackifying. 566 addPass(createWebAssemblyMemIntrinsicResults()); 567 568 // Mark registers as representing wasm's value stack. This is a key 569 // code-compression technique in WebAssembly. We run this pass (and 570 // MemIntrinsicResults above) very late, so that it sees as much code as 571 // possible, including code emitted by PEI and expanded by late tail 572 // duplication. 573 addPass(createWebAssemblyRegStackify()); 574 575 // Run the register coloring pass to reduce the total number of registers. 576 // This runs after stackification so that it doesn't consider registers 577 // that become stackified. 578 addPass(createWebAssemblyRegColoring()); 579 } 580 581 // Sort the blocks of the CFG into topological order, a prerequisite for 582 // BLOCK and LOOP markers. 583 addPass(createWebAssemblyCFGSort()); 584 585 // Insert BLOCK and LOOP markers. 586 addPass(createWebAssemblyCFGStackify()); 587 588 // Insert explicit local.get and local.set operators. 589 if (!WasmDisableExplicitLocals) 590 addPass(createWebAssemblyExplicitLocals()); 591 592 // Lower br_unless into br_if. 593 addPass(createWebAssemblyLowerBrUnless()); 594 595 // Perform the very last peephole optimizations on the code. 596 if (getOptLevel() != CodeGenOptLevel::None) 597 addPass(createWebAssemblyPeephole()); 598 599 // Create a mapping from LLVM CodeGen virtual registers to wasm registers. 600 addPass(createWebAssemblyRegNumbering()); 601 602 // Fix debug_values whose defs have been stackified. 603 if (!WasmDisableExplicitLocals) 604 addPass(createWebAssemblyDebugFixup()); 605 606 // Collect information to prepare for MC lowering / asm printing. 607 addPass(createWebAssemblyMCLowerPrePass()); 608 } 609 610 bool WebAssemblyPassConfig::addPreISel() { 611 TargetPassConfig::addPreISel(); 612 addPass(createWebAssemblyLowerRefTypesIntPtrConv()); 613 return false; 614 } 615 616 yaml::MachineFunctionInfo * 617 WebAssemblyTargetMachine::createDefaultFuncInfoYAML() const { 618 return new yaml::WebAssemblyFunctionInfo(); 619 } 620 621 yaml::MachineFunctionInfo *WebAssemblyTargetMachine::convertFuncInfoToYAML( 622 const MachineFunction &MF) const { 623 const auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 624 return new yaml::WebAssemblyFunctionInfo(MF, *MFI); 625 } 626 627 bool WebAssemblyTargetMachine::parseMachineFunctionInfo( 628 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 629 SMDiagnostic &Error, SMRange &SourceRange) const { 630 const auto &YamlMFI = static_cast<const yaml::WebAssemblyFunctionInfo &>(MFI); 631 MachineFunction &MF = PFS.MF; 632 MF.getInfo<WebAssemblyFunctionInfo>()->initializeBaseYamlFields(MF, YamlMFI); 633 return false; 634 } 635