1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "WebAssemblyUtilities.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/WasmEHFuncInfo.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsWebAssembly.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetOptions.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-lower" 41 42 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 43 const TargetMachine &TM, const WebAssemblySubtarget &STI) 44 : TargetLowering(TM), Subtarget(&STI) { 45 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 46 47 // Booleans always contain 0 or 1. 48 setBooleanContents(ZeroOrOneBooleanContent); 49 // Except in SIMD vectors 50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 51 // We don't know the microarchitecture here, so just reduce register pressure. 52 setSchedulingPreference(Sched::RegPressure); 53 // Tell ISel that we have a stack pointer. 54 setStackPointerRegisterToSaveRestore( 55 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 56 // Set up the register classes. 57 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 58 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 59 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 60 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 61 if (Subtarget->hasSIMD128()) { 62 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 63 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 64 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 65 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 67 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 68 } 69 // Compute derived properties from the register classes. 70 computeRegisterProperties(Subtarget->getRegisterInfo()); 71 72 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 73 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); 74 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 75 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 76 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 77 setOperationAction(ISD::BRIND, MVT::Other, Custom); 78 79 // Take the default expansion for va_arg, va_copy, and va_end. There is no 80 // default action for va_start, so we do that custom. 81 setOperationAction(ISD::VASTART, MVT::Other, Custom); 82 setOperationAction(ISD::VAARG, MVT::Other, Expand); 83 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 84 setOperationAction(ISD::VAEND, MVT::Other, Expand); 85 86 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 87 // Don't expand the floating-point types to constant pools. 88 setOperationAction(ISD::ConstantFP, T, Legal); 89 // Expand floating-point comparisons. 90 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 91 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 92 setCondCodeAction(CC, T, Expand); 93 // Expand floating-point library function operators. 94 for (auto Op : 95 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 96 setOperationAction(Op, T, Expand); 97 // Note supported floating-point library function operators that otherwise 98 // default to expand. 99 for (auto Op : 100 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 101 setOperationAction(Op, T, Legal); 102 // Support minimum and maximum, which otherwise default to expand. 103 setOperationAction(ISD::FMINIMUM, T, Legal); 104 setOperationAction(ISD::FMAXIMUM, T, Legal); 105 // WebAssembly currently has no builtin f16 support. 106 setOperationAction(ISD::FP16_TO_FP, T, Expand); 107 setOperationAction(ISD::FP_TO_FP16, T, Expand); 108 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 109 setTruncStoreAction(T, MVT::f16, Expand); 110 } 111 112 // Expand unavailable integer operations. 113 for (auto Op : 114 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 115 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 116 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 117 for (auto T : {MVT::i32, MVT::i64}) 118 setOperationAction(Op, T, Expand); 119 if (Subtarget->hasSIMD128()) 120 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 121 setOperationAction(Op, T, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Hoist bitcasts out of shuffles 127 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 128 129 // Combine extends of extract_subvectors into widening ops 130 setTargetDAGCombine(ISD::SIGN_EXTEND); 131 setTargetDAGCombine(ISD::ZERO_EXTEND); 132 133 // Support saturating add for i8x16 and i16x8 134 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 135 for (auto T : {MVT::v16i8, MVT::v8i16}) 136 setOperationAction(Op, T, Legal); 137 138 // Support integer abs 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 140 setOperationAction(ISD::ABS, T, Legal); 141 142 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 143 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 144 MVT::v2f64}) 145 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 146 147 // We have custom shuffle lowering to expose the shuffle mask 148 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 149 MVT::v2f64}) 150 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 151 152 // Custom lowering since wasm shifts must have a scalar shift amount 153 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) 154 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 155 setOperationAction(Op, T, Custom); 156 157 // Custom lower lane accesses to expand out variable indices 158 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) 159 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 160 MVT::v2f64}) 161 setOperationAction(Op, T, Custom); 162 163 // There is no i8x16.mul instruction 164 setOperationAction(ISD::MUL, MVT::v16i8, Expand); 165 166 // There is no vector conditional select instruction 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, 168 MVT::v2f64}) 169 setOperationAction(ISD::SELECT_CC, T, Expand); 170 171 // Expand integer operations supported for scalars but not SIMD 172 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 173 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) 174 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) 175 setOperationAction(Op, T, Expand); 176 177 // But we do have integer min and max operations 178 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 179 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 180 setOperationAction(Op, T, Legal); 181 182 // Expand float operations supported for scalars but not SIMD 183 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 184 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 185 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) 186 for (auto T : {MVT::v4f32, MVT::v2f64}) 187 setOperationAction(Op, T, Expand); 188 189 // Expand operations not supported for i64x2 vectors 190 for (unsigned CC = 0; CC < ISD::SETCC_INVALID; ++CC) 191 setCondCodeAction(static_cast<ISD::CondCode>(CC), MVT::v2i64, Custom); 192 193 // 64x2 conversions are not in the spec 194 for (auto Op : 195 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) 196 for (auto T : {MVT::v2i64, MVT::v2f64}) 197 setOperationAction(Op, T, Expand); 198 } 199 200 // As a special case, these operators use the type to mean the type to 201 // sign-extend from. 202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 203 if (!Subtarget->hasSignExt()) { 204 // Sign extends are legal only when extending a vector extract 205 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 206 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 207 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 208 } 209 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 210 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 211 212 // Dynamic stack allocation: use the default expansion. 213 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 214 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 215 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 216 217 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 218 setOperationAction(ISD::FrameIndex, MVT::i64, Custom); 219 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 220 221 // Expand these forms; we pattern-match the forms that we can handle in isel. 222 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 223 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 224 setOperationAction(Op, T, Expand); 225 226 // We have custom switch handling. 227 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 228 229 // WebAssembly doesn't have: 230 // - Floating-point extending loads. 231 // - Floating-point truncating stores. 232 // - i1 extending loads. 233 // - truncating SIMD stores and most extending loads 234 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 235 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 236 for (auto T : MVT::integer_valuetypes()) 237 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 238 setLoadExtAction(Ext, T, MVT::i1, Promote); 239 if (Subtarget->hasSIMD128()) { 240 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 241 MVT::v2f64}) { 242 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 243 if (MVT(T) != MemT) { 244 setTruncStoreAction(T, MemT, Expand); 245 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 246 setLoadExtAction(Ext, T, MemT, Expand); 247 } 248 } 249 } 250 // But some vector extending loads are legal 251 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 252 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 253 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 254 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 255 } 256 // And some truncating stores are legal as well 257 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 258 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 259 } 260 261 // Don't do anything clever with build_pairs 262 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 263 264 // Trap lowers to wasm unreachable 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 267 268 // Exception handling intrinsics 269 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 270 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 272 273 setMaxAtomicSizeInBitsSupported(64); 274 275 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 276 // consistent with the f64 and f128 names. 277 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 278 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 279 280 // Define the emscripten name for return address helper. 281 // TODO: when implementing other Wasm backends, make this generic or only do 282 // this on emscripten depending on what they end up doing. 283 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 284 285 // Always convert switches to br_tables unless there is only one case, which 286 // is equivalent to a simple branch. This reduces code size for wasm, and we 287 // defer possible jump table optimizations to the VM. 288 setMinimumJumpTableEntries(2); 289 } 290 291 TargetLowering::AtomicExpansionKind 292 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 293 // We have wasm instructions for these 294 switch (AI->getOperation()) { 295 case AtomicRMWInst::Add: 296 case AtomicRMWInst::Sub: 297 case AtomicRMWInst::And: 298 case AtomicRMWInst::Or: 299 case AtomicRMWInst::Xor: 300 case AtomicRMWInst::Xchg: 301 return AtomicExpansionKind::None; 302 default: 303 break; 304 } 305 return AtomicExpansionKind::CmpXChg; 306 } 307 308 FastISel *WebAssemblyTargetLowering::createFastISel( 309 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 310 return WebAssembly::createFastISel(FuncInfo, LibInfo); 311 } 312 313 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 314 EVT VT) const { 315 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 316 if (BitWidth > 1 && BitWidth < 8) 317 BitWidth = 8; 318 319 if (BitWidth > 64) { 320 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 321 // the count to be an i32. 322 BitWidth = 32; 323 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 324 "32-bit shift counts ought to be enough for anyone"); 325 } 326 327 MVT Result = MVT::getIntegerVT(BitWidth); 328 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 329 "Unable to represent scalar shift amount type"); 330 return Result; 331 } 332 333 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 334 // undefined result on invalid/overflow, to the WebAssembly opcode, which 335 // traps on invalid/overflow. 336 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 337 MachineBasicBlock *BB, 338 const TargetInstrInfo &TII, 339 bool IsUnsigned, bool Int64, 340 bool Float64, unsigned LoweredOpcode) { 341 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 342 343 Register OutReg = MI.getOperand(0).getReg(); 344 Register InReg = MI.getOperand(1).getReg(); 345 346 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 347 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 348 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 349 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 350 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 351 unsigned Eqz = WebAssembly::EQZ_I32; 352 unsigned And = WebAssembly::AND_I32; 353 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 354 int64_t Substitute = IsUnsigned ? 0 : Limit; 355 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 356 auto &Context = BB->getParent()->getFunction().getContext(); 357 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 358 359 const BasicBlock *LLVMBB = BB->getBasicBlock(); 360 MachineFunction *F = BB->getParent(); 361 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 362 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 363 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 364 365 MachineFunction::iterator It = ++BB->getIterator(); 366 F->insert(It, FalseMBB); 367 F->insert(It, TrueMBB); 368 F->insert(It, DoneMBB); 369 370 // Transfer the remainder of BB and its successor edges to DoneMBB. 371 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 372 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 373 374 BB->addSuccessor(TrueMBB); 375 BB->addSuccessor(FalseMBB); 376 TrueMBB->addSuccessor(DoneMBB); 377 FalseMBB->addSuccessor(DoneMBB); 378 379 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 380 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 381 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 382 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 383 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 384 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 385 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 386 387 MI.eraseFromParent(); 388 // For signed numbers, we can do a single comparison to determine whether 389 // fabs(x) is within range. 390 if (IsUnsigned) { 391 Tmp0 = InReg; 392 } else { 393 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 394 } 395 BuildMI(BB, DL, TII.get(FConst), Tmp1) 396 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 397 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 398 399 // For unsigned numbers, we have to do a separate comparison with zero. 400 if (IsUnsigned) { 401 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 402 Register SecondCmpReg = 403 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 404 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 405 BuildMI(BB, DL, TII.get(FConst), Tmp1) 406 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 407 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 408 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 409 CmpReg = AndReg; 410 } 411 412 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 413 414 // Create the CFG diamond to select between doing the conversion or using 415 // the substitute value. 416 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 417 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 418 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 419 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 420 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 421 .addReg(FalseReg) 422 .addMBB(FalseMBB) 423 .addReg(TrueReg) 424 .addMBB(TrueMBB); 425 426 return DoneMBB; 427 } 428 429 static MachineBasicBlock *LowerCallResults(MachineInstr &CallResults, 430 DebugLoc DL, MachineBasicBlock *BB, 431 const TargetInstrInfo &TII) { 432 MachineInstr &CallParams = *CallResults.getPrevNode(); 433 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); 434 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || 435 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); 436 437 bool IsIndirect = CallParams.getOperand(0).isReg(); 438 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; 439 440 unsigned CallOp; 441 if (IsIndirect && IsRetCall) { 442 CallOp = WebAssembly::RET_CALL_INDIRECT; 443 } else if (IsIndirect) { 444 CallOp = WebAssembly::CALL_INDIRECT; 445 } else if (IsRetCall) { 446 CallOp = WebAssembly::RET_CALL; 447 } else { 448 CallOp = WebAssembly::CALL; 449 } 450 451 MachineFunction &MF = *BB->getParent(); 452 const MCInstrDesc &MCID = TII.get(CallOp); 453 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); 454 455 // See if we must truncate the function pointer. 456 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers 457 // as 64-bit for uniformity with other pointer types. 458 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { 459 Register Reg32 = 460 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); 461 auto &FnPtr = CallParams.getOperand(0); 462 BuildMI(*BB, CallResults.getIterator(), DL, 463 TII.get(WebAssembly::I32_WRAP_I64), Reg32) 464 .addReg(FnPtr.getReg()); 465 FnPtr.setReg(Reg32); 466 } 467 468 // Move the function pointer to the end of the arguments for indirect calls 469 if (IsIndirect) { 470 auto FnPtr = CallParams.getOperand(0); 471 CallParams.RemoveOperand(0); 472 CallParams.addOperand(FnPtr); 473 } 474 475 for (auto Def : CallResults.defs()) 476 MIB.add(Def); 477 478 // Add placeholders for the type index and immediate flags 479 if (IsIndirect) { 480 MIB.addImm(0); 481 MIB.addImm(0); 482 483 // Ensure that the object file has a __indirect_function_table import, as we 484 // call_indirect against it. 485 MCSymbolWasm *Sym = WebAssembly::getOrCreateFunctionTableSymbol( 486 MF.getContext(), "__indirect_function_table"); 487 // Until call_indirect emits TABLE_NUMBER relocs against this symbol, mark 488 // it as NO_STRIP so as to ensure that the indirect function table makes it 489 // to linked output. 490 Sym->setNoStrip(); 491 } 492 493 for (auto Use : CallParams.uses()) 494 MIB.add(Use); 495 496 BB->insert(CallResults.getIterator(), MIB); 497 CallParams.eraseFromParent(); 498 CallResults.eraseFromParent(); 499 500 return BB; 501 } 502 503 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 504 MachineInstr &MI, MachineBasicBlock *BB) const { 505 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 506 DebugLoc DL = MI.getDebugLoc(); 507 508 switch (MI.getOpcode()) { 509 default: 510 llvm_unreachable("Unexpected instr type to insert"); 511 case WebAssembly::FP_TO_SINT_I32_F32: 512 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 513 WebAssembly::I32_TRUNC_S_F32); 514 case WebAssembly::FP_TO_UINT_I32_F32: 515 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 516 WebAssembly::I32_TRUNC_U_F32); 517 case WebAssembly::FP_TO_SINT_I64_F32: 518 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 519 WebAssembly::I64_TRUNC_S_F32); 520 case WebAssembly::FP_TO_UINT_I64_F32: 521 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 522 WebAssembly::I64_TRUNC_U_F32); 523 case WebAssembly::FP_TO_SINT_I32_F64: 524 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 525 WebAssembly::I32_TRUNC_S_F64); 526 case WebAssembly::FP_TO_UINT_I32_F64: 527 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 528 WebAssembly::I32_TRUNC_U_F64); 529 case WebAssembly::FP_TO_SINT_I64_F64: 530 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 531 WebAssembly::I64_TRUNC_S_F64); 532 case WebAssembly::FP_TO_UINT_I64_F64: 533 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 534 WebAssembly::I64_TRUNC_U_F64); 535 case WebAssembly::CALL_RESULTS: 536 case WebAssembly::RET_CALL_RESULTS: 537 return LowerCallResults(MI, DL, BB, TII); 538 } 539 } 540 541 const char * 542 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 543 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 544 case WebAssemblyISD::FIRST_NUMBER: 545 case WebAssemblyISD::FIRST_MEM_OPCODE: 546 break; 547 #define HANDLE_NODETYPE(NODE) \ 548 case WebAssemblyISD::NODE: \ 549 return "WebAssemblyISD::" #NODE; 550 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) 551 #include "WebAssemblyISD.def" 552 #undef HANDLE_MEM_NODETYPE 553 #undef HANDLE_NODETYPE 554 } 555 return nullptr; 556 } 557 558 std::pair<unsigned, const TargetRegisterClass *> 559 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 560 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 561 // First, see if this is a constraint that directly corresponds to a 562 // WebAssembly register class. 563 if (Constraint.size() == 1) { 564 switch (Constraint[0]) { 565 case 'r': 566 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 567 if (Subtarget->hasSIMD128() && VT.isVector()) { 568 if (VT.getSizeInBits() == 128) 569 return std::make_pair(0U, &WebAssembly::V128RegClass); 570 } 571 if (VT.isInteger() && !VT.isVector()) { 572 if (VT.getSizeInBits() <= 32) 573 return std::make_pair(0U, &WebAssembly::I32RegClass); 574 if (VT.getSizeInBits() <= 64) 575 return std::make_pair(0U, &WebAssembly::I64RegClass); 576 } 577 if (VT.isFloatingPoint() && !VT.isVector()) { 578 switch (VT.getSizeInBits()) { 579 case 32: 580 return std::make_pair(0U, &WebAssembly::F32RegClass); 581 case 64: 582 return std::make_pair(0U, &WebAssembly::F64RegClass); 583 default: 584 break; 585 } 586 } 587 break; 588 default: 589 break; 590 } 591 } 592 593 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 594 } 595 596 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 597 // Assume ctz is a relatively cheap operation. 598 return true; 599 } 600 601 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 602 // Assume clz is a relatively cheap operation. 603 return true; 604 } 605 606 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 607 const AddrMode &AM, 608 Type *Ty, unsigned AS, 609 Instruction *I) const { 610 // WebAssembly offsets are added as unsigned without wrapping. The 611 // isLegalAddressingMode gives us no way to determine if wrapping could be 612 // happening, so we approximate this by accepting only non-negative offsets. 613 if (AM.BaseOffs < 0) 614 return false; 615 616 // WebAssembly has no scale register operands. 617 if (AM.Scale != 0) 618 return false; 619 620 // Everything else is legal. 621 return true; 622 } 623 624 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 625 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 626 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 627 // WebAssembly supports unaligned accesses, though it should be declared 628 // with the p2align attribute on loads and stores which do so, and there 629 // may be a performance impact. We tell LLVM they're "fast" because 630 // for the kinds of things that LLVM uses this for (merging adjacent stores 631 // of constants, etc.), WebAssembly implementations will either want the 632 // unaligned access or they'll split anyway. 633 if (Fast) 634 *Fast = true; 635 return true; 636 } 637 638 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 639 AttributeList Attr) const { 640 // The current thinking is that wasm engines will perform this optimization, 641 // so we can save on code size. 642 return true; 643 } 644 645 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 646 EVT ExtT = ExtVal.getValueType(); 647 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); 648 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 649 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 650 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 651 } 652 653 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 654 LLVMContext &C, 655 EVT VT) const { 656 if (VT.isVector()) 657 return VT.changeVectorElementTypeToInteger(); 658 659 // So far, all branch instructions in Wasm take an I32 condition. 660 // The default TargetLowering::getSetCCResultType returns the pointer size, 661 // which would be useful to reduce instruction counts when testing 662 // against 64-bit pointers/values if at some point Wasm supports that. 663 return EVT::getIntegerVT(C, 32); 664 } 665 666 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 667 const CallInst &I, 668 MachineFunction &MF, 669 unsigned Intrinsic) const { 670 switch (Intrinsic) { 671 case Intrinsic::wasm_memory_atomic_notify: 672 Info.opc = ISD::INTRINSIC_W_CHAIN; 673 Info.memVT = MVT::i32; 674 Info.ptrVal = I.getArgOperand(0); 675 Info.offset = 0; 676 Info.align = Align(4); 677 // atomic.notify instruction does not really load the memory specified with 678 // this argument, but MachineMemOperand should either be load or store, so 679 // we set this to a load. 680 // FIXME Volatile isn't really correct, but currently all LLVM atomic 681 // instructions are treated as volatiles in the backend, so we should be 682 // consistent. The same applies for wasm_atomic_wait intrinsics too. 683 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 684 return true; 685 case Intrinsic::wasm_memory_atomic_wait32: 686 Info.opc = ISD::INTRINSIC_W_CHAIN; 687 Info.memVT = MVT::i32; 688 Info.ptrVal = I.getArgOperand(0); 689 Info.offset = 0; 690 Info.align = Align(4); 691 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 692 return true; 693 case Intrinsic::wasm_memory_atomic_wait64: 694 Info.opc = ISD::INTRINSIC_W_CHAIN; 695 Info.memVT = MVT::i64; 696 Info.ptrVal = I.getArgOperand(0); 697 Info.offset = 0; 698 Info.align = Align(8); 699 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 700 return true; 701 case Intrinsic::wasm_load32_zero: 702 case Intrinsic::wasm_load64_zero: 703 Info.opc = ISD::INTRINSIC_W_CHAIN; 704 Info.memVT = Intrinsic == Intrinsic::wasm_load32_zero ? MVT::i32 : MVT::i64; 705 Info.ptrVal = I.getArgOperand(0); 706 Info.offset = 0; 707 Info.align = Info.memVT == MVT::i32 ? Align(4) : Align(8); 708 Info.flags = MachineMemOperand::MOLoad; 709 return true; 710 case Intrinsic::wasm_load8_lane: 711 case Intrinsic::wasm_load16_lane: 712 case Intrinsic::wasm_load32_lane: 713 case Intrinsic::wasm_load64_lane: 714 case Intrinsic::wasm_store8_lane: 715 case Intrinsic::wasm_store16_lane: 716 case Intrinsic::wasm_store32_lane: 717 case Intrinsic::wasm_store64_lane: { 718 MVT MemVT; 719 Align MemAlign; 720 switch (Intrinsic) { 721 case Intrinsic::wasm_load8_lane: 722 case Intrinsic::wasm_store8_lane: 723 MemVT = MVT::i8; 724 MemAlign = Align(1); 725 break; 726 case Intrinsic::wasm_load16_lane: 727 case Intrinsic::wasm_store16_lane: 728 MemVT = MVT::i16; 729 MemAlign = Align(2); 730 break; 731 case Intrinsic::wasm_load32_lane: 732 case Intrinsic::wasm_store32_lane: 733 MemVT = MVT::i32; 734 MemAlign = Align(4); 735 break; 736 case Intrinsic::wasm_load64_lane: 737 case Intrinsic::wasm_store64_lane: 738 MemVT = MVT::i64; 739 MemAlign = Align(8); 740 break; 741 default: 742 llvm_unreachable("unexpected intrinsic"); 743 } 744 if (Intrinsic == Intrinsic::wasm_load8_lane || 745 Intrinsic == Intrinsic::wasm_load16_lane || 746 Intrinsic == Intrinsic::wasm_load32_lane || 747 Intrinsic == Intrinsic::wasm_load64_lane) { 748 Info.opc = ISD::INTRINSIC_W_CHAIN; 749 Info.flags = MachineMemOperand::MOLoad; 750 } else { 751 Info.opc = ISD::INTRINSIC_VOID; 752 Info.flags = MachineMemOperand::MOStore; 753 } 754 Info.ptrVal = I.getArgOperand(0); 755 Info.memVT = MemVT; 756 Info.offset = 0; 757 Info.align = MemAlign; 758 return true; 759 } 760 case Intrinsic::wasm_prefetch_t: 761 case Intrinsic::wasm_prefetch_nt: { 762 Info.opc = ISD::INTRINSIC_VOID; 763 Info.memVT = MVT::i8; 764 Info.ptrVal = I.getArgOperand(0); 765 Info.offset = 0; 766 Info.align = Align(1); 767 Info.flags = MachineMemOperand::MOLoad; 768 return true; 769 } 770 default: 771 return false; 772 } 773 } 774 775 //===----------------------------------------------------------------------===// 776 // WebAssembly Lowering private implementation. 777 //===----------------------------------------------------------------------===// 778 779 //===----------------------------------------------------------------------===// 780 // Lowering Code 781 //===----------------------------------------------------------------------===// 782 783 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 784 MachineFunction &MF = DAG.getMachineFunction(); 785 DAG.getContext()->diagnose( 786 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 787 } 788 789 // Test whether the given calling convention is supported. 790 static bool callingConvSupported(CallingConv::ID CallConv) { 791 // We currently support the language-independent target-independent 792 // conventions. We don't yet have a way to annotate calls with properties like 793 // "cold", and we don't have any call-clobbered registers, so these are mostly 794 // all handled the same. 795 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 796 CallConv == CallingConv::Cold || 797 CallConv == CallingConv::PreserveMost || 798 CallConv == CallingConv::PreserveAll || 799 CallConv == CallingConv::CXX_FAST_TLS || 800 CallConv == CallingConv::WASM_EmscriptenInvoke || 801 CallConv == CallingConv::Swift; 802 } 803 804 SDValue 805 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 806 SmallVectorImpl<SDValue> &InVals) const { 807 SelectionDAG &DAG = CLI.DAG; 808 SDLoc DL = CLI.DL; 809 SDValue Chain = CLI.Chain; 810 SDValue Callee = CLI.Callee; 811 MachineFunction &MF = DAG.getMachineFunction(); 812 auto Layout = MF.getDataLayout(); 813 814 CallingConv::ID CallConv = CLI.CallConv; 815 if (!callingConvSupported(CallConv)) 816 fail(DL, DAG, 817 "WebAssembly doesn't support language-specific or target-specific " 818 "calling conventions yet"); 819 if (CLI.IsPatchPoint) 820 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 821 822 if (CLI.IsTailCall) { 823 auto NoTail = [&](const char *Msg) { 824 if (CLI.CB && CLI.CB->isMustTailCall()) 825 fail(DL, DAG, Msg); 826 CLI.IsTailCall = false; 827 }; 828 829 if (!Subtarget->hasTailCall()) 830 NoTail("WebAssembly 'tail-call' feature not enabled"); 831 832 // Varargs calls cannot be tail calls because the buffer is on the stack 833 if (CLI.IsVarArg) 834 NoTail("WebAssembly does not support varargs tail calls"); 835 836 // Do not tail call unless caller and callee return types match 837 const Function &F = MF.getFunction(); 838 const TargetMachine &TM = getTargetMachine(); 839 Type *RetTy = F.getReturnType(); 840 SmallVector<MVT, 4> CallerRetTys; 841 SmallVector<MVT, 4> CalleeRetTys; 842 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 843 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 844 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 845 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 846 CalleeRetTys.begin()); 847 if (!TypesMatch) 848 NoTail("WebAssembly tail call requires caller and callee return types to " 849 "match"); 850 851 // If pointers to local stack values are passed, we cannot tail call 852 if (CLI.CB) { 853 for (auto &Arg : CLI.CB->args()) { 854 Value *Val = Arg.get(); 855 // Trace the value back through pointer operations 856 while (true) { 857 Value *Src = Val->stripPointerCastsAndAliases(); 858 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) 859 Src = GEP->getPointerOperand(); 860 if (Val == Src) 861 break; 862 Val = Src; 863 } 864 if (isa<AllocaInst>(Val)) { 865 NoTail( 866 "WebAssembly does not support tail calling with stack arguments"); 867 break; 868 } 869 } 870 } 871 } 872 873 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 874 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 875 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 876 877 // The generic code may have added an sret argument. If we're lowering an 878 // invoke function, the ABI requires that the function pointer be the first 879 // argument, so we may have to swap the arguments. 880 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 881 Outs[0].Flags.isSRet()) { 882 std::swap(Outs[0], Outs[1]); 883 std::swap(OutVals[0], OutVals[1]); 884 } 885 886 bool HasSwiftSelfArg = false; 887 bool HasSwiftErrorArg = false; 888 unsigned NumFixedArgs = 0; 889 for (unsigned I = 0; I < Outs.size(); ++I) { 890 const ISD::OutputArg &Out = Outs[I]; 891 SDValue &OutVal = OutVals[I]; 892 HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); 893 HasSwiftErrorArg |= Out.Flags.isSwiftError(); 894 if (Out.Flags.isNest()) 895 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 896 if (Out.Flags.isInAlloca()) 897 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 898 if (Out.Flags.isInConsecutiveRegs()) 899 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 900 if (Out.Flags.isInConsecutiveRegsLast()) 901 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 902 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 903 auto &MFI = MF.getFrameInfo(); 904 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 905 Out.Flags.getNonZeroByValAlign(), 906 /*isSS=*/false); 907 SDValue SizeNode = 908 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 909 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 910 Chain = DAG.getMemcpy( 911 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), 912 /*isVolatile*/ false, /*AlwaysInline=*/false, 913 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 914 OutVal = FINode; 915 } 916 // Count the number of fixed args *after* legalization. 917 NumFixedArgs += Out.IsFixed; 918 } 919 920 bool IsVarArg = CLI.IsVarArg; 921 auto PtrVT = getPointerTy(Layout); 922 923 // For swiftcc, emit additional swiftself and swifterror arguments 924 // if there aren't. These additional arguments are also added for callee 925 // signature They are necessary to match callee and caller signature for 926 // indirect call. 927 if (CallConv == CallingConv::Swift) { 928 if (!HasSwiftSelfArg) { 929 NumFixedArgs++; 930 ISD::OutputArg Arg; 931 Arg.Flags.setSwiftSelf(); 932 CLI.Outs.push_back(Arg); 933 SDValue ArgVal = DAG.getUNDEF(PtrVT); 934 CLI.OutVals.push_back(ArgVal); 935 } 936 if (!HasSwiftErrorArg) { 937 NumFixedArgs++; 938 ISD::OutputArg Arg; 939 Arg.Flags.setSwiftError(); 940 CLI.Outs.push_back(Arg); 941 SDValue ArgVal = DAG.getUNDEF(PtrVT); 942 CLI.OutVals.push_back(ArgVal); 943 } 944 } 945 946 // Analyze operands of the call, assigning locations to each operand. 947 SmallVector<CCValAssign, 16> ArgLocs; 948 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 949 950 if (IsVarArg) { 951 // Outgoing non-fixed arguments are placed in a buffer. First 952 // compute their offsets and the total amount of buffer space needed. 953 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 954 const ISD::OutputArg &Out = Outs[I]; 955 SDValue &Arg = OutVals[I]; 956 EVT VT = Arg.getValueType(); 957 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 958 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 959 Align Alignment = 960 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); 961 unsigned Offset = 962 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); 963 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 964 Offset, VT.getSimpleVT(), 965 CCValAssign::Full)); 966 } 967 } 968 969 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 970 971 SDValue FINode; 972 if (IsVarArg && NumBytes) { 973 // For non-fixed arguments, next emit stores to store the argument values 974 // to the stack buffer at the offsets computed above. 975 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 976 Layout.getStackAlignment(), 977 /*isSS=*/false); 978 unsigned ValNo = 0; 979 SmallVector<SDValue, 8> Chains; 980 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { 981 assert(ArgLocs[ValNo].getValNo() == ValNo && 982 "ArgLocs should remain in order and only hold varargs args"); 983 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 984 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 985 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 986 DAG.getConstant(Offset, DL, PtrVT)); 987 Chains.push_back( 988 DAG.getStore(Chain, DL, Arg, Add, 989 MachinePointerInfo::getFixedStack(MF, FI, Offset))); 990 } 991 if (!Chains.empty()) 992 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 993 } else if (IsVarArg) { 994 FINode = DAG.getIntPtrConstant(0, DL); 995 } 996 997 if (Callee->getOpcode() == ISD::GlobalAddress) { 998 // If the callee is a GlobalAddress node (quite common, every direct call 999 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 1000 // doesn't at MO_GOT which is not needed for direct calls. 1001 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 1002 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 1003 getPointerTy(DAG.getDataLayout()), 1004 GA->getOffset()); 1005 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 1006 getPointerTy(DAG.getDataLayout()), Callee); 1007 } 1008 1009 // Compute the operands for the CALLn node. 1010 SmallVector<SDValue, 16> Ops; 1011 Ops.push_back(Chain); 1012 Ops.push_back(Callee); 1013 1014 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 1015 // isn't reliable. 1016 Ops.append(OutVals.begin(), 1017 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 1018 // Add a pointer to the vararg buffer. 1019 if (IsVarArg) 1020 Ops.push_back(FINode); 1021 1022 SmallVector<EVT, 8> InTys; 1023 for (const auto &In : Ins) { 1024 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 1025 assert(!In.Flags.isNest() && "nest is not valid for return values"); 1026 if (In.Flags.isInAlloca()) 1027 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 1028 if (In.Flags.isInConsecutiveRegs()) 1029 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 1030 if (In.Flags.isInConsecutiveRegsLast()) 1031 fail(DL, DAG, 1032 "WebAssembly hasn't implemented cons regs last return values"); 1033 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1034 // registers. 1035 InTys.push_back(In.VT); 1036 } 1037 1038 if (CLI.IsTailCall) { 1039 // ret_calls do not return values to the current frame 1040 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1041 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 1042 } 1043 1044 InTys.push_back(MVT::Other); 1045 SDVTList InTyList = DAG.getVTList(InTys); 1046 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); 1047 1048 for (size_t I = 0; I < Ins.size(); ++I) 1049 InVals.push_back(Res.getValue(I)); 1050 1051 // Return the chain 1052 return Res.getValue(Ins.size()); 1053 } 1054 1055 bool WebAssemblyTargetLowering::CanLowerReturn( 1056 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 1057 const SmallVectorImpl<ISD::OutputArg> &Outs, 1058 LLVMContext & /*Context*/) const { 1059 // WebAssembly can only handle returning tuples with multivalue enabled 1060 return Subtarget->hasMultivalue() || Outs.size() <= 1; 1061 } 1062 1063 SDValue WebAssemblyTargetLowering::LowerReturn( 1064 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 1065 const SmallVectorImpl<ISD::OutputArg> &Outs, 1066 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 1067 SelectionDAG &DAG) const { 1068 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 1069 "MVP WebAssembly can only return up to one value"); 1070 if (!callingConvSupported(CallConv)) 1071 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1072 1073 SmallVector<SDValue, 4> RetOps(1, Chain); 1074 RetOps.append(OutVals.begin(), OutVals.end()); 1075 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 1076 1077 // Record the number and types of the return values. 1078 for (const ISD::OutputArg &Out : Outs) { 1079 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 1080 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 1081 assert(Out.IsFixed && "non-fixed return value is not valid"); 1082 if (Out.Flags.isInAlloca()) 1083 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 1084 if (Out.Flags.isInConsecutiveRegs()) 1085 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 1086 if (Out.Flags.isInConsecutiveRegsLast()) 1087 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 1088 } 1089 1090 return Chain; 1091 } 1092 1093 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 1094 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1095 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1096 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1097 if (!callingConvSupported(CallConv)) 1098 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 1099 1100 MachineFunction &MF = DAG.getMachineFunction(); 1101 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 1102 1103 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 1104 // of the incoming values before they're represented by virtual registers. 1105 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 1106 1107 bool HasSwiftErrorArg = false; 1108 bool HasSwiftSelfArg = false; 1109 for (const ISD::InputArg &In : Ins) { 1110 HasSwiftSelfArg |= In.Flags.isSwiftSelf(); 1111 HasSwiftErrorArg |= In.Flags.isSwiftError(); 1112 if (In.Flags.isInAlloca()) 1113 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 1114 if (In.Flags.isNest()) 1115 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 1116 if (In.Flags.isInConsecutiveRegs()) 1117 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 1118 if (In.Flags.isInConsecutiveRegsLast()) 1119 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 1120 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in 1121 // registers. 1122 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 1123 DAG.getTargetConstant(InVals.size(), 1124 DL, MVT::i32)) 1125 : DAG.getUNDEF(In.VT)); 1126 1127 // Record the number and types of arguments. 1128 MFI->addParam(In.VT); 1129 } 1130 1131 // For swiftcc, emit additional swiftself and swifterror arguments 1132 // if there aren't. These additional arguments are also added for callee 1133 // signature They are necessary to match callee and caller signature for 1134 // indirect call. 1135 auto PtrVT = getPointerTy(MF.getDataLayout()); 1136 if (CallConv == CallingConv::Swift) { 1137 if (!HasSwiftSelfArg) { 1138 MFI->addParam(PtrVT); 1139 } 1140 if (!HasSwiftErrorArg) { 1141 MFI->addParam(PtrVT); 1142 } 1143 } 1144 // Varargs are copied into a buffer allocated by the caller, and a pointer to 1145 // the buffer is passed as an argument. 1146 if (IsVarArg) { 1147 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1148 Register VarargVreg = 1149 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 1150 MFI->setVarargBufferVreg(VarargVreg); 1151 Chain = DAG.getCopyToReg( 1152 Chain, DL, VarargVreg, 1153 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 1154 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 1155 MFI->addParam(PtrVT); 1156 } 1157 1158 // Record the number and types of arguments and results. 1159 SmallVector<MVT, 4> Params; 1160 SmallVector<MVT, 4> Results; 1161 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), 1162 MF.getFunction(), DAG.getTarget(), Params, Results); 1163 for (MVT VT : Results) 1164 MFI->addResult(VT); 1165 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 1166 // the param logic here with ComputeSignatureVTs 1167 assert(MFI->getParams().size() == Params.size() && 1168 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 1169 Params.begin())); 1170 1171 return Chain; 1172 } 1173 1174 void WebAssemblyTargetLowering::ReplaceNodeResults( 1175 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 1176 switch (N->getOpcode()) { 1177 case ISD::SIGN_EXTEND_INREG: 1178 // Do not add any results, signifying that N should not be custom lowered 1179 // after all. This happens because simd128 turns on custom lowering for 1180 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 1181 // illegal type. 1182 break; 1183 default: 1184 llvm_unreachable( 1185 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 1186 } 1187 } 1188 1189 //===----------------------------------------------------------------------===// 1190 // Custom lowering hooks. 1191 //===----------------------------------------------------------------------===// 1192 1193 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 1194 SelectionDAG &DAG) const { 1195 SDLoc DL(Op); 1196 switch (Op.getOpcode()) { 1197 default: 1198 llvm_unreachable("unimplemented operation lowering"); 1199 return SDValue(); 1200 case ISD::FrameIndex: 1201 return LowerFrameIndex(Op, DAG); 1202 case ISD::GlobalAddress: 1203 return LowerGlobalAddress(Op, DAG); 1204 case ISD::GlobalTLSAddress: 1205 return LowerGlobalTLSAddress(Op, DAG); 1206 case ISD::ExternalSymbol: 1207 return LowerExternalSymbol(Op, DAG); 1208 case ISD::JumpTable: 1209 return LowerJumpTable(Op, DAG); 1210 case ISD::BR_JT: 1211 return LowerBR_JT(Op, DAG); 1212 case ISD::VASTART: 1213 return LowerVASTART(Op, DAG); 1214 case ISD::BlockAddress: 1215 case ISD::BRIND: 1216 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 1217 return SDValue(); 1218 case ISD::RETURNADDR: 1219 return LowerRETURNADDR(Op, DAG); 1220 case ISD::FRAMEADDR: 1221 return LowerFRAMEADDR(Op, DAG); 1222 case ISD::CopyToReg: 1223 return LowerCopyToReg(Op, DAG); 1224 case ISD::EXTRACT_VECTOR_ELT: 1225 case ISD::INSERT_VECTOR_ELT: 1226 return LowerAccessVectorElement(Op, DAG); 1227 case ISD::INTRINSIC_VOID: 1228 case ISD::INTRINSIC_WO_CHAIN: 1229 case ISD::INTRINSIC_W_CHAIN: 1230 return LowerIntrinsic(Op, DAG); 1231 case ISD::SIGN_EXTEND_INREG: 1232 return LowerSIGN_EXTEND_INREG(Op, DAG); 1233 case ISD::BUILD_VECTOR: 1234 return LowerBUILD_VECTOR(Op, DAG); 1235 case ISD::VECTOR_SHUFFLE: 1236 return LowerVECTOR_SHUFFLE(Op, DAG); 1237 case ISD::SETCC: 1238 return LowerSETCC(Op, DAG); 1239 case ISD::SHL: 1240 case ISD::SRA: 1241 case ISD::SRL: 1242 return LowerShift(Op, DAG); 1243 } 1244 } 1245 1246 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1247 SelectionDAG &DAG) const { 1248 SDValue Src = Op.getOperand(2); 1249 if (isa<FrameIndexSDNode>(Src.getNode())) { 1250 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1251 // the FI to some LEA-like instruction, but since we don't have that, we 1252 // need to insert some kind of instruction that can take an FI operand and 1253 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1254 // local.copy between Op and its FI operand. 1255 SDValue Chain = Op.getOperand(0); 1256 SDLoc DL(Op); 1257 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1258 EVT VT = Src.getValueType(); 1259 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1260 : WebAssembly::COPY_I64, 1261 DL, VT, Src), 1262 0); 1263 return Op.getNode()->getNumValues() == 1 1264 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1265 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1266 Op.getNumOperands() == 4 ? Op.getOperand(3) 1267 : SDValue()); 1268 } 1269 return SDValue(); 1270 } 1271 1272 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1273 SelectionDAG &DAG) const { 1274 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1275 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1276 } 1277 1278 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 SDLoc DL(Op); 1281 1282 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1283 fail(DL, DAG, 1284 "Non-Emscripten WebAssembly hasn't implemented " 1285 "__builtin_return_address"); 1286 return SDValue(); 1287 } 1288 1289 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1290 return SDValue(); 1291 1292 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1293 MakeLibCallOptions CallOptions; 1294 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1295 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1296 .first; 1297 } 1298 1299 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1300 SelectionDAG &DAG) const { 1301 // Non-zero depths are not supported by WebAssembly currently. Use the 1302 // legalizer's default expansion, which is to return 0 (what this function is 1303 // documented to do). 1304 if (Op.getConstantOperandVal(0) > 0) 1305 return SDValue(); 1306 1307 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1308 EVT VT = Op.getValueType(); 1309 Register FP = 1310 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1311 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1312 } 1313 1314 SDValue 1315 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1316 SelectionDAG &DAG) const { 1317 SDLoc DL(Op); 1318 const auto *GA = cast<GlobalAddressSDNode>(Op); 1319 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 1320 1321 MachineFunction &MF = DAG.getMachineFunction(); 1322 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) 1323 report_fatal_error("cannot use thread-local storage without bulk memory", 1324 false); 1325 1326 const GlobalValue *GV = GA->getGlobal(); 1327 1328 // Currently Emscripten does not support dynamic linking with threads. 1329 // Therefore, if we have thread-local storage, only the local-exec model 1330 // is possible. 1331 // TODO: remove this and implement proper TLS models once Emscripten 1332 // supports dynamic linking with threads. 1333 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && 1334 !Subtarget->getTargetTriple().isOSEmscripten()) { 1335 report_fatal_error("only -ftls-model=local-exec is supported for now on " 1336 "non-Emscripten OSes: variable " + 1337 GV->getName(), 1338 false); 1339 } 1340 1341 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 1342 : WebAssembly::GLOBAL_GET_I32; 1343 const char *BaseName = MF.createExternalSymbolName("__tls_base"); 1344 1345 SDValue BaseAddr( 1346 DAG.getMachineNode(GlobalGet, DL, PtrVT, 1347 DAG.getTargetExternalSymbol(BaseName, PtrVT)), 1348 0); 1349 1350 SDValue TLSOffset = DAG.getTargetGlobalAddress( 1351 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); 1352 SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset); 1353 1354 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); 1355 } 1356 1357 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1358 SelectionDAG &DAG) const { 1359 SDLoc DL(Op); 1360 const auto *GA = cast<GlobalAddressSDNode>(Op); 1361 EVT VT = Op.getValueType(); 1362 assert(GA->getTargetFlags() == 0 && 1363 "Unexpected target flags on generic GlobalAddressSDNode"); 1364 if (GA->getAddressSpace() != 0) 1365 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1366 1367 unsigned OperandFlags = 0; 1368 if (isPositionIndependent()) { 1369 const GlobalValue *GV = GA->getGlobal(); 1370 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1371 MachineFunction &MF = DAG.getMachineFunction(); 1372 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1373 const char *BaseName; 1374 if (GV->getValueType()->isFunctionTy()) { 1375 BaseName = MF.createExternalSymbolName("__table_base"); 1376 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1377 } 1378 else { 1379 BaseName = MF.createExternalSymbolName("__memory_base"); 1380 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1381 } 1382 SDValue BaseAddr = 1383 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1384 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1385 1386 SDValue SymAddr = DAG.getNode( 1387 WebAssemblyISD::WrapperPIC, DL, VT, 1388 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1389 OperandFlags)); 1390 1391 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1392 } else { 1393 OperandFlags = WebAssemblyII::MO_GOT; 1394 } 1395 } 1396 1397 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1398 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1399 GA->getOffset(), OperandFlags)); 1400 } 1401 1402 SDValue 1403 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1404 SelectionDAG &DAG) const { 1405 SDLoc DL(Op); 1406 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1407 EVT VT = Op.getValueType(); 1408 assert(ES->getTargetFlags() == 0 && 1409 "Unexpected target flags on generic ExternalSymbolSDNode"); 1410 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1411 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1412 } 1413 1414 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1415 SelectionDAG &DAG) const { 1416 // There's no need for a Wrapper node because we always incorporate a jump 1417 // table operand into a BR_TABLE instruction, rather than ever 1418 // materializing it in a register. 1419 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1420 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1421 JT->getTargetFlags()); 1422 } 1423 1424 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1425 SelectionDAG &DAG) const { 1426 SDLoc DL(Op); 1427 SDValue Chain = Op.getOperand(0); 1428 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1429 SDValue Index = Op.getOperand(2); 1430 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1431 1432 SmallVector<SDValue, 8> Ops; 1433 Ops.push_back(Chain); 1434 Ops.push_back(Index); 1435 1436 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1437 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1438 1439 // Add an operand for each case. 1440 for (auto MBB : MBBs) 1441 Ops.push_back(DAG.getBasicBlock(MBB)); 1442 1443 // Add the first MBB as a dummy default target for now. This will be replaced 1444 // with the proper default target (and the preceding range check eliminated) 1445 // if possible by WebAssemblyFixBrTableDefaults. 1446 Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); 1447 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1448 } 1449 1450 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1451 SelectionDAG &DAG) const { 1452 SDLoc DL(Op); 1453 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1454 1455 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1456 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1457 1458 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1459 MFI->getVarargBufferVreg(), PtrVT); 1460 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1461 MachinePointerInfo(SV)); 1462 } 1463 1464 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex, 1465 SelectionDAG &DAG) { 1466 // We only support C++ exceptions for now 1467 int Tag = 1468 cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue(); 1469 if (Tag != WebAssembly::CPP_EXCEPTION) 1470 llvm_unreachable("Invalid tag: We only support C++ exceptions for now"); 1471 auto &MF = DAG.getMachineFunction(); 1472 const auto &TLI = DAG.getTargetLoweringInfo(); 1473 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1474 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1475 return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT, 1476 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1477 } 1478 1479 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1480 SelectionDAG &DAG) const { 1481 MachineFunction &MF = DAG.getMachineFunction(); 1482 unsigned IntNo; 1483 switch (Op.getOpcode()) { 1484 case ISD::INTRINSIC_VOID: 1485 case ISD::INTRINSIC_W_CHAIN: 1486 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1487 break; 1488 case ISD::INTRINSIC_WO_CHAIN: 1489 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1490 break; 1491 default: 1492 llvm_unreachable("Invalid intrinsic"); 1493 } 1494 SDLoc DL(Op); 1495 1496 switch (IntNo) { 1497 default: 1498 return SDValue(); // Don't custom lower most intrinsics. 1499 1500 case Intrinsic::wasm_lsda: { 1501 EVT VT = Op.getValueType(); 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1504 auto &Context = MF.getMMI().getContext(); 1505 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1506 Twine(MF.getFunctionNumber())); 1507 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1508 DAG.getMCSymbol(S, PtrVT)); 1509 } 1510 1511 case Intrinsic::wasm_throw: { 1512 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1513 return DAG.getNode(WebAssemblyISD::THROW, DL, 1514 MVT::Other, // outchain type 1515 { 1516 Op.getOperand(0), // inchain 1517 SymNode, // exception symbol 1518 Op.getOperand(3) // thrown value 1519 }); 1520 } 1521 1522 case Intrinsic::wasm_catch: { 1523 SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG); 1524 return DAG.getNode(WebAssemblyISD::CATCH, DL, 1525 { 1526 MVT::i32, // outchain type 1527 MVT::Other // return value 1528 }, 1529 { 1530 Op.getOperand(0), // inchain 1531 SymNode // exception symbol 1532 }); 1533 } 1534 1535 case Intrinsic::wasm_shuffle: { 1536 // Drop in-chain and replace undefs, but otherwise pass through unchanged 1537 SDValue Ops[18]; 1538 size_t OpIdx = 0; 1539 Ops[OpIdx++] = Op.getOperand(1); 1540 Ops[OpIdx++] = Op.getOperand(2); 1541 while (OpIdx < 18) { 1542 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); 1543 if (MaskIdx.isUndef() || 1544 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { 1545 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); 1546 } else { 1547 Ops[OpIdx++] = MaskIdx; 1548 } 1549 } 1550 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1551 } 1552 } 1553 } 1554 1555 SDValue 1556 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1557 SelectionDAG &DAG) const { 1558 SDLoc DL(Op); 1559 // If sign extension operations are disabled, allow sext_inreg only if operand 1560 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign 1561 // extension operations, but allowing sext_inreg in this context lets us have 1562 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg 1563 // everywhere would be simpler in this file, but would necessitate large and 1564 // brittle patterns to undo the expansion and select extract_lane_s 1565 // instructions. 1566 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1567 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1568 return SDValue(); 1569 1570 const SDValue &Extract = Op.getOperand(0); 1571 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1572 if (VecT.getVectorElementType().getSizeInBits() > 32) 1573 return SDValue(); 1574 MVT ExtractedLaneT = 1575 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); 1576 MVT ExtractedVecT = 1577 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1578 if (ExtractedVecT == VecT) 1579 return Op; 1580 1581 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1582 const SDNode *Index = Extract.getOperand(1).getNode(); 1583 if (!isa<ConstantSDNode>(Index)) 1584 return SDValue(); 1585 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); 1586 unsigned Scale = 1587 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1588 assert(Scale > 1); 1589 SDValue NewIndex = 1590 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); 1591 SDValue NewExtract = DAG.getNode( 1592 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1593 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1594 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, 1595 Op.getOperand(1)); 1596 } 1597 1598 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1599 SelectionDAG &DAG) const { 1600 SDLoc DL(Op); 1601 const EVT VecT = Op.getValueType(); 1602 const EVT LaneT = Op.getOperand(0).getValueType(); 1603 const size_t Lanes = Op.getNumOperands(); 1604 bool CanSwizzle = VecT == MVT::v16i8; 1605 1606 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1607 // possible number of lanes at once followed by a sequence of replace_lane 1608 // instructions to individually initialize any remaining lanes. 1609 1610 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1611 // swizzled lanes should be given greater weight. 1612 1613 // TODO: Investigate building vectors by shuffling together vectors built by 1614 // separately specialized means. 1615 1616 auto IsConstant = [](const SDValue &V) { 1617 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1618 }; 1619 1620 // Returns the source vector and index vector pair if they exist. Checks for: 1621 // (extract_vector_elt 1622 // $src, 1623 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1624 // ) 1625 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1626 auto Bail = std::make_pair(SDValue(), SDValue()); 1627 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1628 return Bail; 1629 const SDValue &SwizzleSrc = Lane->getOperand(0); 1630 const SDValue &IndexExt = Lane->getOperand(1); 1631 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1632 return Bail; 1633 const SDValue &Index = IndexExt->getOperand(0); 1634 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1635 return Bail; 1636 const SDValue &SwizzleIndices = Index->getOperand(0); 1637 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1638 SwizzleIndices.getValueType() != MVT::v16i8 || 1639 Index->getOperand(1)->getOpcode() != ISD::Constant || 1640 Index->getConstantOperandVal(1) != I) 1641 return Bail; 1642 return std::make_pair(SwizzleSrc, SwizzleIndices); 1643 }; 1644 1645 using ValueEntry = std::pair<SDValue, size_t>; 1646 SmallVector<ValueEntry, 16> SplatValueCounts; 1647 1648 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1649 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1650 1651 auto AddCount = [](auto &Counts, const auto &Val) { 1652 auto CountIt = 1653 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); 1654 if (CountIt == Counts.end()) { 1655 Counts.emplace_back(Val, 1); 1656 } else { 1657 CountIt->second++; 1658 } 1659 }; 1660 1661 auto GetMostCommon = [](auto &Counts) { 1662 auto CommonIt = 1663 std::max_element(Counts.begin(), Counts.end(), 1664 [](auto A, auto B) { return A.second < B.second; }); 1665 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1666 return *CommonIt; 1667 }; 1668 1669 size_t NumConstantLanes = 0; 1670 1671 // Count eligible lanes for each type of vector creation op 1672 for (size_t I = 0; I < Lanes; ++I) { 1673 const SDValue &Lane = Op->getOperand(I); 1674 if (Lane.isUndef()) 1675 continue; 1676 1677 AddCount(SplatValueCounts, Lane); 1678 1679 if (IsConstant(Lane)) { 1680 NumConstantLanes++; 1681 } else if (CanSwizzle) { 1682 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1683 if (SwizzleSrcs.first) 1684 AddCount(SwizzleCounts, SwizzleSrcs); 1685 } 1686 } 1687 1688 SDValue SplatValue; 1689 size_t NumSplatLanes; 1690 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1691 1692 SDValue SwizzleSrc; 1693 SDValue SwizzleIndices; 1694 size_t NumSwizzleLanes = 0; 1695 if (SwizzleCounts.size()) 1696 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1697 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1698 1699 // Predicate returning true if the lane is properly initialized by the 1700 // original instruction 1701 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1702 SDValue Result; 1703 // Prefer swizzles over vector consts over splats 1704 if (NumSwizzleLanes >= NumSplatLanes && 1705 (!Subtarget->hasUnimplementedSIMD128() || 1706 NumSwizzleLanes >= NumConstantLanes)) { 1707 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1708 SwizzleIndices); 1709 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1710 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1711 return Swizzled == GetSwizzleSrcs(I, Lane); 1712 }; 1713 } else if (NumConstantLanes >= NumSplatLanes && 1714 Subtarget->hasUnimplementedSIMD128()) { 1715 // If we support v128.const, emit it directly 1716 SmallVector<SDValue, 16> ConstLanes; 1717 for (const SDValue &Lane : Op->op_values()) { 1718 if (IsConstant(Lane)) { 1719 ConstLanes.push_back(Lane); 1720 } else if (LaneT.isFloatingPoint()) { 1721 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1722 } else { 1723 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1724 } 1725 } 1726 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1727 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1728 return IsConstant(Lane); 1729 }; 1730 } else if (NumConstantLanes >= NumSplatLanes && VecT.isInteger()) { 1731 // Otherwise, if this is an integer vector, pack the lane values together so 1732 // we can construct the 128-bit constant from a pair of i64s using a splat 1733 // followed by at most one i64x2.replace_lane. Also keep track of the lanes 1734 // that actually matter so we can avoid the replace_lane in more cases. 1735 std::array<uint64_t, 2> I64s{{0, 0}}; 1736 std::array<uint64_t, 2> ConstLaneMasks{{0, 0}}; 1737 size_t LaneBits = 128 / Lanes; 1738 size_t HalfLanes = Lanes / 2; 1739 for (size_t I = 0; I < Lanes; ++I) { 1740 const SDValue &Lane = Op.getOperand(I); 1741 if (IsConstant(Lane)) { 1742 // How much we need to shift Val to position it in an i64 1743 auto Shift = LaneBits * (I % HalfLanes); 1744 auto Mask = maskTrailingOnes<uint64_t>(LaneBits); 1745 auto Val = cast<ConstantSDNode>(Lane.getNode())->getZExtValue() & Mask; 1746 I64s[I / HalfLanes] |= Val << Shift; 1747 ConstLaneMasks[I / HalfLanes] |= Mask << Shift; 1748 } 1749 } 1750 // Check whether all constant lanes in the second half of the vector are 1751 // equivalent in the first half or vice versa to determine whether splatting 1752 // either side will be sufficient to materialize the constant. As a special 1753 // case, if the first and second halves have no constant lanes in common, we 1754 // can just combine them. 1755 bool FirstHalfSufficient = (I64s[0] & ConstLaneMasks[1]) == I64s[1]; 1756 bool SecondHalfSufficient = (I64s[1] & ConstLaneMasks[0]) == I64s[0]; 1757 bool CombinedSufficient = (ConstLaneMasks[0] & ConstLaneMasks[1]) == 0; 1758 1759 uint64_t Splatted; 1760 if (SecondHalfSufficient) { 1761 Splatted = I64s[1]; 1762 } else if (CombinedSufficient) { 1763 Splatted = I64s[0] | I64s[1]; 1764 } else { 1765 Splatted = I64s[0]; 1766 } 1767 1768 Result = DAG.getSplatBuildVector(MVT::v2i64, DL, 1769 DAG.getConstant(Splatted, DL, MVT::i64)); 1770 if (!FirstHalfSufficient && !SecondHalfSufficient && !CombinedSufficient) { 1771 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i64, Result, 1772 DAG.getConstant(I64s[1], DL, MVT::i64), 1773 DAG.getConstant(1, DL, MVT::i32)); 1774 } 1775 Result = DAG.getBitcast(VecT, Result); 1776 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { 1777 return IsConstant(Lane); 1778 }; 1779 } else { 1780 // Use a splat, but possibly a load_splat 1781 LoadSDNode *SplattedLoad; 1782 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1783 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1784 Result = DAG.getMemIntrinsicNode( 1785 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), 1786 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), 1787 SplattedLoad->getOffset()}, 1788 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); 1789 } else { 1790 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1791 } 1792 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { 1793 return Lane == SplatValue; 1794 }; 1795 } 1796 1797 assert(Result); 1798 assert(IsLaneConstructed); 1799 1800 // Add replace_lane instructions for any unhandled values 1801 for (size_t I = 0; I < Lanes; ++I) { 1802 const SDValue &Lane = Op->getOperand(I); 1803 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1804 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1805 DAG.getConstant(I, DL, MVT::i32)); 1806 } 1807 1808 return Result; 1809 } 1810 1811 SDValue 1812 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1813 SelectionDAG &DAG) const { 1814 SDLoc DL(Op); 1815 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1816 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1817 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1818 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1819 1820 // Space for two vector args and sixteen mask indices 1821 SDValue Ops[18]; 1822 size_t OpIdx = 0; 1823 Ops[OpIdx++] = Op.getOperand(0); 1824 Ops[OpIdx++] = Op.getOperand(1); 1825 1826 // Expand mask indices to byte indices and materialize them as operands 1827 for (int M : Mask) { 1828 for (size_t J = 0; J < LaneBytes; ++J) { 1829 // Lower undefs (represented by -1 in mask) to zero 1830 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1831 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1832 } 1833 } 1834 1835 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1836 } 1837 1838 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, 1839 SelectionDAG &DAG) const { 1840 SDLoc DL(Op); 1841 // The legalizer does not know how to expand the comparison modes of i64x2 1842 // vectors because no comparison modes are supported. We could solve this by 1843 // expanding all i64x2 SETCC nodes, but that seems to expand f64x2 SETCC nodes 1844 // (which return i64x2 results) as well. So instead we manually unroll i64x2 1845 // comparisons here. 1846 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); 1847 SmallVector<SDValue, 2> LHS, RHS; 1848 DAG.ExtractVectorElements(Op->getOperand(0), LHS); 1849 DAG.ExtractVectorElements(Op->getOperand(1), RHS); 1850 const SDValue &CC = Op->getOperand(2); 1851 auto MakeLane = [&](unsigned I) { 1852 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], 1853 DAG.getConstant(uint64_t(-1), DL, MVT::i64), 1854 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); 1855 }; 1856 return DAG.getBuildVector(Op->getValueType(0), DL, 1857 {MakeLane(0), MakeLane(1)}); 1858 } 1859 1860 SDValue 1861 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1862 SelectionDAG &DAG) const { 1863 // Allow constant lane indices, expand variable lane indices 1864 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1865 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1866 return Op; 1867 else 1868 // Perform default expansion 1869 return SDValue(); 1870 } 1871 1872 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1873 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1874 // 32-bit and 64-bit unrolled shifts will have proper semantics 1875 if (LaneT.bitsGE(MVT::i32)) 1876 return DAG.UnrollVectorOp(Op.getNode()); 1877 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1878 SDLoc DL(Op); 1879 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); 1880 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); 1881 unsigned ShiftOpcode = Op.getOpcode(); 1882 SmallVector<SDValue, 16> ShiftedElements; 1883 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); 1884 SmallVector<SDValue, 16> ShiftElements; 1885 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); 1886 SmallVector<SDValue, 16> UnrolledOps; 1887 for (size_t i = 0; i < NumLanes; ++i) { 1888 SDValue MaskedShiftValue = 1889 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); 1890 SDValue ShiftedValue = ShiftedElements[i]; 1891 if (ShiftOpcode == ISD::SRA) 1892 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, 1893 ShiftedValue, DAG.getValueType(LaneT)); 1894 UnrolledOps.push_back( 1895 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); 1896 } 1897 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); 1898 } 1899 1900 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1901 SelectionDAG &DAG) const { 1902 SDLoc DL(Op); 1903 1904 // Only manually lower vector shifts 1905 assert(Op.getSimpleValueType().isVector()); 1906 1907 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); 1908 if (!ShiftVal) 1909 return unrollVectorShift(Op, DAG); 1910 1911 // Use anyext because none of the high bits can affect the shift 1912 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); 1913 1914 unsigned Opcode; 1915 switch (Op.getOpcode()) { 1916 case ISD::SHL: 1917 Opcode = WebAssemblyISD::VEC_SHL; 1918 break; 1919 case ISD::SRA: 1920 Opcode = WebAssemblyISD::VEC_SHR_S; 1921 break; 1922 case ISD::SRL: 1923 Opcode = WebAssemblyISD::VEC_SHR_U; 1924 break; 1925 default: 1926 llvm_unreachable("unexpected opcode"); 1927 } 1928 1929 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); 1930 } 1931 1932 //===----------------------------------------------------------------------===// 1933 // Custom DAG combine hooks 1934 //===----------------------------------------------------------------------===// 1935 static SDValue 1936 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 1937 auto &DAG = DCI.DAG; 1938 auto Shuffle = cast<ShuffleVectorSDNode>(N); 1939 1940 // Hoist vector bitcasts that don't change the number of lanes out of unary 1941 // shuffles, where they are less likely to get in the way of other combines. 1942 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> 1943 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) 1944 SDValue Bitcast = N->getOperand(0); 1945 if (Bitcast.getOpcode() != ISD::BITCAST) 1946 return SDValue(); 1947 if (!N->getOperand(1).isUndef()) 1948 return SDValue(); 1949 SDValue CastOp = Bitcast.getOperand(0); 1950 MVT SrcType = CastOp.getSimpleValueType(); 1951 MVT DstType = Bitcast.getSimpleValueType(); 1952 if (!SrcType.is128BitVector() || 1953 SrcType.getVectorNumElements() != DstType.getVectorNumElements()) 1954 return SDValue(); 1955 SDValue NewShuffle = DAG.getVectorShuffle( 1956 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); 1957 return DAG.getBitcast(DstType, NewShuffle); 1958 } 1959 1960 static SDValue performVectorWidenCombine(SDNode *N, 1961 TargetLowering::DAGCombinerInfo &DCI) { 1962 auto &DAG = DCI.DAG; 1963 assert(N->getOpcode() == ISD::SIGN_EXTEND || 1964 N->getOpcode() == ISD::ZERO_EXTEND); 1965 1966 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if 1967 // possible before the extract_subvector can be expanded. 1968 auto Extract = N->getOperand(0); 1969 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1970 return SDValue(); 1971 auto Source = Extract.getOperand(0); 1972 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 1973 if (IndexNode == nullptr) 1974 return SDValue(); 1975 auto Index = IndexNode->getZExtValue(); 1976 1977 // Only v8i8 and v4i16 extracts can be widened, and only if the extracted 1978 // subvector is the low or high half of its source. 1979 EVT ResVT = N->getValueType(0); 1980 if (ResVT == MVT::v8i16) { 1981 if (Extract.getValueType() != MVT::v8i8 || 1982 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) 1983 return SDValue(); 1984 } else if (ResVT == MVT::v4i32) { 1985 if (Extract.getValueType() != MVT::v4i16 || 1986 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) 1987 return SDValue(); 1988 } else { 1989 return SDValue(); 1990 } 1991 1992 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND; 1993 bool IsLow = Index == 0; 1994 1995 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::WIDEN_LOW_S 1996 : WebAssemblyISD::WIDEN_HIGH_S) 1997 : (IsLow ? WebAssemblyISD::WIDEN_LOW_U 1998 : WebAssemblyISD::WIDEN_HIGH_U); 1999 2000 return DAG.getNode(Op, SDLoc(N), ResVT, Source); 2001 } 2002 2003 SDValue 2004 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N, 2005 DAGCombinerInfo &DCI) const { 2006 switch (N->getOpcode()) { 2007 default: 2008 return SDValue(); 2009 case ISD::VECTOR_SHUFFLE: 2010 return performVECTOR_SHUFFLECombine(N, DCI); 2011 case ISD::SIGN_EXTEND: 2012 case ISD::ZERO_EXTEND: 2013 return performVectorWidenCombine(N, DCI); 2014 } 2015 } 2016