1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 80 81 void VETargetLowering::initRegisterClasses() { 82 // Set up the register classes. 83 addRegisterClass(MVT::i32, &VE::I32RegClass); 84 addRegisterClass(MVT::i64, &VE::I64RegClass); 85 addRegisterClass(MVT::f32, &VE::F32RegClass); 86 addRegisterClass(MVT::f64, &VE::I64RegClass); 87 addRegisterClass(MVT::f128, &VE::F128RegClass); 88 89 if (Subtarget->enableVPU()) { 90 for (MVT VecVT : AllVectorVTs) 91 addRegisterClass(VecVT, &VE::V64RegClass); 92 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 93 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 94 } 95 } 96 97 void VETargetLowering::initSPUActions() { 98 const auto &TM = getTargetMachine(); 99 /// Load & Store { 100 101 // VE doesn't have i1 sign extending load. 102 for (MVT VT : MVT::integer_valuetypes()) { 103 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 104 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 105 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 106 setTruncStoreAction(VT, MVT::i1, Expand); 107 } 108 109 // VE doesn't have floating point extload/truncstore, so expand them. 110 for (MVT FPVT : MVT::fp_valuetypes()) { 111 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 112 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 113 setTruncStoreAction(FPVT, OtherFPVT, Expand); 114 } 115 } 116 117 // VE doesn't have fp128 load/store, so expand them in custom lower. 118 setOperationAction(ISD::LOAD, MVT::f128, Custom); 119 setOperationAction(ISD::STORE, MVT::f128, Custom); 120 121 /// } Load & Store 122 123 // Custom legalize address nodes into LO/HI parts. 124 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 125 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 126 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 127 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 128 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 129 setOperationAction(ISD::JumpTable, PtrVT, Custom); 130 131 /// VAARG handling { 132 setOperationAction(ISD::VASTART, MVT::Other, Custom); 133 // VAARG needs to be lowered to access with 8 bytes alignment. 134 setOperationAction(ISD::VAARG, MVT::Other, Custom); 135 // Use the default implementation. 136 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 137 setOperationAction(ISD::VAEND, MVT::Other, Expand); 138 /// } VAARG handling 139 140 /// Stack { 141 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 142 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 143 144 // Use the default implementation. 145 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 146 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 147 /// } Stack 148 149 /// Branch { 150 151 // VE doesn't have BRCOND 152 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 153 154 // BR_JT is not implemented yet. 155 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 156 157 /// } Branch 158 159 /// Int Ops { 160 for (MVT IntVT : {MVT::i32, MVT::i64}) { 161 // VE has no REM or DIVREM operations. 162 setOperationAction(ISD::UREM, IntVT, Expand); 163 setOperationAction(ISD::SREM, IntVT, Expand); 164 setOperationAction(ISD::SDIVREM, IntVT, Expand); 165 setOperationAction(ISD::UDIVREM, IntVT, Expand); 166 167 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 168 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 169 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 170 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 171 172 // VE has no MULHU/S or U/SMUL_LOHI operations. 173 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 174 setOperationAction(ISD::MULHU, IntVT, Expand); 175 setOperationAction(ISD::MULHS, IntVT, Expand); 176 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 177 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 178 179 // VE has no CTTZ, ROTL, ROTR operations. 180 setOperationAction(ISD::CTTZ, IntVT, Expand); 181 setOperationAction(ISD::ROTL, IntVT, Expand); 182 setOperationAction(ISD::ROTR, IntVT, Expand); 183 184 // VE has 64 bits instruction which works as i64 BSWAP operation. This 185 // instruction works fine as i32 BSWAP operation with an additional 186 // parameter. Use isel patterns to lower BSWAP. 187 setOperationAction(ISD::BSWAP, IntVT, Legal); 188 189 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 190 // operations. Use isel patterns for i64, promote for i32. 191 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 192 setOperationAction(ISD::BITREVERSE, IntVT, Act); 193 setOperationAction(ISD::CTLZ, IntVT, Act); 194 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 195 setOperationAction(ISD::CTPOP, IntVT, Act); 196 197 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 198 // Use isel patterns for i64, promote for i32. 199 setOperationAction(ISD::AND, IntVT, Act); 200 setOperationAction(ISD::OR, IntVT, Act); 201 setOperationAction(ISD::XOR, IntVT, Act); 202 } 203 /// } Int Ops 204 205 /// Conversion { 206 // VE doesn't have instructions for fp<->uint, so expand them by llvm 207 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 208 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 209 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 210 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 211 212 // fp16 not supported 213 for (MVT FPVT : MVT::fp_valuetypes()) { 214 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 215 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 216 } 217 /// } Conversion 218 219 /// Floating-point Ops { 220 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 221 /// and fcmp. 222 223 // VE doesn't have following floating point operations. 224 for (MVT VT : MVT::fp_valuetypes()) { 225 setOperationAction(ISD::FNEG, VT, Expand); 226 setOperationAction(ISD::FREM, VT, Expand); 227 } 228 229 // VE doesn't have fdiv of f128. 230 setOperationAction(ISD::FDIV, MVT::f128, Expand); 231 232 for (MVT FPVT : {MVT::f32, MVT::f64}) { 233 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 234 setOperationAction(ISD::ConstantFP, FPVT, Legal); 235 } 236 /// } Floating-point Ops 237 238 /// Floating-point math functions { 239 240 // VE doesn't have following floating point math functions. 241 for (MVT VT : MVT::fp_valuetypes()) { 242 setOperationAction(ISD::FABS, VT, Expand); 243 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 244 setOperationAction(ISD::FCOS, VT, Expand); 245 setOperationAction(ISD::FSIN, VT, Expand); 246 setOperationAction(ISD::FSQRT, VT, Expand); 247 } 248 249 /// } Floating-point math functions 250 251 /// Atomic instructions { 252 253 setMaxAtomicSizeInBitsSupported(64); 254 setMinCmpXchgSizeInBits(32); 255 setSupportsUnalignedAtomics(false); 256 257 // Use custom inserter for ATOMIC_FENCE. 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Other atomic instructions. 261 for (MVT VT : MVT::integer_valuetypes()) { 262 // Support i8/i16 atomic swap. 263 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 264 265 // FIXME: Support "atmam" instructions. 266 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 267 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 268 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 269 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 270 271 // VE doesn't have follwing instructions. 272 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 273 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 274 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 278 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 279 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 280 } 281 282 /// } Atomic instructions 283 284 /// SJLJ instructions { 285 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 286 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 287 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 288 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 289 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 290 /// } SJLJ instructions 291 292 // Intrinsic instructions 293 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 294 } 295 296 void VETargetLowering::initVPUActions() { 297 for (MVT LegalVecVT : AllVectorVTs) { 298 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 299 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 300 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 301 // Translate all vector instructions with legal element types to VVP_* 302 // nodes. 303 // TODO We will custom-widen into VVP_* nodes in the future. While we are 304 // buildling the infrastructure for this, we only do this for legal vector 305 // VTs. 306 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 307 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 308 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 309 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 310 #include "VVPNodes.def" 311 } 312 313 for (MVT LegalPackedVT : AllPackedVTs) { 314 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 315 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 316 } 317 } 318 319 SDValue 320 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 321 bool IsVarArg, 322 const SmallVectorImpl<ISD::OutputArg> &Outs, 323 const SmallVectorImpl<SDValue> &OutVals, 324 const SDLoc &DL, SelectionDAG &DAG) const { 325 // CCValAssign - represent the assignment of the return value to locations. 326 SmallVector<CCValAssign, 16> RVLocs; 327 328 // CCState - Info about the registers and stack slot. 329 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 330 *DAG.getContext()); 331 332 // Analyze return values. 333 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 334 335 SDValue Flag; 336 SmallVector<SDValue, 4> RetOps(1, Chain); 337 338 // Copy the result values into the output registers. 339 for (unsigned i = 0; i != RVLocs.size(); ++i) { 340 CCValAssign &VA = RVLocs[i]; 341 assert(VA.isRegLoc() && "Can only return in registers!"); 342 assert(!VA.needsCustom() && "Unexpected custom lowering"); 343 SDValue OutVal = OutVals[i]; 344 345 // Integer return values must be sign or zero extended by the callee. 346 switch (VA.getLocInfo()) { 347 case CCValAssign::Full: 348 break; 349 case CCValAssign::SExt: 350 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 351 break; 352 case CCValAssign::ZExt: 353 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 354 break; 355 case CCValAssign::AExt: 356 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 357 break; 358 case CCValAssign::BCvt: { 359 // Convert a float return value to i64 with padding. 360 // 63 31 0 361 // +------+------+ 362 // | float| 0 | 363 // +------+------+ 364 assert(VA.getLocVT() == MVT::i64); 365 assert(VA.getValVT() == MVT::f32); 366 SDValue Undef = SDValue( 367 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 368 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 369 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 370 MVT::i64, Undef, OutVal, Sub_f32), 371 0); 372 break; 373 } 374 default: 375 llvm_unreachable("Unknown loc info!"); 376 } 377 378 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 379 380 // Guarantee that all emitted copies are stuck together with flags. 381 Flag = Chain.getValue(1); 382 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 383 } 384 385 RetOps[0] = Chain; // Update chain. 386 387 // Add the flag if we have it. 388 if (Flag.getNode()) 389 RetOps.push_back(Flag); 390 391 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 392 } 393 394 SDValue VETargetLowering::LowerFormalArguments( 395 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 396 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 397 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 398 MachineFunction &MF = DAG.getMachineFunction(); 399 400 // Get the base offset of the incoming arguments stack space. 401 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 402 // Get the size of the preserved arguments area 403 unsigned ArgsPreserved = 64; 404 405 // Analyze arguments according to CC_VE. 406 SmallVector<CCValAssign, 16> ArgLocs; 407 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 408 *DAG.getContext()); 409 // Allocate the preserved area first. 410 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 411 // We already allocated the preserved area, so the stack offset computed 412 // by CC_VE would be correct now. 413 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 414 415 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 416 CCValAssign &VA = ArgLocs[i]; 417 assert(!VA.needsCustom() && "Unexpected custom lowering"); 418 if (VA.isRegLoc()) { 419 // This argument is passed in a register. 420 // All integer register arguments are promoted by the caller to i64. 421 422 // Create a virtual register for the promoted live-in value. 423 Register VReg = 424 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 425 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 426 427 // The caller promoted the argument, so insert an Assert?ext SDNode so we 428 // won't promote the value again in this function. 429 switch (VA.getLocInfo()) { 430 case CCValAssign::SExt: 431 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 432 DAG.getValueType(VA.getValVT())); 433 break; 434 case CCValAssign::ZExt: 435 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 436 DAG.getValueType(VA.getValVT())); 437 break; 438 case CCValAssign::BCvt: { 439 // Extract a float argument from i64 with padding. 440 // 63 31 0 441 // +------+------+ 442 // | float| 0 | 443 // +------+------+ 444 assert(VA.getLocVT() == MVT::i64); 445 assert(VA.getValVT() == MVT::f32); 446 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 447 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 448 MVT::f32, Arg, Sub_f32), 449 0); 450 break; 451 } 452 default: 453 break; 454 } 455 456 // Truncate the register down to the argument type. 457 if (VA.isExtInLoc()) 458 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 459 460 InVals.push_back(Arg); 461 continue; 462 } 463 464 // The registers are exhausted. This argument was passed on the stack. 465 assert(VA.isMemLoc()); 466 // The CC_VE_Full/Half functions compute stack offsets relative to the 467 // beginning of the arguments area at %fp + the size of reserved area. 468 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 469 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 470 471 // Adjust offset for a float argument by adding 4 since the argument is 472 // stored in 8 bytes buffer with offset like below. LLVM generates 473 // 4 bytes load instruction, so need to adjust offset here. This 474 // adjustment is required in only LowerFormalArguments. In LowerCall, 475 // a float argument is converted to i64 first, and stored as 8 bytes 476 // data, which is required by ABI, so no need for adjustment. 477 // 0 4 478 // +------+------+ 479 // | empty| float| 480 // +------+------+ 481 if (VA.getValVT() == MVT::f32) 482 Offset += 4; 483 484 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 485 InVals.push_back( 486 DAG.getLoad(VA.getValVT(), DL, Chain, 487 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 488 MachinePointerInfo::getFixedStack(MF, FI))); 489 } 490 491 if (!IsVarArg) 492 return Chain; 493 494 // This function takes variable arguments, some of which may have been passed 495 // in registers %s0-%s8. 496 // 497 // The va_start intrinsic needs to know the offset to the first variable 498 // argument. 499 // TODO: need to calculate offset correctly once we support f128. 500 unsigned ArgOffset = ArgLocs.size() * 8; 501 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 502 // Skip the reserved area at the top of stack. 503 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 504 505 return Chain; 506 } 507 508 // FIXME? Maybe this could be a TableGen attribute on some registers and 509 // this table could be generated automatically from RegInfo. 510 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 511 const MachineFunction &MF) const { 512 Register Reg = StringSwitch<Register>(RegName) 513 .Case("sp", VE::SX11) // Stack pointer 514 .Case("fp", VE::SX9) // Frame pointer 515 .Case("sl", VE::SX8) // Stack limit 516 .Case("lr", VE::SX10) // Link register 517 .Case("tp", VE::SX14) // Thread pointer 518 .Case("outer", VE::SX12) // Outer regiser 519 .Case("info", VE::SX17) // Info area register 520 .Case("got", VE::SX15) // Global offset table register 521 .Case("plt", VE::SX16) // Procedure linkage table register 522 .Default(0); 523 524 if (Reg) 525 return Reg; 526 527 report_fatal_error("Invalid register name global variable"); 528 } 529 530 //===----------------------------------------------------------------------===// 531 // TargetLowering Implementation 532 //===----------------------------------------------------------------------===// 533 534 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 535 SmallVectorImpl<SDValue> &InVals) const { 536 SelectionDAG &DAG = CLI.DAG; 537 SDLoc DL = CLI.DL; 538 SDValue Chain = CLI.Chain; 539 auto PtrVT = getPointerTy(DAG.getDataLayout()); 540 541 // VE target does not yet support tail call optimization. 542 CLI.IsTailCall = false; 543 544 // Get the base offset of the outgoing arguments stack space. 545 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 546 // Get the size of the preserved arguments area 547 unsigned ArgsPreserved = 8 * 8u; 548 549 // Analyze operands of the call, assigning locations to each operand. 550 SmallVector<CCValAssign, 16> ArgLocs; 551 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 552 *DAG.getContext()); 553 // Allocate the preserved area first. 554 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 555 // We already allocated the preserved area, so the stack offset computed 556 // by CC_VE would be correct now. 557 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 558 559 // VE requires to use both register and stack for varargs or no-prototyped 560 // functions. 561 bool UseBoth = CLI.IsVarArg; 562 563 // Analyze operands again if it is required to store BOTH. 564 SmallVector<CCValAssign, 16> ArgLocs2; 565 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 566 ArgLocs2, *DAG.getContext()); 567 if (UseBoth) 568 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 569 570 // Get the size of the outgoing arguments stack space requirement. 571 unsigned ArgsSize = CCInfo.getNextStackOffset(); 572 573 // Keep stack frames 16-byte aligned. 574 ArgsSize = alignTo(ArgsSize, 16); 575 576 // Adjust the stack pointer to make room for the arguments. 577 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 578 // with more than 6 arguments. 579 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 580 581 // Collect the set of registers to pass to the function and their values. 582 // This will be emitted as a sequence of CopyToReg nodes glued to the call 583 // instruction. 584 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 585 586 // Collect chains from all the memory opeations that copy arguments to the 587 // stack. They must follow the stack pointer adjustment above and precede the 588 // call instruction itself. 589 SmallVector<SDValue, 8> MemOpChains; 590 591 // VE needs to get address of callee function in a register 592 // So, prepare to copy it to SX12 here. 593 594 // If the callee is a GlobalAddress node (quite common, every direct call is) 595 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 596 // Likewise ExternalSymbol -> TargetExternalSymbol. 597 SDValue Callee = CLI.Callee; 598 599 bool IsPICCall = isPositionIndependent(); 600 601 // PC-relative references to external symbols should go through $stub. 602 // If so, we need to prepare GlobalBaseReg first. 603 const TargetMachine &TM = DAG.getTarget(); 604 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 605 const GlobalValue *GV = nullptr; 606 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 607 if (CalleeG) 608 GV = CalleeG->getGlobal(); 609 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 610 bool UsePlt = !Local; 611 MachineFunction &MF = DAG.getMachineFunction(); 612 613 // Turn GlobalAddress/ExternalSymbol node into a value node 614 // containing the address of them here. 615 if (CalleeG) { 616 if (IsPICCall) { 617 if (UsePlt) 618 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 619 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 620 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 621 } else { 622 Callee = 623 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 624 } 625 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 626 if (IsPICCall) { 627 if (UsePlt) 628 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 629 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 630 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 631 } else { 632 Callee = 633 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 634 } 635 } 636 637 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 638 639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 640 CCValAssign &VA = ArgLocs[i]; 641 SDValue Arg = CLI.OutVals[i]; 642 643 // Promote the value if needed. 644 switch (VA.getLocInfo()) { 645 default: 646 llvm_unreachable("Unknown location info!"); 647 case CCValAssign::Full: 648 break; 649 case CCValAssign::SExt: 650 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 651 break; 652 case CCValAssign::ZExt: 653 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 654 break; 655 case CCValAssign::AExt: 656 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 657 break; 658 case CCValAssign::BCvt: { 659 // Convert a float argument to i64 with padding. 660 // 63 31 0 661 // +------+------+ 662 // | float| 0 | 663 // +------+------+ 664 assert(VA.getLocVT() == MVT::i64); 665 assert(VA.getValVT() == MVT::f32); 666 SDValue Undef = SDValue( 667 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 668 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 669 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 670 MVT::i64, Undef, Arg, Sub_f32), 671 0); 672 break; 673 } 674 } 675 676 if (VA.isRegLoc()) { 677 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 678 if (!UseBoth) 679 continue; 680 VA = ArgLocs2[i]; 681 } 682 683 assert(VA.isMemLoc()); 684 685 // Create a store off the stack pointer for this argument. 686 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 687 // The argument area starts at %fp/%sp + the size of reserved area. 688 SDValue PtrOff = 689 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 690 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 691 MemOpChains.push_back( 692 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 693 } 694 695 // Emit all stores, make sure they occur before the call. 696 if (!MemOpChains.empty()) 697 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 698 699 // Build a sequence of CopyToReg nodes glued together with token chain and 700 // glue operands which copy the outgoing args into registers. The InGlue is 701 // necessary since all emitted instructions must be stuck together in order 702 // to pass the live physical registers. 703 SDValue InGlue; 704 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 705 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 706 RegsToPass[i].second, InGlue); 707 InGlue = Chain.getValue(1); 708 } 709 710 // Build the operands for the call instruction itself. 711 SmallVector<SDValue, 8> Ops; 712 Ops.push_back(Chain); 713 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 714 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 715 RegsToPass[i].second.getValueType())); 716 717 // Add a register mask operand representing the call-preserved registers. 718 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 719 const uint32_t *Mask = 720 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 721 assert(Mask && "Missing call preserved mask for calling convention"); 722 Ops.push_back(DAG.getRegisterMask(Mask)); 723 724 // Make sure the CopyToReg nodes are glued to the call instruction which 725 // consumes the registers. 726 if (InGlue.getNode()) 727 Ops.push_back(InGlue); 728 729 // Now the call itself. 730 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 731 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 732 InGlue = Chain.getValue(1); 733 734 // Revert the stack pointer immediately after the call. 735 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 736 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 737 InGlue = Chain.getValue(1); 738 739 // Now extract the return values. This is more or less the same as 740 // LowerFormalArguments. 741 742 // Assign locations to each value returned by this call. 743 SmallVector<CCValAssign, 16> RVLocs; 744 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 745 *DAG.getContext()); 746 747 // Set inreg flag manually for codegen generated library calls that 748 // return float. 749 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 750 CLI.Ins[0].Flags.setInReg(); 751 752 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 753 754 // Copy all of the result registers out of their specified physreg. 755 for (unsigned i = 0; i != RVLocs.size(); ++i) { 756 CCValAssign &VA = RVLocs[i]; 757 assert(!VA.needsCustom() && "Unexpected custom lowering"); 758 Register Reg = VA.getLocReg(); 759 760 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 761 // reside in the same register in the high and low bits. Reuse the 762 // CopyFromReg previous node to avoid duplicate copies. 763 SDValue RV; 764 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 765 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 766 RV = Chain.getValue(0); 767 768 // But usually we'll create a new CopyFromReg for a different register. 769 if (!RV.getNode()) { 770 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 771 Chain = RV.getValue(1); 772 InGlue = Chain.getValue(2); 773 } 774 775 // The callee promoted the return value, so insert an Assert?ext SDNode so 776 // we won't promote the value again in this function. 777 switch (VA.getLocInfo()) { 778 case CCValAssign::SExt: 779 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 780 DAG.getValueType(VA.getValVT())); 781 break; 782 case CCValAssign::ZExt: 783 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 784 DAG.getValueType(VA.getValVT())); 785 break; 786 case CCValAssign::BCvt: { 787 // Extract a float return value from i64 with padding. 788 // 63 31 0 789 // +------+------+ 790 // | float| 0 | 791 // +------+------+ 792 assert(VA.getLocVT() == MVT::i64); 793 assert(VA.getValVT() == MVT::f32); 794 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 795 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 796 MVT::f32, RV, Sub_f32), 797 0); 798 break; 799 } 800 default: 801 break; 802 } 803 804 // Truncate the register down to the return value type. 805 if (VA.isExtInLoc()) 806 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 807 808 InVals.push_back(RV); 809 } 810 811 return Chain; 812 } 813 814 bool VETargetLowering::isOffsetFoldingLegal( 815 const GlobalAddressSDNode *GA) const { 816 // VE uses 64 bit addressing, so we need multiple instructions to generate 817 // an address. Folding address with offset increases the number of 818 // instructions, so that we disable it here. Offsets will be folded in 819 // the DAG combine later if it worth to do so. 820 return false; 821 } 822 823 /// isFPImmLegal - Returns true if the target can instruction select the 824 /// specified FP immediate natively. If false, the legalizer will 825 /// materialize the FP immediate as a load from a constant pool. 826 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 827 bool ForCodeSize) const { 828 return VT == MVT::f32 || VT == MVT::f64; 829 } 830 831 /// Determine if the target supports unaligned memory accesses. 832 /// 833 /// This function returns true if the target allows unaligned memory accesses 834 /// of the specified type in the given address space. If true, it also returns 835 /// whether the unaligned memory access is "fast" in the last argument by 836 /// reference. This is used, for example, in situations where an array 837 /// copy/move/set is converted to a sequence of store operations. Its use 838 /// helps to ensure that such replacements don't generate code that causes an 839 /// alignment error (trap) on the target machine. 840 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 841 unsigned AddrSpace, 842 Align A, 843 MachineMemOperand::Flags, 844 bool *Fast) const { 845 if (Fast) { 846 // It's fast anytime on VE 847 *Fast = true; 848 } 849 return true; 850 } 851 852 VETargetLowering::VETargetLowering(const TargetMachine &TM, 853 const VESubtarget &STI) 854 : TargetLowering(TM), Subtarget(&STI) { 855 // Instructions which use registers as conditionals examine all the 856 // bits (as does the pseudo SELECT_CC expansion). I don't think it 857 // matters much whether it's ZeroOrOneBooleanContent, or 858 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 859 // former. 860 setBooleanContents(ZeroOrOneBooleanContent); 861 setBooleanVectorContents(ZeroOrOneBooleanContent); 862 863 initRegisterClasses(); 864 initSPUActions(); 865 initVPUActions(); 866 867 setStackPointerRegisterToSaveRestore(VE::SX11); 868 869 // We have target-specific dag combine patterns for the following nodes: 870 setTargetDAGCombine(ISD::TRUNCATE); 871 872 // Set function alignment to 16 bytes 873 setMinFunctionAlignment(Align(16)); 874 875 // VE stores all argument by 8 bytes alignment 876 setMinStackArgumentAlignment(Align(8)); 877 878 computeRegisterProperties(Subtarget->getRegisterInfo()); 879 } 880 881 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 882 #define TARGET_NODE_CASE(NAME) \ 883 case VEISD::NAME: \ 884 return "VEISD::" #NAME; 885 switch ((VEISD::NodeType)Opcode) { 886 case VEISD::FIRST_NUMBER: 887 break; 888 TARGET_NODE_CASE(CALL) 889 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 890 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 891 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 892 TARGET_NODE_CASE(GETFUNPLT) 893 TARGET_NODE_CASE(GETSTACKTOP) 894 TARGET_NODE_CASE(GETTLSADDR) 895 TARGET_NODE_CASE(GLOBAL_BASE_REG) 896 TARGET_NODE_CASE(Hi) 897 TARGET_NODE_CASE(Lo) 898 TARGET_NODE_CASE(MEMBARRIER) 899 TARGET_NODE_CASE(RET_FLAG) 900 TARGET_NODE_CASE(TS1AM) 901 TARGET_NODE_CASE(VEC_BROADCAST) 902 TARGET_NODE_CASE(REPL_I32) 903 TARGET_NODE_CASE(REPL_F32) 904 905 // Register the VVP_* SDNodes. 906 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 907 #include "VVPNodes.def" 908 } 909 #undef TARGET_NODE_CASE 910 return nullptr; 911 } 912 913 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 914 EVT VT) const { 915 return MVT::i32; 916 } 917 918 // Convert to a target node and set target flags. 919 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 920 SelectionDAG &DAG) const { 921 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 922 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 923 GA->getValueType(0), GA->getOffset(), TF); 924 925 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 926 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 927 0, TF); 928 929 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 930 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 931 CP->getAlign(), CP->getOffset(), TF); 932 933 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 934 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 935 TF); 936 937 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 938 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 939 940 llvm_unreachable("Unhandled address SDNode"); 941 } 942 943 // Split Op into high and low parts according to HiTF and LoTF. 944 // Return an ADD node combining the parts. 945 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 946 SelectionDAG &DAG) const { 947 SDLoc DL(Op); 948 EVT VT = Op.getValueType(); 949 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 950 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 951 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 952 } 953 954 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 955 // or ExternalSymbol SDNode. 956 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 957 SDLoc DL(Op); 958 EVT PtrVT = Op.getValueType(); 959 960 // Handle PIC mode first. VE needs a got load for every variable! 961 if (isPositionIndependent()) { 962 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 963 964 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 965 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 966 // Create following instructions for local linkage PIC code. 967 // lea %reg, label@gotoff_lo 968 // and %reg, %reg, (32)0 969 // lea.sl %reg, label@gotoff_hi(%reg, %got) 970 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 971 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 972 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 973 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 974 } 975 // Create following instructions for not local linkage PIC code. 976 // lea %reg, label@got_lo 977 // and %reg, %reg, (32)0 978 // lea.sl %reg, label@got_hi(%reg) 979 // ld %reg, (%reg, %got) 980 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 981 VEMCExpr::VK_VE_GOT_LO32, DAG); 982 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 983 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 984 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 985 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 986 } 987 988 // This is one of the absolute code models. 989 switch (getTargetMachine().getCodeModel()) { 990 default: 991 llvm_unreachable("Unsupported absolute code model"); 992 case CodeModel::Small: 993 case CodeModel::Medium: 994 case CodeModel::Large: 995 // abs64. 996 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 997 } 998 } 999 1000 /// Custom Lower { 1001 1002 // The mappings for emitLeading/TrailingFence for VE is designed by following 1003 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1004 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1005 Instruction *Inst, 1006 AtomicOrdering Ord) const { 1007 switch (Ord) { 1008 case AtomicOrdering::NotAtomic: 1009 case AtomicOrdering::Unordered: 1010 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1011 case AtomicOrdering::Monotonic: 1012 case AtomicOrdering::Acquire: 1013 return nullptr; // Nothing to do 1014 case AtomicOrdering::Release: 1015 case AtomicOrdering::AcquireRelease: 1016 return Builder.CreateFence(AtomicOrdering::Release); 1017 case AtomicOrdering::SequentiallyConsistent: 1018 if (!Inst->hasAtomicStore()) 1019 return nullptr; // Nothing to do 1020 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1021 } 1022 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1023 } 1024 1025 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1026 Instruction *Inst, 1027 AtomicOrdering Ord) const { 1028 switch (Ord) { 1029 case AtomicOrdering::NotAtomic: 1030 case AtomicOrdering::Unordered: 1031 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1032 case AtomicOrdering::Monotonic: 1033 case AtomicOrdering::Release: 1034 return nullptr; // Nothing to do 1035 case AtomicOrdering::Acquire: 1036 case AtomicOrdering::AcquireRelease: 1037 return Builder.CreateFence(AtomicOrdering::Acquire); 1038 case AtomicOrdering::SequentiallyConsistent: 1039 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1040 } 1041 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1042 } 1043 1044 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1045 SelectionDAG &DAG) const { 1046 SDLoc DL(Op); 1047 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1048 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1049 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1050 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1051 1052 // VE uses Release consistency, so need a fence instruction if it is a 1053 // cross-thread fence. 1054 if (FenceSSID == SyncScope::System) { 1055 switch (FenceOrdering) { 1056 case AtomicOrdering::NotAtomic: 1057 case AtomicOrdering::Unordered: 1058 case AtomicOrdering::Monotonic: 1059 // No need to generate fencem instruction here. 1060 break; 1061 case AtomicOrdering::Acquire: 1062 // Generate "fencem 2" as acquire fence. 1063 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1064 DAG.getTargetConstant(2, DL, MVT::i32), 1065 Op.getOperand(0)), 1066 0); 1067 case AtomicOrdering::Release: 1068 // Generate "fencem 1" as release fence. 1069 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1070 DAG.getTargetConstant(1, DL, MVT::i32), 1071 Op.getOperand(0)), 1072 0); 1073 case AtomicOrdering::AcquireRelease: 1074 case AtomicOrdering::SequentiallyConsistent: 1075 // Generate "fencem 3" as acq_rel and seq_cst fence. 1076 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1077 // so seq_cst may require more instruction for them. 1078 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1079 DAG.getTargetConstant(3, DL, MVT::i32), 1080 Op.getOperand(0)), 1081 0); 1082 } 1083 } 1084 1085 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1086 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1087 } 1088 1089 TargetLowering::AtomicExpansionKind 1090 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1091 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1092 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1093 return AtomicExpansionKind::None; 1094 } 1095 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1096 1097 // Otherwise, expand it using compare and exchange instruction to not call 1098 // __sync_fetch_and_* functions. 1099 return AtomicExpansionKind::CmpXChg; 1100 } 1101 1102 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1103 SDValue &Bits) { 1104 SDLoc DL(Op); 1105 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1106 SDValue Ptr = N->getOperand(1); 1107 SDValue Val = N->getOperand(2); 1108 EVT PtrVT = Ptr.getValueType(); 1109 bool Byte = N->getMemoryVT() == MVT::i8; 1110 // Remainder = AND Ptr, 3 1111 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1112 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1113 // Bits = Remainder << 3 1114 // NewVal = Val << Bits 1115 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1116 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1117 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1118 : DAG.getConstant(3, DL, MVT::i32); 1119 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1120 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1121 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1122 } 1123 1124 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1125 SDValue Bits) { 1126 SDLoc DL(Op); 1127 EVT VT = Data.getValueType(); 1128 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1129 // NewData = Data >> Bits 1130 // Result = NewData & 0xff ; If Byte is true (1 byte) 1131 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1132 1133 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1134 return DAG.getNode(ISD::AND, DL, VT, 1135 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1136 } 1137 1138 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1139 SelectionDAG &DAG) const { 1140 SDLoc DL(Op); 1141 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1142 1143 if (N->getMemoryVT() == MVT::i8) { 1144 // For i8, use "ts1am" 1145 // Input: 1146 // ATOMIC_SWAP Ptr, Val, Order 1147 // 1148 // Output: 1149 // Remainder = AND Ptr, 3 1150 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1151 // Bits = Remainder << 3 1152 // NewVal = Val << Bits 1153 // 1154 // Aligned = AND Ptr, -4 1155 // Data = TS1AM Aligned, Flag, NewVal 1156 // 1157 // NewData = Data >> Bits 1158 // Result = NewData & 0xff ; 1 byte result 1159 SDValue Flag; 1160 SDValue Bits; 1161 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1162 1163 SDValue Ptr = N->getOperand(1); 1164 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1165 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1166 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1167 DAG.getVTList(Op.getNode()->getValueType(0), 1168 Op.getNode()->getValueType(1)), 1169 {N->getChain(), Aligned, Flag, NewVal}, 1170 N->getMemOperand()); 1171 1172 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1173 SDValue Chain = TS1AM.getValue(1); 1174 return DAG.getMergeValues({Result, Chain}, DL); 1175 } 1176 if (N->getMemoryVT() == MVT::i16) { 1177 // For i16, use "ts1am" 1178 SDValue Flag; 1179 SDValue Bits; 1180 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1181 1182 SDValue Ptr = N->getOperand(1); 1183 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1184 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1185 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1186 DAG.getVTList(Op.getNode()->getValueType(0), 1187 Op.getNode()->getValueType(1)), 1188 {N->getChain(), Aligned, Flag, NewVal}, 1189 N->getMemOperand()); 1190 1191 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1192 SDValue Chain = TS1AM.getValue(1); 1193 return DAG.getMergeValues({Result, Chain}, DL); 1194 } 1195 // Otherwise, let llvm legalize it. 1196 return Op; 1197 } 1198 1199 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1200 SelectionDAG &DAG) const { 1201 return makeAddress(Op, DAG); 1202 } 1203 1204 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1205 SelectionDAG &DAG) const { 1206 return makeAddress(Op, DAG); 1207 } 1208 1209 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1210 SelectionDAG &DAG) const { 1211 return makeAddress(Op, DAG); 1212 } 1213 1214 SDValue 1215 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1216 SelectionDAG &DAG) const { 1217 SDLoc DL(Op); 1218 1219 // Generate the following code: 1220 // t1: ch,glue = callseq_start t0, 0, 0 1221 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1222 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1223 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1224 SDValue Label = withTargetFlags(Op, 0, DAG); 1225 EVT PtrVT = Op.getValueType(); 1226 1227 // Lowering the machine isd will make sure everything is in the right 1228 // location. 1229 SDValue Chain = DAG.getEntryNode(); 1230 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1231 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1232 DAG.getMachineFunction(), CallingConv::C); 1233 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1234 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1235 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1236 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1237 DAG.getIntPtrConstant(0, DL, true), 1238 Chain.getValue(1), DL); 1239 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1240 1241 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1242 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1243 MFI.setHasCalls(true); 1244 1245 // Also generate code to prepare a GOT register if it is PIC. 1246 if (isPositionIndependent()) { 1247 MachineFunction &MF = DAG.getMachineFunction(); 1248 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1249 } 1250 1251 return Chain; 1252 } 1253 1254 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1255 SelectionDAG &DAG) const { 1256 // The current implementation of nld (2.26) doesn't allow local exec model 1257 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1258 // generate the general dynamic model code sequence. 1259 // 1260 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1261 return lowerToTLSGeneralDynamicModel(Op, DAG); 1262 } 1263 1264 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1265 return makeAddress(Op, DAG); 1266 } 1267 1268 // Lower a f128 load into two f64 loads. 1269 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1270 SDLoc DL(Op); 1271 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1272 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1273 unsigned Alignment = LdNode->getAlign().value(); 1274 if (Alignment > 8) 1275 Alignment = 8; 1276 1277 SDValue Lo64 = 1278 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1279 LdNode->getPointerInfo(), Alignment, 1280 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1281 : MachineMemOperand::MONone); 1282 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1283 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1284 DAG.getConstant(8, DL, AddrVT)); 1285 SDValue Hi64 = 1286 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1287 LdNode->getPointerInfo(), Alignment, 1288 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1289 : MachineMemOperand::MONone); 1290 1291 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1292 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1293 1294 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1295 SDNode *InFP128 = 1296 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1297 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1298 SDValue(InFP128, 0), Hi64, SubRegEven); 1299 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1300 SDValue(InFP128, 0), Lo64, SubRegOdd); 1301 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1302 SDValue(Hi64.getNode(), 1)}; 1303 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1304 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1305 return DAG.getMergeValues(Ops, DL); 1306 } 1307 1308 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1309 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1310 1311 SDValue BasePtr = LdNode->getBasePtr(); 1312 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1313 // Do not expand store instruction with frame index here because of 1314 // dependency problems. We expand it later in eliminateFrameIndex(). 1315 return Op; 1316 } 1317 1318 EVT MemVT = LdNode->getMemoryVT(); 1319 if (MemVT == MVT::f128) 1320 return lowerLoadF128(Op, DAG); 1321 1322 return Op; 1323 } 1324 1325 // Lower a f128 store into two f64 stores. 1326 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1327 SDLoc DL(Op); 1328 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1329 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1330 1331 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1332 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1333 1334 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1335 StNode->getValue(), SubRegEven); 1336 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1337 StNode->getValue(), SubRegOdd); 1338 1339 unsigned Alignment = StNode->getAlign().value(); 1340 if (Alignment > 8) 1341 Alignment = 8; 1342 1343 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1344 SDValue OutChains[2]; 1345 OutChains[0] = 1346 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1347 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1348 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1349 : MachineMemOperand::MONone); 1350 EVT AddrVT = StNode->getBasePtr().getValueType(); 1351 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1352 DAG.getConstant(8, DL, AddrVT)); 1353 OutChains[1] = 1354 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1355 MachinePointerInfo(), Alignment, 1356 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1357 : MachineMemOperand::MONone); 1358 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1359 } 1360 1361 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1362 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1363 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1364 1365 SDValue BasePtr = StNode->getBasePtr(); 1366 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1367 // Do not expand store instruction with frame index here because of 1368 // dependency problems. We expand it later in eliminateFrameIndex(). 1369 return Op; 1370 } 1371 1372 EVT MemVT = StNode->getMemoryVT(); 1373 if (MemVT == MVT::f128) 1374 return lowerStoreF128(Op, DAG); 1375 1376 // Otherwise, ask llvm to expand it. 1377 return SDValue(); 1378 } 1379 1380 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1381 MachineFunction &MF = DAG.getMachineFunction(); 1382 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1383 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1384 1385 // Need frame address to find the address of VarArgsFrameIndex. 1386 MF.getFrameInfo().setFrameAddressIsTaken(true); 1387 1388 // vastart just stores the address of the VarArgsFrameIndex slot into the 1389 // memory location argument. 1390 SDLoc DL(Op); 1391 SDValue Offset = 1392 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1393 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1394 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1395 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1396 MachinePointerInfo(SV)); 1397 } 1398 1399 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1400 SDNode *Node = Op.getNode(); 1401 EVT VT = Node->getValueType(0); 1402 SDValue InChain = Node->getOperand(0); 1403 SDValue VAListPtr = Node->getOperand(1); 1404 EVT PtrVT = VAListPtr.getValueType(); 1405 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1406 SDLoc DL(Node); 1407 SDValue VAList = 1408 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1409 SDValue Chain = VAList.getValue(1); 1410 SDValue NextPtr; 1411 1412 if (VT == MVT::f128) { 1413 // VE f128 values must be stored with 16 bytes alignment. We doesn't 1414 // know the actual alignment of VAList, so we take alignment of it 1415 // dyanmically. 1416 int Align = 16; 1417 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1418 DAG.getConstant(Align - 1, DL, PtrVT)); 1419 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1420 DAG.getConstant(-Align, DL, PtrVT)); 1421 // Increment the pointer, VAList, by 16 to the next vaarg. 1422 NextPtr = 1423 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1424 } else if (VT == MVT::f32) { 1425 // float --> need special handling like below. 1426 // 0 4 1427 // +------+------+ 1428 // | empty| float| 1429 // +------+------+ 1430 // Increment the pointer, VAList, by 8 to the next vaarg. 1431 NextPtr = 1432 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1433 // Then, adjust VAList. 1434 unsigned InternalOffset = 4; 1435 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1436 DAG.getConstant(InternalOffset, DL, PtrVT)); 1437 } else { 1438 // Increment the pointer, VAList, by 8 to the next vaarg. 1439 NextPtr = 1440 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1441 } 1442 1443 // Store the incremented VAList to the legalized pointer. 1444 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1445 1446 // Load the actual argument out of the pointer VAList. 1447 // We can't count on greater alignment than the word size. 1448 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1449 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1450 } 1451 1452 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1453 SelectionDAG &DAG) const { 1454 // Generate following code. 1455 // (void)__llvm_grow_stack(size); 1456 // ret = GETSTACKTOP; // pseudo instruction 1457 SDLoc DL(Op); 1458 1459 // Get the inputs. 1460 SDNode *Node = Op.getNode(); 1461 SDValue Chain = Op.getOperand(0); 1462 SDValue Size = Op.getOperand(1); 1463 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1464 EVT VT = Node->getValueType(0); 1465 1466 // Chain the dynamic stack allocation so that it doesn't modify the stack 1467 // pointer when other instructions are using the stack. 1468 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1469 1470 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1471 Align StackAlign = TFI.getStackAlign(); 1472 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1473 1474 // Prepare arguments 1475 TargetLowering::ArgListTy Args; 1476 TargetLowering::ArgListEntry Entry; 1477 Entry.Node = Size; 1478 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1479 Args.push_back(Entry); 1480 if (NeedsAlign) { 1481 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1482 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1483 Args.push_back(Entry); 1484 } 1485 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1486 1487 EVT PtrVT = Op.getValueType(); 1488 SDValue Callee; 1489 if (NeedsAlign) { 1490 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1491 } else { 1492 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1493 } 1494 1495 TargetLowering::CallLoweringInfo CLI(DAG); 1496 CLI.setDebugLoc(DL) 1497 .setChain(Chain) 1498 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1499 .setDiscardResult(true); 1500 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1501 Chain = pair.second; 1502 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1503 if (NeedsAlign) { 1504 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1505 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1506 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1507 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1508 } 1509 // Chain = Result.getValue(1); 1510 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1511 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1512 1513 SDValue Ops[2] = {Result, Chain}; 1514 return DAG.getMergeValues(Ops, DL); 1515 } 1516 1517 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1518 SelectionDAG &DAG) const { 1519 SDLoc DL(Op); 1520 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1521 Op.getOperand(1)); 1522 } 1523 1524 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1525 SelectionDAG &DAG) const { 1526 SDLoc DL(Op); 1527 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1528 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1529 Op.getOperand(1)); 1530 } 1531 1532 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1533 SelectionDAG &DAG) const { 1534 SDLoc DL(Op); 1535 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1536 Op.getOperand(0)); 1537 } 1538 1539 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1540 const VETargetLowering &TLI, 1541 const VESubtarget *Subtarget) { 1542 SDLoc DL(Op); 1543 MachineFunction &MF = DAG.getMachineFunction(); 1544 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1545 1546 MachineFrameInfo &MFI = MF.getFrameInfo(); 1547 MFI.setFrameAddressIsTaken(true); 1548 1549 unsigned Depth = Op.getConstantOperandVal(0); 1550 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1551 Register FrameReg = RegInfo->getFrameRegister(MF); 1552 SDValue FrameAddr = 1553 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1554 while (Depth--) 1555 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1556 FrameAddr, MachinePointerInfo()); 1557 return FrameAddr; 1558 } 1559 1560 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1561 const VETargetLowering &TLI, 1562 const VESubtarget *Subtarget) { 1563 MachineFunction &MF = DAG.getMachineFunction(); 1564 MachineFrameInfo &MFI = MF.getFrameInfo(); 1565 MFI.setReturnAddressIsTaken(true); 1566 1567 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1568 return SDValue(); 1569 1570 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1571 1572 SDLoc DL(Op); 1573 EVT VT = Op.getValueType(); 1574 SDValue Offset = DAG.getConstant(8, DL, VT); 1575 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1576 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1577 MachinePointerInfo()); 1578 } 1579 1580 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1581 SelectionDAG &DAG) const { 1582 SDLoc DL(Op); 1583 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1584 switch (IntNo) { 1585 default: // Don't custom lower most intrinsics. 1586 return SDValue(); 1587 case Intrinsic::eh_sjlj_lsda: { 1588 MachineFunction &MF = DAG.getMachineFunction(); 1589 MVT VT = Op.getSimpleValueType(); 1590 const VETargetMachine *TM = 1591 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1592 1593 // Create GCC_except_tableXX string. The real symbol for that will be 1594 // generated in EHStreamer::emitExceptionTable() later. So, we just 1595 // borrow it's name here. 1596 TM->getStrList()->push_back(std::string( 1597 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1598 SDValue Addr = 1599 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1600 if (isPositionIndependent()) { 1601 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1602 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1603 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1604 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1605 } 1606 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1607 } 1608 } 1609 } 1610 1611 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1612 if (!isa<BuildVectorSDNode>(N)) 1613 return false; 1614 const auto *BVN = cast<BuildVectorSDNode>(N); 1615 1616 // Find first non-undef insertion. 1617 unsigned Idx; 1618 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1619 auto ElemV = BVN->getOperand(Idx); 1620 if (!ElemV->isUndef()) 1621 break; 1622 } 1623 // Catch the (hypothetical) all-undef case. 1624 if (Idx == BVN->getNumOperands()) 1625 return false; 1626 // Remember insertion. 1627 UniqueIdx = Idx++; 1628 // Verify that all other insertions are undef. 1629 for (; Idx < BVN->getNumOperands(); ++Idx) { 1630 auto ElemV = BVN->getOperand(Idx); 1631 if (!ElemV->isUndef()) 1632 return false; 1633 } 1634 return true; 1635 } 1636 1637 static SDValue getSplatValue(SDNode *N) { 1638 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1639 return BuildVec->getSplatValue(); 1640 } 1641 return SDValue(); 1642 } 1643 1644 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1645 SelectionDAG &DAG) const { 1646 VECustomDAG CDAG(DAG, Op); 1647 MVT ResultVT = Op.getSimpleValueType(); 1648 1649 // If there is just one element, expand to INSERT_VECTOR_ELT. 1650 unsigned UniqueIdx; 1651 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1652 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1653 auto ElemV = Op->getOperand(UniqueIdx); 1654 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1655 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1656 } 1657 1658 // Else emit a broadcast. 1659 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1660 unsigned NumEls = ResultVT.getVectorNumElements(); 1661 // TODO: Legalize packed-mode AVL. 1662 // For now, cap the AVL at 256. 1663 auto CappedLength = std::min<unsigned>(256, NumEls); 1664 auto AVL = CDAG.getConstant(CappedLength, MVT::i32); 1665 return CDAG.getBroadcast(ResultVT, Op.getOperand(0), AVL); 1666 } 1667 1668 // Expand 1669 return SDValue(); 1670 } 1671 1672 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1673 unsigned Opcode = Op.getOpcode(); 1674 if (ISD::isVPOpcode(Opcode)) 1675 return lowerToVVP(Op, DAG); 1676 1677 switch (Opcode) { 1678 default: 1679 llvm_unreachable("Should not custom lower this!"); 1680 case ISD::ATOMIC_FENCE: 1681 return lowerATOMIC_FENCE(Op, DAG); 1682 case ISD::ATOMIC_SWAP: 1683 return lowerATOMIC_SWAP(Op, DAG); 1684 case ISD::BlockAddress: 1685 return lowerBlockAddress(Op, DAG); 1686 case ISD::ConstantPool: 1687 return lowerConstantPool(Op, DAG); 1688 case ISD::DYNAMIC_STACKALLOC: 1689 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1690 case ISD::EH_SJLJ_LONGJMP: 1691 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1692 case ISD::EH_SJLJ_SETJMP: 1693 return lowerEH_SJLJ_SETJMP(Op, DAG); 1694 case ISD::EH_SJLJ_SETUP_DISPATCH: 1695 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1696 case ISD::FRAMEADDR: 1697 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1698 case ISD::GlobalAddress: 1699 return lowerGlobalAddress(Op, DAG); 1700 case ISD::GlobalTLSAddress: 1701 return lowerGlobalTLSAddress(Op, DAG); 1702 case ISD::INTRINSIC_WO_CHAIN: 1703 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1704 case ISD::JumpTable: 1705 return lowerJumpTable(Op, DAG); 1706 case ISD::LOAD: 1707 return lowerLOAD(Op, DAG); 1708 case ISD::RETURNADDR: 1709 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1710 case ISD::BUILD_VECTOR: 1711 return lowerBUILD_VECTOR(Op, DAG); 1712 case ISD::STORE: 1713 return lowerSTORE(Op, DAG); 1714 case ISD::VASTART: 1715 return lowerVASTART(Op, DAG); 1716 case ISD::VAARG: 1717 return lowerVAARG(Op, DAG); 1718 1719 case ISD::INSERT_VECTOR_ELT: 1720 return lowerINSERT_VECTOR_ELT(Op, DAG); 1721 case ISD::EXTRACT_VECTOR_ELT: 1722 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1723 1724 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1725 #include "VVPNodes.def" 1726 return lowerToVVP(Op, DAG); 1727 } 1728 } 1729 /// } Custom Lower 1730 1731 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1732 SmallVectorImpl<SDValue> &Results, 1733 SelectionDAG &DAG) const { 1734 switch (N->getOpcode()) { 1735 case ISD::ATOMIC_SWAP: 1736 // Let LLVM expand atomic swap instruction through LowerOperation. 1737 return; 1738 default: 1739 LLVM_DEBUG(N->dumpr(&DAG)); 1740 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1741 } 1742 } 1743 1744 /// JumpTable for VE. 1745 /// 1746 /// VE cannot generate relocatable symbol in jump table. VE cannot 1747 /// generate expressions using symbols in both text segment and data 1748 /// segment like below. 1749 /// .4byte .LBB0_2-.LJTI0_0 1750 /// So, we generate offset from the top of function like below as 1751 /// a custom label. 1752 /// .4byte .LBB0_2-<function name> 1753 1754 unsigned VETargetLowering::getJumpTableEncoding() const { 1755 // Use custom label for PIC. 1756 if (isPositionIndependent()) 1757 return MachineJumpTableInfo::EK_Custom32; 1758 1759 // Otherwise, use the normal jump table encoding heuristics. 1760 return TargetLowering::getJumpTableEncoding(); 1761 } 1762 1763 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1764 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1765 unsigned Uid, MCContext &Ctx) const { 1766 assert(isPositionIndependent()); 1767 1768 // Generate custom label for PIC like below. 1769 // .4bytes .LBB0_2-<function name> 1770 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1771 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1772 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1773 return MCBinaryExpr::createSub(Value, Base, Ctx); 1774 } 1775 1776 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1777 SelectionDAG &DAG) const { 1778 assert(isPositionIndependent()); 1779 SDLoc DL(Table); 1780 Function *Function = &DAG.getMachineFunction().getFunction(); 1781 assert(Function != nullptr); 1782 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1783 1784 // In the jump table, we have following values in PIC mode. 1785 // .4bytes .LBB0_2-<function name> 1786 // We need to add this value and the address of this function to generate 1787 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1788 // instructions: 1789 // lea %reg, fun@gotoff_lo 1790 // and %reg, %reg, (32)0 1791 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 1792 // In order to do so, we need to genarate correctly marked DAG node using 1793 // makeHiLoPair. 1794 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 1795 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1796 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1797 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 1798 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 1799 } 1800 1801 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 1802 MachineBasicBlock::iterator I, 1803 MachineBasicBlock *TargetBB, 1804 const DebugLoc &DL) const { 1805 MachineFunction *MF = MBB.getParent(); 1806 MachineRegisterInfo &MRI = MF->getRegInfo(); 1807 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1808 1809 const TargetRegisterClass *RC = &VE::I64RegClass; 1810 Register Tmp1 = MRI.createVirtualRegister(RC); 1811 Register Tmp2 = MRI.createVirtualRegister(RC); 1812 Register Result = MRI.createVirtualRegister(RC); 1813 1814 if (isPositionIndependent()) { 1815 // Create following instructions for local linkage PIC code. 1816 // lea %Tmp1, TargetBB@gotoff_lo 1817 // and %Tmp2, %Tmp1, (32)0 1818 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1819 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1820 .addImm(0) 1821 .addImm(0) 1822 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 1823 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1824 .addReg(Tmp1, getKillRegState(true)) 1825 .addImm(M0(32)); 1826 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1827 .addReg(VE::SX15) 1828 .addReg(Tmp2, getKillRegState(true)) 1829 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 1830 } else { 1831 // Create following instructions for non-PIC code. 1832 // lea %Tmp1, TargetBB@lo 1833 // and %Tmp2, %Tmp1, (32)0 1834 // lea.sl %Result, TargetBB@hi(%Tmp2) 1835 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1836 .addImm(0) 1837 .addImm(0) 1838 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 1839 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1840 .addReg(Tmp1, getKillRegState(true)) 1841 .addImm(M0(32)); 1842 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1843 .addReg(Tmp2, getKillRegState(true)) 1844 .addImm(0) 1845 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 1846 } 1847 return Result; 1848 } 1849 1850 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 1851 MachineBasicBlock::iterator I, 1852 StringRef Symbol, const DebugLoc &DL, 1853 bool IsLocal = false, 1854 bool IsCall = false) const { 1855 MachineFunction *MF = MBB.getParent(); 1856 MachineRegisterInfo &MRI = MF->getRegInfo(); 1857 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1858 1859 const TargetRegisterClass *RC = &VE::I64RegClass; 1860 Register Result = MRI.createVirtualRegister(RC); 1861 1862 if (isPositionIndependent()) { 1863 if (IsCall && !IsLocal) { 1864 // Create following instructions for non-local linkage PIC code function 1865 // calls. These instructions uses IC and magic number -24, so we expand 1866 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 1867 // lea %Reg, Symbol@plt_lo(-24) 1868 // and %Reg, %Reg, (32)0 1869 // sic %s16 1870 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 1871 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 1872 .addExternalSymbol("abort"); 1873 } else if (IsLocal) { 1874 Register Tmp1 = MRI.createVirtualRegister(RC); 1875 Register Tmp2 = MRI.createVirtualRegister(RC); 1876 // Create following instructions for local linkage PIC code. 1877 // lea %Tmp1, Symbol@gotoff_lo 1878 // and %Tmp2, %Tmp1, (32)0 1879 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1880 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1881 .addImm(0) 1882 .addImm(0) 1883 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 1884 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1885 .addReg(Tmp1, getKillRegState(true)) 1886 .addImm(M0(32)); 1887 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1888 .addReg(VE::SX15) 1889 .addReg(Tmp2, getKillRegState(true)) 1890 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 1891 } else { 1892 Register Tmp1 = MRI.createVirtualRegister(RC); 1893 Register Tmp2 = MRI.createVirtualRegister(RC); 1894 // Create following instructions for not local linkage PIC code. 1895 // lea %Tmp1, Symbol@got_lo 1896 // and %Tmp2, %Tmp1, (32)0 1897 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1898 // ld %Result, 0(%Tmp3) 1899 Register Tmp3 = MRI.createVirtualRegister(RC); 1900 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1901 .addImm(0) 1902 .addImm(0) 1903 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 1904 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1905 .addReg(Tmp1, getKillRegState(true)) 1906 .addImm(M0(32)); 1907 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 1908 .addReg(VE::SX15) 1909 .addReg(Tmp2, getKillRegState(true)) 1910 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 1911 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 1912 .addReg(Tmp3, getKillRegState(true)) 1913 .addImm(0) 1914 .addImm(0); 1915 } 1916 } else { 1917 Register Tmp1 = MRI.createVirtualRegister(RC); 1918 Register Tmp2 = MRI.createVirtualRegister(RC); 1919 // Create following instructions for non-PIC code. 1920 // lea %Tmp1, Symbol@lo 1921 // and %Tmp2, %Tmp1, (32)0 1922 // lea.sl %Result, Symbol@hi(%Tmp2) 1923 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1924 .addImm(0) 1925 .addImm(0) 1926 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 1927 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1928 .addReg(Tmp1, getKillRegState(true)) 1929 .addImm(M0(32)); 1930 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1931 .addReg(Tmp2, getKillRegState(true)) 1932 .addImm(0) 1933 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 1934 } 1935 return Result; 1936 } 1937 1938 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 1939 MachineBasicBlock *MBB, 1940 MachineBasicBlock *DispatchBB, 1941 int FI, int Offset) const { 1942 DebugLoc DL = MI.getDebugLoc(); 1943 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1944 1945 Register LabelReg = 1946 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 1947 1948 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 1949 // referenced by longjmp (throw) later. 1950 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 1951 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 1952 MIB.addReg(LabelReg, getKillRegState(true)); 1953 } 1954 1955 MachineBasicBlock * 1956 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 1957 MachineBasicBlock *MBB) const { 1958 DebugLoc DL = MI.getDebugLoc(); 1959 MachineFunction *MF = MBB->getParent(); 1960 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1961 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1962 MachineRegisterInfo &MRI = MF->getRegInfo(); 1963 1964 const BasicBlock *BB = MBB->getBasicBlock(); 1965 MachineFunction::iterator I = ++MBB->getIterator(); 1966 1967 // Memory Reference. 1968 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 1969 MI.memoperands_end()); 1970 Register BufReg = MI.getOperand(1).getReg(); 1971 1972 Register DstReg; 1973 1974 DstReg = MI.getOperand(0).getReg(); 1975 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 1976 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 1977 (void)TRI; 1978 Register MainDestReg = MRI.createVirtualRegister(RC); 1979 Register RestoreDestReg = MRI.createVirtualRegister(RC); 1980 1981 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 1982 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 1983 // 1984 // ThisMBB: 1985 // buf[3] = %s17 iff %s17 is used as BP 1986 // buf[1] = RestoreMBB as IC after longjmp 1987 // # SjLjSetup RestoreMBB 1988 // 1989 // MainMBB: 1990 // v_main = 0 1991 // 1992 // SinkMBB: 1993 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 1994 // ... 1995 // 1996 // RestoreMBB: 1997 // %s17 = buf[3] = iff %s17 is used as BP 1998 // v_restore = 1 1999 // goto SinkMBB 2000 2001 MachineBasicBlock *ThisMBB = MBB; 2002 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2003 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2004 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2005 MF->insert(I, MainMBB); 2006 MF->insert(I, SinkMBB); 2007 MF->push_back(RestoreMBB); 2008 RestoreMBB->setHasAddressTaken(); 2009 2010 // Transfer the remainder of BB and its successor edges to SinkMBB. 2011 SinkMBB->splice(SinkMBB->begin(), MBB, 2012 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2013 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2014 2015 // ThisMBB: 2016 Register LabelReg = 2017 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2018 2019 // Store BP in buf[3] iff this function is using BP. 2020 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2021 if (TFI->hasBP(*MF)) { 2022 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2023 MIB.addReg(BufReg); 2024 MIB.addImm(0); 2025 MIB.addImm(24); 2026 MIB.addReg(VE::SX17); 2027 MIB.setMemRefs(MMOs); 2028 } 2029 2030 // Store IP in buf[1]. 2031 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2032 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2033 MIB.addImm(0); 2034 MIB.addImm(8); 2035 MIB.addReg(LabelReg, getKillRegState(true)); 2036 MIB.setMemRefs(MMOs); 2037 2038 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2039 2040 // Insert setup. 2041 MIB = 2042 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2043 2044 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2045 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2046 ThisMBB->addSuccessor(MainMBB); 2047 ThisMBB->addSuccessor(RestoreMBB); 2048 2049 // MainMBB: 2050 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2051 .addImm(0) 2052 .addImm(0) 2053 .addImm(0); 2054 MainMBB->addSuccessor(SinkMBB); 2055 2056 // SinkMBB: 2057 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2058 .addReg(MainDestReg) 2059 .addMBB(MainMBB) 2060 .addReg(RestoreDestReg) 2061 .addMBB(RestoreMBB); 2062 2063 // RestoreMBB: 2064 // Restore BP from buf[3] iff this function is using BP. The address of 2065 // buf is in SX10. 2066 // FIXME: Better to not use SX10 here 2067 if (TFI->hasBP(*MF)) { 2068 MachineInstrBuilder MIB = 2069 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2070 MIB.addReg(VE::SX10); 2071 MIB.addImm(0); 2072 MIB.addImm(24); 2073 MIB.setMemRefs(MMOs); 2074 } 2075 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2076 .addImm(0) 2077 .addImm(0) 2078 .addImm(1); 2079 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2080 RestoreMBB->addSuccessor(SinkMBB); 2081 2082 MI.eraseFromParent(); 2083 return SinkMBB; 2084 } 2085 2086 MachineBasicBlock * 2087 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2088 MachineBasicBlock *MBB) const { 2089 DebugLoc DL = MI.getDebugLoc(); 2090 MachineFunction *MF = MBB->getParent(); 2091 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2092 MachineRegisterInfo &MRI = MF->getRegInfo(); 2093 2094 // Memory Reference. 2095 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2096 MI.memoperands_end()); 2097 Register BufReg = MI.getOperand(0).getReg(); 2098 2099 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2100 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2101 Register FP = VE::SX9; 2102 Register SP = VE::SX11; 2103 2104 MachineInstrBuilder MIB; 2105 2106 MachineBasicBlock *ThisMBB = MBB; 2107 2108 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2109 // 2110 // ThisMBB: 2111 // %fp = load buf[0] 2112 // %jmp = load buf[1] 2113 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2114 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2115 // jmp %jmp 2116 2117 // Reload FP. 2118 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2119 MIB.addReg(BufReg); 2120 MIB.addImm(0); 2121 MIB.addImm(0); 2122 MIB.setMemRefs(MMOs); 2123 2124 // Reload IP. 2125 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2126 MIB.addReg(BufReg); 2127 MIB.addImm(0); 2128 MIB.addImm(8); 2129 MIB.setMemRefs(MMOs); 2130 2131 // Copy BufReg to SX10 for later use in setjmp. 2132 // FIXME: Better to not use SX10 here 2133 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2134 .addReg(BufReg) 2135 .addImm(0); 2136 2137 // Reload SP. 2138 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2139 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2140 MIB.addImm(0); 2141 MIB.addImm(16); 2142 MIB.setMemRefs(MMOs); 2143 2144 // Jump. 2145 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2146 .addReg(Tmp, getKillRegState(true)) 2147 .addImm(0); 2148 2149 MI.eraseFromParent(); 2150 return ThisMBB; 2151 } 2152 2153 MachineBasicBlock * 2154 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2155 MachineBasicBlock *BB) const { 2156 DebugLoc DL = MI.getDebugLoc(); 2157 MachineFunction *MF = BB->getParent(); 2158 MachineFrameInfo &MFI = MF->getFrameInfo(); 2159 MachineRegisterInfo &MRI = MF->getRegInfo(); 2160 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2161 int FI = MFI.getFunctionContextIndex(); 2162 2163 // Get a mapping of the call site numbers to all of the landing pads they're 2164 // associated with. 2165 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2166 unsigned MaxCSNum = 0; 2167 for (auto &MBB : *MF) { 2168 if (!MBB.isEHPad()) 2169 continue; 2170 2171 MCSymbol *Sym = nullptr; 2172 for (const auto &MI : MBB) { 2173 if (MI.isDebugInstr()) 2174 continue; 2175 2176 assert(MI.isEHLabel() && "expected EH_LABEL"); 2177 Sym = MI.getOperand(0).getMCSymbol(); 2178 break; 2179 } 2180 2181 if (!MF->hasCallSiteLandingPad(Sym)) 2182 continue; 2183 2184 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2185 CallSiteNumToLPad[CSI].push_back(&MBB); 2186 MaxCSNum = std::max(MaxCSNum, CSI); 2187 } 2188 } 2189 2190 // Get an ordered list of the machine basic blocks for the jump table. 2191 std::vector<MachineBasicBlock *> LPadList; 2192 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2193 LPadList.reserve(CallSiteNumToLPad.size()); 2194 2195 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2196 for (auto &LP : CallSiteNumToLPad[CSI]) { 2197 LPadList.push_back(LP); 2198 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2199 } 2200 } 2201 2202 assert(!LPadList.empty() && 2203 "No landing pad destinations for the dispatch jump table!"); 2204 2205 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2206 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2207 // 2208 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2209 // First `i64` is callsite, so callsite is FI+8. 2210 static const int OffsetIC = 72; 2211 static const int OffsetCS = 8; 2212 2213 // Create the MBBs for the dispatch code like following: 2214 // 2215 // ThisMBB: 2216 // Prepare DispatchBB address and store it to buf[1]. 2217 // ... 2218 // 2219 // DispatchBB: 2220 // %s15 = GETGOT iff isPositionIndependent 2221 // %callsite = load callsite 2222 // brgt.l.t #size of callsites, %callsite, DispContBB 2223 // 2224 // TrapBB: 2225 // Call abort. 2226 // 2227 // DispContBB: 2228 // %breg = address of jump table 2229 // %pc = load and calculate next pc from %breg and %callsite 2230 // jmp %pc 2231 2232 // Shove the dispatch's address into the return slot in the function context. 2233 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2234 DispatchBB->setIsEHPad(true); 2235 2236 // Trap BB will causes trap like `assert(0)`. 2237 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2238 DispatchBB->addSuccessor(TrapBB); 2239 2240 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2241 DispatchBB->addSuccessor(DispContBB); 2242 2243 // Insert MBBs. 2244 MF->push_back(DispatchBB); 2245 MF->push_back(DispContBB); 2246 MF->push_back(TrapBB); 2247 2248 // Insert code to call abort in the TrapBB. 2249 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2250 /* Local */ false, /* Call */ true); 2251 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2252 .addReg(Abort, getKillRegState(true)) 2253 .addImm(0) 2254 .addImm(0); 2255 2256 // Insert code into the entry block that creates and registers the function 2257 // context. 2258 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2259 2260 // Create the jump table and associated information 2261 unsigned JTE = getJumpTableEncoding(); 2262 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2263 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2264 2265 const VERegisterInfo &RI = TII->getRegisterInfo(); 2266 // Add a register mask with no preserved registers. This results in all 2267 // registers being marked as clobbered. 2268 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2269 .addRegMask(RI.getNoPreservedMask()); 2270 2271 if (isPositionIndependent()) { 2272 // Force to generate GETGOT, since current implementation doesn't store GOT 2273 // register. 2274 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2275 } 2276 2277 // IReg is used as an index in a memory operand and therefore can't be SP 2278 const TargetRegisterClass *RC = &VE::I64RegClass; 2279 Register IReg = MRI.createVirtualRegister(RC); 2280 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2281 OffsetCS); 2282 if (LPadList.size() < 64) { 2283 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2284 .addImm(VECC::CC_ILE) 2285 .addImm(LPadList.size()) 2286 .addReg(IReg) 2287 .addMBB(TrapBB); 2288 } else { 2289 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2290 Register TmpReg = MRI.createVirtualRegister(RC); 2291 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2292 .addImm(0) 2293 .addImm(0) 2294 .addImm(LPadList.size()); 2295 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2296 .addImm(VECC::CC_ILE) 2297 .addReg(TmpReg, getKillRegState(true)) 2298 .addReg(IReg) 2299 .addMBB(TrapBB); 2300 } 2301 2302 Register BReg = MRI.createVirtualRegister(RC); 2303 Register Tmp1 = MRI.createVirtualRegister(RC); 2304 Register Tmp2 = MRI.createVirtualRegister(RC); 2305 2306 if (isPositionIndependent()) { 2307 // Create following instructions for local linkage PIC code. 2308 // lea %Tmp1, .LJTI0_0@gotoff_lo 2309 // and %Tmp2, %Tmp1, (32)0 2310 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2311 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2312 .addImm(0) 2313 .addImm(0) 2314 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2315 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2316 .addReg(Tmp1, getKillRegState(true)) 2317 .addImm(M0(32)); 2318 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2319 .addReg(VE::SX15) 2320 .addReg(Tmp2, getKillRegState(true)) 2321 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2322 } else { 2323 // Create following instructions for non-PIC code. 2324 // lea %Tmp1, .LJTI0_0@lo 2325 // and %Tmp2, %Tmp1, (32)0 2326 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2327 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2328 .addImm(0) 2329 .addImm(0) 2330 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2331 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2332 .addReg(Tmp1, getKillRegState(true)) 2333 .addImm(M0(32)); 2334 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2335 .addReg(Tmp2, getKillRegState(true)) 2336 .addImm(0) 2337 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2338 } 2339 2340 switch (JTE) { 2341 case MachineJumpTableInfo::EK_BlockAddress: { 2342 // Generate simple block address code for no-PIC model. 2343 // sll %Tmp1, %IReg, 3 2344 // lds %TReg, 0(%Tmp1, %BReg) 2345 // bcfla %TReg 2346 2347 Register TReg = MRI.createVirtualRegister(RC); 2348 Register Tmp1 = MRI.createVirtualRegister(RC); 2349 2350 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2351 .addReg(IReg, getKillRegState(true)) 2352 .addImm(3); 2353 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2354 .addReg(BReg, getKillRegState(true)) 2355 .addReg(Tmp1, getKillRegState(true)) 2356 .addImm(0); 2357 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2358 .addReg(TReg, getKillRegState(true)) 2359 .addImm(0); 2360 break; 2361 } 2362 case MachineJumpTableInfo::EK_Custom32: { 2363 // Generate block address code using differences from the function pointer 2364 // for PIC model. 2365 // sll %Tmp1, %IReg, 2 2366 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2367 // Prepare function address in BReg2. 2368 // adds.l %TReg, %BReg2, %OReg 2369 // bcfla %TReg 2370 2371 assert(isPositionIndependent()); 2372 Register OReg = MRI.createVirtualRegister(RC); 2373 Register TReg = MRI.createVirtualRegister(RC); 2374 Register Tmp1 = MRI.createVirtualRegister(RC); 2375 2376 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2377 .addReg(IReg, getKillRegState(true)) 2378 .addImm(2); 2379 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2380 .addReg(BReg, getKillRegState(true)) 2381 .addReg(Tmp1, getKillRegState(true)) 2382 .addImm(0); 2383 Register BReg2 = 2384 prepareSymbol(*DispContBB, DispContBB->end(), 2385 DispContBB->getParent()->getName(), DL, /* Local */ true); 2386 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2387 .addReg(OReg, getKillRegState(true)) 2388 .addReg(BReg2, getKillRegState(true)); 2389 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2390 .addReg(TReg, getKillRegState(true)) 2391 .addImm(0); 2392 break; 2393 } 2394 default: 2395 llvm_unreachable("Unexpected jump table encoding"); 2396 } 2397 2398 // Add the jump table entries as successors to the MBB. 2399 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2400 for (auto &LP : LPadList) 2401 if (SeenMBBs.insert(LP).second) 2402 DispContBB->addSuccessor(LP); 2403 2404 // N.B. the order the invoke BBs are processed in doesn't matter here. 2405 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2406 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2407 for (MachineBasicBlock *MBB : InvokeBBs) { 2408 // Remove the landing pad successor from the invoke block and replace it 2409 // with the new dispatch block. 2410 // Keep a copy of Successors since it's modified inside the loop. 2411 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2412 MBB->succ_rend()); 2413 // FIXME: Avoid quadratic complexity. 2414 for (auto MBBS : Successors) { 2415 if (MBBS->isEHPad()) { 2416 MBB->removeSuccessor(MBBS); 2417 MBBLPads.push_back(MBBS); 2418 } 2419 } 2420 2421 MBB->addSuccessor(DispatchBB); 2422 2423 // Find the invoke call and mark all of the callee-saved registers as 2424 // 'implicit defined' so that they're spilled. This prevents code from 2425 // moving instructions to before the EH block, where they will never be 2426 // executed. 2427 for (auto &II : reverse(*MBB)) { 2428 if (!II.isCall()) 2429 continue; 2430 2431 DenseMap<Register, bool> DefRegs; 2432 for (auto &MOp : II.operands()) 2433 if (MOp.isReg()) 2434 DefRegs[MOp.getReg()] = true; 2435 2436 MachineInstrBuilder MIB(*MF, &II); 2437 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2438 Register Reg = SavedRegs[RI]; 2439 if (!DefRegs[Reg]) 2440 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2441 } 2442 2443 break; 2444 } 2445 } 2446 2447 // Mark all former landing pads as non-landing pads. The dispatch is the only 2448 // landing pad now. 2449 for (auto &LP : MBBLPads) 2450 LP->setIsEHPad(false); 2451 2452 // The instruction is gone now. 2453 MI.eraseFromParent(); 2454 return BB; 2455 } 2456 2457 MachineBasicBlock * 2458 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2459 MachineBasicBlock *BB) const { 2460 switch (MI.getOpcode()) { 2461 default: 2462 llvm_unreachable("Unknown Custom Instruction!"); 2463 case VE::EH_SjLj_LongJmp: 2464 return emitEHSjLjLongJmp(MI, BB); 2465 case VE::EH_SjLj_SetJmp: 2466 return emitEHSjLjSetJmp(MI, BB); 2467 case VE::EH_SjLj_Setup_Dispatch: 2468 return emitSjLjDispatchBlock(MI, BB); 2469 } 2470 } 2471 2472 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2473 switch (User->getOpcode()) { 2474 default: 2475 return false; 2476 case ISD::ADD: 2477 case ISD::SUB: 2478 case ISD::MUL: 2479 case ISD::SDIV: 2480 case ISD::UDIV: 2481 case ISD::SETCC: 2482 case ISD::SMIN: 2483 case ISD::SMAX: 2484 case ISD::SHL: 2485 case ISD::SRA: 2486 case ISD::BSWAP: 2487 case ISD::SINT_TO_FP: 2488 case ISD::UINT_TO_FP: 2489 case ISD::BR_CC: 2490 case ISD::BITCAST: 2491 case ISD::ATOMIC_CMP_SWAP: 2492 case ISD::ATOMIC_SWAP: 2493 return true; 2494 case ISD::SRL: 2495 if (N->getOperand(0).getOpcode() != ISD::SRL) 2496 return true; 2497 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2498 // doesn't optimize trunc now. 2499 return false; 2500 case ISD::SELECT_CC: 2501 if (User->getOperand(2).getNode() != N && 2502 User->getOperand(3).getNode() != N) 2503 return true; 2504 LLVM_FALLTHROUGH; 2505 case ISD::AND: 2506 case ISD::OR: 2507 case ISD::XOR: 2508 case ISD::SELECT: 2509 case ISD::CopyToReg: 2510 // Check all use of selections, bit operations, and copies. If all of them 2511 // are safe, optimize truncate to extract_subreg. 2512 for (const SDNode *U : User->uses()) { 2513 switch (U->getOpcode()) { 2514 default: 2515 // If the use is an instruction which treats the source operand as i32, 2516 // it is safe to avoid truncate here. 2517 if (isI32Insn(U, N)) 2518 continue; 2519 break; 2520 case ISD::ANY_EXTEND: 2521 case ISD::SIGN_EXTEND: 2522 case ISD::ZERO_EXTEND: { 2523 // Special optimizations to the combination of ext and trunc. 2524 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2525 // since this truncate instruction clears higher 32 bits which is filled 2526 // by one of ext instructions later. 2527 assert(N->getValueType(0) == MVT::i32 && 2528 "find truncate to not i32 integer"); 2529 if (User->getOpcode() == ISD::SELECT_CC || 2530 User->getOpcode() == ISD::SELECT) 2531 continue; 2532 break; 2533 } 2534 } 2535 return false; 2536 } 2537 return true; 2538 } 2539 } 2540 2541 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2542 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2543 // is sometime too late. So, doing it at here. 2544 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2545 DAGCombinerInfo &DCI) const { 2546 assert(N->getOpcode() == ISD::TRUNCATE && 2547 "Should be called with a TRUNCATE node"); 2548 2549 SelectionDAG &DAG = DCI.DAG; 2550 SDLoc DL(N); 2551 EVT VT = N->getValueType(0); 2552 2553 // We prefer to do this when all types are legal. 2554 if (!DCI.isAfterLegalizeDAG()) 2555 return SDValue(); 2556 2557 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2558 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2559 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2560 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2561 return SDValue(); 2562 2563 // Check all use of this TRUNCATE. 2564 for (const SDNode *User : N->uses()) { 2565 // Make sure that we're not going to replace TRUNCATE for non i32 2566 // instructions. 2567 // 2568 // FIXME: Although we could sometimes handle this, and it does occur in 2569 // practice that one of the condition inputs to the select is also one of 2570 // the outputs, we currently can't deal with this. 2571 if (isI32Insn(User, N)) 2572 continue; 2573 2574 return SDValue(); 2575 } 2576 2577 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2578 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2579 N->getOperand(0), SubI32), 2580 0); 2581 } 2582 2583 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2584 DAGCombinerInfo &DCI) const { 2585 switch (N->getOpcode()) { 2586 default: 2587 break; 2588 case ISD::TRUNCATE: 2589 return combineTRUNCATE(N, DCI); 2590 } 2591 2592 return SDValue(); 2593 } 2594 2595 //===----------------------------------------------------------------------===// 2596 // VE Inline Assembly Support 2597 //===----------------------------------------------------------------------===// 2598 2599 VETargetLowering::ConstraintType 2600 VETargetLowering::getConstraintType(StringRef Constraint) const { 2601 if (Constraint.size() == 1) { 2602 switch (Constraint[0]) { 2603 default: 2604 break; 2605 case 'v': // vector registers 2606 return C_RegisterClass; 2607 } 2608 } 2609 return TargetLowering::getConstraintType(Constraint); 2610 } 2611 2612 std::pair<unsigned, const TargetRegisterClass *> 2613 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2614 StringRef Constraint, 2615 MVT VT) const { 2616 const TargetRegisterClass *RC = nullptr; 2617 if (Constraint.size() == 1) { 2618 switch (Constraint[0]) { 2619 default: 2620 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2621 case 'r': 2622 RC = &VE::I64RegClass; 2623 break; 2624 case 'v': 2625 RC = &VE::V64RegClass; 2626 break; 2627 } 2628 return std::make_pair(0U, RC); 2629 } 2630 2631 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2632 } 2633 2634 //===----------------------------------------------------------------------===// 2635 // VE Target Optimization Support 2636 //===----------------------------------------------------------------------===// 2637 2638 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2639 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2640 if (isJumpTableRelative()) 2641 return 8; 2642 2643 return TargetLowering::getMinimumJumpTableEntries(); 2644 } 2645 2646 bool VETargetLowering::hasAndNot(SDValue Y) const { 2647 EVT VT = Y.getValueType(); 2648 2649 // VE doesn't have vector and not instruction. 2650 if (VT.isVector()) 2651 return false; 2652 2653 // VE allows different immediate values for X and Y where ~X & Y. 2654 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2655 // function is used to check whether an immediate value is OK for and-not 2656 // instruction as both X and Y. Generating additional instruction to 2657 // retrieve an immediate value is no good since the purpose of this 2658 // function is to convert a series of 3 instructions to another series of 2659 // 3 instructions with better parallelism. Therefore, we return false 2660 // for all immediate values now. 2661 // FIXME: Change hasAndNot function to have two operands to make it work 2662 // correctly with Aurora VE. 2663 if (isa<ConstantSDNode>(Y)) 2664 return false; 2665 2666 // It's ok for generic registers. 2667 return true; 2668 } 2669 2670 SDValue VETargetLowering::lowerToVVP(SDValue Op, SelectionDAG &DAG) const { 2671 // Can we represent this as a VVP node. 2672 const unsigned Opcode = Op->getOpcode(); 2673 auto VVPOpcodeOpt = getVVPOpcode(Opcode); 2674 if (!VVPOpcodeOpt.hasValue()) 2675 return SDValue(); 2676 unsigned VVPOpcode = VVPOpcodeOpt.getValue(); 2677 const bool FromVP = ISD::isVPOpcode(Opcode); 2678 2679 // The representative and legalized vector type of this operation. 2680 VECustomDAG CDAG(DAG, Op); 2681 MVT MaskVT = MVT::v256i1; // TODO: packed mode. 2682 EVT OpVecVT = Op.getValueType(); 2683 EVT LegalVecVT = getTypeToTransformTo(*DAG.getContext(), OpVecVT); 2684 2685 SDValue AVL; 2686 SDValue Mask; 2687 2688 if (FromVP) { 2689 // All upstream VP SDNodes always have a mask and avl. 2690 auto MaskIdx = ISD::getVPMaskIdx(Opcode).getValue(); 2691 auto AVLIdx = ISD::getVPExplicitVectorLengthIdx(Opcode).getValue(); 2692 Mask = Op->getOperand(MaskIdx); 2693 AVL = Op->getOperand(AVLIdx); 2694 2695 } else { 2696 // Materialize the VL parameter. 2697 AVL = CDAG.getConstant(OpVecVT.getVectorNumElements(), MVT::i32); 2698 SDValue ConstTrue = CDAG.getConstant(1, MVT::i32); 2699 Mask = CDAG.getBroadcast(MaskVT, ConstTrue, AVL); 2700 } 2701 2702 if (isVVPBinaryOp(VVPOpcode)) { 2703 assert(LegalVecVT.isSimple()); 2704 return CDAG.getNode(VVPOpcode, LegalVecVT, 2705 {Op->getOperand(0), Op->getOperand(1), Mask, AVL}); 2706 } 2707 if (VVPOpcode == VEISD::VVP_SELECT) { 2708 auto Mask = Op->getOperand(0); 2709 auto OnTrue = Op->getOperand(1); 2710 auto OnFalse = Op->getOperand(2); 2711 return CDAG.getNode(VVPOpcode, LegalVecVT, {OnTrue, OnFalse, Mask, AVL}); 2712 } 2713 llvm_unreachable("lowerToVVP called for unexpected SDNode."); 2714 } 2715 2716 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2717 SelectionDAG &DAG) const { 2718 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2719 MVT VT = Op.getOperand(0).getSimpleValueType(); 2720 2721 // Special treatment for packed V64 types. 2722 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2723 (void)VT; 2724 // Example of codes: 2725 // %packed_v = extractelt %vr, %idx / 2 2726 // %v = %packed_v >> (%idx % 2 * 32) 2727 // %res = %v & 0xffffffff 2728 2729 SDValue Vec = Op.getOperand(0); 2730 SDValue Idx = Op.getOperand(1); 2731 SDLoc DL(Op); 2732 SDValue Result = Op; 2733 if (false /* Idx->isConstant() */) { 2734 // TODO: optimized implementation using constant values 2735 } else { 2736 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2737 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2738 SDValue PackedElt = 2739 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2740 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2741 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2742 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2743 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2744 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2745 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2746 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2747 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2748 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2749 MVT::i32, PackedElt, SubI32), 2750 0); 2751 2752 if (Op.getSimpleValueType() == MVT::f32) { 2753 Result = DAG.getBitcast(MVT::f32, Result); 2754 } else { 2755 assert(Op.getSimpleValueType() == MVT::i32); 2756 } 2757 } 2758 return Result; 2759 } 2760 2761 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2762 SelectionDAG &DAG) const { 2763 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2764 MVT VT = Op.getOperand(0).getSimpleValueType(); 2765 2766 // Special treatment for packed V64 types. 2767 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2768 (void)VT; 2769 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2770 // bits" required `val << 32` from C implementation's point of view. 2771 // 2772 // Example of codes: 2773 // %packed_elt = extractelt %vr, (%idx >> 1) 2774 // %shift = ((%idx & 1) ^ 1) << 5 2775 // %packed_elt &= 0xffffffff00000000 >> shift 2776 // %packed_elt |= (zext %val) << shift 2777 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2778 2779 SDLoc DL(Op); 2780 SDValue Vec = Op.getOperand(0); 2781 SDValue Val = Op.getOperand(1); 2782 SDValue Idx = Op.getOperand(2); 2783 if (Idx.getSimpleValueType() == MVT::i32) 2784 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2785 if (Val.getSimpleValueType() == MVT::f32) 2786 Val = DAG.getBitcast(MVT::i32, Val); 2787 assert(Val.getSimpleValueType() == MVT::i32); 2788 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2789 2790 SDValue Result = Op; 2791 if (false /* Idx->isConstant()*/) { 2792 // TODO: optimized implementation using constant values 2793 } else { 2794 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2795 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2796 SDValue PackedElt = 2797 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2798 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2799 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2800 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2801 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2802 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2803 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2804 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2805 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2806 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2807 Result = 2808 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2809 {HalfIdx, PackedElt, Vec}), 2810 0); 2811 } 2812 return Result; 2813 } 2814