1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VEInstrBuilder.h" 17 #include "VEMachineFunctionInfo.h" 18 #include "VERegisterInfo.h" 19 #include "VETargetMachine.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "ve-lower" 38 39 //===----------------------------------------------------------------------===// 40 // Calling Convention Implementation 41 //===----------------------------------------------------------------------===// 42 43 #include "VEGenCallingConv.inc" 44 45 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 46 switch (CallConv) { 47 default: 48 return RetCC_VE_C; 49 case CallingConv::Fast: 50 return RetCC_VE_Fast; 51 } 52 } 53 54 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 55 if (IsVarArg) 56 return CC_VE2; 57 switch (CallConv) { 58 default: 59 return CC_VE_C; 60 case CallingConv::Fast: 61 return CC_VE_Fast; 62 } 63 } 64 65 bool VETargetLowering::CanLowerReturn( 66 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 67 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 68 CCAssignFn *RetCC = getReturnCC(CallConv); 69 SmallVector<CCValAssign, 16> RVLocs; 70 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 71 return CCInfo.CheckReturn(Outs, RetCC); 72 } 73 74 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 75 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 76 77 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 78 79 void VETargetLowering::initRegisterClasses() { 80 // Set up the register classes. 81 addRegisterClass(MVT::i32, &VE::I32RegClass); 82 addRegisterClass(MVT::i64, &VE::I64RegClass); 83 addRegisterClass(MVT::f32, &VE::F32RegClass); 84 addRegisterClass(MVT::f64, &VE::I64RegClass); 85 addRegisterClass(MVT::f128, &VE::F128RegClass); 86 87 if (Subtarget->enableVPU()) { 88 for (MVT VecVT : AllVectorVTs) 89 addRegisterClass(VecVT, &VE::V64RegClass); 90 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 91 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 92 } 93 } 94 95 void VETargetLowering::initSPUActions() { 96 const auto &TM = getTargetMachine(); 97 /// Load & Store { 98 99 // VE doesn't have i1 sign extending load. 100 for (MVT VT : MVT::integer_valuetypes()) { 101 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 102 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 103 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 104 setTruncStoreAction(VT, MVT::i1, Expand); 105 } 106 107 // VE doesn't have floating point extload/truncstore, so expand them. 108 for (MVT FPVT : MVT::fp_valuetypes()) { 109 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 110 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 111 setTruncStoreAction(FPVT, OtherFPVT, Expand); 112 } 113 } 114 115 // VE doesn't have fp128 load/store, so expand them in custom lower. 116 setOperationAction(ISD::LOAD, MVT::f128, Custom); 117 setOperationAction(ISD::STORE, MVT::f128, Custom); 118 119 /// } Load & Store 120 121 // Custom legalize address nodes into LO/HI parts. 122 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 123 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 124 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 125 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 126 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 127 setOperationAction(ISD::JumpTable, PtrVT, Custom); 128 129 /// VAARG handling { 130 setOperationAction(ISD::VASTART, MVT::Other, Custom); 131 // VAARG needs to be lowered to access with 8 bytes alignment. 132 setOperationAction(ISD::VAARG, MVT::Other, Custom); 133 // Use the default implementation. 134 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 135 setOperationAction(ISD::VAEND, MVT::Other, Expand); 136 /// } VAARG handling 137 138 /// Stack { 139 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 140 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 141 142 // Use the default implementation. 143 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 144 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 145 /// } Stack 146 147 /// Branch { 148 149 // VE doesn't have BRCOND 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // BR_JT is not implemented yet. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 /// } Branch 156 157 /// Int Ops { 158 for (MVT IntVT : {MVT::i32, MVT::i64}) { 159 // VE has no REM or DIVREM operations. 160 setOperationAction(ISD::UREM, IntVT, Expand); 161 setOperationAction(ISD::SREM, IntVT, Expand); 162 setOperationAction(ISD::SDIVREM, IntVT, Expand); 163 setOperationAction(ISD::UDIVREM, IntVT, Expand); 164 165 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 166 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 167 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 168 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 169 170 // VE has no MULHU/S or U/SMUL_LOHI operations. 171 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 172 setOperationAction(ISD::MULHU, IntVT, Expand); 173 setOperationAction(ISD::MULHS, IntVT, Expand); 174 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 175 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 176 177 // VE has no CTTZ, ROTL, ROTR operations. 178 setOperationAction(ISD::CTTZ, IntVT, Expand); 179 setOperationAction(ISD::ROTL, IntVT, Expand); 180 setOperationAction(ISD::ROTR, IntVT, Expand); 181 182 // VE has 64 bits instruction which works as i64 BSWAP operation. This 183 // instruction works fine as i32 BSWAP operation with an additional 184 // parameter. Use isel patterns to lower BSWAP. 185 setOperationAction(ISD::BSWAP, IntVT, Legal); 186 187 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 188 // operations. Use isel patterns for i64, promote for i32. 189 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 190 setOperationAction(ISD::BITREVERSE, IntVT, Act); 191 setOperationAction(ISD::CTLZ, IntVT, Act); 192 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 193 setOperationAction(ISD::CTPOP, IntVT, Act); 194 195 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 196 // Use isel patterns for i64, promote for i32. 197 setOperationAction(ISD::AND, IntVT, Act); 198 setOperationAction(ISD::OR, IntVT, Act); 199 setOperationAction(ISD::XOR, IntVT, Act); 200 } 201 /// } Int Ops 202 203 /// Conversion { 204 // VE doesn't have instructions for fp<->uint, so expand them by llvm 205 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 206 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 207 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 208 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 209 210 // fp16 not supported 211 for (MVT FPVT : MVT::fp_valuetypes()) { 212 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 213 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 214 } 215 /// } Conversion 216 217 /// Floating-point Ops { 218 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 219 /// and fcmp. 220 221 // VE doesn't have following floating point operations. 222 for (MVT VT : MVT::fp_valuetypes()) { 223 setOperationAction(ISD::FNEG, VT, Expand); 224 setOperationAction(ISD::FREM, VT, Expand); 225 } 226 227 // VE doesn't have fdiv of f128. 228 setOperationAction(ISD::FDIV, MVT::f128, Expand); 229 230 for (MVT FPVT : {MVT::f32, MVT::f64}) { 231 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 232 setOperationAction(ISD::ConstantFP, FPVT, Legal); 233 } 234 /// } Floating-point Ops 235 236 /// Floating-point math functions { 237 238 // VE doesn't have following floating point math functions. 239 for (MVT VT : MVT::fp_valuetypes()) { 240 setOperationAction(ISD::FABS, VT, Expand); 241 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 242 setOperationAction(ISD::FCOS, VT, Expand); 243 setOperationAction(ISD::FSIN, VT, Expand); 244 setOperationAction(ISD::FSQRT, VT, Expand); 245 } 246 247 /// } Floating-point math functions 248 249 /// Atomic instructions { 250 251 setMaxAtomicSizeInBitsSupported(64); 252 setMinCmpXchgSizeInBits(32); 253 setSupportsUnalignedAtomics(false); 254 255 // Use custom inserter for ATOMIC_FENCE. 256 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 257 258 // Other atomic instructions. 259 for (MVT VT : MVT::integer_valuetypes()) { 260 // Support i8/i16 atomic swap. 261 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 262 263 // FIXME: Support "atmam" instructions. 264 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 265 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 266 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 267 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 268 269 // VE doesn't have follwing instructions. 270 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 271 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 272 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 273 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 274 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 278 } 279 280 /// } Atomic instructions 281 282 /// SJLJ instructions { 283 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 284 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 285 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 286 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 287 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 288 /// } SJLJ instructions 289 290 // Intrinsic instructions 291 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 292 } 293 294 void VETargetLowering::initVPUActions() { 295 for (MVT LegalVecVT : AllVectorVTs) { 296 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 297 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 298 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 299 // Translate all vector instructions with legal element types to VVP_* 300 // nodes. 301 // TODO We will custom-widen into VVP_* nodes in the future. While we are 302 // buildling the infrastructure for this, we only do this for legal vector 303 // VTs. 304 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 305 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 306 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 307 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 308 #include "VVPNodes.def" 309 } 310 311 for (MVT LegalPackedVT : AllPackedVTs) { 312 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 313 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 314 } 315 } 316 317 SDValue 318 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 319 bool IsVarArg, 320 const SmallVectorImpl<ISD::OutputArg> &Outs, 321 const SmallVectorImpl<SDValue> &OutVals, 322 const SDLoc &DL, SelectionDAG &DAG) const { 323 // CCValAssign - represent the assignment of the return value to locations. 324 SmallVector<CCValAssign, 16> RVLocs; 325 326 // CCState - Info about the registers and stack slot. 327 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 328 *DAG.getContext()); 329 330 // Analyze return values. 331 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 332 333 SDValue Flag; 334 SmallVector<SDValue, 4> RetOps(1, Chain); 335 336 // Copy the result values into the output registers. 337 for (unsigned i = 0; i != RVLocs.size(); ++i) { 338 CCValAssign &VA = RVLocs[i]; 339 assert(VA.isRegLoc() && "Can only return in registers!"); 340 assert(!VA.needsCustom() && "Unexpected custom lowering"); 341 SDValue OutVal = OutVals[i]; 342 343 // Integer return values must be sign or zero extended by the callee. 344 switch (VA.getLocInfo()) { 345 case CCValAssign::Full: 346 break; 347 case CCValAssign::SExt: 348 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 349 break; 350 case CCValAssign::ZExt: 351 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 352 break; 353 case CCValAssign::AExt: 354 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 355 break; 356 case CCValAssign::BCvt: { 357 // Convert a float return value to i64 with padding. 358 // 63 31 0 359 // +------+------+ 360 // | float| 0 | 361 // +------+------+ 362 assert(VA.getLocVT() == MVT::i64); 363 assert(VA.getValVT() == MVT::f32); 364 SDValue Undef = SDValue( 365 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 366 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 367 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 368 MVT::i64, Undef, OutVal, Sub_f32), 369 0); 370 break; 371 } 372 default: 373 llvm_unreachable("Unknown loc info!"); 374 } 375 376 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 377 378 // Guarantee that all emitted copies are stuck together with flags. 379 Flag = Chain.getValue(1); 380 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 381 } 382 383 RetOps[0] = Chain; // Update chain. 384 385 // Add the flag if we have it. 386 if (Flag.getNode()) 387 RetOps.push_back(Flag); 388 389 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 390 } 391 392 SDValue VETargetLowering::LowerFormalArguments( 393 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 394 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 395 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 396 MachineFunction &MF = DAG.getMachineFunction(); 397 398 // Get the base offset of the incoming arguments stack space. 399 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 400 // Get the size of the preserved arguments area 401 unsigned ArgsPreserved = 64; 402 403 // Analyze arguments according to CC_VE. 404 SmallVector<CCValAssign, 16> ArgLocs; 405 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 406 *DAG.getContext()); 407 // Allocate the preserved area first. 408 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 409 // We already allocated the preserved area, so the stack offset computed 410 // by CC_VE would be correct now. 411 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 412 413 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 414 CCValAssign &VA = ArgLocs[i]; 415 assert(!VA.needsCustom() && "Unexpected custom lowering"); 416 if (VA.isRegLoc()) { 417 // This argument is passed in a register. 418 // All integer register arguments are promoted by the caller to i64. 419 420 // Create a virtual register for the promoted live-in value. 421 unsigned VReg = 422 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 423 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 424 425 // The caller promoted the argument, so insert an Assert?ext SDNode so we 426 // won't promote the value again in this function. 427 switch (VA.getLocInfo()) { 428 case CCValAssign::SExt: 429 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 430 DAG.getValueType(VA.getValVT())); 431 break; 432 case CCValAssign::ZExt: 433 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 434 DAG.getValueType(VA.getValVT())); 435 break; 436 case CCValAssign::BCvt: { 437 // Extract a float argument from i64 with padding. 438 // 63 31 0 439 // +------+------+ 440 // | float| 0 | 441 // +------+------+ 442 assert(VA.getLocVT() == MVT::i64); 443 assert(VA.getValVT() == MVT::f32); 444 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 445 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 446 MVT::f32, Arg, Sub_f32), 447 0); 448 break; 449 } 450 default: 451 break; 452 } 453 454 // Truncate the register down to the argument type. 455 if (VA.isExtInLoc()) 456 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 457 458 InVals.push_back(Arg); 459 continue; 460 } 461 462 // The registers are exhausted. This argument was passed on the stack. 463 assert(VA.isMemLoc()); 464 // The CC_VE_Full/Half functions compute stack offsets relative to the 465 // beginning of the arguments area at %fp + the size of reserved area. 466 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 467 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 468 469 // Adjust offset for a float argument by adding 4 since the argument is 470 // stored in 8 bytes buffer with offset like below. LLVM generates 471 // 4 bytes load instruction, so need to adjust offset here. This 472 // adjustment is required in only LowerFormalArguments. In LowerCall, 473 // a float argument is converted to i64 first, and stored as 8 bytes 474 // data, which is required by ABI, so no need for adjustment. 475 // 0 4 476 // +------+------+ 477 // | empty| float| 478 // +------+------+ 479 if (VA.getValVT() == MVT::f32) 480 Offset += 4; 481 482 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 483 InVals.push_back( 484 DAG.getLoad(VA.getValVT(), DL, Chain, 485 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 486 MachinePointerInfo::getFixedStack(MF, FI))); 487 } 488 489 if (!IsVarArg) 490 return Chain; 491 492 // This function takes variable arguments, some of which may have been passed 493 // in registers %s0-%s8. 494 // 495 // The va_start intrinsic needs to know the offset to the first variable 496 // argument. 497 // TODO: need to calculate offset correctly once we support f128. 498 unsigned ArgOffset = ArgLocs.size() * 8; 499 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 500 // Skip the reserved area at the top of stack. 501 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 502 503 return Chain; 504 } 505 506 // FIXME? Maybe this could be a TableGen attribute on some registers and 507 // this table could be generated automatically from RegInfo. 508 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 509 const MachineFunction &MF) const { 510 Register Reg = StringSwitch<Register>(RegName) 511 .Case("sp", VE::SX11) // Stack pointer 512 .Case("fp", VE::SX9) // Frame pointer 513 .Case("sl", VE::SX8) // Stack limit 514 .Case("lr", VE::SX10) // Link register 515 .Case("tp", VE::SX14) // Thread pointer 516 .Case("outer", VE::SX12) // Outer regiser 517 .Case("info", VE::SX17) // Info area register 518 .Case("got", VE::SX15) // Global offset table register 519 .Case("plt", VE::SX16) // Procedure linkage table register 520 .Default(0); 521 522 if (Reg) 523 return Reg; 524 525 report_fatal_error("Invalid register name global variable"); 526 } 527 528 //===----------------------------------------------------------------------===// 529 // TargetLowering Implementation 530 //===----------------------------------------------------------------------===// 531 532 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 533 SmallVectorImpl<SDValue> &InVals) const { 534 SelectionDAG &DAG = CLI.DAG; 535 SDLoc DL = CLI.DL; 536 SDValue Chain = CLI.Chain; 537 auto PtrVT = getPointerTy(DAG.getDataLayout()); 538 539 // VE target does not yet support tail call optimization. 540 CLI.IsTailCall = false; 541 542 // Get the base offset of the outgoing arguments stack space. 543 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 544 // Get the size of the preserved arguments area 545 unsigned ArgsPreserved = 8 * 8u; 546 547 // Analyze operands of the call, assigning locations to each operand. 548 SmallVector<CCValAssign, 16> ArgLocs; 549 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 550 *DAG.getContext()); 551 // Allocate the preserved area first. 552 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 553 // We already allocated the preserved area, so the stack offset computed 554 // by CC_VE would be correct now. 555 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 556 557 // VE requires to use both register and stack for varargs or no-prototyped 558 // functions. 559 bool UseBoth = CLI.IsVarArg; 560 561 // Analyze operands again if it is required to store BOTH. 562 SmallVector<CCValAssign, 16> ArgLocs2; 563 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 564 ArgLocs2, *DAG.getContext()); 565 if (UseBoth) 566 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 567 568 // Get the size of the outgoing arguments stack space requirement. 569 unsigned ArgsSize = CCInfo.getNextStackOffset(); 570 571 // Keep stack frames 16-byte aligned. 572 ArgsSize = alignTo(ArgsSize, 16); 573 574 // Adjust the stack pointer to make room for the arguments. 575 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 576 // with more than 6 arguments. 577 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 578 579 // Collect the set of registers to pass to the function and their values. 580 // This will be emitted as a sequence of CopyToReg nodes glued to the call 581 // instruction. 582 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 583 584 // Collect chains from all the memory opeations that copy arguments to the 585 // stack. They must follow the stack pointer adjustment above and precede the 586 // call instruction itself. 587 SmallVector<SDValue, 8> MemOpChains; 588 589 // VE needs to get address of callee function in a register 590 // So, prepare to copy it to SX12 here. 591 592 // If the callee is a GlobalAddress node (quite common, every direct call is) 593 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 594 // Likewise ExternalSymbol -> TargetExternalSymbol. 595 SDValue Callee = CLI.Callee; 596 597 bool IsPICCall = isPositionIndependent(); 598 599 // PC-relative references to external symbols should go through $stub. 600 // If so, we need to prepare GlobalBaseReg first. 601 const TargetMachine &TM = DAG.getTarget(); 602 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 603 const GlobalValue *GV = nullptr; 604 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 605 if (CalleeG) 606 GV = CalleeG->getGlobal(); 607 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 608 bool UsePlt = !Local; 609 MachineFunction &MF = DAG.getMachineFunction(); 610 611 // Turn GlobalAddress/ExternalSymbol node into a value node 612 // containing the address of them here. 613 if (CalleeG) { 614 if (IsPICCall) { 615 if (UsePlt) 616 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 617 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 618 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 619 } else { 620 Callee = 621 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 622 } 623 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 624 if (IsPICCall) { 625 if (UsePlt) 626 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 627 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 628 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 629 } else { 630 Callee = 631 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 632 } 633 } 634 635 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 636 637 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 638 CCValAssign &VA = ArgLocs[i]; 639 SDValue Arg = CLI.OutVals[i]; 640 641 // Promote the value if needed. 642 switch (VA.getLocInfo()) { 643 default: 644 llvm_unreachable("Unknown location info!"); 645 case CCValAssign::Full: 646 break; 647 case CCValAssign::SExt: 648 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 649 break; 650 case CCValAssign::ZExt: 651 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 652 break; 653 case CCValAssign::AExt: 654 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 655 break; 656 case CCValAssign::BCvt: { 657 // Convert a float argument to i64 with padding. 658 // 63 31 0 659 // +------+------+ 660 // | float| 0 | 661 // +------+------+ 662 assert(VA.getLocVT() == MVT::i64); 663 assert(VA.getValVT() == MVT::f32); 664 SDValue Undef = SDValue( 665 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 666 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 667 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 668 MVT::i64, Undef, Arg, Sub_f32), 669 0); 670 break; 671 } 672 } 673 674 if (VA.isRegLoc()) { 675 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 676 if (!UseBoth) 677 continue; 678 VA = ArgLocs2[i]; 679 } 680 681 assert(VA.isMemLoc()); 682 683 // Create a store off the stack pointer for this argument. 684 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 685 // The argument area starts at %fp/%sp + the size of reserved area. 686 SDValue PtrOff = 687 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 688 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 689 MemOpChains.push_back( 690 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 691 } 692 693 // Emit all stores, make sure they occur before the call. 694 if (!MemOpChains.empty()) 695 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 696 697 // Build a sequence of CopyToReg nodes glued together with token chain and 698 // glue operands which copy the outgoing args into registers. The InGlue is 699 // necessary since all emitted instructions must be stuck together in order 700 // to pass the live physical registers. 701 SDValue InGlue; 702 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 703 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 704 RegsToPass[i].second, InGlue); 705 InGlue = Chain.getValue(1); 706 } 707 708 // Build the operands for the call instruction itself. 709 SmallVector<SDValue, 8> Ops; 710 Ops.push_back(Chain); 711 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 712 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 713 RegsToPass[i].second.getValueType())); 714 715 // Add a register mask operand representing the call-preserved registers. 716 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 717 const uint32_t *Mask = 718 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 719 assert(Mask && "Missing call preserved mask for calling convention"); 720 Ops.push_back(DAG.getRegisterMask(Mask)); 721 722 // Make sure the CopyToReg nodes are glued to the call instruction which 723 // consumes the registers. 724 if (InGlue.getNode()) 725 Ops.push_back(InGlue); 726 727 // Now the call itself. 728 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 729 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 730 InGlue = Chain.getValue(1); 731 732 // Revert the stack pointer immediately after the call. 733 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 734 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 735 InGlue = Chain.getValue(1); 736 737 // Now extract the return values. This is more or less the same as 738 // LowerFormalArguments. 739 740 // Assign locations to each value returned by this call. 741 SmallVector<CCValAssign, 16> RVLocs; 742 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 743 *DAG.getContext()); 744 745 // Set inreg flag manually for codegen generated library calls that 746 // return float. 747 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 748 CLI.Ins[0].Flags.setInReg(); 749 750 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 751 752 // Copy all of the result registers out of their specified physreg. 753 for (unsigned i = 0; i != RVLocs.size(); ++i) { 754 CCValAssign &VA = RVLocs[i]; 755 assert(!VA.needsCustom() && "Unexpected custom lowering"); 756 unsigned Reg = VA.getLocReg(); 757 758 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 759 // reside in the same register in the high and low bits. Reuse the 760 // CopyFromReg previous node to avoid duplicate copies. 761 SDValue RV; 762 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 763 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 764 RV = Chain.getValue(0); 765 766 // But usually we'll create a new CopyFromReg for a different register. 767 if (!RV.getNode()) { 768 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 769 Chain = RV.getValue(1); 770 InGlue = Chain.getValue(2); 771 } 772 773 // The callee promoted the return value, so insert an Assert?ext SDNode so 774 // we won't promote the value again in this function. 775 switch (VA.getLocInfo()) { 776 case CCValAssign::SExt: 777 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 778 DAG.getValueType(VA.getValVT())); 779 break; 780 case CCValAssign::ZExt: 781 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 782 DAG.getValueType(VA.getValVT())); 783 break; 784 case CCValAssign::BCvt: { 785 // Extract a float return value from i64 with padding. 786 // 63 31 0 787 // +------+------+ 788 // | float| 0 | 789 // +------+------+ 790 assert(VA.getLocVT() == MVT::i64); 791 assert(VA.getValVT() == MVT::f32); 792 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 793 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 794 MVT::f32, RV, Sub_f32), 795 0); 796 break; 797 } 798 default: 799 break; 800 } 801 802 // Truncate the register down to the return value type. 803 if (VA.isExtInLoc()) 804 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 805 806 InVals.push_back(RV); 807 } 808 809 return Chain; 810 } 811 812 bool VETargetLowering::isOffsetFoldingLegal( 813 const GlobalAddressSDNode *GA) const { 814 // VE uses 64 bit addressing, so we need multiple instructions to generate 815 // an address. Folding address with offset increases the number of 816 // instructions, so that we disable it here. Offsets will be folded in 817 // the DAG combine later if it worth to do so. 818 return false; 819 } 820 821 /// isFPImmLegal - Returns true if the target can instruction select the 822 /// specified FP immediate natively. If false, the legalizer will 823 /// materialize the FP immediate as a load from a constant pool. 824 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 825 bool ForCodeSize) const { 826 return VT == MVT::f32 || VT == MVT::f64; 827 } 828 829 /// Determine if the target supports unaligned memory accesses. 830 /// 831 /// This function returns true if the target allows unaligned memory accesses 832 /// of the specified type in the given address space. If true, it also returns 833 /// whether the unaligned memory access is "fast" in the last argument by 834 /// reference. This is used, for example, in situations where an array 835 /// copy/move/set is converted to a sequence of store operations. Its use 836 /// helps to ensure that such replacements don't generate code that causes an 837 /// alignment error (trap) on the target machine. 838 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 839 unsigned AddrSpace, 840 unsigned Align, 841 MachineMemOperand::Flags, 842 bool *Fast) const { 843 if (Fast) { 844 // It's fast anytime on VE 845 *Fast = true; 846 } 847 return true; 848 } 849 850 VETargetLowering::VETargetLowering(const TargetMachine &TM, 851 const VESubtarget &STI) 852 : TargetLowering(TM), Subtarget(&STI) { 853 // Instructions which use registers as conditionals examine all the 854 // bits (as does the pseudo SELECT_CC expansion). I don't think it 855 // matters much whether it's ZeroOrOneBooleanContent, or 856 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 857 // former. 858 setBooleanContents(ZeroOrOneBooleanContent); 859 setBooleanVectorContents(ZeroOrOneBooleanContent); 860 861 initRegisterClasses(); 862 initSPUActions(); 863 initVPUActions(); 864 865 setStackPointerRegisterToSaveRestore(VE::SX11); 866 867 // We have target-specific dag combine patterns for the following nodes: 868 setTargetDAGCombine(ISD::TRUNCATE); 869 870 // Set function alignment to 16 bytes 871 setMinFunctionAlignment(Align(16)); 872 873 // VE stores all argument by 8 bytes alignment 874 setMinStackArgumentAlignment(Align(8)); 875 876 computeRegisterProperties(Subtarget->getRegisterInfo()); 877 } 878 879 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 880 #define TARGET_NODE_CASE(NAME) \ 881 case VEISD::NAME: \ 882 return "VEISD::" #NAME; 883 switch ((VEISD::NodeType)Opcode) { 884 case VEISD::FIRST_NUMBER: 885 break; 886 TARGET_NODE_CASE(CALL) 887 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 888 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 889 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 890 TARGET_NODE_CASE(GETFUNPLT) 891 TARGET_NODE_CASE(GETSTACKTOP) 892 TARGET_NODE_CASE(GETTLSADDR) 893 TARGET_NODE_CASE(GLOBAL_BASE_REG) 894 TARGET_NODE_CASE(Hi) 895 TARGET_NODE_CASE(Lo) 896 TARGET_NODE_CASE(MEMBARRIER) 897 TARGET_NODE_CASE(RET_FLAG) 898 TARGET_NODE_CASE(TS1AM) 899 TARGET_NODE_CASE(VEC_BROADCAST) 900 901 // Register the VVP_* SDNodes. 902 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 903 #include "VVPNodes.def" 904 } 905 #undef TARGET_NODE_CASE 906 return nullptr; 907 } 908 909 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 910 EVT VT) const { 911 return MVT::i32; 912 } 913 914 // Convert to a target node and set target flags. 915 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 916 SelectionDAG &DAG) const { 917 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 918 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 919 GA->getValueType(0), GA->getOffset(), TF); 920 921 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 922 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 923 0, TF); 924 925 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 926 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 927 CP->getAlign(), CP->getOffset(), TF); 928 929 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 930 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 931 TF); 932 933 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 934 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 935 936 llvm_unreachable("Unhandled address SDNode"); 937 } 938 939 // Split Op into high and low parts according to HiTF and LoTF. 940 // Return an ADD node combining the parts. 941 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 942 SelectionDAG &DAG) const { 943 SDLoc DL(Op); 944 EVT VT = Op.getValueType(); 945 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 946 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 947 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 948 } 949 950 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 951 // or ExternalSymbol SDNode. 952 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 953 SDLoc DL(Op); 954 EVT PtrVT = Op.getValueType(); 955 956 // Handle PIC mode first. VE needs a got load for every variable! 957 if (isPositionIndependent()) { 958 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 959 960 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 961 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 962 // Create following instructions for local linkage PIC code. 963 // lea %reg, label@gotoff_lo 964 // and %reg, %reg, (32)0 965 // lea.sl %reg, label@gotoff_hi(%reg, %got) 966 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 967 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 968 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 969 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 970 } 971 // Create following instructions for not local linkage PIC code. 972 // lea %reg, label@got_lo 973 // and %reg, %reg, (32)0 974 // lea.sl %reg, label@got_hi(%reg) 975 // ld %reg, (%reg, %got) 976 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 977 VEMCExpr::VK_VE_GOT_LO32, DAG); 978 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 979 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 980 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 981 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 982 } 983 984 // This is one of the absolute code models. 985 switch (getTargetMachine().getCodeModel()) { 986 default: 987 llvm_unreachable("Unsupported absolute code model"); 988 case CodeModel::Small: 989 case CodeModel::Medium: 990 case CodeModel::Large: 991 // abs64. 992 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 993 } 994 } 995 996 /// Custom Lower { 997 998 // The mappings for emitLeading/TrailingFence for VE is designed by following 999 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1000 Instruction *VETargetLowering::emitLeadingFence(IRBuilder<> &Builder, 1001 Instruction *Inst, 1002 AtomicOrdering Ord) const { 1003 switch (Ord) { 1004 case AtomicOrdering::NotAtomic: 1005 case AtomicOrdering::Unordered: 1006 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1007 case AtomicOrdering::Monotonic: 1008 case AtomicOrdering::Acquire: 1009 return nullptr; // Nothing to do 1010 case AtomicOrdering::Release: 1011 case AtomicOrdering::AcquireRelease: 1012 return Builder.CreateFence(AtomicOrdering::Release); 1013 case AtomicOrdering::SequentiallyConsistent: 1014 if (!Inst->hasAtomicStore()) 1015 return nullptr; // Nothing to do 1016 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1017 } 1018 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1019 } 1020 1021 Instruction *VETargetLowering::emitTrailingFence(IRBuilder<> &Builder, 1022 Instruction *Inst, 1023 AtomicOrdering Ord) const { 1024 switch (Ord) { 1025 case AtomicOrdering::NotAtomic: 1026 case AtomicOrdering::Unordered: 1027 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1028 case AtomicOrdering::Monotonic: 1029 case AtomicOrdering::Release: 1030 return nullptr; // Nothing to do 1031 case AtomicOrdering::Acquire: 1032 case AtomicOrdering::AcquireRelease: 1033 return Builder.CreateFence(AtomicOrdering::Acquire); 1034 case AtomicOrdering::SequentiallyConsistent: 1035 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1036 } 1037 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1038 } 1039 1040 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1041 SelectionDAG &DAG) const { 1042 SDLoc DL(Op); 1043 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1044 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1045 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1046 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1047 1048 // VE uses Release consistency, so need a fence instruction if it is a 1049 // cross-thread fence. 1050 if (FenceSSID == SyncScope::System) { 1051 switch (FenceOrdering) { 1052 case AtomicOrdering::NotAtomic: 1053 case AtomicOrdering::Unordered: 1054 case AtomicOrdering::Monotonic: 1055 // No need to generate fencem instruction here. 1056 break; 1057 case AtomicOrdering::Acquire: 1058 // Generate "fencem 2" as acquire fence. 1059 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1060 DAG.getTargetConstant(2, DL, MVT::i32), 1061 Op.getOperand(0)), 1062 0); 1063 case AtomicOrdering::Release: 1064 // Generate "fencem 1" as release fence. 1065 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1066 DAG.getTargetConstant(1, DL, MVT::i32), 1067 Op.getOperand(0)), 1068 0); 1069 case AtomicOrdering::AcquireRelease: 1070 case AtomicOrdering::SequentiallyConsistent: 1071 // Generate "fencem 3" as acq_rel and seq_cst fence. 1072 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1073 // so seq_cst may require more instruction for them. 1074 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1075 DAG.getTargetConstant(3, DL, MVT::i32), 1076 Op.getOperand(0)), 1077 0); 1078 } 1079 } 1080 1081 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1082 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1083 } 1084 1085 TargetLowering::AtomicExpansionKind 1086 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1087 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1088 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1089 return AtomicExpansionKind::None; 1090 } 1091 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1092 1093 // Otherwise, expand it using compare and exchange instruction to not call 1094 // __sync_fetch_and_* functions. 1095 return AtomicExpansionKind::CmpXChg; 1096 } 1097 1098 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1099 SDValue &Bits) { 1100 SDLoc DL(Op); 1101 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1102 SDValue Ptr = N->getOperand(1); 1103 SDValue Val = N->getOperand(2); 1104 EVT PtrVT = Ptr.getValueType(); 1105 bool Byte = N->getMemoryVT() == MVT::i8; 1106 // Remainder = AND Ptr, 3 1107 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1108 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1109 // Bits = Remainder << 3 1110 // NewVal = Val << Bits 1111 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1112 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1113 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1114 : DAG.getConstant(3, DL, MVT::i32); 1115 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1116 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1117 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1118 } 1119 1120 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1121 SDValue Bits) { 1122 SDLoc DL(Op); 1123 EVT VT = Data.getValueType(); 1124 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1125 // NewData = Data >> Bits 1126 // Result = NewData & 0xff ; If Byte is true (1 byte) 1127 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1128 1129 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1130 return DAG.getNode(ISD::AND, DL, VT, 1131 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1132 } 1133 1134 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1135 SelectionDAG &DAG) const { 1136 SDLoc DL(Op); 1137 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1138 1139 if (N->getMemoryVT() == MVT::i8) { 1140 // For i8, use "ts1am" 1141 // Input: 1142 // ATOMIC_SWAP Ptr, Val, Order 1143 // 1144 // Output: 1145 // Remainder = AND Ptr, 3 1146 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1147 // Bits = Remainder << 3 1148 // NewVal = Val << Bits 1149 // 1150 // Aligned = AND Ptr, -4 1151 // Data = TS1AM Aligned, Flag, NewVal 1152 // 1153 // NewData = Data >> Bits 1154 // Result = NewData & 0xff ; 1 byte result 1155 SDValue Flag; 1156 SDValue Bits; 1157 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1158 1159 SDValue Ptr = N->getOperand(1); 1160 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1161 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1162 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1163 DAG.getVTList(Op.getNode()->getValueType(0), 1164 Op.getNode()->getValueType(1)), 1165 {N->getChain(), Aligned, Flag, NewVal}, 1166 N->getMemOperand()); 1167 1168 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1169 SDValue Chain = TS1AM.getValue(1); 1170 return DAG.getMergeValues({Result, Chain}, DL); 1171 } 1172 if (N->getMemoryVT() == MVT::i16) { 1173 // For i16, use "ts1am" 1174 SDValue Flag; 1175 SDValue Bits; 1176 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1177 1178 SDValue Ptr = N->getOperand(1); 1179 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1180 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1181 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1182 DAG.getVTList(Op.getNode()->getValueType(0), 1183 Op.getNode()->getValueType(1)), 1184 {N->getChain(), Aligned, Flag, NewVal}, 1185 N->getMemOperand()); 1186 1187 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1188 SDValue Chain = TS1AM.getValue(1); 1189 return DAG.getMergeValues({Result, Chain}, DL); 1190 } 1191 // Otherwise, let llvm legalize it. 1192 return Op; 1193 } 1194 1195 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1196 SelectionDAG &DAG) const { 1197 return makeAddress(Op, DAG); 1198 } 1199 1200 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1201 SelectionDAG &DAG) const { 1202 return makeAddress(Op, DAG); 1203 } 1204 1205 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1206 SelectionDAG &DAG) const { 1207 return makeAddress(Op, DAG); 1208 } 1209 1210 SDValue 1211 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1212 SelectionDAG &DAG) const { 1213 SDLoc DL(Op); 1214 1215 // Generate the following code: 1216 // t1: ch,glue = callseq_start t0, 0, 0 1217 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1218 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1219 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1220 SDValue Label = withTargetFlags(Op, 0, DAG); 1221 EVT PtrVT = Op.getValueType(); 1222 1223 // Lowering the machine isd will make sure everything is in the right 1224 // location. 1225 SDValue Chain = DAG.getEntryNode(); 1226 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1227 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1228 DAG.getMachineFunction(), CallingConv::C); 1229 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1230 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1231 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1232 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1233 DAG.getIntPtrConstant(0, DL, true), 1234 Chain.getValue(1), DL); 1235 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1236 1237 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1238 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1239 MFI.setHasCalls(true); 1240 1241 // Also generate code to prepare a GOT register if it is PIC. 1242 if (isPositionIndependent()) { 1243 MachineFunction &MF = DAG.getMachineFunction(); 1244 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1245 } 1246 1247 return Chain; 1248 } 1249 1250 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1251 SelectionDAG &DAG) const { 1252 // The current implementation of nld (2.26) doesn't allow local exec model 1253 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1254 // generate the general dynamic model code sequence. 1255 // 1256 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1257 return lowerToTLSGeneralDynamicModel(Op, DAG); 1258 } 1259 1260 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1261 return makeAddress(Op, DAG); 1262 } 1263 1264 // Lower a f128 load into two f64 loads. 1265 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1266 SDLoc DL(Op); 1267 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1268 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1269 unsigned Alignment = LdNode->getAlign().value(); 1270 if (Alignment > 8) 1271 Alignment = 8; 1272 1273 SDValue Lo64 = 1274 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1275 LdNode->getPointerInfo(), Alignment, 1276 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1277 : MachineMemOperand::MONone); 1278 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1279 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1280 DAG.getConstant(8, DL, AddrVT)); 1281 SDValue Hi64 = 1282 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1283 LdNode->getPointerInfo(), Alignment, 1284 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1285 : MachineMemOperand::MONone); 1286 1287 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1288 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1289 1290 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1291 SDNode *InFP128 = 1292 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1293 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1294 SDValue(InFP128, 0), Hi64, SubRegEven); 1295 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1296 SDValue(InFP128, 0), Lo64, SubRegOdd); 1297 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1298 SDValue(Hi64.getNode(), 1)}; 1299 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1300 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1301 return DAG.getMergeValues(Ops, DL); 1302 } 1303 1304 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1305 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1306 1307 SDValue BasePtr = LdNode->getBasePtr(); 1308 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1309 // Do not expand store instruction with frame index here because of 1310 // dependency problems. We expand it later in eliminateFrameIndex(). 1311 return Op; 1312 } 1313 1314 EVT MemVT = LdNode->getMemoryVT(); 1315 if (MemVT == MVT::f128) 1316 return lowerLoadF128(Op, DAG); 1317 1318 return Op; 1319 } 1320 1321 // Lower a f128 store into two f64 stores. 1322 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1323 SDLoc DL(Op); 1324 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1325 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1326 1327 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1328 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1329 1330 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1331 StNode->getValue(), SubRegEven); 1332 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1333 StNode->getValue(), SubRegOdd); 1334 1335 unsigned Alignment = StNode->getAlign().value(); 1336 if (Alignment > 8) 1337 Alignment = 8; 1338 1339 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1340 SDValue OutChains[2]; 1341 OutChains[0] = 1342 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1343 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1344 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1345 : MachineMemOperand::MONone); 1346 EVT AddrVT = StNode->getBasePtr().getValueType(); 1347 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1348 DAG.getConstant(8, DL, AddrVT)); 1349 OutChains[1] = 1350 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1351 MachinePointerInfo(), Alignment, 1352 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1353 : MachineMemOperand::MONone); 1354 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1355 } 1356 1357 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1358 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1359 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1360 1361 SDValue BasePtr = StNode->getBasePtr(); 1362 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1363 // Do not expand store instruction with frame index here because of 1364 // dependency problems. We expand it later in eliminateFrameIndex(). 1365 return Op; 1366 } 1367 1368 EVT MemVT = StNode->getMemoryVT(); 1369 if (MemVT == MVT::f128) 1370 return lowerStoreF128(Op, DAG); 1371 1372 // Otherwise, ask llvm to expand it. 1373 return SDValue(); 1374 } 1375 1376 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1377 MachineFunction &MF = DAG.getMachineFunction(); 1378 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1379 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1380 1381 // Need frame address to find the address of VarArgsFrameIndex. 1382 MF.getFrameInfo().setFrameAddressIsTaken(true); 1383 1384 // vastart just stores the address of the VarArgsFrameIndex slot into the 1385 // memory location argument. 1386 SDLoc DL(Op); 1387 SDValue Offset = 1388 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1389 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1390 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1391 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1392 MachinePointerInfo(SV)); 1393 } 1394 1395 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1396 SDNode *Node = Op.getNode(); 1397 EVT VT = Node->getValueType(0); 1398 SDValue InChain = Node->getOperand(0); 1399 SDValue VAListPtr = Node->getOperand(1); 1400 EVT PtrVT = VAListPtr.getValueType(); 1401 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1402 SDLoc DL(Node); 1403 SDValue VAList = 1404 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1405 SDValue Chain = VAList.getValue(1); 1406 SDValue NextPtr; 1407 1408 if (VT == MVT::f128) { 1409 // VE f128 values must be stored with 16 bytes alignment. We doesn't 1410 // know the actual alignment of VAList, so we take alignment of it 1411 // dyanmically. 1412 int Align = 16; 1413 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1414 DAG.getConstant(Align - 1, DL, PtrVT)); 1415 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1416 DAG.getConstant(-Align, DL, PtrVT)); 1417 // Increment the pointer, VAList, by 16 to the next vaarg. 1418 NextPtr = 1419 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1420 } else if (VT == MVT::f32) { 1421 // float --> need special handling like below. 1422 // 0 4 1423 // +------+------+ 1424 // | empty| float| 1425 // +------+------+ 1426 // Increment the pointer, VAList, by 8 to the next vaarg. 1427 NextPtr = 1428 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1429 // Then, adjust VAList. 1430 unsigned InternalOffset = 4; 1431 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1432 DAG.getConstant(InternalOffset, DL, PtrVT)); 1433 } else { 1434 // Increment the pointer, VAList, by 8 to the next vaarg. 1435 NextPtr = 1436 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1437 } 1438 1439 // Store the incremented VAList to the legalized pointer. 1440 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1441 1442 // Load the actual argument out of the pointer VAList. 1443 // We can't count on greater alignment than the word size. 1444 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1445 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1446 } 1447 1448 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1449 SelectionDAG &DAG) const { 1450 // Generate following code. 1451 // (void)__llvm_grow_stack(size); 1452 // ret = GETSTACKTOP; // pseudo instruction 1453 SDLoc DL(Op); 1454 1455 // Get the inputs. 1456 SDNode *Node = Op.getNode(); 1457 SDValue Chain = Op.getOperand(0); 1458 SDValue Size = Op.getOperand(1); 1459 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1460 EVT VT = Node->getValueType(0); 1461 1462 // Chain the dynamic stack allocation so that it doesn't modify the stack 1463 // pointer when other instructions are using the stack. 1464 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1465 1466 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1467 Align StackAlign = TFI.getStackAlign(); 1468 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1469 1470 // Prepare arguments 1471 TargetLowering::ArgListTy Args; 1472 TargetLowering::ArgListEntry Entry; 1473 Entry.Node = Size; 1474 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1475 Args.push_back(Entry); 1476 if (NeedsAlign) { 1477 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1478 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1479 Args.push_back(Entry); 1480 } 1481 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1482 1483 EVT PtrVT = Op.getValueType(); 1484 SDValue Callee; 1485 if (NeedsAlign) { 1486 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1487 } else { 1488 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1489 } 1490 1491 TargetLowering::CallLoweringInfo CLI(DAG); 1492 CLI.setDebugLoc(DL) 1493 .setChain(Chain) 1494 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1495 .setDiscardResult(true); 1496 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1497 Chain = pair.second; 1498 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1499 if (NeedsAlign) { 1500 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1501 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1502 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1503 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1504 } 1505 // Chain = Result.getValue(1); 1506 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1507 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1508 1509 SDValue Ops[2] = {Result, Chain}; 1510 return DAG.getMergeValues(Ops, DL); 1511 } 1512 1513 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1514 SelectionDAG &DAG) const { 1515 SDLoc DL(Op); 1516 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1517 Op.getOperand(1)); 1518 } 1519 1520 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1521 SelectionDAG &DAG) const { 1522 SDLoc DL(Op); 1523 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1524 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1525 Op.getOperand(1)); 1526 } 1527 1528 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1529 SelectionDAG &DAG) const { 1530 SDLoc DL(Op); 1531 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1532 Op.getOperand(0)); 1533 } 1534 1535 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1536 const VETargetLowering &TLI, 1537 const VESubtarget *Subtarget) { 1538 SDLoc DL(Op); 1539 MachineFunction &MF = DAG.getMachineFunction(); 1540 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1541 1542 MachineFrameInfo &MFI = MF.getFrameInfo(); 1543 MFI.setFrameAddressIsTaken(true); 1544 1545 unsigned Depth = Op.getConstantOperandVal(0); 1546 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1547 unsigned FrameReg = RegInfo->getFrameRegister(MF); 1548 SDValue FrameAddr = 1549 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1550 while (Depth--) 1551 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1552 FrameAddr, MachinePointerInfo()); 1553 return FrameAddr; 1554 } 1555 1556 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1557 const VETargetLowering &TLI, 1558 const VESubtarget *Subtarget) { 1559 MachineFunction &MF = DAG.getMachineFunction(); 1560 MachineFrameInfo &MFI = MF.getFrameInfo(); 1561 MFI.setReturnAddressIsTaken(true); 1562 1563 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1564 return SDValue(); 1565 1566 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1567 1568 SDLoc DL(Op); 1569 EVT VT = Op.getValueType(); 1570 SDValue Offset = DAG.getConstant(8, DL, VT); 1571 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1572 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1573 MachinePointerInfo()); 1574 } 1575 1576 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1577 SelectionDAG &DAG) const { 1578 SDLoc DL(Op); 1579 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1580 switch (IntNo) { 1581 default: // Don't custom lower most intrinsics. 1582 return SDValue(); 1583 case Intrinsic::eh_sjlj_lsda: { 1584 MachineFunction &MF = DAG.getMachineFunction(); 1585 MVT VT = Op.getSimpleValueType(); 1586 const VETargetMachine *TM = 1587 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1588 1589 // Create GCC_except_tableXX string. The real symbol for that will be 1590 // generated in EHStreamer::emitExceptionTable() later. So, we just 1591 // borrow it's name here. 1592 TM->getStrList()->push_back(std::string( 1593 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1594 SDValue Addr = 1595 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1596 if (isPositionIndependent()) { 1597 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1598 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1599 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1600 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1601 } 1602 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1603 } 1604 } 1605 } 1606 1607 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1608 if (!isa<BuildVectorSDNode>(N)) 1609 return false; 1610 const auto *BVN = cast<BuildVectorSDNode>(N); 1611 1612 // Find first non-undef insertion. 1613 unsigned Idx; 1614 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1615 auto ElemV = BVN->getOperand(Idx); 1616 if (!ElemV->isUndef()) 1617 break; 1618 } 1619 // Catch the (hypothetical) all-undef case. 1620 if (Idx == BVN->getNumOperands()) 1621 return false; 1622 // Remember insertion. 1623 UniqueIdx = Idx++; 1624 // Verify that all other insertions are undef. 1625 for (; Idx < BVN->getNumOperands(); ++Idx) { 1626 auto ElemV = BVN->getOperand(Idx); 1627 if (!ElemV->isUndef()) 1628 return false; 1629 } 1630 return true; 1631 } 1632 1633 static SDValue getSplatValue(SDNode *N) { 1634 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1635 return BuildVec->getSplatValue(); 1636 } 1637 return SDValue(); 1638 } 1639 1640 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1641 SelectionDAG &DAG) const { 1642 SDLoc DL(Op); 1643 unsigned NumEls = Op.getValueType().getVectorNumElements(); 1644 MVT ElemVT = Op.getSimpleValueType().getVectorElementType(); 1645 1646 // If there is just one element, expand to INSERT_VECTOR_ELT. 1647 unsigned UniqueIdx; 1648 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1649 SDValue AccuV = DAG.getUNDEF(Op.getValueType()); 1650 auto ElemV = Op->getOperand(UniqueIdx); 1651 SDValue IdxV = DAG.getConstant(UniqueIdx, DL, MVT::i64); 1652 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), AccuV, 1653 ElemV, IdxV); 1654 } 1655 1656 // Else emit a broadcast. 1657 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1658 // lower to VEC_BROADCAST 1659 MVT LegalResVT = MVT::getVectorVT(ElemVT, 256); 1660 1661 auto AVL = DAG.getConstant(NumEls, DL, MVT::i32); 1662 return DAG.getNode(VEISD::VEC_BROADCAST, DL, LegalResVT, Op.getOperand(0), 1663 AVL); 1664 } 1665 1666 // Expand 1667 return SDValue(); 1668 } 1669 1670 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1671 unsigned Opcode = Op.getOpcode(); 1672 if (ISD::isVPOpcode(Opcode)) 1673 return lowerToVVP(Op, DAG); 1674 1675 switch (Opcode) { 1676 default: 1677 llvm_unreachable("Should not custom lower this!"); 1678 case ISD::ATOMIC_FENCE: 1679 return lowerATOMIC_FENCE(Op, DAG); 1680 case ISD::ATOMIC_SWAP: 1681 return lowerATOMIC_SWAP(Op, DAG); 1682 case ISD::BlockAddress: 1683 return lowerBlockAddress(Op, DAG); 1684 case ISD::ConstantPool: 1685 return lowerConstantPool(Op, DAG); 1686 case ISD::DYNAMIC_STACKALLOC: 1687 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1688 case ISD::EH_SJLJ_LONGJMP: 1689 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1690 case ISD::EH_SJLJ_SETJMP: 1691 return lowerEH_SJLJ_SETJMP(Op, DAG); 1692 case ISD::EH_SJLJ_SETUP_DISPATCH: 1693 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1694 case ISD::FRAMEADDR: 1695 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1696 case ISD::GlobalAddress: 1697 return lowerGlobalAddress(Op, DAG); 1698 case ISD::GlobalTLSAddress: 1699 return lowerGlobalTLSAddress(Op, DAG); 1700 case ISD::INTRINSIC_WO_CHAIN: 1701 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1702 case ISD::JumpTable: 1703 return lowerJumpTable(Op, DAG); 1704 case ISD::LOAD: 1705 return lowerLOAD(Op, DAG); 1706 case ISD::RETURNADDR: 1707 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1708 case ISD::BUILD_VECTOR: 1709 return lowerBUILD_VECTOR(Op, DAG); 1710 case ISD::STORE: 1711 return lowerSTORE(Op, DAG); 1712 case ISD::VASTART: 1713 return lowerVASTART(Op, DAG); 1714 case ISD::VAARG: 1715 return lowerVAARG(Op, DAG); 1716 1717 case ISD::INSERT_VECTOR_ELT: 1718 return lowerINSERT_VECTOR_ELT(Op, DAG); 1719 case ISD::EXTRACT_VECTOR_ELT: 1720 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1721 1722 #define ADD_BINARY_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1723 #include "VVPNodes.def" 1724 return lowerToVVP(Op, DAG); 1725 } 1726 } 1727 /// } Custom Lower 1728 1729 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1730 SmallVectorImpl<SDValue> &Results, 1731 SelectionDAG &DAG) const { 1732 switch (N->getOpcode()) { 1733 case ISD::ATOMIC_SWAP: 1734 // Let LLVM expand atomic swap instruction through LowerOperation. 1735 return; 1736 default: 1737 LLVM_DEBUG(N->dumpr(&DAG)); 1738 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1739 } 1740 } 1741 1742 /// JumpTable for VE. 1743 /// 1744 /// VE cannot generate relocatable symbol in jump table. VE cannot 1745 /// generate expressions using symbols in both text segment and data 1746 /// segment like below. 1747 /// .4byte .LBB0_2-.LJTI0_0 1748 /// So, we generate offset from the top of function like below as 1749 /// a custom label. 1750 /// .4byte .LBB0_2-<function name> 1751 1752 unsigned VETargetLowering::getJumpTableEncoding() const { 1753 // Use custom label for PIC. 1754 if (isPositionIndependent()) 1755 return MachineJumpTableInfo::EK_Custom32; 1756 1757 // Otherwise, use the normal jump table encoding heuristics. 1758 return TargetLowering::getJumpTableEncoding(); 1759 } 1760 1761 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1762 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1763 unsigned Uid, MCContext &Ctx) const { 1764 assert(isPositionIndependent()); 1765 1766 // Generate custom label for PIC like below. 1767 // .4bytes .LBB0_2-<function name> 1768 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1769 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1770 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1771 return MCBinaryExpr::createSub(Value, Base, Ctx); 1772 } 1773 1774 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1775 SelectionDAG &DAG) const { 1776 assert(isPositionIndependent()); 1777 SDLoc DL(Table); 1778 Function *Function = &DAG.getMachineFunction().getFunction(); 1779 assert(Function != nullptr); 1780 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1781 1782 // In the jump table, we have following values in PIC mode. 1783 // .4bytes .LBB0_2-<function name> 1784 // We need to add this value and the address of this function to generate 1785 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1786 // instructions: 1787 // lea %reg, fun@gotoff_lo 1788 // and %reg, %reg, (32)0 1789 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 1790 // In order to do so, we need to genarate correctly marked DAG node using 1791 // makeHiLoPair. 1792 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 1793 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1794 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1795 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 1796 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 1797 } 1798 1799 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 1800 MachineBasicBlock::iterator I, 1801 MachineBasicBlock *TargetBB, 1802 const DebugLoc &DL) const { 1803 MachineFunction *MF = MBB.getParent(); 1804 MachineRegisterInfo &MRI = MF->getRegInfo(); 1805 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1806 1807 const TargetRegisterClass *RC = &VE::I64RegClass; 1808 Register Tmp1 = MRI.createVirtualRegister(RC); 1809 Register Tmp2 = MRI.createVirtualRegister(RC); 1810 Register Result = MRI.createVirtualRegister(RC); 1811 1812 if (isPositionIndependent()) { 1813 // Create following instructions for local linkage PIC code. 1814 // lea %Tmp1, TargetBB@gotoff_lo 1815 // and %Tmp2, %Tmp1, (32)0 1816 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1817 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1818 .addImm(0) 1819 .addImm(0) 1820 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 1821 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1822 .addReg(Tmp1, getKillRegState(true)) 1823 .addImm(M0(32)); 1824 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1825 .addReg(VE::SX15) 1826 .addReg(Tmp2, getKillRegState(true)) 1827 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 1828 } else { 1829 // Create following instructions for non-PIC code. 1830 // lea %Tmp1, TargetBB@lo 1831 // and %Tmp2, %Tmp1, (32)0 1832 // lea.sl %Result, TargetBB@hi(%Tmp2) 1833 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1834 .addImm(0) 1835 .addImm(0) 1836 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 1837 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1838 .addReg(Tmp1, getKillRegState(true)) 1839 .addImm(M0(32)); 1840 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1841 .addReg(Tmp2, getKillRegState(true)) 1842 .addImm(0) 1843 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 1844 } 1845 return Result; 1846 } 1847 1848 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 1849 MachineBasicBlock::iterator I, 1850 StringRef Symbol, const DebugLoc &DL, 1851 bool IsLocal = false, 1852 bool IsCall = false) const { 1853 MachineFunction *MF = MBB.getParent(); 1854 MachineRegisterInfo &MRI = MF->getRegInfo(); 1855 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1856 1857 const TargetRegisterClass *RC = &VE::I64RegClass; 1858 Register Result = MRI.createVirtualRegister(RC); 1859 1860 if (isPositionIndependent()) { 1861 if (IsCall && !IsLocal) { 1862 // Create following instructions for non-local linkage PIC code function 1863 // calls. These instructions uses IC and magic number -24, so we expand 1864 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 1865 // lea %Reg, Symbol@plt_lo(-24) 1866 // and %Reg, %Reg, (32)0 1867 // sic %s16 1868 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 1869 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 1870 .addExternalSymbol("abort"); 1871 } else if (IsLocal) { 1872 Register Tmp1 = MRI.createVirtualRegister(RC); 1873 Register Tmp2 = MRI.createVirtualRegister(RC); 1874 // Create following instructions for local linkage PIC code. 1875 // lea %Tmp1, Symbol@gotoff_lo 1876 // and %Tmp2, %Tmp1, (32)0 1877 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1878 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1879 .addImm(0) 1880 .addImm(0) 1881 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 1882 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1883 .addReg(Tmp1, getKillRegState(true)) 1884 .addImm(M0(32)); 1885 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1886 .addReg(VE::SX15) 1887 .addReg(Tmp2, getKillRegState(true)) 1888 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 1889 } else { 1890 Register Tmp1 = MRI.createVirtualRegister(RC); 1891 Register Tmp2 = MRI.createVirtualRegister(RC); 1892 // Create following instructions for not local linkage PIC code. 1893 // lea %Tmp1, Symbol@got_lo 1894 // and %Tmp2, %Tmp1, (32)0 1895 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1896 // ld %Result, 0(%Tmp3) 1897 Register Tmp3 = MRI.createVirtualRegister(RC); 1898 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1899 .addImm(0) 1900 .addImm(0) 1901 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 1902 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1903 .addReg(Tmp1, getKillRegState(true)) 1904 .addImm(M0(32)); 1905 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 1906 .addReg(VE::SX15) 1907 .addReg(Tmp2, getKillRegState(true)) 1908 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 1909 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 1910 .addReg(Tmp3, getKillRegState(true)) 1911 .addImm(0) 1912 .addImm(0); 1913 } 1914 } else { 1915 Register Tmp1 = MRI.createVirtualRegister(RC); 1916 Register Tmp2 = MRI.createVirtualRegister(RC); 1917 // Create following instructions for non-PIC code. 1918 // lea %Tmp1, Symbol@lo 1919 // and %Tmp2, %Tmp1, (32)0 1920 // lea.sl %Result, Symbol@hi(%Tmp2) 1921 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1922 .addImm(0) 1923 .addImm(0) 1924 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 1925 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1926 .addReg(Tmp1, getKillRegState(true)) 1927 .addImm(M0(32)); 1928 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1929 .addReg(Tmp2, getKillRegState(true)) 1930 .addImm(0) 1931 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 1932 } 1933 return Result; 1934 } 1935 1936 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 1937 MachineBasicBlock *MBB, 1938 MachineBasicBlock *DispatchBB, 1939 int FI, int Offset) const { 1940 DebugLoc DL = MI.getDebugLoc(); 1941 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1942 1943 Register LabelReg = 1944 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 1945 1946 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 1947 // referenced by longjmp (throw) later. 1948 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 1949 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 1950 MIB.addReg(LabelReg, getKillRegState(true)); 1951 } 1952 1953 MachineBasicBlock * 1954 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 1955 MachineBasicBlock *MBB) const { 1956 DebugLoc DL = MI.getDebugLoc(); 1957 MachineFunction *MF = MBB->getParent(); 1958 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1959 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1960 MachineRegisterInfo &MRI = MF->getRegInfo(); 1961 1962 const BasicBlock *BB = MBB->getBasicBlock(); 1963 MachineFunction::iterator I = ++MBB->getIterator(); 1964 1965 // Memory Reference. 1966 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 1967 MI.memoperands_end()); 1968 Register BufReg = MI.getOperand(1).getReg(); 1969 1970 Register DstReg; 1971 1972 DstReg = MI.getOperand(0).getReg(); 1973 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 1974 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 1975 (void)TRI; 1976 Register MainDestReg = MRI.createVirtualRegister(RC); 1977 Register RestoreDestReg = MRI.createVirtualRegister(RC); 1978 1979 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 1980 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 1981 // 1982 // ThisMBB: 1983 // buf[3] = %s17 iff %s17 is used as BP 1984 // buf[1] = RestoreMBB as IC after longjmp 1985 // # SjLjSetup RestoreMBB 1986 // 1987 // MainMBB: 1988 // v_main = 0 1989 // 1990 // SinkMBB: 1991 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 1992 // ... 1993 // 1994 // RestoreMBB: 1995 // %s17 = buf[3] = iff %s17 is used as BP 1996 // v_restore = 1 1997 // goto SinkMBB 1998 1999 MachineBasicBlock *ThisMBB = MBB; 2000 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2001 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2002 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2003 MF->insert(I, MainMBB); 2004 MF->insert(I, SinkMBB); 2005 MF->push_back(RestoreMBB); 2006 RestoreMBB->setHasAddressTaken(); 2007 2008 // Transfer the remainder of BB and its successor edges to SinkMBB. 2009 SinkMBB->splice(SinkMBB->begin(), MBB, 2010 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2011 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2012 2013 // ThisMBB: 2014 Register LabelReg = 2015 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2016 2017 // Store BP in buf[3] iff this function is using BP. 2018 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2019 if (TFI->hasBP(*MF)) { 2020 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2021 MIB.addReg(BufReg); 2022 MIB.addImm(0); 2023 MIB.addImm(24); 2024 MIB.addReg(VE::SX17); 2025 MIB.setMemRefs(MMOs); 2026 } 2027 2028 // Store IP in buf[1]. 2029 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2030 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2031 MIB.addImm(0); 2032 MIB.addImm(8); 2033 MIB.addReg(LabelReg, getKillRegState(true)); 2034 MIB.setMemRefs(MMOs); 2035 2036 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2037 2038 // Insert setup. 2039 MIB = 2040 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2041 2042 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2043 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2044 ThisMBB->addSuccessor(MainMBB); 2045 ThisMBB->addSuccessor(RestoreMBB); 2046 2047 // MainMBB: 2048 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2049 .addImm(0) 2050 .addImm(0) 2051 .addImm(0); 2052 MainMBB->addSuccessor(SinkMBB); 2053 2054 // SinkMBB: 2055 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2056 .addReg(MainDestReg) 2057 .addMBB(MainMBB) 2058 .addReg(RestoreDestReg) 2059 .addMBB(RestoreMBB); 2060 2061 // RestoreMBB: 2062 // Restore BP from buf[3] iff this function is using BP. The address of 2063 // buf is in SX10. 2064 // FIXME: Better to not use SX10 here 2065 if (TFI->hasBP(*MF)) { 2066 MachineInstrBuilder MIB = 2067 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2068 MIB.addReg(VE::SX10); 2069 MIB.addImm(0); 2070 MIB.addImm(24); 2071 MIB.setMemRefs(MMOs); 2072 } 2073 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2074 .addImm(0) 2075 .addImm(0) 2076 .addImm(1); 2077 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2078 RestoreMBB->addSuccessor(SinkMBB); 2079 2080 MI.eraseFromParent(); 2081 return SinkMBB; 2082 } 2083 2084 MachineBasicBlock * 2085 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2086 MachineBasicBlock *MBB) const { 2087 DebugLoc DL = MI.getDebugLoc(); 2088 MachineFunction *MF = MBB->getParent(); 2089 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2090 MachineRegisterInfo &MRI = MF->getRegInfo(); 2091 2092 // Memory Reference. 2093 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2094 MI.memoperands_end()); 2095 Register BufReg = MI.getOperand(0).getReg(); 2096 2097 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2098 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2099 Register FP = VE::SX9; 2100 Register SP = VE::SX11; 2101 2102 MachineInstrBuilder MIB; 2103 2104 MachineBasicBlock *ThisMBB = MBB; 2105 2106 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2107 // 2108 // ThisMBB: 2109 // %fp = load buf[0] 2110 // %jmp = load buf[1] 2111 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2112 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2113 // jmp %jmp 2114 2115 // Reload FP. 2116 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2117 MIB.addReg(BufReg); 2118 MIB.addImm(0); 2119 MIB.addImm(0); 2120 MIB.setMemRefs(MMOs); 2121 2122 // Reload IP. 2123 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2124 MIB.addReg(BufReg); 2125 MIB.addImm(0); 2126 MIB.addImm(8); 2127 MIB.setMemRefs(MMOs); 2128 2129 // Copy BufReg to SX10 for later use in setjmp. 2130 // FIXME: Better to not use SX10 here 2131 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2132 .addReg(BufReg) 2133 .addImm(0); 2134 2135 // Reload SP. 2136 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2137 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2138 MIB.addImm(0); 2139 MIB.addImm(16); 2140 MIB.setMemRefs(MMOs); 2141 2142 // Jump. 2143 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2144 .addReg(Tmp, getKillRegState(true)) 2145 .addImm(0); 2146 2147 MI.eraseFromParent(); 2148 return ThisMBB; 2149 } 2150 2151 MachineBasicBlock * 2152 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2153 MachineBasicBlock *BB) const { 2154 DebugLoc DL = MI.getDebugLoc(); 2155 MachineFunction *MF = BB->getParent(); 2156 MachineFrameInfo &MFI = MF->getFrameInfo(); 2157 MachineRegisterInfo &MRI = MF->getRegInfo(); 2158 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2159 int FI = MFI.getFunctionContextIndex(); 2160 2161 // Get a mapping of the call site numbers to all of the landing pads they're 2162 // associated with. 2163 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2164 unsigned MaxCSNum = 0; 2165 for (auto &MBB : *MF) { 2166 if (!MBB.isEHPad()) 2167 continue; 2168 2169 MCSymbol *Sym = nullptr; 2170 for (const auto &MI : MBB) { 2171 if (MI.isDebugInstr()) 2172 continue; 2173 2174 assert(MI.isEHLabel() && "expected EH_LABEL"); 2175 Sym = MI.getOperand(0).getMCSymbol(); 2176 break; 2177 } 2178 2179 if (!MF->hasCallSiteLandingPad(Sym)) 2180 continue; 2181 2182 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2183 CallSiteNumToLPad[CSI].push_back(&MBB); 2184 MaxCSNum = std::max(MaxCSNum, CSI); 2185 } 2186 } 2187 2188 // Get an ordered list of the machine basic blocks for the jump table. 2189 std::vector<MachineBasicBlock *> LPadList; 2190 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2191 LPadList.reserve(CallSiteNumToLPad.size()); 2192 2193 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2194 for (auto &LP : CallSiteNumToLPad[CSI]) { 2195 LPadList.push_back(LP); 2196 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2197 } 2198 } 2199 2200 assert(!LPadList.empty() && 2201 "No landing pad destinations for the dispatch jump table!"); 2202 2203 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2204 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2205 // 2206 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2207 // First `i64` is callsite, so callsite is FI+8. 2208 static const int OffsetIC = 72; 2209 static const int OffsetCS = 8; 2210 2211 // Create the MBBs for the dispatch code like following: 2212 // 2213 // ThisMBB: 2214 // Prepare DispatchBB address and store it to buf[1]. 2215 // ... 2216 // 2217 // DispatchBB: 2218 // %s15 = GETGOT iff isPositionIndependent 2219 // %callsite = load callsite 2220 // brgt.l.t #size of callsites, %callsite, DispContBB 2221 // 2222 // TrapBB: 2223 // Call abort. 2224 // 2225 // DispContBB: 2226 // %breg = address of jump table 2227 // %pc = load and calculate next pc from %breg and %callsite 2228 // jmp %pc 2229 2230 // Shove the dispatch's address into the return slot in the function context. 2231 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2232 DispatchBB->setIsEHPad(true); 2233 2234 // Trap BB will causes trap like `assert(0)`. 2235 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2236 DispatchBB->addSuccessor(TrapBB); 2237 2238 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2239 DispatchBB->addSuccessor(DispContBB); 2240 2241 // Insert MBBs. 2242 MF->push_back(DispatchBB); 2243 MF->push_back(DispContBB); 2244 MF->push_back(TrapBB); 2245 2246 // Insert code to call abort in the TrapBB. 2247 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2248 /* Local */ false, /* Call */ true); 2249 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2250 .addReg(Abort, getKillRegState(true)) 2251 .addImm(0) 2252 .addImm(0); 2253 2254 // Insert code into the entry block that creates and registers the function 2255 // context. 2256 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2257 2258 // Create the jump table and associated information 2259 unsigned JTE = getJumpTableEncoding(); 2260 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2261 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2262 2263 const VERegisterInfo &RI = TII->getRegisterInfo(); 2264 // Add a register mask with no preserved registers. This results in all 2265 // registers being marked as clobbered. 2266 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2267 .addRegMask(RI.getNoPreservedMask()); 2268 2269 if (isPositionIndependent()) { 2270 // Force to generate GETGOT, since current implementation doesn't store GOT 2271 // register. 2272 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2273 } 2274 2275 // IReg is used as an index in a memory operand and therefore can't be SP 2276 const TargetRegisterClass *RC = &VE::I64RegClass; 2277 Register IReg = MRI.createVirtualRegister(RC); 2278 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2279 OffsetCS); 2280 if (LPadList.size() < 64) { 2281 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2282 .addImm(VECC::CC_ILE) 2283 .addImm(LPadList.size()) 2284 .addReg(IReg) 2285 .addMBB(TrapBB); 2286 } else { 2287 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2288 Register TmpReg = MRI.createVirtualRegister(RC); 2289 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2290 .addImm(0) 2291 .addImm(0) 2292 .addImm(LPadList.size()); 2293 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2294 .addImm(VECC::CC_ILE) 2295 .addReg(TmpReg, getKillRegState(true)) 2296 .addReg(IReg) 2297 .addMBB(TrapBB); 2298 } 2299 2300 Register BReg = MRI.createVirtualRegister(RC); 2301 Register Tmp1 = MRI.createVirtualRegister(RC); 2302 Register Tmp2 = MRI.createVirtualRegister(RC); 2303 2304 if (isPositionIndependent()) { 2305 // Create following instructions for local linkage PIC code. 2306 // lea %Tmp1, .LJTI0_0@gotoff_lo 2307 // and %Tmp2, %Tmp1, (32)0 2308 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2309 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2310 .addImm(0) 2311 .addImm(0) 2312 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2313 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2314 .addReg(Tmp1, getKillRegState(true)) 2315 .addImm(M0(32)); 2316 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2317 .addReg(VE::SX15) 2318 .addReg(Tmp2, getKillRegState(true)) 2319 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2320 } else { 2321 // Create following instructions for non-PIC code. 2322 // lea %Tmp1, .LJTI0_0@lo 2323 // and %Tmp2, %Tmp1, (32)0 2324 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2325 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2326 .addImm(0) 2327 .addImm(0) 2328 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2329 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2330 .addReg(Tmp1, getKillRegState(true)) 2331 .addImm(M0(32)); 2332 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2333 .addReg(Tmp2, getKillRegState(true)) 2334 .addImm(0) 2335 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2336 } 2337 2338 switch (JTE) { 2339 case MachineJumpTableInfo::EK_BlockAddress: { 2340 // Generate simple block address code for no-PIC model. 2341 // sll %Tmp1, %IReg, 3 2342 // lds %TReg, 0(%Tmp1, %BReg) 2343 // bcfla %TReg 2344 2345 Register TReg = MRI.createVirtualRegister(RC); 2346 Register Tmp1 = MRI.createVirtualRegister(RC); 2347 2348 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2349 .addReg(IReg, getKillRegState(true)) 2350 .addImm(3); 2351 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2352 .addReg(BReg, getKillRegState(true)) 2353 .addReg(Tmp1, getKillRegState(true)) 2354 .addImm(0); 2355 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2356 .addReg(TReg, getKillRegState(true)) 2357 .addImm(0); 2358 break; 2359 } 2360 case MachineJumpTableInfo::EK_Custom32: { 2361 // Generate block address code using differences from the function pointer 2362 // for PIC model. 2363 // sll %Tmp1, %IReg, 2 2364 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2365 // Prepare function address in BReg2. 2366 // adds.l %TReg, %BReg2, %OReg 2367 // bcfla %TReg 2368 2369 assert(isPositionIndependent()); 2370 Register OReg = MRI.createVirtualRegister(RC); 2371 Register TReg = MRI.createVirtualRegister(RC); 2372 Register Tmp1 = MRI.createVirtualRegister(RC); 2373 2374 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2375 .addReg(IReg, getKillRegState(true)) 2376 .addImm(2); 2377 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2378 .addReg(BReg, getKillRegState(true)) 2379 .addReg(Tmp1, getKillRegState(true)) 2380 .addImm(0); 2381 Register BReg2 = 2382 prepareSymbol(*DispContBB, DispContBB->end(), 2383 DispContBB->getParent()->getName(), DL, /* Local */ true); 2384 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2385 .addReg(OReg, getKillRegState(true)) 2386 .addReg(BReg2, getKillRegState(true)); 2387 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2388 .addReg(TReg, getKillRegState(true)) 2389 .addImm(0); 2390 break; 2391 } 2392 default: 2393 llvm_unreachable("Unexpected jump table encoding"); 2394 } 2395 2396 // Add the jump table entries as successors to the MBB. 2397 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2398 for (auto &LP : LPadList) 2399 if (SeenMBBs.insert(LP).second) 2400 DispContBB->addSuccessor(LP); 2401 2402 // N.B. the order the invoke BBs are processed in doesn't matter here. 2403 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2404 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2405 for (MachineBasicBlock *MBB : InvokeBBs) { 2406 // Remove the landing pad successor from the invoke block and replace it 2407 // with the new dispatch block. 2408 // Keep a copy of Successors since it's modified inside the loop. 2409 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2410 MBB->succ_rend()); 2411 // FIXME: Avoid quadratic complexity. 2412 for (auto MBBS : Successors) { 2413 if (MBBS->isEHPad()) { 2414 MBB->removeSuccessor(MBBS); 2415 MBBLPads.push_back(MBBS); 2416 } 2417 } 2418 2419 MBB->addSuccessor(DispatchBB); 2420 2421 // Find the invoke call and mark all of the callee-saved registers as 2422 // 'implicit defined' so that they're spilled. This prevents code from 2423 // moving instructions to before the EH block, where they will never be 2424 // executed. 2425 for (auto &II : reverse(*MBB)) { 2426 if (!II.isCall()) 2427 continue; 2428 2429 DenseMap<Register, bool> DefRegs; 2430 for (auto &MOp : II.operands()) 2431 if (MOp.isReg()) 2432 DefRegs[MOp.getReg()] = true; 2433 2434 MachineInstrBuilder MIB(*MF, &II); 2435 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2436 Register Reg = SavedRegs[RI]; 2437 if (!DefRegs[Reg]) 2438 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2439 } 2440 2441 break; 2442 } 2443 } 2444 2445 // Mark all former landing pads as non-landing pads. The dispatch is the only 2446 // landing pad now. 2447 for (auto &LP : MBBLPads) 2448 LP->setIsEHPad(false); 2449 2450 // The instruction is gone now. 2451 MI.eraseFromParent(); 2452 return BB; 2453 } 2454 2455 MachineBasicBlock * 2456 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2457 MachineBasicBlock *BB) const { 2458 switch (MI.getOpcode()) { 2459 default: 2460 llvm_unreachable("Unknown Custom Instruction!"); 2461 case VE::EH_SjLj_LongJmp: 2462 return emitEHSjLjLongJmp(MI, BB); 2463 case VE::EH_SjLj_SetJmp: 2464 return emitEHSjLjSetJmp(MI, BB); 2465 case VE::EH_SjLj_Setup_Dispatch: 2466 return emitSjLjDispatchBlock(MI, BB); 2467 } 2468 } 2469 2470 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2471 switch (User->getOpcode()) { 2472 default: 2473 return false; 2474 case ISD::ADD: 2475 case ISD::SUB: 2476 case ISD::MUL: 2477 case ISD::SDIV: 2478 case ISD::UDIV: 2479 case ISD::SETCC: 2480 case ISD::SMIN: 2481 case ISD::SMAX: 2482 case ISD::SHL: 2483 case ISD::SRA: 2484 case ISD::BSWAP: 2485 case ISD::SINT_TO_FP: 2486 case ISD::UINT_TO_FP: 2487 case ISD::BR_CC: 2488 case ISD::BITCAST: 2489 case ISD::ATOMIC_CMP_SWAP: 2490 case ISD::ATOMIC_SWAP: 2491 return true; 2492 case ISD::SRL: 2493 if (N->getOperand(0).getOpcode() != ISD::SRL) 2494 return true; 2495 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2496 // doesn't optimize trunc now. 2497 return false; 2498 case ISD::SELECT_CC: 2499 if (User->getOperand(2).getNode() != N && 2500 User->getOperand(3).getNode() != N) 2501 return true; 2502 LLVM_FALLTHROUGH; 2503 case ISD::AND: 2504 case ISD::OR: 2505 case ISD::XOR: 2506 case ISD::SELECT: 2507 case ISD::CopyToReg: 2508 // Check all use of selections, bit operations, and copies. If all of them 2509 // are safe, optimize truncate to extract_subreg. 2510 for (SDNode::use_iterator UI = User->use_begin(), UE = User->use_end(); 2511 UI != UE; ++UI) { 2512 switch ((*UI)->getOpcode()) { 2513 default: 2514 // If the use is an instruction which treats the source operand as i32, 2515 // it is safe to avoid truncate here. 2516 if (isI32Insn(*UI, N)) 2517 continue; 2518 break; 2519 case ISD::ANY_EXTEND: 2520 case ISD::SIGN_EXTEND: 2521 case ISD::ZERO_EXTEND: { 2522 // Special optimizations to the combination of ext and trunc. 2523 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2524 // since this truncate instruction clears higher 32 bits which is filled 2525 // by one of ext instructions later. 2526 assert(N->getValueType(0) == MVT::i32 && 2527 "find truncate to not i32 integer"); 2528 if (User->getOpcode() == ISD::SELECT_CC || 2529 User->getOpcode() == ISD::SELECT) 2530 continue; 2531 break; 2532 } 2533 } 2534 return false; 2535 } 2536 return true; 2537 } 2538 } 2539 2540 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2541 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2542 // is sometime too late. So, doing it at here. 2543 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2544 DAGCombinerInfo &DCI) const { 2545 assert(N->getOpcode() == ISD::TRUNCATE && 2546 "Should be called with a TRUNCATE node"); 2547 2548 SelectionDAG &DAG = DCI.DAG; 2549 SDLoc DL(N); 2550 EVT VT = N->getValueType(0); 2551 2552 // We prefer to do this when all types are legal. 2553 if (!DCI.isAfterLegalizeDAG()) 2554 return SDValue(); 2555 2556 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2557 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2558 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2559 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2560 return SDValue(); 2561 2562 // Check all use of this TRUNCATE. 2563 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; 2564 ++UI) { 2565 SDNode *User = *UI; 2566 2567 // Make sure that we're not going to replace TRUNCATE for non i32 2568 // instructions. 2569 // 2570 // FIXME: Although we could sometimes handle this, and it does occur in 2571 // practice that one of the condition inputs to the select is also one of 2572 // the outputs, we currently can't deal with this. 2573 if (isI32Insn(User, N)) 2574 continue; 2575 2576 return SDValue(); 2577 } 2578 2579 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2580 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2581 N->getOperand(0), SubI32), 2582 0); 2583 } 2584 2585 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2586 DAGCombinerInfo &DCI) const { 2587 switch (N->getOpcode()) { 2588 default: 2589 break; 2590 case ISD::TRUNCATE: 2591 return combineTRUNCATE(N, DCI); 2592 } 2593 2594 return SDValue(); 2595 } 2596 2597 //===----------------------------------------------------------------------===// 2598 // VE Inline Assembly Support 2599 //===----------------------------------------------------------------------===// 2600 2601 VETargetLowering::ConstraintType 2602 VETargetLowering::getConstraintType(StringRef Constraint) const { 2603 if (Constraint.size() == 1) { 2604 switch (Constraint[0]) { 2605 default: 2606 break; 2607 case 'v': // vector registers 2608 return C_RegisterClass; 2609 } 2610 } 2611 return TargetLowering::getConstraintType(Constraint); 2612 } 2613 2614 std::pair<unsigned, const TargetRegisterClass *> 2615 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2616 StringRef Constraint, 2617 MVT VT) const { 2618 const TargetRegisterClass *RC = nullptr; 2619 if (Constraint.size() == 1) { 2620 switch (Constraint[0]) { 2621 default: 2622 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2623 case 'r': 2624 RC = &VE::I64RegClass; 2625 break; 2626 case 'v': 2627 RC = &VE::V64RegClass; 2628 break; 2629 } 2630 return std::make_pair(0U, RC); 2631 } 2632 2633 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2634 } 2635 2636 //===----------------------------------------------------------------------===// 2637 // VE Target Optimization Support 2638 //===----------------------------------------------------------------------===// 2639 2640 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2641 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2642 if (isJumpTableRelative()) 2643 return 8; 2644 2645 return TargetLowering::getMinimumJumpTableEntries(); 2646 } 2647 2648 bool VETargetLowering::hasAndNot(SDValue Y) const { 2649 EVT VT = Y.getValueType(); 2650 2651 // VE doesn't have vector and not instruction. 2652 if (VT.isVector()) 2653 return false; 2654 2655 // VE allows different immediate values for X and Y where ~X & Y. 2656 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2657 // function is used to check whether an immediate value is OK for and-not 2658 // instruction as both X and Y. Generating additional instruction to 2659 // retrieve an immediate value is no good since the purpose of this 2660 // function is to convert a series of 3 instructions to another series of 2661 // 3 instructions with better parallelism. Therefore, we return false 2662 // for all immediate values now. 2663 // FIXME: Change hasAndNot function to have two operands to make it work 2664 // correctly with Aurora VE. 2665 if (isa<ConstantSDNode>(Y)) 2666 return false; 2667 2668 // It's ok for generic registers. 2669 return true; 2670 } 2671 2672 /// \returns the VVP_* SDNode opcode corresponsing to \p OC. 2673 static Optional<unsigned> getVVPOpcode(unsigned Opcode) { 2674 switch (Opcode) { 2675 #define HANDLE_VP_TO_VVP(VPOPC, VVPNAME) \ 2676 case ISD::VPOPC: \ 2677 return VEISD::VVPNAME; 2678 #define ADD_VVP_OP(VVPNAME, SDNAME) \ 2679 case VEISD::VVPNAME: \ 2680 case ISD::SDNAME: \ 2681 return VEISD::VVPNAME; 2682 #include "VVPNodes.def" 2683 } 2684 return None; 2685 } 2686 2687 SDValue VETargetLowering::lowerToVVP(SDValue Op, SelectionDAG &DAG) const { 2688 // Can we represent this as a VVP node. 2689 const unsigned Opcode = Op->getOpcode(); 2690 auto VVPOpcodeOpt = getVVPOpcode(Opcode); 2691 if (!VVPOpcodeOpt.hasValue()) 2692 return SDValue(); 2693 unsigned VVPOpcode = VVPOpcodeOpt.getValue(); 2694 const bool FromVP = ISD::isVPOpcode(Opcode); 2695 2696 // The representative and legalized vector type of this operation. 2697 SDLoc DL(Op); 2698 MVT MaskVT = MVT::v256i1; // TODO: packed mode. 2699 EVT OpVecVT = Op.getValueType(); 2700 EVT LegalVecVT = getTypeToTransformTo(*DAG.getContext(), OpVecVT); 2701 2702 SDValue AVL; 2703 SDValue Mask; 2704 2705 if (FromVP) { 2706 // All upstream VP SDNodes always have a mask and avl. 2707 auto MaskIdx = ISD::getVPMaskIdx(Opcode).getValue(); 2708 auto AVLIdx = ISD::getVPExplicitVectorLengthIdx(Opcode).getValue(); 2709 Mask = Op->getOperand(MaskIdx); 2710 AVL = Op->getOperand(AVLIdx); 2711 2712 } else { 2713 // Materialize the VL parameter. 2714 AVL = DAG.getConstant(OpVecVT.getVectorNumElements(), DL, MVT::i32); 2715 SDValue ConstTrue = DAG.getConstant(1, DL, MVT::i32); 2716 Mask = DAG.getNode(VEISD::VEC_BROADCAST, DL, MaskVT, 2717 ConstTrue); // emit a VEISD::VEC_BROADCAST here. 2718 } 2719 2720 // Categories we are interested in. 2721 bool IsBinaryOp = false; 2722 2723 switch (VVPOpcode) { 2724 #define ADD_BINARY_VVP_OP(VVPNAME, ...) \ 2725 case VEISD::VVPNAME: \ 2726 IsBinaryOp = true; \ 2727 break; 2728 #include "VVPNodes.def" 2729 } 2730 2731 if (IsBinaryOp) { 2732 assert(LegalVecVT.isSimple()); 2733 return DAG.getNode(VVPOpcode, DL, LegalVecVT, Op->getOperand(0), 2734 Op->getOperand(1), Mask, AVL); 2735 } 2736 llvm_unreachable("lowerToVVP called for unexpected SDNode."); 2737 } 2738 2739 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2740 SelectionDAG &DAG) const { 2741 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2742 MVT VT = Op.getOperand(0).getSimpleValueType(); 2743 2744 // Special treatment for packed V64 types. 2745 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2746 // Example of codes: 2747 // %packed_v = extractelt %vr, %idx / 2 2748 // %v = %packed_v >> (%idx % 2 * 32) 2749 // %res = %v & 0xffffffff 2750 2751 SDValue Vec = Op.getOperand(0); 2752 SDValue Idx = Op.getOperand(1); 2753 SDLoc DL(Op); 2754 SDValue Result = Op; 2755 if (0 /* Idx->isConstant() */) { 2756 // TODO: optimized implementation using constant values 2757 } else { 2758 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2759 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2760 SDValue PackedElt = 2761 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2762 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2763 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2764 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2765 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2766 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2767 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2768 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2769 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2770 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2771 MVT::i32, PackedElt, SubI32), 2772 0); 2773 2774 if (Op.getSimpleValueType() == MVT::f32) { 2775 Result = DAG.getBitcast(MVT::f32, Result); 2776 } else { 2777 assert(Op.getSimpleValueType() == MVT::i32); 2778 } 2779 } 2780 return Result; 2781 } 2782 2783 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2784 SelectionDAG &DAG) const { 2785 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2786 MVT VT = Op.getOperand(0).getSimpleValueType(); 2787 2788 // Special treatment for packed V64 types. 2789 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2790 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2791 // bits" required `val << 32` from C implementation's point of view. 2792 // 2793 // Example of codes: 2794 // %packed_elt = extractelt %vr, (%idx >> 1) 2795 // %shift = ((%idx & 1) ^ 1) << 5 2796 // %packed_elt &= 0xffffffff00000000 >> shift 2797 // %packed_elt |= (zext %val) << shift 2798 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2799 2800 SDLoc DL(Op); 2801 SDValue Vec = Op.getOperand(0); 2802 SDValue Val = Op.getOperand(1); 2803 SDValue Idx = Op.getOperand(2); 2804 if (Idx.getSimpleValueType() == MVT::i32) 2805 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2806 if (Val.getSimpleValueType() == MVT::f32) 2807 Val = DAG.getBitcast(MVT::i32, Val); 2808 assert(Val.getSimpleValueType() == MVT::i32); 2809 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2810 2811 SDValue Result = Op; 2812 if (0 /* Idx->isConstant()*/) { 2813 // TODO: optimized implementation using constant values 2814 } else { 2815 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2816 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2817 SDValue PackedElt = 2818 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2819 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2820 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2821 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2822 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2823 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2824 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2825 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2826 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2827 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2828 Result = 2829 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2830 {HalfIdx, PackedElt, Vec}), 2831 0); 2832 } 2833 return Result; 2834 } 2835