1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/KnownBits.h" 35 using namespace llvm; 36 37 38 //===----------------------------------------------------------------------===// 39 // Calling Convention Implementation 40 //===----------------------------------------------------------------------===// 41 42 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 43 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 44 ISD::ArgFlagsTy &ArgFlags, CCState &State) 45 { 46 assert (ArgFlags.isSRet()); 47 48 // Assign SRet argument. 49 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 50 0, 51 LocVT, LocInfo)); 52 return true; 53 } 54 55 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 56 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 57 ISD::ArgFlagsTy &ArgFlags, CCState &State) 58 { 59 static const MCPhysReg RegList[] = { 60 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 61 }; 62 // Try to get first reg. 63 if (Register Reg = State.AllocateReg(RegList)) { 64 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 65 } else { 66 // Assign whole thing in stack. 67 State.addLoc(CCValAssign::getCustomMem( 68 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 69 return true; 70 } 71 72 // Try to get second reg. 73 if (Register Reg = State.AllocateReg(RegList)) 74 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 75 else 76 State.addLoc(CCValAssign::getCustomMem( 77 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 78 return true; 79 } 80 81 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 82 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 83 ISD::ArgFlagsTy &ArgFlags, CCState &State) 84 { 85 static const MCPhysReg RegList[] = { 86 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 87 }; 88 89 // Try to get first reg. 90 if (Register Reg = State.AllocateReg(RegList)) 91 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 92 else 93 return false; 94 95 // Try to get second reg. 96 if (Register Reg = State.AllocateReg(RegList)) 97 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 98 else 99 return false; 100 101 return true; 102 } 103 104 // Allocate a full-sized argument for the 64-bit ABI. 105 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, 106 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 107 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 108 assert((LocVT == MVT::f32 || LocVT == MVT::f128 109 || LocVT.getSizeInBits() == 64) && 110 "Can't handle non-64 bits locations"); 111 112 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 113 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 114 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 115 unsigned Offset = State.AllocateStack(size, alignment); 116 unsigned Reg = 0; 117 118 if (LocVT == MVT::i64 && Offset < 6*8) 119 // Promote integers to %i0-%i5. 120 Reg = SP::I0 + Offset/8; 121 else if (LocVT == MVT::f64 && Offset < 16*8) 122 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 123 Reg = SP::D0 + Offset/8; 124 else if (LocVT == MVT::f32 && Offset < 16*8) 125 // Promote floats to %f1, %f3, ... 126 Reg = SP::F1 + Offset/4; 127 else if (LocVT == MVT::f128 && Offset < 16*8) 128 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 129 Reg = SP::Q0 + Offset/16; 130 131 // Promote to register when possible, otherwise use the stack slot. 132 if (Reg) { 133 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 134 return true; 135 } 136 137 // Bail out if this is a return CC and we run out of registers to place 138 // values into. 139 if (IsReturn) 140 return false; 141 142 // This argument goes on the stack in an 8-byte slot. 143 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 144 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 145 if (LocVT == MVT::f32) 146 Offset += 4; 147 148 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 149 return true; 150 } 151 152 // Allocate a half-sized argument for the 64-bit ABI. 153 // 154 // This is used when passing { float, int } structs by value in registers. 155 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, 156 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 157 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 158 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 159 unsigned Offset = State.AllocateStack(4, Align(4)); 160 161 if (LocVT == MVT::f32 && Offset < 16*8) { 162 // Promote floats to %f0-%f31. 163 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 164 LocVT, LocInfo)); 165 return true; 166 } 167 168 if (LocVT == MVT::i32 && Offset < 6*8) { 169 // Promote integers to %i0-%i5, using half the register. 170 unsigned Reg = SP::I0 + Offset/8; 171 LocVT = MVT::i64; 172 LocInfo = CCValAssign::AExt; 173 174 // Set the Custom bit if this i32 goes in the high bits of a register. 175 if (Offset % 8 == 0) 176 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 177 LocVT, LocInfo)); 178 else 179 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 180 return true; 181 } 182 183 // Bail out if this is a return CC and we run out of registers to place 184 // values into. 185 if (IsReturn) 186 return false; 187 188 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 189 return true; 190 } 191 192 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 193 CCValAssign::LocInfo &LocInfo, 194 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 195 return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 196 State); 197 } 198 199 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 200 CCValAssign::LocInfo &LocInfo, 201 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 202 return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 203 State); 204 } 205 206 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 207 CCValAssign::LocInfo &LocInfo, 208 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 209 return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 210 State); 211 } 212 213 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 214 CCValAssign::LocInfo &LocInfo, 215 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 216 return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 217 State); 218 } 219 220 #include "SparcGenCallingConv.inc" 221 222 // The calling conventions in SparcCallingConv.td are described in terms of the 223 // callee's register window. This function translates registers to the 224 // corresponding caller window %o register. 225 static unsigned toCallerWindow(unsigned Reg) { 226 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 227 "Unexpected enum"); 228 if (Reg >= SP::I0 && Reg <= SP::I7) 229 return Reg - SP::I0 + SP::O0; 230 return Reg; 231 } 232 233 bool SparcTargetLowering::CanLowerReturn( 234 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 235 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 236 SmallVector<CCValAssign, 16> RVLocs; 237 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 238 return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 239 : RetCC_Sparc32); 240 } 241 242 SDValue 243 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 244 bool IsVarArg, 245 const SmallVectorImpl<ISD::OutputArg> &Outs, 246 const SmallVectorImpl<SDValue> &OutVals, 247 const SDLoc &DL, SelectionDAG &DAG) const { 248 if (Subtarget->is64Bit()) 249 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 250 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 251 } 252 253 SDValue 254 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 255 bool IsVarArg, 256 const SmallVectorImpl<ISD::OutputArg> &Outs, 257 const SmallVectorImpl<SDValue> &OutVals, 258 const SDLoc &DL, SelectionDAG &DAG) const { 259 MachineFunction &MF = DAG.getMachineFunction(); 260 261 // CCValAssign - represent the assignment of the return value to locations. 262 SmallVector<CCValAssign, 16> RVLocs; 263 264 // CCState - Info about the registers and stack slot. 265 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 266 *DAG.getContext()); 267 268 // Analyze return values. 269 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 270 271 SDValue Glue; 272 SmallVector<SDValue, 4> RetOps(1, Chain); 273 // Make room for the return address offset. 274 RetOps.push_back(SDValue()); 275 276 // Copy the result values into the output registers. 277 for (unsigned i = 0, realRVLocIdx = 0; 278 i != RVLocs.size(); 279 ++i, ++realRVLocIdx) { 280 CCValAssign &VA = RVLocs[i]; 281 assert(VA.isRegLoc() && "Can only return in registers!"); 282 283 SDValue Arg = OutVals[realRVLocIdx]; 284 285 if (VA.needsCustom()) { 286 assert(VA.getLocVT() == MVT::v2i32); 287 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 288 // happen by default if this wasn't a legal type) 289 290 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 291 Arg, 292 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 293 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 294 Arg, 295 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 296 297 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue); 298 Glue = Chain.getValue(1); 299 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 300 VA = RVLocs[++i]; // skip ahead to next loc 301 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 302 Glue); 303 } else 304 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 305 306 // Guarantee that all emitted copies are stuck together with flags. 307 Glue = Chain.getValue(1); 308 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 309 } 310 311 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 312 // If the function returns a struct, copy the SRetReturnReg to I0 313 if (MF.getFunction().hasStructRetAttr()) { 314 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 315 Register Reg = SFI->getSRetReturnReg(); 316 if (!Reg) 317 llvm_unreachable("sret virtual register not created in the entry block"); 318 auto PtrVT = getPointerTy(DAG.getDataLayout()); 319 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 320 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue); 321 Glue = Chain.getValue(1); 322 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 323 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 324 } 325 326 RetOps[0] = Chain; // Update chain. 327 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 328 329 // Add the glue if we have it. 330 if (Glue.getNode()) 331 RetOps.push_back(Glue); 332 333 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 334 } 335 336 // Lower return values for the 64-bit ABI. 337 // Return values are passed the exactly the same way as function arguments. 338 SDValue 339 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 340 bool IsVarArg, 341 const SmallVectorImpl<ISD::OutputArg> &Outs, 342 const SmallVectorImpl<SDValue> &OutVals, 343 const SDLoc &DL, SelectionDAG &DAG) const { 344 // CCValAssign - represent the assignment of the return value to locations. 345 SmallVector<CCValAssign, 16> RVLocs; 346 347 // CCState - Info about the registers and stack slot. 348 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 349 *DAG.getContext()); 350 351 // Analyze return values. 352 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 353 354 SDValue Glue; 355 SmallVector<SDValue, 4> RetOps(1, Chain); 356 357 // The second operand on the return instruction is the return address offset. 358 // The return address is always %i7+8 with the 64-bit ABI. 359 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 360 361 // Copy the result values into the output registers. 362 for (unsigned i = 0; i != RVLocs.size(); ++i) { 363 CCValAssign &VA = RVLocs[i]; 364 assert(VA.isRegLoc() && "Can only return in registers!"); 365 SDValue OutVal = OutVals[i]; 366 367 // Integer return values must be sign or zero extended by the callee. 368 switch (VA.getLocInfo()) { 369 case CCValAssign::Full: break; 370 case CCValAssign::SExt: 371 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 372 break; 373 case CCValAssign::ZExt: 374 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 375 break; 376 case CCValAssign::AExt: 377 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 378 break; 379 default: 380 llvm_unreachable("Unknown loc info!"); 381 } 382 383 // The custom bit on an i32 return value indicates that it should be passed 384 // in the high bits of the register. 385 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 386 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 387 DAG.getConstant(32, DL, MVT::i32)); 388 389 // The next value may go in the low bits of the same register. 390 // Handle both at once. 391 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 392 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 393 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 394 // Skip the next value, it's already done. 395 ++i; 396 } 397 } 398 399 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 400 401 // Guarantee that all emitted copies are stuck together with flags. 402 Glue = Chain.getValue(1); 403 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 404 } 405 406 RetOps[0] = Chain; // Update chain. 407 408 // Add the flag if we have it. 409 if (Glue.getNode()) 410 RetOps.push_back(Glue); 411 412 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 413 } 414 415 SDValue SparcTargetLowering::LowerFormalArguments( 416 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 417 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 418 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 419 if (Subtarget->is64Bit()) 420 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 421 DL, DAG, InVals); 422 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 423 DL, DAG, InVals); 424 } 425 426 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 427 /// passed in either one or two GPRs, including FP values. TODO: we should 428 /// pass FP values in FP registers for fastcc functions. 429 SDValue SparcTargetLowering::LowerFormalArguments_32( 430 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 431 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 432 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 433 MachineFunction &MF = DAG.getMachineFunction(); 434 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 435 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 436 437 // Assign locations to all of the incoming arguments. 438 SmallVector<CCValAssign, 16> ArgLocs; 439 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 440 *DAG.getContext()); 441 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 442 443 const unsigned StackOffset = 92; 444 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 445 446 unsigned InIdx = 0; 447 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 448 CCValAssign &VA = ArgLocs[i]; 449 450 if (Ins[InIdx].Flags.isSRet()) { 451 if (InIdx != 0) 452 report_fatal_error("sparc only supports sret on the first parameter"); 453 // Get SRet from [%fp+64]. 454 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 455 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 456 SDValue Arg = 457 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 458 InVals.push_back(Arg); 459 continue; 460 } 461 462 if (VA.isRegLoc()) { 463 if (VA.needsCustom()) { 464 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 465 466 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 467 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 468 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 469 470 assert(i+1 < e); 471 CCValAssign &NextVA = ArgLocs[++i]; 472 473 SDValue LoVal; 474 if (NextVA.isMemLoc()) { 475 int FrameIdx = MF.getFrameInfo(). 476 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 477 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 478 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 479 } else { 480 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 481 &SP::IntRegsRegClass); 482 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 483 } 484 485 if (IsLittleEndian) 486 std::swap(LoVal, HiVal); 487 488 SDValue WholeValue = 489 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 490 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 491 InVals.push_back(WholeValue); 492 continue; 493 } 494 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 495 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 496 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 497 if (VA.getLocVT() == MVT::f32) 498 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 499 else if (VA.getLocVT() != MVT::i32) { 500 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 501 DAG.getValueType(VA.getLocVT())); 502 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 503 } 504 InVals.push_back(Arg); 505 continue; 506 } 507 508 assert(VA.isMemLoc()); 509 510 unsigned Offset = VA.getLocMemOffset()+StackOffset; 511 auto PtrVT = getPointerTy(DAG.getDataLayout()); 512 513 if (VA.needsCustom()) { 514 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 515 // If it is double-word aligned, just load. 516 if (Offset % 8 == 0) { 517 int FI = MF.getFrameInfo().CreateFixedObject(8, 518 Offset, 519 true); 520 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 521 SDValue Load = 522 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 523 InVals.push_back(Load); 524 continue; 525 } 526 527 int FI = MF.getFrameInfo().CreateFixedObject(4, 528 Offset, 529 true); 530 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 531 SDValue HiVal = 532 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 533 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 534 Offset+4, 535 true); 536 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 537 538 SDValue LoVal = 539 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 540 541 if (IsLittleEndian) 542 std::swap(LoVal, HiVal); 543 544 SDValue WholeValue = 545 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 546 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 547 InVals.push_back(WholeValue); 548 continue; 549 } 550 551 int FI = MF.getFrameInfo().CreateFixedObject(4, 552 Offset, 553 true); 554 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 555 SDValue Load ; 556 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 557 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 558 } else if (VA.getValVT() == MVT::f128) { 559 report_fatal_error("SPARCv8 does not handle f128 in calls; " 560 "pass indirectly"); 561 } else { 562 // We shouldn't see any other value types here. 563 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 564 } 565 InVals.push_back(Load); 566 } 567 568 if (MF.getFunction().hasStructRetAttr()) { 569 // Copy the SRet Argument to SRetReturnReg. 570 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 571 Register Reg = SFI->getSRetReturnReg(); 572 if (!Reg) { 573 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 574 SFI->setSRetReturnReg(Reg); 575 } 576 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 577 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 578 } 579 580 // Store remaining ArgRegs to the stack if this is a varargs function. 581 if (isVarArg) { 582 static const MCPhysReg ArgRegs[] = { 583 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 584 }; 585 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 586 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 587 unsigned ArgOffset = CCInfo.getStackSize(); 588 if (NumAllocated == 6) 589 ArgOffset += StackOffset; 590 else { 591 assert(!ArgOffset); 592 ArgOffset = 68+4*NumAllocated; 593 } 594 595 // Remember the vararg offset for the va_start implementation. 596 FuncInfo->setVarArgsFrameOffset(ArgOffset); 597 598 std::vector<SDValue> OutChains; 599 600 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 601 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 602 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 603 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 604 605 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 606 true); 607 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 608 609 OutChains.push_back( 610 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 611 ArgOffset += 4; 612 } 613 614 if (!OutChains.empty()) { 615 OutChains.push_back(Chain); 616 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 617 } 618 } 619 620 return Chain; 621 } 622 623 // Lower formal arguments for the 64 bit ABI. 624 SDValue SparcTargetLowering::LowerFormalArguments_64( 625 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 626 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 627 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 628 MachineFunction &MF = DAG.getMachineFunction(); 629 630 // Analyze arguments according to CC_Sparc64. 631 SmallVector<CCValAssign, 16> ArgLocs; 632 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 633 *DAG.getContext()); 634 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 635 636 // The argument array begins at %fp+BIAS+128, after the register save area. 637 const unsigned ArgArea = 128; 638 639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 640 CCValAssign &VA = ArgLocs[i]; 641 if (VA.isRegLoc()) { 642 // This argument is passed in a register. 643 // All integer register arguments are promoted by the caller to i64. 644 645 // Create a virtual register for the promoted live-in value. 646 Register VReg = MF.addLiveIn(VA.getLocReg(), 647 getRegClassFor(VA.getLocVT())); 648 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 649 650 // Get the high bits for i32 struct elements. 651 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 652 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 653 DAG.getConstant(32, DL, MVT::i32)); 654 655 // The caller promoted the argument, so insert an Assert?ext SDNode so we 656 // won't promote the value again in this function. 657 switch (VA.getLocInfo()) { 658 case CCValAssign::SExt: 659 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 660 DAG.getValueType(VA.getValVT())); 661 break; 662 case CCValAssign::ZExt: 663 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 664 DAG.getValueType(VA.getValVT())); 665 break; 666 default: 667 break; 668 } 669 670 // Truncate the register down to the argument type. 671 if (VA.isExtInLoc()) 672 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 673 674 InVals.push_back(Arg); 675 continue; 676 } 677 678 // The registers are exhausted. This argument was passed on the stack. 679 assert(VA.isMemLoc()); 680 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 681 // beginning of the arguments area at %fp+BIAS+128. 682 unsigned Offset = VA.getLocMemOffset() + ArgArea; 683 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 684 // Adjust offset for extended arguments, SPARC is big-endian. 685 // The caller will have written the full slot with extended bytes, but we 686 // prefer our own extending loads. 687 if (VA.isExtInLoc()) 688 Offset += 8 - ValSize; 689 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 690 InVals.push_back( 691 DAG.getLoad(VA.getValVT(), DL, Chain, 692 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 693 MachinePointerInfo::getFixedStack(MF, FI))); 694 } 695 696 if (!IsVarArg) 697 return Chain; 698 699 // This function takes variable arguments, some of which may have been passed 700 // in registers %i0-%i5. Variable floating point arguments are never passed 701 // in floating point registers. They go on %i0-%i5 or on the stack like 702 // integer arguments. 703 // 704 // The va_start intrinsic needs to know the offset to the first variable 705 // argument. 706 unsigned ArgOffset = CCInfo.getStackSize(); 707 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 708 // Skip the 128 bytes of register save area. 709 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 710 Subtarget->getStackPointerBias()); 711 712 // Save the variable arguments that were passed in registers. 713 // The caller is required to reserve stack space for 6 arguments regardless 714 // of how many arguments were actually passed. 715 SmallVector<SDValue, 8> OutChains; 716 for (; ArgOffset < 6*8; ArgOffset += 8) { 717 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 718 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 719 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 720 auto PtrVT = getPointerTy(MF.getDataLayout()); 721 OutChains.push_back( 722 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 723 MachinePointerInfo::getFixedStack(MF, FI))); 724 } 725 726 if (!OutChains.empty()) 727 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 728 729 return Chain; 730 } 731 732 SDValue 733 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 734 SmallVectorImpl<SDValue> &InVals) const { 735 if (Subtarget->is64Bit()) 736 return LowerCall_64(CLI, InVals); 737 return LowerCall_32(CLI, InVals); 738 } 739 740 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 741 const CallBase *Call) { 742 if (Call) 743 return Call->hasFnAttr(Attribute::ReturnsTwice); 744 745 const Function *CalleeFn = nullptr; 746 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 747 CalleeFn = dyn_cast<Function>(G->getGlobal()); 748 } else if (ExternalSymbolSDNode *E = 749 dyn_cast<ExternalSymbolSDNode>(Callee)) { 750 const Function &Fn = DAG.getMachineFunction().getFunction(); 751 const Module *M = Fn.getParent(); 752 const char *CalleeName = E->getSymbol(); 753 CalleeFn = M->getFunction(CalleeName); 754 } 755 756 if (!CalleeFn) 757 return false; 758 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 759 } 760 761 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 762 /// for tail call optimization. 763 bool SparcTargetLowering::IsEligibleForTailCallOptimization( 764 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { 765 766 auto &Outs = CLI.Outs; 767 auto &Caller = MF.getFunction(); 768 769 // Do not tail call opt functions with "disable-tail-calls" attribute. 770 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 771 return false; 772 773 // Do not tail call opt if the stack is used to pass parameters. 774 // 64-bit targets have a slightly higher limit since the ABI requires 775 // to allocate some space even when all the parameters fit inside registers. 776 unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0; 777 if (CCInfo.getStackSize() > StackSizeLimit) 778 return false; 779 780 // Do not tail call opt if either the callee or caller returns 781 // a struct and the other does not. 782 if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) 783 return false; 784 785 // Byval parameters hand the function a pointer directly into the stack area 786 // we want to reuse during a tail call. 787 for (auto &Arg : Outs) 788 if (Arg.Flags.isByVal()) 789 return false; 790 791 return true; 792 } 793 794 // Lower a call for the 32-bit ABI. 795 SDValue 796 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 797 SmallVectorImpl<SDValue> &InVals) const { 798 SelectionDAG &DAG = CLI.DAG; 799 SDLoc &dl = CLI.DL; 800 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 801 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 802 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 803 SDValue Chain = CLI.Chain; 804 SDValue Callee = CLI.Callee; 805 bool &isTailCall = CLI.IsTailCall; 806 CallingConv::ID CallConv = CLI.CallConv; 807 bool isVarArg = CLI.IsVarArg; 808 809 // Analyze operands of the call, assigning locations to each operand. 810 SmallVector<CCValAssign, 16> ArgLocs; 811 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 812 *DAG.getContext()); 813 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 814 815 isTailCall = isTailCall && IsEligibleForTailCallOptimization( 816 CCInfo, CLI, DAG.getMachineFunction()); 817 818 // Get the size of the outgoing arguments stack space requirement. 819 unsigned ArgsSize = CCInfo.getStackSize(); 820 821 // Keep stack frames 8-byte aligned. 822 ArgsSize = (ArgsSize+7) & ~7; 823 824 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 825 826 // Create local copies for byval args. 827 SmallVector<SDValue, 8> ByValArgs; 828 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 829 ISD::ArgFlagsTy Flags = Outs[i].Flags; 830 if (!Flags.isByVal()) 831 continue; 832 833 SDValue Arg = OutVals[i]; 834 unsigned Size = Flags.getByValSize(); 835 Align Alignment = Flags.getNonZeroByValAlign(); 836 837 if (Size > 0U) { 838 int FI = MFI.CreateStackObject(Size, Alignment, false); 839 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 840 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 841 842 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 843 false, // isVolatile, 844 (Size <= 32), // AlwaysInline if size <= 32, 845 false, // isTailCall 846 MachinePointerInfo(), MachinePointerInfo()); 847 ByValArgs.push_back(FIPtr); 848 } 849 else { 850 SDValue nullVal; 851 ByValArgs.push_back(nullVal); 852 } 853 } 854 855 assert(!isTailCall || ArgsSize == 0); 856 857 if (!isTailCall) 858 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 859 860 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 861 SmallVector<SDValue, 8> MemOpChains; 862 863 const unsigned StackOffset = 92; 864 bool hasStructRetAttr = false; 865 unsigned SRetArgSize = 0; 866 // Walk the register/memloc assignments, inserting copies/loads. 867 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 868 i != e; 869 ++i, ++realArgIdx) { 870 CCValAssign &VA = ArgLocs[i]; 871 SDValue Arg = OutVals[realArgIdx]; 872 873 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 874 875 // Use local copy if it is a byval arg. 876 if (Flags.isByVal()) { 877 Arg = ByValArgs[byvalArgIdx++]; 878 if (!Arg) { 879 continue; 880 } 881 } 882 883 // Promote the value if needed. 884 switch (VA.getLocInfo()) { 885 default: llvm_unreachable("Unknown loc info!"); 886 case CCValAssign::Full: break; 887 case CCValAssign::SExt: 888 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 889 break; 890 case CCValAssign::ZExt: 891 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 892 break; 893 case CCValAssign::AExt: 894 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 895 break; 896 case CCValAssign::BCvt: 897 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 898 break; 899 } 900 901 if (Flags.isSRet()) { 902 assert(VA.needsCustom()); 903 904 if (isTailCall) 905 continue; 906 907 // store SRet argument in %sp+64 908 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 909 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 910 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 911 MemOpChains.push_back( 912 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 913 hasStructRetAttr = true; 914 // sret only allowed on first argument 915 assert(Outs[realArgIdx].OrigArgIndex == 0); 916 SRetArgSize = 917 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); 918 continue; 919 } 920 921 if (VA.needsCustom()) { 922 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 923 924 if (VA.isMemLoc()) { 925 unsigned Offset = VA.getLocMemOffset() + StackOffset; 926 // if it is double-word aligned, just store. 927 if (Offset % 8 == 0) { 928 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 929 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 930 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 931 MemOpChains.push_back( 932 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 933 continue; 934 } 935 } 936 937 if (VA.getLocVT() == MVT::f64) { 938 // Move from the float value from float registers into the 939 // integer registers. 940 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 941 Arg = bitcastConstantFPToInt(C, dl, DAG); 942 else 943 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 944 } 945 946 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 947 Arg, 948 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 949 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 950 Arg, 951 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 952 953 if (VA.isRegLoc()) { 954 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 955 assert(i+1 != e); 956 CCValAssign &NextVA = ArgLocs[++i]; 957 if (NextVA.isRegLoc()) { 958 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 959 } else { 960 // Store the second part in stack. 961 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 962 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 963 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 964 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 965 MemOpChains.push_back( 966 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 967 } 968 } else { 969 unsigned Offset = VA.getLocMemOffset() + StackOffset; 970 // Store the first part. 971 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 972 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 973 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 974 MemOpChains.push_back( 975 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 976 // Store the second part. 977 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 978 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 979 MemOpChains.push_back( 980 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 981 } 982 continue; 983 } 984 985 // Arguments that can be passed on register must be kept at 986 // RegsToPass vector 987 if (VA.isRegLoc()) { 988 if (VA.getLocVT() != MVT::f32) { 989 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 990 continue; 991 } 992 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 993 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 994 continue; 995 } 996 997 assert(VA.isMemLoc()); 998 999 // Create a store off the stack pointer for this argument. 1000 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 1001 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 1002 dl); 1003 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1004 MemOpChains.push_back( 1005 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 1006 } 1007 1008 1009 // Emit all stores, make sure the occur before any copies into physregs. 1010 if (!MemOpChains.empty()) 1011 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1012 1013 // Build a sequence of copy-to-reg nodes chained together with token 1014 // chain and flag operands which copy the outgoing args into registers. 1015 // The InGlue in necessary since all emitted instructions must be 1016 // stuck together. 1017 SDValue InGlue; 1018 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1019 Register Reg = RegsToPass[i].first; 1020 if (!isTailCall) 1021 Reg = toCallerWindow(Reg); 1022 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue); 1023 InGlue = Chain.getValue(1); 1024 } 1025 1026 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1027 1028 // If the callee is a GlobalAddress node (quite common, every direct call is) 1029 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1030 // Likewise ExternalSymbol -> TargetExternalSymbol. 1031 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1032 : SparcMCExpr::VK_Sparc_WDISP30; 1033 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1034 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 1035 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1036 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 1037 1038 // Returns a chain & a flag for retval copy to use 1039 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1040 SmallVector<SDValue, 8> Ops; 1041 Ops.push_back(Chain); 1042 Ops.push_back(Callee); 1043 if (hasStructRetAttr) 1044 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 1045 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1046 Register Reg = RegsToPass[i].first; 1047 if (!isTailCall) 1048 Reg = toCallerWindow(Reg); 1049 Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); 1050 } 1051 1052 // Add a register mask operand representing the call-preserved registers. 1053 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1054 const uint32_t *Mask = 1055 ((hasReturnsTwice) 1056 ? TRI->getRTCallPreservedMask(CallConv) 1057 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 1058 assert(Mask && "Missing call preserved mask for calling convention"); 1059 Ops.push_back(DAG.getRegisterMask(Mask)); 1060 1061 if (InGlue.getNode()) 1062 Ops.push_back(InGlue); 1063 1064 if (isTailCall) { 1065 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1066 return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); 1067 } 1068 1069 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 1070 InGlue = Chain.getValue(1); 1071 1072 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl); 1073 InGlue = Chain.getValue(1); 1074 1075 // Assign locations to each value returned by this call. 1076 SmallVector<CCValAssign, 16> RVLocs; 1077 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1078 *DAG.getContext()); 1079 1080 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 1081 1082 // Copy all of the result registers out of their specified physreg. 1083 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1084 assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); 1085 if (RVLocs[i].getLocVT() == MVT::v2i32) { 1086 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 1087 SDValue Lo = DAG.getCopyFromReg( 1088 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue); 1089 Chain = Lo.getValue(1); 1090 InGlue = Lo.getValue(2); 1091 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 1092 DAG.getConstant(0, dl, MVT::i32)); 1093 SDValue Hi = DAG.getCopyFromReg( 1094 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue); 1095 Chain = Hi.getValue(1); 1096 InGlue = Hi.getValue(2); 1097 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1098 DAG.getConstant(1, dl, MVT::i32)); 1099 InVals.push_back(Vec); 1100 } else { 1101 Chain = 1102 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1103 RVLocs[i].getValVT(), InGlue) 1104 .getValue(1); 1105 InGlue = Chain.getValue(2); 1106 InVals.push_back(Chain.getValue(0)); 1107 } 1108 } 1109 1110 return Chain; 1111 } 1112 1113 // FIXME? Maybe this could be a TableGen attribute on some registers and 1114 // this table could be generated automatically from RegInfo. 1115 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1116 const MachineFunction &MF) const { 1117 Register Reg = StringSwitch<Register>(RegName) 1118 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1119 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1120 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1121 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1122 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1123 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1124 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1125 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1126 .Default(0); 1127 1128 if (Reg) 1129 return Reg; 1130 1131 report_fatal_error("Invalid register name global variable"); 1132 } 1133 1134 // Fixup floating point arguments in the ... part of a varargs call. 1135 // 1136 // The SPARC v9 ABI requires that floating point arguments are treated the same 1137 // as integers when calling a varargs function. This does not apply to the 1138 // fixed arguments that are part of the function's prototype. 1139 // 1140 // This function post-processes a CCValAssign array created by 1141 // AnalyzeCallOperands(). 1142 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1143 ArrayRef<ISD::OutputArg> Outs) { 1144 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1145 CCValAssign &VA = ArgLocs[i]; 1146 MVT ValTy = VA.getLocVT(); 1147 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1148 // varargs functions. 1149 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1150 continue; 1151 // The fixed arguments to a varargs function still go in FP registers. 1152 if (Outs[VA.getValNo()].IsFixed) 1153 continue; 1154 1155 // This floating point argument should be reassigned. 1156 // Determine the offset into the argument array. 1157 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1158 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1159 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1160 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1161 1162 if (Offset < 6*8) { 1163 // This argument should go in %i0-%i5. 1164 unsigned IReg = SP::I0 + Offset/8; 1165 if (ValTy == MVT::f64) 1166 // Full register, just bitconvert into i64. 1167 VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64, 1168 CCValAssign::BCvt); 1169 else { 1170 assert(ValTy == MVT::f128 && "Unexpected type!"); 1171 // Full register, just bitconvert into i128 -- We will lower this into 1172 // two i64s in LowerCall_64. 1173 VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg, 1174 MVT::i128, CCValAssign::BCvt); 1175 } 1176 } else { 1177 // This needs to go to memory, we're out of integer registers. 1178 VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset, 1179 VA.getLocVT(), VA.getLocInfo()); 1180 } 1181 } 1182 } 1183 1184 // Lower a call for the 64-bit ABI. 1185 SDValue 1186 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1187 SmallVectorImpl<SDValue> &InVals) const { 1188 SelectionDAG &DAG = CLI.DAG; 1189 SDLoc DL = CLI.DL; 1190 SDValue Chain = CLI.Chain; 1191 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1192 1193 // Analyze operands of the call, assigning locations to each operand. 1194 SmallVector<CCValAssign, 16> ArgLocs; 1195 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1196 *DAG.getContext()); 1197 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1198 1199 CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization( 1200 CCInfo, CLI, DAG.getMachineFunction()); 1201 1202 // Get the size of the outgoing arguments stack space requirement. 1203 // The stack offset computed by CC_Sparc64 includes all arguments. 1204 // Called functions expect 6 argument words to exist in the stack frame, used 1205 // or not. 1206 unsigned StackReserved = 6 * 8u; 1207 unsigned ArgsSize = std::max<unsigned>(StackReserved, CCInfo.getStackSize()); 1208 1209 // Keep stack frames 16-byte aligned. 1210 ArgsSize = alignTo(ArgsSize, 16); 1211 1212 // Varargs calls require special treatment. 1213 if (CLI.IsVarArg) 1214 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1215 1216 assert(!CLI.IsTailCall || ArgsSize == StackReserved); 1217 1218 // Adjust the stack pointer to make room for the arguments. 1219 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1220 // with more than 6 arguments. 1221 if (!CLI.IsTailCall) 1222 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1223 1224 // Collect the set of registers to pass to the function and their values. 1225 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1226 // instruction. 1227 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1228 1229 // Collect chains from all the memory opeations that copy arguments to the 1230 // stack. They must follow the stack pointer adjustment above and precede the 1231 // call instruction itself. 1232 SmallVector<SDValue, 8> MemOpChains; 1233 1234 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1235 const CCValAssign &VA = ArgLocs[i]; 1236 SDValue Arg = CLI.OutVals[i]; 1237 1238 // Promote the value if needed. 1239 switch (VA.getLocInfo()) { 1240 default: 1241 llvm_unreachable("Unknown location info!"); 1242 case CCValAssign::Full: 1243 break; 1244 case CCValAssign::SExt: 1245 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1246 break; 1247 case CCValAssign::ZExt: 1248 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1249 break; 1250 case CCValAssign::AExt: 1251 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1252 break; 1253 case CCValAssign::BCvt: 1254 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1255 // SPARC does not support i128 natively. Lower it into two i64, see below. 1256 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1257 || VA.getLocVT() != MVT::i128) 1258 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1259 break; 1260 } 1261 1262 if (VA.isRegLoc()) { 1263 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1264 && VA.getLocVT() == MVT::i128) { 1265 // Store and reload into the integer register reg and reg+1. 1266 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1267 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1268 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1269 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1270 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1271 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1272 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1273 1274 // Store to %sp+BIAS+128+Offset 1275 SDValue Store = 1276 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1277 // Load into Reg and Reg+1 1278 SDValue Hi64 = 1279 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1280 SDValue Lo64 = 1281 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1282 1283 Register HiReg = VA.getLocReg(); 1284 Register LoReg = VA.getLocReg() + 1; 1285 if (!CLI.IsTailCall) { 1286 HiReg = toCallerWindow(HiReg); 1287 LoReg = toCallerWindow(LoReg); 1288 } 1289 1290 RegsToPass.push_back(std::make_pair(HiReg, Hi64)); 1291 RegsToPass.push_back(std::make_pair(LoReg, Lo64)); 1292 continue; 1293 } 1294 1295 // The custom bit on an i32 return value indicates that it should be 1296 // passed in the high bits of the register. 1297 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1298 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1299 DAG.getConstant(32, DL, MVT::i32)); 1300 1301 // The next value may go in the low bits of the same register. 1302 // Handle both at once. 1303 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1304 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1305 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1306 CLI.OutVals[i+1]); 1307 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1308 // Skip the next value, it's already done. 1309 ++i; 1310 } 1311 } 1312 1313 Register Reg = VA.getLocReg(); 1314 if (!CLI.IsTailCall) 1315 Reg = toCallerWindow(Reg); 1316 RegsToPass.push_back(std::make_pair(Reg, Arg)); 1317 continue; 1318 } 1319 1320 assert(VA.isMemLoc()); 1321 1322 // Create a store off the stack pointer for this argument. 1323 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1324 // The argument area starts at %fp+BIAS+128 in the callee frame, 1325 // %sp+BIAS+128 in ours. 1326 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1327 Subtarget->getStackPointerBias() + 1328 128, DL); 1329 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1330 MemOpChains.push_back( 1331 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1332 } 1333 1334 // Emit all stores, make sure they occur before the call. 1335 if (!MemOpChains.empty()) 1336 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1337 1338 // Build a sequence of CopyToReg nodes glued together with token chain and 1339 // glue operands which copy the outgoing args into registers. The InGlue is 1340 // necessary since all emitted instructions must be stuck together in order 1341 // to pass the live physical registers. 1342 SDValue InGlue; 1343 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1344 Chain = DAG.getCopyToReg(Chain, DL, 1345 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1346 InGlue = Chain.getValue(1); 1347 } 1348 1349 // If the callee is a GlobalAddress node (quite common, every direct call is) 1350 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1351 // Likewise ExternalSymbol -> TargetExternalSymbol. 1352 SDValue Callee = CLI.Callee; 1353 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1354 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1355 : SparcMCExpr::VK_Sparc_WDISP30; 1356 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1357 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1358 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1359 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1360 1361 // Build the operands for the call instruction itself. 1362 SmallVector<SDValue, 8> Ops; 1363 Ops.push_back(Chain); 1364 Ops.push_back(Callee); 1365 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1366 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1367 RegsToPass[i].second.getValueType())); 1368 1369 // Add a register mask operand representing the call-preserved registers. 1370 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1371 const uint32_t *Mask = 1372 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1373 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1374 CLI.CallConv)); 1375 assert(Mask && "Missing call preserved mask for calling convention"); 1376 Ops.push_back(DAG.getRegisterMask(Mask)); 1377 1378 // Make sure the CopyToReg nodes are glued to the call instruction which 1379 // consumes the registers. 1380 if (InGlue.getNode()) 1381 Ops.push_back(InGlue); 1382 1383 // Now the call itself. 1384 if (CLI.IsTailCall) { 1385 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1386 return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops); 1387 } 1388 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1389 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1390 InGlue = Chain.getValue(1); 1391 1392 // Revert the stack pointer immediately after the call. 1393 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 1394 InGlue = Chain.getValue(1); 1395 1396 // Now extract the return values. This is more or less the same as 1397 // LowerFormalArguments_64. 1398 1399 // Assign locations to each value returned by this call. 1400 SmallVector<CCValAssign, 16> RVLocs; 1401 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1402 *DAG.getContext()); 1403 1404 // Set inreg flag manually for codegen generated library calls that 1405 // return float. 1406 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1407 CLI.Ins[0].Flags.setInReg(); 1408 1409 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1410 1411 // Copy all of the result registers out of their specified physreg. 1412 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1413 CCValAssign &VA = RVLocs[i]; 1414 assert(VA.isRegLoc() && "Can only return in registers!"); 1415 unsigned Reg = toCallerWindow(VA.getLocReg()); 1416 1417 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1418 // reside in the same register in the high and low bits. Reuse the 1419 // CopyFromReg previous node to avoid duplicate copies. 1420 SDValue RV; 1421 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1422 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1423 RV = Chain.getValue(0); 1424 1425 // But usually we'll create a new CopyFromReg for a different register. 1426 if (!RV.getNode()) { 1427 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1428 Chain = RV.getValue(1); 1429 InGlue = Chain.getValue(2); 1430 } 1431 1432 // Get the high bits for i32 struct elements. 1433 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1434 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1435 DAG.getConstant(32, DL, MVT::i32)); 1436 1437 // The callee promoted the return value, so insert an Assert?ext SDNode so 1438 // we won't promote the value again in this function. 1439 switch (VA.getLocInfo()) { 1440 case CCValAssign::SExt: 1441 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1442 DAG.getValueType(VA.getValVT())); 1443 break; 1444 case CCValAssign::ZExt: 1445 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1446 DAG.getValueType(VA.getValVT())); 1447 break; 1448 default: 1449 break; 1450 } 1451 1452 // Truncate the register down to the return value type. 1453 if (VA.isExtInLoc()) 1454 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1455 1456 InVals.push_back(RV); 1457 } 1458 1459 return Chain; 1460 } 1461 1462 //===----------------------------------------------------------------------===// 1463 // TargetLowering Implementation 1464 //===----------------------------------------------------------------------===// 1465 1466 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1467 if (AI->getOperation() == AtomicRMWInst::Xchg && 1468 AI->getType()->getPrimitiveSizeInBits() == 32) 1469 return AtomicExpansionKind::None; // Uses xchg instruction 1470 1471 return AtomicExpansionKind::CmpXChg; 1472 } 1473 1474 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC 1475 /// rcond condition. 1476 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) { 1477 switch (CC) { 1478 default: 1479 llvm_unreachable("Unknown/unsigned integer condition code!"); 1480 case ISD::SETEQ: 1481 return SPCC::REG_Z; 1482 case ISD::SETNE: 1483 return SPCC::REG_NZ; 1484 case ISD::SETLT: 1485 return SPCC::REG_LZ; 1486 case ISD::SETGT: 1487 return SPCC::REG_GZ; 1488 case ISD::SETLE: 1489 return SPCC::REG_LEZ; 1490 case ISD::SETGE: 1491 return SPCC::REG_GEZ; 1492 } 1493 } 1494 1495 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1496 /// condition. 1497 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1498 switch (CC) { 1499 default: llvm_unreachable("Unknown integer condition code!"); 1500 case ISD::SETEQ: return SPCC::ICC_E; 1501 case ISD::SETNE: return SPCC::ICC_NE; 1502 case ISD::SETLT: return SPCC::ICC_L; 1503 case ISD::SETGT: return SPCC::ICC_G; 1504 case ISD::SETLE: return SPCC::ICC_LE; 1505 case ISD::SETGE: return SPCC::ICC_GE; 1506 case ISD::SETULT: return SPCC::ICC_CS; 1507 case ISD::SETULE: return SPCC::ICC_LEU; 1508 case ISD::SETUGT: return SPCC::ICC_GU; 1509 case ISD::SETUGE: return SPCC::ICC_CC; 1510 } 1511 } 1512 1513 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1514 /// FCC condition. 1515 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1516 switch (CC) { 1517 default: llvm_unreachable("Unknown fp condition code!"); 1518 case ISD::SETEQ: 1519 case ISD::SETOEQ: return SPCC::FCC_E; 1520 case ISD::SETNE: 1521 case ISD::SETUNE: return SPCC::FCC_NE; 1522 case ISD::SETLT: 1523 case ISD::SETOLT: return SPCC::FCC_L; 1524 case ISD::SETGT: 1525 case ISD::SETOGT: return SPCC::FCC_G; 1526 case ISD::SETLE: 1527 case ISD::SETOLE: return SPCC::FCC_LE; 1528 case ISD::SETGE: 1529 case ISD::SETOGE: return SPCC::FCC_GE; 1530 case ISD::SETULT: return SPCC::FCC_UL; 1531 case ISD::SETULE: return SPCC::FCC_ULE; 1532 case ISD::SETUGT: return SPCC::FCC_UG; 1533 case ISD::SETUGE: return SPCC::FCC_UGE; 1534 case ISD::SETUO: return SPCC::FCC_U; 1535 case ISD::SETO: return SPCC::FCC_O; 1536 case ISD::SETONE: return SPCC::FCC_LG; 1537 case ISD::SETUEQ: return SPCC::FCC_UE; 1538 } 1539 } 1540 1541 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1542 const SparcSubtarget &STI) 1543 : TargetLowering(TM), Subtarget(&STI) { 1544 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 1545 1546 // Instructions which use registers as conditionals examine all the 1547 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1548 // matters much whether it's ZeroOrOneBooleanContent, or 1549 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1550 // former. 1551 setBooleanContents(ZeroOrOneBooleanContent); 1552 setBooleanVectorContents(ZeroOrOneBooleanContent); 1553 1554 // Set up the register classes. 1555 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1556 if (!Subtarget->useSoftFloat()) { 1557 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1558 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1559 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1560 } 1561 if (Subtarget->is64Bit()) { 1562 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1563 } else { 1564 // On 32bit sparc, we define a double-register 32bit register 1565 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1566 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1567 1568 // ...but almost all operations must be expanded, so set that as 1569 // the default. 1570 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1571 setOperationAction(Op, MVT::v2i32, Expand); 1572 } 1573 // Truncating/extending stores/loads are also not supported. 1574 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1575 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1576 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1577 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1578 1579 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1580 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1581 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1582 1583 setTruncStoreAction(VT, MVT::v2i32, Expand); 1584 setTruncStoreAction(MVT::v2i32, VT, Expand); 1585 } 1586 // However, load and store *are* legal. 1587 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1588 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1589 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1590 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1591 1592 // And we need to promote i64 loads/stores into vector load/store 1593 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1594 setOperationAction(ISD::STORE, MVT::i64, Custom); 1595 1596 // Sadly, this doesn't work: 1597 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1598 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1599 } 1600 1601 // Turn FP extload into load/fpextend 1602 for (MVT VT : MVT::fp_valuetypes()) { 1603 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1604 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1605 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1606 } 1607 1608 // Sparc doesn't have i1 sign extending load 1609 for (MVT VT : MVT::integer_valuetypes()) 1610 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1611 1612 // Turn FP truncstore into trunc + store. 1613 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1614 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1615 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1616 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 1617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1619 1620 // Custom legalize GlobalAddress nodes into LO/HI parts. 1621 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1622 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1623 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1624 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1625 1626 // Sparc doesn't have sext_inreg, replace them with shl/sra 1627 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1628 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1629 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1630 1631 // Sparc has no REM or DIVREM operations. 1632 setOperationAction(ISD::UREM, MVT::i32, Expand); 1633 setOperationAction(ISD::SREM, MVT::i32, Expand); 1634 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1635 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1636 1637 // ... nor does SparcV9. 1638 if (Subtarget->is64Bit()) { 1639 setOperationAction(ISD::UREM, MVT::i64, Expand); 1640 setOperationAction(ISD::SREM, MVT::i64, Expand); 1641 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1642 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1643 } 1644 1645 // Custom expand fp<->sint 1646 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1647 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1648 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1649 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1650 1651 // Custom Expand fp<->uint 1652 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1653 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1654 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1655 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1656 1657 // Lower f16 conversion operations into library calls 1658 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1659 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1660 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1661 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1662 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); 1663 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); 1664 1665 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1666 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1667 1668 // Sparc has no select or setcc: expand to SELECT_CC. 1669 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1670 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1671 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1672 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1673 1674 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1675 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1676 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1677 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1678 1679 // Sparc doesn't have BRCOND either, it has BR_CC. 1680 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1681 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1682 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1683 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1684 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1685 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1686 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1687 1688 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1689 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1690 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1691 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1692 1693 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1694 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1695 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1696 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1697 1698 if (Subtarget->is64Bit()) { 1699 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1700 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1701 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1702 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1703 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1704 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1705 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1706 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1707 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1708 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1709 1710 setOperationAction(ISD::CTPOP, MVT::i64, 1711 Subtarget->usePopc() ? Legal : Expand); 1712 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1713 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1714 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1715 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1716 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1717 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1718 } 1719 1720 // ATOMICs. 1721 // Atomics are supported on SparcV9. 32-bit atomics are also 1722 // supported by some Leon SparcV8 variants. Otherwise, atomics 1723 // are unsupported. 1724 if (Subtarget->isV9()) 1725 setMaxAtomicSizeInBitsSupported(64); 1726 else if (Subtarget->hasLeonCasa()) 1727 setMaxAtomicSizeInBitsSupported(32); 1728 else 1729 setMaxAtomicSizeInBitsSupported(0); 1730 1731 setMinCmpXchgSizeInBits(32); 1732 1733 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1734 1735 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1736 1737 // Custom Lower Atomic LOAD/STORE 1738 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1739 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1740 1741 if (Subtarget->is64Bit()) { 1742 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1743 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1744 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1745 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1746 } 1747 1748 if (!Subtarget->is64Bit()) { 1749 // These libcalls are not available in 32-bit. 1750 setLibcallName(RTLIB::MULO_I64, nullptr); 1751 setLibcallName(RTLIB::MUL_I128, nullptr); 1752 setLibcallName(RTLIB::SHL_I128, nullptr); 1753 setLibcallName(RTLIB::SRL_I128, nullptr); 1754 setLibcallName(RTLIB::SRA_I128, nullptr); 1755 } 1756 1757 setLibcallName(RTLIB::MULO_I128, nullptr); 1758 1759 if (!Subtarget->isV9()) { 1760 // SparcV8 does not have FNEGD and FABSD. 1761 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1762 setOperationAction(ISD::FABS, MVT::f64, Custom); 1763 } 1764 1765 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1766 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1767 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1768 setOperationAction(ISD::FREM , MVT::f128, Expand); 1769 setOperationAction(ISD::FMA , MVT::f128, Expand); 1770 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1771 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1772 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1773 setOperationAction(ISD::FREM , MVT::f64, Expand); 1774 setOperationAction(ISD::FMA , MVT::f64, Expand); 1775 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1776 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1777 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1778 setOperationAction(ISD::FREM , MVT::f32, Expand); 1779 setOperationAction(ISD::FMA , MVT::f32, Expand); 1780 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1781 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1782 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1783 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1784 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1785 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1786 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1787 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1788 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1789 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1790 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1791 1792 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1793 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1794 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1795 1796 // Expands to [SU]MUL_LOHI. 1797 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1798 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1799 setOperationAction(ISD::MUL, MVT::i32, Expand); 1800 1801 if (Subtarget->useSoftMulDiv()) { 1802 // .umul works for both signed and unsigned 1803 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1804 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1805 setLibcallName(RTLIB::MUL_I32, ".umul"); 1806 1807 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1808 setLibcallName(RTLIB::SDIV_I32, ".div"); 1809 1810 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1811 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1812 1813 setLibcallName(RTLIB::SREM_I32, ".rem"); 1814 setLibcallName(RTLIB::UREM_I32, ".urem"); 1815 } 1816 1817 if (Subtarget->is64Bit()) { 1818 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1819 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1820 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1821 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1822 1823 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1824 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1825 1826 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1827 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1828 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1829 } 1830 1831 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1832 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1833 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1834 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1835 1836 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1837 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1838 1839 // Use the default implementation. 1840 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1841 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1842 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1843 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1844 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1845 1846 setStackPointerRegisterToSaveRestore(SP::O6); 1847 1848 setOperationAction(ISD::CTPOP, MVT::i32, 1849 Subtarget->usePopc() ? Legal : Expand); 1850 1851 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1852 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1853 setOperationAction(ISD::STORE, MVT::f128, Legal); 1854 } else { 1855 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1856 setOperationAction(ISD::STORE, MVT::f128, Custom); 1857 } 1858 1859 if (Subtarget->hasHardQuad()) { 1860 setOperationAction(ISD::FADD, MVT::f128, Legal); 1861 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1862 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1863 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1864 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1865 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1866 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1867 if (Subtarget->isV9()) { 1868 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1869 setOperationAction(ISD::FABS, MVT::f128, Legal); 1870 } else { 1871 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1872 setOperationAction(ISD::FABS, MVT::f128, Custom); 1873 } 1874 1875 if (!Subtarget->is64Bit()) { 1876 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1877 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1878 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1879 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1880 } 1881 1882 } else { 1883 // Custom legalize f128 operations. 1884 1885 setOperationAction(ISD::FADD, MVT::f128, Custom); 1886 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1887 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1888 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1889 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1890 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1891 setOperationAction(ISD::FABS, MVT::f128, Custom); 1892 1893 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1894 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1895 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1896 1897 // Setup Runtime library names. 1898 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1899 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1900 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1901 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1902 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1903 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1904 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1905 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1906 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1907 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1908 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1909 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1910 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1911 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1912 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1913 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1914 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1915 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1916 } else if (!Subtarget->useSoftFloat()) { 1917 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1918 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1919 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1920 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1921 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1922 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1923 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1924 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1925 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1926 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1927 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1928 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1929 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1930 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1931 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1932 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1933 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1934 } 1935 } 1936 1937 if (Subtarget->fixAllFDIVSQRT()) { 1938 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1939 // the former instructions generate errata on LEON processors. 1940 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1941 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1942 } 1943 1944 if (Subtarget->hasNoFMULS()) { 1945 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1946 } 1947 1948 // Custom combine bitcast between f64 and v2i32 1949 if (!Subtarget->is64Bit()) 1950 setTargetDAGCombine(ISD::BITCAST); 1951 1952 if (Subtarget->hasLeonCycleCounter()) 1953 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1954 1955 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1956 1957 setMinFunctionAlignment(Align(4)); 1958 1959 computeRegisterProperties(Subtarget->getRegisterInfo()); 1960 } 1961 1962 bool SparcTargetLowering::useSoftFloat() const { 1963 return Subtarget->useSoftFloat(); 1964 } 1965 1966 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1967 switch ((SPISD::NodeType)Opcode) { 1968 case SPISD::FIRST_NUMBER: break; 1969 case SPISD::CMPICC: return "SPISD::CMPICC"; 1970 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1971 case SPISD::CMPFCC_V9: 1972 return "SPISD::CMPFCC_V9"; 1973 case SPISD::BRICC: return "SPISD::BRICC"; 1974 case SPISD::BPICC: 1975 return "SPISD::BPICC"; 1976 case SPISD::BPXCC: 1977 return "SPISD::BPXCC"; 1978 case SPISD::BRFCC: return "SPISD::BRFCC"; 1979 case SPISD::BRFCC_V9: 1980 return "SPISD::BRFCC_V9"; 1981 case SPISD::BR_REG: 1982 return "SPISD::BR_REG"; 1983 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1984 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1985 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1986 case SPISD::SELECT_REG: 1987 return "SPISD::SELECT_REG"; 1988 case SPISD::Hi: return "SPISD::Hi"; 1989 case SPISD::Lo: return "SPISD::Lo"; 1990 case SPISD::FTOI: return "SPISD::FTOI"; 1991 case SPISD::ITOF: return "SPISD::ITOF"; 1992 case SPISD::FTOX: return "SPISD::FTOX"; 1993 case SPISD::XTOF: return "SPISD::XTOF"; 1994 case SPISD::CALL: return "SPISD::CALL"; 1995 case SPISD::RET_GLUE: return "SPISD::RET_GLUE"; 1996 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1997 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1998 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1999 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 2000 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 2001 case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; 2002 case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; 2003 } 2004 return nullptr; 2005 } 2006 2007 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 2008 EVT VT) const { 2009 if (!VT.isVector()) 2010 return MVT::i32; 2011 return VT.changeVectorElementTypeToInteger(); 2012 } 2013 2014 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 2015 /// be zero. Op is expected to be a target specific node. Used by DAG 2016 /// combiner. 2017 void SparcTargetLowering::computeKnownBitsForTargetNode 2018 (const SDValue Op, 2019 KnownBits &Known, 2020 const APInt &DemandedElts, 2021 const SelectionDAG &DAG, 2022 unsigned Depth) const { 2023 KnownBits Known2; 2024 Known.resetAll(); 2025 2026 switch (Op.getOpcode()) { 2027 default: break; 2028 case SPISD::SELECT_ICC: 2029 case SPISD::SELECT_XCC: 2030 case SPISD::SELECT_FCC: 2031 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 2032 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 2033 2034 // Only known if known in both the LHS and RHS. 2035 Known = Known.intersectWith(Known2); 2036 break; 2037 } 2038 } 2039 2040 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 2041 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 2042 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 2043 ISD::CondCode CC, unsigned &SPCC) { 2044 if (isNullConstant(RHS) && CC == ISD::SETNE && 2045 (((LHS.getOpcode() == SPISD::SELECT_ICC || 2046 LHS.getOpcode() == SPISD::SELECT_XCC) && 2047 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 2048 (LHS.getOpcode() == SPISD::SELECT_FCC && 2049 (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC || 2050 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) && 2051 isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) { 2052 SDValue CMPCC = LHS.getOperand(3); 2053 SPCC = LHS.getConstantOperandVal(2); 2054 LHS = CMPCC.getOperand(0); 2055 RHS = CMPCC.getOperand(1); 2056 } 2057 } 2058 2059 // Convert to a target node and set target flags. 2060 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 2061 SelectionDAG &DAG) const { 2062 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 2063 return DAG.getTargetGlobalAddress(GA->getGlobal(), 2064 SDLoc(GA), 2065 GA->getValueType(0), 2066 GA->getOffset(), TF); 2067 2068 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 2069 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 2070 CP->getAlign(), CP->getOffset(), TF); 2071 2072 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 2073 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 2074 Op.getValueType(), 2075 0, 2076 TF); 2077 2078 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 2079 return DAG.getTargetExternalSymbol(ES->getSymbol(), 2080 ES->getValueType(0), TF); 2081 2082 llvm_unreachable("Unhandled address SDNode"); 2083 } 2084 2085 // Split Op into high and low parts according to HiTF and LoTF. 2086 // Return an ADD node combining the parts. 2087 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 2088 unsigned HiTF, unsigned LoTF, 2089 SelectionDAG &DAG) const { 2090 SDLoc DL(Op); 2091 EVT VT = Op.getValueType(); 2092 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 2093 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 2094 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2095 } 2096 2097 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 2098 // or ExternalSymbol SDNode. 2099 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 2100 SDLoc DL(Op); 2101 EVT VT = getPointerTy(DAG.getDataLayout()); 2102 2103 // Handle PIC mode first. SPARC needs a got load for every variable! 2104 if (isPositionIndependent()) { 2105 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2106 PICLevel::Level picLevel = M->getPICLevel(); 2107 SDValue Idx; 2108 2109 if (picLevel == PICLevel::SmallPIC) { 2110 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 2111 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 2112 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 2113 } else { 2114 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 2115 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 2116 SparcMCExpr::VK_Sparc_GOT10, DAG); 2117 } 2118 2119 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 2120 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 2121 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2122 // function has calls. 2123 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2124 MFI.setHasCalls(true); 2125 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 2126 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2127 } 2128 2129 // This is one of the absolute code models. 2130 switch(getTargetMachine().getCodeModel()) { 2131 default: 2132 llvm_unreachable("Unsupported absolute code model"); 2133 case CodeModel::Small: 2134 // abs32. 2135 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2136 SparcMCExpr::VK_Sparc_LO, DAG); 2137 case CodeModel::Medium: { 2138 // abs44. 2139 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 2140 SparcMCExpr::VK_Sparc_M44, DAG); 2141 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 2142 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 2143 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 2144 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 2145 } 2146 case CodeModel::Large: { 2147 // abs64. 2148 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2149 SparcMCExpr::VK_Sparc_HM, DAG); 2150 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2151 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2152 SparcMCExpr::VK_Sparc_LO, DAG); 2153 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2154 } 2155 } 2156 } 2157 2158 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2159 SelectionDAG &DAG) const { 2160 return makeAddress(Op, DAG); 2161 } 2162 2163 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2164 SelectionDAG &DAG) const { 2165 return makeAddress(Op, DAG); 2166 } 2167 2168 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2169 SelectionDAG &DAG) const { 2170 return makeAddress(Op, DAG); 2171 } 2172 2173 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2174 SelectionDAG &DAG) const { 2175 2176 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2177 if (DAG.getTarget().useEmulatedTLS()) 2178 return LowerToTLSEmulatedModel(GA, DAG); 2179 2180 SDLoc DL(GA); 2181 const GlobalValue *GV = GA->getGlobal(); 2182 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2183 2184 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2185 2186 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2187 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2188 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2189 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2190 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2191 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2192 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2193 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2194 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2195 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2196 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2197 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2198 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2199 2200 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2201 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2202 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2203 withTargetFlags(Op, addTF, DAG)); 2204 2205 SDValue Chain = DAG.getEntryNode(); 2206 SDValue InGlue; 2207 2208 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2209 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue); 2210 InGlue = Chain.getValue(1); 2211 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2212 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2213 2214 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2215 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2216 DAG.getMachineFunction(), CallingConv::C); 2217 assert(Mask && "Missing call preserved mask for calling convention"); 2218 SDValue Ops[] = {Chain, 2219 Callee, 2220 Symbol, 2221 DAG.getRegister(SP::O0, PtrVT), 2222 DAG.getRegisterMask(Mask), 2223 InGlue}; 2224 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2225 InGlue = Chain.getValue(1); 2226 Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL); 2227 InGlue = Chain.getValue(1); 2228 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue); 2229 2230 if (model != TLSModel::LocalDynamic) 2231 return Ret; 2232 2233 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2234 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2235 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2236 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2237 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2238 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2239 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2240 } 2241 2242 if (model == TLSModel::InitialExec) { 2243 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2244 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2245 2246 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2247 2248 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2249 // function has calls. 2250 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2251 MFI.setHasCalls(true); 2252 2253 SDValue TGA = makeHiLoPair(Op, 2254 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2255 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2256 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2257 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2258 DL, PtrVT, Ptr, 2259 withTargetFlags(Op, ldTF, DAG)); 2260 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2261 DAG.getRegister(SP::G7, PtrVT), Offset, 2262 withTargetFlags(Op, 2263 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2264 } 2265 2266 assert(model == TLSModel::LocalExec); 2267 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2268 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2269 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2270 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2271 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2272 2273 return DAG.getNode(ISD::ADD, DL, PtrVT, 2274 DAG.getRegister(SP::G7, PtrVT), Offset); 2275 } 2276 2277 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2278 ArgListTy &Args, SDValue Arg, 2279 const SDLoc &DL, 2280 SelectionDAG &DAG) const { 2281 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2282 EVT ArgVT = Arg.getValueType(); 2283 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2284 2285 ArgListEntry Entry; 2286 Entry.Node = Arg; 2287 Entry.Ty = ArgTy; 2288 2289 if (ArgTy->isFP128Ty()) { 2290 // Create a stack object and pass the pointer to the library function. 2291 int FI = MFI.CreateStackObject(16, Align(8), false); 2292 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2293 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2294 Align(8)); 2295 2296 Entry.Node = FIPtr; 2297 Entry.Ty = PointerType::getUnqual(ArgTy); 2298 } 2299 Args.push_back(Entry); 2300 return Chain; 2301 } 2302 2303 SDValue 2304 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2305 const char *LibFuncName, 2306 unsigned numArgs) const { 2307 2308 ArgListTy Args; 2309 2310 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2311 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2312 2313 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2314 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2315 Type *RetTyABI = RetTy; 2316 SDValue Chain = DAG.getEntryNode(); 2317 SDValue RetPtr; 2318 2319 if (RetTy->isFP128Ty()) { 2320 // Create a Stack Object to receive the return value of type f128. 2321 ArgListEntry Entry; 2322 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2323 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2324 Entry.Node = RetPtr; 2325 Entry.Ty = PointerType::getUnqual(RetTy); 2326 if (!Subtarget->is64Bit()) { 2327 Entry.IsSRet = true; 2328 Entry.IndirectType = RetTy; 2329 } 2330 Entry.IsReturned = false; 2331 Args.push_back(Entry); 2332 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2333 } 2334 2335 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2336 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2337 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2338 } 2339 TargetLowering::CallLoweringInfo CLI(DAG); 2340 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2341 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2342 2343 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2344 2345 // chain is in second result. 2346 if (RetTyABI == RetTy) 2347 return CallInfo.first; 2348 2349 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2350 2351 Chain = CallInfo.second; 2352 2353 // Load RetPtr to get the return value. 2354 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2355 MachinePointerInfo(), Align(8)); 2356 } 2357 2358 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2359 unsigned &SPCC, const SDLoc &DL, 2360 SelectionDAG &DAG) const { 2361 2362 const char *LibCall = nullptr; 2363 bool is64Bit = Subtarget->is64Bit(); 2364 switch(SPCC) { 2365 default: llvm_unreachable("Unhandled conditional code!"); 2366 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2367 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2368 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2369 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2370 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2371 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2372 case SPCC::FCC_UL : 2373 case SPCC::FCC_ULE: 2374 case SPCC::FCC_UG : 2375 case SPCC::FCC_UGE: 2376 case SPCC::FCC_U : 2377 case SPCC::FCC_O : 2378 case SPCC::FCC_LG : 2379 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2380 } 2381 2382 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2383 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2384 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2385 ArgListTy Args; 2386 SDValue Chain = DAG.getEntryNode(); 2387 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2388 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2389 2390 TargetLowering::CallLoweringInfo CLI(DAG); 2391 CLI.setDebugLoc(DL).setChain(Chain) 2392 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2393 2394 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2395 2396 // result is in first, and chain is in second result. 2397 SDValue Result = CallInfo.first; 2398 2399 switch(SPCC) { 2400 default: { 2401 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2402 SPCC = SPCC::ICC_NE; 2403 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2404 } 2405 case SPCC::FCC_UL : { 2406 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2407 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2408 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2409 SPCC = SPCC::ICC_NE; 2410 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2411 } 2412 case SPCC::FCC_ULE: { 2413 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2414 SPCC = SPCC::ICC_NE; 2415 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2416 } 2417 case SPCC::FCC_UG : { 2418 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2419 SPCC = SPCC::ICC_G; 2420 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2421 } 2422 case SPCC::FCC_UGE: { 2423 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2424 SPCC = SPCC::ICC_NE; 2425 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2426 } 2427 2428 case SPCC::FCC_U : { 2429 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2430 SPCC = SPCC::ICC_E; 2431 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2432 } 2433 case SPCC::FCC_O : { 2434 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2435 SPCC = SPCC::ICC_NE; 2436 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2437 } 2438 case SPCC::FCC_LG : { 2439 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2440 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2441 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2442 SPCC = SPCC::ICC_NE; 2443 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2444 } 2445 case SPCC::FCC_UE : { 2446 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2447 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2448 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2449 SPCC = SPCC::ICC_E; 2450 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2451 } 2452 } 2453 } 2454 2455 static SDValue 2456 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2457 const SparcTargetLowering &TLI) { 2458 2459 if (Op.getOperand(0).getValueType() == MVT::f64) 2460 return TLI.LowerF128Op(Op, DAG, 2461 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2462 2463 if (Op.getOperand(0).getValueType() == MVT::f32) 2464 return TLI.LowerF128Op(Op, DAG, 2465 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2466 2467 llvm_unreachable("fpextend with non-float operand!"); 2468 return SDValue(); 2469 } 2470 2471 static SDValue 2472 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2473 const SparcTargetLowering &TLI) { 2474 // FP_ROUND on f64 and f32 are legal. 2475 if (Op.getOperand(0).getValueType() != MVT::f128) 2476 return Op; 2477 2478 if (Op.getValueType() == MVT::f64) 2479 return TLI.LowerF128Op(Op, DAG, 2480 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2481 if (Op.getValueType() == MVT::f32) 2482 return TLI.LowerF128Op(Op, DAG, 2483 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2484 2485 llvm_unreachable("fpround to non-float!"); 2486 return SDValue(); 2487 } 2488 2489 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2490 const SparcTargetLowering &TLI, 2491 bool hasHardQuad) { 2492 SDLoc dl(Op); 2493 EVT VT = Op.getValueType(); 2494 assert(VT == MVT::i32 || VT == MVT::i64); 2495 2496 // Expand f128 operations to fp128 abi calls. 2497 if (Op.getOperand(0).getValueType() == MVT::f128 2498 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2499 const char *libName = TLI.getLibcallName(VT == MVT::i32 2500 ? RTLIB::FPTOSINT_F128_I32 2501 : RTLIB::FPTOSINT_F128_I64); 2502 return TLI.LowerF128Op(Op, DAG, libName, 1); 2503 } 2504 2505 // Expand if the resulting type is illegal. 2506 if (!TLI.isTypeLegal(VT)) 2507 return SDValue(); 2508 2509 // Otherwise, Convert the fp value to integer in an FP register. 2510 if (VT == MVT::i32) 2511 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2512 else 2513 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2514 2515 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2516 } 2517 2518 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2519 const SparcTargetLowering &TLI, 2520 bool hasHardQuad) { 2521 SDLoc dl(Op); 2522 EVT OpVT = Op.getOperand(0).getValueType(); 2523 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2524 2525 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2526 2527 // Expand f128 operations to fp128 ABI calls. 2528 if (Op.getValueType() == MVT::f128 2529 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2530 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2531 ? RTLIB::SINTTOFP_I32_F128 2532 : RTLIB::SINTTOFP_I64_F128); 2533 return TLI.LowerF128Op(Op, DAG, libName, 1); 2534 } 2535 2536 // Expand if the operand type is illegal. 2537 if (!TLI.isTypeLegal(OpVT)) 2538 return SDValue(); 2539 2540 // Otherwise, Convert the int value to FP in an FP register. 2541 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2542 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2543 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2544 } 2545 2546 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2547 const SparcTargetLowering &TLI, 2548 bool hasHardQuad) { 2549 SDLoc dl(Op); 2550 EVT VT = Op.getValueType(); 2551 2552 // Expand if it does not involve f128 or the target has support for 2553 // quad floating point instructions and the resulting type is legal. 2554 if (Op.getOperand(0).getValueType() != MVT::f128 || 2555 (hasHardQuad && TLI.isTypeLegal(VT))) 2556 return SDValue(); 2557 2558 assert(VT == MVT::i32 || VT == MVT::i64); 2559 2560 return TLI.LowerF128Op(Op, DAG, 2561 TLI.getLibcallName(VT == MVT::i32 2562 ? RTLIB::FPTOUINT_F128_I32 2563 : RTLIB::FPTOUINT_F128_I64), 2564 1); 2565 } 2566 2567 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2568 const SparcTargetLowering &TLI, 2569 bool hasHardQuad) { 2570 SDLoc dl(Op); 2571 EVT OpVT = Op.getOperand(0).getValueType(); 2572 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2573 2574 // Expand if it does not involve f128 or the target has support for 2575 // quad floating point instructions and the operand type is legal. 2576 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2577 return SDValue(); 2578 2579 return TLI.LowerF128Op(Op, DAG, 2580 TLI.getLibcallName(OpVT == MVT::i32 2581 ? RTLIB::UINTTOFP_I32_F128 2582 : RTLIB::UINTTOFP_I64_F128), 2583 1); 2584 } 2585 2586 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2587 const SparcTargetLowering &TLI, bool hasHardQuad, 2588 bool isV9, bool is64Bit) { 2589 SDValue Chain = Op.getOperand(0); 2590 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2591 SDValue LHS = Op.getOperand(2); 2592 SDValue RHS = Op.getOperand(3); 2593 SDValue Dest = Op.getOperand(4); 2594 SDLoc dl(Op); 2595 unsigned Opc, SPCC = ~0U; 2596 2597 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2598 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2599 LookThroughSetCC(LHS, RHS, CC, SPCC); 2600 assert(LHS.getValueType() == RHS.getValueType()); 2601 2602 // Get the condition flag. 2603 SDValue CompareFlag; 2604 if (LHS.getValueType().isInteger()) { 2605 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2606 // and the RHS is zero we might be able to use a specialized branch. 2607 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2608 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC)) 2609 return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest, 2610 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), 2611 LHS); 2612 2613 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2614 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2615 if (isV9) 2616 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2617 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC; 2618 else 2619 // Non-v9 targets don't have xcc. 2620 Opc = SPISD::BRICC; 2621 } else { 2622 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2623 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2624 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2625 Opc = isV9 ? SPISD::BPICC : SPISD::BRICC; 2626 } else { 2627 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2628 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2629 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2630 Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC; 2631 } 2632 } 2633 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2634 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2635 } 2636 2637 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2638 const SparcTargetLowering &TLI, bool hasHardQuad, 2639 bool isV9, bool is64Bit) { 2640 SDValue LHS = Op.getOperand(0); 2641 SDValue RHS = Op.getOperand(1); 2642 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2643 SDValue TrueVal = Op.getOperand(2); 2644 SDValue FalseVal = Op.getOperand(3); 2645 SDLoc dl(Op); 2646 unsigned Opc, SPCC = ~0U; 2647 2648 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2649 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2650 LookThroughSetCC(LHS, RHS, CC, SPCC); 2651 assert(LHS.getValueType() == RHS.getValueType()); 2652 2653 SDValue CompareFlag; 2654 if (LHS.getValueType().isInteger()) { 2655 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2656 // and the RHS is zero we might be able to use a specialized select. 2657 // All SELECT_CC between any two scalar integer types are eligible for 2658 // lowering to specialized instructions. Additionally, f32 and f64 types 2659 // are also eligible, but for f128 we can only use the specialized 2660 // instruction when we have hardquad. 2661 EVT ValType = TrueVal.getValueType(); 2662 bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 || 2663 ValType == MVT::f64 || 2664 (ValType == MVT::f128 && hasHardQuad); 2665 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2666 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType) 2667 return DAG.getNode( 2668 SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2669 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); 2670 2671 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2672 Opc = LHS.getValueType() == MVT::i32 ? 2673 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2674 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2675 } else { 2676 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2677 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2678 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2679 Opc = SPISD::SELECT_ICC; 2680 } else { 2681 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2682 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2683 Opc = SPISD::SELECT_FCC; 2684 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2685 } 2686 } 2687 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2688 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2689 } 2690 2691 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2692 const SparcTargetLowering &TLI) { 2693 MachineFunction &MF = DAG.getMachineFunction(); 2694 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2695 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2696 2697 // Need frame address to find the address of VarArgsFrameIndex. 2698 MF.getFrameInfo().setFrameAddressIsTaken(true); 2699 2700 // vastart just stores the address of the VarArgsFrameIndex slot into the 2701 // memory location argument. 2702 SDLoc DL(Op); 2703 SDValue Offset = 2704 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2705 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2706 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2707 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2708 MachinePointerInfo(SV)); 2709 } 2710 2711 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2712 SDNode *Node = Op.getNode(); 2713 EVT VT = Node->getValueType(0); 2714 SDValue InChain = Node->getOperand(0); 2715 SDValue VAListPtr = Node->getOperand(1); 2716 EVT PtrVT = VAListPtr.getValueType(); 2717 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2718 SDLoc DL(Node); 2719 SDValue VAList = 2720 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2721 // Increment the pointer, VAList, to the next vaarg. 2722 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2723 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2724 DL)); 2725 // Store the incremented VAList to the legalized pointer. 2726 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2727 MachinePointerInfo(SV)); 2728 // Load the actual argument out of the pointer VAList. 2729 // We can't count on greater alignment than the word size. 2730 return DAG.getLoad( 2731 VT, DL, InChain, VAList, MachinePointerInfo(), 2732 Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8)); 2733 } 2734 2735 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2736 const SparcSubtarget *Subtarget) { 2737 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2738 SDValue Size = Op.getOperand(1); // Legalize the size. 2739 MaybeAlign Alignment = 2740 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2741 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2742 EVT VT = Size->getValueType(0); 2743 SDLoc dl(Op); 2744 2745 // TODO: implement over-aligned alloca. (Note: also implies 2746 // supporting support for overaligned function frames + dynamic 2747 // allocations, at all, which currently isn't supported) 2748 if (Alignment && *Alignment > StackAlign) { 2749 const MachineFunction &MF = DAG.getMachineFunction(); 2750 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2751 "over-aligned dynamic alloca not supported."); 2752 } 2753 2754 // The resultant pointer needs to be above the register spill area 2755 // at the bottom of the stack. 2756 unsigned regSpillArea; 2757 if (Subtarget->is64Bit()) { 2758 regSpillArea = 128; 2759 } else { 2760 // On Sparc32, the size of the spill area is 92. Unfortunately, 2761 // that's only 4-byte aligned, not 8-byte aligned (the stack 2762 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2763 // aligned dynamic allocation, we actually need to add 96 to the 2764 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2765 2766 // That also means adding 4 to the size of the allocation -- 2767 // before applying the 8-byte rounding. Unfortunately, we the 2768 // value we get here has already had rounding applied. So, we need 2769 // to add 8, instead, wasting a bit more memory. 2770 2771 // Further, this only actually needs to be done if the required 2772 // alignment is > 4, but, we've lost that info by this point, too, 2773 // so we always apply it. 2774 2775 // (An alternative approach would be to always reserve 96 bytes 2776 // instead of the required 92, but then we'd waste 4 extra bytes 2777 // in every frame, not just those with dynamic stack allocations) 2778 2779 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2780 2781 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2782 DAG.getConstant(8, dl, VT)); 2783 regSpillArea = 96; 2784 } 2785 2786 unsigned SPReg = SP::O6; 2787 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2788 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2789 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2790 2791 regSpillArea += Subtarget->getStackPointerBias(); 2792 2793 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2794 DAG.getConstant(regSpillArea, dl, VT)); 2795 SDValue Ops[2] = { NewVal, Chain }; 2796 return DAG.getMergeValues(Ops, dl); 2797 } 2798 2799 2800 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2801 SDLoc dl(Op); 2802 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2803 dl, MVT::Other, DAG.getEntryNode()); 2804 return Chain; 2805 } 2806 2807 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2808 const SparcSubtarget *Subtarget, 2809 bool AlwaysFlush = false) { 2810 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2811 MFI.setFrameAddressIsTaken(true); 2812 2813 EVT VT = Op.getValueType(); 2814 SDLoc dl(Op); 2815 unsigned FrameReg = SP::I6; 2816 unsigned stackBias = Subtarget->getStackPointerBias(); 2817 2818 SDValue FrameAddr; 2819 SDValue Chain; 2820 2821 // flush first to make sure the windowed registers' values are in stack 2822 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2823 2824 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2825 2826 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2827 2828 while (depth--) { 2829 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2830 DAG.getIntPtrConstant(Offset, dl)); 2831 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2832 } 2833 if (Subtarget->is64Bit()) 2834 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2835 DAG.getIntPtrConstant(stackBias, dl)); 2836 return FrameAddr; 2837 } 2838 2839 2840 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2841 const SparcSubtarget *Subtarget) { 2842 2843 uint64_t depth = Op.getConstantOperandVal(0); 2844 2845 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2846 2847 } 2848 2849 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2850 const SparcTargetLowering &TLI, 2851 const SparcSubtarget *Subtarget) { 2852 MachineFunction &MF = DAG.getMachineFunction(); 2853 MachineFrameInfo &MFI = MF.getFrameInfo(); 2854 MFI.setReturnAddressIsTaken(true); 2855 2856 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2857 return SDValue(); 2858 2859 EVT VT = Op.getValueType(); 2860 SDLoc dl(Op); 2861 uint64_t depth = Op.getConstantOperandVal(0); 2862 2863 SDValue RetAddr; 2864 if (depth == 0) { 2865 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2866 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2867 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2868 return RetAddr; 2869 } 2870 2871 // Need frame address to find return address of the caller. 2872 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2873 2874 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2875 SDValue Ptr = DAG.getNode(ISD::ADD, 2876 dl, VT, 2877 FrameAddr, 2878 DAG.getIntPtrConstant(Offset, dl)); 2879 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2880 2881 return RetAddr; 2882 } 2883 2884 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2885 unsigned opcode) { 2886 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2887 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2888 2889 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2890 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2891 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2892 2893 // Note: in little-endian, the floating-point value is stored in the 2894 // registers are in the opposite order, so the subreg with the sign 2895 // bit is the highest-numbered (odd), rather than the 2896 // lowest-numbered (even). 2897 2898 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2899 SrcReg64); 2900 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2901 SrcReg64); 2902 2903 if (DAG.getDataLayout().isLittleEndian()) 2904 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2905 else 2906 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2907 2908 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2909 dl, MVT::f64), 0); 2910 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2911 DstReg64, Hi32); 2912 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2913 DstReg64, Lo32); 2914 return DstReg64; 2915 } 2916 2917 // Lower a f128 load into two f64 loads. 2918 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2919 { 2920 SDLoc dl(Op); 2921 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2922 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2923 2924 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2925 2926 SDValue Hi64 = 2927 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2928 LdNode->getPointerInfo(), Alignment); 2929 EVT addrVT = LdNode->getBasePtr().getValueType(); 2930 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2931 LdNode->getBasePtr(), 2932 DAG.getConstant(8, dl, addrVT)); 2933 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2934 LdNode->getPointerInfo().getWithOffset(8), 2935 Alignment); 2936 2937 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2938 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2939 2940 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2941 dl, MVT::f128); 2942 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2943 MVT::f128, 2944 SDValue(InFP128, 0), 2945 Hi64, 2946 SubRegEven); 2947 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2948 MVT::f128, 2949 SDValue(InFP128, 0), 2950 Lo64, 2951 SubRegOdd); 2952 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2953 SDValue(Lo64.getNode(), 1) }; 2954 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2955 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2956 return DAG.getMergeValues(Ops, dl); 2957 } 2958 2959 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2960 { 2961 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2962 2963 EVT MemVT = LdNode->getMemoryVT(); 2964 if (MemVT == MVT::f128) 2965 return LowerF128Load(Op, DAG); 2966 2967 return Op; 2968 } 2969 2970 // Lower a f128 store into two f64 stores. 2971 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2972 SDLoc dl(Op); 2973 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 2974 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 2975 2976 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2977 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2978 2979 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2980 dl, 2981 MVT::f64, 2982 StNode->getValue(), 2983 SubRegEven); 2984 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2985 dl, 2986 MVT::f64, 2987 StNode->getValue(), 2988 SubRegOdd); 2989 2990 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 2991 2992 SDValue OutChains[2]; 2993 OutChains[0] = 2994 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2995 StNode->getBasePtr(), StNode->getPointerInfo(), 2996 Alignment); 2997 EVT addrVT = StNode->getBasePtr().getValueType(); 2998 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2999 StNode->getBasePtr(), 3000 DAG.getConstant(8, dl, addrVT)); 3001 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 3002 StNode->getPointerInfo().getWithOffset(8), 3003 Alignment); 3004 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 3005 } 3006 3007 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 3008 { 3009 SDLoc dl(Op); 3010 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 3011 3012 EVT MemVT = St->getMemoryVT(); 3013 if (MemVT == MVT::f128) 3014 return LowerF128Store(Op, DAG); 3015 3016 if (MemVT == MVT::i64) { 3017 // Custom handling for i64 stores: turn it into a bitcast and a 3018 // v2i32 store. 3019 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 3020 SDValue Chain = DAG.getStore( 3021 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 3022 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 3023 St->getAAInfo()); 3024 return Chain; 3025 } 3026 3027 return SDValue(); 3028 } 3029 3030 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 3031 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 3032 && "invalid opcode"); 3033 3034 SDLoc dl(Op); 3035 3036 if (Op.getValueType() == MVT::f64) 3037 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 3038 if (Op.getValueType() != MVT::f128) 3039 return Op; 3040 3041 // Lower fabs/fneg on f128 to fabs/fneg on f64 3042 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 3043 // (As with LowerF64Op, on little-endian, we need to negate the odd 3044 // subreg) 3045 3046 SDValue SrcReg128 = Op.getOperand(0); 3047 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 3048 SrcReg128); 3049 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 3050 SrcReg128); 3051 3052 if (DAG.getDataLayout().isLittleEndian()) { 3053 if (isV9) 3054 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 3055 else 3056 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 3057 } else { 3058 if (isV9) 3059 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 3060 else 3061 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 3062 } 3063 3064 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 3065 dl, MVT::f128), 0); 3066 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 3067 DstReg128, Hi64); 3068 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 3069 DstReg128, Lo64); 3070 return DstReg128; 3071 } 3072 3073 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 3074 3075 if (Op.getValueType() != MVT::i64) 3076 return Op; 3077 3078 SDLoc dl(Op); 3079 SDValue Src1 = Op.getOperand(0); 3080 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 3081 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 3082 DAG.getConstant(32, dl, MVT::i64)); 3083 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 3084 3085 SDValue Src2 = Op.getOperand(1); 3086 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 3087 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 3088 DAG.getConstant(32, dl, MVT::i64)); 3089 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 3090 3091 3092 bool hasChain = false; 3093 unsigned hiOpc = Op.getOpcode(); 3094 switch (Op.getOpcode()) { 3095 default: llvm_unreachable("Invalid opcode"); 3096 case ISD::ADDC: hiOpc = ISD::ADDE; break; 3097 case ISD::ADDE: hasChain = true; break; 3098 case ISD::SUBC: hiOpc = ISD::SUBE; break; 3099 case ISD::SUBE: hasChain = true; break; 3100 } 3101 SDValue Lo; 3102 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 3103 if (hasChain) { 3104 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 3105 Op.getOperand(2)); 3106 } else { 3107 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 3108 } 3109 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 3110 SDValue Carry = Hi.getValue(1); 3111 3112 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 3113 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 3114 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 3115 DAG.getConstant(32, dl, MVT::i64)); 3116 3117 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 3118 SDValue Ops[2] = { Dst, Carry }; 3119 return DAG.getMergeValues(Ops, dl); 3120 } 3121 3122 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 3123 // in LegalizeDAG.cpp except the order of arguments to the library function. 3124 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 3125 const SparcTargetLowering &TLI) 3126 { 3127 unsigned opcode = Op.getOpcode(); 3128 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 3129 3130 bool isSigned = (opcode == ISD::SMULO); 3131 EVT VT = MVT::i64; 3132 EVT WideVT = MVT::i128; 3133 SDLoc dl(Op); 3134 SDValue LHS = Op.getOperand(0); 3135 3136 if (LHS.getValueType() != VT) 3137 return Op; 3138 3139 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 3140 3141 SDValue RHS = Op.getOperand(1); 3142 SDValue HiLHS, HiRHS; 3143 if (isSigned) { 3144 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 3145 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 3146 } else { 3147 HiLHS = DAG.getConstant(0, dl, VT); 3148 HiRHS = DAG.getConstant(0, dl, MVT::i64); 3149 } 3150 3151 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3152 3153 TargetLowering::MakeLibCallOptions CallOptions; 3154 CallOptions.setSExt(isSigned); 3155 SDValue MulResult = TLI.makeLibCall(DAG, 3156 RTLIB::MUL_I128, WideVT, 3157 Args, CallOptions, dl).first; 3158 SDValue BottomHalf, TopHalf; 3159 std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT); 3160 if (isSigned) { 3161 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 3162 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 3163 } else { 3164 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 3165 ISD::SETNE); 3166 } 3167 // MulResult is a node with an illegal type. Because such things are not 3168 // generally permitted during this phase of legalization, ensure that 3169 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 3170 // been folded. 3171 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 3172 3173 SDValue Ops[2] = { BottomHalf, TopHalf } ; 3174 return DAG.getMergeValues(Ops, dl); 3175 } 3176 3177 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3178 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { 3179 // Expand with a fence. 3180 return SDValue(); 3181 } 3182 3183 // Monotonic load/stores are legal. 3184 return Op; 3185 } 3186 3187 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3188 SelectionDAG &DAG) const { 3189 unsigned IntNo = Op.getConstantOperandVal(0); 3190 SDLoc dl(Op); 3191 switch (IntNo) { 3192 default: return SDValue(); // Don't custom lower most intrinsics. 3193 case Intrinsic::thread_pointer: { 3194 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3195 return DAG.getRegister(SP::G7, PtrVT); 3196 } 3197 } 3198 } 3199 3200 SDValue SparcTargetLowering:: 3201 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3202 3203 bool hasHardQuad = Subtarget->hasHardQuad(); 3204 bool isV9 = Subtarget->isV9(); 3205 bool is64Bit = Subtarget->is64Bit(); 3206 3207 switch (Op.getOpcode()) { 3208 default: llvm_unreachable("Should not custom lower this!"); 3209 3210 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3211 Subtarget); 3212 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3213 Subtarget); 3214 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3215 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3216 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3217 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3218 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3219 hasHardQuad); 3220 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3221 hasHardQuad); 3222 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3223 hasHardQuad); 3224 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3225 hasHardQuad); 3226 case ISD::BR_CC: 3227 return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3228 case ISD::SELECT_CC: 3229 return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3230 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3231 case ISD::VAARG: return LowerVAARG(Op, DAG); 3232 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3233 Subtarget); 3234 3235 case ISD::LOAD: return LowerLOAD(Op, DAG); 3236 case ISD::STORE: return LowerSTORE(Op, DAG); 3237 case ISD::FADD: return LowerF128Op(Op, DAG, 3238 getLibcallName(RTLIB::ADD_F128), 2); 3239 case ISD::FSUB: return LowerF128Op(Op, DAG, 3240 getLibcallName(RTLIB::SUB_F128), 2); 3241 case ISD::FMUL: return LowerF128Op(Op, DAG, 3242 getLibcallName(RTLIB::MUL_F128), 2); 3243 case ISD::FDIV: return LowerF128Op(Op, DAG, 3244 getLibcallName(RTLIB::DIV_F128), 2); 3245 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3246 getLibcallName(RTLIB::SQRT_F128),1); 3247 case ISD::FABS: 3248 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3249 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3250 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3251 case ISD::ADDC: 3252 case ISD::ADDE: 3253 case ISD::SUBC: 3254 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3255 case ISD::UMULO: 3256 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3257 case ISD::ATOMIC_LOAD: 3258 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3259 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3260 } 3261 } 3262 3263 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3264 const SDLoc &DL, 3265 SelectionDAG &DAG) const { 3266 APInt V = C->getValueAPF().bitcastToAPInt(); 3267 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3268 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3269 if (DAG.getDataLayout().isLittleEndian()) 3270 std::swap(Lo, Hi); 3271 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3272 } 3273 3274 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3275 DAGCombinerInfo &DCI) const { 3276 SDLoc dl(N); 3277 SDValue Src = N->getOperand(0); 3278 3279 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3280 Src.getSimpleValueType() == MVT::f64) 3281 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3282 3283 return SDValue(); 3284 } 3285 3286 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3287 DAGCombinerInfo &DCI) const { 3288 switch (N->getOpcode()) { 3289 default: 3290 break; 3291 case ISD::BITCAST: 3292 return PerformBITCASTCombine(N, DCI); 3293 } 3294 return SDValue(); 3295 } 3296 3297 MachineBasicBlock * 3298 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3299 MachineBasicBlock *BB) const { 3300 switch (MI.getOpcode()) { 3301 default: llvm_unreachable("Unknown SELECT_CC!"); 3302 case SP::SELECT_CC_Int_ICC: 3303 case SP::SELECT_CC_FP_ICC: 3304 case SP::SELECT_CC_DFP_ICC: 3305 case SP::SELECT_CC_QFP_ICC: 3306 if (Subtarget->isV9()) 3307 return expandSelectCC(MI, BB, SP::BPICC); 3308 return expandSelectCC(MI, BB, SP::BCOND); 3309 case SP::SELECT_CC_Int_XCC: 3310 case SP::SELECT_CC_FP_XCC: 3311 case SP::SELECT_CC_DFP_XCC: 3312 case SP::SELECT_CC_QFP_XCC: 3313 return expandSelectCC(MI, BB, SP::BPXCC); 3314 case SP::SELECT_CC_Int_FCC: 3315 case SP::SELECT_CC_FP_FCC: 3316 case SP::SELECT_CC_DFP_FCC: 3317 case SP::SELECT_CC_QFP_FCC: 3318 if (Subtarget->isV9()) 3319 return expandSelectCC(MI, BB, SP::FBCOND_V9); 3320 return expandSelectCC(MI, BB, SP::FBCOND); 3321 } 3322 } 3323 3324 MachineBasicBlock * 3325 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3326 unsigned BROpcode) const { 3327 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3328 DebugLoc dl = MI.getDebugLoc(); 3329 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3330 3331 // To "insert" a SELECT_CC instruction, we actually have to insert the 3332 // triangle control-flow pattern. The incoming instruction knows the 3333 // destination vreg to set, the condition code register to branch on, the 3334 // true/false values to select between, and the condition code for the branch. 3335 // 3336 // We produce the following control flow: 3337 // ThisMBB 3338 // | \ 3339 // | IfFalseMBB 3340 // | / 3341 // SinkMBB 3342 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3343 MachineFunction::iterator It = ++BB->getIterator(); 3344 3345 MachineBasicBlock *ThisMBB = BB; 3346 MachineFunction *F = BB->getParent(); 3347 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3348 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3349 F->insert(It, IfFalseMBB); 3350 F->insert(It, SinkMBB); 3351 3352 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3353 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3354 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3355 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3356 3357 // Set the new successors for ThisMBB. 3358 ThisMBB->addSuccessor(IfFalseMBB); 3359 ThisMBB->addSuccessor(SinkMBB); 3360 3361 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3362 .addMBB(SinkMBB) 3363 .addImm(CC); 3364 3365 // IfFalseMBB just falls through to SinkMBB. 3366 IfFalseMBB->addSuccessor(SinkMBB); 3367 3368 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3369 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3370 MI.getOperand(0).getReg()) 3371 .addReg(MI.getOperand(1).getReg()) 3372 .addMBB(ThisMBB) 3373 .addReg(MI.getOperand(2).getReg()) 3374 .addMBB(IfFalseMBB); 3375 3376 MI.eraseFromParent(); // The pseudo instruction is gone now. 3377 return SinkMBB; 3378 } 3379 3380 //===----------------------------------------------------------------------===// 3381 // Sparc Inline Assembly Support 3382 //===----------------------------------------------------------------------===// 3383 3384 /// getConstraintType - Given a constraint letter, return the type of 3385 /// constraint it is for this target. 3386 SparcTargetLowering::ConstraintType 3387 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3388 if (Constraint.size() == 1) { 3389 switch (Constraint[0]) { 3390 default: break; 3391 case 'r': 3392 case 'f': 3393 case 'e': 3394 return C_RegisterClass; 3395 case 'I': // SIMM13 3396 return C_Immediate; 3397 } 3398 } 3399 3400 return TargetLowering::getConstraintType(Constraint); 3401 } 3402 3403 TargetLowering::ConstraintWeight SparcTargetLowering:: 3404 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3405 const char *constraint) const { 3406 ConstraintWeight weight = CW_Invalid; 3407 Value *CallOperandVal = info.CallOperandVal; 3408 // If we don't have a value, we can't do a match, 3409 // but allow it at the lowest weight. 3410 if (!CallOperandVal) 3411 return CW_Default; 3412 3413 // Look at the constraint type. 3414 switch (*constraint) { 3415 default: 3416 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3417 break; 3418 case 'I': // SIMM13 3419 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3420 if (isInt<13>(C->getSExtValue())) 3421 weight = CW_Constant; 3422 } 3423 break; 3424 } 3425 return weight; 3426 } 3427 3428 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3429 /// vector. If it is invalid, don't add anything to Ops. 3430 void SparcTargetLowering::LowerAsmOperandForConstraint( 3431 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 3432 SelectionDAG &DAG) const { 3433 SDValue Result; 3434 3435 // Only support length 1 constraints for now. 3436 if (Constraint.size() > 1) 3437 return; 3438 3439 char ConstraintLetter = Constraint[0]; 3440 switch (ConstraintLetter) { 3441 default: break; 3442 case 'I': 3443 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3444 if (isInt<13>(C->getSExtValue())) { 3445 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3446 Op.getValueType()); 3447 break; 3448 } 3449 return; 3450 } 3451 } 3452 3453 if (Result.getNode()) { 3454 Ops.push_back(Result); 3455 return; 3456 } 3457 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3458 } 3459 3460 std::pair<unsigned, const TargetRegisterClass *> 3461 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3462 StringRef Constraint, 3463 MVT VT) const { 3464 if (Constraint.empty()) 3465 return std::make_pair(0U, nullptr); 3466 3467 if (Constraint.size() == 1) { 3468 switch (Constraint[0]) { 3469 case 'r': 3470 if (VT == MVT::v2i32) 3471 return std::make_pair(0U, &SP::IntPairRegClass); 3472 else if (Subtarget->is64Bit()) 3473 return std::make_pair(0U, &SP::I64RegsRegClass); 3474 else 3475 return std::make_pair(0U, &SP::IntRegsRegClass); 3476 case 'f': 3477 if (VT == MVT::f32 || VT == MVT::i32) 3478 return std::make_pair(0U, &SP::FPRegsRegClass); 3479 else if (VT == MVT::f64 || VT == MVT::i64) 3480 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3481 else if (VT == MVT::f128) 3482 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3483 // This will generate an error message 3484 return std::make_pair(0U, nullptr); 3485 case 'e': 3486 if (VT == MVT::f32 || VT == MVT::i32) 3487 return std::make_pair(0U, &SP::FPRegsRegClass); 3488 else if (VT == MVT::f64 || VT == MVT::i64 ) 3489 return std::make_pair(0U, &SP::DFPRegsRegClass); 3490 else if (VT == MVT::f128) 3491 return std::make_pair(0U, &SP::QFPRegsRegClass); 3492 // This will generate an error message 3493 return std::make_pair(0U, nullptr); 3494 } 3495 } 3496 3497 if (Constraint.front() != '{') 3498 return std::make_pair(0U, nullptr); 3499 3500 assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); 3501 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3502 if (RegName.empty()) 3503 return std::make_pair(0U, nullptr); 3504 3505 unsigned long long RegNo; 3506 // Handle numbered register aliases. 3507 if (RegName[0] == 'r' && 3508 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3509 // r0-r7 -> g0-g7 3510 // r8-r15 -> o0-o7 3511 // r16-r23 -> l0-l7 3512 // r24-r31 -> i0-i7 3513 if (RegNo > 31) 3514 return std::make_pair(0U, nullptr); 3515 const char RegTypes[] = {'g', 'o', 'l', 'i'}; 3516 char RegType = RegTypes[RegNo / 8]; 3517 char RegIndex = '0' + (RegNo % 8); 3518 char Tmp[] = {'{', RegType, RegIndex, '}', 0}; 3519 return getRegForInlineAsmConstraint(TRI, Tmp, VT); 3520 } 3521 3522 // Rewrite the fN constraint according to the value type if needed. 3523 if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && 3524 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3525 if (VT == MVT::f64 && (RegNo % 2 == 0)) { 3526 return getRegForInlineAsmConstraint( 3527 TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); 3528 } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { 3529 return getRegForInlineAsmConstraint( 3530 TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); 3531 } else { 3532 return std::make_pair(0U, nullptr); 3533 } 3534 } 3535 3536 auto ResultPair = 3537 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3538 if (!ResultPair.second) 3539 return std::make_pair(0U, nullptr); 3540 3541 // Force the use of I64Regs over IntRegs for 64-bit values. 3542 if (Subtarget->is64Bit() && VT == MVT::i64) { 3543 assert(ResultPair.second == &SP::IntRegsRegClass && 3544 "Unexpected register class"); 3545 return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); 3546 } 3547 3548 return ResultPair; 3549 } 3550 3551 bool 3552 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3553 // The Sparc target isn't yet aware of offsets. 3554 return false; 3555 } 3556 3557 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3558 SmallVectorImpl<SDValue>& Results, 3559 SelectionDAG &DAG) const { 3560 3561 SDLoc dl(N); 3562 3563 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3564 3565 switch (N->getOpcode()) { 3566 default: 3567 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3568 3569 case ISD::FP_TO_SINT: 3570 case ISD::FP_TO_UINT: 3571 // Custom lower only if it involves f128 or i64. 3572 if (N->getOperand(0).getValueType() != MVT::f128 3573 || N->getValueType(0) != MVT::i64) 3574 return; 3575 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3576 ? RTLIB::FPTOSINT_F128_I64 3577 : RTLIB::FPTOUINT_F128_I64); 3578 3579 Results.push_back(LowerF128Op(SDValue(N, 0), 3580 DAG, 3581 getLibcallName(libCall), 3582 1)); 3583 return; 3584 case ISD::READCYCLECOUNTER: { 3585 assert(Subtarget->hasLeonCycleCounter()); 3586 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3587 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3588 SDValue Ops[] = { Lo, Hi }; 3589 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3590 Results.push_back(Pair); 3591 Results.push_back(N->getOperand(0)); 3592 return; 3593 } 3594 case ISD::SINT_TO_FP: 3595 case ISD::UINT_TO_FP: 3596 // Custom lower only if it involves f128 or i64. 3597 if (N->getValueType(0) != MVT::f128 3598 || N->getOperand(0).getValueType() != MVT::i64) 3599 return; 3600 3601 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3602 ? RTLIB::SINTTOFP_I64_F128 3603 : RTLIB::UINTTOFP_I64_F128); 3604 3605 Results.push_back(LowerF128Op(SDValue(N, 0), 3606 DAG, 3607 getLibcallName(libCall), 3608 1)); 3609 return; 3610 case ISD::LOAD: { 3611 LoadSDNode *Ld = cast<LoadSDNode>(N); 3612 // Custom handling only for i64: turn i64 load into a v2i32 load, 3613 // and a bitcast. 3614 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3615 return; 3616 3617 SDLoc dl(N); 3618 SDValue LoadRes = DAG.getExtLoad( 3619 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3620 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3621 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3622 Ld->getAAInfo()); 3623 3624 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3625 Results.push_back(Res); 3626 Results.push_back(LoadRes.getValue(1)); 3627 return; 3628 } 3629 } 3630 } 3631 3632 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3633 bool SparcTargetLowering::useLoadStackGuardNode() const { 3634 if (!Subtarget->isTargetLinux()) 3635 return TargetLowering::useLoadStackGuardNode(); 3636 return true; 3637 } 3638 3639 // Override to disable global variable loading on Linux. 3640 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3641 if (!Subtarget->isTargetLinux()) 3642 return TargetLowering::insertSSPDeclarations(M); 3643 } 3644 3645 void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 3646 SDNode *Node) const { 3647 assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri); 3648 // If the result is dead, replace it with %g0. 3649 if (!Node->hasAnyUseOfValue(0)) 3650 MI.getOperand(0).setReg(SP::G0); 3651 } 3652