1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Sparc uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SparcISelLowering.h"
15 #include "MCTargetDesc/SparcMCExpr.h"
16 #include "MCTargetDesc/SparcMCTargetDesc.h"
17 #include "SparcMachineFunctionInfo.h"
18 #include "SparcRegisterInfo.h"
19 #include "SparcTargetMachine.h"
20 #include "SparcTargetObjectFile.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 using namespace llvm;
38
39
40 //===----------------------------------------------------------------------===//
41 // Calling Convention Implementation
42 //===----------------------------------------------------------------------===//
43
CC_Sparc_Assign_SRet(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)44 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
45 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
46 ISD::ArgFlagsTy &ArgFlags, CCState &State)
47 {
48 assert (ArgFlags.isSRet());
49
50 // Assign SRet argument.
51 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
52 0,
53 LocVT, LocInfo));
54 return true;
55 }
56
CC_Sparc_Assign_Split_64(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)57 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
58 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
59 ISD::ArgFlagsTy &ArgFlags, CCState &State)
60 {
61 static const MCPhysReg RegList[] = {
62 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
63 };
64 // Try to get first reg.
65 if (Register Reg = State.AllocateReg(RegList)) {
66 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
67 } else {
68 // Assign whole thing in stack.
69 State.addLoc(CCValAssign::getCustomMem(
70 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
71 return true;
72 }
73
74 // Try to get second reg.
75 if (Register Reg = State.AllocateReg(RegList))
76 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
77 else
78 State.addLoc(CCValAssign::getCustomMem(
79 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
80 return true;
81 }
82
CC_Sparc_Assign_Ret_Split_64(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)83 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
84 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
85 ISD::ArgFlagsTy &ArgFlags, CCState &State)
86 {
87 static const MCPhysReg RegList[] = {
88 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
89 };
90
91 // Try to get first reg.
92 if (Register Reg = State.AllocateReg(RegList))
93 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
94 else
95 return false;
96
97 // Try to get second reg.
98 if (Register Reg = State.AllocateReg(RegList))
99 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
100 else
101 return false;
102
103 return true;
104 }
105
106 // Allocate a full-sized argument for the 64-bit ABI.
Analyze_CC_Sparc64_Full(bool IsReturn,unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)107 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT,
108 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
109 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
110 assert((LocVT == MVT::f32 || LocVT == MVT::f128
111 || LocVT.getSizeInBits() == 64) &&
112 "Can't handle non-64 bits locations");
113
114 // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
115 unsigned size = (LocVT == MVT::f128) ? 16 : 8;
116 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8);
117 unsigned Offset = State.AllocateStack(size, alignment);
118 unsigned Reg = 0;
119
120 if (LocVT == MVT::i64 && Offset < 6*8)
121 // Promote integers to %i0-%i5.
122 Reg = SP::I0 + Offset/8;
123 else if (LocVT == MVT::f64 && Offset < 16*8)
124 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
125 Reg = SP::D0 + Offset/8;
126 else if (LocVT == MVT::f32 && Offset < 16*8)
127 // Promote floats to %f1, %f3, ...
128 Reg = SP::F1 + Offset/4;
129 else if (LocVT == MVT::f128 && Offset < 16*8)
130 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
131 Reg = SP::Q0 + Offset/16;
132
133 // Promote to register when possible, otherwise use the stack slot.
134 if (Reg) {
135 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
136 return true;
137 }
138
139 // Bail out if this is a return CC and we run out of registers to place
140 // values into.
141 if (IsReturn)
142 return false;
143
144 // This argument goes on the stack in an 8-byte slot.
145 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
146 // the right-aligned float. The first 4 bytes of the stack slot are undefined.
147 if (LocVT == MVT::f32)
148 Offset += 4;
149
150 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
151 return true;
152 }
153
154 // Allocate a half-sized argument for the 64-bit ABI.
155 //
156 // This is used when passing { float, int } structs by value in registers.
Analyze_CC_Sparc64_Half(bool IsReturn,unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)157 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT,
158 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
159 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
160 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
161 unsigned Offset = State.AllocateStack(4, Align(4));
162
163 if (LocVT == MVT::f32 && Offset < 16*8) {
164 // Promote floats to %f0-%f31.
165 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
166 LocVT, LocInfo));
167 return true;
168 }
169
170 if (LocVT == MVT::i32 && Offset < 6*8) {
171 // Promote integers to %i0-%i5, using half the register.
172 unsigned Reg = SP::I0 + Offset/8;
173 LocVT = MVT::i64;
174 LocInfo = CCValAssign::AExt;
175
176 // Set the Custom bit if this i32 goes in the high bits of a register.
177 if (Offset % 8 == 0)
178 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
179 LocVT, LocInfo));
180 else
181 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
182 return true;
183 }
184
185 // Bail out if this is a return CC and we run out of registers to place
186 // values into.
187 if (IsReturn)
188 return false;
189
190 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
191 return true;
192 }
193
CC_Sparc64_Full(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)194 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
195 CCValAssign::LocInfo &LocInfo,
196 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
197 return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
198 State);
199 }
200
CC_Sparc64_Half(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)201 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
202 CCValAssign::LocInfo &LocInfo,
203 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
204 return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
205 State);
206 }
207
RetCC_Sparc64_Full(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)208 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
209 CCValAssign::LocInfo &LocInfo,
210 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
211 return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
212 State);
213 }
214
RetCC_Sparc64_Half(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)215 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
216 CCValAssign::LocInfo &LocInfo,
217 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
218 return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
219 State);
220 }
221
222 #include "SparcGenCallingConv.inc"
223
224 // The calling conventions in SparcCallingConv.td are described in terms of the
225 // callee's register window. This function translates registers to the
226 // corresponding caller window %o register.
toCallerWindow(unsigned Reg)227 static unsigned toCallerWindow(unsigned Reg) {
228 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
229 "Unexpected enum");
230 if (Reg >= SP::I0 && Reg <= SP::I7)
231 return Reg - SP::I0 + SP::O0;
232 return Reg;
233 }
234
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const235 bool SparcTargetLowering::CanLowerReturn(
236 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
237 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
238 SmallVector<CCValAssign, 16> RVLocs;
239 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
240 return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64
241 : RetCC_Sparc32);
242 }
243
244 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const245 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
246 bool IsVarArg,
247 const SmallVectorImpl<ISD::OutputArg> &Outs,
248 const SmallVectorImpl<SDValue> &OutVals,
249 const SDLoc &DL, SelectionDAG &DAG) const {
250 if (Subtarget->is64Bit())
251 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
252 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
253 }
254
255 SDValue
LowerReturn_32(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const256 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
257 bool IsVarArg,
258 const SmallVectorImpl<ISD::OutputArg> &Outs,
259 const SmallVectorImpl<SDValue> &OutVals,
260 const SDLoc &DL, SelectionDAG &DAG) const {
261 MachineFunction &MF = DAG.getMachineFunction();
262
263 // CCValAssign - represent the assignment of the return value to locations.
264 SmallVector<CCValAssign, 16> RVLocs;
265
266 // CCState - Info about the registers and stack slot.
267 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
268 *DAG.getContext());
269
270 // Analyze return values.
271 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
272
273 SDValue Glue;
274 SmallVector<SDValue, 4> RetOps(1, Chain);
275 // Make room for the return address offset.
276 RetOps.push_back(SDValue());
277
278 // Copy the result values into the output registers.
279 for (unsigned i = 0, realRVLocIdx = 0;
280 i != RVLocs.size();
281 ++i, ++realRVLocIdx) {
282 CCValAssign &VA = RVLocs[i];
283 assert(VA.isRegLoc() && "Can only return in registers!");
284
285 SDValue Arg = OutVals[realRVLocIdx];
286
287 if (VA.needsCustom()) {
288 assert(VA.getLocVT() == MVT::v2i32);
289 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
290 // happen by default if this wasn't a legal type)
291
292 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
293 Arg,
294 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
295 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
296 Arg,
297 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
298
299 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue);
300 Glue = Chain.getValue(1);
301 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
302 VA = RVLocs[++i]; // skip ahead to next loc
303 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
304 Glue);
305 } else
306 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
307
308 // Guarantee that all emitted copies are stuck together with flags.
309 Glue = Chain.getValue(1);
310 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
311 }
312
313 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
314 // If the function returns a struct, copy the SRetReturnReg to I0
315 if (MF.getFunction().hasStructRetAttr()) {
316 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
317 Register Reg = SFI->getSRetReturnReg();
318 if (!Reg)
319 llvm_unreachable("sret virtual register not created in the entry block");
320 auto PtrVT = getPointerTy(DAG.getDataLayout());
321 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
322 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue);
323 Glue = Chain.getValue(1);
324 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
325 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
326 }
327
328 RetOps[0] = Chain; // Update chain.
329 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
330
331 // Add the glue if we have it.
332 if (Glue.getNode())
333 RetOps.push_back(Glue);
334
335 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps);
336 }
337
338 // Lower return values for the 64-bit ABI.
339 // Return values are passed the exactly the same way as function arguments.
340 SDValue
LowerReturn_64(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const341 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
342 bool IsVarArg,
343 const SmallVectorImpl<ISD::OutputArg> &Outs,
344 const SmallVectorImpl<SDValue> &OutVals,
345 const SDLoc &DL, SelectionDAG &DAG) const {
346 // CCValAssign - represent the assignment of the return value to locations.
347 SmallVector<CCValAssign, 16> RVLocs;
348
349 // CCState - Info about the registers and stack slot.
350 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
351 *DAG.getContext());
352
353 // Analyze return values.
354 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
355
356 SDValue Glue;
357 SmallVector<SDValue, 4> RetOps(1, Chain);
358
359 // The second operand on the return instruction is the return address offset.
360 // The return address is always %i7+8 with the 64-bit ABI.
361 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
362
363 // Copy the result values into the output registers.
364 for (unsigned i = 0; i != RVLocs.size(); ++i) {
365 CCValAssign &VA = RVLocs[i];
366 assert(VA.isRegLoc() && "Can only return in registers!");
367 SDValue OutVal = OutVals[i];
368
369 // Integer return values must be sign or zero extended by the callee.
370 switch (VA.getLocInfo()) {
371 case CCValAssign::Full: break;
372 case CCValAssign::SExt:
373 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
374 break;
375 case CCValAssign::ZExt:
376 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
377 break;
378 case CCValAssign::AExt:
379 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
380 break;
381 default:
382 llvm_unreachable("Unknown loc info!");
383 }
384
385 // The custom bit on an i32 return value indicates that it should be passed
386 // in the high bits of the register.
387 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
388 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
389 DAG.getConstant(32, DL, MVT::i32));
390
391 // The next value may go in the low bits of the same register.
392 // Handle both at once.
393 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
394 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
395 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
396 // Skip the next value, it's already done.
397 ++i;
398 }
399 }
400
401 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue);
402
403 // Guarantee that all emitted copies are stuck together with flags.
404 Glue = Chain.getValue(1);
405 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
406 }
407
408 RetOps[0] = Chain; // Update chain.
409
410 // Add the flag if we have it.
411 if (Glue.getNode())
412 RetOps.push_back(Glue);
413
414 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps);
415 }
416
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const417 SDValue SparcTargetLowering::LowerFormalArguments(
418 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
419 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
420 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
421 if (Subtarget->is64Bit())
422 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
423 DL, DAG, InVals);
424 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
425 DL, DAG, InVals);
426 }
427
428 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
429 /// passed in either one or two GPRs, including FP values. TODO: we should
430 /// pass FP values in FP registers for fastcc functions.
LowerFormalArguments_32(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const431 SDValue SparcTargetLowering::LowerFormalArguments_32(
432 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
433 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
434 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
435 MachineFunction &MF = DAG.getMachineFunction();
436 MachineRegisterInfo &RegInfo = MF.getRegInfo();
437 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
438
439 // Assign locations to all of the incoming arguments.
440 SmallVector<CCValAssign, 16> ArgLocs;
441 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
442 *DAG.getContext());
443 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
444
445 const unsigned StackOffset = 92;
446 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
447
448 unsigned InIdx = 0;
449 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
450 CCValAssign &VA = ArgLocs[i];
451
452 if (Ins[InIdx].Flags.isSRet()) {
453 if (InIdx != 0)
454 report_fatal_error("sparc only supports sret on the first parameter");
455 // Get SRet from [%fp+64].
456 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
457 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
458 SDValue Arg =
459 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
460 InVals.push_back(Arg);
461 continue;
462 }
463
464 if (VA.isRegLoc()) {
465 if (VA.needsCustom()) {
466 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
467
468 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
469 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
470 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
471
472 assert(i+1 < e);
473 CCValAssign &NextVA = ArgLocs[++i];
474
475 SDValue LoVal;
476 if (NextVA.isMemLoc()) {
477 int FrameIdx = MF.getFrameInfo().
478 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
479 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
480 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
481 } else {
482 Register loReg = MF.addLiveIn(NextVA.getLocReg(),
483 &SP::IntRegsRegClass);
484 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
485 }
486
487 if (IsLittleEndian)
488 std::swap(LoVal, HiVal);
489
490 SDValue WholeValue =
491 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
492 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
493 InVals.push_back(WholeValue);
494 continue;
495 }
496 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
497 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
498 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
499 if (VA.getLocVT() == MVT::f32)
500 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
501 else if (VA.getLocVT() != MVT::i32) {
502 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
503 DAG.getValueType(VA.getLocVT()));
504 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
505 }
506 InVals.push_back(Arg);
507 continue;
508 }
509
510 assert(VA.isMemLoc());
511
512 unsigned Offset = VA.getLocMemOffset()+StackOffset;
513 auto PtrVT = getPointerTy(DAG.getDataLayout());
514
515 if (VA.needsCustom()) {
516 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
517 // If it is double-word aligned, just load.
518 if (Offset % 8 == 0) {
519 int FI = MF.getFrameInfo().CreateFixedObject(8,
520 Offset,
521 true);
522 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
523 SDValue Load =
524 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
525 InVals.push_back(Load);
526 continue;
527 }
528
529 int FI = MF.getFrameInfo().CreateFixedObject(4,
530 Offset,
531 true);
532 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
533 SDValue HiVal =
534 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
535 int FI2 = MF.getFrameInfo().CreateFixedObject(4,
536 Offset+4,
537 true);
538 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
539
540 SDValue LoVal =
541 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
542
543 if (IsLittleEndian)
544 std::swap(LoVal, HiVal);
545
546 SDValue WholeValue =
547 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
548 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
549 InVals.push_back(WholeValue);
550 continue;
551 }
552
553 int FI = MF.getFrameInfo().CreateFixedObject(4,
554 Offset,
555 true);
556 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
557 SDValue Load ;
558 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
559 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
560 } else if (VA.getValVT() == MVT::f128) {
561 report_fatal_error("SPARCv8 does not handle f128 in calls; "
562 "pass indirectly");
563 } else {
564 // We shouldn't see any other value types here.
565 llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
566 }
567 InVals.push_back(Load);
568 }
569
570 if (MF.getFunction().hasStructRetAttr()) {
571 // Copy the SRet Argument to SRetReturnReg.
572 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
573 Register Reg = SFI->getSRetReturnReg();
574 if (!Reg) {
575 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
576 SFI->setSRetReturnReg(Reg);
577 }
578 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
579 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
580 }
581
582 // Store remaining ArgRegs to the stack if this is a varargs function.
583 if (isVarArg) {
584 static const MCPhysReg ArgRegs[] = {
585 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
586 };
587 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
588 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
589 unsigned ArgOffset = CCInfo.getStackSize();
590 if (NumAllocated == 6)
591 ArgOffset += StackOffset;
592 else {
593 assert(!ArgOffset);
594 ArgOffset = 68+4*NumAllocated;
595 }
596
597 // Remember the vararg offset for the va_start implementation.
598 FuncInfo->setVarArgsFrameOffset(ArgOffset);
599
600 std::vector<SDValue> OutChains;
601
602 for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
603 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
604 MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
605 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
606
607 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
608 true);
609 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
610
611 OutChains.push_back(
612 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
613 ArgOffset += 4;
614 }
615
616 if (!OutChains.empty()) {
617 OutChains.push_back(Chain);
618 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
619 }
620 }
621
622 return Chain;
623 }
624
625 // Lower formal arguments for the 64 bit ABI.
LowerFormalArguments_64(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const626 SDValue SparcTargetLowering::LowerFormalArguments_64(
627 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
628 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
629 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
630 MachineFunction &MF = DAG.getMachineFunction();
631
632 // Analyze arguments according to CC_Sparc64.
633 SmallVector<CCValAssign, 16> ArgLocs;
634 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
635 *DAG.getContext());
636 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
637
638 // The argument array begins at %fp+BIAS+128, after the register save area.
639 const unsigned ArgArea = 128;
640
641 for (const CCValAssign &VA : ArgLocs) {
642 if (VA.isRegLoc()) {
643 // This argument is passed in a register.
644 // All integer register arguments are promoted by the caller to i64.
645
646 // Create a virtual register for the promoted live-in value.
647 Register VReg = MF.addLiveIn(VA.getLocReg(),
648 getRegClassFor(VA.getLocVT()));
649 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
650
651 // Get the high bits for i32 struct elements.
652 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
653 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
654 DAG.getConstant(32, DL, MVT::i32));
655
656 // The caller promoted the argument, so insert an Assert?ext SDNode so we
657 // won't promote the value again in this function.
658 switch (VA.getLocInfo()) {
659 case CCValAssign::SExt:
660 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
661 DAG.getValueType(VA.getValVT()));
662 break;
663 case CCValAssign::ZExt:
664 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
665 DAG.getValueType(VA.getValVT()));
666 break;
667 default:
668 break;
669 }
670
671 // Truncate the register down to the argument type.
672 if (VA.isExtInLoc())
673 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
674
675 InVals.push_back(Arg);
676 continue;
677 }
678
679 // The registers are exhausted. This argument was passed on the stack.
680 assert(VA.isMemLoc());
681 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
682 // beginning of the arguments area at %fp+BIAS+128.
683 unsigned Offset = VA.getLocMemOffset() + ArgArea;
684 unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
685 // Adjust offset for extended arguments, SPARC is big-endian.
686 // The caller will have written the full slot with extended bytes, but we
687 // prefer our own extending loads.
688 if (VA.isExtInLoc())
689 Offset += 8 - ValSize;
690 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
691 InVals.push_back(
692 DAG.getLoad(VA.getValVT(), DL, Chain,
693 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
694 MachinePointerInfo::getFixedStack(MF, FI)));
695 }
696
697 if (!IsVarArg)
698 return Chain;
699
700 // This function takes variable arguments, some of which may have been passed
701 // in registers %i0-%i5. Variable floating point arguments are never passed
702 // in floating point registers. They go on %i0-%i5 or on the stack like
703 // integer arguments.
704 //
705 // The va_start intrinsic needs to know the offset to the first variable
706 // argument.
707 unsigned ArgOffset = CCInfo.getStackSize();
708 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
709 // Skip the 128 bytes of register save area.
710 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
711 Subtarget->getStackPointerBias());
712
713 // Save the variable arguments that were passed in registers.
714 // The caller is required to reserve stack space for 6 arguments regardless
715 // of how many arguments were actually passed.
716 SmallVector<SDValue, 8> OutChains;
717 for (; ArgOffset < 6*8; ArgOffset += 8) {
718 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
719 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
720 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
721 auto PtrVT = getPointerTy(MF.getDataLayout());
722 OutChains.push_back(
723 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
724 MachinePointerInfo::getFixedStack(MF, FI)));
725 }
726
727 if (!OutChains.empty())
728 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
729
730 return Chain;
731 }
732
733 // Check whether any of the argument registers are reserved
isAnyArgRegReserved(const SparcRegisterInfo * TRI,const MachineFunction & MF)734 static bool isAnyArgRegReserved(const SparcRegisterInfo *TRI,
735 const MachineFunction &MF) {
736 // The register window design means that outgoing parameters at O*
737 // will appear in the callee as I*.
738 // Be conservative and check both sides of the register names.
739 bool Outgoing =
740 llvm::any_of(SP::GPROutgoingArgRegClass, [TRI, &MF](MCPhysReg r) {
741 return TRI->isReservedReg(MF, r);
742 });
743 bool Incoming =
744 llvm::any_of(SP::GPRIncomingArgRegClass, [TRI, &MF](MCPhysReg r) {
745 return TRI->isReservedReg(MF, r);
746 });
747 return Outgoing || Incoming;
748 }
749
emitReservedArgRegCallError(const MachineFunction & MF)750 static void emitReservedArgRegCallError(const MachineFunction &MF) {
751 const Function &F = MF.getFunction();
752 F.getContext().diagnose(DiagnosticInfoUnsupported{
753 F, ("SPARC doesn't support"
754 " function calls if any of the argument registers is reserved.")});
755 }
756
757 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const758 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
759 SmallVectorImpl<SDValue> &InVals) const {
760 if (Subtarget->is64Bit())
761 return LowerCall_64(CLI, InVals);
762 return LowerCall_32(CLI, InVals);
763 }
764
hasReturnsTwiceAttr(SelectionDAG & DAG,SDValue Callee,const CallBase * Call)765 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
766 const CallBase *Call) {
767 if (Call)
768 return Call->hasFnAttr(Attribute::ReturnsTwice);
769
770 const Function *CalleeFn = nullptr;
771 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
772 CalleeFn = dyn_cast<Function>(G->getGlobal());
773 } else if (ExternalSymbolSDNode *E =
774 dyn_cast<ExternalSymbolSDNode>(Callee)) {
775 const Function &Fn = DAG.getMachineFunction().getFunction();
776 const Module *M = Fn.getParent();
777 const char *CalleeName = E->getSymbol();
778 CalleeFn = M->getFunction(CalleeName);
779 }
780
781 if (!CalleeFn)
782 return false;
783 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
784 }
785
786 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
787 /// for tail call optimization.
IsEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF) const788 bool SparcTargetLowering::IsEligibleForTailCallOptimization(
789 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const {
790
791 auto &Outs = CLI.Outs;
792 auto &Caller = MF.getFunction();
793
794 // Do not tail call opt functions with "disable-tail-calls" attribute.
795 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
796 return false;
797
798 // Do not tail call opt if the stack is used to pass parameters.
799 // 64-bit targets have a slightly higher limit since the ABI requires
800 // to allocate some space even when all the parameters fit inside registers.
801 unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0;
802 if (CCInfo.getStackSize() > StackSizeLimit)
803 return false;
804
805 // Do not tail call opt if either the callee or caller returns
806 // a struct and the other does not.
807 if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet())
808 return false;
809
810 // Byval parameters hand the function a pointer directly into the stack area
811 // we want to reuse during a tail call.
812 for (auto &Arg : Outs)
813 if (Arg.Flags.isByVal())
814 return false;
815
816 return true;
817 }
818
819 // Lower a call for the 32-bit ABI.
820 SDValue
LowerCall_32(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const821 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
822 SmallVectorImpl<SDValue> &InVals) const {
823 SelectionDAG &DAG = CLI.DAG;
824 SDLoc &dl = CLI.DL;
825 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
826 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
827 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
828 SDValue Chain = CLI.Chain;
829 SDValue Callee = CLI.Callee;
830 bool &isTailCall = CLI.IsTailCall;
831 CallingConv::ID CallConv = CLI.CallConv;
832 bool isVarArg = CLI.IsVarArg;
833 MachineFunction &MF = DAG.getMachineFunction();
834
835 // Analyze operands of the call, assigning locations to each operand.
836 SmallVector<CCValAssign, 16> ArgLocs;
837 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
838 *DAG.getContext());
839 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
840
841 isTailCall = isTailCall && IsEligibleForTailCallOptimization(
842 CCInfo, CLI, DAG.getMachineFunction());
843
844 // Get the size of the outgoing arguments stack space requirement.
845 unsigned ArgsSize = CCInfo.getStackSize();
846
847 // Keep stack frames 8-byte aligned.
848 ArgsSize = (ArgsSize+7) & ~7;
849
850 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
851
852 // Create local copies for byval args.
853 SmallVector<SDValue, 8> ByValArgs;
854 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
855 ISD::ArgFlagsTy Flags = Outs[i].Flags;
856 if (!Flags.isByVal())
857 continue;
858
859 SDValue Arg = OutVals[i];
860 unsigned Size = Flags.getByValSize();
861 Align Alignment = Flags.getNonZeroByValAlign();
862
863 if (Size > 0U) {
864 int FI = MFI.CreateStackObject(Size, Alignment, false);
865 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
866 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
867
868 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment,
869 false, // isVolatile,
870 (Size <= 32), // AlwaysInline if size <= 32,
871 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
872 MachinePointerInfo());
873 ByValArgs.push_back(FIPtr);
874 }
875 else {
876 SDValue nullVal;
877 ByValArgs.push_back(nullVal);
878 }
879 }
880
881 assert(!isTailCall || ArgsSize == 0);
882
883 if (!isTailCall)
884 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
885
886 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
887 SmallVector<SDValue, 8> MemOpChains;
888
889 const unsigned StackOffset = 92;
890 bool hasStructRetAttr = false;
891 unsigned SRetArgSize = 0;
892 // Walk the register/memloc assignments, inserting copies/loads.
893 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
894 i != e;
895 ++i, ++realArgIdx) {
896 CCValAssign &VA = ArgLocs[i];
897 SDValue Arg = OutVals[realArgIdx];
898
899 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
900
901 // Use local copy if it is a byval arg.
902 if (Flags.isByVal()) {
903 Arg = ByValArgs[byvalArgIdx++];
904 if (!Arg) {
905 continue;
906 }
907 }
908
909 // Promote the value if needed.
910 switch (VA.getLocInfo()) {
911 default: llvm_unreachable("Unknown loc info!");
912 case CCValAssign::Full: break;
913 case CCValAssign::SExt:
914 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
915 break;
916 case CCValAssign::ZExt:
917 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
918 break;
919 case CCValAssign::AExt:
920 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
921 break;
922 case CCValAssign::BCvt:
923 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
924 break;
925 }
926
927 if (Flags.isSRet()) {
928 assert(VA.needsCustom());
929
930 if (isTailCall)
931 continue;
932
933 // store SRet argument in %sp+64
934 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
935 SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
936 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
937 MemOpChains.push_back(
938 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
939 hasStructRetAttr = true;
940 // sret only allowed on first argument
941 assert(Outs[realArgIdx].OrigArgIndex == 0);
942 SRetArgSize =
943 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType);
944 continue;
945 }
946
947 if (VA.needsCustom()) {
948 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
949
950 if (VA.isMemLoc()) {
951 unsigned Offset = VA.getLocMemOffset() + StackOffset;
952 // if it is double-word aligned, just store.
953 if (Offset % 8 == 0) {
954 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
955 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
956 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
957 MemOpChains.push_back(
958 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
959 continue;
960 }
961 }
962
963 if (VA.getLocVT() == MVT::f64) {
964 // Move from the float value from float registers into the
965 // integer registers.
966 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
967 Arg = bitcastConstantFPToInt(C, dl, DAG);
968 else
969 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
970 }
971
972 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
973 Arg,
974 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
975 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
976 Arg,
977 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
978
979 if (VA.isRegLoc()) {
980 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
981 assert(i+1 != e);
982 CCValAssign &NextVA = ArgLocs[++i];
983 if (NextVA.isRegLoc()) {
984 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
985 } else {
986 // Store the second part in stack.
987 unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
988 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
989 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
990 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
991 MemOpChains.push_back(
992 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
993 }
994 } else {
995 unsigned Offset = VA.getLocMemOffset() + StackOffset;
996 // Store the first part.
997 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
998 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
999 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1000 MemOpChains.push_back(
1001 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
1002 // Store the second part.
1003 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
1004 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1005 MemOpChains.push_back(
1006 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
1007 }
1008 continue;
1009 }
1010
1011 // Arguments that can be passed on register must be kept at
1012 // RegsToPass vector
1013 if (VA.isRegLoc()) {
1014 if (VA.getLocVT() != MVT::f32) {
1015 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1016 continue;
1017 }
1018 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
1019 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1020 continue;
1021 }
1022
1023 assert(VA.isMemLoc());
1024
1025 // Create a store off the stack pointer for this argument.
1026 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
1027 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
1028 dl);
1029 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1030 MemOpChains.push_back(
1031 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
1032 }
1033
1034
1035 // Emit all stores, make sure the occur before any copies into physregs.
1036 if (!MemOpChains.empty())
1037 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1038
1039 // Build a sequence of copy-to-reg nodes chained together with token
1040 // chain and flag operands which copy the outgoing args into registers.
1041 // The InGlue in necessary since all emitted instructions must be
1042 // stuck together.
1043 SDValue InGlue;
1044 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1045 Register Reg = RegsToPass[i].first;
1046 if (!isTailCall)
1047 Reg = toCallerWindow(Reg);
1048 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue);
1049 InGlue = Chain.getValue(1);
1050 }
1051
1052 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1053
1054 // If the callee is a GlobalAddress node (quite common, every direct call is)
1055 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1056 // Likewise ExternalSymbol -> TargetExternalSymbol.
1057 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1058 : SparcMCExpr::VK_Sparc_WDISP30;
1059 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1060 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
1061 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1062 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
1063
1064 // Returns a chain & a flag for retval copy to use
1065 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1066 SmallVector<SDValue, 8> Ops;
1067 Ops.push_back(Chain);
1068 Ops.push_back(Callee);
1069 if (hasStructRetAttr)
1070 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
1071 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1072 Register Reg = RegsToPass[i].first;
1073 if (!isTailCall)
1074 Reg = toCallerWindow(Reg);
1075 Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType()));
1076 }
1077
1078 // Add a register mask operand representing the call-preserved registers.
1079 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1080 const uint32_t *Mask =
1081 ((hasReturnsTwice)
1082 ? TRI->getRTCallPreservedMask(CallConv)
1083 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
1084
1085 if (isAnyArgRegReserved(TRI, MF))
1086 emitReservedArgRegCallError(MF);
1087
1088 assert(Mask && "Missing call preserved mask for calling convention");
1089 Ops.push_back(DAG.getRegisterMask(Mask));
1090
1091 if (InGlue.getNode())
1092 Ops.push_back(InGlue);
1093
1094 if (isTailCall) {
1095 DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1096 return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops);
1097 }
1098
1099 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
1100 InGlue = Chain.getValue(1);
1101
1102 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl);
1103 InGlue = Chain.getValue(1);
1104
1105 // Assign locations to each value returned by this call.
1106 SmallVector<CCValAssign, 16> RVLocs;
1107 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1108 *DAG.getContext());
1109
1110 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
1111
1112 // Copy all of the result registers out of their specified physreg.
1113 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1114 assert(RVLocs[i].isRegLoc() && "Can only return in registers!");
1115 if (RVLocs[i].getLocVT() == MVT::v2i32) {
1116 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
1117 SDValue Lo = DAG.getCopyFromReg(
1118 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue);
1119 Chain = Lo.getValue(1);
1120 InGlue = Lo.getValue(2);
1121 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
1122 DAG.getConstant(0, dl, MVT::i32));
1123 SDValue Hi = DAG.getCopyFromReg(
1124 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue);
1125 Chain = Hi.getValue(1);
1126 InGlue = Hi.getValue(2);
1127 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
1128 DAG.getConstant(1, dl, MVT::i32));
1129 InVals.push_back(Vec);
1130 } else {
1131 Chain =
1132 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1133 RVLocs[i].getValVT(), InGlue)
1134 .getValue(1);
1135 InGlue = Chain.getValue(2);
1136 InVals.push_back(Chain.getValue(0));
1137 }
1138 }
1139
1140 return Chain;
1141 }
1142
1143 // FIXME? Maybe this could be a TableGen attribute on some registers and
1144 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const1145 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
1146 const MachineFunction &MF) const {
1147 Register Reg = StringSwitch<Register>(RegName)
1148 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1149 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1150 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1151 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1152 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1153 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1154 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1155 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1156 .Default(0);
1157
1158 // If we're directly referencing register names
1159 // (e.g in GCC C extension `register int r asm("g1");`),
1160 // make sure that said register is in the reserve list.
1161 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1162 if (!TRI->isReservedReg(MF, Reg))
1163 Reg = 0;
1164
1165 if (Reg)
1166 return Reg;
1167
1168 report_fatal_error("Invalid register name global variable");
1169 }
1170
1171 // Fixup floating point arguments in the ... part of a varargs call.
1172 //
1173 // The SPARC v9 ABI requires that floating point arguments are treated the same
1174 // as integers when calling a varargs function. This does not apply to the
1175 // fixed arguments that are part of the function's prototype.
1176 //
1177 // This function post-processes a CCValAssign array created by
1178 // AnalyzeCallOperands().
fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> & ArgLocs,ArrayRef<ISD::OutputArg> Outs)1179 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1180 ArrayRef<ISD::OutputArg> Outs) {
1181 for (CCValAssign &VA : ArgLocs) {
1182 MVT ValTy = VA.getLocVT();
1183 // FIXME: What about f32 arguments? C promotes them to f64 when calling
1184 // varargs functions.
1185 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1186 continue;
1187 // The fixed arguments to a varargs function still go in FP registers.
1188 if (Outs[VA.getValNo()].IsFixed)
1189 continue;
1190
1191 // This floating point argument should be reassigned.
1192 // Determine the offset into the argument array.
1193 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1194 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
1195 unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1196 assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1197
1198 if (Offset < 6*8) {
1199 // This argument should go in %i0-%i5.
1200 unsigned IReg = SP::I0 + Offset/8;
1201 if (ValTy == MVT::f64)
1202 // Full register, just bitconvert into i64.
1203 VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64,
1204 CCValAssign::BCvt);
1205 else {
1206 assert(ValTy == MVT::f128 && "Unexpected type!");
1207 // Full register, just bitconvert into i128 -- We will lower this into
1208 // two i64s in LowerCall_64.
1209 VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg,
1210 MVT::i128, CCValAssign::BCvt);
1211 }
1212 } else {
1213 // This needs to go to memory, we're out of integer registers.
1214 VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset,
1215 VA.getLocVT(), VA.getLocInfo());
1216 }
1217 }
1218 }
1219
1220 // Lower a call for the 64-bit ABI.
1221 SDValue
LowerCall_64(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1222 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1223 SmallVectorImpl<SDValue> &InVals) const {
1224 SelectionDAG &DAG = CLI.DAG;
1225 SDLoc DL = CLI.DL;
1226 SDValue Chain = CLI.Chain;
1227 auto PtrVT = getPointerTy(DAG.getDataLayout());
1228 MachineFunction &MF = DAG.getMachineFunction();
1229
1230 // Analyze operands of the call, assigning locations to each operand.
1231 SmallVector<CCValAssign, 16> ArgLocs;
1232 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1233 *DAG.getContext());
1234 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1235
1236 CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization(
1237 CCInfo, CLI, DAG.getMachineFunction());
1238
1239 // Get the size of the outgoing arguments stack space requirement.
1240 // The stack offset computed by CC_Sparc64 includes all arguments.
1241 // Called functions expect 6 argument words to exist in the stack frame, used
1242 // or not.
1243 unsigned StackReserved = 6 * 8u;
1244 unsigned ArgsSize = std::max<unsigned>(StackReserved, CCInfo.getStackSize());
1245
1246 // Keep stack frames 16-byte aligned.
1247 ArgsSize = alignTo(ArgsSize, 16);
1248
1249 // Varargs calls require special treatment.
1250 if (CLI.IsVarArg)
1251 fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1252
1253 assert(!CLI.IsTailCall || ArgsSize == StackReserved);
1254
1255 // Adjust the stack pointer to make room for the arguments.
1256 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1257 // with more than 6 arguments.
1258 if (!CLI.IsTailCall)
1259 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1260
1261 // Collect the set of registers to pass to the function and their values.
1262 // This will be emitted as a sequence of CopyToReg nodes glued to the call
1263 // instruction.
1264 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
1265
1266 // Collect chains from all the memory opeations that copy arguments to the
1267 // stack. They must follow the stack pointer adjustment above and precede the
1268 // call instruction itself.
1269 SmallVector<SDValue, 8> MemOpChains;
1270
1271 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1272 const CCValAssign &VA = ArgLocs[i];
1273 SDValue Arg = CLI.OutVals[i];
1274
1275 // Promote the value if needed.
1276 switch (VA.getLocInfo()) {
1277 default:
1278 llvm_unreachable("Unknown location info!");
1279 case CCValAssign::Full:
1280 break;
1281 case CCValAssign::SExt:
1282 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1283 break;
1284 case CCValAssign::ZExt:
1285 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1286 break;
1287 case CCValAssign::AExt:
1288 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1289 break;
1290 case CCValAssign::BCvt:
1291 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1292 // SPARC does not support i128 natively. Lower it into two i64, see below.
1293 if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1294 || VA.getLocVT() != MVT::i128)
1295 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1296 break;
1297 }
1298
1299 if (VA.isRegLoc()) {
1300 if (VA.needsCustom() && VA.getValVT() == MVT::f128
1301 && VA.getLocVT() == MVT::i128) {
1302 // Store and reload into the integer register reg and reg+1.
1303 unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1304 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1305 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1306 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1307 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1308 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1309 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1310
1311 // Store to %sp+BIAS+128+Offset
1312 SDValue Store =
1313 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1314 // Load into Reg and Reg+1
1315 SDValue Hi64 =
1316 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1317 SDValue Lo64 =
1318 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1319
1320 Register HiReg = VA.getLocReg();
1321 Register LoReg = VA.getLocReg() + 1;
1322 if (!CLI.IsTailCall) {
1323 HiReg = toCallerWindow(HiReg);
1324 LoReg = toCallerWindow(LoReg);
1325 }
1326
1327 RegsToPass.push_back(std::make_pair(HiReg, Hi64));
1328 RegsToPass.push_back(std::make_pair(LoReg, Lo64));
1329 continue;
1330 }
1331
1332 // The custom bit on an i32 return value indicates that it should be
1333 // passed in the high bits of the register.
1334 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1335 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1336 DAG.getConstant(32, DL, MVT::i32));
1337
1338 // The next value may go in the low bits of the same register.
1339 // Handle both at once.
1340 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1341 ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1342 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1343 CLI.OutVals[i+1]);
1344 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1345 // Skip the next value, it's already done.
1346 ++i;
1347 }
1348 }
1349
1350 Register Reg = VA.getLocReg();
1351 if (!CLI.IsTailCall)
1352 Reg = toCallerWindow(Reg);
1353 RegsToPass.push_back(std::make_pair(Reg, Arg));
1354 continue;
1355 }
1356
1357 assert(VA.isMemLoc());
1358
1359 // Create a store off the stack pointer for this argument.
1360 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1361 // The argument area starts at %fp+BIAS+128 in the callee frame,
1362 // %sp+BIAS+128 in ours.
1363 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1364 Subtarget->getStackPointerBias() +
1365 128, DL);
1366 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1367 MemOpChains.push_back(
1368 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1369 }
1370
1371 // Emit all stores, make sure they occur before the call.
1372 if (!MemOpChains.empty())
1373 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1374
1375 // Build a sequence of CopyToReg nodes glued together with token chain and
1376 // glue operands which copy the outgoing args into registers. The InGlue is
1377 // necessary since all emitted instructions must be stuck together in order
1378 // to pass the live physical registers.
1379 SDValue InGlue;
1380 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1381 Chain = DAG.getCopyToReg(Chain, DL,
1382 RegsToPass[i].first, RegsToPass[i].second, InGlue);
1383 InGlue = Chain.getValue(1);
1384 }
1385
1386 // If the callee is a GlobalAddress node (quite common, every direct call is)
1387 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1388 // Likewise ExternalSymbol -> TargetExternalSymbol.
1389 SDValue Callee = CLI.Callee;
1390 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1391 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1392 : SparcMCExpr::VK_Sparc_WDISP30;
1393 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1394 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1395 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1396 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1397
1398 // Build the operands for the call instruction itself.
1399 SmallVector<SDValue, 8> Ops;
1400 Ops.push_back(Chain);
1401 Ops.push_back(Callee);
1402 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1403 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1404 RegsToPass[i].second.getValueType()));
1405
1406 // Add a register mask operand representing the call-preserved registers.
1407 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1408 const uint32_t *Mask =
1409 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1410 : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1411 CLI.CallConv));
1412
1413 if (isAnyArgRegReserved(TRI, MF))
1414 emitReservedArgRegCallError(MF);
1415
1416 assert(Mask && "Missing call preserved mask for calling convention");
1417 Ops.push_back(DAG.getRegisterMask(Mask));
1418
1419 // Make sure the CopyToReg nodes are glued to the call instruction which
1420 // consumes the registers.
1421 if (InGlue.getNode())
1422 Ops.push_back(InGlue);
1423
1424 // Now the call itself.
1425 if (CLI.IsTailCall) {
1426 DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1427 return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops);
1428 }
1429 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1430 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1431 InGlue = Chain.getValue(1);
1432
1433 // Revert the stack pointer immediately after the call.
1434 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL);
1435 InGlue = Chain.getValue(1);
1436
1437 // Now extract the return values. This is more or less the same as
1438 // LowerFormalArguments_64.
1439
1440 // Assign locations to each value returned by this call.
1441 SmallVector<CCValAssign, 16> RVLocs;
1442 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1443 *DAG.getContext());
1444
1445 // Set inreg flag manually for codegen generated library calls that
1446 // return float.
1447 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
1448 CLI.Ins[0].Flags.setInReg();
1449
1450 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1451
1452 // Copy all of the result registers out of their specified physreg.
1453 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1454 CCValAssign &VA = RVLocs[i];
1455 assert(VA.isRegLoc() && "Can only return in registers!");
1456 unsigned Reg = toCallerWindow(VA.getLocReg());
1457
1458 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1459 // reside in the same register in the high and low bits. Reuse the
1460 // CopyFromReg previous node to avoid duplicate copies.
1461 SDValue RV;
1462 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1463 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1464 RV = Chain.getValue(0);
1465
1466 // But usually we'll create a new CopyFromReg for a different register.
1467 if (!RV.getNode()) {
1468 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1469 Chain = RV.getValue(1);
1470 InGlue = Chain.getValue(2);
1471 }
1472
1473 // Get the high bits for i32 struct elements.
1474 if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1475 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1476 DAG.getConstant(32, DL, MVT::i32));
1477
1478 // The callee promoted the return value, so insert an Assert?ext SDNode so
1479 // we won't promote the value again in this function.
1480 switch (VA.getLocInfo()) {
1481 case CCValAssign::SExt:
1482 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1483 DAG.getValueType(VA.getValVT()));
1484 break;
1485 case CCValAssign::ZExt:
1486 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1487 DAG.getValueType(VA.getValVT()));
1488 break;
1489 default:
1490 break;
1491 }
1492
1493 // Truncate the register down to the return value type.
1494 if (VA.isExtInLoc())
1495 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1496
1497 InVals.push_back(RV);
1498 }
1499
1500 return Chain;
1501 }
1502
1503 //===----------------------------------------------------------------------===//
1504 // TargetLowering Implementation
1505 //===----------------------------------------------------------------------===//
1506
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const1507 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1508 if (AI->getOperation() == AtomicRMWInst::Xchg &&
1509 AI->getType()->getPrimitiveSizeInBits() == 32)
1510 return AtomicExpansionKind::None; // Uses xchg instruction
1511
1512 return AtomicExpansionKind::CmpXChg;
1513 }
1514
1515 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC
1516 /// rcond condition.
intCondCCodeToRcond(ISD::CondCode CC)1517 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) {
1518 switch (CC) {
1519 default:
1520 llvm_unreachable("Unknown/unsigned integer condition code!");
1521 case ISD::SETEQ:
1522 return SPCC::REG_Z;
1523 case ISD::SETNE:
1524 return SPCC::REG_NZ;
1525 case ISD::SETLT:
1526 return SPCC::REG_LZ;
1527 case ISD::SETGT:
1528 return SPCC::REG_GZ;
1529 case ISD::SETLE:
1530 return SPCC::REG_LEZ;
1531 case ISD::SETGE:
1532 return SPCC::REG_GEZ;
1533 }
1534 }
1535
1536 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1537 /// condition.
IntCondCCodeToICC(ISD::CondCode CC)1538 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1539 switch (CC) {
1540 default: llvm_unreachable("Unknown integer condition code!");
1541 case ISD::SETEQ: return SPCC::ICC_E;
1542 case ISD::SETNE: return SPCC::ICC_NE;
1543 case ISD::SETLT: return SPCC::ICC_L;
1544 case ISD::SETGT: return SPCC::ICC_G;
1545 case ISD::SETLE: return SPCC::ICC_LE;
1546 case ISD::SETGE: return SPCC::ICC_GE;
1547 case ISD::SETULT: return SPCC::ICC_CS;
1548 case ISD::SETULE: return SPCC::ICC_LEU;
1549 case ISD::SETUGT: return SPCC::ICC_GU;
1550 case ISD::SETUGE: return SPCC::ICC_CC;
1551 }
1552 }
1553
1554 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1555 /// FCC condition.
FPCondCCodeToFCC(ISD::CondCode CC)1556 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1557 switch (CC) {
1558 default: llvm_unreachable("Unknown fp condition code!");
1559 case ISD::SETEQ:
1560 case ISD::SETOEQ: return SPCC::FCC_E;
1561 case ISD::SETNE:
1562 case ISD::SETUNE: return SPCC::FCC_NE;
1563 case ISD::SETLT:
1564 case ISD::SETOLT: return SPCC::FCC_L;
1565 case ISD::SETGT:
1566 case ISD::SETOGT: return SPCC::FCC_G;
1567 case ISD::SETLE:
1568 case ISD::SETOLE: return SPCC::FCC_LE;
1569 case ISD::SETGE:
1570 case ISD::SETOGE: return SPCC::FCC_GE;
1571 case ISD::SETULT: return SPCC::FCC_UL;
1572 case ISD::SETULE: return SPCC::FCC_ULE;
1573 case ISD::SETUGT: return SPCC::FCC_UG;
1574 case ISD::SETUGE: return SPCC::FCC_UGE;
1575 case ISD::SETUO: return SPCC::FCC_U;
1576 case ISD::SETO: return SPCC::FCC_O;
1577 case ISD::SETONE: return SPCC::FCC_LG;
1578 case ISD::SETUEQ: return SPCC::FCC_UE;
1579 }
1580 }
1581
SparcTargetLowering(const TargetMachine & TM,const SparcSubtarget & STI)1582 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1583 const SparcSubtarget &STI)
1584 : TargetLowering(TM), Subtarget(&STI) {
1585 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
1586
1587 // Instructions which use registers as conditionals examine all the
1588 // bits (as does the pseudo SELECT_CC expansion). I don't think it
1589 // matters much whether it's ZeroOrOneBooleanContent, or
1590 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1591 // former.
1592 setBooleanContents(ZeroOrOneBooleanContent);
1593 setBooleanVectorContents(ZeroOrOneBooleanContent);
1594
1595 // Set up the register classes.
1596 addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1597 if (!Subtarget->useSoftFloat()) {
1598 addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1599 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1600 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1601 }
1602 if (Subtarget->is64Bit()) {
1603 addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1604 } else {
1605 // On 32bit sparc, we define a double-register 32bit register
1606 // class, as well. This is modeled in LLVM as a 2-vector of i32.
1607 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1608
1609 // ...but almost all operations must be expanded, so set that as
1610 // the default.
1611 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1612 setOperationAction(Op, MVT::v2i32, Expand);
1613 }
1614 // Truncating/extending stores/loads are also not supported.
1615 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1616 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1617 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1618 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1619
1620 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1621 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1622 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1623
1624 setTruncStoreAction(VT, MVT::v2i32, Expand);
1625 setTruncStoreAction(MVT::v2i32, VT, Expand);
1626 }
1627 // However, load and store *are* legal.
1628 setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1629 setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1630 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1631 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1632
1633 // And we need to promote i64 loads/stores into vector load/store
1634 setOperationAction(ISD::LOAD, MVT::i64, Custom);
1635 setOperationAction(ISD::STORE, MVT::i64, Custom);
1636
1637 // Sadly, this doesn't work:
1638 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1639 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1640 }
1641
1642 // Turn FP extload into load/fpextend
1643 for (MVT VT : MVT::fp_valuetypes()) {
1644 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1645 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1646 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1647 }
1648
1649 // Sparc doesn't have i1 sign extending load
1650 for (MVT VT : MVT::integer_valuetypes())
1651 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1652
1653 // Turn FP truncstore into trunc + store.
1654 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1655 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1656 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1657 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
1658 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1659 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1660
1661 // Custom legalize GlobalAddress nodes into LO/HI parts.
1662 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1663 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1664 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1665 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1666
1667 // Sparc doesn't have sext_inreg, replace them with shl/sra
1668 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1669 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1670 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1671
1672 // Sparc has no REM or DIVREM operations.
1673 setOperationAction(ISD::UREM, MVT::i32, Expand);
1674 setOperationAction(ISD::SREM, MVT::i32, Expand);
1675 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1676 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1677
1678 // ... nor does SparcV9.
1679 if (Subtarget->is64Bit()) {
1680 setOperationAction(ISD::UREM, MVT::i64, Expand);
1681 setOperationAction(ISD::SREM, MVT::i64, Expand);
1682 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1683 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1684 }
1685
1686 // Custom expand fp<->sint
1687 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1688 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1689 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1690 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1691
1692 // Custom Expand fp<->uint
1693 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1694 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1695 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1696 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1697
1698 // Lower f16 conversion operations into library calls
1699 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1700 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1701 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1702 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1703 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
1704 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
1705
1706 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1707 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1708
1709 // Sparc has no select or setcc: expand to SELECT_CC.
1710 setOperationAction(ISD::SELECT, MVT::i32, Expand);
1711 setOperationAction(ISD::SELECT, MVT::f32, Expand);
1712 setOperationAction(ISD::SELECT, MVT::f64, Expand);
1713 setOperationAction(ISD::SELECT, MVT::f128, Expand);
1714
1715 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1716 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1717 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1718 setOperationAction(ISD::SETCC, MVT::f128, Expand);
1719
1720 // Sparc doesn't have BRCOND either, it has BR_CC.
1721 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1722 setOperationAction(ISD::BRIND, MVT::Other, Expand);
1723 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1724 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1725 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1726 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1727 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1728
1729 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1730 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1731 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1732 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1733
1734 setOperationAction(ISD::ADDC, MVT::i32, Custom);
1735 setOperationAction(ISD::ADDE, MVT::i32, Custom);
1736 setOperationAction(ISD::SUBC, MVT::i32, Custom);
1737 setOperationAction(ISD::SUBE, MVT::i32, Custom);
1738
1739 if (Subtarget->is64Bit()) {
1740 setOperationAction(ISD::ADDC, MVT::i64, Custom);
1741 setOperationAction(ISD::ADDE, MVT::i64, Custom);
1742 setOperationAction(ISD::SUBC, MVT::i64, Custom);
1743 setOperationAction(ISD::SUBE, MVT::i64, Custom);
1744 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1745 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1746 setOperationAction(ISD::SELECT, MVT::i64, Expand);
1747 setOperationAction(ISD::SETCC, MVT::i64, Expand);
1748 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1749 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1750
1751 setOperationAction(ISD::CTPOP, MVT::i64,
1752 Subtarget->usePopc() ? Legal : Expand);
1753 setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1754 setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1755 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1756 setOperationAction(ISD::ROTL , MVT::i64, Expand);
1757 setOperationAction(ISD::ROTR , MVT::i64, Expand);
1758 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1759 }
1760
1761 // ATOMICs.
1762 // Atomics are supported on SparcV9. 32-bit atomics are also
1763 // supported by some Leon SparcV8 variants. Otherwise, atomics
1764 // are unsupported.
1765 if (Subtarget->isV9()) {
1766 // TODO: we _ought_ to be able to support 64-bit atomics on 32-bit sparcv9,
1767 // but it hasn't been implemented in the backend yet.
1768 if (Subtarget->is64Bit())
1769 setMaxAtomicSizeInBitsSupported(64);
1770 else
1771 setMaxAtomicSizeInBitsSupported(32);
1772 } else if (Subtarget->hasLeonCasa())
1773 setMaxAtomicSizeInBitsSupported(32);
1774 else
1775 setMaxAtomicSizeInBitsSupported(0);
1776
1777 setMinCmpXchgSizeInBits(32);
1778
1779 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1780
1781 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1782
1783 // Custom Lower Atomic LOAD/STORE
1784 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1785 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1786
1787 if (Subtarget->is64Bit()) {
1788 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1789 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1790 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1791 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1792 }
1793
1794 if (!Subtarget->isV9()) {
1795 // SparcV8 does not have FNEGD and FABSD.
1796 setOperationAction(ISD::FNEG, MVT::f64, Custom);
1797 setOperationAction(ISD::FABS, MVT::f64, Custom);
1798 }
1799
1800 setOperationAction(ISD::FSIN , MVT::f128, Expand);
1801 setOperationAction(ISD::FCOS , MVT::f128, Expand);
1802 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1803 setOperationAction(ISD::FREM , MVT::f128, Expand);
1804 setOperationAction(ISD::FMA , MVT::f128, Expand);
1805 setOperationAction(ISD::FSIN , MVT::f64, Expand);
1806 setOperationAction(ISD::FCOS , MVT::f64, Expand);
1807 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1808 setOperationAction(ISD::FREM , MVT::f64, Expand);
1809 setOperationAction(ISD::FMA , MVT::f64, Expand);
1810 setOperationAction(ISD::FSIN , MVT::f32, Expand);
1811 setOperationAction(ISD::FCOS , MVT::f32, Expand);
1812 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1813 setOperationAction(ISD::FREM , MVT::f32, Expand);
1814 setOperationAction(ISD::FMA , MVT::f32, Expand);
1815 setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1816 setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1817 setOperationAction(ISD::ROTL , MVT::i32, Expand);
1818 setOperationAction(ISD::ROTR , MVT::i32, Expand);
1819 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1820 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1821 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1822 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1823 setOperationAction(ISD::FPOW , MVT::f128, Expand);
1824 setOperationAction(ISD::FPOW , MVT::f64, Expand);
1825 setOperationAction(ISD::FPOW , MVT::f32, Expand);
1826
1827 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1828 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1829 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1830
1831 // Expands to [SU]MUL_LOHI.
1832 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1833 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1834 setOperationAction(ISD::MUL, MVT::i32, Expand);
1835
1836 if (Subtarget->useSoftMulDiv()) {
1837 // .umul works for both signed and unsigned
1838 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1839 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1840 setLibcallName(RTLIB::MUL_I32, ".umul");
1841
1842 setOperationAction(ISD::SDIV, MVT::i32, Expand);
1843 setLibcallName(RTLIB::SDIV_I32, ".div");
1844
1845 setOperationAction(ISD::UDIV, MVT::i32, Expand);
1846 setLibcallName(RTLIB::UDIV_I32, ".udiv");
1847
1848 setLibcallName(RTLIB::SREM_I32, ".rem");
1849 setLibcallName(RTLIB::UREM_I32, ".urem");
1850 }
1851
1852 if (Subtarget->is64Bit()) {
1853 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1854 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1855 setOperationAction(ISD::MULHU, MVT::i64, Expand);
1856 setOperationAction(ISD::MULHS, MVT::i64, Expand);
1857
1858 setOperationAction(ISD::UMULO, MVT::i64, Custom);
1859 setOperationAction(ISD::SMULO, MVT::i64, Custom);
1860
1861 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1862 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1863 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1864 }
1865
1866 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1867 setOperationAction(ISD::VASTART , MVT::Other, Custom);
1868 // VAARG needs to be lowered to not do unaligned accesses for doubles.
1869 setOperationAction(ISD::VAARG , MVT::Other, Custom);
1870
1871 setOperationAction(ISD::TRAP , MVT::Other, Legal);
1872 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal);
1873
1874 // Use the default implementation.
1875 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
1876 setOperationAction(ISD::VAEND , MVT::Other, Expand);
1877 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
1878 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
1879 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
1880
1881 setStackPointerRegisterToSaveRestore(SP::O6);
1882
1883 setOperationAction(ISD::CTPOP, MVT::i32,
1884 Subtarget->usePopc() ? Legal : Expand);
1885
1886 if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1887 setOperationAction(ISD::LOAD, MVT::f128, Legal);
1888 setOperationAction(ISD::STORE, MVT::f128, Legal);
1889 } else {
1890 setOperationAction(ISD::LOAD, MVT::f128, Custom);
1891 setOperationAction(ISD::STORE, MVT::f128, Custom);
1892 }
1893
1894 if (Subtarget->hasHardQuad()) {
1895 setOperationAction(ISD::FADD, MVT::f128, Legal);
1896 setOperationAction(ISD::FSUB, MVT::f128, Legal);
1897 setOperationAction(ISD::FMUL, MVT::f128, Legal);
1898 setOperationAction(ISD::FDIV, MVT::f128, Legal);
1899 setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1900 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1901 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1902 if (Subtarget->isV9()) {
1903 setOperationAction(ISD::FNEG, MVT::f128, Legal);
1904 setOperationAction(ISD::FABS, MVT::f128, Legal);
1905 } else {
1906 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1907 setOperationAction(ISD::FABS, MVT::f128, Custom);
1908 }
1909
1910 if (!Subtarget->is64Bit()) {
1911 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1912 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1913 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1914 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1915 }
1916
1917 } else {
1918 // Custom legalize f128 operations.
1919
1920 setOperationAction(ISD::FADD, MVT::f128, Custom);
1921 setOperationAction(ISD::FSUB, MVT::f128, Custom);
1922 setOperationAction(ISD::FMUL, MVT::f128, Custom);
1923 setOperationAction(ISD::FDIV, MVT::f128, Custom);
1924 setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1925 setOperationAction(ISD::FNEG, MVT::f128, Custom);
1926 setOperationAction(ISD::FABS, MVT::f128, Custom);
1927
1928 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1929 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
1930 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1931
1932 // Setup Runtime library names.
1933 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1934 setLibcallName(RTLIB::ADD_F128, "_Qp_add");
1935 setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
1936 setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
1937 setLibcallName(RTLIB::DIV_F128, "_Qp_div");
1938 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1939 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1940 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1941 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1942 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1943 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1944 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1945 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1946 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1947 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1948 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1949 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1950 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1951 } else if (!Subtarget->useSoftFloat()) {
1952 setLibcallName(RTLIB::ADD_F128, "_Q_add");
1953 setLibcallName(RTLIB::SUB_F128, "_Q_sub");
1954 setLibcallName(RTLIB::MUL_F128, "_Q_mul");
1955 setLibcallName(RTLIB::DIV_F128, "_Q_div");
1956 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1957 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1958 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1959 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1960 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1961 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1962 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1963 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1964 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1965 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1966 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1967 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1968 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1969 }
1970 }
1971
1972 if (Subtarget->fixAllFDIVSQRT()) {
1973 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1974 // the former instructions generate errata on LEON processors.
1975 setOperationAction(ISD::FDIV, MVT::f32, Promote);
1976 setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1977 }
1978
1979 if (Subtarget->hasNoFMULS()) {
1980 setOperationAction(ISD::FMUL, MVT::f32, Promote);
1981 }
1982
1983 // Custom combine bitcast between f64 and v2i32
1984 if (!Subtarget->is64Bit())
1985 setTargetDAGCombine(ISD::BITCAST);
1986
1987 if (Subtarget->hasLeonCycleCounter())
1988 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1989
1990 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1991
1992 setMinFunctionAlignment(Align(4));
1993
1994 computeRegisterProperties(Subtarget->getRegisterInfo());
1995 }
1996
useSoftFloat() const1997 bool SparcTargetLowering::useSoftFloat() const {
1998 return Subtarget->useSoftFloat();
1999 }
2000
getTargetNodeName(unsigned Opcode) const2001 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
2002 switch ((SPISD::NodeType)Opcode) {
2003 case SPISD::FIRST_NUMBER: break;
2004 case SPISD::CMPICC: return "SPISD::CMPICC";
2005 case SPISD::CMPFCC: return "SPISD::CMPFCC";
2006 case SPISD::CMPFCC_V9:
2007 return "SPISD::CMPFCC_V9";
2008 case SPISD::BRICC: return "SPISD::BRICC";
2009 case SPISD::BPICC:
2010 return "SPISD::BPICC";
2011 case SPISD::BPXCC:
2012 return "SPISD::BPXCC";
2013 case SPISD::BRFCC: return "SPISD::BRFCC";
2014 case SPISD::BRFCC_V9:
2015 return "SPISD::BRFCC_V9";
2016 case SPISD::BR_REG:
2017 return "SPISD::BR_REG";
2018 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
2019 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
2020 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
2021 case SPISD::SELECT_REG:
2022 return "SPISD::SELECT_REG";
2023 case SPISD::Hi: return "SPISD::Hi";
2024 case SPISD::Lo: return "SPISD::Lo";
2025 case SPISD::FTOI: return "SPISD::FTOI";
2026 case SPISD::ITOF: return "SPISD::ITOF";
2027 case SPISD::FTOX: return "SPISD::FTOX";
2028 case SPISD::XTOF: return "SPISD::XTOF";
2029 case SPISD::CALL: return "SPISD::CALL";
2030 case SPISD::RET_GLUE: return "SPISD::RET_GLUE";
2031 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
2032 case SPISD::FLUSHW: return "SPISD::FLUSHW";
2033 case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
2034 case SPISD::TLS_LD: return "SPISD::TLS_LD";
2035 case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
2036 case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL";
2037 case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP";
2038 }
2039 return nullptr;
2040 }
2041
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const2042 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
2043 EVT VT) const {
2044 if (!VT.isVector())
2045 return MVT::i32;
2046 return VT.changeVectorElementTypeToInteger();
2047 }
2048
2049 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
2050 /// be zero. Op is expected to be a target specific node. Used by DAG
2051 /// combiner.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const2052 void SparcTargetLowering::computeKnownBitsForTargetNode
2053 (const SDValue Op,
2054 KnownBits &Known,
2055 const APInt &DemandedElts,
2056 const SelectionDAG &DAG,
2057 unsigned Depth) const {
2058 KnownBits Known2;
2059 Known.resetAll();
2060
2061 switch (Op.getOpcode()) {
2062 default: break;
2063 case SPISD::SELECT_ICC:
2064 case SPISD::SELECT_XCC:
2065 case SPISD::SELECT_FCC:
2066 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
2067 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
2068
2069 // Only known if known in both the LHS and RHS.
2070 Known = Known.intersectWith(Known2);
2071 break;
2072 }
2073 }
2074
2075 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
2076 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
LookThroughSetCC(SDValue & LHS,SDValue & RHS,ISD::CondCode CC,unsigned & SPCC)2077 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
2078 ISD::CondCode CC, unsigned &SPCC) {
2079 if (isNullConstant(RHS) && CC == ISD::SETNE &&
2080 (((LHS.getOpcode() == SPISD::SELECT_ICC ||
2081 LHS.getOpcode() == SPISD::SELECT_XCC) &&
2082 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
2083 (LHS.getOpcode() == SPISD::SELECT_FCC &&
2084 (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC ||
2085 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) &&
2086 isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) {
2087 SDValue CMPCC = LHS.getOperand(3);
2088 SPCC = LHS.getConstantOperandVal(2);
2089 LHS = CMPCC.getOperand(0);
2090 RHS = CMPCC.getOperand(1);
2091 }
2092 }
2093
2094 // Convert to a target node and set target flags.
withTargetFlags(SDValue Op,unsigned TF,SelectionDAG & DAG) const2095 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
2096 SelectionDAG &DAG) const {
2097 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
2098 return DAG.getTargetGlobalAddress(GA->getGlobal(),
2099 SDLoc(GA),
2100 GA->getValueType(0),
2101 GA->getOffset(), TF);
2102
2103 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
2104 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
2105 CP->getAlign(), CP->getOffset(), TF);
2106
2107 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
2108 return DAG.getTargetBlockAddress(BA->getBlockAddress(),
2109 Op.getValueType(),
2110 0,
2111 TF);
2112
2113 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
2114 return DAG.getTargetExternalSymbol(ES->getSymbol(),
2115 ES->getValueType(0), TF);
2116
2117 llvm_unreachable("Unhandled address SDNode");
2118 }
2119
2120 // Split Op into high and low parts according to HiTF and LoTF.
2121 // Return an ADD node combining the parts.
makeHiLoPair(SDValue Op,unsigned HiTF,unsigned LoTF,SelectionDAG & DAG) const2122 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
2123 unsigned HiTF, unsigned LoTF,
2124 SelectionDAG &DAG) const {
2125 SDLoc DL(Op);
2126 EVT VT = Op.getValueType();
2127 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
2128 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
2129 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2130 }
2131
2132 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
2133 // or ExternalSymbol SDNode.
makeAddress(SDValue Op,SelectionDAG & DAG) const2134 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
2135 SDLoc DL(Op);
2136 EVT VT = getPointerTy(DAG.getDataLayout());
2137
2138 // Handle PIC mode first. SPARC needs a got load for every variable!
2139 if (isPositionIndependent()) {
2140 const Module *M = DAG.getMachineFunction().getFunction().getParent();
2141 PICLevel::Level picLevel = M->getPICLevel();
2142 SDValue Idx;
2143
2144 if (picLevel == PICLevel::SmallPIC) {
2145 // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
2146 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
2147 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
2148 } else {
2149 // This is the pic32 code model, the GOT is known to be smaller than 4GB.
2150 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
2151 SparcMCExpr::VK_Sparc_GOT10, DAG);
2152 }
2153
2154 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
2155 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
2156 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2157 // function has calls.
2158 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2159 MFI.setHasCalls(true);
2160 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
2161 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2162 }
2163
2164 // This is one of the absolute code models.
2165 switch(getTargetMachine().getCodeModel()) {
2166 default:
2167 llvm_unreachable("Unsupported absolute code model");
2168 case CodeModel::Small:
2169 // abs32.
2170 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2171 SparcMCExpr::VK_Sparc_LO, DAG);
2172 case CodeModel::Medium: {
2173 // abs44.
2174 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
2175 SparcMCExpr::VK_Sparc_M44, DAG);
2176 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
2177 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
2178 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
2179 return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
2180 }
2181 case CodeModel::Large: {
2182 // abs64.
2183 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
2184 SparcMCExpr::VK_Sparc_HM, DAG);
2185 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
2186 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2187 SparcMCExpr::VK_Sparc_LO, DAG);
2188 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2189 }
2190 }
2191 }
2192
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2193 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2194 SelectionDAG &DAG) const {
2195 return makeAddress(Op, DAG);
2196 }
2197
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2198 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2199 SelectionDAG &DAG) const {
2200 return makeAddress(Op, DAG);
2201 }
2202
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2203 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2204 SelectionDAG &DAG) const {
2205 return makeAddress(Op, DAG);
2206 }
2207
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2208 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2209 SelectionDAG &DAG) const {
2210
2211 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2212 if (DAG.getTarget().useEmulatedTLS())
2213 return LowerToTLSEmulatedModel(GA, DAG);
2214
2215 SDLoc DL(GA);
2216 const GlobalValue *GV = GA->getGlobal();
2217 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2218
2219 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2220
2221 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2222 unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2223 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2224 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2225 unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2226 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2227 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2228 unsigned addTF = ((model == TLSModel::GeneralDynamic)
2229 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2230 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2231 unsigned callTF = ((model == TLSModel::GeneralDynamic)
2232 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2233 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2234
2235 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2236 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2237 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2238 withTargetFlags(Op, addTF, DAG));
2239
2240 SDValue Chain = DAG.getEntryNode();
2241 SDValue InGlue;
2242
2243 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2244 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue);
2245 InGlue = Chain.getValue(1);
2246 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2247 SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2248
2249 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2250 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2251 DAG.getMachineFunction(), CallingConv::C);
2252 assert(Mask && "Missing call preserved mask for calling convention");
2253 SDValue Ops[] = {Chain,
2254 Callee,
2255 Symbol,
2256 DAG.getRegister(SP::O0, PtrVT),
2257 DAG.getRegisterMask(Mask),
2258 InGlue};
2259 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2260 InGlue = Chain.getValue(1);
2261 Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL);
2262 InGlue = Chain.getValue(1);
2263 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue);
2264
2265 if (model != TLSModel::LocalDynamic)
2266 return Ret;
2267
2268 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2269 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2270 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2271 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2272 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2273 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2274 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2275 }
2276
2277 if (model == TLSModel::InitialExec) {
2278 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2279 : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2280
2281 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2282
2283 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2284 // function has calls.
2285 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2286 MFI.setHasCalls(true);
2287
2288 SDValue TGA = makeHiLoPair(Op,
2289 SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2290 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2291 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2292 SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2293 DL, PtrVT, Ptr,
2294 withTargetFlags(Op, ldTF, DAG));
2295 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2296 DAG.getRegister(SP::G7, PtrVT), Offset,
2297 withTargetFlags(Op,
2298 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2299 }
2300
2301 assert(model == TLSModel::LocalExec);
2302 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2303 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2304 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2305 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2306 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2307
2308 return DAG.getNode(ISD::ADD, DL, PtrVT,
2309 DAG.getRegister(SP::G7, PtrVT), Offset);
2310 }
2311
LowerF128_LibCallArg(SDValue Chain,ArgListTy & Args,SDValue Arg,const SDLoc & DL,SelectionDAG & DAG) const2312 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2313 ArgListTy &Args, SDValue Arg,
2314 const SDLoc &DL,
2315 SelectionDAG &DAG) const {
2316 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2317 EVT ArgVT = Arg.getValueType();
2318 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2319
2320 ArgListEntry Entry;
2321 Entry.Node = Arg;
2322 Entry.Ty = ArgTy;
2323
2324 if (ArgTy->isFP128Ty()) {
2325 // Create a stack object and pass the pointer to the library function.
2326 int FI = MFI.CreateStackObject(16, Align(8), false);
2327 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2328 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2329 Align(8));
2330
2331 Entry.Node = FIPtr;
2332 Entry.Ty = PointerType::getUnqual(ArgTy);
2333 }
2334 Args.push_back(Entry);
2335 return Chain;
2336 }
2337
2338 SDValue
LowerF128Op(SDValue Op,SelectionDAG & DAG,const char * LibFuncName,unsigned numArgs) const2339 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2340 const char *LibFuncName,
2341 unsigned numArgs) const {
2342
2343 ArgListTy Args;
2344
2345 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2346 auto PtrVT = getPointerTy(DAG.getDataLayout());
2347
2348 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2349 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2350 Type *RetTyABI = RetTy;
2351 SDValue Chain = DAG.getEntryNode();
2352 SDValue RetPtr;
2353
2354 if (RetTy->isFP128Ty()) {
2355 // Create a Stack Object to receive the return value of type f128.
2356 ArgListEntry Entry;
2357 int RetFI = MFI.CreateStackObject(16, Align(8), false);
2358 RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2359 Entry.Node = RetPtr;
2360 Entry.Ty = PointerType::getUnqual(RetTy);
2361 if (!Subtarget->is64Bit()) {
2362 Entry.IsSRet = true;
2363 Entry.IndirectType = RetTy;
2364 }
2365 Entry.IsReturned = false;
2366 Args.push_back(Entry);
2367 RetTyABI = Type::getVoidTy(*DAG.getContext());
2368 }
2369
2370 assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2371 for (unsigned i = 0, e = numArgs; i != e; ++i) {
2372 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2373 }
2374 TargetLowering::CallLoweringInfo CLI(DAG);
2375 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2376 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2377
2378 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2379
2380 // chain is in second result.
2381 if (RetTyABI == RetTy)
2382 return CallInfo.first;
2383
2384 assert (RetTy->isFP128Ty() && "Unexpected return type!");
2385
2386 Chain = CallInfo.second;
2387
2388 // Load RetPtr to get the return value.
2389 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2390 MachinePointerInfo(), Align(8));
2391 }
2392
LowerF128Compare(SDValue LHS,SDValue RHS,unsigned & SPCC,const SDLoc & DL,SelectionDAG & DAG) const2393 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2394 unsigned &SPCC, const SDLoc &DL,
2395 SelectionDAG &DAG) const {
2396
2397 const char *LibCall = nullptr;
2398 bool is64Bit = Subtarget->is64Bit();
2399 switch(SPCC) {
2400 default: llvm_unreachable("Unhandled conditional code!");
2401 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2402 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2403 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2404 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2405 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2406 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2407 case SPCC::FCC_UL :
2408 case SPCC::FCC_ULE:
2409 case SPCC::FCC_UG :
2410 case SPCC::FCC_UGE:
2411 case SPCC::FCC_U :
2412 case SPCC::FCC_O :
2413 case SPCC::FCC_LG :
2414 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2415 }
2416
2417 auto PtrVT = getPointerTy(DAG.getDataLayout());
2418 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2419 Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2420 ArgListTy Args;
2421 SDValue Chain = DAG.getEntryNode();
2422 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2423 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2424
2425 TargetLowering::CallLoweringInfo CLI(DAG);
2426 CLI.setDebugLoc(DL).setChain(Chain)
2427 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2428
2429 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2430
2431 // result is in first, and chain is in second result.
2432 SDValue Result = CallInfo.first;
2433
2434 switch(SPCC) {
2435 default: {
2436 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2437 SPCC = SPCC::ICC_NE;
2438 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2439 }
2440 case SPCC::FCC_UL : {
2441 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType());
2442 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2443 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2444 SPCC = SPCC::ICC_NE;
2445 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2446 }
2447 case SPCC::FCC_ULE: {
2448 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType());
2449 SPCC = SPCC::ICC_NE;
2450 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2451 }
2452 case SPCC::FCC_UG : {
2453 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2454 SPCC = SPCC::ICC_G;
2455 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2456 }
2457 case SPCC::FCC_UGE: {
2458 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2459 SPCC = SPCC::ICC_NE;
2460 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2461 }
2462
2463 case SPCC::FCC_U : {
2464 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2465 SPCC = SPCC::ICC_E;
2466 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2467 }
2468 case SPCC::FCC_O : {
2469 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2470 SPCC = SPCC::ICC_NE;
2471 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2472 }
2473 case SPCC::FCC_LG : {
2474 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
2475 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2476 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2477 SPCC = SPCC::ICC_NE;
2478 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2479 }
2480 case SPCC::FCC_UE : {
2481 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType());
2482 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2483 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2484 SPCC = SPCC::ICC_E;
2485 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2486 }
2487 }
2488 }
2489
2490 static SDValue
LowerF128_FPEXTEND(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2491 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2492 const SparcTargetLowering &TLI) {
2493
2494 if (Op.getOperand(0).getValueType() == MVT::f64)
2495 return TLI.LowerF128Op(Op, DAG,
2496 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2497
2498 if (Op.getOperand(0).getValueType() == MVT::f32)
2499 return TLI.LowerF128Op(Op, DAG,
2500 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2501
2502 llvm_unreachable("fpextend with non-float operand!");
2503 return SDValue();
2504 }
2505
2506 static SDValue
LowerF128_FPROUND(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2507 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2508 const SparcTargetLowering &TLI) {
2509 // FP_ROUND on f64 and f32 are legal.
2510 if (Op.getOperand(0).getValueType() != MVT::f128)
2511 return Op;
2512
2513 if (Op.getValueType() == MVT::f64)
2514 return TLI.LowerF128Op(Op, DAG,
2515 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2516 if (Op.getValueType() == MVT::f32)
2517 return TLI.LowerF128Op(Op, DAG,
2518 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2519
2520 llvm_unreachable("fpround to non-float!");
2521 return SDValue();
2522 }
2523
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2524 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2525 const SparcTargetLowering &TLI,
2526 bool hasHardQuad) {
2527 SDLoc dl(Op);
2528 EVT VT = Op.getValueType();
2529 assert(VT == MVT::i32 || VT == MVT::i64);
2530
2531 // Expand f128 operations to fp128 abi calls.
2532 if (Op.getOperand(0).getValueType() == MVT::f128
2533 && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2534 const char *libName = TLI.getLibcallName(VT == MVT::i32
2535 ? RTLIB::FPTOSINT_F128_I32
2536 : RTLIB::FPTOSINT_F128_I64);
2537 return TLI.LowerF128Op(Op, DAG, libName, 1);
2538 }
2539
2540 // Expand if the resulting type is illegal.
2541 if (!TLI.isTypeLegal(VT))
2542 return SDValue();
2543
2544 // Otherwise, Convert the fp value to integer in an FP register.
2545 if (VT == MVT::i32)
2546 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2547 else
2548 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2549
2550 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2551 }
2552
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2553 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2554 const SparcTargetLowering &TLI,
2555 bool hasHardQuad) {
2556 SDLoc dl(Op);
2557 EVT OpVT = Op.getOperand(0).getValueType();
2558 assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2559
2560 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2561
2562 // Expand f128 operations to fp128 ABI calls.
2563 if (Op.getValueType() == MVT::f128
2564 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2565 const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2566 ? RTLIB::SINTTOFP_I32_F128
2567 : RTLIB::SINTTOFP_I64_F128);
2568 return TLI.LowerF128Op(Op, DAG, libName, 1);
2569 }
2570
2571 // Expand if the operand type is illegal.
2572 if (!TLI.isTypeLegal(OpVT))
2573 return SDValue();
2574
2575 // Otherwise, Convert the int value to FP in an FP register.
2576 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2577 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2578 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2579 }
2580
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2581 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2582 const SparcTargetLowering &TLI,
2583 bool hasHardQuad) {
2584 SDLoc dl(Op);
2585 EVT VT = Op.getValueType();
2586
2587 // Expand if it does not involve f128 or the target has support for
2588 // quad floating point instructions and the resulting type is legal.
2589 if (Op.getOperand(0).getValueType() != MVT::f128 ||
2590 (hasHardQuad && TLI.isTypeLegal(VT)))
2591 return SDValue();
2592
2593 assert(VT == MVT::i32 || VT == MVT::i64);
2594
2595 return TLI.LowerF128Op(Op, DAG,
2596 TLI.getLibcallName(VT == MVT::i32
2597 ? RTLIB::FPTOUINT_F128_I32
2598 : RTLIB::FPTOUINT_F128_I64),
2599 1);
2600 }
2601
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad)2602 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2603 const SparcTargetLowering &TLI,
2604 bool hasHardQuad) {
2605 SDLoc dl(Op);
2606 EVT OpVT = Op.getOperand(0).getValueType();
2607 assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2608
2609 // Expand if it does not involve f128 or the target has support for
2610 // quad floating point instructions and the operand type is legal.
2611 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2612 return SDValue();
2613
2614 return TLI.LowerF128Op(Op, DAG,
2615 TLI.getLibcallName(OpVT == MVT::i32
2616 ? RTLIB::UINTTOFP_I32_F128
2617 : RTLIB::UINTTOFP_I64_F128),
2618 1);
2619 }
2620
LowerBR_CC(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad,bool isV9,bool is64Bit)2621 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2622 const SparcTargetLowering &TLI, bool hasHardQuad,
2623 bool isV9, bool is64Bit) {
2624 SDValue Chain = Op.getOperand(0);
2625 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2626 SDValue LHS = Op.getOperand(2);
2627 SDValue RHS = Op.getOperand(3);
2628 SDValue Dest = Op.getOperand(4);
2629 SDLoc dl(Op);
2630 unsigned Opc, SPCC = ~0U;
2631
2632 // If this is a br_cc of a "setcc", and if the setcc got lowered into
2633 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2634 LookThroughSetCC(LHS, RHS, CC, SPCC);
2635 assert(LHS.getValueType() == RHS.getValueType());
2636
2637 // Get the condition flag.
2638 SDValue CompareFlag;
2639 if (LHS.getValueType().isInteger()) {
2640 // On V9 processors running in 64-bit mode, if CC compares two `i64`s
2641 // and the RHS is zero we might be able to use a specialized branch.
2642 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
2643 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC))
2644 return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest,
2645 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32),
2646 LHS);
2647
2648 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2649 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2650 if (isV9)
2651 // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2652 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC;
2653 else
2654 // Non-v9 targets don't have xcc.
2655 Opc = SPISD::BRICC;
2656 } else {
2657 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2658 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2659 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2660 Opc = isV9 ? SPISD::BPICC : SPISD::BRICC;
2661 } else {
2662 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2663 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2664 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2665 Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC;
2666 }
2667 }
2668 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2669 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2670 }
2671
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,bool hasHardQuad,bool isV9,bool is64Bit)2672 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2673 const SparcTargetLowering &TLI, bool hasHardQuad,
2674 bool isV9, bool is64Bit) {
2675 SDValue LHS = Op.getOperand(0);
2676 SDValue RHS = Op.getOperand(1);
2677 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2678 SDValue TrueVal = Op.getOperand(2);
2679 SDValue FalseVal = Op.getOperand(3);
2680 SDLoc dl(Op);
2681 unsigned Opc, SPCC = ~0U;
2682
2683 // If this is a select_cc of a "setcc", and if the setcc got lowered into
2684 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2685 LookThroughSetCC(LHS, RHS, CC, SPCC);
2686 assert(LHS.getValueType() == RHS.getValueType());
2687
2688 SDValue CompareFlag;
2689 if (LHS.getValueType().isInteger()) {
2690 // On V9 processors running in 64-bit mode, if CC compares two `i64`s
2691 // and the RHS is zero we might be able to use a specialized select.
2692 // All SELECT_CC between any two scalar integer types are eligible for
2693 // lowering to specialized instructions. Additionally, f32 and f64 types
2694 // are also eligible, but for f128 we can only use the specialized
2695 // instruction when we have hardquad.
2696 EVT ValType = TrueVal.getValueType();
2697 bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 ||
2698 ValType == MVT::f64 ||
2699 (ValType == MVT::f128 && hasHardQuad);
2700 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
2701 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType)
2702 return DAG.getNode(
2703 SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2704 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS);
2705
2706 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2707 Opc = LHS.getValueType() == MVT::i32 ?
2708 SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2709 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2710 } else {
2711 if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2712 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2713 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2714 Opc = SPISD::SELECT_ICC;
2715 } else {
2716 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2717 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2718 Opc = SPISD::SELECT_FCC;
2719 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2720 }
2721 }
2722 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2723 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2724 }
2725
LowerVASTART(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)2726 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2727 const SparcTargetLowering &TLI) {
2728 MachineFunction &MF = DAG.getMachineFunction();
2729 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2730 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2731
2732 // Need frame address to find the address of VarArgsFrameIndex.
2733 MF.getFrameInfo().setFrameAddressIsTaken(true);
2734
2735 // vastart just stores the address of the VarArgsFrameIndex slot into the
2736 // memory location argument.
2737 SDLoc DL(Op);
2738 SDValue Offset =
2739 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2740 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2741 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2742 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2743 MachinePointerInfo(SV));
2744 }
2745
LowerVAARG(SDValue Op,SelectionDAG & DAG)2746 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2747 SDNode *Node = Op.getNode();
2748 EVT VT = Node->getValueType(0);
2749 SDValue InChain = Node->getOperand(0);
2750 SDValue VAListPtr = Node->getOperand(1);
2751 EVT PtrVT = VAListPtr.getValueType();
2752 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2753 SDLoc DL(Node);
2754 SDValue VAList =
2755 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2756 // Increment the pointer, VAList, to the next vaarg.
2757 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2758 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2759 DL));
2760 // Store the incremented VAList to the legalized pointer.
2761 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2762 MachinePointerInfo(SV));
2763 // Load the actual argument out of the pointer VAList.
2764 // We can't count on greater alignment than the word size.
2765 return DAG.getLoad(
2766 VT, DL, InChain, VAList, MachinePointerInfo(),
2767 Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8));
2768 }
2769
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget)2770 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2771 const SparcSubtarget *Subtarget) {
2772 SDValue Chain = Op.getOperand(0); // Legalize the chain.
2773 SDValue Size = Op.getOperand(1); // Legalize the size.
2774 MaybeAlign Alignment =
2775 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
2776 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign();
2777 EVT VT = Size->getValueType(0);
2778 SDLoc dl(Op);
2779
2780 // TODO: implement over-aligned alloca. (Note: also implies
2781 // supporting support for overaligned function frames + dynamic
2782 // allocations, at all, which currently isn't supported)
2783 if (Alignment && *Alignment > StackAlign) {
2784 const MachineFunction &MF = DAG.getMachineFunction();
2785 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2786 "over-aligned dynamic alloca not supported.");
2787 }
2788
2789 // The resultant pointer needs to be above the register spill area
2790 // at the bottom of the stack.
2791 unsigned regSpillArea;
2792 if (Subtarget->is64Bit()) {
2793 regSpillArea = 128;
2794 } else {
2795 // On Sparc32, the size of the spill area is 92. Unfortunately,
2796 // that's only 4-byte aligned, not 8-byte aligned (the stack
2797 // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2798 // aligned dynamic allocation, we actually need to add 96 to the
2799 // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2800
2801 // That also means adding 4 to the size of the allocation --
2802 // before applying the 8-byte rounding. Unfortunately, we the
2803 // value we get here has already had rounding applied. So, we need
2804 // to add 8, instead, wasting a bit more memory.
2805
2806 // Further, this only actually needs to be done if the required
2807 // alignment is > 4, but, we've lost that info by this point, too,
2808 // so we always apply it.
2809
2810 // (An alternative approach would be to always reserve 96 bytes
2811 // instead of the required 92, but then we'd waste 4 extra bytes
2812 // in every frame, not just those with dynamic stack allocations)
2813
2814 // TODO: modify code in SelectionDAGBuilder to make this less sad.
2815
2816 Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2817 DAG.getConstant(8, dl, VT));
2818 regSpillArea = 96;
2819 }
2820
2821 unsigned SPReg = SP::O6;
2822 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2823 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2824 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
2825
2826 regSpillArea += Subtarget->getStackPointerBias();
2827
2828 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2829 DAG.getConstant(regSpillArea, dl, VT));
2830 SDValue Ops[2] = { NewVal, Chain };
2831 return DAG.getMergeValues(Ops, dl);
2832 }
2833
2834
getFLUSHW(SDValue Op,SelectionDAG & DAG)2835 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2836 SDLoc dl(Op);
2837 SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2838 dl, MVT::Other, DAG.getEntryNode());
2839 return Chain;
2840 }
2841
getFRAMEADDR(uint64_t depth,SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget,bool AlwaysFlush=false)2842 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2843 const SparcSubtarget *Subtarget,
2844 bool AlwaysFlush = false) {
2845 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2846 MFI.setFrameAddressIsTaken(true);
2847
2848 EVT VT = Op.getValueType();
2849 SDLoc dl(Op);
2850 unsigned FrameReg = SP::I6;
2851 unsigned stackBias = Subtarget->getStackPointerBias();
2852
2853 SDValue FrameAddr;
2854 SDValue Chain;
2855
2856 // flush first to make sure the windowed registers' values are in stack
2857 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
2858
2859 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2860
2861 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2862
2863 while (depth--) {
2864 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2865 DAG.getIntPtrConstant(Offset, dl));
2866 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2867 }
2868 if (Subtarget->is64Bit())
2869 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2870 DAG.getIntPtrConstant(stackBias, dl));
2871 return FrameAddr;
2872 }
2873
2874
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG,const SparcSubtarget * Subtarget)2875 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2876 const SparcSubtarget *Subtarget) {
2877
2878 uint64_t depth = Op.getConstantOperandVal(0);
2879
2880 return getFRAMEADDR(depth, Op, DAG, Subtarget);
2881
2882 }
2883
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI,const SparcSubtarget * Subtarget)2884 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2885 const SparcTargetLowering &TLI,
2886 const SparcSubtarget *Subtarget) {
2887 MachineFunction &MF = DAG.getMachineFunction();
2888 MachineFrameInfo &MFI = MF.getFrameInfo();
2889 MFI.setReturnAddressIsTaken(true);
2890
2891 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2892 return SDValue();
2893
2894 EVT VT = Op.getValueType();
2895 SDLoc dl(Op);
2896 uint64_t depth = Op.getConstantOperandVal(0);
2897
2898 SDValue RetAddr;
2899 if (depth == 0) {
2900 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2901 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2902 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2903 return RetAddr;
2904 }
2905
2906 // Need frame address to find return address of the caller.
2907 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
2908
2909 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2910 SDValue Ptr = DAG.getNode(ISD::ADD,
2911 dl, VT,
2912 FrameAddr,
2913 DAG.getIntPtrConstant(Offset, dl));
2914 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2915
2916 return RetAddr;
2917 }
2918
LowerF64Op(SDValue SrcReg64,const SDLoc & dl,SelectionDAG & DAG,unsigned opcode)2919 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2920 unsigned opcode) {
2921 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2922 assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2923
2924 // Lower fneg/fabs on f64 to fneg/fabs on f32.
2925 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2926 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2927
2928 // Note: in little-endian, the floating-point value is stored in the
2929 // registers are in the opposite order, so the subreg with the sign
2930 // bit is the highest-numbered (odd), rather than the
2931 // lowest-numbered (even).
2932
2933 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2934 SrcReg64);
2935 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2936 SrcReg64);
2937
2938 if (DAG.getDataLayout().isLittleEndian())
2939 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2940 else
2941 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2942
2943 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2944 dl, MVT::f64), 0);
2945 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2946 DstReg64, Hi32);
2947 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2948 DstReg64, Lo32);
2949 return DstReg64;
2950 }
2951
2952 // Lower a f128 load into two f64 loads.
LowerF128Load(SDValue Op,SelectionDAG & DAG)2953 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2954 {
2955 SDLoc dl(Op);
2956 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2957 assert(LdNode->getOffset().isUndef() && "Unexpected node type");
2958
2959 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8);
2960
2961 SDValue Hi64 =
2962 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2963 LdNode->getPointerInfo(), Alignment);
2964 EVT addrVT = LdNode->getBasePtr().getValueType();
2965 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2966 LdNode->getBasePtr(),
2967 DAG.getConstant(8, dl, addrVT));
2968 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2969 LdNode->getPointerInfo().getWithOffset(8),
2970 Alignment);
2971
2972 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2973 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2974
2975 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2976 dl, MVT::f128);
2977 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2978 MVT::f128,
2979 SDValue(InFP128, 0),
2980 Hi64,
2981 SubRegEven);
2982 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2983 MVT::f128,
2984 SDValue(InFP128, 0),
2985 Lo64,
2986 SubRegOdd);
2987 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2988 SDValue(Lo64.getNode(), 1) };
2989 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2990 SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2991 return DAG.getMergeValues(Ops, dl);
2992 }
2993
LowerLOAD(SDValue Op,SelectionDAG & DAG)2994 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2995 {
2996 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2997
2998 EVT MemVT = LdNode->getMemoryVT();
2999 if (MemVT == MVT::f128)
3000 return LowerF128Load(Op, DAG);
3001
3002 return Op;
3003 }
3004
3005 // Lower a f128 store into two f64 stores.
LowerF128Store(SDValue Op,SelectionDAG & DAG)3006 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
3007 SDLoc dl(Op);
3008 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
3009 assert(StNode->getOffset().isUndef() && "Unexpected node type");
3010
3011 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
3012 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
3013
3014 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3015 dl,
3016 MVT::f64,
3017 StNode->getValue(),
3018 SubRegEven);
3019 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3020 dl,
3021 MVT::f64,
3022 StNode->getValue(),
3023 SubRegOdd);
3024
3025 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8);
3026
3027 SDValue OutChains[2];
3028 OutChains[0] =
3029 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
3030 StNode->getBasePtr(), StNode->getPointerInfo(),
3031 Alignment);
3032 EVT addrVT = StNode->getBasePtr().getValueType();
3033 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
3034 StNode->getBasePtr(),
3035 DAG.getConstant(8, dl, addrVT));
3036 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
3037 StNode->getPointerInfo().getWithOffset(8),
3038 Alignment);
3039 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
3040 }
3041
LowerSTORE(SDValue Op,SelectionDAG & DAG)3042 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
3043 {
3044 SDLoc dl(Op);
3045 StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
3046
3047 EVT MemVT = St->getMemoryVT();
3048 if (MemVT == MVT::f128)
3049 return LowerF128Store(Op, DAG);
3050
3051 if (MemVT == MVT::i64) {
3052 // Custom handling for i64 stores: turn it into a bitcast and a
3053 // v2i32 store.
3054 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
3055 SDValue Chain = DAG.getStore(
3056 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
3057 St->getOriginalAlign(), St->getMemOperand()->getFlags(),
3058 St->getAAInfo());
3059 return Chain;
3060 }
3061
3062 return SDValue();
3063 }
3064
LowerFNEGorFABS(SDValue Op,SelectionDAG & DAG,bool isV9)3065 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
3066 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
3067 && "invalid opcode");
3068
3069 SDLoc dl(Op);
3070
3071 if (Op.getValueType() == MVT::f64)
3072 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
3073 if (Op.getValueType() != MVT::f128)
3074 return Op;
3075
3076 // Lower fabs/fneg on f128 to fabs/fneg on f64
3077 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
3078 // (As with LowerF64Op, on little-endian, we need to negate the odd
3079 // subreg)
3080
3081 SDValue SrcReg128 = Op.getOperand(0);
3082 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
3083 SrcReg128);
3084 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
3085 SrcReg128);
3086
3087 if (DAG.getDataLayout().isLittleEndian()) {
3088 if (isV9)
3089 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
3090 else
3091 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
3092 } else {
3093 if (isV9)
3094 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
3095 else
3096 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
3097 }
3098
3099 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
3100 dl, MVT::f128), 0);
3101 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
3102 DstReg128, Hi64);
3103 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
3104 DstReg128, Lo64);
3105 return DstReg128;
3106 }
3107
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)3108 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
3109
3110 if (Op.getValueType() != MVT::i64)
3111 return Op;
3112
3113 SDLoc dl(Op);
3114 SDValue Src1 = Op.getOperand(0);
3115 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
3116 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
3117 DAG.getConstant(32, dl, MVT::i64));
3118 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
3119
3120 SDValue Src2 = Op.getOperand(1);
3121 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
3122 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
3123 DAG.getConstant(32, dl, MVT::i64));
3124 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
3125
3126
3127 bool hasChain = false;
3128 unsigned hiOpc = Op.getOpcode();
3129 switch (Op.getOpcode()) {
3130 default: llvm_unreachable("Invalid opcode");
3131 case ISD::ADDC: hiOpc = ISD::ADDE; break;
3132 case ISD::ADDE: hasChain = true; break;
3133 case ISD::SUBC: hiOpc = ISD::SUBE; break;
3134 case ISD::SUBE: hasChain = true; break;
3135 }
3136 SDValue Lo;
3137 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
3138 if (hasChain) {
3139 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
3140 Op.getOperand(2));
3141 } else {
3142 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
3143 }
3144 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
3145 SDValue Carry = Hi.getValue(1);
3146
3147 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
3148 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
3149 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
3150 DAG.getConstant(32, dl, MVT::i64));
3151
3152 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
3153 SDValue Ops[2] = { Dst, Carry };
3154 return DAG.getMergeValues(Ops, dl);
3155 }
3156
3157 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
3158 // in LegalizeDAG.cpp except the order of arguments to the library function.
LowerUMULO_SMULO(SDValue Op,SelectionDAG & DAG,const SparcTargetLowering & TLI)3159 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
3160 const SparcTargetLowering &TLI)
3161 {
3162 unsigned opcode = Op.getOpcode();
3163 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
3164
3165 bool isSigned = (opcode == ISD::SMULO);
3166 EVT VT = MVT::i64;
3167 EVT WideVT = MVT::i128;
3168 SDLoc dl(Op);
3169 SDValue LHS = Op.getOperand(0);
3170
3171 if (LHS.getValueType() != VT)
3172 return Op;
3173
3174 SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
3175
3176 SDValue RHS = Op.getOperand(1);
3177 SDValue HiLHS, HiRHS;
3178 if (isSigned) {
3179 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
3180 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
3181 } else {
3182 HiLHS = DAG.getConstant(0, dl, VT);
3183 HiRHS = DAG.getConstant(0, dl, MVT::i64);
3184 }
3185
3186 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
3187
3188 TargetLowering::MakeLibCallOptions CallOptions;
3189 CallOptions.setSExt(isSigned);
3190 SDValue MulResult = TLI.makeLibCall(DAG,
3191 RTLIB::MUL_I128, WideVT,
3192 Args, CallOptions, dl).first;
3193 SDValue BottomHalf, TopHalf;
3194 std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT);
3195 if (isSigned) {
3196 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
3197 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
3198 } else {
3199 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
3200 ISD::SETNE);
3201 }
3202 // MulResult is a node with an illegal type. Because such things are not
3203 // generally permitted during this phase of legalization, ensure that
3204 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
3205 // been folded.
3206 assert(MulResult->use_empty() && "Illegally typed node still in use!");
3207
3208 SDValue Ops[2] = { BottomHalf, TopHalf } ;
3209 return DAG.getMergeValues(Ops, dl);
3210 }
3211
LowerATOMIC_LOAD_STORE(SDValue Op,SelectionDAG & DAG)3212 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
3213 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) {
3214 // Expand with a fence.
3215 return SDValue();
3216 }
3217
3218 // Monotonic load/stores are legal.
3219 return Op;
3220 }
3221
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3222 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3223 SelectionDAG &DAG) const {
3224 unsigned IntNo = Op.getConstantOperandVal(0);
3225 SDLoc dl(Op);
3226 switch (IntNo) {
3227 default: return SDValue(); // Don't custom lower most intrinsics.
3228 case Intrinsic::thread_pointer: {
3229 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3230 return DAG.getRegister(SP::G7, PtrVT);
3231 }
3232 }
3233 }
3234
3235 SDValue SparcTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const3236 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3237
3238 bool hasHardQuad = Subtarget->hasHardQuad();
3239 bool isV9 = Subtarget->isV9();
3240 bool is64Bit = Subtarget->is64Bit();
3241
3242 switch (Op.getOpcode()) {
3243 default: llvm_unreachable("Should not custom lower this!");
3244
3245 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
3246 Subtarget);
3247 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
3248 Subtarget);
3249 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3250 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3251 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3252 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3253 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
3254 hasHardQuad);
3255 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
3256 hasHardQuad);
3257 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
3258 hasHardQuad);
3259 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
3260 hasHardQuad);
3261 case ISD::BR_CC:
3262 return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
3263 case ISD::SELECT_CC:
3264 return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
3265 case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
3266 case ISD::VAARG: return LowerVAARG(Op, DAG);
3267 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3268 Subtarget);
3269
3270 case ISD::LOAD: return LowerLOAD(Op, DAG);
3271 case ISD::STORE: return LowerSTORE(Op, DAG);
3272 case ISD::FADD: return LowerF128Op(Op, DAG,
3273 getLibcallName(RTLIB::ADD_F128), 2);
3274 case ISD::FSUB: return LowerF128Op(Op, DAG,
3275 getLibcallName(RTLIB::SUB_F128), 2);
3276 case ISD::FMUL: return LowerF128Op(Op, DAG,
3277 getLibcallName(RTLIB::MUL_F128), 2);
3278 case ISD::FDIV: return LowerF128Op(Op, DAG,
3279 getLibcallName(RTLIB::DIV_F128), 2);
3280 case ISD::FSQRT: return LowerF128Op(Op, DAG,
3281 getLibcallName(RTLIB::SQRT_F128),1);
3282 case ISD::FABS:
3283 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
3284 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
3285 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
3286 case ISD::ADDC:
3287 case ISD::ADDE:
3288 case ISD::SUBC:
3289 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3290 case ISD::UMULO:
3291 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
3292 case ISD::ATOMIC_LOAD:
3293 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
3294 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3295 }
3296 }
3297
bitcastConstantFPToInt(ConstantFPSDNode * C,const SDLoc & DL,SelectionDAG & DAG) const3298 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
3299 const SDLoc &DL,
3300 SelectionDAG &DAG) const {
3301 APInt V = C->getValueAPF().bitcastToAPInt();
3302 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
3303 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
3304 if (DAG.getDataLayout().isLittleEndian())
3305 std::swap(Lo, Hi);
3306 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
3307 }
3308
PerformBITCASTCombine(SDNode * N,DAGCombinerInfo & DCI) const3309 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
3310 DAGCombinerInfo &DCI) const {
3311 SDLoc dl(N);
3312 SDValue Src = N->getOperand(0);
3313
3314 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
3315 Src.getSimpleValueType() == MVT::f64)
3316 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
3317
3318 return SDValue();
3319 }
3320
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const3321 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
3322 DAGCombinerInfo &DCI) const {
3323 switch (N->getOpcode()) {
3324 default:
3325 break;
3326 case ISD::BITCAST:
3327 return PerformBITCASTCombine(N, DCI);
3328 }
3329 return SDValue();
3330 }
3331
3332 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const3333 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3334 MachineBasicBlock *BB) const {
3335 switch (MI.getOpcode()) {
3336 default: llvm_unreachable("Unknown SELECT_CC!");
3337 case SP::SELECT_CC_Int_ICC:
3338 case SP::SELECT_CC_FP_ICC:
3339 case SP::SELECT_CC_DFP_ICC:
3340 case SP::SELECT_CC_QFP_ICC:
3341 if (Subtarget->isV9())
3342 return expandSelectCC(MI, BB, SP::BPICC);
3343 return expandSelectCC(MI, BB, SP::BCOND);
3344 case SP::SELECT_CC_Int_XCC:
3345 case SP::SELECT_CC_FP_XCC:
3346 case SP::SELECT_CC_DFP_XCC:
3347 case SP::SELECT_CC_QFP_XCC:
3348 return expandSelectCC(MI, BB, SP::BPXCC);
3349 case SP::SELECT_CC_Int_FCC:
3350 case SP::SELECT_CC_FP_FCC:
3351 case SP::SELECT_CC_DFP_FCC:
3352 case SP::SELECT_CC_QFP_FCC:
3353 if (Subtarget->isV9())
3354 return expandSelectCC(MI, BB, SP::FBCOND_V9);
3355 return expandSelectCC(MI, BB, SP::FBCOND);
3356 }
3357 }
3358
3359 MachineBasicBlock *
expandSelectCC(MachineInstr & MI,MachineBasicBlock * BB,unsigned BROpcode) const3360 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3361 unsigned BROpcode) const {
3362 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3363 DebugLoc dl = MI.getDebugLoc();
3364 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3365
3366 // To "insert" a SELECT_CC instruction, we actually have to insert the
3367 // triangle control-flow pattern. The incoming instruction knows the
3368 // destination vreg to set, the condition code register to branch on, the
3369 // true/false values to select between, and the condition code for the branch.
3370 //
3371 // We produce the following control flow:
3372 // ThisMBB
3373 // | \
3374 // | IfFalseMBB
3375 // | /
3376 // SinkMBB
3377 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3378 MachineFunction::iterator It = ++BB->getIterator();
3379
3380 MachineBasicBlock *ThisMBB = BB;
3381 MachineFunction *F = BB->getParent();
3382 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3383 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3384 F->insert(It, IfFalseMBB);
3385 F->insert(It, SinkMBB);
3386
3387 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3388 SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3389 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3390 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3391
3392 // Set the new successors for ThisMBB.
3393 ThisMBB->addSuccessor(IfFalseMBB);
3394 ThisMBB->addSuccessor(SinkMBB);
3395
3396 BuildMI(ThisMBB, dl, TII.get(BROpcode))
3397 .addMBB(SinkMBB)
3398 .addImm(CC);
3399
3400 // IfFalseMBB just falls through to SinkMBB.
3401 IfFalseMBB->addSuccessor(SinkMBB);
3402
3403 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3404 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3405 MI.getOperand(0).getReg())
3406 .addReg(MI.getOperand(1).getReg())
3407 .addMBB(ThisMBB)
3408 .addReg(MI.getOperand(2).getReg())
3409 .addMBB(IfFalseMBB);
3410
3411 MI.eraseFromParent(); // The pseudo instruction is gone now.
3412 return SinkMBB;
3413 }
3414
3415 //===----------------------------------------------------------------------===//
3416 // Sparc Inline Assembly Support
3417 //===----------------------------------------------------------------------===//
3418
3419 /// getConstraintType - Given a constraint letter, return the type of
3420 /// constraint it is for this target.
3421 SparcTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3422 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3423 if (Constraint.size() == 1) {
3424 switch (Constraint[0]) {
3425 default: break;
3426 case 'r':
3427 case 'f':
3428 case 'e':
3429 return C_RegisterClass;
3430 case 'I': // SIMM13
3431 return C_Immediate;
3432 }
3433 }
3434
3435 return TargetLowering::getConstraintType(Constraint);
3436 }
3437
3438 TargetLowering::ConstraintWeight SparcTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3439 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3440 const char *constraint) const {
3441 ConstraintWeight weight = CW_Invalid;
3442 Value *CallOperandVal = info.CallOperandVal;
3443 // If we don't have a value, we can't do a match,
3444 // but allow it at the lowest weight.
3445 if (!CallOperandVal)
3446 return CW_Default;
3447
3448 // Look at the constraint type.
3449 switch (*constraint) {
3450 default:
3451 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3452 break;
3453 case 'I': // SIMM13
3454 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3455 if (isInt<13>(C->getSExtValue()))
3456 weight = CW_Constant;
3457 }
3458 break;
3459 }
3460 return weight;
3461 }
3462
3463 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3464 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const3465 void SparcTargetLowering::LowerAsmOperandForConstraint(
3466 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
3467 SelectionDAG &DAG) const {
3468 SDValue Result;
3469
3470 // Only support length 1 constraints for now.
3471 if (Constraint.size() > 1)
3472 return;
3473
3474 char ConstraintLetter = Constraint[0];
3475 switch (ConstraintLetter) {
3476 default: break;
3477 case 'I':
3478 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3479 if (isInt<13>(C->getSExtValue())) {
3480 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3481 Op.getValueType());
3482 break;
3483 }
3484 return;
3485 }
3486 }
3487
3488 if (Result.getNode()) {
3489 Ops.push_back(Result);
3490 return;
3491 }
3492 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3493 }
3494
3495 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3496 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3497 StringRef Constraint,
3498 MVT VT) const {
3499 if (Constraint.empty())
3500 return std::make_pair(0U, nullptr);
3501
3502 if (Constraint.size() == 1) {
3503 switch (Constraint[0]) {
3504 case 'r':
3505 if (VT == MVT::v2i32)
3506 return std::make_pair(0U, &SP::IntPairRegClass);
3507 else if (Subtarget->is64Bit())
3508 return std::make_pair(0U, &SP::I64RegsRegClass);
3509 else
3510 return std::make_pair(0U, &SP::IntRegsRegClass);
3511 case 'f':
3512 if (VT == MVT::f32 || VT == MVT::i32)
3513 return std::make_pair(0U, &SP::FPRegsRegClass);
3514 else if (VT == MVT::f64 || VT == MVT::i64)
3515 return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3516 else if (VT == MVT::f128)
3517 return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3518 // This will generate an error message
3519 return std::make_pair(0U, nullptr);
3520 case 'e':
3521 if (VT == MVT::f32 || VT == MVT::i32)
3522 return std::make_pair(0U, &SP::FPRegsRegClass);
3523 else if (VT == MVT::f64 || VT == MVT::i64 )
3524 return std::make_pair(0U, &SP::DFPRegsRegClass);
3525 else if (VT == MVT::f128)
3526 return std::make_pair(0U, &SP::QFPRegsRegClass);
3527 // This will generate an error message
3528 return std::make_pair(0U, nullptr);
3529 }
3530 }
3531
3532 if (Constraint.front() != '{')
3533 return std::make_pair(0U, nullptr);
3534
3535 assert(Constraint.back() == '}' && "Not a brace enclosed constraint?");
3536 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3537 if (RegName.empty())
3538 return std::make_pair(0U, nullptr);
3539
3540 unsigned long long RegNo;
3541 // Handle numbered register aliases.
3542 if (RegName[0] == 'r' &&
3543 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3544 // r0-r7 -> g0-g7
3545 // r8-r15 -> o0-o7
3546 // r16-r23 -> l0-l7
3547 // r24-r31 -> i0-i7
3548 if (RegNo > 31)
3549 return std::make_pair(0U, nullptr);
3550 const char RegTypes[] = {'g', 'o', 'l', 'i'};
3551 char RegType = RegTypes[RegNo / 8];
3552 char RegIndex = '0' + (RegNo % 8);
3553 char Tmp[] = {'{', RegType, RegIndex, '}', 0};
3554 return getRegForInlineAsmConstraint(TRI, Tmp, VT);
3555 }
3556
3557 // Rewrite the fN constraint according to the value type if needed.
3558 if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' &&
3559 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3560 if (VT == MVT::f64 && (RegNo % 2 == 0)) {
3561 return getRegForInlineAsmConstraint(
3562 TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT);
3563 } else if (VT == MVT::f128 && (RegNo % 4 == 0)) {
3564 return getRegForInlineAsmConstraint(
3565 TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT);
3566 } else {
3567 return std::make_pair(0U, nullptr);
3568 }
3569 }
3570
3571 auto ResultPair =
3572 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3573 if (!ResultPair.second)
3574 return std::make_pair(0U, nullptr);
3575
3576 // Force the use of I64Regs over IntRegs for 64-bit values.
3577 if (Subtarget->is64Bit() && VT == MVT::i64) {
3578 assert(ResultPair.second == &SP::IntRegsRegClass &&
3579 "Unexpected register class");
3580 return std::make_pair(ResultPair.first, &SP::I64RegsRegClass);
3581 }
3582
3583 return ResultPair;
3584 }
3585
3586 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const3587 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3588 // The Sparc target isn't yet aware of offsets.
3589 return false;
3590 }
3591
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3592 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3593 SmallVectorImpl<SDValue>& Results,
3594 SelectionDAG &DAG) const {
3595
3596 SDLoc dl(N);
3597
3598 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3599
3600 switch (N->getOpcode()) {
3601 default:
3602 llvm_unreachable("Do not know how to custom type legalize this operation!");
3603
3604 case ISD::FP_TO_SINT:
3605 case ISD::FP_TO_UINT:
3606 // Custom lower only if it involves f128 or i64.
3607 if (N->getOperand(0).getValueType() != MVT::f128
3608 || N->getValueType(0) != MVT::i64)
3609 return;
3610 libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3611 ? RTLIB::FPTOSINT_F128_I64
3612 : RTLIB::FPTOUINT_F128_I64);
3613
3614 Results.push_back(LowerF128Op(SDValue(N, 0),
3615 DAG,
3616 getLibcallName(libCall),
3617 1));
3618 return;
3619 case ISD::READCYCLECOUNTER: {
3620 assert(Subtarget->hasLeonCycleCounter());
3621 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
3622 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
3623 SDValue Ops[] = { Lo, Hi };
3624 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
3625 Results.push_back(Pair);
3626 Results.push_back(N->getOperand(0));
3627 return;
3628 }
3629 case ISD::SINT_TO_FP:
3630 case ISD::UINT_TO_FP:
3631 // Custom lower only if it involves f128 or i64.
3632 if (N->getValueType(0) != MVT::f128
3633 || N->getOperand(0).getValueType() != MVT::i64)
3634 return;
3635
3636 libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3637 ? RTLIB::SINTTOFP_I64_F128
3638 : RTLIB::UINTTOFP_I64_F128);
3639
3640 Results.push_back(LowerF128Op(SDValue(N, 0),
3641 DAG,
3642 getLibcallName(libCall),
3643 1));
3644 return;
3645 case ISD::LOAD: {
3646 LoadSDNode *Ld = cast<LoadSDNode>(N);
3647 // Custom handling only for i64: turn i64 load into a v2i32 load,
3648 // and a bitcast.
3649 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3650 return;
3651
3652 SDLoc dl(N);
3653 SDValue LoadRes = DAG.getExtLoad(
3654 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3655 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32,
3656 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(),
3657 Ld->getAAInfo());
3658
3659 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3660 Results.push_back(Res);
3661 Results.push_back(LoadRes.getValue(1));
3662 return;
3663 }
3664 }
3665 }
3666
3667 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const3668 bool SparcTargetLowering::useLoadStackGuardNode() const {
3669 if (!Subtarget->isTargetLinux())
3670 return TargetLowering::useLoadStackGuardNode();
3671 return true;
3672 }
3673
3674 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const3675 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3676 if (!Subtarget->isTargetLinux())
3677 return TargetLowering::insertSSPDeclarations(M);
3678 }
3679
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const3680 void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3681 SDNode *Node) const {
3682 assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri);
3683 // If the result is dead, replace it with %g0.
3684 if (!Node->hasAnyUseOfValue(0))
3685 MI.getOperand(0).setReg(SP::G0);
3686 }
3687